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Programming Abstractions for Managing Workflows on

Tiered Storage Systems

DEVARSHI GHOSHAL and LAVANYA RAMAKRISHNAN, Lawrence Berkeley National

Laboratory, USA

Scientific workflows in High Performance Computing (HPC) environments are processing large amounts

of data. The storage hierarchy on HPC systems is getting deeper, driven by new technologies (NVRAMs, SSDs,

etc.) There is a need for new programming abstractions that allow users to seamlessly manage data at the

workflow level on multi-tiered storage systems, and provide optimal workflow performance and use of storage

resources. In previous work, we introduced a software architecture Managing Data on Tiered Storage for

Scientific Workflows (MaDaTS) that used a Virtual Data Space (VDS) abstraction to hide the complexities

of the underlying storage system while allowing users to control data management strategies. In this article,

we detail the data-centric programming abstractions that allow users to manage a workflow around its data

on the storage layer. The programming abstractions simplify data management for scientific workflows on

multi-tiered storage systems, without affecting workflow performance or storage capacity. We measure the

overheads and effectiveness introduced by the programming abstractions of MaDaTS. Our results show that

these abstractions can optimally use the storage capacity in lesser capacity storage tiers, and simplify data

management without adding any performance overheads.
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architectures; Middleware; • General and reference→ Design;
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1 INTRODUCTION

Scientific datasets are growing exponentially and are complemented by advancements in new stor-
age technologies (NVRAMs, SSDs, etc.) and the use of multiple filesystems (burst buffers, parallel
file systems, etc.) have resulted in increased storage tiers on High Performance Computing
(HPC) systems. Large amounts of data from scientific workflows need to be managed on tiered
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storage systems. Such data management can be extremely tedious and complex due to the un-
derlying architecture of the storage systems, amount of data processed, and complexity of scien-
tific workflows. Existing methods and tools have used queueing models and historical informa-
tion about the data to manage and improve I/O performance on tiered storage systems [17, 21].
However, current abstractions and tools provide limited control for scientific applications to man-
age data on HPC systems and are often insufficient to allow fine-grained control based on user
preferences.

Scientific workflows on HPC systems execute simulations and data analyses for scientific dis-
covery. Today, scientific workflows largely rely on applications or custom user scripts to manage
their data on tiered storage. For example, users often “stage” the input data to a storage layer prior
to executing the workflow. This gives rise to performance and productivity challenges when mov-
ing to future HPC systems, where the memory storage hierarchy is getting deeper, driven by new
technologies and the need to minimize I/O costs. Automation allows us to asynchronously stage
the data or perform selective staging of data to improve performance or balance costs. However,
our experiences working with various science groups show a need for a semi-automated architec-
ture. Our discussion with different science groups revealed that complete automation hinders HPC
users who often need to exert control on the data management. Thus, our software architecture is
driven by the needs of different scientific workflows and user groups.

In previous work, we introduced a software architecture Managing Data on Tiered Storage
for Scientific Workflows called MaDaTS [14] that used a Virtual Data Space (VDS) abstraction
to hide the complexities of the underlying storage systems. VDS maps the datasets of a workflow
onto virtual data objects that can co-exist across the different tiers of a storage system during the
execution of a workflow. VDS provides an opportunity that allows users to program a workflow
around its data. In this article, we present the programming abstractions that allow users to use
MaDaTS for managing workflows on tiered storage systems. Using the programming abstractions,
programmers map workflows and data on a virtual data space, and let VDS optimize the data
management using workflow and data properties. However, programmers can also implement
their own data management strategies by operating on VDS. The VDS abstraction provides the
necessary programming constructs for defining new data management strategies with the evolv-
ing memory-storage hierarchy. VDS is designed to operate with different architectures including
computional storage architectures, where the compute would move closer to storage. VDS’s data-
centric programming model can be leveraged resulting in an execution plan that accounts for the
compute moving closer to the storage.

The programming abstractions of MaDaTS provide control to the programmers to manage data
and workflows. For example, users can control which datasets in a workflow are temporary with-
out necessarily worrying about when and how to remove the datasets. Alternatively, users can
also control which temporary datasets need to persist without worrying about the mechanics of
copying/moving the datasets to a persistent store. Finally, through VDS users can also control the
use of storage tiers, or can use the entire storage hierarchy for the workflow data. This is useful
for controlling the flow of data through the storage stack, and managing the lifecycle of data on
different storage tiers as per user needs. Our results show that these programming abstractions
simplify data management for complex workflows on multi-tiered storage systems without adding
any performance overheads. The abstractions also optimally use the storage space based on the
characteristics of data and storage systems.

The rest of the article is organized as follows. We present the background in Section 2. We
describe the programming abstractions of MaDaTS in Section 3. We present our results in Section 4
and discuss related work in Section 5. Finally, we present the conclusions in Section 6.
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2 BACKGROUND

In this section, we provide an overview of the data lifecycle on tiered storage systems, existing
storage abstractions and a background on MaDaTS [14].

2.1 Scientific Workflows

Scientific workflows are widely used in HPC environments to manage the software pipelines for
scientific discovery [27]. Workflows can be composed using a workflow description language,
through ad-hoc scripts, or using workflow tools that chain together a series of tasks with inputs
and outputs in a pipeline. The traditional model of capturing workflows using a directed acyclic
graph (DAG) is process-centric. In this model, data management becomes secondary to task ex-
ecution, and data management steps often come before and after the execution of the workflow,
and are managed explicitly by users or applications. Existing workflow tools [9, 30] do not provide
mechanisms to implicitly manage data on HPC resources. Current user methods are less than opti-
mal in performance and effectiveness. For example, users often “stage” the input data to a storage
layer prior to executing the workflow. However, some of this data can be asynchronously staged
as the workflow executes. Also, selective staging of data might be sufficient for improving per-
formance while balancing costs. But scientists often face challenges in automating these due to
the interplay of workflow tasks and data, and the underlying complexities of the storage systems.
Thus, there is a need for simplified programming abstractions that can allow users to seamlessly
control data management strategies for scientific workflows running on HPC systems.

