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Abstract

Although vitamin D has been reported to have pleiotropic effects including effects on the immune 

system and on cancer progression, the principal action of vitamin D is the maintenance of calcium 

and phosphate homeostasis. The importance of vitamin D in this process is emphasized by the 

consequences of vitamin D deficiency which includes rickets in children and osteomalacia in 

adults. Vitamin D deficiency has also been reported to increase the risk of falls and osteoporotic 

fractures. Although vitamin D fortification of foods (including dairy products) has contributed to a 

marked decrease in rickets in the Western world, vitamin D deficiency in children and adults is 

still prevalent world-wide. This review summarizes new developments in our understanding of 

vitamin D endocrine system and addresses clinical syndromes related to abnormalities in vitamin 

D metabolism and action. In addition, the current understanding of the evaluation of vitamin D 

deficiency and sufficiency and recommendations for achieving vitamin D sufficiency are 

discussed.
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1. Introduction

Nearly a century ago McCollum et al (1) identified vitamin D as the factor that cured rickets. 

In recent years there has been renewed interest in vitamin D due not only to an increased 

awareness of possible benefits of vitamin D on overall health but also due to the resurgence 

of vitamin D deficiency in children and adults world-wide. In this article we focus on recent 

advances in our understanding of the vitamin D endocrine system and clinical syndromes 

related to dysregulation of vitamin D metabolism and action. The determination of vitamin 

D deficiency and sufficiency and recommendations for achieving vitamin D sufficiency are 

also addressed in this review.

2. Vitamin D Metabolism

2.1. The Vitamin D Metabolic Pathway Production and Regulation of 1,25(OH)2D3

Vitamin D is produced in the skin from its substrate 7-dehydrocholesterol (2). This is a non-

enzymatic process involving UV light and heat and is the most important source of vitamin 

D since few foods, which include fatty fish and fortified dairy products, contain vitamin D. 

The next step is the conversion of vitamin D to 25-hydroxyvitamin D3 (25(OH)D3) in the 

liver. Recent reports indicate that there are a number of enzymes with 25-hydroxylase 

activity (3). However, evidence indicates that CYP2R1 appears to be the dominant 25-

hydroxylase in humans (4–6). 25(OH)D3 is then metabolized in the kidney, as well as in a 

number of extra-renal sites, to its most biologically active form 1,25-dihydroxyvitamin D3 

(1,25(OH)2D3) by the CYP27B1 (25(OH)D3 1-α hydroxylase) (7–10). Controlling the 

levels of 1,25(OH)2D3 and 25(OH)D3 is the enzyme CYP24A1 (25(OH)D3 24-

hydroxylase). CYP24A1 is induced by 1,25(OH)2D3 and is widely distributed, being 

expressed in most cells. Thus 1,25(OH)2D3 regulates its own metabolism protecting against 

hypercalcemia (7–10) (Fig.1). Mutations in each of these enzymes can cause human 

disease(11). The production of 1,25(OH)2D3 in the kidney is under stringent control (Fig. 1). 

Parathyroid hormone (elevated in response to hypocalcemia) stimulates CYP27B1 resulting 

in enhanced 1,25(OH)2D3 production. 1,25(OH)2D3 acts in turn to suppress PTH production 

in the parathyroid glands by increasing serum calcium and by upregulating the expression of 

the calcium sensing receptor, thus sensitizing the parathyroid gland to calcium inhibition 

(12). Direct inhibition of PTH expression by 1,25(OH)2D3/VDR has also been reported (13). 

1,25(OH)2D3 also suppresses its own production by directly inhibiting CYP27B1 at least in 

the kidney (7–10). Fibroblast growth factor 23 (FGF23), produced primarily from 

osteoblasts and osteocytes, promotes phosphate excretion and together with its cofactor α-

klotho regulates vitamin D metabolism by inhibiting renal 1,25(OH)2D3 production and 

increasing expression of CYP24A1 (14, 15) (Fig. 1). 1,25(OH2D3 in turn stimulates FGF23 

expression. In extrarenal tissues where CYP27B1 is also expressed, regulation differs from 

that in the kidney. In particular, sites such as epithelial cells and immune cells, regulation is 

primarily by cytokines at not by PTH or FGF23 (16). This accounts for the hypercalcemia 

and inappropriately elevated 1,25(OH)2D3 levels seen in a variety of granulomatous diseases 

and epithelial cancers.

With age there is a decline in the ability of the kidney to hydroxylate 25(OH)D3 to 

1,25(OH)2D3(17). An increase in renal CYP24A1 expression as well as an increase in the 
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clearance of 1,25(OH)2D3 with aging have also been reported (17–20). Thus the combined 

effect of a decline in the ability of the kidney to synthesize 1,25(OH)2D3 and an increase in 

the catabolism of 1,25(OH)2D3 by CYP24A1 may contribute to age related bone loss.

