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DYNAMIC DEVICES 
A PRIMER ON PICKUPS AND KICKERS 

D.A. Goldberg and G.R. Lambertson 
Lawrence Berkeley Laboratory, Berkeley California 94720 

A. INTRODUCTION 

A charged-particle beam generates electromagnetic fields which in turn interact with the 
beam's surroundings. These interactions can produce fields which act back on the beam 
itself, Of, if the "surroundings" are of suitably designed fonn (e.g., sensing electrodes with 
electrical connection to the "outside world"), can provide infonnation on various properties 
of the beam; such electrodes are generally known as pickups. Similarly, charged-particle 
beams respond to the presence of externally imposed electromagnetic fields; devices used to 
generate such fields are generally known as kickers. As we shall show, the behav!or of an 
electrode system when it functions as a pickup is intimately related to its behavior as a 
kicker. 

A number of papers on pickup behavior have appeared in recent years [1-5] in most of 
which the primary emphasis has been on beam instrumentation; there have also been sever­
al workshops on the subject [6,7]. There have been several papers which have treated both 
pickup and kicker behavior of a particular electrode system [8.9], but this has been done in 
the context of discussing a specialized application, such as a stochastic cooling system. 

The approach in the present paper is similar to that of earlier works by one of the 
authors [10,11], which is to provide a unified treatment of pickup and kicker behavior, 
and, it is hoped, to give the reader an understanding which is both general and fundamen­
tal enough to make the above references easily accessible to him. The paper is basically an 
expanded version of Ref. 10. As implied by the revised title, we have done the re-writing 
with the non-expert in mind. We have made the introduction both lengthier and more 
detailed, and done the same with much of the explanatory material and discussion. 

We begin with an overview which, in addition to providing a general background for 
the succeeding material, will also serve to introduce some of the terminology and notation. 
Because most electrodes can serve as either pickup or kicker, in the discussion which 
follows we will frequently refer interchangeably to the behavior of such a system in tenus 
of its behavior as either pickup or kicker, with the understanding that words such as 
"detect" or "respond", as applied to the pickup be changed to "influence" or "affect" as 
applied to the kicker. 

It is conventional usage'to refer to electrode systems which respond only to the total 
beam current as longitudinal devices, because their response turns out to be sensitive only 
to those properties of the beam which are associated with its longitudinal motion (e.g., rev­
olution frequency, longitudinal emittance, pulse length). Those systems which respond to 
the product of the current and the transverse displacement are known as transverse devi­
ces, because they are sensitive properties of the beam's transverse motion (e.g. betatron 
tune, transverse emittance). As with the case of the pickup/kicker duality, we shall see that 
the longitudinal and transverse responses of an electrode system are intimately related. 
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Schematically we can represent a longitudinal or a transverse kicker as a "black box" as 
shown in Figs. 1 a and 1 b: 

v Zc Zc 

K-.{-l VK-. (1 

J I 
Beam In Beam Out Beam In Beam Out 

~ lit ~ ... 
E E +L1E P.1 P + All 

.1. .1. 

Fig. la Schematic Model of Longitudinal Kicker Fig. 2b Schematic Model of Transverse Kicker 

A (time-varying) voltage is injected onto an electrode structure internal to the black box as a 
result of a voltage V being impressed on an input signal cable of characteristic impedance 
~. The resulting efectrode voltage produces a change in either the energy (E) or trans­
verse momentum (p .1) of the particles in the beam passing through the structure. 

A word on some of the conventions to be employed may be appropriate. As per the 
above figures, we will use the parallel symbol (II) to denote quantities related to longitudinal 
motion; the perpendicularity symbol (.1.), transverse motion. We could equally well have 
used PII as the characteristic of longitudinal motion but the energy turns out to be a more 
convenieat parameter. It is frequently convenient to express the change in beam energy in 
tenns of an equivalent beam voltage V == flEle, where e is the electron charge; the beam 
voltage has the same numerical value as the change in beam energy expressed in electron 
volts. One can define a corresponding transverse beam vol age as flp J.{3cle, where f3c = 
v, the (longitudinal) beam velocity; in many accelerators v == c, so that f3 == 1. (Those 
wishing either a brief review of, or a cr~sh course in elementary relativistic dynamics are 
referred to Appendix 1.) 

We can employ a schematic representation for pickups siInilar to that used for kickers: 
A beam of particles passing through the black box causes a signal to appear at the end of a 
signal cable which is (possibly indirectly) connected to an internal beam-sensing electrode 
structure. For a longitudinal pickup, the output signal is proportional to the beam current; 
for a transverse pickup, it is proportional to the product of the beam current and the beam's 
transverse displacement, i.e. to the dipole moment of the ~am. 

Zc Zc 

Vp ~(1 Vp '-(1 
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+ 
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Fig. 2a Schematic Model of Longitudinal Pickup Fig. 2b Schematic Model of Transverse Pickup 
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For those with little background in the subject, an overly simplified example may serve 
not only to illustrate the ideas we have been discussing, but to provide a physical example 
to consider while we introduce some general theorems in the next section. Let us consider 
a set of electrodes consisting of a pair of parallel plates oq opposite sides (say, top and bot­
tom) of the beam, which are sufficiently wide that we can ignore any effects due to the later­
al position of the beam, and let us consider its interaction with a single, short beam pulse. 

Considering the behavior of the electrodes acting as a pickup, it should be plausible, if 
not obvious, that the signal obtained by adding the voltages on the upper and lower plates 
is proportional to the total charge of the beam pulse (i.e. the current), and to fITst order is 
independent of the vertical position of the beam. On the other hand, the signal obtained by 
subtracting the voltages on the upper and lower plates is to fITst order proportional to the 
vertical position of the beam. In other words, the same electrode system can be used to 
sense roth the longitudinal and transverse properties of the beam. 

In like fashion, were we to apply an external signal to the two plates, we would be able 
to be able to influence the beam's motion: If we excited the two plates with voltages which 
were equal in both magnitude and sign, we could give the beam a .ongitudinal kick; if the 
voltages were equal in magnitude but opposite in sign, the beam would receive a trans­
verse kick. Hence the same electrode system may function as either a pickup or a kicker. 

We alluded earlier to the fact that kicker voltages were time-varying. In fact, in our 
example of the parallel-plate electrodes, we can see that placing a dc voltage on the plz.tes 
will produce no net change in the longitudinal motion of the beam: If the beam underwent 
an acceleration when entering the plates, it would experience an equal and opposite decele­
ration when leaving them; a time-varying field is necessary for a net longitudinal kick. (In 
contrast, a dc voltage across the plates would result in a transverse beam deflection.) 

In treating the time-dependent variation of kicker voltages, we will make use of the fact 
that such voltages can be expressed as a superposition of sinusoidal waves and will hence­
forth assume that, unless specified otherwise, all time dependent quantities such as V K are 
sinusoids; this approach should be recognizable to electrical engineers as a frequency­
domain analysis. Since beams in particle accelerators are also time-dependent, a similar 
approach will be used for the treatment of pickups. For bunched beams, it is probably not 
surprising that the frequencies of interest will be those associated with both the bunch 
length and the bunch-to-bunch separation (the reciprocal of the separation period as well as 
its higher hannonics); for a circular machine, harmonics associated with the revolution 
period (a subhannonic of the bunch-separation frequency) will also be of interest. What is 
perhaps less obvious is that these latter frequencies are also of interest in the case of signals 
from an unbunched beam in a circular machine, the so-called Schottky signals, which will 
be descri bed later. 

The main body of the paper will be divided into two sections. The first of these deals 
with basic principles and theorems, including such topics as figures of merit for pickups 
and kickers, the frequency spectra of charged-particle beams, and a brief discussion of 
beam impedance. The second section will illustrate the application of these ideas by ana­
lyzing the performance of a variety of electrode systems. We have included two appendi­
ces, one on relativistic particle dynamics (to which we have already made reference) and a 
second on integrals involving time-varying fields. Including this material in the form of 
appendices avoided interruption of the flow of the arguments, and, hopefully, irritation of 
the more expert reader. References to this material appear at the relevant places; however 
we le.ave it up to the individual reader to decide on the appropriate times to consult it. 



B. BASIC PRINCIPLES 

1. Some General Theorems 

As we have already mentioned, an electrode system which can be used as a kicker can 
also function as a pickup, although' as a practical matter not every electrode system may 
find application in both roles. The fIrst two theorems in this section, dealing with reciproc­
ity, demonstrate the relationships between the behavior in both roles. The third theorem 
demonstrates the relationship between the longitudinal and transverse effects of an electrode 
system. The results are derived in terms of kicker performance; by virtue of reciprocity, 
the results are equally applicable to pickup behavior. 

a. Relation Between Kicker and Pickup Performance 

In analyzing the behavior of an electrode system, it frequently proves easier to cal:;ulate 
its behavior as 8 kicker, i.e. the response of the beam when the structure is povJered 
externally, than it is its performance as a pickup, where one must solve a boundary-value 
problem with the beam current as a source tenn. This is particularly true when, in the case 
of the kicker, the fields due to the presence of the beam are negligible compared to the 
externally applied fields. In any case, one pra~~tical consequence of these theorems is that 
one need calculate the device's behavior in only one of its modes of operation. 

i. Lorentz Reciprocity Theorem The basic fonn of that theorem [12] states that if we 
have a volume V bounded by surface S, and we consider two independent modes of elec­
tromagnetic excitation (whose fields, for reasons which may already be apparent to the 
reader, we denote by subscripts K and B), with which are associated source currents JK and 
J B ' then if the fields and current flows are expressed as complex phasors with time 
dependence eJ(JJ1 (Le., using the frequency-domain analysis referred to earlier) we have the 
relation 

(1.1) 

The boundary which defines the surface and volume integrals in Eq. 1.1 is usually chosen 
to include not only the volume in which the fields are present, but the surrounding conduc­
ting surfaces as well. 

To apply this somewhat abstract result to the case of the pickup/kicker problem, let us 
consider the device shown schematically in Fig. 3. An assembly containing some sort of 
electrode structure is located in an accelerator beam tube; signals to and from the electrode 
are transmitted to an external signal port, usually by a coaxial cable. The surface S sur­
rounds the entire assembly, the only "penetrations" where fields may exist being the two 
beamline connections and the signal port. 

Let subscript B (as in "beam") denote the fields present when the device functions as a 
pickup, where the fields generated by the presence of beam current I B result in an outgoing 
signal, characterized by V BI a't the signal port. Let subscript K denote the fields and cur­
rents present when the device is excited as a kicker by the injection of an ingoing signal 
characterized by voltage VK at that same port. The currents denoted by JB include both the 
beam current I B as well as any surface currents it may induce anywhere within the assem-
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bly, including the signal cables. By way of contrast, the JK include only those currents 
resulting from the presence of V K. This is tantamount to asserting not only that the fields 
present during kicker operation are negligibly influenced by any beam currents present, but 
that such a current, if present, would be negligibly perturbed by such fields. 

