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Abstract

Networks of Coupled Oscillators

and

Social Network Structures of Teams

by

Elizabeth Y. Huang

Networks are ubiquitous in nature and engineering, with applications in areas such

as modeling power grids, population dynamics, and social networks. Applying network

science to complex dynamical systems provides us with powerful tools to study the in-

teractions between agents. Moreover, these tools can also be used to study the nonlinear

dynamics of the network itself and he combination of dynamics over networks and dynam-

ics of networks paves the way for new models that accurately capture the rich behavior

in sociological processes. In this thesis, we first study synchronization in networks of

coupled oscillators. Second we model and analyze the dynamics of influence networks of

human teams.

Regarding coupled oscillators, we study the frequency synchronization problem

for networks of Kuramoto oscillators with arbitrary topology and heterogeneous edge

weights. We propose a novel equivalent transcription for the equilibrium synchroniza-

tion equation. Using this transcription, we develop a power series expansion to compute

the synchronized solution of the Kuramoto model as well as a sufficient condition for

the strong convergence of this series expansion. Truncating the power series provides

(i) an efficient approximation scheme for computing the synchronized solution, and (ii)

a simple-to-check, statistically-correct hierarchy of increasingly accurate synchronization

tests. This hierarchy of tests provides a theoretical foundation for and generalizes the

ix



best-known approximate synchronization test in the literature.

Regarding the dynamics of social networks of human teams, we focus on modeling

and analyzing how performance and expertise impact the level of influence team mem-

bers have on each other. First, we propose a novel quantitative model describing the

decentralized process by which individuals in a team learn who has what abilities, while

concurrently assigning tasks to each of the team members. Our theoretical analysis char-

acterizes a team’s ability, or inability, to learn each other’s skill and thus converge to a

work allocation maximizing the team performance. Second, we propose a cognitive dy-

namical model to describe the process by interpersonal influences are adjusted in small

teams over a sequence of intellective tasks with fixed workload. We provide analyti-

cal results on the model’s asymptotic behavior for the case with identically performing

individuals and verify the accuracy of the proposed model on experimental data.
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Chapter 1

Dynamics of Coupled Oscillators

Over a Network

This chapter was first published in SIAM Journal on Control and Optimization in Volume

57, Issue 5, by the Society for Industrial and Applied Mathematics (SIAM). © 2019,

Society for Industrial and Applied Mathematics. See [1].

1.1 Introduction

Collective synchronization is an interesting behaviour which lies at the heart of various

natural phenomena. The celebrated Kuramoto model [2] is one of the simplest models for

studying synchronization in a network of coupled oscillators. Kuramoto model has been

successfully used to model the synchronization behaviour of a wide range of physical,

chemical, and biological systems [3]. Examples include the power grids [4, 5], automated

vehicle coordination [6, 7], pacemakers in heart [8], clock synchronization [9], and neural

networks [10]; see also [11, Chapter 13] for additional examples. One of the most inter-

esting types of synchronization is frequency synchronization, where all oscillators reach
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Dynamics of Coupled Oscillators Over a Network Chapter 1

the same rotational frequency with possibly different phases. It is well-known that the

Kuramoto model can exhibit a transition from incoherence to frequency synchronization.

For many applications, such as frequency regulation in power networks, it is important

to have an accurate estimate of this transition to synchronization. Finding sharp condi-

tions to determine when this transition happens continues to be a challenging as well as

a critical problem.

Literature Review

The problem of finding conditions for existence of a stable synchronized solution for

the Kuramoto model of coupled oscillators has been studied extensively in the litera-

ture. For complete graphs with homogeneous weights, the order parameter is used to

implicitly determine the exact critical coupling needed for a synchronized solution [12–

14]. For acyclic graphs with heterogeneous weights, a necessary and sufficient condition

is developed for synchronization of the heterogeneous Kuramoto model [15]. In addition,

Lyapunov analysis applied to the complete graph is used in [16] to give a sufficient con-

dition and in [17] to give an explicit necessary and sufficient condition for existence of a

synchronized solution. However for general topology graphs, such a complete characteri-

zation of frequency synchronization does not exist. For general graphs with heterogeneous

weights, several necessary conditions and sufficient conditions for existence of stable syn-

chronized solution have been reported in the literature. [18] requires sufficiently large

nodal degrees relative to the natural frequencies, [19] uses the cutset in the graph, and

[20] states that the algebraic connectivity must be sufficiently large compared to the dif-

ference in natural frequencies of connected oscillators. Recently, a novel cutset projection

operator has been introduced to rigorously prove a simple-to-check, sufficient condition

for synchronization of Kuramoto model [21]. Using numerous simulations, it is shown
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Dynamics of Coupled Oscillators Over a Network Chapter 1

that this new sufficient condition scales better to large networks [21]. In a vast majority

of literature on the Kuramoto model, the interactions between oscillators are considered

symmetric. However, it is worth mentioning that Kuramoto model with nonsymmetric

interactions can exhibit synchronizing behaviors [22] and several conditions for existence

and uniqueness of the synchronized solution have been obtained in the literature [23],[24].

Despite these deep results in the literature, the existing synchronization conditions

usually provide conservative estimates for the synchronization threshold. In an effort

to come closer to finding the exact synchronization threshold, [15] and [25] introduce a

statistically accurate approximate test for synchronization that depends on the network

parameters and topology derived from the linearized Kuramoto map and the converging

power series expansion of the phase angles of the Kuramoto oscillators, respectively.

If existence of a frequency synchronized solution can be guaranteed, then the next

step is computing the synchronized solutions. A common method to approximate the

solution is to linearize the equations. This will result in studying the equations of the

form ω = Lθ, where L is the Laplacian matrix of the network, ω is the vector of natural

frequencies, and θ is the vector of angles [26–28]. The angles θ can be approximately

solved very efficiently, even for extremely large, sparse graphs [29, Theorem 3.1]. However,

when phase differences of the oscillators are large, this linear approximation is not very

accurate.

In order to compute the synchronization manifold of the nonlinear Kuramoto equa-

tions, one can employ iterative numerical algorithms such as Newton–Raphson or

Gauss–Seidel [30–32]. Unfortunately, these algorithms do not guarantee convergence

to the synchronized solutions and failure of these algorithms could be due to numerical

instability, an initialization issue, or non-existence of the solution. Another approach is to

use numerical polynomial homotopy continuation (NPHC). It is guaranteed that NPHC

will find all stable and unstable manifolds of the Kuramoto model, but this method is not

3
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computationally tractable for large networks; [33] uses NPHC to study the homogeneous

Kuramoto model for particular graph topologies with up to 18 nodes. Finally, [34] gives

an approximate analytical solution for stable synchronization manifolds using the order

parameter. However, this approximation scheme is only applicable to the Kuramoto

model with all-to-all connections and uniform weights.

A wide range of methods for finding synchronized solutions of the Kuramoto model

stems from the power network literature, where different techniques are used to find the

solutions of the AC power flow equations. Here, we only review two of these approaches.

The first approach is called holomorphic embedding load-flow method (HELM) and has

been proposed to find all the solutions of power flow equations [35]. While HELM is based

on advanced results and concepts from complex analysis, its numerical implementation

is recursive and straightforward [35, 36]. However, HELM is reported to be much slower

than the Newton–Raphson methods [36]. The second approach is the optimization

approach, where an optimal power flow problem (OPF) is used to solve for the AC

power flow equations. The OPF problems have been studied extensively in the power

network literature, e.g., see [37–39]. Thus, one can use the numerical algorithms for

the optimization problem to find the synchronized solution of the Kuramoto model.

Unfortunately, due to the non-convex nature of the OPFs, these algorithms usually result

in an approximation of the synchronized solution.

Contribution

The contributions of this chapter are both theoretical and computational. From

a theoretical viewpoint, as a minor contribution, we first provide a rigorous proof for

the following well-known folk theorem: frequency synchronization is equivalent with the

existence of a stable synchronization manifold (see [13] and [14] for statement of this result
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without proof). Second, by introducing the notions of edge vectors and flow vectors in

graphs, we propose four equivalent transcriptions for the synchronization manifold of

the Kuramoto model: node, flow, constrained edge, and unconstrained edge balance

equations. While the first three formulations have already been studied in the literature

(see [15] and [21]), the unconstrained edge balance equations provide a novel important

characterization of the synchronization manifold. Our main technical results are (1) a

sufficient condition for existence of a unique solution for unconstrained edge balance

equations and (2) a recursive expression for each term of the Taylor series expansion for

this solution of the unconstrained edge balance equations. Additionally, we prove that, if

our simple-to-check sufficient condition is satisfied, then the Taylor series expansion for

the solution converges strongly. We also provide an algorithm to symbolically compute

all terms of the expansion. Third and final, using the one-to-one correspondence between

solutions of the unconstrained edge balance equations and synchronized solutions of the

Kuramoto model, we propose a power series expansion for the synchronized solutions of

the Kuramoto model and an estimate on the region of convergence of the power series.

From a computational viewpoint, first, we propose a method to approximate the

synchronization manifold of the Kuramoto model using the truncated power series. We

present several numerical experiments using IEEE test cases and random graphs to il-

lustrate (1) the accuracy of the truncated series and (2) the computational efficiency of

the new methods for computing the synchronization manifold. We show that the seventh

order approximate method has low absolute error when applied to IEEE test cases with

weakly coupled oscillators. The truncated series, up to the seventh order, have com-

parable computational efficiency to Newton–Raphson when computing the synchronized

solutions of the Kuramoto model for multiple natural frequencies over a given static

graph. Second, based on our novel power series approach, we propose a hierarchy of

approximate tests for synchronization of the Kuramoto model; our approach provides a
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theoretical basis for and generalize the state-of-the-art approximate synchronization test

in the literature [15]. With numerical analysis, we verify the accuracy of our family of

approximate tests for several random graphs and numerous IEEE test cases. In each

of these cases, we show that our new approximate tests are a significant improvement

compared to the best-known approximate condition given in [15].

Finally, we compare this chapter with our preliminary conference article [25]. In

short, this chapter presents a substantially more complete and comprehensive treatment

of the power series approach to synchronization of Kuramoto oscillators. Specifically,

while [25] presents a power series expansion for nodal phase angles, this chapter develops

a novel power series expansion for the flows in the network. Using the Banach Fixed-Point

Theorem, we provide an estimate on the domain of convergence of the power series which

is substantially larger than the estimates given in [25]. Moreover, our numerical analysis

shows that the hierarchy of approximate synchronization tests obtained by truncating

this power series is more accurate than the estimate tests proposed in [25].

Chapter organization

In Section 1.2, we give preliminaries and notation used in the chapter. In Section 1.3-

1.4 we review the Kuramoto model, frequency synchronization, and give several equiv-

alent formulations of the algebraic Kuramoto equation. Sections 1.5 and 1.6 contain

the chapter’s main theoretical results and a family of approximate synchronization tests.

Finally, Section 1.7 contains numerical experiments analyzing the approximate synchro-

nization tests and efficiency of computation methods for the synchronization manifold.
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1.2 Preliminaries and notation

Vectors and functions

Let Z≥0, Rn, and Cn denote the set of non-negative integers, the n-dimensional

real Euclidean space, and the n-dimensional complex Euclidean space, respectively. For

n ∈ Z≥0, let n! =
∏n

k=0(n− k) denote the factorial and n!! =
∏dn

2
e−1

k=0 (n− 2k) denote the

double factorial. For r > 0 and x ∈ Rn, the real polydisk with center x and radius r is

Dn(x, r) = {y ∈ Rn | ‖x− y‖∞ ≤ r}.

Similarly, for r > 0 and z ∈ Cn, the complex polydisk with center z and radius r is

DC
n(z, r) = {w ∈ Cn | ‖z−w‖∞ ≤ r}.

Let 1n and 0n be n-dimensional column vectors of ones and zeros respectively. The

orthogonal complement of 1n in Rn is denoted by 1⊥n . For x = (x1, . . . , xn)> ∈ Cn,

let sin(x) = (sin(x1), . . . , sin(xn))> and diag(x) be the n × n diagonal matrix with

(diag(x))ii = xi, for every i ∈ {1, . . . , n}. For x = (x1, . . . , xn)> ∈ Cn with ‖x‖∞ ≤ 1, let

arcsin(x) = (arcsin(x1), . . . , arcsin(xn))>, where

arcsin(r) =
∞∑
i=0

(2i− 1)!!

(2i)!!(2i+ 1)
r2i+1.

Let x,y ∈ Cn be two vectors and m ∈ Z≥0. Then the Hadamard product x � y ∈ Cn is

defined by (x � y)i = xiyi, for every i ∈ {1, . . . , n} and the Hadamard power x�m ∈ Cn

is defined by (x�m)i = (xi)
m, for every i ∈ {1, . . . , n}. For every matrix A ∈ Rn×n, kernel

and image of A in the real vector space Rn are denoted by N(A) and R(A), respectively

and kernel and image of A in the complex vector space Cn are denoted by NC(A) and

7
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RC(A), respectively. For every vector v ∈ Rn, the real vector space spanned by v is

denoted by span(v) and the complex vector space spanned by v is denoted by spanC(v).

For every n ∈ N, we denote the n-torus by Tn. For every s ∈ [0, 2π), the clockwise

rotation of θ ∈ Tn by the angle s is the function rots : Tn → Tn defined by

rots(θ) = (θ1 + s, . . . , θn + s)>, for θ ∈ Tn.

Using the rotation function, one defines an equivalence relation ∼ on the n-torus Tn

as follows: For every two points θ, η ∈ Tn, we say θ ∼ η if there exists s ∈ [0, 2π)

such that θ = rots(η). For every θ ∈ Tn, the equivalence class of θ is denoted by

[θ] = {rots(θ) | s ∈ [0, 2π)}. The quotient space of Tn under the equivalence relation ∼

is denoted by [Tn].

Algebraic graph theory

Let G be a weighted undirected connected graph with the node set N = {1, . . . , n}

and the edge set E ⊆ N ×N with m elements. We assume that G has no self-loops and

the weights of the edges are described by the nonnegative, symmetric adjacency matrix

A ∈ Rn×n. The Laplacian matrix of the graph G is L = diag(A1n)− A ∈ Rn×n. For an

arbitrary enumeration and orientation of edges of G, the incidence matrix B ∈ Rm×n of

the graph G is defined by

Bie =


+1, if node i is the source of edge e,

−1, if node i is the sink of edge e,

0, otherwise.

8
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Define the diagonal edge weight matrix by A = diag(aij)(i,j)∈E ∈ Rm×m. It is known that

the Laplacian is L = BAB>. Since L is singular, we use the Moore–Penrose pseudoinverse

L† which has the following properties: LL†L = L, L†LL† = L†, L†L = (L†L)>, and

LL† = (LL†)>. In addition, for a connected graph L†L = LL† = In − 1
n
1>n1n. The

weighted cutset projection matrix Pcut is the oblique projection onto R(B>) parallel to

N(BA) given by

Pcut = B>L†BA.

The weighted cutset projection matrix Pcut is idempotent, and 0 and 1 are its eigenvalues

with algebraic (and geometric) multiplicity m−n+ 1 and n−1, respectively. Additional

properties of Pcut are in [21, Theorem 5]. Similarly, the weighted cycle projection matrix

Pcyc is the oblique projection onto N(BA) parallel to R(B>) given by

Pcyc = Im −B>L†BA.

Analytic functions and power series

A multi-index ν is a member of (Z≥0)n. For every x ∈ Cn, we define xν =

xν11 x
ν2
2 . . . xνnn . For x0 ∈ Cn, the formal expression

∑
ν∈(Z≥0)

n

aν(x− x0)ν , (1.1)

where aν ∈ C, for every ν ∈ (Z≥0)n is called a formal power series around point x0. The

power series
∑

ν∈(Z≥0)
n aν(x− x0)ν converges strongly at point x if all rearrangement of

the terms of the series
∑

ν aν(x − x0)ν converges. For every x0 ∈ Cn, the domain of

convergence of (1.1) around x0 is defined as the set Cx0 of all points x ∈ Cn such that

9
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the power series
∑

ν aν(x − x0)ν converges strongly at point x. While for n = 1, one

can show that the domain of convergence is an open interval around x0, for n > 1 the

domain of convergence of a power series is not necessarily an open poly-disk around x0.

An open set Ω ⊂ Cn is a Reinhardt domain if, for every

(
z1, . . . , zn

)>
∈ Ω and every(

θ1, . . . , θn

)>
∈ Tn, we have

(
eiθ1z1, . . . , e

iθnzn

)>
∈ Ω. The Reinhardt domains can be

considered as the generalization of the disks on the complex plane to higher dimensions.

For every x ∈ C satisfying ‖x‖ < 1, we have

1

(1− x)n
=
∞∑
i=1

(n+i)!
i!n!

xi. (1.2)

For N ∈ Z≥0, the Nth remainder of the power series (1.2) is the function Remn
N : [0, 1)→

R given by

Remn
N(x) =

∞∑
i=N+1

(n+ i)!

i!n!
xi. (1.3)

1.3 The heterogeneous Kuramoto model

The Kuramoto model is a system of n oscillators, where each oscillator has a natural

frequency ωi ∈ R and its state is represented by a phase angle θi ∈ S1. The interconnec-

tion of these oscillators are described using a weighted undirected connected graph G,

with nodes N = {1, . . . , n}, edges E ⊆ N ×N , and positive weights aij = aji > 0. The

dynamics for the heterogeneous Kuramoto model is given by:

θ̇i = ωi −
n∑
j=1

aij sin(θi − θj), for i ∈ {1, . . . , n}. (1.4)

10
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In matrix language, one can write this differential equations as:

θ̇ = ω −BA sin(B>θ), (1.5)

where θ = (θ1, θ2, . . . , θn)> ∈ Tn is the phase vector, ω = (ω1, ω2, . . . , ωn)> ∈ Rn is

the natural frequency vector, and B is the incidence matrix for the graph G. One can

show that if θ : R≥0 → Tn is a solution for the Kuramoto model (1.5) then, for every

s ∈ [0, 2π), the curve rots(θ) : R≥0 → Tn is also a solution of (1.5). Therefore, for the

rest of this chapter, we consider the state space of the Kuramoto model (1.5) to be [Tn].

Definition 1 (Frequency synchronization). A solution θ : R≥0 → [Tn] of the cou-

pled oscillator model (1.5) achieves frequency synchronization if there exists a frequency

ωsyn ∈ R such that

lim
t→∞

θ̇(t) = ωsyn1n.

By summing all the equations in (1.4), one can show that if a solution of (1.5) achieves

frequency synchronization then ωsyn = 1
n

∑n
i=1 ωi. Therefore, without loss of generality,

we can assume that for the Kuramoto model (1.5), we have ω ∈ 1⊥n and ωsyn = 0.

Definition 2 (Synchronization manifold). Let θ∗ be a solution of the algebraic equa-

tion

ω = BA sin(B>θ∗). (1.6)

Then [θ∗] is called a synchronization manifold for the Kuramoto model (1.5).

The following theorem reduces the problem of local frequency synchronization in the

Kuramoto model (1.5) to the existence of a solution for the algebraic equations (1.6).

Theorem 3 (Characterization of frequency synchronization). For the heteroge-

neous Kuramoto model (1.5) on graph G, the following statements are equivalent:

11
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1. there exists an open set U ∈ [Tn] such that every solution of the Kuramoto

model (1.5) starting in set U achieves frequency synchronization;

2. there exists a locally asymptotically stable synchronization manifold [θ∗] for (1.5).

Additionally, if any of equivalent conditions 1 or 2 holds, then, for every θ(0) ∈ U , we

have limt→∞[θ(t)] = [θ∗].

Proof. Regarding 1 =⇒ 2, if the solution achieves frequency synchronization, then

limt→∞ θ̇i(t) = 0 = limt→∞

(
ωi−

∑n
j=1 aij sin(θi(t)−θj(t))

)
for all i = {1, ..., n}. Consider

a sequence of natural numbers k ∈ N and the corresponding sequence θ(k) in Tn. Since

Tn is a compact metric space, it is sequentially compact [40, Theorem 28.2]. This means

that there is a subsequence k̂ such that θ(k̂) is convergent. Then limk̂→∞ θ(k̂) exists and

0n = ω−BA sin(B> limk̂→∞ θ(k̂)). Therefore limk̂→∞ θ(k̂) is a synchronization manifold

because it is a solution for equation (1.6) and is locally asymptotically stable since all

solutions starting in U reach limk̂→∞ θ(k̂).

Regarding 2 =⇒ 1, by the definition of local asymptotic stability, there exists some

δ > 0 such that the open set U is defined to be U = {θ(0) ∈ [Tn] | ‖θ(0)−θ∗‖ ≤ δ} where

[θ∗] is the synchronization manifold. Then for solutions starting in U , limt→∞ θ̇(t) =

ω −BA sin(B>θ∗) = 0 so [θ∗] is also a frequency synchronized solution for (1.5).

The last statement follows from the proofs of 1 =⇒ 2 and 2 =⇒ 1.

In many application, such as power networks, not only it is important to study the

frequency synchronization of the Kuramoto oscillators but also it is essential to bound

the position of the synchronization manifold [θ∗] due to some security constraints for the

grid. An important class of security constraints is thermal constraint which is usually

expressed as bounds on the geodesic distances |θ∗i −θ∗j |, for i, j ∈ {1, . . . , n}. The geodesic

distance |θ∗i − θ∗j | is defined as the minimum of the clockwise and counterclockwise arc

12
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lengths between the phase angles θ∗i , θ
∗
j ∈ S1. Let G be an undirected weighted connected

graph with edge set E and let γ ∈ [0, π). We define the cohesive subset ∆G(γ) ⊆ [Tn] by

∆G(γ) = {[θ] ∈ [Tn] | |θi − θj| ≤ γ, for all (i, j) ∈ E}.

For every γ ∈ [0, π), we define the embedded cohesive subset SG(γ) ⊆ [Tn] by

SG(γ) = {[exp(ix)] | x ∈ BG(γ), s ∈ [0, 2π)},

where BG(γ) = {x ∈ 1⊥n |
∥∥B>x

∥∥
∞ ≤ γ}. Note that, in general, we have SG(γ) ⊆

∆G(γ). We refer to [21] for additional properties of embedded cohesive subset. In

particular, it is shown that SG(γ) is diffeomorphic with BG(γ), for every γ ∈ [0, π
2
) [21,

Theorem 8]. Using this result, in the rest of this chapter we identify the set SG(γ) with

BG(γ).

1.4 Equivalent transcriptions of the equilibrium

manifold

Consider an undirected graph G with vertex set N = {1, . . . , n} and edge set E ⊆

N ×N with |E| = m. We start by introducing three vector spaces defined by G:

1. the node space is Rn; elements of this space are called node vectors ;

2. the edge space is Rm; elements of this space are called edge vectors ; and

3. the flow vector space is R(B>); elements of Rm belonging to this space are called

by flow vectors.

13
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It is easy to see that an edge vector z ∈ Rm is a flow vector if and only if there exists a

node vector x ∈ Rn such that z = B>x.

Next, we introduce four different balance equations on an undirected graph G with

incidence matrix B, weight matrix A, cutset projection Pcut, and cycle projection Pcyc.

Given a node vector ω ∈ 1⊥n , define the shorthand flow vector η = B>L†ω ∈ R(B>). The

node balance equation in the unknown node vector x ∈ 1⊥n is

ω = BA sin(B>x). (1.7)

The flow balance equation in the unknown flow vector z ∈ R(B>) is

η = Pcut sin(z). (1.8)

The constrained edge balance equation in the unknown edge vector ψ ∈ Rm is


η = Pcutψ,

arcsin(ψ) ∈ R(B>), ‖ψ‖∞ ≤ 1.

(1.9)

The unconstrained edge balance equation in the unknown edge vector φ ∈ Rm is

η = Pcutφ+ Pcyc arcsin(φ), ‖φ‖∞ ≤ 1. (1.10)

We now present equivalent characterizations for synchronization manifold of the Ku-

ramoto model (1.5).

Theorem 4 (Characterization of synchronization manifold). Consider an undi-

rected connected graph G with incidence matrix B, weight matrix A, cutset projection

Pcut, and cycle projection Pcyc. Given a node vector ω ∈ 1⊥n , define the shorthand

14
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η = B>L†ω ∈ R(B>). Pick an angle γ ∈ [0, π
2
). Then the following statements are

equivalent:

1. there exists a unique locally exponentially stable synchronization manifold x∗ for

the Kuramoto model (1.5) in SG(γ);

2. the node balance equation (1.7) has a unique solution x∗ in SG(γ);

3. the flow balance equation (1.8) has a unique solution z∗ ∈ R(B>) with ‖z∗‖∞ ≤ γ;

4. the constrained edge balance equation (1.9) has a unique solution ψ∗ ∈ Rm with

‖ψ∗‖∞ ≤ sin(γ);

5. the unconstrained edge balance equation (1.10) has a unique solution φ∗ ∈ Rm with

‖φ∗‖∞ ≤ sin(γ).

Moreover, if one of the above equivalent conditions hold, then

z∗ = B>x∗, and ψ∗ = φ∗ = sin(B>x∗).

Proof. The implications 1 =⇒ 2 and 2 =⇒ 3 are easy to show.

Regarding 3 =⇒ 4, if z∗ ∈ R(B>) is the unique solution to the flow balance

equation (1.8), then φ∗ = sin(z∗) ∈ Rm satisfies ‖φ∗‖∞ ≤ sin(γ) and is a solution for

the edge balance equation (1.9). Now, we show that φ∗ is the unique solution for the

constrained edge balance equation (1.9) such that ‖φ∗‖∞ ≤ sin(γ). Suppose that η∗ 6= φ∗

is another solution of the constrained edge balance equation (1.9) satisfying ‖η∗‖∞ ≤

sin(γ). Then, by the constrained edge balance equation (1.9), there exists y∗ ∈ R(B>)

such that y∗ 6= z∗ and arcsin(η∗) = z∗. This implies that ‖y∗‖ ≤ γ and Pcut sin(y∗) =

B>L†ω. Therefore, y∗ ∈ SG(γ) and satisfies the flow balance equation (1.8). However,
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this is in contradiction with the facts that y∗ 6= z∗ and that z∗ ∈ R(B>) is the unique

solution of the flow balance equation (1.8).

Regarding 4 =⇒ 5, if ψ∗ ∈ Rm is a solution of constrained edge balance equa-

tion (1.9) satisfying ‖ψ∗‖∞ ≤ sin(γ), then

B>L†ω = Pcutψ
∗, (1.11)

arcsin(ψ∗) ∈ R(B>). (1.12)

Because N(Pcyc) = R(B>), the inclusion (1.12) implies that

Pcyc arcsin(ψ∗) = 0. (1.13)

By adding equations (1.11) and (1.13), we obtain B>L†ω = Pcutψ
∗ + Pcyc arcsin(ψ∗).

This means that ψ∗ satisfies unconstrained edge balance equation (1.10).

Regarding 5 =⇒ 1, if φ∗ ∈ Rm solves the unconstrained edge balance equation (1.10),

then

B>L†ω = Pcutφ
∗ + Pcyc arcsin(φ∗). (1.14)

Left-multiplying both sides of equation (1.14) by Pcut and using the facts that PcutB
> =

B>, PcutPcut = Pcut and PcutPcyc = 0m×m, we obtain

B>L†ω = Pcutφ
∗.

Left-multiplying both side of the equation (1.14) by Pcyc we obtain

Pcyc arcsin(φ∗) = 0m.
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This last equality implies that arcsin(φ∗) ∈ N(Pcyc) = R(B>). Thus, there exists a vector

x∗ ∈ 1⊥n such that arcsin(φ∗) = B>x∗. First, note that Pcut sin(B>x∗) = B>L†ω and, by

multiplying both side of this equation by BA, we obtain

ω = BA sin(B>x∗).