2.2 Tiered Storage Systems

SSDs have added one more tier to the storage hierarchy in HPC systems in the form of Burst
Buffers [20, 29]. It resides between compute nodes and the high-capacity parallel file system
(PFS). The existence of different storage systems has given rise to different storage tiers and hence,
different filesystem interfaces. These filesystems often differ in the way data is stored in the under-
lying storage system and are accessed by the users. For example, the storage systems on different
supercomputers like Cori [4] and Titan [1] provide separate namespaces for the different storage
layers. Alternatively, unified and single namespace filesystems have also been implemented on
tiered storage systems [2]. Programming abstractions are required to manage workflow data that
hide different storage-specific data management interfaces from the users. The VDS abstractions
in MaDaTS hide the different data management interfaces in multi-tiered storage systems. In the
case of storage systems that use a unified interface, MaDaTS acts as a workflow engine as the data
movement is already handled by the storage system and the storage tiers are unknown to MaDaTS
(i.e., using a single namespace). In the case where the storage tiers are unified but with different
namespaces, MaDaTS can make intelligent decisions about the placement and distribution of data
based on workflow structure, data properties, and storage characteristics.

Users keep the input and output datasets on persistent long-term storage. These storage sys-
tems provide high resilience, but lack high performance. For this reason, users often copy/move
these datasets onto faster storage tiers, typically a PFS, or a burst buffer that provides high I/O
throughput. This process of temporarily moving the data to a faster storage is called staging, and
several optimizations have been proposed to improve the effectiveness of data staging on HPC
systems [22–24, 33]. However, for scientific workflows, data remains alive even after one or more
tasks using it have finished execution. This introduces different data management challenges when
managing workflow data on tiered storage systems. For example, datasets that are shared between
different workflow tasks need to be staged for longer durations to avoid overheads of frequent
stage-in and stage-out operations. Scientific collaborations may also choose to stage or store their
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Fig. 1. In MaDaTS, users map workflows and data to a virtual data space (VDS) and a VDS coordinator
manages the data during workflow execution on tiered storage systems.

data on specific tiers based on usage frequency. Hence, there is a need for programming data man-
agement of workflows.

2.3 MaDaTS

Figure 1 shows the high-level architecture of MaDaTS, and the role of VDS in the system. MaDaTS
provides an integrated data management and workflow execution framework on HPC resources. A
workflow is often represented as a DAG and VDS provides a data-centric view of the workflow akin
to a data DAG. The traditional model of capturing workflows using a DAG is task-centric. In this
model, data management becomes secondary to task execution. Users explicitly stage the data to
and from different storage layers (e.g., scratch, archive), and execute the workflow tasks separately.
The data movement between the storage layers is often constrained to the beginning and to the
end of workflow execution. On the contrary, the data-centric model of workflows [6] allows
us to make data management decisions by inspecting the data properties and data use during the
entire lifecycle of a workflow. Data objects are treated as first-class entities in workflows, resulting
in a data-driven workflow execution. By using the data-centric model, MaDaTS manages both
data and tasks explicitly depending upon the data properties, providing transparent and efficient
data management for workflow data. This removes a significant burden from the programmers
because they only need to define the data properties, and MaDaTS takes care of moving the data,
executing the tasks, and selecting the appropriate storage. In order to manage workflow tasks on
HPC systems, MaDaTS uses Tigres [15], which is a workflow library that provides templates to
compose, run, and manage workflow tasks on desktops and HPC clusters. MaDaTS uses existing
abstractions in the Tigres and the batch scheduler of an HPC system to manage the compute
resources. By default, MaDaTS executes the tasks locally on the available resources. Programmers
can also specify resource requirements for the tasks on HPC systems, in which case resources are
requested and allocated by the underlying batch scheduler. MaDaTS can also be used with other
workflow managers.

MaDaTS implements a VDS coordinator that manages virtual data objects through VDS. It is re-
sponsible for managing the data on the memory-storage hierarchy, and preparing a data execution
plan. Based on the data management strategy, VDS coordinator creates data movement tasks and
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Fig. 2. A VDS in MaDaTS is a mapping of a workflow into the data space, where workflow data are mapped
to abstract data items, called virtual data objects. Users add virtual data objects to the VDS and create
associations to workflow tasks, resulting in a data dependency graph. Users may also define certain attributes
for each virtual data object. A set of global properties define the characteristics of a VDS, which control the
data management strategies for a workflow.

associates them with the corresponding virtual data objects. Essentially, VDS coordinator manages
an extended workflow to manage data and tasks in an integrated manner. MaDaTS implements
different data management strategies using VDS. These data management strategies use data prop-
erties, structure of the workflow, and storage system characteristics for managing the lifecycle of
data on different storage tiers. Our previous work [14] describes and evaluates the data manage-
ment strategies. However, programmers can use the programming abstractions to implement their
own strategies, and seamlessly control the dataflow through different storage layers.

3 PROGRAMMING ABSTRACTIONS

VDS provides an abstraction that allows users to map their data into a common namespace. Users
can use a programming interface to map their workflows and data objects to VDS. Figure 2 concep-
tually describes the process of mapping a workflow on to VDS. A user can use the programming
abstractions of to compose a workflow in a data space and specify data properties that are hints to
the VDS for data management. The primary entity in VDS is a virtual data object that represents
each data element of a workflow and maps them to the underlying file system. A data element can
be a file, a collection of files, or a directory containing multiple files and subdirectories. MaDaTS
uses these hints and data management strategies to create data tasks that orchestrate the move-
ment of data across the memory-storage hierarchy. The data tasks in the workflow interact with
the storage system to move data between the storage layers.