VK VB 
IN OUT 

..--::(_(~_' '~_' -_-..... -r--"-" -" "-" --" "_----I - ll" ", , \, 
---__ +' _____________________ ~' --~:> IB 

I 
I 
\ 
\ 
\ , , , 

tiE \SK /r K 

"-.. . .... --------------
, , , 

I , , 
, 

i 
I , 

XBL 9110"H61 

Fig. 3 Application of Reciprocity Theorem to Pickup/Klcker Geometry 

For the surface S shown, the integral on the left hand side of Eq. 1.1 includes two 
types of surfaces at which fields may be present: entrance and exit beam apertures, and the 
signal port at the end of the input/output signal cable. In most practical cases, the kicker 
fields are strongly attenuated in the beam tubes; this is usually acconlplished by operating at 
frequencies below the cutoff frequency of the beam tube, or through the use of damping 
materials. Hence we can usually simplify the calculation by defining S to intercept the 
beam tube at a sufficient distance that the contributions from the surface integrals over the 
beam tube apertures are negligible. For the signal port, if the input/output signals are TEM 
waves propagating in a cable of characteristic impedance ZC' the signal voltage is simply 
the integral of the electric field between the inner and outer conductors; it is quite straight­
forward to show that each tenn in the surface integral contributes V KV BIZc.1 

Turning to the volume tenns on the right hand side of the equation, we note that since 
the fields and currents in resistive media are proportional, the sum of the tenns involving 
currents in the walls and cables is zero. Therefore, since only for the pickup case are there 
source currents in free space, only the EK -JB tenn contributes to the integral. Applying the 
above considerations to Eq. 1.1 and transposing yields 

VB=-2~ 1 EK-JBdvol. 
K ..." 

(1.2) 

Several features of Eq. 1.2 are worth pointing out explicitly. In evaluating the right hand 
side of Eq. 1.2, we must not only use the kicker fields that result when the device is excited 
by a kicker signal at frequency W, but must use a sinusoidally varying current at that same 
frequency for J8 (see the discussion on frequency spectra of beams in Sect. 3). Another 
1 For those concerned with mathematical niceties, we could have chosen S so that the remaining 
surfaces, rather than being in field-free space, confonned with the conducting walls of the enclosure and the 
signal cables; provided these surfaces can be characterized by a surface wave impedance, the integrand would 
vanish on these, as "ell. 



point to note is that the integral is to be taken at a fixed time. In general, the kicker field 
will have the form of a standing wave. However, since the beam cun'ent will exhibit a 
sinusoidal spatial variation, for devices longer than a half-wavelength, cancellation will 
begin to occur in the integral; hence, for other than travelling wave devices, the device 
length is typically less than one half a wavelength at the frequencies of interest. We will be 
using Eq .. 1.2 in deriving relations atl10ng the various kicker/pickup relations, and will 
dispense with further comment until that point. 

ii. Green's Reciprocation Theorem This related theorem [13] describes a reciprocity rela­
tion for electrostatic problems. However, it is also applicable to electromagnetic excita­
tions, as we shall subsequently see. In its basic form, the theorem applies to a set of con­
ductors (numbered from i = 1 to n) for which we consider two different modes of excita­
tion, which we will again "arbitrarily" denote by the superscripts K and B. The theorem 
states that if in the first trIode the conductors cru:ry charge QKi and are at potentials VKj, 
and if in the second mode these quantities are QBi and are at potentials VF;,then we have 
the following reciprocal relation between the Q's and V's. 

n n 

L QP vf = L Qf Vp (1.3) 
;=1 ;=1 

In addition to conductors, one can also include in the above summations point charges. 
In these cases the Vi represent the potential at the location of the ith charge due to all the 
other charges. It is not necessary that charges be at all such locations in both sums; 
however, if a charge is present at the ith location in one of the excitations, then the poten­
tial at that point for the second excitation must be included in the sum, whether or not a 
charge is present there in the latter excitation. 

Consider the following problem, which frequently arises in the analysis of pickup 
behavior. Let us suppose that a charge QB contained in the beam passes among a group of I 

one or more pickup electrodes; we wish to calculate the quantity gi' the frfLction of QB 
which is induced on the ith electrode. We can solve this problerr. using Eq. 1.3 by 
positing a second problem in which there is no charge at the former location of QB and we 
ground all of the conductors except the ith, which we maintain at potential VKi . If we 
make the assumption that the charges on the electrodes in the former mode are no different 
from what they would be if the electrodes were grounded (in this mode, this assumption 
applies to all the electrodes, including the ith one) then it is straightforward to show that 

QP VK 
g.5-'-=--
'QB vf (1.4) 

In other words, the fraction of the charge QB which appears on the ith electrode in the 
former mode is the same (but with opposite sign) as the ratio of the voltage at the point 
where QB was to the voltage on the ith electrode, with all other electrodes grounded. If 
we simply set VKi = 1, then gi = VK. 

A few points are worth noting. Using our example of the simple parallel-plate elec­
trodes as a model, the longitudinal signal, obtained by summing the voltages on the two 
plates, will turn out to be proportional to g) + g2, whereas the transverse signal, obtained 

I by subtracting them, will depend on g) - g2. One can use superposition to simplify the 
calculation, by placing both plates at + 1 for the former calculation, and using equal and 
opposite unit potentials for the latter. 
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b. The Panofsky Wenzel Theorem.' Relation Between Longitudinal and Transverse Effects 

Consider a particle of charge e and velocity v moving through a kicker along a path 
defined by its instantaneous velocity, ds = vdt. Its total momentum change in passing 
from point a to point b is given by 

~p=ef(E+VXB)dl (1.5) 

where E and B are the electric and magnetic fields generated by the kicker along the path. 
On fllat same path the particle will undergo an energy change 

(l.6) 

To calculated the transverse kick using Eq. 1.5 requires knowledge of both the (trans- I 

verse) electric and magnetic fields. However, the Panofsky-Wenzel theorem shows that 
for time-varying electromagnetic fields, the deflection can be expressed in terms of only the 
longitudinal component of the kicker's electric field; the original derivation of the theorem 
[14] was for fields with sinusoidal time dependence, but was later extended [10] to any 
time-varying field. In many instances this theorem can be used to simplify not only the 
calculation of transverse effects, but of one's conceptualization of them, as well. 

We now make the assumption, which we will employ throughout virtually all the 
succeeding sections, that the particles move with constant velocity (see Appendix 1), i.e., 
that the trajectory from a to b is a straight line in the Z-, or equivalently, the s- direction, 
which is traversed at constant speed v = {3c. This irnplies that the time and (longitur.iinal) 
position coordinates along the path are related by 

s = a + v(t-ta) (l.7) 

For a full discussion of the coordinates and integration limits in equations such as Eqs. 1.5 
and 1.6, the reader is referred to Appendix 2. 

If we now differentiate Eq. 1.5 with respect to time (the differentiation is actually with 
respect to ta; see Appendix 2), under the constant velocity approximation, we obtain 

If we insert 

and use the identity 

aB 
-=-VxE at 

d s x V x E = V (d s • E) - (d s • V) E 

(l.8) 

(1.9) 
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aE 
= V (d s • E) - - ds as 

we can combine the space and time partial derivatives of E to obtain 

a;=e {[-V(dSOE)+dE] 

Eq. 1.11 can be separated into longitudinal and transverse components to yield 

and 

;t (~Ps) = e ;t f E, dt 

~(~pJ=-e{[Vl(EOdS)-dE.J . 

(1.10) 

(1.11) 

(1.12a) 

(1.12b) 

where the operator V). denotes the transverse components of the gradient. The latter 
equation is the one of Interest. Evaluating the integral, and making use of Eq. 1.6 yields 

(1.13) 

which is the result for arbitrary time dependence. As we saw in the discussion of the 
reciprocity theorem, we can usually choose a and b to represent points at which the 
entrance and exit fields vanish, and so the terpl in the square brackets is zero. Finally, if 
we consider fields with sinusoidal variation eJ(J)t, and divide by the electron charge e, we 
get the original fonn of the Panofsky-Wenzel theorem, 

(1.14) 

where we define V == !lEI e as the beam voltage gain, in this case resulting from the 
energy change produced by the longitudinal field of the kicker. 

There are several points worth noting about Eq. 1.14. First, as advenised, we have 
obtained an expression for the transverse kick purely in terms of the longitudinal electric 
field (except perhaps for an additional static deflection). Surprisingly, this implies that it is 
not possible to produce a transverse deflection in a kicker which has only a transverse 
component of electric field (i.e. if the kicker is excited in a TE or TEM mode)! This appar­
ently paradoxical conclusion results from the fact that in such a mode, the deflection due to 
the v x B force will exactly cancel that due to the transverse E field. 

A corollary of the above result is that a transverse kicker generates a transversely vary­
ing longitudinal kick which introduces an energy gradient across the width of the beam. 

, I' 
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However, since it is only the transverse gradient of the longitudinal field which causes the 
deflection, it is usually possible to find a mode of excitation for a deflecting kicker in which 
the field on the longitudinal axis is zero, so that after multiple passes (e.g. in a cyclic 
accelerator), the energy gain for all particles averages to zero. 

As implied by the above remarks, the Panofsky-Wenzel theorem is a statement about an 
electrode system in a particular mode of excitation. In fact the same electrode system can 
functicm as either a longitudinal or a transverse kicker, depending on the tnode of excita­
tion. (We note parenthetically that this is not always desirable: An rf cavity, a longitudinal 
kicker when excited at its fundamental frequency, may also experience excitation of higher­
order modes, some of which may provide unwanted transverse deflections.) Putting the 
matter somewhat more concisely: The Panofsky-Wenzel theorem does not predict the 
behavior of a electrode system when it is excited as a transverse kicker based on its behav­
ior when it is excited as a longitudinal kicker; rather, for a given mode of excitation, it en­
ables us to calculate its transverse effect on the beam based on its longitudinal effect on it. 

Finally, we note the significance of the tenn~ i and, (J) in Eq. 1.14. The presence of 
the latter shows that for a given magnitude of transverse gradient, the higher the frequency 
at which the kicker is excited, the less of a transverse kick it imparts. The presence of the 
fonner term indicates that the transverse kick occurs 90° out of phase with the longitudinal 
one. For a transverse kicker in the fonn of a standing-wave cavity this is relatively easy to 
see: In the TM excitation of such a cavity, the transverse magnetic field, which is usually 
the principal agent of the transverse kick, is 90° out of phase with the longitudinal electric 
field. 

2. The Beam Voltage 

Thus far, our definition of lie times the energy gain as a beam "voltage" has been a 
notational convenience. The fact that the trarlsverse gradient of that quantity is proportional 
to the transverse kick suggests that there may actually be a physical basis to regarding it as 
a voltage. (In fact, one of the principal motivations for calculating the beam voltage is to 
enable~ls to calculate the transverse kick.) We shall now show that the beam voltage can be 
regarded as a two-dimensional scalar field (it has no z-dependence, as may be seen from 
Eq. A.2.10 in Appendix 2 ) and is in fact the solution of a two-dimensional equation 
which, for highly relativistic particles, reduces to Laplace's equation. Hence, the problem 
of calculating the spatial variation of an electrode's effect across its aperture can reduced 
from an integration over a three-dimensional distribution of field waves, to the solution of a 
two-dimensional boundary-value problem. 