2.2. Mutations in the Vitamin D Hydroxylases and Human Disease

Evidence that CYP2R1 is the key vitamin D 25-hdyroxylase is indicated from studies 

showing that patients with functional mutations in CYP2R1 develop vitamin D- dependent 

rickets with high PTH and alkaline phosphatase levels and very low 25(OH)D levels (5–7, 

21). This form of rickets is currently called vitamin D-dependent rickets, type 1B 

(VDDR1B). These patients respond well to physiologic doses of calcifediol (25(OH)D3) 

(21). Mutations in the renal 1α-hydroxylase (CYP27B1), diagnosed generally in the first 

year of life, result in skeletal defects of classic rickets, muscle weakness, and growth 

retardation in spite of normal intake of vitamin D (7). These findings emphasize the 

importance of the CYP27B1 enzyme. Patients with this disease were first diagnosed by 

Fraser et al (22). Laboratory assessment includes low 1,25(OH)2D3 levels, hypocalcemia, 

hypophosphatemia, high PTH but normal levels of 25(OH)D. Physiological levels of 

calcitriol (1,25(OH)2D3) are curative. This disease can be distinguished from vitamin D 

deficiency since vitamin D deficiency presents with low 25(OH)D levels and often normal 

1,25(OH)2D3 levels. The crucial role of CYP24A1 in the catabolism of 1,25(OH)2D3 in 

humans was noted in recent studies of children with inactivating mutations in CYP24A1 

(23). These children present with hypercalcemia, hypercalciuria, decreased PTH, low 

24,25(OH)2D3 and normal to high 1,25(OH)2D3 levels. It was suggested that this mutation 

was the probable cause of at least some cases of idiopathic infantile hypercalcemia, which 

can manifest after vitamin D supplementation. Stopping vitamin D supplementation, 

implementing a low calcium diet and limiting sunlight exposure have been suggested as 

therapy. It should be noted that adults with this syndrome have also been described (24, 25). 

Patients with a history of hypercalcemia and kidney stones may warrant screening for 

CYP24A1 mutations. Very recently a gain of function mutation in CYP3A4, a P450 enzyme 

involved in drug metabolism located in liver and intestine, has been described leading to 

rickets with decreased serum calcium and phosphate and elevated PTH and alkaline 

phosphatase. CYP3A4 was found to inactivate 25(OH)D3 and 1,25(OH)2D3 (26). This is a 

distinct form of vitamin D dependent rickets since it does not involve a defect in synthesis of 

vitamin D metabolites but rather is due to accelerated inactivation of vitamin D metabolites. 

The authors called this vitamin D dependent rickets type 3 and suggest that accelerated 

vitamin D inactivation by genetic or induced CYP3A4 activity may be a risk factor for 

vitamin D deficiency.

3. Vitamin D: Molecular Mechanism of Action

The actions of 1,25(OH)2D3 are mediated by the vitamin D receptor, a ligand dependent 

nuclear receptor. The modular structure of VDR is comprised of an A/B domain, a 

conserved zinc finger DNA-binding domain (DBD), a flexible hinge region and a 

multifunctional ligand binding domain (LBD). VDR heterodimerizes with the retinoid X 

receptor (RXR). VDR/RXR interacts with specific DNA sequences, leading to activation or 

repression of transcription. For transcriptional activation, in general the vitamin D response 
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element (VDRE) in target genes is composed of two direct repeats of the hexonucleotide 

sequence AGGTCA separated by 3 base pairs (bp) although variations on this 

hexonucleotide sequence are numerous (9, 20, 27). 1,25(OH)2D3 promotes 

heterodimerization of VDR with RXR and also recruits coregulatory complexes that 

participate in the regulation of transcription of VDR target genes., including SRC-2 (GRIP1) 

and CBP that display histone acetylase activity and Mediator complex, which functions to 

recruit RNA polymerase II (9, 20, 27). (Fig. 2). SRCs (SRC- 1, −2 and −3) are primary 

coactivators that bind to VDR and recruit secondary coactivators such as CBP. Brahma-

related gene 1 (BRG-1), an ATPase that is a component of the SWI/SNF chromatin 

remodeling complex, has also been reported to play a fundamental role in 1,25(OH)2D3 

induced transcription (28) (Fig. 2). Thus VDR mediated gene transcription is a multistep 

process requiring a combination of transcriptional coactivators in a cell type and gene 

specific manner. At least 49 different mutations in the VDR in over 100 patients have been 

described, and occur throughout the VDR (29). These mutations result in early onset of 

rickets, low calcium and phosphate, high PTH and growth retardation, indicating the 

essential role of VDR as the mediator of vitamin D action [29]. From recent genome wide 

studies we have obtained a new perspective on VDR mediated transcription. VDR binding 

sites are not only located at proximal promoters, as previously reported, but are situated also 

within introns and at distal intergenic regions many kilobases upstream or downstream of 

regulated genes (10, 30). In addition, recent evidence indicated that 1,25(OH)2D3 results in 

an increase in levels of acetylation at H4K5, H3K9 and H3K27 which can define sites of 

action of 1,25(OH)2D3 (10, 31). Epigenetic histone changes within enhancers of certain 

VDR target genes can play a crucial role in 1,25(OH)2D3 mediated transcriptional 

activation. Understanding the multiple factors involved in VDR mediated transcription can 

lead to the design of drugs that can selectively modulate 1,25(OH)2D3 responses in specific 

tissues, resulting in new approaches to sustain calcium balance and perhaps enhance 

suggested anti-inflammatory and anti-tumor activities of 1,25(OH)2D3.