3.1 VDS

VDS supports the data-centric model of workflows that supports the needs of big data and multi-
tiered hierarchical storage [6]. Data management is going to be the principal challenge with in-
creasing volume and rate of data. Performance and efficiency of workflows now depend on effi-
ciently utilizing the storage resources to manage data during execution. The data-centric model of
workflows allows us to make data management decisions by examining each data object over the
lifecycle, rather than just looking at individual tasks. In the data-centric model of a workflow, data
objects are treated as first-class parameters to the workflow tasks. This results in a data-driven
workflow execution, where a task can be executed as soon as the data it uses becomes available.
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Fig. 3. VDS comprises (a) an application layer that uses a storage configuration to manage multiple tiers
of the storage hierachy, and the abstractions to program VDS, (b) a data layer that consists of virtual data
objects and VDS tasks, and (c) a management layer that manages data and workflows on HPC resources
using the virtual data objects and VDS tasks.

Figure 3 shows the design and implementation of VDS. It comprises (a) an application layer
comprised of the storage configuration and programming abstractions, (b) a data layer that consists
of the virtual data objects and tasks, and (c) a management layer that manages workflow execution
and data on multi-tiered storage systems.

3.2 Application Layer

The application layer provides the user an interface to program VDS for managing workflow data
on tiered storage systems. Our current implementation provides a Python interface. The appli-
cation layer includes a storage configuration and an API to access the underlying programming
abstractions. The storage configuration tells VDS about the storage tiers to be used. It is a YAML
file that lists the different storage tiers and their properties. Each storage tier is identified by its
unique filesystem mount point. The properties of each storage tier include the filesystem (Lus-
tre/HPSS/GPFS), performance characteristics like throughput, IOPS, and latency, and persistency
characteristics like volatile vs. non-volatile storage. When new storage tiers are added or removed,
this configuration file is updated. The configuration file can be either defined by the system ad-
ministrator or by the application programmer. MaDaTS is currently implemented to work with
POSIX-compliant filesystems, HPSS and burst buffers, and abstracts the storage hierarchy based
on the storage configuration. This has two advantages. First, it allows programmers to configure
storage tiers that are specific to a workflow. Second, it unifies storage tiers from multiple systems
into a single data space.

Users use the programming abstractions to create a VDS and add virtual data objects to the VDS.
Users then create and associate workflow tasks to the virtual data objects. The abstractions are also
used to specify data properties and data management strategies, based on which new virtual data
objects and tasks may be created in VDS.

3.3 Data Layer

The data layer consists of the virtual data objects, and their mapping to the underlying storage
tiers and respective datasets of a workflow. A virtual data object is an abstract entity in VDS that
is uniquely identified by an object identifier. Each object identifier is a combination of a storage
identifier and path to the data object relative to the storage mount point. Figure 4 shows the map-
ping of a data object in the storage system to a virtual data object in VDS. The example maps the
data object /global/scratch/sample/foo to a virtual data object scratch:sample/foo. Since
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Fig. 4. Example virtual data object in VDS that corresponds to a data object in the storage system.

/global/scratch/sample/foo represents the absolute path of the data object foo on the scratch
storage (mounted on /global/scratch), the corresponding object identifier for the virtual data
object in VDS is scratch:sample/foo. The storage identifier uniquely identifies the storage layer
in the multi-tiered storage hierarchy. Storage system abstractions (e.g., the underlying filesystem
interfaces) resolve the virtual data object identifier to the corresponding physical location of the
data object on the filesystem.

In addition to the identifier, a virtual data object also consists of the workflow tasks that operate
on the corresponding filesystem objects. Each task is either a producer that writes to a filesystem
object, or a consumer that reads from the corresponding filesystem object. Hence, a virtual data
object is an encapsulation of a filesystem object, along with its producers and consumers. VDS
uses this data-centric view of the workflow that is mapped to a collection of virtual data objects
to manage workflow tasks and data on tiered storage systems.

A virtual data object also has attributes that define the I/O and data management characteristics
of workflow data. Examples of these attributes include size, persistence, and type. Users can set
the attribute values to control the different aspects of data management. For example, if users set
the “type” of virtual data objects to be “static,” then the underlying datasets are not copied/moved
between the storage tiers during workflow execution. Users can also use these properties to in-
dicate which virtual data objects need to persist beyond the lifetime of a workflow. This allows
VDS to copy any intermediate data to a persistent store so that users can share it between multiple
workflows or use it for future analysis.

3.4 Management Layer

Internally, VDS manages the lifecycle of a virtual data object through several operations. These
operations on virtual data objects facilitate managing data for scientific workflows. There are four
operations on virtual data objects: (a) add, (b) copy, (c) replace, and (d) delete. The add operation
creates a virtual data object on a VDS. The copy operation creates another version of a virtual data
object on a different storage layer, but with the same attributes and associations as the original
virtual data object. The replace operation overwrites one virtual data object with another, also
replacing any task parameter that uses the old virtual data object. The delete operation removes a
virtual data object from VDS. The different operations on virtual data objects are listed in Table 1.