Moreover, ‖φ∗‖∞ ≤ γ. Thus, we have ‖ arcsin(φ∗)‖∞ ≤ γ and ‖B>x∗‖∞ ≤ γ. This

implies that x∗ ∈ 1⊥n is a synchronization manifold for the Kuramoto model (1.5) in

SG(γ). The uniqueness follows from [21, Theorem 10, statement (ii)].

1.5 Solvability of the unconstrained edge balance

equations

The unconstrained edge balance equation (1.10) allows us to focus on a single analytic

map whose inverse can be used in computing the synchronization solutions of Kuramoto

model. In this section, we study the solvability of these equations and find their inverse on

a suitable domain. We start with relaxing the condition η ∈ R(B>) and complexifing the

equation (1.10). This extension will allow us to use the theory of several complex variables

to find the Taylor series expansion for the inversion of the complexified equation and prove

the strong convergence of the Taylor series. We then restrict back to real domain and

use the constraint η ∈ R(B>) to find the solutions of the unconstrained edge balance

equations (1.10). We start with some useful definitions. Given an undirected graph G

with cutset projection Pcut and cycle projection Pcyc, and a phase angle γ ∈ [0, π/2],

define the complex edge balance map FC : DC(0m, sin(γ))→ Cm by

FC(φ) = Pcutφ+ Pcyc arcsin(φ)
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and the real edge balance map F : D(0m, sin(γ))→ Rm by

F(φ) = Pcutφ+ Pcyc arcsin(φ).

With this notation, the unconstrained edge balance equation (1.10) reads η = F(φ),

together with the constraint ‖φ‖∞ ≤ 1. Next, we define the scalar function h : R≥0 → R

by:

h(x) = (x+ 1)

√
1−

(
x

x+ 1

)2

− x arccos

(
x

x+ 1

)
.

The graph of function h on the interval [0, 30] is shown in Figure (1.1). Since h is
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Figure 1.1: The graph of the monotonically-decreasing function h

continuous and strictly monotonically-decreasing, its inverse exists and is denoted by

h−1 : R → R≥0. Although we do not have an analytical form for h−1(y), it is simple to

compute it numerically.

We are now ready to provide estimates on the image of the maps FC and F and to

present power series expansions for the inverse maps F−1
C and F−1 on suitable domains.

Theorem 5 (Properties of the complex edge balance map). Consider an undi-
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rected connected graph G with cutset projection Pcut and cycle projection Pcyc. Select

η ∈ Rm such that ‖η‖∞ < h(‖Pcyc‖∞) and define γ∗ ∈ [0, π
2
) by

γ∗ = arccos

(
h−1(‖η‖∞)

h−1(‖η‖∞) + 1

)
.

Then the following statements holds:

1. there exists a unique φ∗ ∈ DC(0m, sin(γ∗)) such that FC(φ∗) = η; that is uncon-

strained edge balance equation has a unique solution;

2. there exists a holomorphic map F−1
C : DC(0m, ‖η‖∞) → F−1

C (DC(0m, ‖η‖∞)) such

that

F−1
C ◦FC(φ) = φ, for all φ ∈ F−1

C (DC(0m, ‖η‖∞)),

FC ◦F−1
C (ξ) = ξ, for all ξ ∈ DC(0m, ‖η‖∞);

that is the edge balance map is invertible on DC(0m, ‖η‖∞);

3. the power series

∞∑
i=0

A2i+1(η) = A1(η) + A3(η) + A5(η) + . . . ,

converges strongly to F−1
C (η), where, for every i ∈ Z≥0, the term Ai(η) is a homo-

geneous polynomial of order i in η defined iteratively by:

A1(η) = η,

A2i+1(η) = −Pcyc

(
i∑

k=1

(2k − 1)!!

(2k)!!(2k+1)

∑
odd α1,...,α2k+1 s.t.
α1+···+α2k+1=2i+1

Aα1(η) � · · · � Aα2k+1
(η)

)
.
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4. for every m ≥ 1,

∥∥∥∥∥F−1
C (η)−

m∑
i=1

A2i+1(η)

∥∥∥∥∥
∞

≤ sin(γ∗)Remn
2m+1

(
‖η‖∞

h(‖Pcyc‖∞)

)
,

where Remn
2m+1 is the (2m+ 1)th remainder function given by (1.3).

Proof. Regarding statement 1, define the map Hη : DC(0m, sin(γ∗))→ Rm by

Hη(φ) = η − Pcyc(arcsin(φ)− φ).

Considering equation (1.10), it is clear that the fixed points of the map Hη are the

solutions of the unconstrained edge equation (1.10). Therefore, to prove 1, it suffices

to show that the map Hη has a fixed point φ∗ ∈ DC(0m, sin(γ∗)). First, we show that

Hη(D
C(0m, sin(γ∗))) ⊆ DC(0m, sin(γ∗)). For φ ∈ DC(0m, sin(γ∗)), we compute

‖Hη(φ)‖∞ = ‖η − Pcyc(arcsin(φ)− φ)‖∞ ≤ ‖η‖∞ + ‖Pcyc‖∞‖φ− arcsin(φ)‖∞.

Moreover, for φ ∈ DC(0m, sin(γ∗)), we have ‖φ − arcsin(φ)‖∞ ≤ γ∗ − sin(γ∗). These

equalities imply that

‖Hη(φ)‖∞ ≤ ‖η‖∞ + ‖Pcyc‖∞(γ∗ − sin(γ∗))

≤ ‖η‖∞ + h−1(‖η‖∞)(γ∗ − sin(γ∗)),

(1.15)

where, for the last inequality, we used the fact that ‖Pcyc‖∞ ≤ h−1(‖η‖∞). By the
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definition of h, we have

‖η‖∞ = (h−1(‖η‖∞) + 1)

√
1−

(
h−1(‖η‖∞)

h−1(‖η‖∞) + 1

)
− h−1(‖η‖∞) arccos

(
h−1(‖η‖∞)

h−1(‖η‖∞) + 1

)
.

Noting the fact that arccos
(

h−1(‖η‖∞)
h−1(‖η‖∞)+1

)
= γ∗, we obtain

‖η‖∞ = (h−1(‖η‖∞) + 1) sin(γ∗)− h−1(‖η‖∞)γ∗.

Now, by replacing the above equation into inequality (1.15), we have

‖Hη(φ)‖∞ ≤ ‖η‖∞ + h−1(‖η‖∞)(γ∗ − sin(γ∗))

= (h−1(‖η‖∞) + 1) sin(γ∗)− h−1(‖η‖∞)γ∗ + h−1(‖η‖∞)(γ∗ − sin(γ∗))

= sin(γ∗).

Thus, by the Banach Fixed-Point Theorem, there exists a unique fixed point φ∗ ∈

DC(0m, sin(γ∗)) for Hη. By construction, this fixed point φ∗ ∈ DC(0m, sin(γ∗)) satisfies

η = Pcyc arcsin(φ∗) + Pcutφ
∗ = FC(φ∗).

This completes the proof of statement 1.

Regarding statement 2, by statement 1, for every η ∈ Cm such that ‖η‖∞ <

h(‖Pcyc‖∞), there exists a unique φ ∈ Rm such that η = FC(φ). This implies that

FC has a unique inverse F−1
C : FC(DC(0m, ‖η‖∞)) → DC(0m, ‖η‖∞) which satisfies the

equalities in statement 2. Now we show that both FC and F−1
C are holomorphic on their

domains. Note that, for every φ ∈ DC(0m, ‖η‖∞), the derivative of the map FC at point
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φ is given by:

DφFC = Pcut + Pcyc diag
( 1√

1− φ2
i

)
.

We start by showing that, for every φ ∈ DC(0m, ‖η‖∞), the mapDφFC is invertible. Let us

fix φ. In order to show that DφFC is invertible, it suffices to show that NC(DφFC) = {0n}.

Suppose that, there exists x ∈ Cm such that DφFC(x) = 0n. This means that Pcutx = 0m

and Pcyc diag
(

1√
1−φ2i

)
x = 0m. The first equality implies that x ∈ NC(BA) and the

second inequality implies that diag
(

1√
1−φ2i

)
x ∈ RC(B>). Therefore, there exists α ∈ Cn

such that diag
(

1√
1−φ2i

)
x = B>α. Thus, we get

BA diag(
√

1− φ2
i )B

>α = BAx = 0n. (1.16)

Moreover, A diag(
√

1− φ2
i ) is a positive definite diagonal matrix. Therefore, equa-

tion (1.16) implies that α ∈ spanC{1n} and as a result x = diag(
√

1− φ2
i )B

>α = 0n.

This implies that NC(DφFC) = {0n}. As a result, for every φ ∈ DC(0m, ‖η‖∞), the

map DφFC is invertible. Now, by the Inverse Function Theorem [41, Theorem 2.5.2], the

maps FC and F−1
C are locally holomorphic and therefore they are holomorphic on their

domains. This completes the proof of statement 2.

Regarding statement 3, we first find the formal power series representation for F−1
C .

Suppose that
∑∞

i=1Ai(η) is the formal power series for F−1
C . Then we have

Pcyc arcsin(F−1
C (η)) + PcutF−1

C (η) = η, for all η ∈ Rm.

By replacing the power series
∑∞

i=1 Ai(η) for F−1
C and using the power series expansion
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of arcsin, we obtain

Pcyc

(
∞∑
k=1

(2k − 1)!!

(2k)!!(2k + 1)

( ∞∑
i=1

Ai(η)
)�(2k−1)

)
+ Pcut

∞∑
i=1

Ai(η) = η. (1.17)

By equating the same order terms on the both side of equation (1.17) and using the fact

that Pcyc + Pcut = Im, we obtain that A1(η) = η and A2i(η) = 0m, for every i ∈ Z≥0.

Simple book-keeping shows that the recursive formula in statement 3 holds for the odd

terms in the power series.

Finally, we prove that the formal power series
∑∞

i=1A2i+1(η) converges on the do-

main DC(0m, η). Note that statement 2 implies that the map F−1
C : DC(0m, η) →

F−1
C (DC(0m, η)) is holomorphic and and that the set DC(0m, η) is a Reinhardt domain.

Therefore, [42, Theorem 2.4.5] implies that the power series converges strongly on the

domain DC(0m, η).

Regarding statement 4, define the sets

Ω = {z ∈ Cn | ‖z‖∞ < h(‖Pcyc‖∞)},

Tδ = {t ∈ Cn | ‖ti‖ ≤ 1 + δ}.

First note that ‖η‖∞ < h(‖Pcyc‖∞) and therefore η ∈ Ω. Moreover, for every 0 < ε <

h(‖Pcyc‖∞)

‖η‖∞ − 1 and every t ∈ Tε, we have (t1η1, . . . , tnηn) ∈ Ω. Note that
∑∞

i=1A2i+1(η)

is the Taylor series expansion of the holomorphic function F−1
C (η). Therefore, F−1

C (η)−∑m
i=1A2i+1(η) is a holomorphic function and its Taylor series only contains terms of order
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higher than 2m+ 1 in η. Using [43, Theorem 2.2.1 and Theorem 2.4.5], we can compute

F−1
C (η)−

m∑
i=1

A2i+1(η) =

∑
α1,...,αn∈Z≥0 s.t.
α1+···+αn≥2m+2

(
1

2πi

)n ∫
∂Tε

F−1
C (t1η1, . . . , tnηn)t−α1−1

1 . . . t−αn−1
n dt1 . . . dtn. (1.18)

For every t ∈ ∂Tε and every i ∈ {1, . . . , n}, we know that ‖ti‖ ≤ 1 + ε and

‖F−1
C (t1η1, . . . , tnηn)‖∞ ≤ supξ∈Ω ‖F−1

C (ξ)‖∞. Therefore, by taking the ∞-norm of both

side of equation (1.18), we get

∥∥∥∥∥F−1
C (η)−

m∑
i=1

A2i+1(η)

∥∥∥∥∥
∞

≤
(

1

2π

)n
sup
ξ∈Ω
‖F−1

C (ξ)‖∞
∑

α1,...,αn∈Z≥0 s.t.
α1+···+αn≥2m+2

(1 + ε)−(α1+...+αn)−n
∫
∂Tε

dt1 . . . dtn.

Note that by statement 1, for every ξ ∈ Ω, there exists a unique φ∗ ∈ DC(0m, sin(γ∗)) such

that FC(φ∗) = ξ. This implies that, for every ξ ∈ Ω, we have F−1
C (ξ) ∈ DC(0m, sin(γ∗)).

Therefore,

sup
ξ∈Ω
‖F−1

C (ξ)‖∞ ≤ sin(γ∗).

Moreover, a simple book-keeping shows that

∑
α1,...,αn∈Z≥0 s.t.
α1+···+αn≥2m+2

(1 + ε)−(α1+...+αn)−n =
∞∑

j=2m+2

(n+j)!
n!j!

(1 + ε)j−n.

Finally, we can compute the integral
∫
t∈∂Tε dt1 . . . dtn = (2π)n(1+ε)n. Using all the above
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observations, we get

∥∥∥∥∥F−1
C (η)−

m∑
i=1

A2i+1(η)

∥∥∥∥∥
∞

≤ sin(γ∗)
∞∑

j=2m+2

(n+j)!
n!j!

(1 + ε)j. (1.19)

Since equation (1.19) holds for every ε < h(‖Pcyc‖∞)

‖η‖∞ − 1, we conclude that

∥∥∥∥∥F−1
C (η)−

m∑
i=1

A2i+1(η)

∥∥∥∥∥
∞

≤ sin(γ∗)Remn
2m+1

(
‖η‖∞

h(‖Pcyc‖∞)

)
.

This completes the proof of statement 4.

Remark 6 (Properties of the real edge balance map). A similar result as Theo-

rem 5 holds for the real edge balance map F by replacing the complex variables by their

real counterparts. The proof is straightforward by restricting the results in Theorem 5 to

the real Euclidean space.

1.6 Inverse Taylor expansion for Kuramoto model

In this section we study the synchronization of the Kuramoto model (1.5) by applying

the results on the unconstrained edge balance equation (1.10) from Theorem 5 in the

previous section.

Theorem 7 (Inverse Taylor expansion). Consider the Kuramoto model (1.5) with

undirected connected graph G, weighted cutset projection Pcut, and weighted cycle projec-

tion Pcyc. Given frequencies ω ∈ 1⊥n satisfying

‖B>L†ω‖∞ < h(‖Pcyc‖∞), (T0)
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define γ∗ ∈ [0, π
2
) by

γ∗ = arccos

(
h−1(‖B>L†ω‖∞)

h−1(‖B>L†ω‖∞) + 1

)
.

Then the following statements hold:

1. there exists a unique locally stable synchronization manifold x∗ in SG(γ∗); and

2. the power series

∞∑
i=0

A2i+1(B>L†ω) = A1(B>L†ω) + A3(B>L†ω) + . . . , (1.20)

converges strongly to sin(B>x∗) where, for every i ∈ Z≥0, the term Ai(η) is a

homogeneous polynomial of order i in η defined iteratively as in Theorem 53.

3. for every m ≥ 1,

∥∥∥∥∥sin(B>x∗)−
m∑
i=1

A2i+1(B>L†ω)

∥∥∥∥∥
∞

≤ sin(γ∗)Remn
2m+1

(
‖B>L†ω‖
h(‖Pcyc‖∞)

)
,

where Remn
2m+1 is the (2m+ 1)th remainder function given by (1.3).

This theorem is an immediate application of Theorem 4 on the equivalent transcrip-

tions and of Theorem 5 on the properties of the maps FC and F .

Proof of Theorem 7. Regarding statement 1, we use (the real version of) Theorem 51 with

η = B>L†ω. Since ‖B>L†ω‖∞ < h(‖Pcyc‖∞), there exists a unique φ∗ ∈ D(0m, sin(γ∗))

such that F(φ) = B>L†ω. This means that

B>L†ω = Pcyc arcsin(φ∗) + Pcutφ
∗.
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Since R(B>) = R(Pcut) = N(Pcyc), we obtain Pcutφ
∗ = B>L†ω and arcsin(φ)∗ ∈ R(B>).

The result follows by the equivalence of parts 1 and 4 in Theorem 4.

Regarding statements 2 and 3, the result follows from (the complex version of) The-

orem 53 and 54, respectively.

Some remarks are in order.

Remark 8 (Power series expansion for sin(B>x∗)). 1. It is instructive to apply

the iterative procedure in Theorem 72 to compute the first four odd terms in the

power series (1.20) where η = B>L†ω:

A1(η) = η,

A3(η) = −Pcyc

(
1

6
η�3

)
,

A5(η) = −Pcyc

(
1

12
A3(η) � η�2 +

3

40
η�5

)
,

A7(η) = −Pcyc

(
5

112
η�7 +

3

8
A3(η) � η�4 +

1

2
(A3(η))�2 � η +

1

2
A5(η) � η�2

)
.

The iterative procedure in Theorem 72 is amenable to implementation on a mathe-

matical software manipulation system; we report its implementation in Mathematica

code in Algorithm 1 in Appendix 1.8.

2. If Pcyc and diag(η) commute, then, for every i ∈ Z>0:

A2i+1(η) = − (2i− 1)!!

(2i)!!(2i+ 1)
Pcyc (η)�(2i+1) .

For example, if the graph G is acyclic, then Pcyc = 0n×n and, therefore, Pcyc and
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diag(η) commute. Thus, for acyclic graphs, we have

A1(η) = η,

A2i+1(η) = 0, for all i ∈ Z≥0

so that sin(B>x∗) = B>L†ω. Therefore, the Kuramoto model (1.5) on an acyclic

graph has a unique locally stable synchronization manifold inside SG(γ) if and only

if ‖B>L†ω‖∞ ≤ sin(γ). Moreover, if this condition holds, then the synchronization

manifold is given by

x∗ = L†BA arcsin(B>L†ω).

This result is known for example as [15, Theorem 2 (Supporting Information)].

3. While for acyclic graphs we have Pcyc = 0n×n, the matrix Pcyc is non-zero and

idempotent for cyclic graphs and it satisfies ‖Pcyc‖∞ ≥ 1. The jump from ‖Pcyc‖∞
equals 0 to values greater than or equal to 1 can be attributed to the discontinu-

ity of the projection matrix Pcyc with respect to edge weights of the graph. The

following example shows that the infinity norm of the projection matrix Pcyc is,

in general, a discontinuous function of the weights of the graphs. Consider the

family of 3-cycle graph {G(ε)}ε≥0 with the node set V = {1, 2, 3}, the edge set

E = {(1, 2), (1, 3), (2, 3)}, and the adjacency matrix A(ε) ∈ R3×3 given by

A(ε) =


0 1 1

1 0 ε

1 ε 0

 .
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Then, for every ε > 0 , one can show that

Pcyc(ε) = I3 −B>L†BA =


ε ε ε

ε ε ε

1− 2ε 1− 2ε 1− 2ε

 .

This implies that limε→0+ ‖Pcyc(ε)‖∞ = 3. However, the graph G(0) is acyclic and

therefore we have Pcyc(0) = 03×3. Thus, limε→0+ ‖Pcyc(ε)‖∞ 6= ‖Pcyc(0)‖∞. This

implies that the function ε 7→ ‖Pcyc(ε)‖∞ is not continuous at ε = 0.

4. If the condition (T0) does not hold, it is still possible that the Kuramoto model (1.5)

has a unique stable equilibrium manifold inside SG(γ∗) and the power series (1.20)

converges strongly. We refer to the Numerical Experiments section for several

examples on IEEE test cases. However, the upper bound on the error in part 3 is

well-defined only when the condition (T0) holds. More specifically, if condition (T0)

does not hold, then the function x 7→ Remn
2m+1(x) diverges for x = ‖B>L†ω‖∞

h(‖Pcyc‖∞)
and

for every m ∈ Z≥0.

In the rest of this section, we use the power series (1.20) to propose a family of

statistically-accurate approximate tests that are much less conservative than proven

sufficient conditions for existence of a unique synchronization solution inside SG(γ) for

γ ∈ [0, π/2). Our approximate tests estimate the solution of the unconstrained edge

balance equation (1.10) and check that all elements of the estimate are less than or equal

to sin(γ). For more insight into these approximate tests, recall from Theorem 72 that φ,

the solution for unconstrained edge balance equation (1.10) is given by

φ = B>L†ω + A3(B>L†ω) + A5(B>L†ω) + . . . .
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There already exists a first order approximate synchronization test, introduced by refer-

ence [15], which truncates the series, given above, after the first order term. By approx-

imating φ with φ ≈ B>L†ω ∈ R(B>), we write

∥∥B>L†ω∥∥∞ ≤ sin(γ), (AT1)

By substituting the third order power series expansion for the edge variable φ ∈ Rm of

the Kuramoto model in Theorem 72 into equation (1.9), we can also write the third order

approximate synchronization test as

∥∥∥B>L†ω +
1

6
Pcyc(B

>L†ω)�3
∥∥∥
∞
≤ sin(γ).

In summary we propose a family of higher order approximate tests as follows.

Definition 9. For γ ∈ [0, π/2) and k ∈ 2Z≥0 + 1, the kth order approximate test for

existence of a unique solution in SG(γ) is defined by

∥∥∥∥∥
(k−1)/2∑
i=0

A2i+1(B>L†ω)

∥∥∥∥∥
∞

≤ sin(γ). (ATk)

Finally, it is valuable to compare our approach with the existing methods in the

literature for existence of synchronization manifolds in the Kuramoto model. One of

the conventional and well-studied approaches for synchronization is the Lyapunov direct

method. In literature, several necessary and sufficient conditions for synchronization

of the Kuramoto model are reported based on different Lyapunov functions [5, 16, 20].

Comparing to our power series approach, Lyapunov direct method provides rigorous suf-

ficient conditions with guaranteed region of attraction for synchronization. However, as

is shown in the next section, these Lyapunov-based conditions are usually conservative
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and do not provide intuition about the role of network parameters in synchronization. On

the other hand, our power series approach, proposes a family of approximate but increas-

ingly accurate synchronization tests, identifies the correct functional form of the trade-off

between coupling strength and oscillator heterogeneity, and provides good estimates for

the synchronization manifolds.

1.7 Numerical Experiments

In this section we illustrate the usefulness of the Taylor series expansion given by

Theorem 7. First, for large IEEE test cases, we illustrate the accuracy of the truncated

series for approximating synchronized solutions of (1.5). In addition, we present results

showing the sharpness of the approximate tests (ATk) for existence of a synchronization

manifold (9) on several IEEE test cases and random networks.

1.7.1 Accuracy of the Taylor series: approximating the syn-

chronization manifold

Here we evaluate the accuracy of the truncated power series in Theorem 72 for

approximating the synchronization manifold. We consider both IEEE test cases and

random networks to evaluate these measures of accuracy.

The general numerical setting for the IEEE test cases is as follows. Each IEEE

test case can be described by a connected undirected graph G with the nodal admittance

matrix Y ∈ Cn×n. The set of nodes in G are partitioned into load buses N1 and generator

buses N2. The power demand (resp. power injection) at node i ∈ N1 (resp. i ∈ N2) is

denoted by Pi. Vi and θi are the voltage magnitude and phase angle at node i ∈ N1∪N2.

For every IEEE test case, we study the following Kuramoto synchronization manifold
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equation

Pi =
∑

j∈N1∪N2

aij sin(θi − θj), for all i ∈ N1 ∪N2, (1.21)

where aij = aji = ViVj=(Yij) > 0, where =(Yij) is the imaginary part of Yij ∈ C. The

equation (1.21) is exactly the lossless active AC power flow equations for the network.

Note that in order to study equation (1.21), we need to apply some modifications to

the IEEE test cases. First, we assume that the admittance matrix Y ∈ jRn×n is purely

inductive with no shunt admittances Yii = 0. If the IEEE test case has branch resistances

or shunt admittances, then they are removed. Second, we assume that all the nodes

in the IEEE test case are PV nodes; this assumption is reasonable since the active

power injection and output voltage of generators are known. For the loads, we use

MATPOWER [44] to solve the coupled AC power flow balance to obtain their terminal

voltage Vi. Lastly, for every i ∈ {1, . . . , n}, we set Pi = KP nom
i for some K ∈ R≥0 where

P nom
i is the nominal injections given by each test case. Starting with K = 0, we increase

K by 5× 10−3 at each step. MATLAB’s fsolve is used to solve equation (1.21) for θ∗fsolve

at each K. The scalar K is increased until whichever situation occurs first: ‖B>θ∗fsolve‖∞

reaches π/2 or fsolve does not converge to a solution.