As we have seen, under the constant-velocity approximation the energy increment given 
to a particle passing through a kicker depends only on the transverse coordinates and the 
time, i.e., if expressed as a voltage V it has the form 

V(X,y,t) = f E • ds . (2.1) 

In the integration, the value of E = Ez must be taken at the time t = ta + (s - a)/f3c , so 
that the time on which V depends is actually the time that the particle arrives at the kicker, 
tat For simplicity, let us omit the subscript z, and then note that this z- (or s-) compo­
nent must satisfy the wave equation 
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(2.2) 

Let us now use the above to find a two-dimensional differential equation for V involving 
the quantity 

(2.3) 

If we differentiate Eq. 2.1 and insert Eq. 2.2 we obtain 

(2.4) 

As noted in Appendix 2, any partial derivatives appearing under the integral sign are taken 
prior to making the substitution for t in terms of s. After the substitution, E will be a 
function of th\~ fonn fIs ,t(s)]. Taking the expression for the total differential of such a 
function in tenns of its partial derivatives, integrating, and rearranging tenns gives 

J % ds = f - f ~ ~s +COMt • 

Applying this result to the integration of the second tenn ofEq. (2.4) we obtain 

(2.6) 

If we again apply Eq. 2.5 to integrate the mixed-derivative term we obtain 

(2.7) 

Substituting using Eq . 2.1 and rearranging tenns we get 

V.LV +----'---= --+ -2 1 ()2v ( iJE ..L aE)t, t. + (b -a)/{3c 

(f3JC f iJt 2 as fJc at t. 
(2.8) 

The notation for the limits is to serve as a reminder that after taking the partial derivatives, 
one must substitute the appropriate t(s). 

The solution of Eq. 2.8 is the desired function. As was the case with the previous 
theorems, it is usually possible to choose the limits a and b to be locations where the 
fields are zero (or alike), making the right hand side zero; Eq. 2.8 then simplifies to a 



modified fonn of the wave equation 

(2.9a) 

I For the case of fields with a sinusoidal &(J)I dependence, Eq. 2.9a is further simplified 

(2.9b) 

where k = (J)/{3c is the beam wave number. 

Recall that the fields which result in the energy gain are produced by the kicker fields, 
and are independent of the beam. The only manifestation of the beam is in the presence of 
the fJr tenn, which arises from the relation of s and t along the path, in particular, from 
the degree to which it differs from c. In fact, for highly relativistic particles, Eq. 2.9b 
approaches Laplace's equation, and determining V reduces to solving an electrostatics 
problem. 

The solution to an equation such as 2.9b is determined by the values at the boundary. 
To understand what this means in practical terms, 'we shall see in the following sections of 
this report that for many electrode systems, the electrodes are located very near the walls of 
the beam enclosure. In the case of the prototypical parallel-plate electrodes, such electrodes 
might actually form a part of the wall, albeit electrically isolated from it by thin accelerating 
gaps. (Such a wall would perforce be part of a rectangular enclosure; a more common 
configuration would involve a cylindrical enclosure such as a beam tube, with the 
electrodes constituting portions of the cylinder.) 

Let us consider the somewhat artificial situation of long plates and focus our attention 
on either the entrance or exit gap alone. If the end gaps are sufficiently narrow that they 
have a transit-time factor of == 1 (see Appendix 2), then a particle passing very near the 
electrode surface (Le., at the beam-aperture boundary) will experience at the entrance (exit) 
gap, a beam voltage change equal to the negative (the value) of the instantaneous voltage 
across that gap. In other words, for an electrode essentially flush with the beam tube wall, 
the boundary value of the beam voltage i~, apart from a possible transit-time factor, just the 
voltage on the electrode, and so the cross-sectional profile of the beam voltage (for a highly 
relativistic particle) is just what we would get by solving a simple two-dimensional 
electrostatics problem with that portion of the wall subtended by the electrode set at the 
electrode Voltage! 

Applying the above results in conjunction with Green's reciprocation theorem leads to 
the following strikingly simple result: The g-factor, which we originally defined as the 
fraction of the beam charge appearing on the electrode, was calculated by finding the 
potential at the beam position with the electrode at unit potential. Since that voltage turns 
out to be the boundary value for the beam voltage problem, we see that the g-factor also 
represents the fraction of the beam voltage at the wall that is experienced by a particle at the 
actual beam position (one more striking demonstration of the reciprocal relation between 
pickups and kickers), 
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3. Frequency Spectrum of a Charged.Particie Beam 

Having made frequent reference to the frequency domain, and the fact that the beam 
currents that enter into many equations are sinusoids, it behooves us to talk about the 
decomposition of particle-beam currents into such sinusoids, Le. to talk about the frequen­
cy spectra of such beams. Excellent and detailed discussions of beam spectra can be found 
in Refs [1] and [15]. We will therefore merely summarize the important results here and 
accompany them with some quasi-hand-waving in the hope of giving the reader some 
physical feeling for them. 

a, Single-Particle Spectrum 

i. Longitudinal Spectrum. The spectrum of a beam is simply the superposition of the 
signals of the individual particles. If we consider a single particle circulating in a circular 
accelerator at frequencY!rev, a longitudinal pickup at a fixed location will simply see a 
current that is a periodic delta function in time, which can expanded as a Fourier series (i.e. 
expressed in the frequency domain) to yield 

- - -
i(t) = L 8(t-mTrev} = e freY L ejnCIJ,.,J = e freY + 2e freY L cos(nCIJ,.,J} (3.1) 

m =-- n =-- n = I 

The frequency spectrum of such a "beam" will show, along with the expected d.c. current 
efrev, a current of peak amplitude 2efrev at every integer multiple of f rev• 

Eq. 3.1 describes the frequency spectrum characterizing a particle of fixed revolution 
frequency, or fixed energy, such would occur for a "coasting" beam, i.e. for motion in the 
absence of any r-f bunching (including that due to a stationary r-f bucket). In the presence 
of r-f, the revolution frequency of a particle with energy differing by !lE from the orbit 
reference energy E, will vary over a range of !¥'= ±71 f rev flE/E due to its synchrotron 
motion. (Because this variation occurs at the particle's synchrotron frequency vS' the 
revolution frequency is frequency-modulated at vs; hence, the single-particle spectral lines 
are not smeared out continuously over the range !¥" but are rather split into a series of so­
called satellite lines which span the range tJ[, and are sep~3ted by vS' characteristic of f-m 
spectra.) 

ii. Transverse spectrum. A transverse pickup (with a linear response to transverse 
displacement) will sense the particle's dipole moment, which can have both a time-indepen­
dent part (due to a "dc" offset of the orbit relative to the center of the pickup) as well as a 
time-varying part (due to the particle's betatron motion). The latter is generally of more 
interest, and we consider it first. 

If the particle's betatron motion is characterized by an amplitude A and tune Q (Le. 
betatron frequency Qfo)' the pickup will see a time-dependent dipole moment given by 

-
d(t} = e freY L ejnw,...) X A cos Qrorevt 

n =--

= Ae f rev [n to cosnru,.,.t(n+q) + n t 1 cosnru,.,.t(n~)] (3.2) 
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where q is the fractional pa.11 of Q. Note that in contrast to Eq. 3.1, where the signals at 
positive and negative, frequencies combined to produce a signal of twice the amplitude at the 
positive (Le. detectable) frequency, due to the presence of the q tenn, the negative- fre­
quency tenns OCClli' at different frequencies from the positive ones. Hence, the betatron 
motion produces two lines per frequency interval frev in the transverse spectrum. Using 
communication theory language, the transverse pickup observes a signal whose amplitude 
is modulated at the betatron frequency (see the fll'st line of Eq. 3.2), producing a pair of 
a-m sidebands. In addition, if the particle's equilibrium orbit is displaced by an amount 
Ao from the detector center, there will be additional lines of amplitude 2Aoefrev at each 
integer mUltiple of frev- iL i~ :;t4ifiudJU parlance to refer to the former signals as betatron 
lines, and the latter, as revolution or common-mode lines. As with the case of the longi­
tudinal signals, the transverse-detector signals will exhibit splitting into synchrotron 
satellites. 

b. Bunched-Beam Spectrum 

If we now consider a beam consisting of a single bunch of N such particles, we may, 
to fU'St order, treat it as a giant superparticle of charge Ne, i.e .. , having the same spectrum, 
but with each spectral component having N tin-les the amplitude. In actual fact, the situ­
ation is somewhat more complex. Unlike the idealized delta-function density, the bunch 
will have a finite time width 't', and so the frequency spectrum, rather than exhibiting the 
above infinite extent, will begin to roll off at frequencies on the order off - 1/'t'. In the 
Fermilab Tevatron, where the bunch width is on the order of 1-2 nsec, this so-called 
single-bunch roll-off frequency is several hundred MHz; in a machine such as the new LBL 
Advanced Light Source, with pulses on the order of 30 psec, the roll-off frequency is about 
10 GHz. 

As with the single-particle, the bunch will exhibit longitudinal and transverse oscil­
lations. However, the amplitudes of the oscillations will be those associated with the beam 
as a whole, the superparticle, and so will be much smaller than those of most of the indi­
vidual particles; hence the spectrallinewidths of these coherent signals will be smaller than 
those associated with the individual particle signals. This should become clearer following 
the discussion in the next section. 

If we neglect for the moment the frequency distribution within the individual lines 
(equivalent to assuming a detector with a frequency resolution greater than the linewidth) it 
follows from Eq. 3.1 that, below the bunch roll-off frequency, at each hannonic of the 
revolution frequency, a single N-particle bunch generates at each revolution hannonic an 
effective current of peak amplitude 

(3.3) 

The mean-square current, relevant for questions of signal powery will be given by 

(3.4) 

Were the same N particles to be divided equally into n equally spaced identical 
bunches, to a fixed pickup the situation would be identical to having a single bunch of 
N In particles circulating at frequency nefrev, giving a frequency spectrum with lIn times 
the number of lines (Le., only at frequencies which are multiples of nf rev)' but with the 
same peak current per line. Hence the average signal power would be down by lIn-as 
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one can readily see in the time-domain picture. For unequal bunch populations or bunch 
spacings, signals of varying amplitude would again appear at the intennediate multiples of 
IreV' the amplitude distribution depending on the details of the bunch pattern. 

Analogously, for a single N-particle bunch with a coherent betatron amplitude A, the 
"dipole current" is given by 

do«(J) = lo«(J) A = ANelrev 
and the equivalent mean-square quantity is 

c. Schottky Spectrum 

(3.5) 

(3.6) 

In an unbunched, or coasting beam, we find that, as in the case of a bunched beam, for 
a beam of N particles one observes a d-c current which is N times the single-particle cur­
rent. What is perhaps surprising is that there are also a-c signals (known as Schottky sig­
nals, after the man who first predicted their existence) produced by the.fluctuations in this 
current, and that these signals occur at the same frequencies as the single particle signals. 