The copy operation on a virtual data object updates the preferred location of the filesystem
object on a storage tier. In order to move the filesystem object to the preferred storage tier, VDS
creates “data tasks,” and associates them with the virtual data objects. The data tasks can be of
three types: (i) setup, that creates necessary directories for staging the datasets, (ii) move, that
moves datasets between two storage tiers, and (iii) cleanup, that removes data by deleting virtual
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Table 1. Operations on Virtual Data Objects in VDS

Operation Description

add (V ) adds a virtual data object V on the VDS

copy (V , s ) copies virtual data object V to a storage tier s
replace (V ,V ′) replaces a virtual data object V with V ′

delete (V ) removes virtual data object V from the VDS

ALGORITHM 1: Defining a data management strategy using VDS

Input: A virtual data space VDS
1: s = select_fast_storage()
2: for v in VDS .vdos do
3: VDS .copy (v, s )
4: end for

data objects that have no future use in the workflow. VDS makes sure that there are no duplicate
tasks managing the same data at the same time. A cleanup task is associated with a virtual data
object, if it is non-persistent. For temporary but persistent data objects, additional tasks are created
by VDS to copy data to a persistent store prior to cleaning up. The cleanup operation is analogous
to garbage collection, freeing up space by removing datasets that will no longer be used by the
workflow.

Instead of updating each and every access to a data object in a workflow, copy updates the access
to the corresponding data object for all the dependent workflow tasks in a single operation. This
is because it associates the same set of tasks to the destination virtual data object that is associated
with the source. The copy operation also replaces all the task associations to the source virtual data
object with a move data task, that transfers the object from the source to the destination storage.
Hence, it simplifies workflow data management on tiered storage systems. As an example, the
algorithm for managing a workflow using VDS by moving the datasets to a fast storage is listed
below.

Algorithm 1 selects all the virtual data objects in a VDS and makes copies of them on a fast stor-
age tier. Each copy operation in VDS may generate one or more data tasks. For an input dataset,
VDS creates a stage-in data task that moves the dataset to the fast storage tier, and replaces all
references to the input dataset with the staged dataset. Similarly for an output dataset, the copy
operation creates a stage-out data task that moves the dataset from a staged storage tier to a persis-
tent storage, as specified by the user. The data management strategy defined above is then regis-
tered to MaDaTS with a unique name. Programmers use the strategy attribute of a VDS to select
the data management strategy. MaDaTS provides three pre-defined data management strategies—
passive, storage-aware, and workflow-aware [14]—but programmers can also define, register, and
use custom data management strategies based on their workflow needs.

The copy operation replaces all intermediate dataset references with the staged dataset refer-
ences. If any virtual data object that maps an intermediate dataset is set to persist, VDS creates
additional stage-out tasks to move the dataset to a persistent storage. Finally, if the VDS is pro-
grammed to auto-cleanup, additional data tasks are created to remove the intermediate datasets. In
addition to data tasks, virtual data objects are also associated with “compute tasks.” A compute task
refers to a workflow task that primarily processes or analyzes data. This separation of concerns be-
tween compute and data tasks allows MaDaTS to allocate separate resources for data management
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and workflow execution. For example, a compute task may be executed through a batch queue sys-
tem, whereas a data task may be executed on a separate I/O node with high bandwidth and low
latency. Each task in VDS is identified by a command and a set of attributes. A command refers to
a task executable. The attributes of a task specify the runtime information for the task. Examples
of task attributes include parameters to the executable command, the expected runtime of the task,
and the number of nodes to be requested for executing the task. These options are further used by
MaDaTS to schedule and execute tasks on the HPC resources.

A VDS exists during the entire lifetime of a workflow execution and its data lifecycle. It is auto-
matically destroyed when a workflow execution ends. But the underlying filesystem objects retain
their state. Hence, any persistent filesystem objects that are created on different storage layers
persist beyond the workflow execution. If programmers decide to persist intermediate data, mul-
tiple copies of a dataset may exist on different storage tiers. By default, MaDaTS does not remove
duplicate datasets for two reasons. First, in the case of volatile storage, the duplicate datasets will
not persist beyond the workflow execution. Removing the datasets in such a case is a redundant
operation and may introduce additional overheads. Second, if multiple workflows share datasets,
then they will not be moved multiple times between the storage tiers, minimizing the overall data
movement operations. For automated removal of intermediate datasets that are persisted beyond
a workflow’s lifetime, programmers set the auto-cleanup option in VDS to true. This ensures that
there is only one copy of the dataset on the storage system.

3.5 Example: Programming the Virtual Data Space

In this section, we provide an example to program VDS. The programming abstractions of MaDaTS
allow users to create a VDS, add virtual data objects and tasks to the VDS, and manage VDS. Table 2
lists the abstractions and associated operations in MaDaTS. Users first create a VDS and map the
data to virtual data objects.

vds = VirtualDataSpace()

vdo = vds.map("/path/to/dataset")

Users then create tasks and associate them with the virtual data objects. Each task uses a com-
mand that can be executed independent of the other tasks. The parameters to the task are the
different arguments that are used for executing the original workflow task. However, any param-
eters that refer to workflow datasets are replaced by the corresponding virtual data objects.

# Create tasks

prod = Task(command="...")

prod.params = ['...', '...']

cons = Task(command="...")

cons.params = ['...', vdo, '...']

# Associate tasks to virtual data objects

vdo.add_producer(prod)

vdo.add_consumer(cons)

Users can associate virtual data objects with tasks by adding tasks as producers and/or con-
sumers of the data objects. This task association tells VDS about the data and task dependencies
in the workflow. This lets VDS schedule the data management tasks alongside the compute tasks
to optimize workflow runtime and use of storage capacity. Hence by default, VDS does not copy
any intermediate data to a persistent storage. In order to save intermediate datasets, users make
the corresponding virtual data object persistent.
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Table 2. The Programming Abstractions of MaDaTS

Abstraction Description

task = Task(command ) Creates a task with an executable command. It
has to be associated with a virtual data object.

vdo = VirtualDataObject(dataset ) Map a dataset to a virtual data object. This does
not add the virtual data object to the VDS.

vdo.add_producer(task ) Tasks are associated as producers or consumers
of a virtual data object.

vdo.add_consumer(task )
vds = VirtualDataSpace() Create a virtual data space. A virtual data object

has to be explicitly added to a VDS, or a dataset
vdo = vds .map(dataset ) needs to be mapped to a virtual data object in a

VDS.
vds .add(vdo)
daд = get_workflow_dag(vds ) Get the workflow as a directed acyclic graph

(DAG) of executable tasks from a VDS.

manage(vds ) Manage data and workflows through VDS.
Virtual data objects and task associations have
to be established prior to calling manage().

validate(vds ) A utility function to check if any dataset of a
workflow is not mapped as a virtual data object
in VDS. For datasets that are not mapped to
VDS, they will not be managed by MaDaTS
during workflow execution.