To evaluate the accuracy of the truncated Taylor series with k terms, we define the

absolute error denoted by Sk by

Sk =

∥∥∥∥∥sin(B>θ∗fsolve)−
k∑
i=0

A2i+1(B>L†psd)

∥∥∥∥∥
∞

, (1.22)

where psd = [P1, . . . , Pn]> is the balanced supply/demand vector, L = BAB>, and A is

the diagonal weight matrix with diagonal elements {aij}(i,j)∈E . The errors Sk for IEEE

300 and Pegase 1354 are shown in Figure 1.2.
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3
<latexit sha1_base64="QWVprIU4LlM6rZpjBMb5ZXnfw6c=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipeT0oV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IS3fsZlkhqUbLkoTAUxMZl/TYZcITNiagllittbCRtTRZmx2ZRsCN7qy+ukfVX13KrXrFXqtTyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AeW+MqQ==</latexit><latexit sha1_base64="QWVprIU4LlM6rZpjBMb5ZXnfw6c=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipeT0oV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IS3fsZlkhqUbLkoTAUxMZl/TYZcITNiagllittbCRtTRZmx2ZRsCN7qy+ukfVX13KrXrFXqtTyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AeW+MqQ==</latexit><latexit sha1_base64="QWVprIU4LlM6rZpjBMb5ZXnfw6c=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipeT0oV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IS3fsZlkhqUbLkoTAUxMZl/TYZcITNiagllittbCRtTRZmx2ZRsCN7qy+ukfVX13KrXrFXqtTyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AeW+MqQ==</latexit><latexit sha1_base64="QWVprIU4LlM6rZpjBMb5ZXnfw6c=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipeT0oV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IS3fsZlkhqUbLkoTAUxMZl/TYZcITNiagllittbCRtTRZmx2ZRsCN7qy+ukfVX13KrXrFXqtTyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AeW+MqQ==</latexit>

5
<latexit sha1_base64="p24LzZYiYnjFvj3mMHYJV/5AWms=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipeT0oV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IS3fsZlkhqUbLkoTAUxMZl/TYZcITNiagllittbCRtTRZmx2ZRsCN7qy+ukfVX13KrXrFXqtTyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AfHeMqw==</latexit><latexit sha1_base64="p24LzZYiYnjFvj3mMHYJV/5AWms=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipeT0oV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IS3fsZlkhqUbLkoTAUxMZl/TYZcITNiagllittbCRtTRZmx2ZRsCN7qy+ukfVX13KrXrFXqtTyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AfHeMqw==</latexit><latexit sha1_base64="p24LzZYiYnjFvj3mMHYJV/5AWms=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipeT0oV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IS3fsZlkhqUbLkoTAUxMZl/TYZcITNiagllittbCRtTRZmx2ZRsCN7qy+ukfVX13KrXrFXqtTyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AfHeMqw==</latexit><latexit sha1_base64="p24LzZYiYnjFvj3mMHYJV/5AWms=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipeT0oV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IS3fsZlkhqUbLkoTAUxMZl/TYZcITNiagllittbCRtTRZmx2ZRsCN7qy+ukfVX13KrXrFXqtTyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AfHeMqw==</latexit>

7
<latexit sha1_base64="W/8M4UIdhZqyM5wWxUlGRvkC29M=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqz4sV9yquwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc1P13KrXqlUatTyOIlzAJVyDB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8Af3+MrQ==</latexit><latexit sha1_base64="W/8M4UIdhZqyM5wWxUlGRvkC29M=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqz4sV9yquwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc1P13KrXqlUatTyOIlzAJVyDB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8Af3+MrQ==</latexit><latexit sha1_base64="W/8M4UIdhZqyM5wWxUlGRvkC29M=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqz4sV9yquwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc1P13KrXqlUatTyOIlzAJVyDB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8Af3+MrQ==</latexit><latexit sha1_base64="W/8M4UIdhZqyM5wWxUlGRvkC29M=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqz4sV9yquwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc1P13KrXqlUatTyOIlzAJVyDB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8Af3+MrQ==</latexit>

9
<latexit sha1_base64="4fQaT7FNRFQ1JsmCvzE3YuimFhI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN4KXjy2YD+gDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2Akmd3O/84RK81g+mGmCfkRHkoecUWOl5u2gXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6tes1ap1/I4inAG53AJHlxDHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDgoeMrw==</latexit><latexit sha1_base64="4fQaT7FNRFQ1JsmCvzE3YuimFhI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN4KXjy2YD+gDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2Akmd3O/84RK81g+mGmCfkRHkoecUWOl5u2gXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6tes1ap1/I4inAG53AJHlxDHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDgoeMrw==</latexit><latexit sha1_base64="4fQaT7FNRFQ1JsmCvzE3YuimFhI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN4KXjy2YD+gDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2Akmd3O/84RK81g+mGmCfkRHkoecUWOl5u2gXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6tes1ap1/I4inAG53AJHlxDHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDgoeMrw==</latexit><latexit sha1_base64="4fQaT7FNRFQ1JsmCvzE3YuimFhI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN4KXjy2YD+gDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2Akmd3O/84RK81g+mGmCfkRHkoecUWOl5u2gXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6tes1ap1/I4inAG53AJHlxDHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDgoeMrw==</latexit>

11
<latexit sha1_base64="tjm7GHdhxVa6Gfcl3PJUbfO87ik=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKexIQI8BLx6jmAckS5idzCZDZmeXmV4hhPyBFw+KePWPvPk3TpI9aGJBQ1HVTXdXmCpp0fe/vcLG5tb2TnG3tLd/cHhUPj5p2SQzXDR5ohLTCZkVSmrRRIlKdFIjWBwq0Q7Ht3O//SSMlYl+xEkqgpgNtYwkZ+ikB0r75Ypf9Rcg64TmpAI5Gv3yV2+Q8CwWGrli1napn2IwZQYlV2JW6mVWpIyP2VB0HdUsFjaYLi6dkQunDEiUGFcayUL9PTFlsbWTOHSdMcORXfXm4n9eN8PoJphKnWYoNF8uijJFMCHzt8lAGsFRTRxh3Eh3K+EjZhhHF07JhUBXX14nrasq9av0vlap1/I4inAG53AJFK6hDnfQgCZwiOAZXuHNG3sv3rv3sWwtePnMKfyB9/kD5cCM4g==</latexit><latexit sha1_base64="tjm7GHdhxVa6Gfcl3PJUbfO87ik=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKexIQI8BLx6jmAckS5idzCZDZmeXmV4hhPyBFw+KePWPvPk3TpI9aGJBQ1HVTXdXmCpp0fe/vcLG5tb2TnG3tLd/cHhUPj5p2SQzXDR5ohLTCZkVSmrRRIlKdFIjWBwq0Q7Ht3O//SSMlYl+xEkqgpgNtYwkZ+ikB0r75Ypf9Rcg64TmpAI5Gv3yV2+Q8CwWGrli1napn2IwZQYlV2JW6mVWpIyP2VB0HdUsFjaYLi6dkQunDEiUGFcayUL9PTFlsbWTOHSdMcORXfXm4n9eN8PoJphKnWYoNF8uijJFMCHzt8lAGsFRTRxh3Eh3K+EjZhhHF07JhUBXX14nrasq9av0vlap1/I4inAG53AJFK6hDnfQgCZwiOAZXuHNG3sv3rv3sWwtePnMKfyB9/kD5cCM4g==</latexit><latexit sha1_base64="tjm7GHdhxVa6Gfcl3PJUbfO87ik=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKexIQI8BLx6jmAckS5idzCZDZmeXmV4hhPyBFw+KePWPvPk3TpI9aGJBQ1HVTXdXmCpp0fe/vcLG5tb2TnG3tLd/cHhUPj5p2SQzXDR5ohLTCZkVSmrRRIlKdFIjWBwq0Q7Ht3O//SSMlYl+xEkqgpgNtYwkZ+ikB0r75Ypf9Rcg64TmpAI5Gv3yV2+Q8CwWGrli1napn2IwZQYlV2JW6mVWpIyP2VB0HdUsFjaYLi6dkQunDEiUGFcayUL9PTFlsbWTOHSdMcORXfXm4n9eN8PoJphKnWYoNF8uijJFMCHzt8lAGsFRTRxh3Eh3K+EjZhhHF07JhUBXX14nrasq9av0vlap1/I4inAG53AJFK6hDnfQgCZwiOAZXuHNG3sv3rv3sWwtePnMKfyB9/kD5cCM4g==</latexit><latexit sha1_base64="tjm7GHdhxVa6Gfcl3PJUbfO87ik=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKexIQI8BLx6jmAckS5idzCZDZmeXmV4hhPyBFw+KePWPvPk3TpI9aGJBQ1HVTXdXmCpp0fe/vcLG5tb2TnG3tLd/cHhUPj5p2SQzXDR5ohLTCZkVSmrRRIlKdFIjWBwq0Q7Ht3O//SSMlYl+xEkqgpgNtYwkZ+ikB0r75Ypf9Rcg64TmpAI5Gv3yV2+Q8CwWGrli1napn2IwZQYlV2JW6mVWpIyP2VB0HdUsFjaYLi6dkQunDEiUGFcayUL9PTFlsbWTOHSdMcORXfXm4n9eN8PoJphKnWYoNF8uijJFMCHzt8lAGsFRTRxh3Eh3K+EjZhhHF07JhUBXX14nrasq9av0vlap1/I4inAG53AJFK6hDnfQgCZwiOAZXuHNG3sv3rv3sWwtePnMKfyB9/kD5cCM4g==</latexit>

13
<latexit sha1_base64="nIHYRpLEBQjjL/LbYb+6Ya34IOc=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0UI8FLx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpwbselCtu1V2ArBMvJxXI0RyUv/rDmKURSsME1brnuYnxM6oMZwJnpX6qMaFsQkfYs1TSCLWfLS6dkQurDEkYK1vSkIX6eyKjkdbTKLCdETVjverNxf+8XmrCGz/jMkkNSrZcFKaCmJjM3yZDrpAZMbWEMsXtrYSNqaLM2HBKNgRv9eV10r6qem7Vu69VGrU8jiKcwTlcggd1aMAdNKEFDEJ4hld4cybOi/PufCxbC04+cwp/4Hz+AOjIjOQ=</latexit><latexit sha1_base64="nIHYRpLEBQjjL/LbYb+6Ya34IOc=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0UI8FLx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpwbselCtu1V2ArBMvJxXI0RyUv/rDmKURSsME1brnuYnxM6oMZwJnpX6qMaFsQkfYs1TSCLWfLS6dkQurDEkYK1vSkIX6eyKjkdbTKLCdETVjverNxf+8XmrCGz/jMkkNSrZcFKaCmJjM3yZDrpAZMbWEMsXtrYSNqaLM2HBKNgRv9eV10r6qem7Vu69VGrU8jiKcwTlcggd1aMAdNKEFDEJ4hld4cybOi/PufCxbC04+cwp/4Hz+AOjIjOQ=</latexit><latexit sha1_base64="nIHYRpLEBQjjL/LbYb+6Ya34IOc=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0UI8FLx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpwbselCtu1V2ArBMvJxXI0RyUv/rDmKURSsME1brnuYnxM6oMZwJnpX6qMaFsQkfYs1TSCLWfLS6dkQurDEkYK1vSkIX6eyKjkdbTKLCdETVjverNxf+8XmrCGz/jMkkNSrZcFKaCmJjM3yZDrpAZMbWEMsXtrYSNqaLM2HBKNgRv9eV10r6qem7Vu69VGrU8jiKcwTlcggd1aMAdNKEFDEJ4hld4cybOi/PufCxbC04+cwp/4Hz+AOjIjOQ=</latexit><latexit sha1_base64="nIHYRpLEBQjjL/LbYb+6Ya34IOc=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0UI8FLx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpwbselCtu1V2ArBMvJxXI0RyUv/rDmKURSsME1brnuYnxM6oMZwJnpX6qMaFsQkfYs1TSCLWfLS6dkQurDEkYK1vSkIX6eyKjkdbTKLCdETVjverNxf+8XmrCGz/jMkkNSrZcFKaCmJjM3yZDrpAZMbWEMsXtrYSNqaLM2HBKNgRv9eV10r6qem7Vu69VGrU8jiKcwTlcggd1aMAdNKEFDEJ4hld4cybOi/PufCxbC04+cwp/4Hz+AOjIjOQ=</latexit>

1
<latexit sha1_base64="QHzsrV+yTF5n8m/WTSsCnVjJDBA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSyxuWK27VXYJsEi8nFcjRHJa/BqOYpRFKwwTVuu+5ifEzqgxnAuelQaoxoWxKx9i3VNIItZ8tD52TK6uMSBgrW9KQpfp7IqOR1rMosJ0RNRO97i3E/7x+asJbP+MySQ1KtloUpoKYmCy+JiOukBkxs4Qyxe2thE2ooszYbEo2BG/95U3Sual6btVr1SqNWh5HES7gEq7Bgzo04B6a0AYGCM/wCm/Oo/PivDsfq9aCk8+cwx84nz92Z4yn</latexit><latexit sha1_base64="QHzsrV+yTF5n8m/WTSsCnVjJDBA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSyxuWK27VXYJsEi8nFcjRHJa/BqOYpRFKwwTVuu+5ifEzqgxnAuelQaoxoWxKx9i3VNIItZ8tD52TK6uMSBgrW9KQpfp7IqOR1rMosJ0RNRO97i3E/7x+asJbP+MySQ1KtloUpoKYmCy+JiOukBkxs4Qyxe2thE2ooszYbEo2BG/95U3Sual6btVr1SqNWh5HES7gEq7Bgzo04B6a0AYGCM/wCm/Oo/PivDsfq9aCk8+cwx84nz92Z4yn</latexit><latexit sha1_base64="QHzsrV+yTF5n8m/WTSsCnVjJDBA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSyxuWK27VXYJsEi8nFcjRHJa/BqOYpRFKwwTVuu+5ifEzqgxnAuelQaoxoWxKx9i3VNIItZ8tD52TK6uMSBgrW9KQpfp7IqOR1rMosJ0RNRO97i3E/7x+asJbP+MySQ1KtloUpoKYmCy+JiOukBkxs4Qyxe2thE2ooszYbEo2BG/95U3Sual6btVr1SqNWh5HES7gEq7Bgzo04B6a0AYGCM/wCm/Oo/PivDsfq9aCk8+cwx84nz92Z4yn</latexit><latexit sha1_base64="QHzsrV+yTF5n8m/WTSsCnVjJDBA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSyxuWK27VXYJsEi8nFcjRHJa/BqOYpRFKwwTVuu+5ifEzqgxnAuelQaoxoWxKx9i3VNIItZ8tD52TK6uMSBgrW9KQpfp7IqOR1rMosJ0RNRO97i3E/7x+asJbP+MySQ1KtloUpoKYmCy+JiOukBkxs4Qyxe2thE2ooszYbEo2BG/95U3Sual6btVr1SqNWh5HES7gEq7Bgzo04B6a0AYGCM/wCm/Oo/PivDsfq9aCk8+cwx84nz92Z4yn</latexit>

3
<latexit sha1_base64="QWVprIU4LlM6rZpjBMb5ZXnfw6c=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipeT0oV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IS3fsZlkhqUbLkoTAUxMZl/TYZcITNiagllittbCRtTRZmx2ZRsCN7qy+ukfVX13KrXrFXqtTyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AeW+MqQ==</latexit><latexit sha1_base64="QWVprIU4LlM6rZpjBMb5ZXnfw6c=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipeT0oV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IS3fsZlkhqUbLkoTAUxMZl/TYZcITNiagllittbCRtTRZmx2ZRsCN7qy+ukfVX13KrXrFXqtTyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AeW+MqQ==</latexit><latexit sha1_base64="QWVprIU4LlM6rZpjBMb5ZXnfw6c=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipeT0oV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IS3fsZlkhqUbLkoTAUxMZl/TYZcITNiagllittbCRtTRZmx2ZRsCN7qy+ukfVX13KrXrFXqtTyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AeW+MqQ==</latexit><latexit sha1_base64="QWVprIU4LlM6rZpjBMb5ZXnfw6c=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipeT0oV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IS3fsZlkhqUbLkoTAUxMZl/TYZcITNiagllittbCRtTRZmx2ZRsCN7qy+ukfVX13KrXrFXqtTyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AeW+MqQ==</latexit>

5
<latexit sha1_base64="p24LzZYiYnjFvj3mMHYJV/5AWms=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipeT0oV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IS3fsZlkhqUbLkoTAUxMZl/TYZcITNiagllittbCRtTRZmx2ZRsCN7qy+ukfVX13KrXrFXqtTyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AfHeMqw==</latexit><latexit sha1_base64="p24LzZYiYnjFvj3mMHYJV/5AWms=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipeT0oV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IS3fsZlkhqUbLkoTAUxMZl/TYZcITNiagllittbCRtTRZmx2ZRsCN7qy+ukfVX13KrXrFXqtTyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AfHeMqw==</latexit><latexit sha1_base64="p24LzZYiYnjFvj3mMHYJV/5AWms=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipeT0oV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IS3fsZlkhqUbLkoTAUxMZl/TYZcITNiagllittbCRtTRZmx2ZRsCN7qy+ukfVX13KrXrFXqtTyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AfHeMqw==</latexit><latexit sha1_base64="p24LzZYiYnjFvj3mMHYJV/5AWms=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipeT0oV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IS3fsZlkhqUbLkoTAUxMZl/TYZcITNiagllittbCRtTRZmx2ZRsCN7qy+ukfVX13KrXrFXqtTyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AfHeMqw==</latexit>

7
<latexit sha1_base64="W/8M4UIdhZqyM5wWxUlGRvkC29M=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqz4sV9yquwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc1P13KrXqlUatTyOIlzAJVyDB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8Af3+MrQ==</latexit><latexit sha1_base64="W/8M4UIdhZqyM5wWxUlGRvkC29M=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqz4sV9yquwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc1P13KrXqlUatTyOIlzAJVyDB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8Af3+MrQ==</latexit><latexit sha1_base64="W/8M4UIdhZqyM5wWxUlGRvkC29M=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqz4sV9yquwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc1P13KrXqlUatTyOIlzAJVyDB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8Af3+MrQ==</latexit><latexit sha1_base64="W/8M4UIdhZqyM5wWxUlGRvkC29M=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqz4sV9yquwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc1P13KrXqlUatTyOIlzAJVyDB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8Af3+MrQ==</latexit>

9
<latexit sha1_base64="4fQaT7FNRFQ1JsmCvzE3YuimFhI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN4KXjy2YD+gDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2Akmd3O/84RK81g+mGmCfkRHkoecUWOl5u2gXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6tes1ap1/I4inAG53AJHlxDHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDgoeMrw==</latexit><latexit sha1_base64="4fQaT7FNRFQ1JsmCvzE3YuimFhI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN4KXjy2YD+gDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2Akmd3O/84RK81g+mGmCfkRHkoecUWOl5u2gXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6tes1ap1/I4inAG53AJHlxDHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDgoeMrw==</latexit><latexit sha1_base64="4fQaT7FNRFQ1JsmCvzE3YuimFhI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN4KXjy2YD+gDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2Akmd3O/84RK81g+mGmCfkRHkoecUWOl5u2gXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6tes1ap1/I4inAG53AJHlxDHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDgoeMrw==</latexit><latexit sha1_base64="4fQaT7FNRFQ1JsmCvzE3YuimFhI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN4KXjy2YD+gDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2Akmd3O/84RK81g+mGmCfkRHkoecUWOl5u2gXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6tes1ap1/I4inAG53AJHlxDHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDgoeMrw==</latexit>
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Figure 1.2: Absolute errors of the sine of the phase differences, approximated with
the truncated Taylor series in Theorem 72, for different orders and various values
of scaling factor K. The number on each line shows the order of truncation. The
absolute error is calculated with equation (1.22), using the solution found with fsolve
as the true value. The errors are decreasing to zero as the scaling factor K decreases
to zero. The red dashed line shows the maximum value of the scaling factor K for
which test (T0) holds. For the IEEE 300 testcase, the red dashed line is at K = 0.6631
and, for Pegase 1354, the red dashed line is at K = 1.0767. As can be seen in both
figures, the power series (1.20) can converge beyond this threshold.

Summary evaluation Figure 1.2 shows that, for the IEEE test cases, the error

of truncated Taylor series for computing the synchronized solutions of the Kuramoto

model (1.21) decreases exponentially with the order of the truncations and increases as

we approach the threshold of synchronization. For IEEE 300 and Pegase 1354 with the

nominal power injections, the error of approximating the synchronized manifold with 5th

order or higher truncated series is smaller than 10−6. Finally, Figure 1.2 shows that the

power series (1.20) can converge beyond the threshold predicted by the synchronization

test (T0).

1.7.2 Accuracy of the Taylor series: approximating the critical

coupling

In this section, we compare the approximate synchronization test (ATk) with the

existing tests in the literature and evaluate the accuracy of these approximate tests.
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We consider both IEEE test cases and random networks to evaluate these measures of

accuracy.

For IEEE test cases, we use the same simulation setup given earlier in Section 1.7.1.

Denote the critical coupling of equation (1.21) by KC, that is, let KC be the smallest

scaling factor such that ‖B>θ∗fsolve‖∞ reaches π/2 or fsolve does not converge to a solution

(whichever occurs first). Let KT denote the smallest scaling factor for which a particular

synchronization test fails. Then we denote the critical ratio by KT/KC; this percentage

is a measure of the accuracy of the given test. The conditions are checked on IEEE

118, IEEE 300, and Polish 2383 from [45], and on Pegase test case from [46] with a

10−6 tolerance. Table 1.1 compares the accuracy of the approximate test with existing

sufficient conditions for synchronization:

The first column contains the critical ratio of the best-known Lyapunov-based syn-

chronization test in the literature (T1) from [47, Theorem 7.2]:

λ2(L) > λcritical , ‖B>psd‖2. (T1)

The second column contains the critical ratio of the best-known ∞-norm synchro-

nization test (T2) form [21, Theorem 16]:

‖B>L†psd‖∞ ≤ g(‖Pcut‖∞). (T2)

Note that test (T2) is a sufficient condition for existence of a synchronization man-

ifold in SG(γ∗) where γ∗ = arccos
(
‖Pcut‖∞−1

‖Pcut‖∞+1

)
∈ [0, π/2] and g(x) = y(x)+sin(y(x))

2
−

xy(x)−sin(y(x))
2

∣∣∣∣
y(x)=arccos(x−1

x+1
)

.

The third column contains the new sufficient test (T0) proposed in this chapter.

The last four columns contains the critical ratio for the family of approximate
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tests (ATk) of order 1, 3, 5 and 7.

Test Case

Critical ratio KT/KC

∞-norm Approx test Approx test Approx test Approx test
λ2 test test New test k = 1 k = 3 k = 5 k = 7

(T1)[47] (T2)[21] (T0) (AT1)[15] (ATk) (ATk) (ATk)
IEEE 118 0.23 % 43.76 % 29.91 % 86.12 % 90.80 % 93.10 % 94.45 %
IEEE 300 0.02 % 40.45 % 27.25 % 99.64 % 99.80 % 99.84 % 99.88 %
Pegase 1354 0.04 % 34.04 % 23.94 % 89.02 % 97.58 % 99.61 % 99.66 %
Polish 2383 0.03 % 29.49 % 20.60 % 84.53 % 90.62 % 92.60 % 93.95 %

Table 1.1: Comparison of the conservativeness of various sufficient conditions with
approximate synchronizations tests applied to IEEE test cases in the domain SG(π/2).

Summary evaluation Table 1.1 shows that, for IEEE test cases with scaled nominal

power injections, the following statements holds:

1. Comparing to the approximate tests (ATk), the best-known Lyapunov-based

synchronization test (T1) provides conservative estimates of the synchronization

threshold of the Kuramoto model;

2. the accuracy of the approximate tests (ATk) increases with the order of the tests;

3. for γ = π
2
, the fifth and seventh order approximate tests (ATk) improves the

accuracy given by the 1st order approximate test
∥∥B>L†ω∥∥∞ ≤ 1 [15] by up to

9%;

4. for γ = π
2
, the fifth and seventh order approximate tests (ATk) improves the best-

known sufficient synchronization test in the literature [21] by up to 50%.

Next, we consider random graph models with randomly generated natural frequencies.

We setup the numerical analysis to assess the correctness of the family of approximate

tests (ATk) as follows. Consider a nominal unweighted random networks {G,ω}, where
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G is a connected undirected graph with n = 80 nodes chosen from a parametrized family

of random graph models RGM and ω ∈ 1⊥n are natural frequencies chosen randomly form

sampling distribution SD. Then we study the synchronization of the Kuramoto model

with uniform coupling gain K ∈ R>0,

θ̇ = ω −KB sin(B>θ).

The random graph models RGM and the sampling distributions SD are given as follows:

1. Network topology: For the network topology, we consider three types of random

graph models (RGM), parametrized by n ≥ 2 nodes and coupling parameter p ∈

[0, 1]. Note that depending on the random graph model, the coupling parameter p

represents different notions of edge density. The random graph models we consider

are (i) Erdős–Rényi random graph with probability p of an edge existing [48], (ii)

Random Geometric graph model with sampling region (0, 1]2 ⊂ R2 and connectivity

radius p [48], and (iii) Watts–Strogatz small world model network with initial

coupling to the 2 nearest neighbors and rewiring probability p [49]. If there exists

an edge, then the coupling weight is aij = aji = 1. If the graph is not connected,

then it is thrown out and a new random graph is generated.

2. Natural frequencies: We consider two types of sampling distributions SD. For

n = 80, random numbers are sampled from either a (i) uniform distribution on the

interval (−1, 1) or (ii) bipolar distribution {−1,+1} to obtain qi for i ∈ {1, . . . , n}.

Then to ensure that t he natural frequencies satisfy ω ∈ 1⊥n , we take ωi = qi −∑n
i=1 qi/n.

3. Parametric realizations: We consider combinations of parameters (RGM, p, SD):

the three random graph models, 15 edge connectivity parameters on the interval

p ∈ [0, 1], and two sampling distributions.
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For each parametric realization in (iii), we generate 100 nominal models of {G,ω ∈ 1⊥n }.

For each nominal case, we find the critical coupling, denoted by KC, and the smallest

coupling where the approximate test fails (9), denoted by KT, for orders {1, 3, 5, 7}. KC is

found iteratively with MATLAB’s fsolve. The numerically determined values are found

with an accuracy of 10−3. Each data point in Figure 1.3 corresponds to the mean of

KT/KC over 100 nominal cases of the same parametric realization.

Summary evaluation Figure 1.3 illustrates that, for random graph models with ran-

dom natural frequency for bipolar and uniform distribution and γ = π
2
, the accuracy of

the approximate test (ATk) consistently improves. In particular, the fifth and seventh

order approximate tests (ATk) improves the accuracy of the 1st order approximate test∥∥B>L†ω∥∥∞ ≤ 1 [15] by up to 30%.

1.7.3 Computational cost of approximating the synchronization

manifold

Consider a connected graph G with m edges, n nodes, and no self-loops. Table 1.2

shows the order of the number of operations associated with different methods for ap-

proximating the synchronization manifold for the sparse and dense graphs.

For random graph models, we compare the computational time of three different

methods for approximating the synchronization manifold of the Kuramoto model: (i) the

series approximation of the analytical solution from Theorem 72, (ii) Newton–Raphson

method, and (iii) MATLAB’s fsolve.