A somewhat oversimplified explanation of this is as follows. In a bunched beam, the 
signals from the N individual particles add coherently (i.e., in phase) to produce a current 
which is N times the single-particle current, and hence will produce a signal power which 
is N2 times that of a single particle. In a coasting beam, the signals from the individual 
particles are uncorrelated and so the phases of their relative signals (except for their d-c 
signals, which have no phase) are uncorrelated. Hence when the signals are combined, 
they "add" in an rms sense rather than linearly, and so the total signal power will be only 
N times that of a single particle. For this reason one generally refers only to mean-square 
quantities when discussing Schottky signals. For such signals, the longitudinal mean­
square current is given by 

(3.7) 

We have introduced the quantity V1«(J)) to permit us in subsequent sections to write 
formulas for signal power which can be applied to both coherent and Schottky signals. 
Similarly we can write the Schottky counterpart to Eq. 3.6 

(3.8) 

Note that the Schottky dipole current depends on the mean-square beam dimensions. 

The utility of Schottky signals results from the fact that they reflect the behavior of the 
individual particles rather than the beam as a collective entity, and that they are present even 
when the beam is in an "unperturbed" state. In the case of Eq. 3.8, the strength of the 
Schottky signal seen in a transverse detector reflects the excursions of the individual 
particles, which are present even in a perfectly centered beam, rather than the oscillation of 
the beam centroid. Similarly, the frequency spread of the longitudinal signals represents 
the energy excursions of the individual particles, rather than the energy excursions of the 
beam centroid, a consequence of imperfect centering in the rf bucket. 
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The principal problem in detecting Schottky signals is their relative weakness. In most 
accelerators, the beam is bunched, and a comparison of the equations for mean-square 
signals (upon which we will see that detector signal power depends) in the above two sec­
tions shows that with N particles in the machine, the coherent signal produces on the order 
of N times the power of the Schottky signal. For a typical accelerator, N will be on the 
order of 1010 or greater, and so most attempts to observe Schottky signals from bunched 
beams have, despite great effon, been unsuccessful. We present below the results one of 
the few successful attempts [16], primarily because it illustrates many of the concepts we 
have been discussing. 

Observation of a Schottky signal in a bunched beam machine requires suppression of 
the coherent signal by many orders of magnitude. In the experiment we describe, per­
fonned at the Fennilab Tevatron, use was made of the fact that the coherent signal starts to 
decrease above the single-bunch roll-off frequency, the rate of fall-off depending on the 
details of the beam bunch shape. Because of the small size of the Schottky signal~ !he 
pickuQ employrAi needed to be a high-gain device, for which purpose a high-Q resonant 
cavity2 was employed. As noted earlier, the roll-off frequency for the Tevatron is several 
hundred MHz, whereas the beam-tube cutoff frequency (the highest frequency at which the 
cavity can function as a high-Q resonator) is about 2.5 GHz. The resonant frequency of 
the cavity was therefore designed to be roughly 2 GHz. 
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Fig. 4 Actual Schottky spectrum obtained at the Fermilab Tevatron 

The observed spectrum is shown in Fig. 4. Two features should be pointed out imme­
diately: The intensity scale is logarithmic, and the frequency scale has an offset of over 2 
GHz. The cavity is excited in a mode which responds to the beam's dipole moment, and 
so, because the beam is not perfectly centered within the cavity, one sees revolution lines as 
well as betatron lines. The fonner, the large peaks at roughly 50 and 100kHz, are actually 
spaced by 47.11 kHz, the Tevatron revolution frequency.3 

Note that the revolution lines are actually compound peaks-a narrow, intense peak atop 
a broad, weaker one. The fonner are due to the residual coherent signal; the latter, the 

2We will discuss in some detail the nature of such a device in Section 7 of this report. 

3The two peaks actually correspond to revolution harmonic numbers 42,892 and 42,893. 
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longitudinal Schottky signal. The relative intensities of the peaks indicate a that at 2 GHz, 
the coherent signal has fallen by over 80 dB. Had the beam had a Gaussian longitudinal 
profile, this suppression would have been hundreds of dB; the observed suppression is 
more like what one would expect from a profile resembling a "cosine-squared" distribution. 
As noted earlier, the greater breadth of the Schottky line reflects the momentum excursion 
of the individual particles within the beam, whereas the lesser width of the coherent signal 
reflects only the momentum excursion of the beam centroid. 

I 

The two peaks appearing between the two revolution lines are the betatron signals. 
Their line widths are comparable to those of the broad peaks in the revolution lines, but 
there is no evidence of the narrow peak, indicating that they are pure Schottky signals, 
uncontaminated by any coherent signal. The reason for the additional coherent-signal 
suppression in the betatron lines is that, as seen from Eqs. 3.6 and 3.8, the ratio of 
coherent to Schottky mean-square dipole moment also depends on the ratio of the mean­
square coherent betatron amplitude to the mean-square beam size; under the conditions that 
the spectrum was recorded, the former that ratio was something less than 50 dB. 

d. Summary of Qualitative Results. 

We see that the longitudinal frequency spectrum of a beam is characterized by signals 
occurring in discrete frequency bands centered about frequencies which are integer multi­
ples of the revolution frequency frey; if the beam is bunched by an r-f system operating at 
nfrev and there is a nearly uniform population of the r-f buckets, strong signals will be 
present in or near those bands which are integer multiples of nfrey, with weaker signals at 
the other revolution harmonics. These signals will begin to roll off at frequencies charac­
teristic of the bunch length. A second set of longitudinal signals, the Schottky signals, 
caused by particle-to-particle fluctuations in beam intensity and producing a signal power 
reduced in power by a factor of N, is present in both bunched and unbunched beams. 

A transverse detector will also see signals at the above frequencies for a beam which is 
offset relative to the detector. In addition, it will see signals at pairs of frequencies inter­
mediate to the revolution harmonics, due to the betatron motion of the particles. For 
bunched beams, a coherent betatron signal will be observed only if the beam is experi­
encing a coherent betatron oscillation; in contrast, Schottky betatron signals are present for 
any beam of finite width. Like the coherent longitudinal signals, coherent betatron signals 
roll off at frequencies characteristic of the bunch length. 

As a final point we note that although the coherent signals due to the individual bunches 
roll off at the above frequency, signals characteristic of motion within the bunch (such as 
would be produced by single-bunch instabilities) will appear at frequencies which are 
perforce at higher frequencies than this. The presence of such frequencies in the observed 
spectrum will therefore be indicative of such intra-bunch oscillations. 

4. Figures of Merit for Kickers and Pickups 

The parameters which we will use to describe the coupling between the input/output 
tenninals of a pickup/kicker and the beam are all defined in the frequency domain. Hence 
in the following section, all currents and voltages are to be understood as complex phasor 
quantities, as described above. We begin by discussing the response functions for kickers, 
using the Panofsky-Wenzel theorem to relate the longitudinal and transverse behavior. We 
then define the response functions for pickups, and finally, relate the two sets of responses 
using the Lorentz reciprocity theorem. 
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a. Kicker Response Functions 

i. The Kicker Constant. Perhaps the most "natural" figure of merit for a longitudinal 
kicker is the quantity known as the kicker constant, which is simply the dimensionless ratio 
of change in the beam voltage to the input voltage VK 

KII == tJE/e =.y.. 
VK VK 

(4.1 ) 

The expression for V is given by Eq. 2.1; as shown in Eq. A.2.10 (Appendix 2), under 
the constant velocity approximation and assuming the accelerating field to be a phasor, V 
can be written, apart from a phase factor, as 

v = f.' E. ejk •• ds (4.2) 

To reiterate statements made elsewhere: The exponential factor in the integrand results 
from expressing t in the time-dependent phasor as a function of the position along the path; 
both E and V will generally depend on the transverse coordinates (E will also generally 
depend on the longitudinal coordinate; V cannot). 

For a longitudinal accelerating device such as an rJ. cavity, it is common to compare 
the change in beam voltage with the instantaneous cavity voltage Vo' defined (again, apart 
from a phase factor) f4S 

(4.3) 

The ratio of the change in beam voltage to Vo is known as the transit-time factor T, which 
is then seen to be given by 

(4.4) 

As the name implies, T simply represents the reduction in energy gain due to the fact that, 
because of the finite transit time of the beam through the kicker, it may not experience the 
(time-) maximum field everywhere along its path (~ee Appendix 2 for a somewhat lengthier 
discussion of this factor). 

To define a transverse kicker constant, we need a transverse equivalent to the beam 
voltage. As pointed out in Appendix 1, under the constant velocity approximation 

M=f3c~1I (4.5) 

It is therefore reasonable to adopt as the transverse beam voltage f3c ~ l./e, whereupon 
we can define the transverse kicker constant as 

(4.6) 
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where is is understood that K 1. (and equivalently tlp 1.)can indicate either of the transverse 
directions. One can calculate K1. directly by substituting into Eq. 4.6 the perpendicular 
components of ~p as given by ~. 1 .5. A simpler approach is to calculate the (longitudinal) 
beam voltage/or the mode in whlch the device is excited as a transverse kicker and use the 
Panofsky-Wenzel theorem, Eq. 1.14, to calculate tlp.1' Combining Eqs.1.14 , 4.1, and 
4.6 gives us 

K 1. = - ~ V 1. K'II 
JkB 

(4.7) 

We use the prime symbol (,), here and elsewhere, to indicate transverse excitation, partic­
ularly in those cases where the perpendicularity symbol might either complicate or confuse 
the notation. Its presence in K'll is to serve as an explicit reminder that the transverse 
kicker constant is not obtained from the transverse derivative the "usual" longitudinal 
kicker constant (Lett the kicker constant associated with the excitation of the device as a 
longitudinal kicker). In tenns of our paradigm of the para11~I-plate electrodes, the kicker 
constant we refer to as KII would be calculated from the (longitudinal electric) fields which 
result when the plates are excited with equal voltages (of the same sign); K'II, from the 
fields when they are excited with equal voltages of opposite sign. 

ii. Shunt Impedance The drawback in K as a figure of merit is that it reflects the imped­
ance of the input circuit as well as the intrinsic behavior of the kicker electrodes: One can 
make the kicker appear to be, say, twice as efficient (in tenns of its K) by quartering its 
input line impedance, and building in an internal transfonner to attain the same Il.E (or ~) 
with half as much input voltage; however the true efficiency of the kicker, which is reflec­
ted in the ratio of tlE to the voltage on the kicker electrodes (which depends on the nature 
of the electrodes themselves, and not on the impedance of the input cable) would be 
unchanged. 

In seeking a better, if somewhat less intuitive, figure of merit than K, let us borrow 
from the practice used for r-f cavities in which a shunt impedance is defined to relate cavity 
voltage (Eq. 4.3) and power according to 

(4.8) 

For the kicker, we are most interested in the beam voltage, V = VoT, which suggests the 
relation 

p = IVo 112 /2RT 2 = IV 12 /2RT 2 (4.9) 

in which we call the quantity RT2 the kicker shunt impedance. For convenience, this 
quantity is sometimes shortened to RT2, or simply R; however, we shall use the expres­
sion RIIT2 to make it clear that it contains the transit-time factor and refers to the longitudi­
nal action of the kicker we will shortly define a similar quantity related to transverse 
motion). 

It is this quantity RIIT2 which proves to be the operative figure of merit for a kicker. 
The reason is that it relates the change in beam voltage to the input power, a quantity which 
is independent of any input transformer, and hence is a measure of the "efficiency" of the 
kicker. Moreover, looking back to the individual definitions of RU and T, we see that both 
of these quantities relate to the field within the actual kicker electrodes, and not the details 
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of the input circuit; we will see this feature more explicitly when we calculate values of 
RIlTl for particular devices in some of the following sections. 