4. Vitamin D and Bone Mineral Homeostasis

4.1. Recent Advances in Our Understanding of 1,25(OH)2D3 Regulation of Intestinal 
Calcium Absorption

Vitamin D is a principal factor involved in the control of mineral balance. Vitamin D 

deficiency during bone development causes growth retardation and rickets and in adults 

vitamin D deficiency can cause secondary hyperparathyroidism resulting in osteoporosis 

and/or osteomalacia and increased risk of fracture (32, 33). However, in spite of the 

importance of vitamin D in mineral homeostasis, understanding vitamin D action and the 

molecular targets that mediate the impact of vitamin D have remained incomplete and are a 

subject of continuing investigation. The principal action of vitamin D in maintenance of 

calcium homeostasis is intestinal calcium absorption (9, 34). This conclusion was made 

from studies in VDR null mice, an animal model of hereditary vitamin D- resistant rickets 

(HVDRR; also known as vitamin D dependent rickets type II) [29]. When VDR null mice 

are fed a diet which includes high calcium, rickets and osteomalacia are prevented as serum 

calcium and PTH are normalized (35, 36). In addition, intravenous or high dose oral calcium 

cures rickets and promotes normal mineralization in patients with HVDRR. (37). Transgenic 
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expression of VDR specifically in the intestine of VDR null mice prevents rickets and 

normalizes serum calcium, further indicating that a major action of 1,25(OH)2D3/VDR in 

the prevention of skeletal abnormalities is enhancement of intestinal calcium absorption 

(38). When the demand for calcium increases under conditions of low dietary calcium 

intake, during skeletal growth or during pregnancy and lactation, vitamin D mediated 

intestinal calcium absorption occurs predominantly by an active transcellular process (34, 

39). Two of the most pronounced effects of 1,25(OH)2D3 in the intestine are increased 

synthesis of calbindin, an intracellular calcium binding protein that has been proposed to 

facilitate calcium movement through the cytoplasm, and increased synthesis of transient 

receptor potential cation channel, subfamily V, member 6 (TRPV6), an apical epithelial 

calcium channel that mediates calcium entry into the enterocyte [40]. Evidence for a role of 

TRPV6 and calbindin in intestinal calcium absorption includes the findings that both 

proteins are expressed in the duodenum, both are induced at weaning (the time of onset of 

intestinal calcium transport) and both are induced, in response to 1,25(OH)2D3, prior to the 

peak of intestinal calcium absorption (40). However, studies in calbindin-D9k or TRPV6 null 

mice show no difference in phenotype (normal serum calcium and bone mass) and no 

difference in 1,25(OH)2D3 mediated active intestinal calcium absorption compared to wild 

type mice, thus challenging the traditional model of vitamin D mediated intestinal calcium 

absorption (41–43). Thus active calcium transport can occur in the absence of these proteins 

suggesting compensation by other proteins yet to be identified. These findings also suggest 

the complexity of VDR mediated transepithelial uptake of calcium which may involve a 

network of multiple components involved in active calcium transport (44). It should be 

noted, however, that under conditions of low dietary calcium in the TRPV6 KO mouse and 

in the TRPV6/calbinind-D9k double null mice calcium absorption is reduced compared to 

single null mice and WT mice (41). Thus TRPV6 and calbindin may act together in certain 

aspects of the absorptive process (for example calbindin may modulate calcium influx 

mediated by TRPV6). It is also possible that a principal function of calbindin is not 

facilitation of calcium movement through the cytosol but calcium buffering, preventing toxic 

levels of calcium from accumulating within the enterocyte during calcium absorption. 

Although the findings in the null mice indicate that other apical membrane calcium 

transporters may compensate for the loss of TRPV6, transgenic expression of TRPV6 in the 

intestine of VDR null mice results in enhanced calcium absorption and prevention of the 

hypocalcemia and osteomalacia observed in the VDR null mice (45). These findings suggest 

that TRPV6 can mediate intestinal calcium absorption and that an inability to transport 

calcium into the enterocyte may be a primary defect in VDR dependent rickets. In addition 

to TRPV6, the in vivo physiological importance of the plasma membrane calcium pump 

(PMCA) in vitamin D mediated intestinal calcium absorption has recently been noted. 

Specific intestinal deletion in mice of PMCA1 (the major calcium pump of the intestine) 

resulted in decreased bone mineral density and impaired intestinal calcium absorption in 

response to 1,25(OH)2D3 (46).