For the simulation setup, we consider the random network {G,ω} with n ≥ 2 nodes,

ωi ∈ (−α, α) for i ∈ {1, . . . , n}, and number of edges m depending on the coupling

parameter p ∈ (0, 1). The following lists the random graph parameters:
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<latexit sha1_base64="si4/aAFLjpiXBFoXlunPeYUiKac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePHYgv2ANpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5YKYJ+hEdSR5yRo2VmsmgXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6te87pSv83jKMIZnMMleFCDOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH17GM7A==</latexit><latexit sha1_base64="si4/aAFLjpiXBFoXlunPeYUiKac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePHYgv2ANpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5YKYJ+hEdSR5yRo2VmsmgXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6te87pSv83jKMIZnMMleFCDOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH17GM7A==</latexit><latexit sha1_base64="si4/aAFLjpiXBFoXlunPeYUiKac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePHYgv2ANpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5YKYJ+hEdSR5yRo2VmsmgXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6te87pSv83jKMIZnMMleFCDOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH17GM7A==</latexit><latexit sha1_base64="si4/aAFLjpiXBFoXlunPeYUiKac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePHYgv2ANpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5YKYJ+hEdSR5yRo2VmsmgXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6te87pSv83jKMIZnMMleFCDOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH17GM7A==</latexit>

p
<latexit sha1_base64="si4/aAFLjpiXBFoXlunPeYUiKac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePHYgv2ANpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5YKYJ+hEdSR5yRo2VmsmgXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6te87pSv83jKMIZnMMleFCDOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH17GM7A==</latexit><latexit sha1_base64="si4/aAFLjpiXBFoXlunPeYUiKac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePHYgv2ANpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5YKYJ+hEdSR5yRo2VmsmgXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6te87pSv83jKMIZnMMleFCDOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH17GM7A==</latexit><latexit sha1_base64="si4/aAFLjpiXBFoXlunPeYUiKac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePHYgv2ANpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5YKYJ+hEdSR5yRo2VmsmgXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6te87pSv83jKMIZnMMleFCDOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH17GM7A==</latexit><latexit sha1_base64="si4/aAFLjpiXBFoXlunPeYUiKac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePHYgv2ANpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5YKYJ+hEdSR5yRo2VmsmgXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6te87pSv83jKMIZnMMleFCDOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH17GM7A==</latexit>

p
<latexit sha1_base64="si4/aAFLjpiXBFoXlunPeYUiKac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePHYgv2ANpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5YKYJ+hEdSR5yRo2VmsmgXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6te87pSv83jKMIZnMMleFCDOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH17GM7A==</latexit><latexit sha1_base64="si4/aAFLjpiXBFoXlunPeYUiKac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePHYgv2ANpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5YKYJ+hEdSR5yRo2VmsmgXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6te87pSv83jKMIZnMMleFCDOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH17GM7A==</latexit><latexit sha1_base64="si4/aAFLjpiXBFoXlunPeYUiKac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePHYgv2ANpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5YKYJ+hEdSR5yRo2VmsmgXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6te87pSv83jKMIZnMMleFCDOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH17GM7A==</latexit><latexit sha1_base64="si4/aAFLjpiXBFoXlunPeYUiKac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePHYgv2ANpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5YKYJ+hEdSR5yRo2VmsmgXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6te87pSv83jKMIZnMMleFCDOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH17GM7A==</latexit>

p
<latexit sha1_base64="si4/aAFLjpiXBFoXlunPeYUiKac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePHYgv2ANpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5YKYJ+hEdSR5yRo2VmsmgXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6te87pSv83jKMIZnMMleFCDOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH17GM7A==</latexit><latexit sha1_base64="si4/aAFLjpiXBFoXlunPeYUiKac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePHYgv2ANpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5YKYJ+hEdSR5yRo2VmsmgXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6te87pSv83jKMIZnMMleFCDOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH17GM7A==</latexit><latexit sha1_base64="si4/aAFLjpiXBFoXlunPeYUiKac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePHYgv2ANpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5YKYJ+hEdSR5yRo2VmsmgXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6te87pSv83jKMIZnMMleFCDOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH17GM7A==</latexit><latexit sha1_base64="si4/aAFLjpiXBFoXlunPeYUiKac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePHYgv2ANpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5YKYJ+hEdSR5yRo2VmsmgXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6te87pSv83jKMIZnMMleFCDOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH17GM7A==</latexit>

p
<latexit sha1_base64="si4/aAFLjpiXBFoXlunPeYUiKac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePHYgv2ANpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5YKYJ+hEdSR5yRo2VmsmgXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6te87pSv83jKMIZnMMleFCDOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH17GM7A==</latexit><latexit sha1_base64="si4/aAFLjpiXBFoXlunPeYUiKac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePHYgv2ANpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5YKYJ+hEdSR5yRo2VmsmgXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6te87pSv83jKMIZnMMleFCDOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH17GM7A==</latexit><latexit sha1_base64="si4/aAFLjpiXBFoXlunPeYUiKac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePHYgv2ANpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5YKYJ+hEdSR5yRo2VmsmgXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6te87pSv83jKMIZnMMleFCDOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH17GM7A==</latexit><latexit sha1_base64="si4/aAFLjpiXBFoXlunPeYUiKac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePHYgv2ANpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9P2jpOFcMWi0WsugHVKLjEluFGYDdRSKNAYCeY3M39zhMqzWP5YKYJ+hEdSR5yRo2VmsmgXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6te87pSv83jKMIZnMMleFCDOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH17GM7A==</latexit>

KT

KC
<latexit sha1_base64="GQuKnjLM7PJ3dNreZgwY9ALYe5k=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GWhG8FNhb6gDWEynbRDJ5MwM1FKzKe4caGIW7/EnX/jtM1CWw9c7uGce5k7J0g4U9pxvq3SxubW9k55t7K3f3B4ZFePuypOJaEdEvNY9gOsKGeCdjTTnPYTSXEUcNoLps2533ugUrFYtPUsoV6Ex4KFjGBtJN+uDkOJSXbnZ+08N62Z+3bNqTsLoHXiFqQGBVq+/TUcxSSNqNCEY6UGrpNoL8NSM8JpXhmmiiaYTPGYDgwVOKLKyxan5+jcKCMUxtKU0Gih/t7IcKTULArMZIT1RK16c/E/b5Dq8MbLmEhSTQVZPhSmHOkYzXNAIyYp0XxmCCaSmVsRmWCThTZpVUwI7uqX10n3su46dff+qta4KuIowymcwQW4cA0NuIUWdIDAIzzDK7xZT9aL9W59LEdLVrFzAn9gff4AdhuUEg==</latexit><latexit sha1_base64="GQuKnjLM7PJ3dNreZgwY9ALYe5k=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GWhG8FNhb6gDWEynbRDJ5MwM1FKzKe4caGIW7/EnX/jtM1CWw9c7uGce5k7J0g4U9pxvq3SxubW9k55t7K3f3B4ZFePuypOJaEdEvNY9gOsKGeCdjTTnPYTSXEUcNoLps2533ugUrFYtPUsoV6Ex4KFjGBtJN+uDkOJSXbnZ+08N62Z+3bNqTsLoHXiFqQGBVq+/TUcxSSNqNCEY6UGrpNoL8NSM8JpXhmmiiaYTPGYDgwVOKLKyxan5+jcKCMUxtKU0Gih/t7IcKTULArMZIT1RK16c/E/b5Dq8MbLmEhSTQVZPhSmHOkYzXNAIyYp0XxmCCaSmVsRmWCThTZpVUwI7uqX10n3su46dff+qta4KuIowymcwQW4cA0NuIUWdIDAIzzDK7xZT9aL9W59LEdLVrFzAn9gff4AdhuUEg==</latexit><latexit sha1_base64="GQuKnjLM7PJ3dNreZgwY9ALYe5k=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GWhG8FNhb6gDWEynbRDJ5MwM1FKzKe4caGIW7/EnX/jtM1CWw9c7uGce5k7J0g4U9pxvq3SxubW9k55t7K3f3B4ZFePuypOJaEdEvNY9gOsKGeCdjTTnPYTSXEUcNoLps2533ugUrFYtPUsoV6Ex4KFjGBtJN+uDkOJSXbnZ+08N62Z+3bNqTsLoHXiFqQGBVq+/TUcxSSNqNCEY6UGrpNoL8NSM8JpXhmmiiaYTPGYDgwVOKLKyxan5+jcKCMUxtKU0Gih/t7IcKTULArMZIT1RK16c/E/b5Dq8MbLmEhSTQVZPhSmHOkYzXNAIyYp0XxmCCaSmVsRmWCThTZpVUwI7uqX10n3su46dff+qta4KuIowymcwQW4cA0NuIUWdIDAIzzDK7xZT9aL9W59LEdLVrFzAn9gff4AdhuUEg==</latexit><latexit sha1_base64="GQuKnjLM7PJ3dNreZgwY9ALYe5k=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GWhG8FNhb6gDWEynbRDJ5MwM1FKzKe4caGIW7/EnX/jtM1CWw9c7uGce5k7J0g4U9pxvq3SxubW9k55t7K3f3B4ZFePuypOJaEdEvNY9gOsKGeCdjTTnPYTSXEUcNoLps2533ugUrFYtPUsoV6Ex4KFjGBtJN+uDkOJSXbnZ+08N62Z+3bNqTsLoHXiFqQGBVq+/TUcxSSNqNCEY6UGrpNoL8NSM8JpXhmmiiaYTPGYDgwVOKLKyxan5+jcKCMUxtKU0Gih/t7IcKTULArMZIT1RK16c/E/b5Dq8MbLmEhSTQVZPhSmHOkYzXNAIyYp0XxmCCaSmVsRmWCThTZpVUwI7uqX10n3su46dff+qta4KuIowymcwQW4cA0NuIUWdIDAIzzDK7xZT9aL9W59LEdLVrFzAn9gff4AdhuUEg==</latexit>
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Order 1 Order 3 Order 5 Order 7

! uniform
<latexit sha1_base64="/LpxJCFL0oMVrc+EcN+S/qYNgdU=">AAACAXicbVA9SwNBEN3zM8avUxvBZjEIVuFOBQWboI1lBPMBuSPsbSbJkt3bY3dPDEds/Cs2ForY+i/s/Ddukis08cHA470ZZuZFCWfaeN63s7C4tLyyWlgrrm9sbm27O7t1LVNFoUYll6oZEQ2cxVAzzHBoJgqIiDg0osH12G/cg9JMxndmmEAoSC9mXUaJsVLb3Q+kgB4JLnEgIvmQ4dS6UolR2y15ZW8CPE/8nJRQjmrb/Qo6kqYCYkM50brle4kJM6IMoxxGxSDVkBA6ID1oWRoTATrMJh+M8JFVOtguthUbPFF/T2REaD0Uke0UxPT1rDcW//NaqelehBmLk9RATKeLuinHRuJxHLjDFFDDh5YQqpi9FdM+UYQaG1rRhuDPvjxP6idl/7Ts3Z6VKld5HAV0gA7RMfLROaqgG1RFNUTRI3pGr+jNeXJenHfnY9q64OQze+gPnM8fciyW4w==</latexit>

! bipolar
<latexit sha1_base64="BM9V3boC6+mWhWypE14BTx0FkfI=">AAACAXicbVA9SwNBEN2LXzF+ndoINotBsAp3IijYBG0sI5gPyB1hbzNJluzeHrt7Yjhi41+xsVDE1n9h579xk1yhiQ8GHu/NMDMvSjjTxvO+ncLS8srqWnG9tLG5tb3j7u41tEwVhTqVXKpWRDRwFkPdMMOhlSggIuLQjIbXE795D0ozGd+ZUQKhIP2Y9Rglxkod9yCQAvokuMSBiORDhiOWSE7UuOOWvYo3BV4kfk7KKEet434FXUlTAbGhnGjd9r3EhBlRhlEO41KQakgIHZI+tC2NiQAdZtMPxvjYKl3ck8pWbPBU/T2REaH1SES2UxAz0PPeRPzPa6emdxFmLE5SAzGdLeqlHBuJJ3HgLlNADR9ZQqhi9lZMB0QRamxoJRuCP//yImmcVnyv4t+elatXeRxFdIiO0Any0TmqohtUQ3VE0SN6Rq/ozXlyXpx352PWWnDymX30B87nD04klso=</latexit><latexit sha1_base64="BM9V3boC6+mWhWypE14BTx0FkfI=">AAACAXicbVA9SwNBEN2LXzF+ndoINotBsAp3IijYBG0sI5gPyB1hbzNJluzeHrt7Yjhi41+xsVDE1n9h579xk1yhiQ8GHu/NMDMvSjjTxvO+ncLS8srqWnG9tLG5tb3j7u41tEwVhTqVXKpWRDRwFkPdMMOhlSggIuLQjIbXE795D0ozGd+ZUQKhIP2Y9Rglxkod9yCQAvokuMSBiORDhiOWSE7UuOOWvYo3BV4kfk7KKEet434FXUlTAbGhnGjd9r3EhBlRhlEO41KQakgIHZI+tC2NiQAdZtMPxvjYKl3ck8pWbPBU/T2REaH1SES2UxAz0PPeRPzPa6emdxFmLE5SAzGdLeqlHBuJJ3HgLlNADR9ZQqhi9lZMB0QRamxoJRuCP//yImmcVnyv4t+elatXeRxFdIiO0Any0TmqohtUQ3VE0SN6Rq/ozXlyXpx352PWWnDymX30B87nD04klso=</latexit><latexit sha1_base64="BM9V3boC6+mWhWypE14BTx0FkfI=">AAACAXicbVA9SwNBEN2LXzF+ndoINotBsAp3IijYBG0sI5gPyB1hbzNJluzeHrt7Yjhi41+xsVDE1n9h579xk1yhiQ8GHu/NMDMvSjjTxvO+ncLS8srqWnG9tLG5tb3j7u41tEwVhTqVXKpWRDRwFkPdMMOhlSggIuLQjIbXE795D0ozGd+ZUQKhIP2Y9Rglxkod9yCQAvokuMSBiORDhiOWSE7UuOOWvYo3BV4kfk7KKEet434FXUlTAbGhnGjd9r3EhBlRhlEO41KQakgIHZI+tC2NiQAdZtMPxvjYKl3ck8pWbPBU/T2REaH1SES2UxAz0PPeRPzPa6emdxFmLE5SAzGdLeqlHBuJJ3HgLlNADR9ZQqhi9lZMB0QRamxoJRuCP//yImmcVnyv4t+elatXeRxFdIiO0Any0TmqohtUQ3VE0SN6Rq/ozXlyXpx352PWWnDymX30B87nD04klso=</latexit><latexit sha1_base64="BM9V3boC6+mWhWypE14BTx0FkfI=">AAACAXicbVA9SwNBEN2LXzF+ndoINotBsAp3IijYBG0sI5gPyB1hbzNJluzeHrt7Yjhi41+xsVDE1n9h579xk1yhiQ8GHu/NMDMvSjjTxvO+ncLS8srqWnG9tLG5tb3j7u41tEwVhTqVXKpWRDRwFkPdMMOhlSggIuLQjIbXE795D0ozGd+ZUQKhIP2Y9Rglxkod9yCQAvokuMSBiORDhiOWSE7UuOOWvYo3BV4kfk7KKEet434FXUlTAbGhnGjd9r3EhBlRhlEO41KQakgIHZI+tC2NiQAdZtMPxvjYKl3ck8pWbPBU/T2REaH1SES2UxAz0PPeRPzPa6emdxFmLE5SAzGdLeqlHBuJJ3HgLlNADR9ZQqhi9lZMB0QRamxoJRuCP//yImmcVnyv4t+elatXeRxFdIiO0Any0TmqohtUQ3VE0SN6Rq/ozXlyXpx352PWWnDymX30B87nD04klso=</latexit>
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<latexit sha1_base64="cuyWIwKkJxc5eTLt/q6dETbRCz0=">AAACFXicbVDLSsQwFE19O75GXboJDqILGVoRdCWCiC5HcVSYliFNb20wTUqSygylP+HGX3HjQhG3gjv/xsxjoTMeCBzOuZebc8KMM21c99uZmJyanpmdm68sLC4tr1RX1661zBWFJpVcqtuQaOBMQNMww+E2U0DSkMNNeH/S828eQGkmxZXpZhCk5E6wmFFirNSu7vppKDvFqYr8zUKW2jfQMSAiopOivPS3Cyi7guEzRbKkbFdrbt3tA48Tb0hqaIhGu/rlR5LmKQhDOdG65bmZCQqiDKMcyoqfa8gIvSd30LJUkBR0UPRTlXjLKhGOpbJPGNxXf28UJNW6m4Z2MiUm0aNeT/zPa+UmPgwKJrLcJqWDQ3HOsZG4VxGOmAJqeNcSQhWzf8U0IYpQY4us2BK80cjj5Hqv7rl172K/dnw0rGMObaBNtIM8dICO0TlqoCai6BE9o1f05jw5L8678zEYnXCGO+voD5zPHxRkn/w=</latexit><latexit sha1_base64="cuyWIwKkJxc5eTLt/q6dETbRCz0=">AAACFXicbVDLSsQwFE19O75GXboJDqILGVoRdCWCiC5HcVSYliFNb20wTUqSygylP+HGX3HjQhG3gjv/xsxjoTMeCBzOuZebc8KMM21c99uZmJyanpmdm68sLC4tr1RX1661zBWFJpVcqtuQaOBMQNMww+E2U0DSkMNNeH/S828eQGkmxZXpZhCk5E6wmFFirNSu7vppKDvFqYr8zUKW2jfQMSAiopOivPS3Cyi7guEzRbKkbFdrbt3tA48Tb0hqaIhGu/rlR5LmKQhDOdG65bmZCQqiDKMcyoqfa8gIvSd30LJUkBR0UPRTlXjLKhGOpbJPGNxXf28UJNW6m4Z2MiUm0aNeT/zPa+UmPgwKJrLcJqWDQ3HOsZG4VxGOmAJqeNcSQhWzf8U0IYpQY4us2BK80cjj5Hqv7rl172K/dnw0rGMObaBNtIM8dICO0TlqoCai6BE9o1f05jw5L8678zEYnXCGO+voD5zPHxRkn/w=</latexit><latexit sha1_base64="cuyWIwKkJxc5eTLt/q6dETbRCz0=">AAACFXicbVDLSsQwFE19O75GXboJDqILGVoRdCWCiC5HcVSYliFNb20wTUqSygylP+HGX3HjQhG3gjv/xsxjoTMeCBzOuZebc8KMM21c99uZmJyanpmdm68sLC4tr1RX1661zBWFJpVcqtuQaOBMQNMww+E2U0DSkMNNeH/S828eQGkmxZXpZhCk5E6wmFFirNSu7vppKDvFqYr8zUKW2jfQMSAiopOivPS3Cyi7guEzRbKkbFdrbt3tA48Tb0hqaIhGu/rlR5LmKQhDOdG65bmZCQqiDKMcyoqfa8gIvSd30LJUkBR0UPRTlXjLKhGOpbJPGNxXf28UJNW6m4Z2MiUm0aNeT/zPa+UmPgwKJrLcJqWDQ3HOsZG4VxGOmAJqeNcSQhWzf8U0IYpQY4us2BK80cjj5Hqv7rl172K/dnw0rGMObaBNtIM8dICO0TlqoCai6BE9o1f05jw5L8678zEYnXCGO+voD5zPHxRkn/w=</latexit><latexit sha1_base64="cuyWIwKkJxc5eTLt/q6dETbRCz0=">AAACFXicbVDLSsQwFE19O75GXboJDqILGVoRdCWCiC5HcVSYliFNb20wTUqSygylP+HGX3HjQhG3gjv/xsxjoTMeCBzOuZebc8KMM21c99uZmJyanpmdm68sLC4tr1RX1661zBWFJpVcqtuQaOBMQNMww+E2U0DSkMNNeH/S828eQGkmxZXpZhCk5E6wmFFirNSu7vppKDvFqYr8zUKW2jfQMSAiopOivPS3Cyi7guEzRbKkbFdrbt3tA48Tb0hqaIhGu/rlR5LmKQhDOdG65bmZCQqiDKMcyoqfa8gIvSd30LJUkBR0UPRTlXjLKhGOpbJPGNxXf28UJNW6m4Z2MiUm0aNeT/zPa+UmPgwKJrLcJqWDQ3HOsZG4VxGOmAJqeNcSQhWzf8U0IYpQY4us2BK80cjj5Hqv7rl172K/dnw0rGMObaBNtIM8dICO0TlqoCai6BE9o1f05jw5L8678zEYnXCGO+voD5zPHxRkn/w=</latexit>

R
an

d
om

G
em

.
G

ra
p
h

<latexit sha1_base64="N0lluraoaGMB9A4nZ1ARv4z3ww4=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWARXJVEBF1JwUVdVrEPaEOZTCbt0HmEmYlYQt34K25cKOLWv3Dn3zhts9DWAxcO59zLvfeECaPaeN63U1haXlldK66XNja3tnfc3b2mlqnCpIElk6odIk0YFaRhqGGknSiCeMhIKxxeTfzWPVGaSnFnRgkJOOoLGlOMjJV67kGXh/Ihu0UikhzWCK/AmkLJYNxzy17FmwIuEj8nZZCj3nO/upHEKSfCYIa07vheYoIMKUMxI+NSN9UkQXiI+qRjqUCc6CCbfjCGx1aJYCyVLWHgVP09kSGu9YiHtpMjM9Dz3kT8z+ukJr4IMiqS1BCBZ4vilEEj4SQOGFFFsGEjSxBW1N4K8QAphI0NrWRD8OdfXiTN04rvVfybs3L1Mo+jCA7BETgBPjgHVXAN6qABMHgEz+AVvDlPzovz7nzMWgtOPrMP/sD5/AHdupZ7</latexit><latexit sha1_base64="N0lluraoaGMB9A4nZ1ARv4z3ww4=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWARXJVEBF1JwUVdVrEPaEOZTCbt0HmEmYlYQt34K25cKOLWv3Dn3zhts9DWAxcO59zLvfeECaPaeN63U1haXlldK66XNja3tnfc3b2mlqnCpIElk6odIk0YFaRhqGGknSiCeMhIKxxeTfzWPVGaSnFnRgkJOOoLGlOMjJV67kGXh/Ihu0UikhzWCK/AmkLJYNxzy17FmwIuEj8nZZCj3nO/upHEKSfCYIa07vheYoIMKUMxI+NSN9UkQXiI+qRjqUCc6CCbfjCGx1aJYCyVLWHgVP09kSGu9YiHtpMjM9Dz3kT8z+ukJr4IMiqS1BCBZ4vilEEj4SQOGFFFsGEjSxBW1N4K8QAphI0NrWRD8OdfXiTN04rvVfybs3L1Mo+jCA7BETgBPjgHVXAN6qABMHgEz+AVvDlPzovz7nzMWgtOPrMP/sD5/AHdupZ7</latexit><latexit sha1_base64="N0lluraoaGMB9A4nZ1ARv4z3ww4=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWARXJVEBF1JwUVdVrEPaEOZTCbt0HmEmYlYQt34K25cKOLWv3Dn3zhts9DWAxcO59zLvfeECaPaeN63U1haXlldK66XNja3tnfc3b2mlqnCpIElk6odIk0YFaRhqGGknSiCeMhIKxxeTfzWPVGaSnFnRgkJOOoLGlOMjJV67kGXh/Ihu0UikhzWCK/AmkLJYNxzy17FmwIuEj8nZZCj3nO/upHEKSfCYIa07vheYoIMKUMxI+NSN9UkQXiI+qRjqUCc6CCbfjCGx1aJYCyVLWHgVP09kSGu9YiHtpMjM9Dz3kT8z+ukJr4IMiqS1BCBZ4vilEEj4SQOGFFFsGEjSxBW1N4K8QAphI0NrWRD8OdfXiTN04rvVfybs3L1Mo+jCA7BETgBPjgHVXAN6qABMHgEz+AVvDlPzovz7nzMWgtOPrMP/sD5/AHdupZ7</latexit><latexit sha1_base64="N0lluraoaGMB9A4nZ1ARv4z3ww4=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWARXJVEBF1JwUVdVrEPaEOZTCbt0HmEmYlYQt34K25cKOLWv3Dn3zhts9DWAxcO59zLvfeECaPaeN63U1haXlldK66XNja3tnfc3b2mlqnCpIElk6odIk0YFaRhqGGknSiCeMhIKxxeTfzWPVGaSnFnRgkJOOoLGlOMjJV67kGXh/Ihu0UikhzWCK/AmkLJYNxzy17FmwIuEj8nZZCj3nO/upHEKSfCYIa07vheYoIMKUMxI+NSN9UkQXiI+qRjqUCc6CCbfjCGx1aJYCyVLWHgVP09kSGu9YiHtpMjM9Dz3kT8z+ukJr4IMiqS1BCBZ4vilEEj4SQOGFFFsGEjSxBW1N4K8QAphI0NrWRD8OdfXiTN04rvVfybs3L1Mo+jCA7BETgBPjgHVXAN6qABMHgEz+AVvDlPzovz7nzMWgtOPrMP/sD5/AHdupZ7</latexit>
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<latexit sha1_base64="qnE2JiT36kszzJr+JP5UjUVCWbo=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWARXIVEBF1JwY0rqWgf0IYymUzbofMIMxO1hLrxV9y4UMStf+HOv3HaZqGtBy4czrmXe++JEka18f1vp7CwuLS8Ulwtra1vbG652zt1LVOFSQ1LJlUzQpowKkjNUMNIM1EE8YiRRjS4GPuNO6I0leLWDBMSctQTtEsxMlbquHttHsmH7IYjxmBDKhbDK3M/8EYdt+x7/gRwngQ5KYMc1Y771Y4lTjkRBjOkdSvwExNmSBmKGRmV2qkmCcID1CMtSwXiRIfZ5IMRPLRKDLtS2RIGTtTfExniWg95ZDs5Mn09643F/7xWarpnYUZFkhoi8HRRN2XQSDiOA8ZUEWzY0BKEFbW3QtxHCmFjQyvZEILZl+dJ/dgLfC+4PilXzvM4imAfHIAjEIBTUAGXoApqAINH8AxewZvz5Lw4787HtLXg5DO74A+czx825Za0</latexit><latexit sha1_base64="qnE2JiT36kszzJr+JP5UjUVCWbo=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWARXIVEBF1JwY0rqWgf0IYymUzbofMIMxO1hLrxV9y4UMStf+HOv3HaZqGtBy4czrmXe++JEka18f1vp7CwuLS8Ulwtra1vbG652zt1LVOFSQ1LJlUzQpowKkjNUMNIM1EE8YiRRjS4GPuNO6I0leLWDBMSctQTtEsxMlbquHttHsmH7IYjxmBDKhbDK3M/8EYdt+x7/gRwngQ5KYMc1Y771Y4lTjkRBjOkdSvwExNmSBmKGRmV2qkmCcID1CMtSwXiRIfZ5IMRPLRKDLtS2RIGTtTfExniWg95ZDs5Mn09643F/7xWarpnYUZFkhoi8HRRN2XQSDiOA8ZUEWzY0BKEFbW3QtxHCmFjQyvZEILZl+dJ/dgLfC+4PilXzvM4imAfHIAjEIBTUAGXoApqAINH8AxewZvz5Lw4787HtLXg5DO74A+czx825Za0</latexit><latexit sha1_base64="qnE2JiT36kszzJr+JP5UjUVCWbo=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWARXIVEBF1JwY0rqWgf0IYymUzbofMIMxO1hLrxV9y4UMStf+HOv3HaZqGtBy4czrmXe++JEka18f1vp7CwuLS8Ulwtra1vbG652zt1LVOFSQ1LJlUzQpowKkjNUMNIM1EE8YiRRjS4GPuNO6I0leLWDBMSctQTtEsxMlbquHttHsmH7IYjxmBDKhbDK3M/8EYdt+x7/gRwngQ5KYMc1Y771Y4lTjkRBjOkdSvwExNmSBmKGRmV2qkmCcID1CMtSwXiRIfZ5IMRPLRKDLtS2RIGTtTfExniWg95ZDs5Mn09643F/7xWarpnYUZFkhoi8HRRN2XQSDiOA8ZUEWzY0BKEFbW3QtxHCmFjQyvZEILZl+dJ/dgLfC+4PilXzvM4imAfHIAjEIBTUAGXoApqAINH8AxewZvz5Lw4787HtLXg5DO74A+czx825Za0</latexit><latexit sha1_base64="qnE2JiT36kszzJr+JP5UjUVCWbo=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWARXIVEBF1JwY0rqWgf0IYymUzbofMIMxO1hLrxV9y4UMStf+HOv3HaZqGtBy4czrmXe++JEka18f1vp7CwuLS8Ulwtra1vbG652zt1LVOFSQ1LJlUzQpowKkjNUMNIM1EE8YiRRjS4GPuNO6I0leLWDBMSctQTtEsxMlbquHttHsmH7IYjxmBDKhbDK3M/8EYdt+x7/gRwngQ5KYMc1Y771Y4lTjkRBjOkdSvwExNmSBmKGRmV2qkmCcID1CMtSwXiRIfZ5IMRPLRKDLtS2RIGTtTfExniWg95ZDs5Mn09643F/7xWarpnYUZFkhoi8HRRN2XQSDiOA8ZUEWzY0BKEFbW3QtxHCmFjQyvZEILZl+dJ/dgLfC+4PilXzvM4imAfHIAjEIBTUAGXoApqAINH8AxewZvz5Lw4787HtLXg5DO74A+czx825Za0</latexit>

Figure 1.3: Each data point is the critical ratio KT/KC averaged over 100 random
graphs with n = 80 nodes and in the domain SG(π/2). KT/KC measures the accuracy
of the approximate synchronization tests (ATk). KC is the smallest coupling gain
such that there exists a solution to the Kuramoto model. KT is an approximation of
KC, estimated using the approximate test (ATk) derived from Theorem 72 for orders
k = 1, 3, 5, 7.
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Method General Sparse Graphs Dense Graphs
O(n) = O(m) O(n2) = O(m)

Precomputation O(m2n) O(n3) O(n5)
Series, 5th order* O(2m2) O(2n2) O(2n4)
Series, 7th order* O(3m2) O(3n2) O(3n4)
Newton–Raphson O(mn2) O(n3) O(n4)

* Denotes that the method precomputes the terms B>L†, L†BA
and Pcyc. The computation complexity of these terms are found
in the “Precomputation” row.
The computational complexity of L† for L ∈ Rn×n is O(n3).

Table 1.2: Comparison of number of operations required for computing the truncated
series and Newton–Raphson.

1. Network topology: To construct the random graph, the Erdős–Rényi random graph

model was used with probability p of an edge existing. If the graph is not connected,

then it is thrown out and a new random graph is generated.

2. Coupling weights: Each edge is given a random coupling weight, aij = aji > 0,

sampled on the uniform distribution interval (0, 10).

3. Natural frequencies: n random numbers are sampled from a uniform distribution

on the interval (−α, α) to obtain qi for i ∈ {1, . . . , n}. Then to ensure that the

natural frequencies satisfy ω ∈ 1⊥n , we take ωi = qi−
∑n

i=1 qi/n. In our simulations,

we choose α = 0.05 which is sufficiently small to ensure that the MATLAB’s fsolve

converges to a solution of the Kuramoto model (1.5).

4. Parametric realizations: We consider random network parametrization (n, p, α)

with combinations of n = {10, 20, 30, 60, 120} and p = {0.2, 0.4, 0.6, 0.8}.