To relateihe shunt impedance to the kicker constant, we note that the input power is 
given by V k 12Zc , where Zc is the characteristic impedance of the input line. Substi­
tuting for Vo using Eq. 4.4, we obtain the result 

(4.10) 

We can, in like fashion, define a transverse shunt impedance. In this case we relate the 
input power to the transverse beam voltage, which we have defined as f3c IIp lIe. 
Following an approach similar to that used above, we arrive at the result 

(4.11 ) 

In this definition, the transverse shunt impedance has the dimensions of a resistance, as is 
needed for kicker power calculations. This convention is used is the URMEL codes for 
calculating cavity responses. However, an alternative, and often used, definition uses the 
product Rl 'f2·ko, which has the dimensions of resistancellength (Le., displacement). 

b. Pickup Response Functions 

i. The Transfer Impedance. Referring back to the Introduction, in particular to Fig. 2a, 
we can see that for a longitudinal pickup, the "natural" figure of merit would be the ratio of 
the pickup output voltage to the beam current. By definition, such a quantity would have 
the dimensions of an impedance which, for obvious reasons, is called the longitudinal 
transfer impedance, and the defining relation is simply 

(4.12) 

For a transverse pickup, the corresponding quantity would be the ratio of the output voltage 
to the beam's dipole moment; by analogy it is also called a transfer impedance, although its 
dimensions are actually impedance divided by length. The relation for the transverse 
transfer im~ance is then 

(4.13) 

where, by definition, Vp' is a voltage proportional to the dipole moment of the beam; as 
we did previously, we use the prime (') symbol to denote transverse characteristics. 

ii. Relation Between Pickup and Kicker Characteristics. Like the kicker constant, the 
transfer impedance suffers from the fact that it depends on the output circuit impedance as 
well as on the intrinsic efficiency of the pickup. One could employ the same remedy as in 
the kicker case by defining a pickup shunt impedance. However, since any device which 
acts as a pickup can also act as a kicker, rather than defining yet another impedance, a more 
useful approach is to make use of the relations between pickup and kicker behavior, which 
we obtained using the Lorentz reciprocity theorem, to characterize a pickup in tenns of the 
corresponding kicker shunt impedance. 

As a first step, we use that result to relate the longitudinal and transverse transfer 
impedances to the respective kicker constants. If we insert Eq. 1.2 in Eq. 4.12, we obtain 
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for the longitudinal transfer impedance 

z i . ' Zp = - C EK • In d vol 
2VKIB 

W>I (/II fIx*J IlMI) 

(4.14) 

In this volume integral, values of EK and Jo are taken at a fixed time. The beam, assut11ed 
to be moving in the positive s-direction with velocity {3c, will have an s-dependence elks. 
(As noted in Appendix 2, this tenn does not arise from substituting the appropriate value of 
s into the exponential time dependence, but rather represents the spatial dependence of a 
sinusoidal wave propagating in the +s direction.) Furthermore, assuming EK does not 
vary greatly over the beam cross section, we may integrate over x and y giving 

whence Zp becomes 

J .... EK· In dxdy = EK· In e-jks 

-

Z = -~ i e-jks EK • d s P 2VK -­ptIIIt 

(4.15) 

(4.16) 

This integral differs from that in Eq. 4.2 defining KII only in the sense of s. Therefore, it 
represents a kicker excited with V K, but with the beanl waves traveling in the sense 
opposite to that when the device is employed as a p,ickup. This is not merely mathematical 
sleight of hand: For electrode systems which exhibit directional behavior (e.g., striplines) 
the direction in which the beam passes when the device operates as a pickUp must be 
opposite that which it does when the device acts as a kicker. The relation between pickup 
and kicker responses for a given electrode is therefore 

(4.17) 

with the provision that the beam sense be reversed between the two applications. 

The corresponding relation for transverse responses is obtained by differentiating Eq. 
4.17 with respect to x, 

Z' _1 Z aK'1I 
p -- c--2 ax (4.18) 

where we again use the prime to note that the kicker is excited in the transversely deflecting 
mode. We can then use Eq. 4.7 to obtain 

Z ' 1 'k Z K P=-iJ B c J. (4.19) 

Having obtained the relation between the transfer impedances and the respective kicker 
constants, we are now in a position to use Eqs. 4.10 and 4.11 to characterize the pickup 
output in terms of the kicker shunt impedance. The power from the pickup signal into an 
impedance-matched load, Zc is 
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(4.20) 

(We have used the notation vi) for the mean-square current, rather than the explicit IB2/2 
for sinusoidal currents, so that the expressions here may be easily applied to the case of 
Schottky signals; see Sect. 3.) We rnay rewrite Eq. 4.19 in terms of the electrode's 
(lcicker) shunt impedance using Eqs. 4.17) and 4,9 to obtain, for the longitudinal pickup, 

(4.21) 

Here we see that the shunt impedance (nlodified by the factor V4) serves,equally well as a 
measure of efficiency of that electrode used as a pickUp. Similarly, for the transverse 
pickup, we obtain the power 

(4.22) 

The appearance of the beam wave number kB = (J)/ f3c = 1/ 13k, in the transverse 
response means that, when acting as a kicker, a given electrode configuration will exhibit 
an efficacy which is reduced at higher frequencies relative to its performance as a pickUp. 
With this qualification, we see that high shunt impedance relates to high efficiency for an 
electrode whether used as a pickup or a kicker. 

Finally, having established the shunt impedance as a figure of merit for pickups as well 
as kickers, it makes sense to write down the relations between transfer and shunt imped­
ance. Combining Eqs. 4.10 and 4.11 with Eqs. 4.17 and 4.19, respectively gives 

and 
Zp = .vZc RII T2{2 ~4.23) 

(4.24) 

A summary of the useful relations for beam electrodes is presented below in Table I. 

c. Effect of bnpedance Mismatch 

In applying the reciprocity~derived relations, we have assumed that the voltages V k 
and V p were observed at an impedance-matched connection where no reflected waves 
were present. This is not always the case in practice, and mismatch introduces some 
modification in the relations we have derived. 

Impedance mismatch most often occurs for a resonant electrode such as a cavity. 
Without connection to a driver or amplifier input impedance, such an electrode is charac­
terized by an unloaded Q-value, Q v. With driver or load attached, the total circuit 
response is widened to !lro/ro = QL which depends on the load and how it is coupled to 
the electrode. (In some applications the degree of loading may conveniently be used to 
adjust the response width.3 At the terminals of a kicker, of course, the driver impedance 
has no effect on K or RT , but the overall efficiency of the driver is affected by any 
impedance mismatch. On the other hand, at the terminals of a pickup the output voltage 
(V p) and power at the unmatched load do depend on the loading. 

Maximum power is deHvered from a pickup when a matched load lowers QL by one­
half to Q u/2; this is the condition assumed in the Eqs. 4.17 and 4.19 for the transfer 
impedance, and Eqs. 4.21 and 4.22 for signal output power. For other degrees of loading, 
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TABLE I 

Lon~itudinal Tmnsverse 
--' .. '-----------------------------

PK == Ivf /2RIIT 2 

RIIT 2 = ZC /KII F 
Relations Between Pickups and Kickers 

Pickups 

zp =tZc KII 

Zp = ~Zc RII T2{2 

Zp == V,JIB 

Pp = VB2) RII T2/4 

K 1. = - *- V 1. K'II 

P~ == I~ J.i3c Ie F /2R~T 2 

R 1. T 2 = Zc ~ ~ f 

Z; =-tjkZcK1. 

Z; = ks ";Zc RJ. T2{2 

Zp' == Vp'/IB L1x 

BAs noted in Appendix 1. some authors defme the transverse beam voltage as simply e~.l.' omitting the 
factor of {3. Using this convention, one would simply need to replace all the k8 appeanng in the above 
fonnulas by the free-space wave-number k = role. The effect of this change will be u> re-define the 
transverse kicker constant and shunt impedance, but to leave the calculated physical quantities of inp'lt 
power and transverse momentum kick unchanged. 

it is straightforwar~ to show that the pickup signal power is reduced by a factor of 
4QL(QU - QL)IQc.f. The result for the transfer impedance is slightly more complicated, 
as It depends on the origin of the mismatch. The cavity signal is usually coupled out via an 
antenna or loop which serves as an impedance transformer. The mismatch can be due 
either to attaching the wrong load, or incorrectly adjusting the coupling for the correct load. 
In the former case, one compares the values of Zp with the same coupling but different 
loads; i:1 the latter, the same load but different couplings. As with the case of the power, 
the results can be expressed in tenns of Qu and QL' 

zwrong Zl. = 2 QL Z· 
p Qu p 

(4.25a) 

zwrong m = 2 QL ~ Qu- QL z· 
p Qu ~ p 

(4.25b) 

II' 
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5. Beam Impedance; A Simple Model 

Strictly speaking, the notion of beam impedance need not be introduced into a discus­
sion of pickups and kickers. However, doing so serves several pedagogical purposes. 
The primary purpose is to provide a simple physical picture for the beam impedance which 
also serves as a simple model for the shunt impedance, and hopefully serves somewhat to 
demystify both these concepts. It also provides a demonstration of the power and utility of 
both the Panofsky-Wenzel theorem and the concept of beam voltage. Discussion of the 
model also provides a natural way to introduce the notion of image charges and currents. 

Let us consider a charged particle moving in a conducting enclosure, such as a beam 
tube. The electric field lines emanating from the charge terminate on the walls, where a 
charge density proportional to the field is induced. For highly relativistic particles, the field 
lines are foreshortened in the longitudinal direction so that they are very nearly perpendicu­
lar to the direction of motion, forming what is essentially a two-dimensional field. Hence 
the charges on the wall appear at the same longitudinal position as the beanl particle and 
move along with it, forming an annular "image" of the beam. For a beam centered on the 
axis of a circular beam tube, the image charges will exhibit azimuthal symmetry. 

The notion of beam impedance arises· from the fact that when a particle beam moves 
through any portion of an accelerator, it generates electromagnetic fields, primarily due to 
its image charges and currents, which then act back on the beam, causing it to lose energy 
and/or undergo a transverse deflection. Considering the former case, a reasonable charac­
terization of this self-interaction would be the ratio of the particle energy loss (expressed as 
a voltage) divided by the current, in other words, an impedance; it is this quantity which 
is defined as the longitudinal beam impedance. (In like fashion one can define a transverse 
beam impedance.) 

If we now recall the case of a pickup, we realize that the output power derived from 
such a device Inust come from the work done by the beam against the fields which it itself 
generates. Moreover, these fields are precisely those which produce the energy loss 
appearing in the definition of the beam impedance. Hence, it should come as no great 
surprise that the beam impedance turns out to be directly proportional to the shunt imped­
ance. The actual factor relating the two impedances is device-dependent; however for many 
devices, zbeam is simply RT2/2, i.e. the device shunt impedance in parallel with its 
(equal) matched load. 