Most research on intestinal calcium absorption has utilized the duodenum. However, it is the 

distal intestine where most of the ingested calcium is absorbed (47). Although it has been 

suggested that calcium absorption in the distal intestine is due to vitamin D independent 

passive diffusion (47), VDR and the traditional transcellular mediators are expressed in both 
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proximal and distal intestine (38). In addition, active 1,25(OH)2D3 regulated calcium 

absorption occurs in the rat and human colon (48, 49). Studies in humans show that total 

calcium absorption is higher when the colon is preserved after small bowel resection (50). 

To test directly the role of 1,25(OH)2D3 and the VDR in the distal intestine, recent findings 

from the Christakos lab indicated that transgenic expression of VDR only in distal ileum, 

cecum and colon of VDR null mice, at levels equivalent to WT, completely rescued the bone 

and serum defects associated with VDR deletion (51). The induction of TRPV6 mRNA and 

calbindin-D9k in the distal intestine of the transgenic mice suggest that active transport is 

involved in the rescue of rickets of the VDR null mice expressing VDR in the distal intestine 

and that the distal intestine contributes to maintenance of whole body calcium and bone 

homeostasis.

Clinical relevance—Reduction of intestinal calcium absorption with advancing age has 

been reported to be a significant risk factor for fracture in the elderly (52). Bariatric surgery 

with the by-pass of the upper intestine is associated with calcium malabsorption and bone 

loss (53). Understanding the mechanisms involved in VDR mediated active of calcium 

transport in the distal intestine may suggest new strategies to prevent bone loss caused by 

disrupted calcium metabolism due to bariatric surgery, small bowel resection or aging.

4.2. Effects of 1,25(OH)2D3 on Bone

Although a primary antirachitic effect of 1,25(OH)2D3 is indirect, providing calcium to bone 

as a result of enhanced intestinal calcium absorption, 1,25(OH)2D3 can stimulate 

osteoclastogenesis by upregulating RANKL (receptor activator of nuclear kB ligand) in 

osteoblastic cells. RANKL mediates osteoclast formation by mediating direct interactions 

between osteoblast/stromal cells and osteoclast precursors (54). During a negative calcium 

balance 1,25(OH)2D3 together with PTH (which also induces RANKL in osteoblasts) result 

in enhanced osteoclast formation and loss of calcium from bone(9, 10, 55). Enhancer regions 

significantly upstream of the RANKL start site mediate the regulation of RANKL by PTH 

and 1,25(OH)2D3 (56, 57). In addition to osteoblasts, osteocytes have also been shown to be 

a major source of RANKL (58). 1,25(OH)2D3 also reduces matrix mineralization by 

increasing the expression of mineralization inhibitors, including osteopontin, in osteoblasts 

(59). Thus when 1,25(OH)2D3 regulation of intestinal calcium absorption is insufficient to 

maintain calcium homeostasis, maintenance of blood calcium levels is prioritized at the 

expense of skeletal integrity. It should be noted however, that the role of 1,25(OH)2D3 in 

bone under conditions of positive calcium balance, although not clearly defined, has been 

suggested to involve osteoanabolic effects of 1,25(OH)2D3, for example upregulation of 

LRP5 (low density lipoprotein receptor related 5), a mediator of bone mineral density (60).

Clinical relevance—These findings suggest that a combination of calcium and vitamin D 

is needed for treatment or prevention of osteoporosis since vitamin D alone may negatively 

affect bone when calcium homeostasis cannot be maintained by 1,25(OH)2D3 mediated 

intestinal calcium absorption.
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4.3. The Role of 1,25(OH)2D3 in the Kidney: Decreased 1,25(OH)2D3 or Increased FGF23 
as an Initial Event in Chronic Kidney Disease?

During a negative calcium balance, when serum calcium cannot be maintained by intestinal 

calcium absorption, in addition to mobilizing calcium from the skeleton, 1,25(OH)2D3 also 

acts together with PTH to increase calcium reabsorption from the distal tubule of the kidney. 

1,25(OH)2D3 regulates the active transcellular process at the distal tubule by inducing the 

expression of the apical calcium channel TRPV5 (which shows 73.4% sequence homology 

with TRPV6) and by inducing calbindin-D9k (9,000 Mr) in mouse kidney and calbindin-

D28k (28,000 Mr) in mouse, human and rat kidney (9, 61). 1,25(OH)2D3 can also enhance 

the stimulatory effect of PTH on calcium reabsorption in part by increasing PTH receptor 

expression in the distal tubule (62). Another major function of 1,25(OH)2D3 in the kidney is 

the regulation of the vitamin D hydroxylases (inhibition of CYP27B1 and stimulation of 

CYP24A1 as an autoregulatory mechanism to prevent hypercalcemia). In addition to 

1,25(OH)2D3, calcium, PTH and FGF23 are also important regulators of 1,25(OH)2D3 

production (see section 2; vitamin D metabolism and Fig.1). In chronic kidney disease 

(CKD) there is a gradual decrease in the number of functional nephrons and alterations in 

renal vitamin D hydroxylases and vitamin D metabolites including low 1,25(OH)2D3 [62]. 