Users program the VDS using virtual data objects and VDS tasks. manage() abstracts the data management strategies,

hiding the complexities of the underlying storage systems.

vdo.persist = True

Once a VDS is created and all the virtual data objects are added, users set up the global properties
(e.g., data management strategy) and initiate VDS management as

vds.strategy = ...

manage(vds)

The manage operation generates scripts for managing tasks and data for the workflow. MaDaTS
generates separate scripts for data and compute tasks. For each data task that is associated with
a virtual data object, a script is generated to manage the associated operations on the dataset.
For example, if a setup task is associated with the virtual data object, then a script is generated
that prepares necessary directories prior to moving the data. Similarly, for a cleanup data task
associated with a virtual data object, a script is generated that removes the dataset when all tasks
associated with it finish execution. For each compute task, the arguments are parsed and a script
is generated with the execution command. If there are additional properties for the compute tasks
that specify the HPC scheduler, the number of CPUs to be requested, and the expected walltime,
then a batch script is generated with all the specified information and the execution command.
The dependencies between the tasks are managed by the order in which the virtual data objects
are accessed. A DAG is generated that consists of the execution order of the scripts. The Tigres
workflow library uses the DAG to manage data and execute tasks. Based on the task and virtual
data object attributes, it submits these scripts through a batch scheduler or runs it locally on a
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Fig. 5. A workflow description contains task definitions, hints to the data elements, and a data management
strategy for MaDaTS.

workstation. Once all the scripts have executed, and all compute and data tasks associated with
virtual data objects have finished, the workflow execution terminates and the VDS is destroyed.

3.6 MaDaTS Command-Line Interface

MaDaTS also provides a command-line interface (CLI) that uses the programming abstractions
to translate workflow descriptions into VDS, and manage them on HPC resources. The workflow
descriptions for MaDaTS include resource requirements (including number of CPUs, walltime,
etc.) in addition to the tasks, their dependencies, and their input/output datasets. The workflow
description may contain “hints” on the data that help MaDaTS to select the storage layer where
the data can be moved during workflow execution. These hints can be provided by the users as
additional annotations to a workflow description, describing various properties about the data. The
hints provide information about the storage and quality of service requirements for workflows. For
example, a data hint persist = true suggests that the data needs to be persisted for long-term
storage and MaDaTS needs to stage the data out to a persistent storage. Similarly, a user might
specify a data size that helps MaDaTS decide the appropriate storage layer for the workflow data. In
the absence of data hints, if the data management strategy requires the data to be moved, MaDaTS
always moves the data to the storage layer with the highest throughput. Thus, users can skip
specifying the data hints and MaDaTS still tries to aggressively optimize the I/O performance of
the workflow.

Figure 5 provides a partial example of a workflow description, annotated with data hints. In
this workflow description, a task task1 is defined with certain inputs and outputs. Each input and
output of the workflow task maps to a unique virtual data object which has an identifier. Each
task definition contains information about resource requirements for executing the task. In this
example, the size and persistence hints are specified for vdo_out1. Our current implementation
accepts hints about the data size, persistence, and replication. These hints help MaDaTS to select
the appropriate storage layer for accessing the data in the workflow. The existing set of hints is
identified by our use cases, where workflows have both small (in KBs) and large (in GBs) datasets
and where only part of the output data needs to be preserved for long-term storage. However,
this is extensible to include other properties/hints since the data hints are specified as name-value
pairs.

4 EVALUATION

In this section, we evaluate the capabilities and tradeoffs of the programming abstractions, and
analyze the different data management strategies of MaDaTS.
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4.1 Evaluation Setup

We evaluate the programming abstractions of MaDaTS on NERSC’s Cori supercomputer. It is a
Cray XC40 supercomputer with 2,388 Intel Xeon “Haswell” processor nodes and 9,688 Intel Xeon
Phi “Knight’s Landing” (KNL) nodes. For our experiments, we use only Haswell nodes. Each
node has 32 cores and has 128 GB DDR4 2133 MHz memory and four 16 GB DIMMs per socket.
Each core has its own L1 and L2 caches, with 64 KB and 256 KB, respectively. We use 32 nodes to
execute each parallel phase of the workflow and one node to execute each sequential phase.

Cori provides multiple storage options with five different file systems that provide different
throughput, storage space, and data retention policies. Cori’s “burst buffers” provide fast persis-
tent storage options that are built using Intel’s P3608 SSDs, delivering 1.8 PB of usable capacity
operating at 1.7 TB/s. The burst buffer on Cori is managed by the Cray Datawarp API. Users sub-
mit job scripts specifying datawarp directives to initiate automatic data transfers to and from burst
buffers. The other storage options on Cori include “scratch,” which is a Lustre file system with peak
performance of approximately 700 GB/s, and “project,” which has GPFS with a peak performance
of 40 GB/s. “Home” on Cori is another GPFS filesystem, which is used for permanently storing
small datasets and the default filesystem for login nodes. Additionally, Cori also provides a High
Performance Storage System (HPSS), which is the long-term tape archival storage.

The job scripts on Cori are executed through the Slurm batch scheduler. Cori’s queues are used
to schedule and manage jobs by providing users with different quality of service (QoS) options.
These options determine the amount of time spent by a job waiting to acquire resources. For our
evaluation, we use realtime service to minimize unpredictable queue wait times. We run each
experiment at least five times and for our plots, use the results that have minimum queue wait
times in order to remove any bias due to unpredictable queue wait times.