The notion of beam impedance is clearly more general than shunt impedance, since it 
applies equally well to devices with no external connections, for which devices the notions 
of shunt impedance and transfer impedance would be meaningless. Moreover, as defined 
in tenns of power efficiency, the shunt impedance is intrinsically a real quantity, i.e. it 
contains no phase information; the beam impedance, defined in terms of voltage, can 
contain such information. However, in the examples given below, we shall assume it to be 
a purely real quantity. 

a. Longitudinal Beam Impedance 

The models we will use to describe longitudinal impedance are assumed to be one 
dimensional, i.e. the fields associated with them are assumed to be plane "waves" which 
exhibit only longitudinal variation. Let us imagine that we have a device located in some 
portion of the beam tube; such a "device" could be a pickup electrode, an rf cavity, or even 
the wall of the beam tube itself. If we characterize such a device ( or equivalently, its 
impedance) as a simple resistance, as shown in the figure below, then any voltage im-
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pressed on that resistance, either induced by the beam or resulting from an external voltage 
source, will be assumed to produce a uniform 10IJfitudinal electric field in the region 
between points a and b (and no field anywhere else). 

LAN\I\IJ 
~~-------~------.--------beam a b 

Fig. 5 Schematic representation of a beam impedance 

On what basis is this model plausible? Recall our discussion of the beam voltage in 
Sect. 2. It was pointed out there that if one knows the beam voltage V, one knows it all: 
The value of V gives the energy change in the beam, and (by Panofsky-Wenzel) its trans­
verse derivative gives the transverse momentum kick it receives. It was further pointed out 
that the boundary condition for that (two-dimensional) field was simply the voltage change 
at the wall of the beam tube. What we are doing then, is contriving a simple mechanistic 
(electristic?) model for the generation of V. On pedagogical grounds, we have made the 
model somewhat simplistic: We assume that the impedance is a resistance, and we idealize 
the transverse behavior of the beam voltage by asserting that it is uniform across the beam 
tube. (The latter assumption will be replaced by an equally simplistic model when we 
discuss transverse effects.) 

The creation of such a field by an externally applied voltage is easily understood. An 
equally simple model can be constructed for the creation of the beam-induced field. When 
a beam current IB passes inside the beam tube, an equal and opposite beam-induced cur­
rent flows on the wall of the beam tube. At the point at which the wall current is inter~ 
cepted by the resistance R, it will produce a voltage across R given by VR = -IB R.5 

Having made that sinlple statement, it is necessary to qualify it immediately. Recalling 
that the beam is actually a sinusoidally varying current I B expU( rot - kz)], the 
instantaneous voltage across R at any instant is actually 

v R(t) = .JL f.' 10 ej (w/- kz) dz 
b-a 

CI 

(5.1) 

Evaluating the above integral, we see that V R is still a sinusoid, but with a maximum value 
of the form 

(5.2) 

where (J = k(b - a)/2. We immediately recognize the sinO/(J term as the transit- time 
factor T for a unifonn field (see Appendix 2); in this case, its appearance results from the 
4Clearly a resistance located on one side of the accelerator beam tube, as shown in the figure, could not 
produce such a one-dimensional field, and so the model is to be understood as a schematic representation of 
an azimuthally unifonnly distributed resistance. In addition, we have further simplified our one-dimensional 
y!odel by neglecting end effects, i.e. assuming the field to be unifonn between a and b. 

In our model, we assume that the entire image current flows throught Rs' The device modelled by Rs 
may not actually intercept all the image current; in fact. as we shall see in the case of devices such as 
capacitive pickups and striplines, the value of R s may reflect this fractional interception of the beam. 
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spatial sinusoidal variation of the current. However, when a particle experiences a self­
field due to the presence of an impedance, the factor T enters twice: once in the voltage 
generated across the impedance, and a second time as a reduction of the effective field 
experienced by the beam. 

b. Resonant Cavity/Resistive Wall Monitor 

There are a number of devices whose impedance in an equivalent circuit may be mod­
elled as a pure resistance; among these are resistive wall monitors and cavities at resonanc~. 
The former are constructed of (an azimuthally symmetric array of) resistors mounted in the 
wall of the beam tube-and looking suspiciously like the simple model we have been dis­
cussing-and theirs is a broad band impedance; the latter are resistive only at resonance, and 
hence are narrow band. 

We now assert, and will shortly provide a hand-waving demonstration, that a cavity 
also behaves as though its shunt impedance were similarly located in the beam tube wall; 
we further assert that when either type of device is connected to an external electric circuit, 
it behaves as though its electrical impedance were identical with its shunt impedance. A 
consequence of the latter result is that for such a device to behave as a matched source/load, 
it must be connected to the external circuit via an impedance matching device such as a 
transformer. The equivalent circuit for such a ITlodel is shown in Fig. 6. Note that the 
transformer in this model (and in all subsequent models) is assumed to be ideal, i.e. the 
only impedance it presents is the appropriately transformed impedance of the loads 
connected to it. 

Ie - ... ~ .... ---_ ... _- ..... ----_ ...... _-----_. 
a b 

(v IN ~ c) 

11- - - - - - - - - • + 
Zc f 

~P,K) 

Fig. 6 Schematic representation of resistive impedance including matched input/output 
to permit use as a pickup/kicker. 

We will now show that, if the value of Rs is taken to be that of the device's cavity 
shunt impedance,6 the model yields the correct result for the longitudinal shunt hnped­
ance and kicker constant when the device is considered as a kicker, and for the tran~fer 
impedance and signal output power, when the device acts as a pickup. Finally we will use 
the model to obtain the beam impedance of the device. 

i. Kicker Performance Predicted by Model. The input power to the kicker shown 
above is simply 

(5.3) 

If our model gives a valid representation for Rs, then according to Eq. 4.9, PK should be 
6That is, the the shunt impedance sans transit-time factor. 
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equal to «6Ele)2)/!!if2 From the model, we see that the peak voltage appearing across 
the wall resistor is Rs 7 Zc VK, because of the transit-time effect, the peak energy change 
imparted to the beam is 

V=~[ll:;VKT 'VZ; 
From Eq. 4.1, we see that the kicker constant is then given by 

(5.4) 

(5.5) 

in agreement with Eq. 4.10. Squaring Eq. 5.4, dividing both sides by Rsr-, and taking 
expectation values, we have 

}IV21 = ~}IVK2IT2 = IVK21 

RsT2 RsT2 2 Zc Q.E.D. 
(5.6) 

ii. Pickup Performance Predicted by Model. We now wish to see if the model 
predicts the correct output power and transfer impedance. Assuming that the external load 
is correctly matched, our model predicts that the peak voltage developed across Rs due to a 
(peak) beam current IBis 

(5.7) 

This leads to an output voltage 

v = I B Rs T ~ rg; 
p 2 'Vii; (5.8) 

which in turn gives a transfer impedance of 

(5.9) 

in agreement with Eq. 4.23. From Eq. 5.8 we can also calculate the output power 

Pp = ~(IB Rs T ~ {Z;)2 ) __ 1 = (IB )2 ) Rs T2 
2 'V Ii; Zc 4 

in agreement with Eq. 4.2 . 

(5.10) 

It should now be apparent where the extra factor of 1/4 in Eq. 4.21 (relative to Eq. 4.9) 
comes from. In the case of the kicker, we compared the (square of the) beam voltage gain 
to the power into the kicker (Le. neglecting any power dissipated in the power supply's 
internal impedance). In the case of the pickup, firstly the existence of a matched external 
load decreases the device's apparent impedance (and hence the total power dissipated by a 
given current) by half; secondly, half of that reduced power is dissipated in the impedance 
of the device itself, so that only 1/4 of the power which would have been dissipated in the 
unloaded device itself is available to the external matched load. Similar considerations will 
be seen to apply to Eq. 4.22 for the transverse case. 
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iii. Beam Impedance We have now seen that the longitudinal interaction with the 
beam of a cavity at resonance or a resistive wall can be modelled as a series resistance equal 
to the device's longitudinal shunt impedance. It now remains to calculate the beam imped­
ance of such a device. 

Using the expression in Eq. 5.7 for the voltage induced by the beam in the wall imped­
ance, and recalling that an additional factor of T appears in the voltage whi~h acts back on 
the beam, we see that the amplitude of the beam voltage is just (-)IB R T /2. Hence the 
longitudinal beam impedance, which is just the (negative of the) ratio of ~am self-voltage 
to beam current is given by 

(5.11) 

Note that if the device were unloaded, the beam impedance would simply be equal to the 
shunt impedance (using our convention that that impedance includes the square of the 
transit-time factor). It might appear that this is a universal result, i.e. true for any device 
whose shunt impedance is resistive; however we shall see in the following section that this 
is not the case. 

c. Transverse Impedance 

The model we will be using for transverse impedance is similar to that for longitudinal 
impedance, but will of necessity involve two-dimensional, rather than one-dimensional 
fields, i.e. the fields must exhibit transverse variation. A simplified model for a transverse 
impedance (such as a pickup) is shown below; as with the longitudinal case, the same 
model will apply for a transverse kicker as well. However, we begin by considering its 
impedance/pickup behavior, i.e. its response to a beam. 

v+ 

~IB-tll...l"~ 1+ uv;;vvJ T 
-t- ------------------_. 2b 

L r'WYY1v~ 
Fig. 7 Schematic representation of a transverse beam impedance 

The image currents produced by the beam will divide between the two resistances; in 
contrast to the longitudinal impedance, if the beam is displaced from the centerline of the 
device, the currents will divide unequally. Throughout the discussion, we will assume 
that this division varies linearly with the beam displacement, i.e. 

1+ = (IB /2) . (1 + x/b) 

1_ = (IB /2) . (1 -x/b) 

(5.12a) 

(5.12b) 

Note that if such a device is actually used as a pickup, the difference of the output voltages 
V + and V_will be proportional to J B x, the desired output for a transverse pickUp. 
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To use the model to describe kicker behavior, one assumes equal but opposite voltages 
±VR to be induced across the two resistors. Using the same linear approximation, one fur­
ther assumes that the longitudinal beam voltage in the region between the resistors varies as 

(5.13) 

Since the 10l'lgitudinal kicker constant is directly proportional to the longitudinal beam 
voltage, and V 1. V(x) = av/itx = VR/b, we have from Eq. 4.77 

.-L ' ---L' ---L A fR:T2 
K1. = - j kB V 1. K/I (x) = - j kB b K" (b) = - j kB b 'V Yc (5.14) 

Again, we have used the notation KII ' in Eq. 5.14 to emphasize the fact that the longitudi­
nal kicker constant referred to is the one associated with the excitation mcx:le for which one 
wishes to calculate K 1.' As we shall see, for many "devices" (e.g. resistive walls), the 
same resistance can be used to characterize both the longitudinal and transverse imped­
ances; in such a case KII'(b) will have the same value as KII for the longitudinal mode. 
For devices such as striplines, we shall see that this is a reasone l:>le approximation; on the 
other hand, for devices such as resonant cavities, the transverse excitations not only are 
almost always associated with impedances different from the longitudinal ones, but occur at 
different frequencies. 

We can now use Eq. 5.14 in conjunction with Eqs. 4.10,4.11 and 4.23, 4.24 to obtain 
the following simple relations between the shunt impedances and transfer impedances 

Rl r2 = Ru (b) r2 (": r 
Zp' = Zp(b) /b 

(5.15) 

(5.16) 

where in Eq. 5.15 we have dispensed with the "prime" notation, and restored it to its 
original meaning in Eq. 5.16. As was the case with Eq. 5.14, for those devices for which 
the same resistors can be used to model longitudinal and transverse impedance, the longitu­
dinal impedances in Eqs. 5.15 and 5.16 can be replaced with those corresponding to the 
longitudinal excitation mode. 