This has been attributed to reduction in renal 1α-hydroxylase as renal mass is reduced as 

well as to the increase in FGF23 (63, 64). FGF23 is increased in CKD in order to maintain 

phosphate excretion per nephron but has been shown to be a major contributor to the 

decrease in 1,25(OH)2D3 in early renal failure(64, 65). A decline in the FGF23 cofactor 

klotho has also been reported to be an early event in CKD, which may cause a compensatory 

increase in FGF23 [65].

Clinical relevance—Recent evidence indicates that FGF23 (and not decreased 

1,25(OH)2D3) is an initial event in CKD, a biomarker for CKD progression and a predictor 

of cardiovascular disease (64, 66). FGF23 would result in the decrease in 1,25(OH)2D3, 

which would be followed by an increase in PTH (64). Hyperphosphatemia is observed at the 

end stage of CKD when the kidney is incapable of excreting ingested phosphate (64) (Fig. 

3). Recent findings suggest that a novel distal enhancer mediates the early rise in the 

expression of FGF23 in a diet induced CKD mouse model (67). FGF23 antagonism 

combined with vitamin D supplementation and phosphate control has now been suggested as 

therapeutic treatment in CKD (66).

5. Non-Classical Actions of Vitamin D

Although the essential role of vitamin D in calcium homeostasis is well documented, the 

possibility that 1,25(OH)2D3 also affects numerous other physiological processes has been 

considered for decades due to the presence of VDR in numerous tissues and cells that are 

not involved in calcium regulation including pancreas, brain, skin, placenta, colon, breast 

and prostate cancer cells and immune cells (68, 69). In the innate immune system 

antimicrobial peptides provide protection against bacterial infection (70). The human 

cathelicidin antimicrobial peptide has broad antibacterial activity against both Gram-positive 

and Gram negative bacteria (71, 72). 1,25(OH)2D3 has been reported to induce the 

expression of the human cathelicidin antimicrobial peptide in monocytes, lung epithelial 

Christakos et al. Page 7

Metabolism. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cells, intestinal epithelial cells, keratinocytes and trophoblasts of the placenta (72). Recent 

studies have identified novel networks involved in vitamin D mediated regulation of 

cathelicidin (73). Understanding the mechanisms involved in the regulation of cathelicidin 

may suggest new approaches to treat infection caused by antibiotic resistant pathogens. In 

addition to the innate immune system, 1,25(OH)2D3 also affects adaptive immunity 

[reviewed in (9, 72, 74)]. 1,25(OH)2D3 inhibits the production of inflammatory cytokines in 

T cells including IL-2, IFNγ, IL-12 and IL-17. 1,25(OH)2D3 also suppresses antigen-

presentation by dendritic cells and promotes activation of T regulatory cells which are 

involved in inhibition of inflammation (9, 72, 74). Due to the effects of 1,25(OH)2D3 on the 

adaptive immune system, it has been suggested that 1,25(OH)2D3 may play an important 

role in the prevention or treatment of autoimmune diseases such a multiple sclerosis, 

inflammatory bowel disease and rheumatoid arthritis (74). In addition to its 

immunomodulatory effects a role for 1,25(OH)2D3 on cancer prevention or treatment has 

been suggested due, at least in part, to the effect of 1,25(OH)2D3 on inhibition of cancer cell 

growth (9, 75) Studies in mouse models have shown inhibition of mammary, prostate, colon 

and skin cancer by 1,25(OH)2D3/VDR (75). It has also been reported in clinical studies that 

a large number of diseases are associated with low 25(OH)D3 levels (9). It should be noted 

however that, at this time, only a limited number of randomized controlled clinical trials 

(RCTs) have convincingly shown benefit from vitamin D supplementation (9, 74, 76). One 

major exception to this is psoriasis, a chronic autoimmune inflammatory skin disease, 

involving hyperproliferation of keratinocytes (77). Topical application of 1,25(OH)2D3 and 

its analogs (calcipotriol, tacalcitol and maxacalcitol), which have been shown to increase 

differentiation and decrease proliferation of keratinocytes, and also have anti-inflammatory 

properties, are currently approved for use to treat psoriatic skin lesions (9, 78). Although, for 

most diseases, large scale clinical trials to determine effects of vitamin D on extraskeletal 

health are not yet available, compelling evidence in the laboratory indicates beneficial 

effects of 1,25(OH)2D3 beyond bone and suggest that analogs of 1,25(OH)2D3 may have a 

role together with traditional therapies to treat specific diseases including autoimmune 

diseases and some cancers at least in vitamin D deficient individuals (9, 74, 76, 78).