For each parametrization, we generate 3000 nominal graphs and 20 natural frequency

vectors for each random graph. The results of the execution time for various methods

are shown in Figure 1.4 where each point is the computational time for a particular

method averaged over 3000 graphs and 20 natural frequency vectors ω ∈ 1⊥n per graph.

The computation time for the series approximation is the total time to complete the
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calculations for 1 random nominal graph with 20 different natural frequency vectors.

This time does not include the computation time for the precomputed terms listed in

Table 1.2. The initial guess for Newton–Raphson and fsolve is B>L†ω.
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Figure 1.4: Comparison of computation times for 5th order truncated series, the 7th
order truncated series, MATLAB’s fsolve, and Newton–Raphson for random graphs,
where p is the probability of an edge existing for Erdős–Rényi graphs. The compu-
tation time is how long it takes the various methods to compute the solutions of the
unconstrained edge balance equations, for 20 randomly generated natural frequency
vector given one randomly generated graph. If a random natural frequency vector
does not give a solution, it is thrown out and a new vector is generated. Certain
values are precomputed for each graph, but the precomputation time is not included
in the graph. Each data point is averaged over 3000 Erdős–Rényi random graphs.

Summary evaluation Figure 1.4 show that the computation time for the truncated

power series increases with density of the random graphs. Moreover, the truncated series

are more efficient than Newton–Raphson method for small random graphs, while they
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are only comparable to Newton–Raphson method for large random graphs.

For IEEE test cases, we compare the computational time of three different methods for

calculating the synchronization manifold: (i) the series approximation of the analytical

solution from Theorem 72, (ii) Newton–Raphson method, and (iii) MATLAB’s fsolve.

The setting for the IEEE test cases are the same as the one given in Section 1.7.1. In

this setup we do not precompute any terms and consider one graph topology with its

nominal power injections. We use each method to solve for the synchronization manifold

[θ∗], and average the computation time over 10 trials.

Test Case fsolve / NR Ord. 5 / NR Ord. 7 / NR
IEEE 118 4.2072 0.4511 0.4539
IEEE 300 2.6501 0.7546 0.7539

Pegase 1354 1.2825 0.8582 0.8633
Polish 2383 1.1279 0.9559 0.9583

Table 1.3: Computational times of MATLAB’s fsolve, 5th order series (Ord. 5), and
7th order series (Ord. 7) normalized by the computational time for Newton–Raphson
(NR) for IEEE test cases. The computation time is how long it takes the various meth-
ods to compute the solution of the unconstrained edge balance equations, averaged
over 10 trials. Certain values are precomputed for each graph, but the precomputation
times are not included.

Summary evaluation The results in Table 1.3 show that, for IEEE test cases, the

series approximations are computationally comparable to Newton–Raphson and they are

computationally more efficient than MATLAB’s fsolve.

1.8 Mathematica Code

We present an implementation of a Mathematica algorithm 1 to compute the coeffi-

cient of the power series expansion given in Theorem 72.

It is worth mentioning that the required computations increase exponentially with

the order of the terms. Specifically, computing the (2k + 1)th order coefficient of the
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Algorithm 1 Mathematica algorithm to compute terms of series expansion

permCount[as_]:=Length[Permutations[Flatten[as]]]

getOddPartition[x1_,x2_]:=Select[IntegerPartitions[x1,{x2}],allOddQ]

getSymbol[val_]:=Symbol["A"<>ToString[val]]

A[1]=getSymbol[1]

A[i_/;OddQ[i]]:=

-Pcyc**(Sum[(2k-1)!!/((2k+1)(2k)!!)*

Sum[permCount[as]*Product[getSymbol[a],{a,as}],

{as,getOddPartition[i,2k+1]}],{k,1,(i-1)/2}])

power series requires finding all the odd-integer partitions of 2k + 1.

1.9 Conclusion

This chapter proposes a novel equivalent characterization of the equilibrium equation

for the Kuramoto coupled oscillator; we refer to this characterization as to the uncon-

strained edge balance equation. Using this characterization, we propose a Taylor series

expansion for the synchronization manifold of the Kuramoto network and a recursive

formula to symbolically compute all the terms in the Taylor series. We then use the

truncated Taylor series as a tool to (i) find sharp approximation for the synchronization

manifold and (ii) estimate the onset of frequency synchronization. Our numerical sim-

ulations illustrate the accuracy and computational efficiency of this method on various

classes of random graphs and IEEE test cases. As future directions, it may be instructive

to employ this series expansion method to study frequency synchronization in networks

consisting of other important oscillators, such as FitzHugh–Nagumo systems. Addition-

ally, it may be viable to adopt the series expansion approach to tackle more general

nonlinear network flow problems, such as the coupled power flow equations and optimal

power flow problems.
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Chapter 2

Assign and Appraise: Achieving

Optimal Performance in

Collaborative Teams

2.1 Introduction

Research, technology, and innovation is increasingly reliant on teams of individu-

als with various specializations and interdisciplinary skill sets. In its simplest form, a

group of individuals completing routine tasks is a resource allocation problem. However,

tackling complex problems such as scientific research [50], software development [51], or

problem solving [52] requires consideration of the team structure, cognitive affects, and

interdependencies between team members [53]. In these complex scenarios, it is fun-

damental to discover what skills each member is endowed with, so as to devise a task

assignment that maximizes the resulting collective team performance.
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appraisals

workloadperformance
task 

execution

appraisal 
revision

workload 
assignment

Figure 2.1: Architectural overview on the assign and appraise model studied in this
manuscript. Given a complex task to complete, team members get assigned and
execute an initial workload (right and bottom blocks). Each team member revises their
appraisal of neighboring members based on each neighbor’s individual performance
(left), which in turn is used to reassign the workload. The objective is for the team to
learn who has what skill, so as to assign tasks in a way that maximizes the collective
team performance.

2.1.1 Problem description

In this chapter, we focus on a quantitative model describing the process by which

individuals in a team evaluate one another while concurrently assigning work to each of

the team members, in order to maximize the collective team performance (see Figure 2.1).

More specifically, we assume each team member is endowed with a skill level (a-priori

unknown), and that the team needs to divide a complex task among its members. We let

each team member build their own local appraisal of neighboring team members’ based

on the performance exhibited on previous tasks. Upcoming tasks are then distributed

according to the current appraisal estimates. Finally, the performance of each member

is newly observed by neighboring members, who, in turn, update their appraisal. Any

model satisfying these assumptions is composed of two building blocks: i) an appraisal

component modeling how team members update their appraisals (left block in Figure 2.1),

and ii) a work assignment component describing how the task is divided within the team

(right block in Figure 2.1).

We model the appraisal process i) through the lens of transactive memory systems,

a conceptual model introduced by Wegner [54], which assumes that a team is capable
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of developing collective knowledge regarding who has what information and capabilities.

Our choice of dynamics describing the evolution of the interpersonal appraisals is inspired

from replicator dynamics, whereby each team member i updates their appraisal of a

neighboring member j proportionally to the difference between member j performance

and the (appraisal-weighted) average performance of the team.

We model the work assignment process ii) as a compartmental system [55], and utilize

two natural dynamics to describe how the task is divided based on the current appraisals.

These dynamics correspond to utilizing different centrality measures to subdivide a com-

plex task. It is crucial to observe that the coupling between the appraisal revision and

the work assignment process results in a coevolutionary network problem.

This chapter follows a trend initiated recently, whereby many traditionally qualitative

fields such as social psychology and organizational sciences are developing quantitative

models. In this regard, our aim is to quantify the development of transactive memory

within a team and study what conditions cause a team to fail or succeed at allocating a

task optimally among members. To do so, we leverage control theoretical tools as well

as ideas from evolutionary game theory, and notions from graph theory.

2.1.2 Contributions

Our main contributions are as follows. 1. We formulate a quantitative model to

capture the coevolution of the workload division and appraisal network, where the optimal

workload assignment maximizing the collective team performance is an equilibrium of the

model. While we let the appraisal network evolve according to a replicator-like dynamics,

we consider two different mechanisms for workload division and show well-posedness

of the model. 2. Regardless of the mechanism used for workload division, we derive

conserved quantities associated to the cycles of the appraisal network. Leveraging this
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result, for a team of n individuals, we significantly reduce the dimension of the system

from n2+n to a 2n dimensional submanifold. 3. We provide rigorous positive and negative

results that characterize the asymptotic behavior for either of the workload division

mechanisms. When adopting the first workload division mechanism, we show that under

a mild assumption, strongly connected teams are always able to learn each member’s

correct skill level, and thus determine the optimal workload division. In the second

model variation, strong connectivity is insufficient to guarantee that the team learns

the optimal workload, but more specific assumptions allow the team to converge to the

optimal workload. 4. Finally, we enrich our analysis by means of numerical experiments

that provide further insight into the limiting behavior.

2.1.3 Related works

Quantitative models of transactive memory systems

Wegner’s transactive memory systems (TMS) model [54] describes how cognitive

states affect the collective performance of a team performing complex tasks. This widely

established model captures both learning on the individual and collective level, as well

as the evolution of the interaction between individuals within a team.

There are very few quantitative models attempting to describe TMS and most of these

models rely on numerical analysis to study the evolution of team knowledge [56], or what

events are disruptive to learning and productivity in groups [57]. However, numerical

analysis alone has natural limitations, whereas a mathematical perspective to TMS can

establish the emergence of learning behaviors for entire classes of models. Moreover, while

our proposed model is agent-based with collective knowledge represented as a weighted

digraph, [56, 57] are not agent-based models and use a scalar value to encode the team’s

collective knowledge.
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The collective learning model introduced by Mei et al. [58] was the first to quantify

TMS with appraisal networks and provide convergence analysis. In particular, for the

assign/appraise model in [58], the appraisal update protocol is akin to one originally in-

troduced in [59] and assumes each team member only updates their own appraisal based

on performance comparisons. Additionally, the workload assignment is a centralized pro-

cess determined by the eigenvector centrality of the network [60]. Our model significantly

differs from [58] in that team members update their own and neighboring team members’

appraisals. Additionally, the workload assignment is a distributed and dynamic process.

Distributed optimization

Our model has direct ties with the field of distributed optimization. Under suit-

able conditions discussed later, in fact, the team will be able to learn each other’s skill

levels, and thus agree on a work assignment maximizing the collective performance in

a distributed fashion. Additionally, any change in the problem dimension, due to the

addition or subtraction of agents, only requires local adaptions. In light of this observa-

tion, one could reinterpret the assign and appraisal model studied here as a distributed

optimization algorithm, where the objective is that of maximizing the team performance

through local communication. In comparison to our work, existing distributed optimiza-

tion algorithms often require more complex dynamics. For example, [61] requires that the

optimal solution estimates are projected back into the constrained set, while Newton-like

methods [62] require higher order information.

Perhaps closest to this perspective on our problem is the work of Barreiro-Gomez et

al. [63], where evolutionary game theory is used to design distributed optimization algo-

rithms. Nevertheless, we observe that the objective we pursue here is that of quantifying

if and to what extent team members learn how to share a task optimally. In this respect,

the dynamics we consider do not arise as the result of a design choice (as it is in [63]),
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but they are rather defining the problem itself.

Adaptive coevolutionary networks

Our model is an example of appraisal network coevolving with a resource allocation

process. Research regarding adaptive networks has gained traction in recent decades,

appearing in biological systems and game theoretical applications [64]. Wang et al. [65],

for example, review coupled disease-behavior dynamics, while Ogura et al. [66] propose an

epidemic model where awareness causes individuals to distance themselves from infected

neighbors. Finally, we note that coevolutionary game theory considers dynamics on the

population strategies and dynamics of the environment, where the payoff matrix evolves

with the environment state [67, 68].

Chapter organization

Section 2.2 contains the problem framework, model definition, the model’s well-

posedness, and equilibrium corresponding to the optimal workload. Section 2.3 contains

the properties of the appraisal dynamics and reduced order dynamics. Section 2.4 and 2.5

present the convergence results for the model with both workload division mechanisms.

Section 2.6 contains numerical studies illustrating the various cases of asymptotic behav-

ior.

Notation

Let 1n (0n resp.) denote the n-dimensional column vector with all ones (zero resp.).

Let In represent the n× n identity matrix. For a matrix or vector B ∈ Rn×m, let B ≥ 0

and B > 0 denote component-wise inequalities. Given x = [x1, . . . , xn]> ∈ Rn, let diag(x)

denote the n× n diagonal matrix such that the ith entry on the diagonal equals xi. Let
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� (� resp.) denote Hadamard entrywise multiplication (division resp.) between two

matrices of the same dimensions. For x, y ∈ Rn and B ∈ Rn×n, we shall use the property

xy> �B = diag(x)B diag(y). (2.1)

Define the n-dimensional simplex as ∆n = {x ∈ Rn | 1>nx = 1, x ≥ 0} and the relative

interior of the simplex as int(∆n) = {x ∈ Rn | 1>nx = 1, x > 0}.

A nonnegative matrix B ≥ 0 is row-stochastic if B1n = 1n. For a nonnegative

matrix B, G(B) is the weighted digraph associated to B, with node set {1, . . . , n} and

directed edge (i, j) from node i to j if and only if bij > 0. A nonnegative matrix B

is irreducible if its associated digraph is strongly connected. The Laplacian matrix of

a nonnegative matrix B is defined as L(B) = diag(B1n) − B. For B irreducible and

row-stochastic, vleft(B) denotes the left dominant eigenvector of B, i.e., the entry-wise

positive left eigenvector normalized to have unit sum and associated with the dominant

eigenvalue of B [69, Perron Frobenius theorem].

2.2 Problem Framework and ASAP Model

In this section, we first propose the Assignment and Appraisal (ASAP) model and

establish that it is well-posed for finite time. The proposed ASAP model can be consid-

ered a socio-inspired, distributed, and online algorithm for optimal resource allocation

problems. Our model captures two fundamental processes within teams: workload dis-

tribution and transactive memory. We consider two distributed, dynamic models for the

workload division: a compartmental system model and a linear model that uses average-

appraisal as the input for adjusting workload. The transactive memory is quantified

by the appraisal network and reflects individualized peer evaluation in the team. The
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development of the transactive memory system allows the team to estimate the work

assignment that maximizes the collective team performance.

2.2.1 Workload assignment, performance observation, and ap-

praisal network

Workload assignment

We consider a team of n individuals performing a sequence of tasks. Let w =

[w1, . . . , wn]> ∈ int(∆n) denote the vector of workload assignments for a given task,

where wi is the work assignment of individual i.

Individual performance

Let p(w) : int(∆n)→ Rn
>0 represent the vector of individual performances that change

as a function of the work assignment, where p(w) = [p1(w1), . . . , pn(wn)]> ∈ and pi(wi)

is the performance of individual i. In general, individuals will perform better if they have

less workload; we formalize this notion with the following two assumptions.

Assumption 10. (Smooth and strictly decreasing performance functions) Assume func-

tion pi : (0, 1]→ [0,∞) is C1, strictly decreasing, convex, integrable, and limx→0+ pi(x) =

+∞.

Assumption 11. (Power law performance functions) Assume function pi : (0, 1] →

[0,∞) is of the form pi(x) = six
−γ where si > 0 and γ ∈ (0, 1).

The first assumption is quite general and can be further weakened at the cost of

additional notation. The second assumption is more restrictive than Assumption 10,

but is well-motivated by the power law for individual learning [70]. Note that functions

obeying Assumption 11 also satisfy Assumption 10.

50



Assign and Appraise: Achieving Optimal Performance in Collaborative Teams Chapter 2

Appraisal network

Let A = {aij}i,j∈{1,...,n} denote the n×n nonnegative, row-stochastic appraisal matrix,

where aij is individual i’s appraisal of individual j. The appraisal matrix represents the

team’s network structure and transactive memory system.

2.2.2 Model description and problem statement

In this work, we design a model where the workload assignment coevolves with the

appraisals: the workload assignment changes as a function of the appraisals and the

appraisals update based on perceived performance disparities for the assigned workload.

Suppose at each time t, the team has a workload assignment w(t), individual perfor-

mances p(w(t)), and appraisal matrix A(t). Since we are studying teams, it is reasonable

to assume the appraisal network is strongly connected and each individual appraises

themself. This translates to an irreducible initial appraisal matrix A(0) with strictly pos-

itive self-appraisals aii(0) > 0 for all i ∈ {1, . . . , n}. All members also start with strictly

positive workload w(0) ∈ int(∆n). For shorthand throughout the rest of the chapter, we

use A0 = A(0) and w0 = w(0).

Before introducing the model, first we define the work flow function

F = [F1(A,w), . . . , Fn(A,w)]>, where Fi : [0, 1]n×n×∆n → ∆n describes how individual

i adjusts their own work assignment. Then our coevolving assignment and appraisal

process is quantified by the following dynamical system.

Definition 12 (ASAP (assignment and appraisal) model). Consider n performance

functions pi satisfying Assumption 10 or 11. The coevolution of the appraisal network
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A(t) and workload assignment w(t) obey the following coupled dynamics,

ȧij = aij

(
pj(wj)−

n∑
k=1

aikpk(wk)
)
,

ẇi = Fi(A,w),

(2.2)

which reads in matrix form

Ȧ = A�
(

1np(w)> − Ap(w)1>n
)
,

ẇ = F (A,w).

(2.3)

The work flow function F obeys one of the following work flow models:

Donor-controlled: Fi(A,w) = −wi +
n∑
k=1

akiwk, (2.4)

Average-appraisal: Fi(A,w) = −wi +
1

n

n∑
k=1

aki. (2.5)

The matrix forms of the donor-controlled (2.4) and average-appraisal (2.5) work flows

are F (A,w) = −w + A>w and F (A,w) = −w + 1
n
A>1n, respectively.

The appraisal weights of the ASAP model (2.2) update based on performance feedback

between neighboring individuals. For neighboring team members i and j, i will increase

their appraisal of j if j’s performance is larger than the weighted average performance

observed by i, i.e. pj(wj) >
∑n

k=1 aikpk(wk). Individual i also updates their self-appraisal

with the same mechanism. The irreducibility and strictly positive self-appraisal assump-

tions on the appraisal network means that every individual’s performance is evaluated

by themself and at least one other individual within the team.

The donor-controlled work flow (2.4) models a team where individuals exchange

portions of their workload assignment with their neighbors, and the amount of work
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exchanged depends on their current work assignments and the appraisal values. The

work individual j gives to individual i has flow rate aji and is proportional to wj. The

average-appraisal work flow (2.5) assumes that each individual collects feedback from

neighboring team members through appraisal evaluations. Each individual uses this

feedback to calculate their average-appraisal 1
n

∑n
k=1 aki, which is then used to adjust their

own workload assignment. The average-appraisal is equivalent to the degree centrality of

the appraisal network. Note that while the donor-controlled work flow is decentralized

and distributed, the average-appraisal work flow is only distributed since it requires

individuals to know the total number of team members.

In the following lemma, we show that the ASAP model is well-posed and the appraisal

network maintains the same network topology for finite time.

Lemma 13 (Finite-time properties for the ASAP model). Consider the ASAP model 2.2

with donor controlled (2.4) or average appraisal (2.5) work flow. Assume A0 is row-

stochastic, irreducible, with strictly positive diagonal and w0 ∈ int(∆n). Then for any

finite ∆t > 0, the following statements hold:

1. w(t) ∈ int(∆n) for t ∈ [0,∆t];

2. A(t) remains row-stochastic with the same zero/positive pattern for t ∈ [0,∆t].

Proof. Before proving statement 1, we give some properties of the appraisal dynamics.

If aij(t) = 0, then ȧij(t) = 0, which implies aij(t) ≥ 0. By using the Hadamard

product property (2.1), the matrix form of the appraisal dynamics can also be written

as Ȧ = A diag(p(w))− diag(Ap(w))A. Then for A01n = 1n, Ȧ1n = 0n, so A(t) remains

row-stochastic for t ≥ 0.

Next, we use A(t) row-stochastic to prove w(t) ∈ int(∆n) for donor-controlled work

flow and t ∈ [0,∆t]. Left multiplying thew(t) dynamics by 1>n , we have 1>n ẇ = 1>n (−w+
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A>w) = 0n. Next, let wi(t) = mink{wk(t)}. For w0 ∈ int(∆n), wi(t) = mink{wk(t)} = 0,

and A(t) ≥ 0, then ẇi(t) =
∑n

k=1 aki(t)wk(t) ≥ 0. Therefore w(t) ∈ ∆n. Lastly, we apply

the Grönwall-Bellman Comparison Lemma to also show that w(t) lives in the relative

interior of the simplex. For wi(0) > 0 and ẇi(t) = −wi(t) +
∑n

k=1 aki(t)wk(t) ≥ −wi(t),

then wi(t) ≥ wi(0)e−t > 0 for t ∈ [0,∆t]. Therefore, ifw0 ∈ int(∆n), thenw(t) ∈ int(∆n)

for t ∈ [0,∆t].

The proof for statement 1 can be extended to the average-appraisal work flow (2.5)

following the same process, since ẇi(t) = −wi(t) + 1
n

∑n
k=1 aki(t) ≥ −wi(t).

For statement 2, to prove that A(t) maintains the same zero/positive pattern for

t ∈ [0,∆t], consider any i, j such that aij(0) > 0. Since w(t) ∈ int(∆n), then p(w(t)) > 0

by the performance function assumptions and pj(wj)−
∑n

k=1 aikpk(wk) is finite for any i, j

and t ∈ [0,∆t]. Let pmax(w(t)) = maxk∈{1,...,n}{pk(wk)}. Then the convex combination

of individual performances is upper bounded by
∑n

k=1 aikpk(wk) ≤ pmax(w(t)). Now we

can write the following lower bound for the time derivative of aij(t),

ȧij(t) ≥ aij(t)
(
pj(wj(t))−

∑n

k=1
aik(t)pk(wk(t))

)
≥ −aij(t)pmax(w(t)).

Using the Grönwall-Bellman Comparison Lemma again, for t ∈ [0,∆t], then

aij(t) ≥ aij(0) exp

(
−
∫ t

0

pmax(w(τ))dτ

)
> 0.

Therefore, A(t) remains row-stochastic and maintains the same zero/positive pattern as

A0 for finite time.
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2.2.3 Team performance and optimal workload as model equi-

libria

We are interested in the collective team performance and while no single collective

team performance function is widely accepted in the social sciences, we consider three

such functions. Under minor technical assumptions, the optimal workload for all three is

characterized by equal performance levels by the individuals and is an equilibrium point

of the ASAP model. If pi(wi) represents the marginal utility of individual i, then the

collective team performance can be measured by the total utility,

Htot(w) =
n∑
i=1

∫ wi

0

pi(x)dx.

The team performance can alternatively be measured by the “weakest link” or minimum

performer,

Hmin(w) = min
i∈{1,...,n}

{pi(wi)}.

Another metric often used is the weighted average individual performance:

Havg(w) =
n∑
i=1

wipi(wi).

The next theorem clarifies when the workload maximizing either Htot, Hmin, or Havg

is an equilibrium of the ASAP model.

Theorem 14 (Optimal performance as equilibria of dynamics). Consider performance

functions pi satisfying Assumption 10 for all i ∈ {1, . . . , n}. Then

1. there exists a unique pair (p∗,wopt) such that p∗ > 0, wopt ∈ int(∆n), and p(wopt) =

p∗1n.

Additionally, let H denote Htot, Hmin, or Havg. Let Assumption 11 hold when H =
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Havg. Then

2. wopt is the unique solution to

wopt = arg max
w∈∆n

{H(w)}.

Finally, consider the ASAP model (2.2) with donor-controlled work flow (2.4) and let

A0 be row-stochastic, irreducible, with strictly positive diagonal and w0 ∈ int(∆n). Then

3. there exists at least one matrix A∗ with the same zero/positive pattern as A0 that

satisfies wopt = vleft(A
∗); and

4. every pair (A∗,wopt), such that A∗ has the same zero/positive pattern as A0 and

wopt = vleft(A
∗), is an equilibrium.

For average-appraisal work flow (2.5), statements 3-4 may not hold for wopt =

1
n
(A∗)>1n, since there may not exist an A∗ with the same zero/positive pattern as A0.

Section 2.5 elaborates on these results.

Proof. Regarding statement 1, recall that pi is C1 and strictly decreasing by Assump-

tion 10 or 11. Now we show that given our assumptions, there exists wopt ∈ int(∆n)

such that p(wopt) = p∗1n holds. Let p−1
i denote the inverse of pi and let ◦ denote

the composition of functions where f(g(x)) = (f ◦ g)(x). Given p1(w1) = pi(wi), then

wi = (p−1
i ◦ p1)(w1) for all i 6= 1. Then taking into account wopt ∈ int(∆n),

w1 +
∑n

i=1
(p−1
i ◦ p1)(w1) = 1.

pi strictly decreasing implies p−1
i (p−1

i ◦ p1 resp.) is strictly decreasing (strictly increasing

resp.). Therefore the left hand side of the above equation is strictly increasing, so there
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is a unique wopt
1 ∈ (0, 1) solving the equation. Therefore there is a unique (p∗,wopt) that

satisfies p(wopt) = p∗1n, where p∗ = p1(wopt
1 ) > 0.

Regarding statement 2, pi is strictly decreasing, C1, and convex by Assumption 10-

11. Then Htot, Hmin, and Havg are all strictly concave. Since we are maximizing over

a compact set, and H(w) is finite for w ∈ ∆n, there exists a unique optimal solution

wopt ∈ ∆n. Next we show that wopt must satisfy p(wopt) = p∗1n where p∗ > 0 for each

collective team performance measure and wopt ∈ int(∆n).

First, consider H = Htot. Let µ ∈ Rn and λ ∈ R. Then the KKT conditions are given

by: p(wopt) + µ − λ1n = 0n, µ � wopt = 0n, and µ � 0n. If λ → ∞, then wopt = 0n

for the first KKT condition to hold, but we require wopt ∈ ∆n. Similarly, wopt
i = 0

for any i would satisfy the second KKT condition, but violate the first KKT condition.

As a result, λ < ∞ and µ = 0n. This implies that pi(w
opt
i ) = λ for all i. Therefore

wopt ∈ int(∆n) and there exists p∗ = λ ∈ (0,∞) such that p(wopt) = p∗1n.

Second, considerH = Hmin. Define the set arg min(p(w)) = {i ∈ {1, . . . , n} | pi(wi) =

mink{pk(wk)}} and let | arg min(p(w))| denote the number of elements in arg min(p(w)).

We prove the claim by contradiction. Assumewopt is the optimal solution such that there

exists at least one j 6= i such that pi(w
opt
i ) < pj(w

opt
j ) for i ∈ arg min(p(w)). Then there

exists a sufficiently small ε > 0 and w∗ ∈ int(∆n) such that Hmin(wopt) < Hmin(w∗),

where w∗i = wopt
i − ε and w∗j = wopt

j + ε| arg min(p(w))|. This contradicts the fact that

wopt is the optimal solution. Additionally, we can prove that wopt ∈ int(∆n) by assuming

there exists at least one i such that wi = 0 and following the same proof by contradiction

process. Therefore wopt ∈ int(∆n) and p(wopt) = p∗1n .

Third, consider H = Havg. Let µ ∈ Rn and λ ∈ R. Then the KKT conditions are

given by: (1− γ)p(w∗) +µ− λ1n = 0n, µ�w∗ = 0n, and µ � 0n. The rest of the proof

follows from the same argument as used for H = Htot.

Regarding statements 3 and 4, let ad = [a11, . . . , ann]> ∈ [0, 1]n and A(ad, A0) =
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diag(ad) + (In − diag(ad))A0. We prove that there exists some a∗d > 0 such that wopt =

vleft

(
A∗(a∗d, A0)

)
. From the assumptions on A0, then there exists w̄ = vleft(A0) such that

σw̄ = (In−diag(a∗d))w
opt for σ ∈ R. Then solving for a∗d, we have a∗d = 1n−σ(w̄�wopt).