One final note: For a device such as a resonant cavity, the individual resistances have 
no physical significance, so there is no actual differencing of two signals (the model simply 
says that the cavity "behaves as if' it were taking such a difference). On the other hand, for 
devices such as resistive wall monitors and striplines, one can get separat~ output vol­
tages. For such devices, the sum of the output voltages V + and V_will be proportional to 
the total current I B, whereas the difference signal will be proportional to I fJ x; in other 
words, depending upon how one combines the output signals for such a deVIce, it can be 
used as either a longitudinal or a transverse pickUp. g 

71t is perhaps worth repeating yet once more the importance of the Panofsky-Wenzel theorem. By 
implicitly taking into account the electromagnetic relation between the longitudinal fields and the transverse 
deflecting fields, it has made it possible for us to explain transverse electromagnetic effects using a 
longitudinal, low-frequency ac-actually a time-varying dc-model (Plus transit-time effects). 
SIn fact, if a 1800 hybrid is used to combine the sisnals, it can provide both sum and difference 
outputs, thereby enabling the device to act as both a longltudinal and a transverse pickup simultaneously. 
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d. Resonant Cavityl Resistive Wall 

The mooel for a transverse resistive impedance is shown in Fig. 8. As discussed in the 
preceding section, the value of the Rs used in modelling the transverse impedance may, in 
the case of an actual resistance, be the same as that for the longitudinal impedance,9 and 
the combiner element will be a piece of actual hardware; in the case of a cavity, the value of 
Rs will almost certainly be different from the longitudinal value, and the combiner element 
is symbolic. As was the case for the longitudinal nlodel discussed earlier, an ideal 
transfonner is included for purposes of impedance match\~ng . 

18 

• ____ b __ 

Zo 

mv+-i::l--
.~ t 2 As 
x 

2b 6 
-l----------------------

~ 
L 

2 As 

mv_-.~ .. 
V_ m 

Zc 

I .. _-----

Fig. 8 Schematic representation of transverse resistive impedance including matched 
input/output to permit use as a pickup/kicker. 

V(P,K) 

i. Kicker Performance Predicted by Model As with the longitudinal case, the input 
kicker power is given by 

(5.17) 

Assuming a matched combiner, V + will be V KlfI. For proper impedance matching, m 
will be equal to Y 2R sIZe , so that the transverse kick will be given by 

i1pl.f3c = _ ~l avB = _-1. _1& VK T 
e jk ax jk 'V Z; b 

(5.18) 

Substituting Eqs. 5.17 and 5.18 into the definition of R 1. T2 (Eq. 4.11) gives 

9With the original resistance split into two parallel branches, each branch has resistance 2Rs' 
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Rl.T2= (,1pJftc/e)2 = &yl T2 b. 
V~ / Zc Zc kj b2 vi 

= Rs T2 = Rs T2 (~Blb)2 
kib 2 

(5.19) 

Equation 5.19 is susceptible to two interpretations. The most straightforward one is to 
to re~ard the transverse and longitudinal models as independent (as they are, say, for 
cavities), and regard Eq. 5.19 as defining the value of Rs required to give the correct 
transverse shunt impedance. On the other hand, for devices for which the same Rs can 
represent both the longitudinal and transverse impedances, Eq. 5.19 says that the trans­
verse shunt impedance is the obtained by simply multiplying the longitudinal shunt imped­
ance by a factor of (';;Jb)2. Note that under either interpretation, if we assume Rs to be 
frequency-independent, then Eq. 5.19 says that the device's efficacy as a transverse kicker 
falls off with increasing frequency, consistent with the observations made earlier in Sect. 
t b when discussing the Panofsky-Wenzel theorem. In fact, as we shall see, the factor is 
present in the expression for transverse shunt impedance for a wide variety of devices. 

ii. Pickup Performance Predicted by Model From Fig. 8, we see that with the exter­
nal matched load paralleling the device impedance, each resistor present to the beam an 
impedance of Rs' Denoting, as per Fig. 7, the upper and lower currents as f±, we have 
for the voltages across the respective resistances fiRsT, and for the voltages in the 
respective output lines 

(5.20) 

whereby, using the linear approximation in Eqs. 5.12a,b for f±, the voltage out of the 
(differencing) signal port is given by 

vp=~i T(J+-I+)=/~: fZ;R;T (5.21) 

Hence the power output into a matched load of impedance Zc is 

(5.22) 

which is just the expected result; in other words, the value of Rs which gives the correct 
transverse kicker shunt impedance properly predicts the transverse pickup perfonnance. 

iii. Beam Impedance The standard definition for transverse beam impedance is 

Z =' Clpl.c Ie 
.L -J IBXB (5.23) 

where flp J.. is the transverse kick due to to the fields generated by the beam itself, and xB 
is the transverse position of the beam. To calculate !lp 1 we need to know the self-induced 
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beam voltage at the position of the beam. From Eqs. 5.12at b we see that the beam induces 
across the two resistances equal and opposite voltages of 

(5.24) 

(There is also a "sum" voltage" equal to I B R ~T; because this produces a beam voltage with 
no transverse gradient, it is of no interest in ciuculating !lp 1.) From Eq. 5.13, we see that 
the voltages in 5.24 give rise to a beam volta~e10 

V = _Ioxo Rs T ~ T = _Ioxo x Rs r 2 

2b b 2b 2 

Applying the Panofsky-Wenzel theorem gives 

flp ~: _ -1. av = _..L IOXB Rs T2 
1 jm ax jm 2b2 

Inserting this expression into Eq. 5.23 gives 

Z _J..Rs r2 
1 - ko 2b2 

(5.25) 

(5.26) 

(5.27) 

where ko = role is the free-space wave number. Comparison with Eq. 5.18 shows that 

(5.28) 

As with the longitudinal beam impedance, the factor of 1/2 is due to the presence of the 
(equal) external load. Note that had the factor of f3 been included in the definition of Z.L, 
as it is in the definition of the transverse beam vo1tage~ the right hand side of Eq. 5.27 
would have simplified to Rl T212~B. Similarly, were we to compare with the alternate 
definition of transverse shunt impedance .R 1. r 2·ko(see the discussion following Eq. 
4.11) which we will define as R 1. alt, we see that 

Z = lR alt ~~ 
1 2 .L ~i 

(5.29 

i.e. with a consistent convention regarding the inclusion of f3 (or in the limit of f3 -+ 1), 
Z1 for the unloaded device would be the same as R1.a1t. 

Two final notes: For devices such as resistive walls, where the same Rs applies in 
both longitudinal and transverse cases, we can U3e Eq. 5.11 to rewrite Eq. 5.28 to a fonn 
which may be familiar to those having some background in accelerator design 

(5.30) 

lONote the presence of both an x and an XB term, since this is the beam voltage at any position due to a 
beam at XB' 



where korev is the wave number associated with the particle revolution frequency, and n 
is the revolution hannonic number corresponding to the frequency of interest. the" 1 " in the 
numerator results from the assumed one-dimensional nature of the transverse field. 
Secondly, the use of two resistors has been necessary for modelling transverse kickers 
and pickups and relating them to beam impedance, and also simplified the discussion of the 
latter quantity. However, for transverse beam impedance alone, a single resistance, distri­
buted azimuthal Iv as postulated in conjunction with the longitudinal model, would have 
sufficed; a transverse self-voltage would have resulted from the non-uniform distribution of 
the image currents in the distributed resistor. Because the resulting beam voltage distribu­
tion would have been two-ditnensional, as well as for the other pedagogical reasons cited, 
we elected to stay with the two-resistor model throughout th~ discussion. 

C. PROPERTIES OF SPECIFIC DEVICES 

Pickups and kickers comprise a wide panoply of electromagnetic devices. The choice 
of a given device for a particular application will depend on such things as the required 
strength of coupling to the beam (I.e. the shunt impedance), bandwidth, and overall length 
(which may be constrained by the amount of available "real estate" in the accelerator). As 
we shall see, the choice of a particular type of device will entail a trade-off of these quanti­
ties against one another, and so the requirements of the application will strongly influence 
that choice. For example, r-f acceleration requires high power, i.e. efficient coupling, but 
can be accomplished using a single frequency, Le., narrow bandwidth. On the other 
hand, for beam sensors where a large number of devices is desirable, especially for com­
pact rings, smallness in size may be a driving consideration. Moreover, due to the large 
peak currents in many electron machines, not only may the beam sensors in such machines 
have weaker coupling, but because beam impedance is closely relRted to shunt impedance, 
having many sensors with strong coupling may be positively undesirable. 

In the sections which follow we will examine a variety of electrodes that are used as 
pickups and kickers. We will describe their basic operation principles, and obtain expres­
sions for their coupling parameters,in many cases giving numerical values for these param­
eters, and mention typical applications. Equally important from the point of view of these 
notes, these derivations will illustrate the application of the results of the first part of this 
report to calculating properties of actual devices. 

6. The l{esonant Cavity 

Conceptually, one of the simplest electrode systems is the cavity resonator; for simple 
shapes its fields are easy to visualize and are approximately calculable in closed fonn, so 
that its response (within its resonant bandwidth) is readily predictable. Because of its very 
efficient coupling to the beam, it finds widespread use. One of its most common applica­
tions is as the source of the accelerating ruf voltage, in which it acts as a longitudinal kicker. 
It is well suited for detecting or controlling by feedback particular modes (Le., modes at a 
particular frequency) of beam instability. As a pickUp, it finds application in situations 
where the beam signals are weak, as was the case for the Schottky signals shown in Sect. 
3c. 

In its function as an accelerating structure, the cavity is excited in its lowest TM mode, 
producing nearly unifonn longitudinal electrIc fields, at least in the region traversed by the 
beam. To function as a transverse kicker, it must be excited in a higher order TM mode 11 

TIRecaJl from the Panofsky-Wenzel theorem that a transverse kicker requires a longiludinal electric field. 
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which, while again usually uniform in the longitudinal direction, exhibits a transverse 
gradient at the beam location. Used as a pickup it will respond to transverse beam signals 
at the frequencies corresponding to those modes at which it can act as a transverse kicker. 

a. Longitudinal Kicker/Pickup 

lClIL 9110-2112 

Fig. 9. Fields in longitudinal cavity-elecb'Ode. 