6. Vitamin D Sufficiency

6.1. 25(OH)D: Total vs. Free 25(OH)D

25(OH)D is the principal yardstick by which vitamin D sufficiency is determined. There are 

several reasons for this. First, 25(OH)D is the vitamin D metabolite in highest concentration 

in the blood, so is easiest to measure. Second, nearly all 25(OH)D is in the blood, unlike 

vitamin D itself, which is stored in tissues such as fat. Third, the conversion of vitamin D to 

25(OH)D follows first order kinetics, meaning that the level of 25(OH)D is linearly 

correlated to the levels of vitamin D, although there is individual variation in the relationship 

between vitamin D intake and 25(OH)D levels achieved. The 25-hydroxylases are little 

regulated under most circumstances, unlike CYP27B1, so the conversion of vitamin D to 

25(OH)D is not influenced by changes in hormones such as PTH, FGF23, or feedback 

regulation by 25(OH)D or 1,25(OH)2D. Finally, 25(OH)D has a half life in blood measured 

in weeks, unlike hours for 1,25(OH)2D. That said, total 25(OH)D may not be the best 

measurement of vitamin D status. 25(OH)D, like other vitamin D metabolites, is carried in 
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blood by two major proteins, vitamin D binding protein (DBP) and albumin. DBP binds 

approximately 85% of total 25(OH)D, albumin 15%, with approximately 0.03% free (79). 

Except for tissues expressing the megalin/cubilin complex, it is the free fraction that enters 

the cells (the free hormone hypothesis).This is similar to that for the thyroid and steroid 

hormones (80, 81), which like vitamin D metabolites are transported in blood bound to their 

respective binding proteins. Although an earlier monoclonal assay reported marked 

differences in DBP levels between racial groups, this appears to be due to a decreased ability 

to measure the Gc1f allele of DBP found most commonly in individuals of African descent, 

and has not been seen with other polyclonal assays of mass spectroscopy (82). There are a 

number of drugs and cytokines (dexamethasone and IL-6 for example) as well as clinical 

conditions (for example liver disease, nephrotic syndrome, primary hyperparathyroidism, 

acute trauma) that contribute to changes in DBP production that alter the ratio of total to free 

25(OH)D (83) suggesting that determination of the free level of 25(OH)D might be a better 

representation of vitamin D status than the total level, but this remains controversial (84)

6.2. Determination of 25(OH)D Levels

The data used for determining recommended levels of 25OHD come primarily from 

association studies correlating 25(OH)D levels to disease incidence/prevalence, but with a 

growing number of randomized controlled clinical trials (RCTs) evaluating whether vitamin 

D supplementation reduces the incidence/prevalence of a given marker or disease. The most 

consistent data, and the data used in establishing recommendations either for optimal levels 

of circulating 25(OH)D levels or levels of dietary supplements, comes from studies 

involving the musculoskeletal system. To state the obvious, measurement of 25(OH)D is 

required in these studies, but unfortunately the assays that have been used vary (85). Most of 

these assays involve antibodies that may differ between laboratories with variable ability to 

detect 25(OH)D2 as well as 25(OH)D3 and sensitivity to interfering substances (82). As 

more laboratories implement LC/MS to measure vitamin D metabolites, many of the 

problems with immunometric assays will be solved. Meanwhile efforts are being made to 

harmonize the data from different laboratories in different countries (86), but 

recommendations based on earlier non harmonized data persist.. Moreover, different groups 

select different studies or weight them differently when establishing their recommendations. 

Finally, it is not clear that vitamin D levels that are optimal for Caucasians are the same as 

those for Black Africans or Asians. Not surprisingly current guidelines vary, but efforts to 

gain consensus are being made especially as new data from RCTs based on better assays are 

being generated (87).

6.3. Evaluation of Vitamin D Deficiency and Sufficiency and Recommendations for 
Achieving Vitamin D Sufficiency

Terms to consider are estimated average requirement (EAR)—the median level at which 

50% of the population would be sufficient—and the required daily requirement (RDA)—the 

level that meets the needs of 97.5% of the population. Other countries use different terms 

such as adequate intake (AI), reference nutrient intake (RNI), and recommended intake (RI). 

The recommended levels assume no additional contribution from epidermal production of 

vitamin D. Thirty three nominated experts in pediatric endocrinology, pediatrics, nutrition, 

epidemiology, public health, and health economics from around the world recently published 
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their consensus recommendations on the prevention and management of nutritional rickets 

(32). They defined vitamin D sufficiency as 25(OH)D levels above 50nM (20ng/ml), 

insufficiency between 30–50nM, and deficiency below 30nM (12ng/ml). Moreover, they 

noted that the consequences with respect to the development of rickets/osteomalacia were 

also dependent on calcium intake. They defined calcium sufficiency as >500mg/d, 

insufficiency as 300–500mg/d, and insufficiency as <300mg/d. It was individuals with the 

combination of insufficient or deficient levels of either calcium or vitamin D and deficient 

levels of the other that were most at risk for rickets/vitamin D. Deficiency of vitamin D with 

a normal calcium intake might lead to biochemical abnormalities but not rickets/

osteomalacia according to their analysis. They recommended 400iu vitamin D/d for infants 

up to 1 year and followed the Institute of Medicine (IOM) (now known as the National 

Academy of Medicine (NAM)) recommendations for older children and adults (see below) 

(also Table 1). They further recommended 200mg calcium/d for infants up to 6mo, and 