For managing the workflow tasks on HPC, we use the Tigres workflow library [15]. We use two
versions of each workflow: one that uses the programming abstractions of MaDaTS to map the
workflows to VDS, and the other is the original version of the workflows managed using batch
job scripts. The workflow written in MaDaTS manages data and tasks using the VDS abstractions,
and executes them using Tigres. The original workflow copies/moves data explicitly before and
after each stage of the workflow. Dependencies between the workflow stages are managed by the
Slurm batch scheduler.

4.2 Workloads

Figure 6 shows the three scientific workflows we use for our experiments. These workflows are
selected because of their complex structure and the amount of data processed. For each workflow,
we configure the storage hierarchy differently to evaluate the runtime performance, user-level
control, and dynamic data management using the VDS abstractions. We select the storage tiers for
each workflow based on their input and output data characteristics. For example, workflows that
need intermediate datasets to be persisted post workflow execution, used the scratch filesystem
as the staging tier. On the other hand, if the final outputs of a workflow are large enough and
need long-term storage, they are moved to an archival storage. Table 3 lists the set of storage tiers
configured for evaluating each workflow.

Montage is a data-intensive workflow that assembles a jpeg image from sky survey data (fits
files). Montage is a combination of sequential and parallel tasks and requires all the input data in
a single directory prior to executing the workflow. Each fits file is 1 MB in size, and a total of 55
GB of data is processed for degree 8.0 of the Montage workflow.

BLAST is a compute-intensive workflow that matches protein sequences against a large data-
base (>6 GB). BLAST splits an input file (7,500 protein sequences for our tests) into multiple small
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Fig. 6. Scientific workflows: Each workflow exhibits different data access and execution patterns. Montage
assembles an image for survey M17 on band j from 2mass Atlas images. BLAST performs protein sequence
matching using a shared large protein database. Floodplain Mapping focuses on accurately simulating the
storm surges in the coastal areas of North Carolina.

Table 3. Storage Hierarchy Used for Different Workflows to Evaluate MaDaTS

Workflow Input-tier Staging-tier Output-tier

Montage Project Scratch Home
Blast Scratch Burst Buffer Home
Floodplain Project Scratch Archive

The storage hierarchy is selected based on the different characteristics of input and output data for

each workflow.

files (a few KBs) and then uses parallel tasks to compare the data in those files to that of a large
shared database. It finally merges all the outputs from the parallel tasks into a single file.

In addition to the two scientific workflows, we also emulate the Floodplain Mapping work-
flow [3] with synthetic datasets. It focuses on accurately simulating the storm surges in the coastal
areas of North Carolina. It uses a total of 14 GB of input and output data. Each stage of the emulated
workflow simply reads and writes data from/to the filesystem. The files are read and written using
the dd utility, keeping the file sizes the same as that defined in the original workflow definition.

We evaluate the effectiveness and efficiency introduced by the abstractions in MaDaTS using the
different ways in which VDS can be programmed. Specifically, we evaluate the different configura-
tions of VDS in MaDaTS. The default configuration copies the input and output datasets between
storage tiers, but does not copy any intermediate output to persistent storage. This configuration
also does not clean up any intermediate data from the storage tiers. The cleanup configuration
removes unused datasets from the storage tiers, and only saves the final output datasets to a per-
sistent storage. The persist option saves all intermediate data to a long-term persistent storage.
Finally, the cleanup + persist option saves the intermediate data to a long-term persistent stor-
age, and also removes them from the staging tier. The original workflow programs (referred to as
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Fig. 7. Storage space used over time using the VDS abstractions in MaDaTS versus the space used by the
original (non-VDS) workflow program. VDS optimally uses the storage capacity because it removes datasets
that will no longer be used during workflow execution. The original workflow program only removes the
data when workflow execution completes.

non-VDS workflows) are hand-optimized versions of Tigres workflows that stage-in the input
datasets, execute the tasks, stage-out the output datasets, and finally, clean up all intermediate
datasets.

4.3 VDS Overheads and Tradeoffs

In this section, we evaluate the overheads, complexity, and other tradeoffs of using the VDS ab-
straction for managing workflows on tiered storage systems.
Storage Capacity. Figure 7 compares the use of storage capacity over time between the original
and MaDaTS’ version of the workflows. The measurements are taken in equal intervals during
the entire duration of the workflow execution. Each time interval is depicted as a timestep on
the X -axis of the graph. The Y -axis shows the total amount of space used across all the storage
tiers on Cori. For these results, we use VDS with the cleanup option enabled, as the original non-
VDS version of the workflows remove unused intermediate and staged datasets at the end of the
workflow execution. Workflow runs with MaDaTS have fewer timesteps because they run faster
than the corresponding original versions.