Next, we choose σ = ε/maxi{w̄i/wi} for ε ∈ (0, 1), which gives the following bounds on

aii for all i,

aii ∈ [1− ε, 1− εmin
i
{w̄i/wi}(max

i
{w̄i/wi})−1] ⊆ (0, 1).

With a∗d > 0n, then A∗(a∗d, A0) has the same zero/positive pattern as A(0). This shows

that, given wopt, there always exists a matrix A∗ with left dominant eigenvector wopt

and with the same pattern as A(0).

Next, we prove that any such pair (A∗,wopt) is an equilibrium. Our assumptions on A∗

and the Perron-Frobenius theorem together imply that the rank(In−(A∗)>) = n−1. For

the ASAP model (2.2) with donor-controlled work flow (2.4), the equilibrium conditions

on the self-appraisal states and work assignment read:

0n = diag
(
ad(A

∗)
)
(In − A∗)p(w∗), (2.6)

0n = (A∗ − In)>w∗. (2.7)

Equation (2.6) is satisfied because we know from statement 2 that p(wopt) = p∗1n.

Equation (2.7) is satisfied because we know vleft(A
∗) = wopt. This concludes the proof of

statements 3 and 4.

The equilibria described in the above lemma also resemble an evolutionarily stable

set [71], which is defined as the set of strategies with the same payoff. Our proof illustrates

that at least one A∗ always exists, but in general, there are multiple A∗ matrices that

satisfy a particular zero/positive irreducible matrix pattern withwopt = vleft(A
∗) with the

same collective team performance. We will later show that, under mild conditions, this
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optimal solution is an equilibrium of our dynamics with various attractivity properties

(see Section 2.4 and 2.5).

2.3 Properties of Appraisal Dynamics: Conserved

Quantities and Reduced Order Dynamics

In this section, we show that every cycle in the appraisal network is associated to

a conserved quantity. Leveraging these conserved quantities, we reduce the appraisal

dynamics to an n−1 dimensional submanifold. Before doing so, we introduce the notion

of cycles, cycle path vectors, the cycle set, and the cycle space. For a given initial

appraisal matrix A0 with strictly positive diagonal, let m denote the total number of

strictly positive interpersonal appraisals in the edge set E(A0). Recall that if aij(0) = 0

for any i, j, then ȧij = 0, which implies aij(t) = 0 for all t ≥ 0. Therefore we can consider

the total number of appraisal states to be the number of edges in A0, which gives a total

of n+m appraisal states.

Definition 15 (Cycles, cycle path vectors, and cycle set). Consider the digraph G(A)

associated to matrix A ∈ Rn×n
≥0 .

A cycle is an ordered sequence of nodes r = {r1, . . . , rk, r1} with no node appearing

more than once, that starts and ends at the same node, has at least two distinct nodes,

and each sequential pair of nodes in the cycle denotes an edge (ri, ri+1) ∈ E(A). We do

not consider self-loops, i.e. self-appraisal edges, to be part of any cycles.

Let Cr ∈ {0, 1}m denote the cycle path vector associated to cycle r. Let each off-

diagonal edge of the appraisal matrix (i, j) ∈ E(A) be assigned to a number in the ordered
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set {1, . . . ,m}. For every edge e ∈ {1, . . . ,m}, the eth component of Cr is defined as

(Cr)e =


+1, if edge e is positively traversed by Cr,

0, otherwise.

Let Φ(A) denote the cycle set, i.e. the set of all cycles, in digraph G(A).

To refer to a particular cycle, we will use the cycle’s associated cycle path vector,

which then allows us to define the cycle space.

Definition 16 (Cycle space). A cycle space is a subspace of Rm spanned by cycle path

vectors. By [72, pg. 29, Theorem 9], the cycle space of a strongly connected digraph G(A)

is spanned by a basis of µ = m− n+ 1 cycle path vectors.

Let CB ∈ {0, 1}m×µ denote a matrix where the columns are a basis of the cycle space.

The following theorem 1. rigorously defines the conserved quantities associated to

cycles in the appraisal network; 2. shows that the appraisal states can be reduced from

dimension n+m to n− 1 using the conserved quantities; and 3. uses both the previous

properties to introduce reduced order dynamics that have a one-to-one correspondence

with the appraisal trajectories.

Theorem 17 (Conserved cycle constants give reduced order dynamics). Consider the

ASAP model (12) with donor-controlled (2.4) or average-appraisal (2.5) work flow. Given

initial conditions A0 row-stochastic, irreducible, with strictly positive diagonal and w0 ∈

int(∆n), let (A(t),w(t)) be the resulting trajectory. Then

1. for any cycle r, the quantity

cr =
∏

(i,j)∈r

aii(t)

aij(t)
, (2.8)
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is constant; we refer to cr ∈ (0,∞) as the cycle constant associated to cycle r ∈

Φ(A0);

2. the appraisal matrix A(t) takes value in a submanifold of dimension n− 1;

3. given a solution (v(t), w̄(t)) ∈ Rn
>0 × int(∆n) with initial condition (v0, w̄0) =

(1n,w0) of the dynamics

v̇ = diag
(
p(w̄)− w̄>A(v)p(w̄)1n

)
v,

˙̄w = F (A(v), w̄),

(2.9)

where A : Rn → Rn×n is defined by

A(v) = diag(A0v)−1A0 diag(v), (2.10)

then A(t) = A(v(t)) and w(t) = w̄(t);

4. for every equilibrium (v∗,wopt) of (2.9), (A∗,wopt) is an equilibrium of (12) with

A∗ = A(v∗);

5. if additionally A0 > 0, then the positive matrix A(t)� A0 is rank 1 for all time t.

Proof. Regarding statement 1, we show that cr is constant for any r ∈ Φ(A0) by taking

the natural logarithm of both sides of (2.8) and showing that the derivative vanishes.

By Lemma 13, ln(cr) is well-defined since aii(t), aij(t) > 0 for any aij ∈ r and finite time

t <∞.

dt ln(cr) =
∑

(i,j)∈r

( ȧii
aii
− ȧij
aij

)
=
∑

(i,j)∈r

((
pi(wi)− p̄i(w)

)
−
(
pj(wj)− p̄i(w)

))
= 0.

Therefore, cr is constant for all r ∈ Φ(A0).
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Regarding statement 2, first, we will introduce a change of variables from A(t) to

B(t) = {bij(t)}i,j∈{1,...,n} ∈ Rn×n
≥0 , that comes from the appraisal dynamics property that

allows for row-stochasticity to be preserved. This allows the n + m states of A(t) to be

reduced to m states of B(t). Second, we show that there exists µ = m−n+1 independent

cycle constants, define constraint equations associated to the cycle constants, and apply

the implicit function theorem to show that the m states of B(t) further reduce to n− 1

states.

Let bij(t) =
aij(t)

aii(t)
for all i, j. This is well-defined in finite-time by Theorem 13 and

the assumption that A0 has strictly positive diagonal. Since the diagonal entries of

B(t) remain constant and zero-valued edges remain zero, then we can consider the total

states of B(t) to be the m off-diagonal edges of B(t). Next, we introduce the cycle

constant constraint functions and use the implicit function theorem to show that the m

states can be further reduced to n − 1 using the cycle constants. For edge e = (i, j),

let bij(t) = be(t). Let z = [x>, y>]> ∈ Rm
>0 where x = [b1, . . . , bm−µ]> ∈ Rm−µ

>0 and

y = [bm−µ+1, . . . , bm]> ∈ Rµ
>0. Consider the cycle constant constraint function g(x, y) =

[g1(x, y), . . . , gµ(x, y)]> : Rm−µ
>0 ×Rµ

>0 → Rµ, where gr(x, y) = ln(cr)−
∑

(i,j)∈r ln( aii
aij

) = 0

is associated to cycle path vector Cr for all r ∈ {1, . . . , µ} and the selected cycles form a

basis for the cycle subspace such that CB = [C1, . . . , Cµ]. In matrix form, g(x, y) reads

as

g(x, y) =


ln(c1)

...

ln(cµ)

+ C>B


ln(b1)

...

ln(bm)

 = 0µ.

We partition CB into block matrices, CB = [C̄>B , Ĉ
>
B ]> where C̄B ∈ {0, 1}m−µ×µ and
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ĈB ∈ {0, 1}µ×µ. Then taking the partial derivative of g(x, y) with respect to y,

∂g(x, y)

∂y
= C>B

 0m−µ×µ

(diag(y))−1

 = Ĉ>B (diag(y))−1.

The ordering of the rows of CB is determined by the ordering of the edges e ∈ {1, . . . ,m}.

Since CB is full column rank by definition, then there exists an edge ordering such that

rank(ĈB) = µ. For this ordering with rank(ĈB) = µ, then rank(∂g(x,y)
∂y

) = µ. By the

implicit function theorem, y ∈ Rµ
>0 is a continuous function of x ∈ Rm−µ

>0 = Rn−1.

Equivalently, B can then be reduced from m states to m−µ = m− (m−n+ 1) = n− 1.

Therefore if A(t) is irreducible with strictly positive diagonal, then A(t) can be reduced

to an n− 1 dimensional submanifold.

Regarding statement 3, we show that, if v(t) satisfies the dynamics of (2.9), then

A(v(t)) defined by equation (2.10) satisfies the original ASAP dynamics (12). For short-

hand, let p̃(v,w) = w>A(v)p(w). We compute:

ȧij =
aij(0)v̇j∑n
k=1 aik(0)vk

− aij(0)vj
∑n

k=1 aik(0)v̇k(∑n
k=1 aik(0)vk

)2

=
aij(0)vj∑n
k=1 aik(0)vk

(
pj(wj)− p̃(v,w)−

n∑
k=1

aik(0)vk
(
pk(wk)− p̃(v,w)

)∑n
h=1 aih(0)vh

)

= aij

(
pj(wj)−

∑n

k=1
aikpk(wk)

)
.

We also note that

A0 = A(v(0)).

Our claim follows from the uniqueness of solutions to ordinary differential equations.

Statement 4 follows trivially from verifying that (v∗,wopt) and (A∗,wopt) are equi-

librium points of the corresponding dynamics with A∗ = A(v∗) > 0.
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Regarding statement 5, we first show that the positive matrix A(t) � A0 is

rank 1 for all time t. First we multiply A(t) � A0 by the diagonal matrix D =

diag([a11(0)/a11, . . . , an1(0)/an1]). Then we show that D(A(t) � A0) is rank 1, which

implies that A(t)� A0 is also rank 1.

D(A� A0) =


1 a11(0)

a11

a12
a12(0)

· · · a11(0)a1n
a11a1n(0)

...
...

. . .
...

1 an1(0)an2
an1an2(0)

· · · an1(0)ann
an1ann(0)


By assumption A0 > 0, G(A) is a complete graph for finite t. Then the cycle con-

stants (2.8), and any nodes i 6= j 6= k, we have
akkajjaii
akjaikaji

=
akk(0)ajj(0)aii(0)

akj(0)aij(0)ajk(0)
and

akkajj
akjajk

=

akk(0)ajj(0)

akj(0)ajk(0)
. Rearranging these two equations gives aii

aii(0)

aij(0)

aij
= aki

aki(0)

akj(0)

akj
. This shows

that every row of D(A�A0) is equivalent and rank(D(A�A0)) = rank(A�A0) = 1.

Case study for team of two

In order to illustrate the role of the cycle constants (2.8), we consider an example of

a two-person team with performance functions p1(w1) = (0.45
w1

)0.9 and p2(w2) = (0.55
w2

)0.8.

Figure 2.2 shows the evolution of the trajectories for various initial conditions of the

ASAP model with donor-controlled work flow. The trajectories illustrate the conserved

quantities associated to the cycles in the appraisal network, which is

c =
a11(0)a22(0)

(1− a11(0))(1− a22(0))
(2.11)
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0
1

1

0 0

1

Figure 2.2: Trajectories of the ASAP (2.2) with donor-controlled work flow (2.4) for
various initial conditions. The markers designate the initial values. All trajectories
starting on a particular colored surface, remain on that colored surface, where the
surfaces are associated to the conserved cycle constants. For n = 2, the dynamics
reduce to the system (2.12) with cycle constant c given by (2.11). The color blue
corresponds to c < 1, red to c = 1, and green and black to c > 1.

for the two-node case. Then the cycle constant c with Theorem 172 allows us to write

the dynamics for n = 2 as

ȧ11 = a11(1− a11)
(
p1(w1)− p2(1− w1)

)
,

ẇ1 = −w1 +

(
a11(1− a11)(1− c)w1 + a11

c+ a11(1− c)

)
.

(2.12)

The cycle constants can be thought of as a parameter that measures the level of

deviation between individual’s initial perception of each other’s skills. When cr = 1 for

some r ∈ Φ(A), then all individuals along cycle r are in agreement over the appraisals

for every other individual.
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2.4 Stability Analysis for the ASAP Model with

Donor-Controlled Work Flow

In this section, we study the asymptotic behavior of the ASAP model with donor-

controlled work flow. Our analysis is based on a Lyapunov argument. Utilizing this

approach, we identify initial appraisal network conditions for teams with complete graphs

where the optimal workload is learned without any other additional assumptions. Under

a technical assumption, we also rigorously prove that for any strongly connected team,

the dynamics will converge to the optimal workload.

The next lemma defines the performance-entropy function, which we show to be a

Lyapunov function for the ASAP model under certain structural assumptions on the

appraisal network.

Lemma 18 (Performance-entropy function). Consider the ASAP model (12) with donor-

controlled work flow (2.4). Assume A0 row-stochastic, w0 ∈ int(∆n), and there exists

some A∗ with the same zero/positive pattern as A0 such that wopt = vleft(A
∗). Define the

performance-entropy function V : {aij}(i,j)∈E(A0) × int(∆n)→ R by

V (A,w) = −
n∑
i=1

(∫ wi

wopt
i

pi(x)dx+ wopt
i

∑
k s.t.

(i,k)∈E(A0)

a∗ik ln
(aik
a∗ik

))
. (2.13)

Then

1. V (A,w) > 0 for A 6= A∗ or w 6= wopt, and

2. the Lie derivative of V is

V̇ (A,w) = p(w)>(In − A>)(w −wopt). (2.14)
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The first term of the function is the rescaled total utility, Htot(w
opt) − Htot(w) =

−
∑n

i=1

∫ wi
wopt
i
pi(x)dx. The second term, wopt

i

∑
k s.t.

(i,k)∈E(A0)
a∗ik ln aik

a∗ik
, is the Kullback-Liebler

relative entropy measure [73].

Proof. By Assumption 10, −
∑n

i=1

∫ wi
wopt
i
pi(x)dx is convex with minimum value if and only

if wi = wopt
i . Therefore this term is positive definite for w 6= wopt. Since the function

− ln(·) is strictly convex and
∑n

k=1 a
∗
ik = 1, Jensen’s inequality can be used to give the

following lower bound,

−
∑

k s.t.
(i,k)∈E(A0)

a∗ik ln
(aik
a∗ik

)
≥ 0,

where the inequality holds strictly if and only if A 6= A∗.

For the last statement of the lemma and with the assumption wopt = vleft(A
∗), the

Lie derivative of V is

V̇ (A,w) = −p(w)>ẇ − (wopt)>
(
A∗ � (Ȧ� A)

)
1n

= −p(w)>ẇ − (wopt)>
(
A∗ � (1np(w)> − Ap(w)1>n )

)
1n.

Then using Hadamard product property (2.1) and wopt = vleft(A
∗), V̇ (A,w) further

simplifies to

V̇ (A,w) = −p(w)>ẇ − (wopt)>
(
A∗ diag(p(w))− diag(Ap(w))A∗

)
1n

= −p(w)>ẇ − (wopt)>
(
A∗p(w)− Ap(w)

)
= p(w)>(In − A>)(w −wopt).

The next theorem states the convergence results to the optimal workload for various

cases on the connectivity of the initial appraisal matrix. For donor-controlled work flow,

the optimal workload is equal to the eigenvector centrality of the network [74], which is
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a measure of the individual’s importance as a function of the network structure and ap-

praisal values. Therefore the equilibrium workload value quantifies each team member’s

contribution to the team and learning the optimal workload reflects the development of

TMS within the team. Note that statement 3 relies on the assumption that conjecture

given in the statement holds. This conjecture is discussed further at the end of the

section, where we provide extensive simulations to illustrate its high likelihood.

Theorem 19 (Convergence to optimal workload for strongly connected teams). Consider

the ASAP model (2.2) with donor-controlled work flow (2.4). Given initial conditions

A0 row-stochastic, irreducible, with strictly positive diagonal and w0 ∈ int(∆n). The

following statements hold:

1. if n = 2 and A0 > 0, then limt→∞ (A(t),w(t)) = (A∗,wopt) such that A∗ > 0 is

row-stochastic and wopt = vleft(A
∗);

2. if there exists ad(0) = [a11(0), . . . ann(0)]> ∈ int(∆n) such that A0 = 1nad(0)> is

also rank 1, then limt→∞(A(t),w(t)) = (1n(wopt)>,wopt).

Moreover, define v(t) ∈ Rn
>0 as in Theorem 173.

3. If v(t) is uniformly bounded for all (A0,w0) and t ≥ 0, then limt→∞(A(t),w(t)) =

(A∗,wopt) such that A∗ is row-stochastic, has the same zero/positive pattern as A0,

and wopt = vleft(A
∗).

Proof. Statement 1 follows directly from the fact that the function defined by (2.13) is a

Lyapunov function for the system. For brevity, we omit the proof of Statement 1, since

it follows a similar proof to statement 2.

Regarding statement 2, if A0 is the rank 1 form given by the theorem assumptions,

then cr = 1 for all cycles r ∈ Φ(A0) by Theorem 171. This implies that aij = akj for any
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j, all i 6= k, and t ≥ 0. For the storage function V (A,w) as defined by (2.13), the Lie

derivative (2.14) simplifies to,

V̇ = p(w)>(In − ad1>n )w − p(w)>(In − ad1>n )wopt

= p(w)>(w − ad −wopt + ad) = p(w)>(w −wopt).

From w,wopt ∈ ∆n, then p(w)>(w −wopt) = (p(w)− p(wopt))>(w −wopt) = (p(w)−

p∗1n)>(w −wopt). Since pi(wi) strictly decreasing by Assumption 10 or 11, then V̇ < 0

for w 6= wopt. Then V is a Lyapunov function for the rank 1 initial appraisal case and

limt→∞(A(t),w(t)) = (1n(wopt)>,wopt).

Regarding statement 3, we start by considering the equivalent reduced order appraisal

dynamics (2.9) and by proving asymptotic convergence using LaSalle’s Invariance Prin-

ciple. Define the function V̄ : Rn
>0× int(∆n)→ R, which is a modification of the storage

function (2.13) by replacing the term
aij
a∗ij

with vi for all i, j,

V̄ (v,w) = −
n∑
i=1

(∫ wi

wopt
i

pi(x)dx+ wopt
i ln(vi)

)
. (2.15)

The Lie derivative of V̄ is

˙̄V = −p(w)>ẇ − (v̇ � v)>wopt

= p(w)>(In − A>)w −
(
p(w)− p(w)>A>w1n

)>
wopt

= p(w)>(w −wopt) ≤ 0.

We can now define the sublevel set Ω = {v ∈ Rn
>0,w ∈ int(∆n) | V̄ (v,w) ≤

V̄ (v0,w0), t ≥ 0}, which is closed and positively invariant. Note that if there exists

any i such that limt→∞ vi = 0, then limt→∞ V̄ (·) = ∞. However, ˙̄V ≤ 0 and V̄ (v0,w0)
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is finite, so v(t) must be bounded away from zero by a positive value for t ≥ 0. By

our assumption, v(t) is also upper bounded. Then there exists constants vmin, vmax > 0

such that v ∈ [vmin, vmax]n. Then by LaSalle’s Invariance Principle, the trajectories must

converge to the largest invariant set contained in the intersection of

{v ∈ [vmin, vmax]n,w ∈ int(∆n) | ˙̄V = 0}∩Ω.

By Theorem 14, if ˙̄V = 0, then w = wopt and p(wopt) = p∗1n. This implies v̇ =

diag(v)(p(wopt) − p∗1n) = 0, so v = v∗ > 0. By Theorem 174, (v∗,wopt) corresponds

to equilibrium (A∗,wopt). Therefore limt→∞(v(t),w(t)) = (v∗,wopt) is equivalent to

limt→∞(A(t),w(t)) = (A∗,wopt) such that wopt = vleft(A
∗) and A∗ = A(v∗), where A∗

and A0 have the same zero/positive pattern.

Theorem 193 establishes asymptotic convergence from all initial conditions of interest

under the assumption that the trajectory v(t) is uniformly bounded. Throughout our

numerical simulation studies, we have empirically observed that this assumption has

always been satisfied. We now present a Monte Carlo analysis [75] to estimate the

probability that this uniform boundedness assumption holds.

For any randomly generated pair (A0,w0), which corresponds to v0 = 1n, define the

indicator function I : Rn
≥0 × int(∆n)→ {0, 1} as

1. I(A0,w0) = 1 if there exists vmax such that v(t) ≤ vmax1n for all t ∈ [0, 1000];

2. I(A0,w0) = 0, otherwise.

Let p = P[I(A0,w0) = 0]. We estimate p as follows. We generate N ∈ N independent

identically distributed random sample pairs, (A
(i)
0 ,w

(i)
0 ) for i ∈ {1, . . . , N}, where A

(i)
0 ∈

[0, 1]n×n is row-stochastic, irreducible, with strictly positive diagonal and w
(i)
0 ∈ int(∆n).
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Finally, we define the empirical probability as

p̂N =
1

N

N∑
i=1

I(A
(i)
0 ,w

(i)
0 ).

For any accuracy 1− ε ∈ (0, 1) and confidence level 1− ξ ∈ (0, 1), then by the Chernoff

Bound [75, Equation 9.14], |p̂−p| < ε with probability greater than confidence level 1−ξ

if

N ≥ 1

2ε2
log

2

ξ
. (2.16)

For ε = ξ = 0.01, the Chernoff bound (2.16) is satisfied by N = 27 000.

Our simulation setup is as follows. We run 27 000 independent MATLAB simulations

for the ASAP model (2.2) with donor-controlled work flow (2.5). We consider n = 6,

irreducible with strictly positive diagonal A0 generated using the Erdös-Renyi random

graph model with edge connectivity probability 0.3, and performance functions of the

form pi(wi) = ( si
wi

)γi for γi ∈ (0, 1) and [s1, . . . , sn] ∈ int(∆n). We find that p̂N = 1.

Therefore, we can make the following statement.

Consider 1. n = 6; 2. A0 irreducible with strictly positive diagonal generated by the

Erdös-Renyi random graph model with edge connectivity probability 0.3, and randomly

generated edge weights normalized to be row-stochastic; and 3. w0 ∈ int(∆n). Then with

99% confidence level, there is at least 0.99% probability that ‖v(t)‖ is uniformly upper

bounded for t ∈ [0, 1000].
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2.5 Stability Analysis for the ASAP Model with

Average-Appraisal Work Flow

This section investigates the asymptotic behavior of the ASAP model (2.2) with

average-appraisal work flow (2.5). In contrast with the eigenvector centrality model,

we observe that strongly connected teams obeying this work flow model are not always

able to learn their optimal work assignment. First we give a necessary condition on

the initial appraisal matrix and optimal work assignment for convergence to the optimal

team performance. Second, we prove that learning the optimal work assignment can

be guaranteed if the team has a complete network topology or if the collective team

performance is optimized by an equally distributed workload. Note that the results in

Sections 2.2-2.3 also hold for average-appraisal work flow, only if the equilibrium satisfies

wopt = 1
n
(A∗)>1n.

Let dxe denote the ceiling function which rounds up all elements of x to the nearest

integer. The following lemma gives a condition that guarantees when the team is unable

to learn the optimal workload assignment.

Lemma 20 (Condition for failure to learn optimal work assignment for the degree cen-

trality model). Consider the ASAP model (2.2) with average-appraisal work flow (2.5).

Assume A0 row-stochastic and w0 ∈ int(∆n). If there exists at least one i ∈ {1, . . . , n}

such that wopt
i > max{ 1

n

∑n
k=1daki(0)e, wi(0)}. Then w(t) 6= wopt for any t ≥ 0.

Proof. By the Grönwall-Bellman Comparison Lemma, ẇi ≤ −wi+ 1
n

∑n
k=1daki(0)e implies

that

wi(t) ≤ −wi(0)e−t +
1

n

∑n

k=1
daki(0)e(e−t − 1)

≤ max
{ 1

n

∑n

k=1
daki(0)e, wi(0)

}
.
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Therefore if there exists at least one i such that wopt
i > max{ 1

n

∑n
k=1daki(0)e, wi(0)},

then wi(t) 6= wopt
i .

This sufficient condition for failure to learn the optimal workload can also be stated as

a necessary condition for learning the optimal workload. In other words, if limt→∞w(t) =

wopt, then wopt
i ≤ max{ 1

n

∑n
k=1daki(0)e, wi(0)} for all i.

While the average-appraisal work flow does not converge to the optimal equilibrium

for strongly connected teams and general initial conditions, the following lemma describes

two cases that do guarantee learning of the optimal workload.

Lemma 21 (Convergence to optimal workload for average-appraisal work flow). Con-

sider the ASAP model (2.2) with average-appraisal work flow (2.5). The following state-

ments hold.

1. If A0 is row-stochastic, irreducible, with strictly positive diagonal, w(0) ∈ int(∆n),

and wopt = 1
n
1n, then limt→∞(A(t),w(t)) = (A∗, 1

n
1n) where A∗ has the same

zero/positive pattern as A0 and is doubly-stochastic with 1
n
(A∗)>1n = 1

n
1n;

2. if A0 > 0 is row-stochastic and w(0) ∈ int(∆n), then limt→∞(A(t),w(t)) =

(A∗,wopt) where A∗ > 0 and wopt = 1
n
(A∗)>1n.

Proof. Regarding statement 1, the storage function from (2.13) is a Lyapunov function

for the given dynamics with assumption wopt = 1
n
1n = 1

n
(A∗)>1n. The Lie derivative V̇

is

V̇ (A,w) = −p(w)>ẇ − (wopt)>(A∗ − A)p(w).

= p(w)>
(
w − 1

n
A>1n −

1

n
(A∗)>1n +

1

n
A>1n

)
= p(w)>(w −wopt) ≤ 0.
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By Lemma 18, V = 0 if and only if w = wopt = 1
n
1n and A = A∗ such that

1
n
(A∗)>1n = 1

n
1n. Therefore limt→∞(A(t),w(t)) = (A∗, 1

n
1n) where A0 and A∗ have

the same zero/positive pattern.

Regarding statement 2, consider the reduced order dynamics (2.9), with the following

shorthand notation p̃(v,w) = w>A(v)p(w). Define the function V̄ : Rn
>0× int(∆n)→ R

as

V̄ (v,w) =
n∑
i=1

(
−
∫ wi

wopt
i

pi(x)dx− wopt
i ln(vi) +

1

n
ln
(∑n

k=1
aik(0)vk

))
.

First, we show that V̄ is lower bounded. Second, we illustrate that V̄ is monotonically

decreasing for w 6= wopt. Then this allows us to show convergence to an optimal

equilibrium.

Let amin = mini,j{aij(0)}. From the proof of Lemma 18, −
∫ wi
wopt
i
pi(x)dx ≥ 0 for all i.

Then V̄ is lower bounded by

V̄ ≥ −
n∑
i=1

(
wopt
i ln(vi) +

1

n
ln
( 1

amin ‖v‖1

))
≥ ln(amin)−

n∑
i=1

wopt
i ln

( vi
‖v‖1

)
≥ ln(amin).