260mg/d from 6–12 mo. Older children were recommended to consume at least 500mg 

calcium/d. Other than the recommendation by NAM for adults to ingest 700–1300mg 

calcium/d (88), most guidelines are silent with respect to calcium. Pilz et al. (89) recently 

tabulated dietary recommendations for vitamin D from a number of countries including 

those from the USA and Canada (Institute of Medicine, NAM); Europe (European Food 

Safety Authority, EFSA), Germany, Austria, Switzerland (DACH), United Kingdom 

(Scientific Advisory Committee on Nutrition (SACN), and the Nordic countries 

(NORDEN). What was listed was the RDA (NAM), Adequate Intake (EFSA, DACH), 

Reference Nutrition Intake (SACN), or Recommended Intake (NORDEN). The NAM 

recommended 600iu from years 1–70 and 800iu above 70; the EFSA recommended 400iu/d 

for infants 7–12 mo and 600iu/d for all older age groups; DACH recommended 400iu/d for 

infants and 800iu/d for all older age groups; SACN and NORDEN recommended 400iu/d for 

all ages over 1yr, with SACN recommending slightly lower (340–400iu) for infants. The 

NAM considered a 25(OH)D serum level of 50nM (20ng/ml) to suffice for 97.5% of the 

population (88), whereas the Endocrine Society guidelines recommend 75nM (30ng/ml), 

considering levels between 50–75nM as insufficient and less than 50nM as deficient (90). 

Although the Endocrine Society recommendations for children and adults are comparable to 

other groups (400iu/d for infants, 600iu/d from ages 1–70, 800iu/d for those over 70), the 

Endocrine Society suggests that doses up to 2000iu vitamin D/d may be necessary to achieve 

and maintain a serum 25OHD level of 75nM (30ng/ml) (Table 1).

As noted these recommendations are based primarily on data from studies of the 

musculoskeletal system. 400iu vitamin D sufficed to prevent rickets in a study in Turkey 

where deficiency was extensive (91). Other studies in adult populations demonstrate elevated 

PTH levels and reduced bone mineral density at 25(OH)D levels below 50nM (92, 93) and 

increased osteoid suggestive of osteomalacia in hip fracture patients with 25(OH)D levels 

below 30nM (33, 94). At these levels vitamin D supplementation shows clear benefit (95). 

Vitamin D supplementation works better when used in conjunction with calcium (96–98) 

especially in the elderly and vitamin D deficient. Although not all studies have demonstrated 

protection against fracture, several have when elderly vitamin D deficient populations are 

studied (98, 99), but not when vitamin D sufficient populations are studied (100). Moreover, 

the amount and administration schedule also matter. Use of very high doses of vitamin D (ie. 
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300,000–500,000 iu given annually) seems to increase fracture risk (101, 102). Similar 

conclusions can be reached for falls. Daily doses of 700–1000 iu vitamin D reduce the risk 

of falls in the elderly especially those with vitamin D insufficiency (103, 104), but higher 

doses intermittently administered appear to increase the risk of falling (101, 105). The 

reduction in falls likely related to improvement in muscle function seen best in the most frail 

with lowest 25(OH)D levels (106). Although vitamin D supplementation has been shown to 

reduce overall mortality and cancer mortality, with the exception of upper respiratory 

illnesses and asthma, most diseases which have shown an association with low 25(OH)D 

levels have not yet shown consistent benefit with vitamin D supplementation (107, 108). 

However, most of these studies have not discriminated between participants with sufficient 

vs insufficient 25(OH)D levels, so the jury is still out.

In conclusion, recommended levels of vitamin D intake and optimal levels of circulating 

25(OH)D levels vary somewhat from country to country, and what is optimal for one group 

may differ for another group. Moreover, assays measuring 25(OH)D vary although with the 

development of mass spectrometry replacing immunoassays much of this variation can be 

eliminated. However, the question of whether free 25(OH)D measurements offer a better 

assessment of vitamin D status remains to be settled. Furthermore, recommended levels 

based on studies of the musculoskeletal system may or may not be appropriate for other 

vitamin D impacted conditions such as immune function, cancer prevention, cardiovascular 

health, neurologic function. Only further investigation will settle these issues.

7. Future Directions

Tight regulation of vitamin D metabolism is critical to the maintenance of normal calcium 

homeostasis and bone health. However, we are only beginning to understand the molecular 

mechanisms involved in the control of the expression of the vitamin D hydroxylases. With 

the technologies now available new insight will be obtained related to the regulatory regions 

including individual enhancers as well as transcription factor complexes and histone 

modifications that are involved in 1,25(OH)2D3 synthesis and catabolism. Understanding the 

mechanisms involved is critical to understanding dysregulation of 1,25(OH)2D3 production 

that occurs for example in chronic kidney disease and with age related bone loss. New 

targets of 1,25(OH)2D3 will be identified which will provide a better understanding of 