As can be seen from the graph, both Floodplain and Montage workflows with VDS use 30%–
40% less overall space than the original non-VDS execution of the workflow. VDS automatically
and asynchronously removes intermediate and staged datasets as the workflow stages execute.
Instead of removing all the datasets at the end, VDS uses the workflow execution information to
manage storage space, and removes the datasets that will no longer be used by the future steps
of the workflow. For the Blast workflow, space usage is not that significantly lower as compared
to the other workflows. This is because the input dataset is substantially smaller (few KBs in size)
as compared to the large protein database (≈7 GB) that is used for the majority of the workflow
execution. Both, MaDaTS and the original version of the workflow, stage the large protein database
to the fast tier (burst buffer on Cori, in this case) that remains on the burst buffer for the entire
lifetime of the workflow.
Workflow Runtime. Figure 8 shows the total runtime of the workflows with different VDS con-
figurations in MaDaTS and compares the results to the original run of the workflow. The default
VDS configuration results in the fastest execution of the workflows. This is because it only opti-
mizes the runtime and not the use of storage space, resulting in fewer data movement steps in the
workflow. It only stages in/out the datasets and uses the fast tier for intermediate datasets. There
are no data cleanup and/or data stage-out tasks for intermediate datasets. The persist and cleanup
options result in saving and cleaning out the datasets, respectively, from the staging area, resulting
in additional tasks, some of which are at the end of the workflow execution (for output datasets).
Although this creates additional data tasks and datasets, it has very small overheads as compared
to the rest of the workflow run because the data tasks are managed concurrently with the compute
tasks.
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Fig. 8. Workflow runtime with different VDS configurations in MaDaTS. The original version (non-VDS)
of the workflows performs only as fast as the worst-case VDS configuration (i.e., with cleanup and data
persistence). Overlapping data and compute tasks minimize the overheads of data management in MaDaTS.

The original version of the workflow performs only as fast as the VDS version with cleanup and
data persistence (which is the worst-case scenario with VDS because it creates tasks to copy all
datasets of the workflow and also creates cleanup tasks to remove all intermediate datasets). The
non-VDS workflow performance gets affected because it copies data only in phases before and
after the workflow that adds data movement overheads to the workflow. For Blast, the data tasks
are very small compared to the computation. Hence, the runtimes are unaffected by the changes
in configuration options.
CPU Utilization. Figure 9 shows the amount of CPU used with different configurations in VDS for
managing the workflows and their data. The different options in VDS creates additional data tasks
to be executed. However, the data tasks themselves are all I/O bound and have minimal impact on
the overall CPU utilization. For the experiments, we execute the workflows on a single node and
monitor their CPU usage over time. We collect the CPU usage at every 0.5 s interval. Hence, theX -
axis shows the logical timestep when the CPU usage is measured. The Y -axis shows the CPU used
in percentages. The figure shows that the maximum CPU used by the VDS-enabled workflows is
comparable to the non-VDS versions of the workflows. For all the workflows, VDS option with
cleanup + persist enabled, show a small increase in the average CPU utilization (<1.5%) over the
non-VDS version. This small overhead is due to the creation of additional data tasks for saving
all intemediate datasets to a persistent storage, and removing them from the temporary storage
prior to finishing the workflow execution. For all other configurations in VDS, the average CPU
utilization results in <0.5% increase over the non-VDS version of the workflows.
Data Tasks. Table 4 evaluates the amount of data movement involved in each workflow. The
default configuration that does not do any cleanup and intermediate data saving have the fewest
data tasks and data movement operations, which only correspond to the number of data stage-in
and stage-out tasks for input and output datasets, respectively. This shows that instead of copying
in and out the datasets for each stage of the workflow, VDS copies the datasets in/out as per the
data use in the workflow. The best-case non-VDS version of the workflows also have fewest data
movement operations because only the input and output datasets are moved. But programmers
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Fig. 9. CPU utilization with different options in VDS. The workflows show a small increase in the average
CPU utilization (<1.5%), specifically when the cleanup + persist option in VDS is enabled due to the creation
of additional tasks.

Table 4. Number of Data Tasks Created by VDS Based on the Different Options when
Data is Always Used from the Fastest Storage Tier

Workflow
Data-tasks/Data-movement-operations

VDS non-VDS
Default Cleanup (C) Persist (P) C+P Best-case Worst-case

Floodplain 6/5 17/5 12/11 23/11 -/5 -/16
Montage 3/2 13/2 10/9 20/9 -/2 -/10

Blast 4/3 10/3 6/5 12/5 -/3 -/7

The total number of data tasks is the sum of data setup, movement and cleanup tasks. The numbers on the right

side show the number of data movements. The best case for the non-VDS versions of the workflows move only

the input and output datasets. The worst-case non-VDS also moves intermediate datasets for each stage of the

workflows. VDS optimizes data movements based on dataset properties and VDS configuration, whereas for

non-VDS versions of the workflows, programmers have to manually move the data for each workflow stage.

have to explicitly implement the data movement operations, keeping track of the placement and
distribution of specific datasets on different storage tiers. If all the intermediate datasets are to be
saved, then the number of data tasks in VDS equals the number of total (including the input, output,
and intermediate) datasets in the workflow and a setup task for preparing necessary directories
on the target storage tier. In the worst case, VDS has persist enabled for all intermediate datasets.
VDS (with “persist” option enabled) moves fewer datasets as compared to the worst-case non-VDS
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Fig. 10. Number of different types of data tasks created within VDS for the different workflows when users
set auto-cleanup to true. There are as many cleanup tasks as there are intermediate datasets in the workflow.
However, there are only as few data movement operations as there are persistent datasets for the workflow.
Hence, many datasets are temporarily created on fast storage and removed resulting in larger number of
cleanup tasks, but fewer data movements.

Table 5. Number of Scripts and Lines of Code (LoC) for Each
Workflow With and Without Using MaDaTS

Workflow
Workflow scripts Total LoC
MaDaTS Original MaDaTS Original

Floodplain 1 8 86 97
Montage 1 10 78 102

Blast 1 4 48 37

The original scripts (batch job scripts) have been hand optimized to have

minimum lines of code as required to execute the workflow and

associated tasks. The lines of code exclude the core Tigres workflow

programs that are common to both MaDaTS and batch-scripts, and only

include the programs written to submit the specific tasks and manage

data on HPC systems.

version of the workflow because of the data movement optimizations based on dataset properties,
workflow structure, and the VDS configuration. On the contrary, the non-VDS workflows move
data in and out of the storage tiers during each stage of the workflows.