Now we show that ˙̄V ≤ 0. Define the function u : Rn
>0 → Rn

>0, where u(v) =

diag(A0v)−1, which reads element-wise as ui(v) =
∑n

k=1 aik(0)vk. Using A(t) = A(v(t))

as in (2.10), then the rate of change of u is given by

u̇ = − diag(u)2A0v̇ = − diag(u)
(
Ap(w)− p̃(v,w)1n

)
.

74



Assign and Appraise: Achieving Optimal Performance in Collaborative Teams Chapter 2

Plugging u into V̄ , the Lie derivative of V̄ is

˙̄V (v,w) = −p(w)>ẇ − (v̇ � v)>wopt − 1

n
(u̇� u)>1n

= −p(w)>
(
−w +

1

n
A>1n

)
− (p(w)− p̃(v,w)1n)>wopt

− 1

n
(−Ap(w) + p̃(v,w)1n)> 1n

= p(w)>
(
w −wopt

)
+ p̃(v,w)

(
1>nw

opt − 1

n
1>n1n

)
= p(w)>(w −wopt) ≤ 0.

Since ˙̄V ≤ 0, implies that V̄ (v,w) ≤ V̄ (v0,w0) < ∞, we can conclude that there exists

some strictly positive constant vmin > 0 such that v ≥ vmin1n.

Note that ˙̄V = 0 if and only if w = wopt by Lemma 18. Because V̄ has a finite lower

bound and is monotonically decreasing for w 6= wopt, then as t → ∞, V̄ will decrease

to the level set where w = wopt. Then w = wopt implies ẇ = 0 and v̇ = 0. Therefore

limt→∞(v,w) = (v∗,wopt) such that wopt = 1
n
A(v∗)>1n = 1

n
(A∗)>1n.

2.6 Numerical Simulations

In this section, we utilize numerical simulations to investigate various cases of the

ASAP model to illustrate when teams succeed and fail at optimizing their collective

performance.

For all the simulations in this section, we consider performance functions of the form

pi(wi) = ( si
wi

)γ for γ ∈ (0, 1) and all i, which satisfy Assumptions 10-11. Then the

same optimal workload maximizes any choice of collective team performance we have

introduced.

First, we provide an example of a team with a strongly connected appraisal net-
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work and strictly positive self-appraisal weights, i.e. satisfying the assumptions of The-

orem 193, to illustrate a case where the team learns the optimal work assignment. Fig-

ure 2.3 illustrates the evolution of the appraisal network and work assignment of the

ASAP model (2.2) with donor-controlled work flow (2.4).

wopt

w(t)

A(t)

Figure 2.3: Visualization of the evolution of w(t) and A(t) obeying the ASAP
Model (2.2) with donor-controlled work flow (2.4). For the work assignment vec-
tor, the darker the entry, the higher value it has. For the appraisal matrix, the thicker
the edge is, the higher the appraisal edge weight is. The team’s initial appraisal net-
work is strongly connected with strictly positive self-appraisals, and is an example
of a team that successfully learns the work assignment that maximizes the collective
team performance. The plots pictured are at times t = {0, 1, 10, 1000}, from left to
right.

2.6.1 Distributed optimization illustrated with switching team

members

Next we consider another example of the ASAP model (2.2) with donor-controlled

work flow (2.4), where individuals are switching in and out of the team. Under the

behavior governed by the ASAP model, only affected neighboring individuals need to be

aware of an addition or subtraction of a team member, since the model is both distributed

and decentralized. In this example, when individual j is added to the team as a neighbor

of individual i, i allocates a portion of their work assignment to the new individual j.
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Similarly, if individual j is removed, then j’s neighbors will absorb j’s workload. Let

k = 1, k = 2, and k = 3 denote the subteams from time intervals t ∈ [0, 5), t ∈ [5, 15),

and t ∈ [15,∞), respectively. Then let H(k)
tot denote the collective performance for the kth

subteam. Figure 2.4 illustrates the appraisal network topologies of each subteam and the

evolution of the workload w(t) and normalized collective team performance H(k)
tot .
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Figure 2.4: Evolution of the ASAP model (2.2) with donor-controlled work flow (2.4)
where individuals are being added and removed from the team. From top to bottom,
the digraphs depict the topology of the team for t ∈ [0, 5), t ∈ [5, 15) and t ∈ [15,∞).
At t = 10, individual 4 (in red diamond) is added to the team and individual 3 gives
a portion of their work to individual 4. At t = 20, individual 1 (in black triangle) is
removed from the team, and 1’s work assignment is given to individual 2.

2.6.2 Failure to learn

Partial observation of performance feedback does not guarantee learning op-

timal work assignment

Partial observation occurs when the appraisal network does not have the desired

strongly connected property, resulting in team members having insufficient feedback

77



Assign and Appraise: Achieving Optimal Performance in Collaborative Teams Chapter 2

to determine their optimal work assignment. We consider an example of the ASAP

model (2.2) with donor-controlled work flow (2.4) and reducible initial appraisal network

A0. Figure 2.5 illustrates how some appraisal weights between neighboring individuals

approach zero asymptotically, resulting in the team not being capable of learning the

work distribution that maximizes the collective team performance.

wopt

w(t)

A(t)

Figure 2.5: Example of failure to learn the optimal work assignment. Visualization of
the evolution of w(t) and A(t) obeying the ASAP model (2.2) with donor-controlled
work flow (2.4) and A0 weakly connected. For the work assignment vector, the darker
the entry, the higher value it has. For the appraisal matrix, the thicker the edge is, the
higher the appraisal edge weight is. The plots pictured are at times t = {0, 1, 10, 1000},
from left to right.

Average-appraisal feedback limits direct cooperation

Figure 2.6 is an example of a team obeying the ASAP model (2.2) with average-

appraisal work flow (2.5). Even if the team does not satisfy the sufficient conditions for

failure from Lemma 20, when individuals adjust their work assignment with only their

average-appraisal as the input, the team may still not succeed in learning the correct

workload to maximize the team performance.
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wopt

w(t)

A(t)

Figure 2.6: Example of failure to learn the optimal work assignment. Visualization of
the evolution of w(t) and A(t) obeying the ASAP model (2.2) with average-appraisal
work flow (2.5). A0 is strongly connected and wopt, w0, and A0 satisfy the sufficient
condition for failure to learn the optimal workload given by Lemma 20. For the work
assignment vector, the darker the entry, the higher value it has. For the appraisal
matrix, the thicker the edge is, the higher the appraisal edge weight is. The plots
pictured are at times t = {0, 1, 10, 1000}, from left to right.

2.7 Conclusion

This chapter proposes novel models for the evolution of interpersonal appraisals and

the assignment of workload in a team of individuals engaged in a sequence of tasks.

We propose appraisal networks as a mathematical multi-agent model for the applied

psychological concept of TMS. For two natural models of workload assignment, we es-

tablish conditions under which a correct TMS develops and allows the team to achieve

optimal workload assignment and optimal performance. Our two proposed workload

assignment mechanisms feature different degrees of coordination among team members.

The donor-controlled work flow model requires a higher level of coordination compared to

the average-appraisal work flow and, as a result, achieves optimal behavior under weaker

requirements on the initial appraisal matrix.

Possible future research directions include studying team’s behavior when individuals

in the team update their appraisals and work assignments asynchronously. The updates

could be modeled using an additional contact network with switching topology. More
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investigation can also be done to determine if it is possible to predict which appraisal

weights in a weakly connected network approach zero asymptotically, using only infor-

mation on the initial work distribution and appraisal values.
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Chapter 3

Estimating Influence Networks

Using Cognitive Dynamic Models

3.1 Introduction

Inevitably, relationships among collaborating actors evolve over time, with people

changing their opinions or appraisals of one another. Such relationships form a network

structure called an influence/appraisal network [76–81] with signed edges that may por-

tray trust/distrust, friendship/enmity, and like/dislike [82]. In our study, we use the

terms influence and appraisal interchangeably. Investigations of the evolution of such

networks draw on a rich body of literature on opinion dynamics. DeGroot et al. [76],

and Friedkin et al. [77] propose widely-established models of opinion change and the con-

ditions of consensus formation. Altafini et al. [83]’s model considers diverging opinions

under antagonistic interactions. Such models are surveyed in Proskurnikov et al. [84].

Influence system specifications play a pivotal role in all of these studies. Note that these

opinion dynamic models assume the influence network of a group is given a prior. Our

goal is to quantitatively estimate the influence network among individuals in a group,
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where the influence network within the group is represented by a row-stochastic ma-

trix. The estimation of this matrix paves the way for solving problems such as influence

maximization [85, 86]; viral marketing [87, 88]; personalized recommendation [89]; feed

rankings [90]; target advertisement [91]; selecting influential tweeters [92, 93]; and select-

ing informative blogs [94].

Literature review

Classic studies of the antecedents of interpersonal influence include French and

Raven’s work [95] on the bases of social power, and cognitive biases research [96] showed

that individuals are accorded influence based on their job titles, past performance, friends’

opinions, etc. There has also been mathematical modeling of the endogenous evolution

of appraisal networks. Friedkin et al. [59] showed how reflected appraisal mechanisms

elevate or dampen the self-weights of group members along a sequence of issues. Jia et

al. [80] proposed the DeGroot-Friedkin model, where the appraisal network evolves as

a function of the social power within the group. Jia et al. [97] also studied how over

time, the coevolution of appraisal and influence networks leads to a generalized model of

structural balance theory [98–104]. Mei et al. [58] modeled collective learning in teams of

individuals using appraisal networks, where the appraisal dynamics change as a function

of the performance of individuals within the team.

Research on transactive memory systems (TMS) [105–108] provide an approach to

formation of influence systems. A TMS is characterized by individuals’ skills and knowl-

edge, combined with members’ collective understanding of which members possess what

knowledge [107, 109, 110]. As members observe the task performances of each other, their

understanding of “who knows what” tends to converge to an accurate assessment, leading

to greater coordination and integration of members’ skills. Empirical research [105–108]
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across a range of team types and settings demonstrate a strong positive relationship be-

tween the development of a team TMS and team performance. The research indicates for

the purpose of improving self performance, individuals tend to find experts via demon-

strability in their group during intellective tasks [103]. Unlike judgemental issues, for

intellective tasks there exists a demonstrable mathematical or verbal correct answer that

can be distinguished by high-performing teammates [103].

Research in social comparison theory has shown that individuals tend to evaluate their

own abilities by biased comparisons with their peers. In particular, Woods [111] describes

several motivations behind biased social comparison such as self-esteem protection [112],

lack of appropriate incentives [113], or the existence of dominant individuals who skew

member contributions [114, 115]. Davison et al. [115]’s experimental results show that

low-performing individuals tend to overestimate (resp. underestimate) low-performers

(resp. high-performers), i.e. high-performing individuals are better able to recognize

other experts than low-performing individuals. To study such psychological cognitive

biases, several scientists have conducted group experimental studies by self and peer

evaluations [114, 116, 117].

Research on confidence heuristics [118, 119] has shown that the more self-confident

individuals are, the more influence they are accorded by others. Confidence heuristics is

defined based on a social and psychological norm, whereby more confidently expressed

arguments signal better information, allowing an efficient revelation of information and

decision-making based on expressed confidence [118].

We build on the above three lines of research. Although the problem of estimating

social power [80, 120], and influence networks have been studied before [121–123], exist-

ing research lacks empirical studies as they are mostly based on theory and grounded on

simulation-based analyses [58]. Moreover, previous studies on influence estimation has

focused on proxies of influence such as propagation of hashtags, quotes, and retweets [123–
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128]. An impactful study by Almaatouq et al. [129] finds that social influence is signif-

icantly correlated with confidence and correctness. However, no estimation method is

proposed that mathematically formulates how these factors contribute to the underly-

ing dynamics of influence. Furthermore, we find these two factors alone do not lead

to the most accurate predictions of self-reported influence for small teams with static

networks in this empirical setting. Studies on the empirical estimation of the weighted

network of who-influences-whom are rare [130, 131]. In the present work, we probe more

deeply into the foundations of the links between individual performance, self-confidence

and social comparison on interpersonal influence. Our work bridges the gap between

empirical and simulation-based results by utilizing sociology-inspired mechanisms and

machine-learning based models to estimate the social influence in groups. Overall, to

the best of our knowledge, this study is the first to estimate the influence matrices in a

text-based shared media among individuals, collected from a human subject experiment,

where teammates communicate via a broadcast system to solve intellective tasks.

3.1.1 Contributions

We have the following two main contributions in this chapter. First, we find em-

pirical support for widely established theories in psychology, sociology and management

regarding the effect of TMS [105, 106, 108], confidence heuristics [118, 119] and social

comparison theory [111, 115] on individuals’ influence over their teammates. Second, we

introduce a novel cognitive dynamic model based on the aforementioned theory regarding

how influence is accorded from others. This cognitive dynamic model is validated against

the empirical data and can be used to estimate influence matrices using past reported

influence matrices and individual performance. We provide analytical and simulation

results on the asymptotic behavior of the model for the case with identically performing
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individuals.

Chapter organization

Section 3.2 describes the experiment setup, hypotheses for how interpersonal influence

is accorded, and regression analysis supporting our hypotheses in the data. Section 3.3

introduces the dynamical models. Section 3.4 contains the analysis of the models and

numerical simulation examples. Section 3.5 validates our main cognitive dynamic model

on the experimental data, including a comparison to machine learning based models.

Notation

Let 1n (0n resp.) denote the n-dimensional column vector with all ones (zero resp.).

Let In represent the n× n identity matrix. For a matrix or vector B ∈ Rn×m, let B ≥ 0

and B > 0 denote component-wise inequalities. Given x = [x1, . . . , xn]> ∈ Rn, let diag(x)

denote the n×n diagonal matrix such that the ith entry on the diagonal equals xi. Define

the n-dimensional simplex as ∆n = {x ∈ Rn | 1>nx = 1, x ≥ 0} and the relative interior

of the simplex as int(∆n) = {x ∈ Rn | 1>nx = 1, x > 0}.

A nonnegative matrix B ≥ 0 is row-stochastic if B1n = 1n. For B irreducible and

row-stochastic, vleft(B) denotes the left dominant eigenvector of B, i.e., the entry-wise

positive left eigenvector normalized to have unit sum and associated with the dominant

eigenvalue of B [69, Perron Frobenius theorem].
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3.2 Experimental Design and Data Analysis

3.2.1 Experimental design

We collected data for 31 teams comprising of n = 4 human members each. Each team

is presented with the same sequence of 45 trivia questions that fall into three categories:

Science and Technology, History and Mythology, and Literature and Media. Every team

has two minutes to answer each question. First, team members answer individually before

the answers are revealed to the team. Second, they are asked to collaborate on a single

unanimous response. Lastly, the platform reveals the correct answer immediately after a

team submits their answer. Thus, they are provided with immediate feedback on their

performance after every response. The design also incorporates a multi-part incentive

for subjects to seek the correct answer on each question: an evolving team performance

score; an option to consult with one of four available AI-agents after the team discussion

(the AI-agents may or may not provide a correct answer) which, if exercised, must lower

the team’s performance score regardless of whether provides a correct or incorrect answer;

and feedback to each team on correct and incorrect answers. This multi-part incentive

structure operated to concentrate the attention of the team on the evaluation of the

relative expertise of their members.

This experimental setting was run on the Platform for Online Group Studies (POGS)

and tests the participants’ intellective memory. Each experiment consists of nine rounds

of five intellective questions each, with teams surveyed after each round. At the end of

each round, subjects are asked to record the influence of their teammates in their decision-

making process as a percent value, such that the sum of all values adds up to 100. Every

subject assumes they are given a total of 100 chips and instructed to distribute these chips

to indicate the relative importance of each member in determining their own final answer

on all past problems. Thus, the number of chips that a subject allocates to a particular
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member should indicate the extent to which they were personally influenced by that

member. The number of chips that subjects allocate to themselves should indicate the

extent to which their final answer was not affected by the conversation. If an individual

felt that all conversations so far provided no influence to their choice of answer, then they

would put 100 besides their own name. If the conversation caused them to abandon their

approach to the problem, then they are instructed to put zero beside their own name

and allocate all the chips to one or more of the other members.

After normalization, the self-reported interpersonal influences form a row-stochastic

influence matrix for every round, containing only non-negative entries (in a row-stochastic

matrix every row sums up to one). The platform ensures that in each inquiry, the

reported influence matrix has non-negative entries and is row-stochastic. Additionally,

the platform collects a log of all the instant messages including time of message and

content during every question, the individual and group answers, and the self-reported

influence matrices.

Since the platform displays the correct answer to every question immediately after

the group submits its response, attentive subjects can use the individual responses and

text discussion to keep track of which individual teammates may have expertise in one

or more areas over the course of the experiment. Thus, along the problem sequence, the

team may solve problems more efficiently and also more accurately.

The experimental logs show that most teams reached a consensus when answering

the questions. Every team reached a consensus on average 42 times on the sequence of 45

questions posed to them. All self-reported influence networks are found to be unilaterally

connected and the majority are strongly connected. More precisely, out of 279 influence

matrices reports, only six (∼2%) are not strongly connected which happen only when

one person assigns all their influence to only themselves. Almost all of the not strongly

connected cases were reported early in the experiment. With respect to the convergence
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of influence, in the last round, in 90% of the teams, at least half of the subjects reported

the same ranking order of influences for all members including themselves. Additionally,

we observe that in ∼74% of the teams the influence assignments converge to a single

person as being the most influential unanimously reported by the team, and that ∼23%

of the teams converge to two individuals as being equally the most influential members.

In this experiment, subjects read and answer every question individually. Ergo, the

individual performance (expertise) can be measured by the ratio of correct answers one

gives individually, prior to seeing others’ answers and the discussion phase. Assuming

individuals can potentially keep track of others’ expertise by recalling their answers or

their chat messages, we study if individual expertise plays a prominent role in the amount

of social influence one receives. Note that M shows the ground truth influence matrix.

3.2.2 Origins of Interpersonal Influence

The following hypotheses, motivated from past research, are empirically supported by

our experimental results and are captured by the cognitive dynamic models we introduce.

Hypothesis 1. Individuals with higher expertise are accorded higher interpersonal influ-

ence from the group.

Hypothesis 2. Individuals with lower expertise have diminished ability to recognize ex-

perts in the group.

Hypothesis 3. Individuals with higher confidence are accorded higher interpersonal in-

fluence from the group.

3.2.3 Regression study of origins of influence

In order to support our previously introduced hypotheses for the origins of influence,

we use the Generalized Linear Model (GLM) method to show that the there is empirical
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support of the hypotheses within our dataset.

To quantitatively test the three hypotheses, we use the following definitions for confi-

dence, expertise, and influence. Within our dataset, we consider teams of n = 4 individu-

als, rounds indexed by t ∈ {1, . . . , 9}, and teams m ∈ {1, . . . , 31}. Let Mm(t) ∈ [0, 1]n×n

be team m’s row-stochastic influence networks reported in round t of the experimental

data. The ith row and jth column of the influence network, Mm
ij (t), represents i’s ap-

praisal of j, or equivalently the amount of influence individual j has on i. In this chapter,

we use appraisal network and influence network interchangeably. Let confidence be de-

fined as an individual’s self influence, such that amii (t) is individual i’s confidence. Define

the confidence vector for team m at round t as Mm
d (t) = [mm

11(t), ...,mm
nn(t)]> ∈ [0, 1]n.

The performance vector of team m is denoted by pm(t) = [pm1 (t), . . . , pmn (t)]> ∈ ∆n,

where pmi (t) represents the normalized individual performance of individual i at round

t. For the experimental data, the performance is defined as the normalized cumulative

correctness rate up to the given round. The cumulative correctness rate vector is de-

fined as rm(t) = [rm1 , . . . , r
m
n ]> ∈ [0, 1]n, where rmi (t) = # of correct answers up to round t

# of questions up to round t
. Then

the performance from the data is defined as pm(t) = 1
1>n rm(t)

rm(t). The performance re-

flects the expertise of an individual, so we refer to p(t) as the expertise or performance,

interchangeably.

Regression study of individual expertise versus reversion to mean We use the

Generalized Linear Model (GLM) method to solve the regression problem for individual

expertise versus mean reversion, in order to empirically support Hypothesis 2. We define

the following measure for mean reversion of individual i,

Dm
i (t) =

n∑
j=1

∣∣∣Mm
ij (t)− 1

n

∣∣∣2. (3.1)
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The empirical evidence for Hypothesis 2 is obtained via regression on expertise and

mean reversion. Table 3.1 shows the regression results for predicting mean reversion for

every individual. Our results show the more expert one individual is, the more different

than equal they appraise their teammates as the expertise is positively and statistically

significant of predictive power of the reversion to the mean (p − value < 0.05) in all

teams.

Table 3.1: Regression result for predicting mean reversion, with Generalized Linear
Model (GLM) regression coefficients and their statistical significance in estimating
mean reversion over all rounds and teams within the experiment (all 45 questions and
31 teams). The statistical significance using the p-value is portrayed with *** for
p < 0.01 and ** for p < 0.05. This result shows that expertise is statistically and
positively predictive of mean reversion.

Predicting mean reversion, Dm
i (t) Feature-set 1

Intercept 0.10 ***
Expertise, pmi (t) 0.07 **

Log-likelihood: 384.4
AIC: -764.8
BIC: -754.4

Regression study of performance and confidence versus total influence Here,

GLM method is used to solve the regression problem for performance and confidence

versus total influence. The results of these regression analyses provide empirical support

for Hypothesis 1 and 3. Let the total influence of individual i at time t represent the

total influence of i, defined as
∑n

k=1 m
m
ik(t). Table 3.2 shows the coefficients and their

statistical significance in three least-squares problems performance versus total influence,

confidence versus total influence, and performance and confidence versus total influence.

Table 3.2 shows that introducing more variables in columns has increased log-

likelihood, Bayesian Information Criterion (BIC), and Akaike Information Criterion

(AIC). It shows that expertise has a consistently positive and statistical predictive-power
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Table 3.2: Regression result for predicting total influence, with Generalized Linear
Model (GLM) regression coefficients and their statistical significance in estimating
local total influence over all rounds and teams within the experiment (all 45 questions
and 31 teams). The statistical significance using the p-value is portrayed with ***
for p < 0.01 and ** for p < 0.05. The amount of Variance Inflation Factor (VIF) is
provided in parenthesis; this factor estimates how much the variance of a regression
coefficient is inflated due to multicollinearity in the model. It is known [132] that sta-
tistical results remain significant in models with multicorrelated independent variables
when VIF < 5. Let LL stand for log-likelihood. Taking into account the interactions
of all variables, we find that expertise and confidence are consistently statistically
predictive of total influence.

Predicting total influence,∑n
k=1m

m
ki(t)

Feature-set 1 Feature-set 2 Feature-set 3

Intercept 0.13 *** 0.19 *** 0.12 ***

Expertise, pmi (t) 0.20 ***
0.17 ***
(VIF: 1.05)

Confidence, mm
ii (t) 0.14 ***

0.11 ***
(VIF: 1.05)

LL: 162.86
AIC: -321.7
BIC: -316.3

LL: 162.90
AIC: -321.8
BIC: -316.4

LL: 168.12
AIC: -330.2
BIC: -322.1

on persuasiveness (the empirical evidence for Hypothesis 1). The statistical significance

is robust even when considering expertise and confidence, together. Also, confidence has

a positive statistical predictive-power to predict total influence (the empirical evidence

for Hypothesis 3). However, its coefficient (importance) is less than the expertise (aligned

with research in confidence heuristics [118]). This result is found when the platform pro-

vides immediate feedback for every question. If no feedback is provided or there is no

right or wrong answer (i.e. judgmental questions), people might use confidence as a more

substantial metric in their appraisal distribution.
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Figure 3.1: Architectural overview on the appraisal model with constant workload
studied in this chapter. Given an intellective task to complete, team members divide
the work evenly and revises their appraisals of neighboring members based on each
neighbor’s individual performance. The objective is for the team to learn who has
the highest expertise within the team, and accurately evaluate one another relative to
skill level.

3.3 Problem Framework for Modeling Evolution of

Influence Networks

In this section, we introduce several dynamical models that capture how interpersonal

influence evolves over time. The models are formulated such that established sociological

concepts are baked into their equations. Our main model, called the Differentiation, Re-

version, Perceived Expertise (DRP) model, encodes all three of our proposed hypotheses.

Later in this chapter, we validate our model with the dataset, and show that it is capable

of forecasting the team’s influence networks.

Our models assume that each team obeys the architecture shown in Figure 3.1, where

each team is given a sequence of tasks and the work assignment is distributed equally

per task. After each task, we assume that individuals can observe their team members’

performance and confidence levels, which drive changes in the influence network.

Recall that Mm(t) represents the ground truth influence matrix from the dataset for

team m at round t. Let Am(t) ∈ [0, 1]n×n be the row-stochastic influence network given by

a particular dynamical model for t ≥ 0. Note that Am(t) can be considered an estimate

of Mm(t). Let Ad(t) = [a11(t), ..., ann(t)]> ∈ [0, 1]n be the associated confidence vector,
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where amii (t) represents individual i’s confidence level. Let pm = [pm1 , . . . , p
m
n ] ∈ ∆n denote

the normalized performance, where pmi is the individual performance of person i. For our

dynamical models, we assume that since performance is a reflection of the expertise of an

individual, then performance is constant. When only discussing the dynamical models,

we drop the m superscript denoting the team from Am(t) and pm(t).

Consider the perceived expertise, defined as follows.

Definition 22. The perceived expertise, denoted by p̂(p,Ad(t)) ∈ ∆n, is defined as

p̂
(
p,Ad(t)

)
=

1

p>Ad(t)
) diag

(
Ad(t)

)
p. (3.2)

For shorthand, we will refer to p̂(p,Ad(t)) as p̂(t).

We propose several discrete-time dynamical models, of the form

A(t+ 1) = T (p,A(t)), for t ≥ 0.

Our proposed models also use a scaling parameter τ ∈ (0, 1) that can be adjusted to

change the time-scale of the dynamics. If we have information on past reported influence

matrices and expertise levels of team members, these models can be used to predict future

influence matrices.

Model 23 (Differentiation model (D model)). Motivated by Hypothesis 1, this model

assumes individuals assign influence based on the individual expertise, where individuals

with higher expertise are accorded higher influence. The model is defined for all i, j ∈

{1, . . . , n} as

aij(t+ 1) = (1− τ)aij(t) + τpj, (3.3)

which reads in matrix form as A(t+ 1) = (1− τ)A(t) + τ1np>.
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Model 24 (Differentiation, Reversion model (DR model)). Motivated by Hypotheses 1

and 2, this model is based on the D model and assumes high-performing individuals are

accorded more influence and low-performing individuals tend to assign influence weights

uniformly amongst team members. The model is defined for all i, j ∈ {1, . . . , n} as

aij(t+ 1) = (1− τ)aij(t) + τ
(
pipj +

(
1− pi

) 1

n

)
, (3.4)

which reads in matrix form as

A(t+ 1) = (1− τ)A(t) + τ
(
pp> +

1

n

(
1n − p

)
1>n
)
.

Model 25 (Cognitive dynamic model based on Differentiation, Reversion, Perceived

expertise model (DRP model)). Motivated by Hypotheses 1, 2 and 3, this model is an

extension of (3.5), where everyone’s expertise is misevaluated based on their own self-

confidence. The model then uses the perceived expertise (3.2) to learn how much influence

is accorded to one another. Figure 3.4 depicts for both single-round and multi-round

prediction, using all three hypotheses baked in this model provides the most accurate and

consistent estimation. This model is defined for all i, j ∈ {1, . . . , n} as

aij(t+ 1) = (1− τ)aij(t) + τ
(
p̂i(t)p̂j(t) +

(
1− p̂i(t)

) 1

n

)
. (3.5)

3.4 Stability Analysis

In this section, provide remarks and analysis on convergence behavior for the DRP

model under uniform expertise. We omit examples of the D and DR models, since these

affine models have straightforward asymptotic behavior.
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Remark 26. For the DRP model, the dynamics of the self-influence matrix weights is

closed from the dynamics of the interpersonal influence weights, and can be written as

only a function of ad(t),

Ad(t+ 1) = (1− τ)Ad(t) + τ
(

diag(p̂(t))p̂(t) + diag(1n − p̂(t))
1

n
1n
)
. (3.6)

Then the dynamics of the interpersonal influence evolve as a function of the self-influence

weights and the initial condition A(0). This cascading effect illustrates how confidence

drives influence.