1,25(OH)2D3 actions in different regions of the intestine as well as in multiple other target 

tissues. New data from RCTs based on better assays of 25(OH)D3 will result in less 

variability and a gain in consensus for optimal vitamin D levels in different groups. In 

addition, further large scale clinical trials that discriminate between participants with 

sufficient and insufficient vitamin D levels will be needed to determine the suggested impact 

of vitamin D on immune function, cancer prevention and other diseases. These future studies 

will result in a new dimension in our understanding of the impact of the vitamin D endocrine 

system on skeletal health and on extraskeletal biological responses.
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Abbreviations:

1,25(OH)2D3 (1α,25-dihydroxyvitamin D3)

25(OH)D (25-hydroxyvitamin D3)

AI (adequate intake)

CDK (chronic kidney disease)

CYP24A1 (25-hydroxyvitamin D3 24 hydroxylase)

CYP27B1 (25-hydroxyvitamin D3 1 α hydroxylase)

DBP (vitamin D binding protein)

EAR (estimated average requirement)

EFSA (European Food Safety Authority)

FGF23 (fibroblast growth factor 23)

HVDRR (hereditary vitamin D resistant rickets)

IOM (Institute of Medicine)

PTH (parathyroid hormone)

RANKL (receptor activator of nuclear kB ligand)

RCT (randomized controlled clinical trial)

RDA (required daily requirement)

RI (recommended intake)

RNA (reference nutrient intake)

SACN (Scientific Advisory Committee on Nutrition)

TRPV5 (transient receptor potential cation channel, subfamily V, 

member 5)

TRPV6 (transient receptor potential cation channel, subfamily V, 

member 6)

VDR (vitamin D receptor)
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Highlights

• Mutations in CYP2R1, CYP27B1, CYP24A1 and CYP3A4 cause human 

disease

• VDR binding sites can be located at a range of locations; within introns and at 

distal intergenic regions of regulated genes

• The principal action of vitamin D in maintaining calcium homeostasis is 

intestinal calcium absorption which may involve a network of multiple 

components in the distal as well as the proximal intestine

• During negative calcium balance 1,25(OH)2D3 can promote bone resorption 

to prioritize maintenance of blood calcium at the expense of skeletal integrity

• Evidence supports beneficial effects of 1,25(OH)2D3 beyond mineral 

homeostasis

• Optimal vitamin D levels may be different for different racial groups

• Development of rickets/osteomalcia is dependent on calcium intake as well as 

vitamin D status
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Fig. 1. 
Vitamin D metabolic pathway. The production of 1,25(OH)2D3 in the kidney is under 

stringent control by PTH, 1,25(OH)2D3, FGF23/klotho and low dietary calcium and 

phosphate.
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Fig. 2. 
Mechanism of Action of 1,25(OH)2D3. The actions of 1,25(OH)2D3 are mediated by the 

VDR. 1,25(OH)2D3 binds to VDR which heterodimerizes with RXR. VDR/RXR interacts 

with vitamin D response elements (shown here as two direct repeats of AGGTCA separated 

by 3 base pairs; however it should be noted that there are numerous variations of this 

sequence) in and around target genes. 1,25(OH)2D3-VDR recruits coregulatory complexes 

including the histone acetyltransferase (HAT) activity containing complex (SRC-2, also 

known as GRIP1), CBP and PCAF, and mediator complex which facilitates activation of the 

RNA polymerase II holoenzyme. The SWI/SNF chromatin remodeling complex has also 

been reported to contribute to 1,25(OH)2D3 induced transcription. The principal action of 

vitamin D in the maintenance of calcium homeostasis is intestinal calcium absorption. When 

1,25(OH)2D3 regulation of intestinal calcium absorption is insufficient to maintain calcium 

homeostasis 1,25(OH)2D3 acts together with PTH to enhance loss of calcium from bone and 

to increase calcium reabsorption from the kidney. 1,25(OH)2D3 has effects on other tissues 

and cell types including keratinocytes, immune cells and cancer cells.
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Fig. 3. 
Proposed model for changes in serum FGF23, 1,25(OH)2D3, PTH, calcium and phosphate in 

chronic kidney disease (CKD). In CKD there is a gradual decrease in functional nephrons. 

FGF23 is increased to maintain phosphate excretion per nephron. A decline in the FGF23 

receptor klotho (not shown) is also an early event in CDK which may cause a compensatory 

increase in FGF23. An increase in FGF23 results in a decrease in 1,25(OH)2D3 followed by 

a decrease in serum calcium and an increase in PTH. Hyperphosphatemia is observed at end 

stage CKD when the kidney is incapable of excreting ingested phosphate. Elevated FGF23 

has been suggested as an early biomarker for CKD and may contribute to acceleration of 

CKD progression (63–66).
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Table 1.

Recommendations for vitamin D supplementation by age

Age Dose Goal

National Academy of Medicine <1yr 400iu 20ng/ml

1–70yr 600iu 20ng/ml

>70yr 800iu 20ng/ml

Endocrine <1yr 400–1000iu 30ng/ml

Society 1–18yr 600–1000iu 30ng/ml

>18yr 1500–2000iu 30ng/ml

The National Academy of Medicine (previously known as the Institute of Medicine) recommendations are for the population at large, whereas the 
Endocrine Society is more directed at patient populations.
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