For VDS configurations with “cleanup” enabled, there are more data tasks than there are datasets
in the workflow. However, these additional data tasks are cleanup tasks that asynchronously re-
move unused datasets from the storage tier as the workflow executes. Figure 10 shows the types
of data tasks when the “cleanup” option is enabled in VDS. As can be seen from the graph, the
majority of these data tasks are responsible for removing unused intermediate datasets from the
storage system.
Programming Complexity. In order to evaluate the programming complexity of MaDaTS, we
compare the complexity between writing a script using the programming abstractions of MaDaTS
and the hand-optimized original workflow scripts that use batch scheduler dependencies and job
scripts to manage workflow and data on HPC systems. We measure the complexity using two
metrics: (a) lines of code and (b) the number of scripts written to manage a workflow and its data.
We used cloc [5] to count the lines of code.

Table 5 lists the lines of code for each workflow. For Floodplain and Montage, the MaDaTS
programs use fewer lines of code for data management and workflow execution on multi-tiered
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Fig. 11. Timeline of task execution and data management while using the MaDaTS programming model for
workflows using “cleanup” option enabled. The data movement tasks are prefixed by “Stagein” and “Sta-
geout” based on whether the data is moved in or out, respectively, and the cleanup tasks are prefixed by
“Cleanup.” MaDaTS optimizes workflow performance by overlapping data operations with task execution.

storage hierarchy. Blast has fewer lines of code for the original workflow scripts because only one
stage of the workflow (blastall) is executed through the batch scheduler. This results in fewer lines
of code as there are no dependency handlers and batch scheduler directives for the scripts, except
one.
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Table 5 also lists the number of scripts written to manage each workflow. A single MaDaTS
program manages workflow execution and data management in an integrated and efficient way,
whereas for the original workflow programs, there are separate job scripts for each stage of the
workflow, and there is an additional controller script that needs to be written and submitted to
manage the dependencies between the jobs. This creates an additional complexity, when not using
MaDaTS’ data-centric programming model.
Compute and Data Management. Figure 11 shows Gantt charts of MaDaTS programmed work-
flows. The figure shows the execution timeline of compute and data tasks (for staging in and out
the datasets, as well as for removing unused datasets) in each workflow. For this experiment, we
enable only the “cleanup” option in VDS, so no intermediate dataset is persisted or staged-out.
As can be seen from the figure, each compute task in the workflow starts as soon as the input
data for the specific task is staged-in, rather than staging-in all the input datasets. Similarly, the
stage-out tasks are also overlapped with other cleanup tasks. In case the intermediate datasets are
also staged-out, the stage-out data tasks will be executed with any overlapping compute tasks, in
addition to the cleanup tasks. This is more efficient than separating out the data movement and
cleanup tasks at the beginning and end of a (non-VDS) workflow. Hence, the graph shows how
VDS optimizes the storage space and the runtime simultaneously by taking into account the scope
of a dataset for the entire workflow rather than individual tasks of the workflow.

5 RELATED WORK

In this section, we highlight related work on data management in scientific workflows, abstrac-
tions for managing data, and approaches to optimize data movements between multi-tiered storage
systems.
Tiered Storage Systems. Previous research has shown that workflow performance is limited by the
data movement costs between the storage tiers [14], and I/O characteristics of the workflows [8].
Previous approaches have also proposed efficient data migration between SSDs and HDDs using
task deadlines and I/O characteristics of the workloads [16, 32]. Just-in-time staging approaches
have also been proposed to minimize data movement costs between multiple tiers of the storage
system [22, 33]. Our previous work has also focused on placing data and improving performance
on tiered storage systems based on user hints and data requirements [14, 25]. In this article, we
introduce the programming abstractions necessary to simplify data management for workflows
and provide different levels of control to the users, while balancing storage capacity and workflow
performance on tiered storage systems.
Data Management. Previous work on managing data for scientific workflows proposed using
workflow-aware storage systems [26, 28]. Such storage systems use data-aware scheduling that
creates replicas of data or places the data near computation for minimizing performance bottle-
necks. However, their work does not focus on multi-tiered storage systems. Custom file system
interfaces [7] to minimize data movement between storage tiers based on workflow patterns have
also been proposed. Workflow systems managing data over a wide-area network [18] make data
management decisions based on network and storage parameters. They specifically focus on strate-
gies for efficiently transferring the data over WAN. FlexIO [34] provides abstractions for placing
analytics along the I/O path of a simulation and analysis workflow to optimize data movements
and application performance. There is a lack of suitable abstractions that allow users to efficiently
manage data based on the workflow characteristics.
Abstractions for Managing Data. Previous works have proposed different abstractions for man-
aging data. Franklin et al. [13] proposes data management abstractions to hide the differences
of multiple data sources through a common set of services. Memory abstractions like RDDs sim-
plify in-memory computation for complex data analytics [31]. Several data abstractions have also
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been proposed for accessing data in Grid environments and data catalogs [10, 12, 19]. BitDew [11]
provides a programming abstraction for transparent data management on desktop grids. These
abstractions are used for managing data efficiently in distributed setups, but do not consider any
storage hierarchy. In this article, we propose a programming abstraction that provides users with
different levels of control to manage workflow data on tiered storage systems.

6 CONCLUSIONS AND FUTURE WORK

In this article, we present a programming model that uses a VDS abstraction for simplifying work-
flow and data management on tiered storage systems. The programming abstractions of MaDaTS
provide different levels of control to the users while balancing workflow performance and use of
storage capacity. Our results show that programmers can obtain optimal results with less complex-
ity and fewer lines of code.

The current implementation of VDS in MaDaTS manages data between POSIX compliant filesys-
tems. Our future implementations will focus on supporting non-POSIX filesystems and cloud stor-
age. We plan to integrate high-performance data transfer protocols like Globus into MaDaTS for
efficient data transfer between remote storage systems, hiding the complexities of data manage-
ment over WAN.
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