The following Lemma states that the D, DR, and DRP model are well-posed and the

dynamics preserves row-stochasticity of the influence matrices.

Lemma 27 (Dynamic models preserve row-stochasticity). Consider the D model (3.3),

DR model (3.4), and DRP model (3.5) with τ ∈ (0, 1) and p(t) = p = [0, 1]n. If A(0)

is row-stochastic, then A(t) remains row-stochastic for all t ≥ 0 under the D and DR

model.

If additionally, there exists at least one i such that aii(0) > 0 and pi > 0, then the

DRP models are well-posed for finite t and A(t) remains row-stochastic for all t ≥ 0.

Proof. It is straightforward to see that the first statement holds by verifying A(t+1)1n =

T
(
p,A(t)

)
1n = 1n for the D and DR models.

For the DRP models, per our assumption that there exists at least one i such that

aii(0) > 0 and pi > 0, then p>Ad(0) > 0. Additionally, both models guarantee that

aij(t) ≥ (1−τ)(t−1)aij(0) ≥ 0 for all i, j and t ≥ 0. Then by our assumptions, p>Ad(t) > 0

for finite time t ≥ 0. Therefore the DP and DRP model dynamics are well-posed.

Next we show that the DRP dynamics preserves row-stochasticity. By definition, the
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sum of the perceived expertise is 1>n p̂ =
(
Ad(t)

>p̂(t)
)−1

Ad(t)
>p̂(t) = 1. Then

A(t+ 1)1n = (1− τ)A(t)1n + τ
(

diag
(
p̂(t)

)
1np̂(t)>1n +

1

n
diag

(
1n − p̂(t)

)
1n1>n1n

)
= (1− τ)1n + τ

(
p̂(t) +

(
1n − p̂(t)

))
= 1n.

Therefore, A(t) remains row-stochastic and well-posed for finite time t ≥ 0 under the

DRP models.

It is clear that the affine D and DR models, converge. In simulations (see Section 3.4),

we also observe that the DRP model exhibits convergence behaviors to a unique equilib-

rium. The next Lemma illustrates convergence of the DRP model for the simpler uniform

expertise case, p = c1n with c ∈ (0, 1].

Theorem 28 (Equilibrium and convergence of DRP model with uniform expertise).

Consider the DRP model (3.5). Assume for τ ∈ (0, 1), constant uniform expertise values

p(t) = p = c1n with c ∈ (0, 1], A(0) row-stochastic, and that there exists at least one i

such that aii(0) > 0. Then limt→∞A(t) = 1
n
1n1>n .

Proof. Since the dynamics of A(t+ 1) can be described as a function of Ad(t), then it is

sufficient to prove convergence of the self-influence weights given by the dynamics (3.6).

Note that p̂(t) = (p>Ad(t))
−1 diag(p)Ad(t) = (cp>Ad(t))

−1 diag(cp)Ad(t) for any c >

0. Then per our assumption that y = c1n, we can assume y = 1n without loss of

generality and p̂(t) =
(
1>nAd(t)

)−1
Ad(t). For our proof, first, we show that all trajectories

satisfying our initial condition assumptions reach the forward-invariant set Ω = {Ad(t) ∈

[0, 1]n | 1>nAd(t) ≥ 1}. Second, we define a function V : [0, 1]n → R that we prove is a

Lyapunov function for Ad(t) ∈ Ω.

From the dynamics, all influence weight values become strictly positive for t ≥ 0,

regardless of the initial condition. If aij(0) = 0, then aij(1) = τ
n

and if aij(0) > 0, then
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aij(1) > (1− τ)aij(0). Consider Ad(t) /∈ Ω where 1>nAd(t) < 1, then

1>nAd(t+ 1) = (1− τ)1nAd(t) + τ p̂(t)>p̂(t) + τ − τ

n

> 1>nAd(t)− τ +
τ

n
+ τ − τ

n
= 1>nAd(t).

The inequality from the last line follows from the fact that p̂(t)>p̂(t) ≥ 1
n
, which can

be found by formulating the minimization problem of p̂(t)>p̂(t) as a constrained convex

optimization problem and applying the KKT conditions. Therefore if Ad(t) /∈ Ω and

1>nAd(t + 1) > 1>nAd(t), there exists some finite time T > t such that Ad(t) ∈ Ω. Next,

consider Ad(t) ∈ Ω implies

1>nAd(t+ 1) ≥ (1− τ)1>nAd(t)− τ +
τ

n
+ τ − τ

n
≥ 1.

Since the dynamics also preserves row-stochasticity of the influence network by Lemma 1,

then 1>nAd(t) ≤ n and we have shown that Ω is a compact forward-invariant set, where

trajectories that enter Ω remain in Ω.

Now we prove that all trajectories in Ω converge to the equilibrium A∗d. It is straight-

forward to verify that the equilibrium of (3.6) is A∗d = 1
n
1n, which corresponds to the

influence network equilibrium A∗ = 1
n
1n1>n . We define V (Ad(t)) as

V
(
Ad(t)

)
= max

i∈{1,...,n}

{
aii(t)−

1

n

}
,

where V ( 1
n
1n) = 0 and V (Ad(t)) > 0 for Ad(t) ∈ Ω \ 1

n
1n. Next we show that V (Ad(t +

1)) < V (Ad(t)) for Ad(t) ∈ Ω \ 1
n
1n. Note that for p̂(t) ∈ ∆n and Ad(t) ∈ Ω, then
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p̂i(t) ≤ aii(t) and maxi{aii(t)} ≥ 1
n
, which are used for the following bounds.

V (Ad(t+ 1))− V (Ad(t)) = max
i∈{1,...,n}

{
aii(t+ 1)− 1

n

}
− max

i∈{1,...,n}

{
aii(t)−

1

n

}
≤ (1− τ) max

i∈{1,...,n}

{
aii(t)−

1

n

}
+ τ max

i∈{1,...,n}

{
p̂i(t)

(
p̂i(t)−

1

n

)}
− max

i∈{1,...,n}

{
aii(t)−

1

n

}
≤ −τ max

i∈{1,...,n}

{
aii(t)−

1

n

}
+ τ max

i∈{1,...,n}

{
aii(t)

}
max

i∈{1,...,n}

{
aii(t)−

1

n

}
< 0.

As a result, all trajectories reach Ω in finite time and trajectories in Ω approach

limt→∞maxi{aii(t)} = 1
n
, which can only occur for A∗d = 1

n
1n. For Ad(t) = A∗d, the

dynamics of the interpersonal influence weights simplify to a stable affine system,

aij(t+ 1) = (1− τ)aij(t) + τ
(
p̂i(t)p̂j(t) +

(
1− p̂i(t)

) 1

n

)
.

Therefore, for any A(0) ∈ [0, 1]n×n with at least one strictly positive diagonal entry, then

limt→∞A(t) = 1
n
1>n1n.

Numerical Simulations In general for the DRP model, we observe that for any given

p, then any initial condition A(0) will converge to a unique A∗ = A∗(p). Figure 3.2

illustrates how the influence weights of the DRP model with p = [0.05, 0.2, 0.3, 0.45]>

and time scale τ = 0.4 evolves over time. The example shows that each person is capable

of determining the correct order of who has the least to most expertise. However, we

observe that lower performing team members do not have large differentiations in their

appraisals relative to expertise compared to higher performing team members. Figure 3.3

illustrates how the influence weights of the DRP model with constant expertise p and

time scale τ = 0.4 evolves over time. As shown in Theorem 28, all influence weights

converge to 1
n
.
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Figure 3.2: Evolution of the influence matrix for a given team using the Differ-
entiation, Reversion, Perceived expertise (DRP) model (3.5) with expertise levels
p = [0.05, 0.2, 0.3, 0.45]> and time scale τ = 0.4. Every panel depicts how much influ-
ence each team member has on a particular individual. Higher performing individuals
are more capable of determining which team members have higher expertise. Note
that higher performance does not imply an individual will have higher confidence as
t→∞.
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Figure 3.3: Evolution of the influence matrix for a given team using the Differentiation,
Reversion, Perceived expertise (DRP) model 3.5 with uniform expertise p = 1

n1n and
time scale τ = 0.4. Every panel depicts how much influence each team member has
on a particular individual and A(t) converges to 1

n1n1>n .

3.5 Cognitive Dynamic Model Validation

Studying the problem of estimating the influence matrix is a novel and applicable

problem for any team-based organization. Our data presents an unprecedented opportu-

nity to understand team behavior and estimate the interpersonal influence system within

a team. Since our dynamic models only take the history of past influence weight informa-
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tion and individuals’ performance values, these models can be used to provide a single or

multi-round forecast of the influence matrices for successive rounds of the experiment. We

also compare our dynamic models to other machine-learning based estimation methods,

which use a history of influence matrices, text embeddings, and individual performance.

Before studying how to use the models to estimate influence matrices, we need a set

of measures (metrics) to gauge the accuracy of the estimated influence matrices with

the ground truth ones. We use two classical metrics: Mean Square Error (MSE) and

the Kullback-Liebler (KL) divergence. Together they portray two different measures of

accuracy. MSE pays more attention to the exact estimation of each number in the matrix

while KL divergence on each row of the influence matrix focuses on the similarity of the

distributions.

The MSE and KL divergence of two n×n row-stochastic matrices Areal and Apred are

defined as follows,

MSE(Areal, Apred) = 1
n

∥∥Areal − Apred
∥∥2

F
= 1

n

n∑
i=1

n∑
j=1

|Areal
ij − A

pred
ij |2, (3.7)

KL(Areal, Apred) = 1
n

n∑
i=1

(
n∑
j=1

Areal
ij log

(
Apred
ij

Areal
ij

))
. (3.8)

Depending on the application, one may choose any of these metrics, with Areal = Mm(t)

and Apred = Am(t). To showcase the generality of our proposed models, we present our

results for both metrics.

3.5.1 Accuracy Comparison of the Dynamic Models

Our results compare the accuracy of our various dynamical models: the D model (3.3),

DR model (3.4), DRP model (3.5), and the baseline constant model (3.17). The models
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assume that individuals can observe each other’s normalized, cumulative expertise p(t) ∈

∆n, which they take into account when readjusting the influence weights for their team

members.

We consider single-round and multi-round forecast, to compare how the models per-

form when using the previous round’s influence matrix versus only the initial round’s

influence matrix, respectively.

Single-round forecast The single-round forecast estimates the influence matrix

Âm(t + 1) for any round t ∈ {t0, . . . , T}, using the reported influence matrix from the

previous round Mm(t) and the expertise pm(t). Recall that for our dataset, t0 = 1 and

T = 9. For the single-round forecast, the estimation of the influence network for team m

comes from the method using any given model,

Am(t+ 1) = T (pm(t),Mm(t)), for t ≥ t0. (3.9)

Figure 3.4 (left) illustrates the error of a given model.

Multi-round forecast The multi-round forecast predicts Âm(t + 1) for any round

∈ {t0, . . . , T}, using the initial reported influence matrix Mm(0) and the previous round’s

expertise values pm(t) as inputs. The following details how the dynamical models are

modified to give multi-round forecasts. The influence network is estimated for team m

using the following for any given model,

Am(t0 + 1) = T (p(t0),Mm(t0))

Am(t+ 1) = T (pm(t),Mm(t)), for t > t0.

(3.10)
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In summary, the ground truth influence matrix data is propagated over a sequence of

rounds to predict the influence matrix at future rounds. Figure 3.4 (right) illustrates the

error of a given model.

Summary of results Figure 3.4 illustrates the error for a given model for single-round

forecast (left) and multi-round forecast (right). Overall for the single and multi-round

forecast, we observe increased estimation accuracy for the models that capture more

hypotheses. For the single-round forecast, we observe that the accuracy increases for

later rounds since individuals adjust influence weights less as the experiment goes on.

However, the accuracy for later rounds does not give significant improvements compared

to the constant baseline model, since the influence weights remain relatively constant

for rounds t ≥ 3. For the multi-round forecast, as expected, we see that the accuracy

decreases for predictions of later rounds; yet consistently provides the most accurate

predictions of the influence matrices regardless of whether the model is given the most

up-to-date ground truth values. In the following, we also show that the cognitive dynamic

model gives competitive predictions compared to the machine learning models.

3.5.2 Accuracy comparison of the DRP model to machine

learning based models

We also introduce two machine learning models to predict the influence matrix at

every round: a linear maximum likelihood estimation model using convex optimization

and a deep neural network model. These models are able to use features extracted from

the logs of the experiment and learn a mapping to estimate the corresponding influence

matrix. Learning the mappings require training data, so a portion of the logs is reserved

for training, and the remaining portion is used to test the trained model.

102



Estimating Influence Networks Using Cognitive Dynamic Models Chapter 3

2 3 4 5 6 7 8 9

10 4

10 3

10 2

10 1

Si
ng

le
-ro

un
d 

(M
SE

)

Constant model
D model (H1)
DR model (H1+H2)
DRP (H1+H2+H3)

2 3 4 5 6 7 8 9

10 3

10 2

10 1

M
ul

ti-
ro

un
d 

(M
SE

)

2 3 4 5 6 7 8 9
Round

10 4

10 3

10 2

10 1

Si
ng

le
-ro

un
d 

(K
L)

2 3 4 5 6 7 8 9
Round

10 3

10 2

10 1

M
ul

ti-
ro

un
d 

(K
L)

Figure 3.4: Cognitive dynamic model evaluation: The mean squared error (MSE)
and the Kullback-Leibler (KL) divergence for different dynamical models over nine
rounds of influence matrix estimation. Differentiation (D model) takes into account
hypothesis 1. Differentiation, Reversion (DR model) is inspired by hypotheses 1 and 2.
Differentiation, Reversion, Perceived (DRP model) uses hypotheses 1, 2, and 3. All
models use the hyperparameter τ = 0.4. In this figure boxes show the interquartile
range of the errors, the whiskers show minimum and maximum of the range of the
distribution. In each box, the dot shows the average and the line shows the median
of the portrayed distribution. Outliers are not shown for better readability. Left:
Single-round forecast error of various dynamical models for predicting the influence
matrix one round ahead. The models estimate Mm(t + 1) using the algorithm with
inputs of expertise pm(t) and the reported influence matrix from the previous round
Mm(t). Right: Multi-round forecast error of various dynamical models for predicting
the influence matrix multiple rounds ahead. The models estimate Mm(t + 1) using
the algorithm (3.10) with inputs of expertise pm(t) and the initial ground truth Am(0)
influence matrix reported by individuals.

Since the machine learning based models require training, we only test their accuracy

using single-round forecasting. The time scale for the DRP model is also selected through

training data, but otherwise the dynmaic model requires no other training. In the

following, we introduce the results of estimation using these models.

Proposed linear model Using machine learning models we can take advantage of

all available data to estimate influence matrices. Combining text, connectivity network,

expertise, and historical appraisals produce a multi-dimensional prediction model. We
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have N teams of n individuals that go through T game rounds. To have a general

format, we represent influence matrix for team m at round t by Âm(t). We represent

all aforementioned features in matrix format (shown by Xm
k (t) for matrix feature k of

team m at round t). We need to estimate the weight variables that maps the features

to the influence matrix. In total, we assume there are K matrix variables, shown as

Wk; k = 1 to K. Ergo, a convex objective function for estimating the influence matrix

is defined as

min
Wk ∀k∈{1,...,K},

B

N∑
m=1

T∑
t=1

∥∥∥ K∑
k=1

Xm
k (t)W T

k +B −Mm(t)
∥∥∥2

F
+ λ
( K∑
k=1

‖Wk‖1,1 + ‖B‖1,1

)
,

Subject to
K∑
k=1

Xm
k (t)W T

k +B ≥ 0, ∀m ∈ [1, N ], ∀t ∈ [1, T ],

1Tn
( K∑
k=1

Xm
k (t)W T

k +B
)

= 1Tn . ∀m ∈ [1, N ], ∀t ∈ [1, T ].

(3.11)

Variables to be calculated via optimization are the n × n weight matrices Wk. B is the

n×n bias matrix also to be estimated. We also use an l1-norm regularization to introduce

sparsity to the estimated parameters that is commonly used in many real applications

and also decrease the potential search space and therefore provides efficiency for the

optimization solver.

Based on the application, when only the probability distribution and the order of

influence toward others is more important than exact values, we use cross-entropy as the

loss function and KL divergence as the metric. In such a case, we can formulate the

matrix estimation problem as the estimation of each row, which is a discrete distribution

comprised of four numbers. Cross-entropy for two probability distribution of p and q is
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defined as H(p, q) = −
n∑
i=1

pi log qi. In this study, the two probabilities are

p = [Mm
i1 , . . . ,M

m
in ]> ∀i ∈ {1, . . . , n},

q = [Ami1, . . . , A
m
in]> = σ(Oi,.) = σ(W TXi,. + b) ∀i ∈ {1, . . . , n},

where σ represents Softmax function, and W and b show the weight and bias variables

to be estimated.

Table 3.3 sheds light on the importance of every feature set in the linear model

optimized using convex optimization which was trained with 80% of the data. This table

shows entry-wise l1-norm of estimated parameters in (3.11). The values in table 3.3

are sorted from most to least important top to bottom. This result shows the previous

influence matrix is the most important feature used to predict the next influence matrix.

Interestingly, it also shows expertise is the second most of predictive power and text

embedding is third. It shows sentiment, emotion, and quick responsiveness (response

network) network are far less substantial in the estimation. It is worth mentioning that

due to the origin of memory questions, there is only a brief chat happening for many of

the members since they simply do not know the answer. That is probably the reason

that text embedding is not as important as the correct answer rate.

Proposed deep neural network-based model We can also learn the mapping de-

fined by the three weight matrices as deep encoders in a two-tower model [134]. In this

regard, we apply end-to-end models to estimate the social influence matrices using multi-

layered encoders from raw features to an influence matrix. This is described in Fig. 3.5.

Each encoder is comprised of three fully connected Exponential Linear Unit (ELU) [135]

layers, initialized by He et al. [136] Normal initialization, such that it draws samples from

a truncated normal distribution centered on 0 with a standard deviation of
√

2
f

where f
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Table 3.3: Importance features in predicting influence. Entry-wise l1-norm of esti-
mated parameter matrix in linear model given in (3.11) which is trained with 80%
of the data. This table shows the importance of each features in the proposed linear
model. The embeddings [133], sentiments, and emotions all are computed from the
message text content; however, responsiveness is computed from the timestamps of
the messages.

l1-norm of estimated parameters
Previous influence matrix 0.2137 ± 0.0027
Expertise 0.0239 ± 0.0027
Message content embedding 0.0111 ± 0.0003
Message sentiment 0.0078 ± 0.0010
Message emotion 0.0050 ± 0.0007
Message responsiveness 0.0041 ± 0.0004

is the number of input units in the weight tensor. We use Dropout [137] after each fully

connected layer to decrease overfitting. Then, all three outputs are concatenated and fed

to another three fully connected layers with the same activation function to decrease the

dimensionality of embedding vectors to an n×n matrix M̃m(t). Finally, cosine similarity

of the two matrices Mm(t) and M̃m(t) is computed and the error is back-propagated

using stochastic gradient descent.

The deep method description is shown in Fig. 3.5. In this figure, the weights matrices

in (3.11) are framed as a layers of deep neural networks. This model creates a non-convex

problem; however, arguably with the abundance of data, a more effective model. In order

to predict the influence matrix at round t, we use time and content of text messages from

the broadcast communication logs until round t, individual correct percent until round

t, and reported influence matrices before round t in the following.

� Connectivity networks: In broadcast communication logs, the time between two mes-

sages can reveal a directed and weighted evolving network structure among teammates.

This approach implies a basic assumption: if a message B appears on a chat log close

enough in time to an earlier sent message A, then B is likely a response to A; and,
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  Data:
● Self-report appraisals
● Time of messages
● Message texts
● Individual performance

C A H

3-layered encoder 3-layered encoder 3-layered encoder

Fully connected layer

Categorical cross entropy for 
every row of two matrices

A Robustly Optimized 
BERT Pretraining 

Approach (Liu et. al 2019)

Compute the error based on the groundtruth and backpropagate

f(C) g(A) h(H)

Network 
generation

p

3-layered encoder

l(p)

Figure 3.5: Deep learning model architecture. A deep encoder model in a two-tower
framework [134] for learning the three mappings of connectivity network, content
of messages, and history of appraisals. The final layer computes the cosine similarity
with the ground truth influence matrix and back-propagates the error using Stochastic
Gradient Descent (SGD).

the larger the time gap between two messages is, the less likely the later message is

a response to the earlier message. For a message m occurring at time m.time on the

log, we define the set of its responses as

R(m) = {r | m.time < r.time ∧ t1 ≤ r.time−m.time ≤ t2 ∧ r.sender 6= m.sender},

and the connectivity networks as

Cij =
∑

p.sender=i
q.sender=j
q∈R(p)

weight(p, q). (3.12)

We define the weights in the connectivity networks (given in (3.12)) in three dif-
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ferent ways. First is Response network in which the weights in the network, sim-

ilar to Amelkin et al. [138], are calculated based on the duration a response as

weight(p, q) = e−γ|p.time−q.time|. This networks represents the responsiveness of every

individuals toward every other member. The likelihood of a message being a response

degrades with the increase of the time gap between the two messages. Second is Sen-

timent network in which we use Valence Aware Dictionary and sEntiment Reasoner

(VADER) as the sentiment analysis toolbox [139] on words in the response message as

weight(p, q) = sentiment(q). Third is the Emotion network in which Affective norms

for English words (ANEW) are used as the emotion analysis toolbox [140] that exam-

ines arousal, valence, and dominance of words in the response message. The weight

for emotion network is computed as weight(p, q) = emotion(q). In all networks, the

summation is performed over all suitable pairs (p, q) of messages p and q in a team’s

chat log. Thus, these networks are represented as a n×n matrix with float values and

no self-loop.

� Message content embeddings: We use natural language processing to analyze the

content of messages. The text embeddings for sentences [141] are generated from a pre-

trained sentence embedding model by the last layer of the encoder in the state-of-the-

art model, a Robustly Optimized BERT Pretraining Approach (RoBERTa) [133, 142],

is generated.

� History of influence matrix: Previous influence matrices.

� Expertise: Individual cumulative correctness rate.

Fig. 3.5 shows the architecture of the neural network model. They both similarly

intend to find a linear or nonlinear combination of the aforementioned input features

to estimate a row-stochastic influence matrix. We compare the proposed models to the
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baseline models with a variation of different input features. All models are trained with

80% of the data and tested on the withheld 20%. To compute the statistical significance,

we draw 1000 bootstraps with replacement from the hold-out test set.

Baseline dynamical models We also include several baseline dynamical models, for

comparison with the dynamic models. The following provides definitions of several

baseline models for estimating the influence matrix using data history.

� Random. Randomly generated row-stochastic matrix.

Am(t+ 1) = diag(B1n)−1B, for B = rand(n, n) (3.13)

� First. Assumes influence matrix remains constant over time, where t0 is the initial

round from the dataset.

Am(t+ 1) = Mm(t0) (3.14)

� SBT. Structural balance theory (SBT) is a long-established theory describing the

dynamics that govern the sentiment of interpersonal relationships. This baseline is

inspired by earlier research of Kulakowski et al. [143].

Am(t+ 1) = Mm(t)Mm(t) (3.15)

� Uniform. Influence is accorded equally.

Am(t+ 1) =
1

n
1n1>n (3.16)

� Constant. Assumes the estimated influence matrix equals the previously reported
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influence matrix.

Am(t+ 1) = Mm(t) (3.17)

� Average. Predicts the influence matrix as the average reported influence matrix.

Am(t+ 1) =
1

T

T∑
t=1

Mm(t) (3.18)

� Reflected appraisal. Uses the reflected appraisal mechanism for prediction and is based

on the model proposed in [58].

Am(t+ 1) = Am(t) + diag
(
p(t)−Mm(t)p(t)

)
diag

(
Mm

d (t)
)(
In −Mm(t)

)
(3.19)

Summary of results Since the linear and neural network-based models require train-

ing, we only test them using the single-round forecast case, where we assume we have

access to the previous influence matrix and expertise to predict the next influence ma-

trix. For this setting, there are more baselines that we can compare our proposed models

against. Fig. 3.6 (left) shows MSE divergence error for models using previous influence

matrix and expertise. Similarly, the neural network-based model surpasses all baselines

and provides statistically significant lower MSE. It is worth mentioning that proposed

linear model (3.11) is competitive with the proposed neural network model (Fig. 3.5).

Also, interestingly, the proposed cognitive dynamical model (3.5) which does not require

any training and is described by a mechanism that postulates past research in social

psychology works significantly better than other baselines and competitively close to

the proposed machine learning models. Note that both machine learning models use

optimization methods for training that requires several steps to converge.

Fig. 3.6 shows MSE and KL divergence of the estimated influence matrix from the
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ground truth reported by individuals. This figure shows that for both error measure-

ments, the DRP model is competitive against the two machine-learning based models,

and even surpasses the linear model.
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Figure 3.6: Comparison of all models. Mean squared error (MSE) and Kull-
back–Leibler (KL) divergence of single-round influence matrix prediction for baseline
algorithms and the proposed models. Evaluations are applied on 1000 bootstraps of
the holdout test dataset (20% of the entire data). All models have access to the ex-
pertise and previous influence matrix for every team. The box shows the interquartile
range of the errors, the whisker shows minimum and maximum of the range of the
distribution, and the dots show the outliers. Baseline models are: Random (3.13),
First (3.14), SBT (3.15), Uniform (3.16), Average (3.18), Reflected (3.19), and Con-
stant (3.17). The proposed models are: 1. the cognitive theory DRP (Differentiation,
Reversion, Perceived expertise) model which encodes hypotheses (1, 2, 3) to predict
influence matrices; 2. the Linear model using convex optimization; and 3. the Neural
Networks model (NeuralNet) which learns important features from the logs to esti-
mate influence matrices. The figure depicts that all our proposed models outperform
baselines and the DRP model works competitively with the learning models, showing
the power behind our empirically proven hypotheses.

3.6 Conclusion

Interpersonal appraisal networks can be modeled as an influence matrix, where

weighted edges signify positive or negative appraisals among people. Being able to es-

timate these influence matrices has important applications such as marketing advertise-

ments, creating successful political campaigns, and improving the efficiency of commu-
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nication among team members. The problem of influence matrix estimation has been

studied previously either with simulated data or with a focus on estimating the total

amount of influence from websites rather than estimating interpersonal influence within

groups.

We collected data from human subjects answering trivia questions in teams of four.

After individually answering a question, they then collaborated to agree on a final answer

through a chat system. The participants were periodically asked to assess their appraisals

of each other. We built a machine learning-based model using text content, the time of

messages, and individual task performance to estimate the collective influence matrix. We

sought to find underlying factors that contribute to the accorded influence. We proposed

a dynamical cognitive dynamic model, a linear model using convex optimization, and a

neural network model alongside baselines from dynamical models and sociology literature

to test our hypotheses. From these findings, we concluded that task performance and

higher values of confidence were the two most salient factors in determining the amount of

influence one receives in collaborative group settings. We believe this study on estimating

underlying influence systems in a collaborative environment will spur the establishment

of connections with a variety of fields and advance an interdisciplinary understanding of

the design of social experiments.
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