Let us begin by considering the square cavity shown in Fig. 9. From reciprocity we 
know we need only calculate its performance as either a pickup or a kicker. It twns out iliat 
the latter is by far the simpler, particularly if we assume that for moderately sized beam­
tube apertures the cavity can be treated as a closed rectangular box. In particular, if we go 
back to Eq. 4.9, the detlning relation for the kicker shunt impedance, we find that all the 
terms are calculable in closed form. Using the conventional expression for the energy input 
to a cavity at resonance, we may rewrite Eq. 4.9 as 

RIIT2 =~=l y2 
2P 2 OJ,U/Qu 

(6.1) 

where Qu is the Q-value for the unloaded cavity, (J), is the resonant frequency, U is the 
stored energy within the cavity, given by 

U = t Eo L E2 d vol · (6.2) 

and V, the beam voltage is given by the (by now, hopefully, familiar) expression 

V = f elkz Ezdz (6.3) 

The lowest cavity mode with maximum longitudinal electric field along the centerline is 
mode TM 11 (), for which the wavelength is It = f! b and the electric field is 
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E = Ez = Eo cos 1lX cos try 
b b 

(6.4) 

uniform in the zMdirection. Inserting this into Eq. 6.3 at x = y = 0 gives 

(6.5) 

where we again see the familiar transit time factor, with f) = (J)rlJ2v = ko 1J2{J. From Eq. 
6.4. we find 

(6.6) 

(Eq. 6.6 holds for any TMmnO mode; however, only those with both m and n odd are 
useful for a longitudinal kicker.) Substituting in Eq. 6.1 we obtain 

(6.7) 

where Z = (EoC)-l = 1/~ eJJ.1.o is the impedance of free space (sometimes denoted in 
electrical engineering texts bX 17). We can generalize this to the case of an arbitrary 
TMmno nlode by replacing it = fX b with 

it = 2b/Ym 2 + n2 (6.8) 

whereby Eq. 6.7 becomes 

RIIT2 = ..8.. L ZO QT2 = 960 L QT2 ohm 
1t'itm2 +n2 m2 +n2 it 

(6.9) 

As an example of another shape, for a circularMcylinder (pillbox) cavity, we find that the 
shunt impedance for the lowest longitudinal TM mode (TMoIO) is given by 

(6.10) 

in which POl (the first zero of J o(x»= 2.405 giving 

(6.11 ) 

a result nearly identical with that for the square cavity 

Using .e -dependence of Qu for a closed box cavity, we find that a broad maximum 
value of the quantity I.QT21it occurs for f3=1 at f) = 1.37 radian at which I. lit = 0.44 and 
T2 = 0.51. At that optimum length, the simple cavity then gives 
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(6.12) 

By modifying the cavity shape (e.g., reducing the longitudinal gap in the region immedi­
ately surrounding the beam tube), this figure may be increased, principally due to increas­
ing the transit-time factor, by about 25%. In these equations, the unloaded quality factor 
Qu is used. Values for this quantity (for a non-superconducting cavity) may be as high as 
30,000 at 1 GHz, and exhibit a frequency variation of (ff"ro. 

One must be able to couple power in or out of the cavity (depending on whether it is 
used as a kicker or a pickup), usually done using a loop or stub antenna (represented 
schematically by a transformer in Sect. 5). For maximum efficiency, one uses matched 
coupling, thereby reducing the Q of the circuit by a factor of 2. As discussed in Sect. 4, 
under this matched condition, the power out of a longitudinal cavity pickup will still be 
given by Eq. 4.21, where one is to use the unloaded Q in the expression for RIIT2. (The 
response width of the cavity will of course be given by the loaded Q, i.e. lloiOJ = 2/Q.) 

. Similarly the transfer impedance for a matched cavity is given by Eq. Eq. 4.23, where 
again, one uses the unloaded Q in calculating RIIT2. Assuming a standard output imped­
ance of Zc = 500, the transfer impedance will be given by 

Zp = 37 fQ ohms (6.13) 

'The effect of impedance mismatch has been described in Sect. 4c. 

b. Transverse Kicker/Pickup 

As with the longitudinal cavity, we begin with the definition of shunt impedance, given 
in this case by Eq. 4.11. Inserting the expression for cavity power and using the Panof­
sky-Wenzel theorem, we obtain 

2 
R T2 = (/1p{3c/e) = I..L aVj2 ~ 

1. 2P \kB ax 2ro,.U 
(6.14) 

where again U and V are given by Eqs. 6.2 and 6.3. 

The lowest order on-axis x-deflecting mode is the the TM210; the wavelength is again 
given by Eq. 6.8, which for this mode takes the value 2b/5, and the electric field is 

E E E · 2m try b2 = Z = 0 Sln b cos b (6.15) 

Proceeding as with the longitudinal cavity, we obtain the result 

R1.T2 = ~ Zo f32 L QT2 = 154 [32 L QT2 
25n A A 

(6.16) 

where T has the sanle definition as in Eqs. (6.5). For the general TMmnO tnode (for an 
x-deflecting kicker, m must be even, and n odd) this becomes 
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2 
Rl.T2 = £l Zo f3 m 2 QT2 = 960 f32l m 2 QT2 (6.17) 

TCA,m 2 +n 2 m 2 +n 2 A,{m 2 +n 2f 

For the TM210 mode (and J}=1), maximum I,Q'f2/A occurs at (} =1.41, for which value 

(6.18) 

If the cavity is used as a transverse pickup, assuming its output is matched into a 50 n 
output impedance, Eq. 4.24 gives for the transfer impedance 

Zp' = 20.5 koVQ aIm (6.19) 

It was a cavity SU~~l as this[17] that was used to obtain the Schottky spectrum shown in 
Sect. 3. The cavity, nominally 15 cm on each side, was machined of aluminum and had 
the following properties 

f = 2.045 GHz 

RJ.T2 =29 n 
Q 
Qu =9500 
Zp' = 81 x 1()3 DIm 

The reduced RIQ (relative to that prr..dicted by Eq. 6.21) is probably due to the fact that 
the operating frequency was sufficiently close to the aperture cut-off frequency (=2.5 GHz) 
that the penetration of the fields into the beam tube made the closed-box model of the cavity 
only approximate. 

7. The Capacitive Pickup 

R 

. 
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Fig. 10. Schematic Representation of Single-Plate Capacitive Pickup 

We now consider the behavior of the device we have been using as the illustrative 
model of a pickup/kicker electrode, the isolated plate(s) in the wall of the beam tube. For 
simplicity we begin our treatment using a single-plate, as shown schematically in Fig. 10. 
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Because such a device behaves essentially as a pure capacitance, it cannot act as a matched 
load; hence, in its "pure form" it is of limited utility as a kicker. One way around this 
limitation is to "resonate" the capacitor using a parallel inductance, resulting in a device, 
like the cavity, which has a high, resistive, shunt impedance over a relatively narrow 
bandwidth; we will discuss this technique later in this section The other f s to lengthen the 
plate so that it becomes a transmission line, or stripline, with a characteristic impedance; 
this approach will be discussed in the following section. 

For a variety of reasons, it is useful to analyze the capacitive pickup using image 
currents, rather than by treating it as a kicker and using reciprocity. First, the reciprocity 
approach is complicated by the impedance mismatch. Second, for those problems for 
which the image-current approach is applicable, situations in which the device is short 
compared to the beam wavelength, one can generally employ an intuitive approach to 
solving them. Finally, the image-current approach is pedagogically useful in illustrating 
some of the complementary aspects of the time- and frequency-domain pictures. 

If we imagine the pickup plate in Fig. 10 to be of length .I, then the image-current 
analysis will be valid at frequencies for which ~ > L. Recall from our discussion of 
beam spectra from Sect. 3, that for a machine with every bucket fuled, the lowest frequen­
cy (strong) line in the coherent spectrum is that of the rf itself. Hence the above require­
ment is equivalent to saying that if we wish to observe the beam at the rf frequency, the 
pickup must be short compared to the bunch-to-bunch spacing (physically quite reason­
able). If, on the other hand, we want to be able to observe the beam spectrum up to the 
single-bunch roll-off frequency, then the pickup must be short with respect to the length of 
the individual bunches. 

~ a. The single-plate capacitive pickup 

When the capacitor plate, or button, in Fig. 10 is exposed to the electric field of the 
beam, the image charge on the plate will be related to the beam current I B by 

q =-gOB//k (7.1) 

where q and I B are phasor quantities, I, is the effective electrode length, and the geomet­
ric factor g has the same significance as in Green's reciprocation theorem (Sect. la) of 
fractional image charge (per unit length). The latter two quantities are detennined by the 
electrode size and distance from the beam I B of positive particles; if the electrode complete­
ly encircled the beam, the factor g would be unity. 

Associated with q is a charging current Ie = dq/iJt = j(J)q which flows through the 
series combination of Rand C, causing a voltage across R of 

v -' R _ I . wL R 
- - jOJq 1 + jcd?C - Bl g f3c 1 + jcd?C (7.2) 

which, from Eq. 4.12, yields a transfer impedance of 

Z-'Lk R 
p - j g B 1 + jOJRC (7.3) 

Although with an unmatched load the equations for shunt impedance are not strictly appli-
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cable, we can use them to find an effective RT2 for this pickup case: 

(7.4) 

At low frequencies, the signal is proportional to the rate of change of beam current, but 
above d?C ;::: 1, the capacitance is said to "integrate" the signal and the resulting response 
is 

Zp-+ g llf3cC (7.5) 

just the result we would ha,~e obtained had we assumed that the voltage across C (and R) 
was simply qC, i.e. that the charge on the grounded plate of C instantly equilibrated to the 
image-current charge. Note that for all the above equations, for an arbitrarily shaped 
electrode of area A at a distance a from the beam, we can approximate the product g I, by 
A/2na, so that we can rewrite Eq. 7.5, for example, as 

Z-+ A 
P 21l'a {3cC 

(7.6) 

and similarly for Eqs. 7.3 and 7.4. This region of flat response is often used for the 
observation of beam current versus time with a wide frequency range; however, because it 
calls for RC > 11(J), extending the region to lower frequencies usually entails raising C, 
i.e. reducing the flat-region gain. 

Capacitive pickups are used at the LBL Advanced Light Source (ALS) as beam-position 
monitors. The ALS is a 1.5 Ge V, high-current electron synchrotron storage ring, requiring 
a large number of such monitors, and so, as mentioned earlier, these conditions dictated a 
small-sized, low-impedance pickUp. The electrodes are in the form of roughly 1 cm diame­
ter discs located approximately 2.5 cm from the beam, and having a capacitance of approxi­
mately 25 pf. The output is fed directly into a 50 ohm coaxial line (which therefore serves 
as the load "resistor"), so that the low-frequency roll-off point is roughly 125 MHz, which 
is low enough to permit observation of the strong coherent line at the fundamental of the rf 
frequency, 500 MHz. A rough estimate of the transfer impedance using Eq. 7.5 gives .07 
ohms, in reasonable agreement with the measured value of 0.1 ohm. The corresponding 
shunt impedance (based on the latter number) gives 0.8 mQ, so that even with hundreds of 
such electrodes in the machine, their total beam impedance of only a fraction of an ohm. 

b. The Resonated Capacitive Pickup 

By placing an inductor in parallel with C, as in Fig. 11, we not only get a stronger 
response (albeit over a narrower frequency band), but we obtain, at resonance, a resistive 
device which can be made to serve as a matched load, and hence used as a kicker. Under 
these circumstances, the external resistor is no longer an intrinsic part of the circuit (e.g., 
necessary to provide a charging path for C, and so R in Fig. 11 will be used to represent 
the total circuit losses due to the combination of the pickup and the inductor. We begin our 
discussion by considering a long-plate device, in some sense a prologue to the stripline 
electrode described in the next section, and then consider the limiting case of a resonated 
button capacitor. 

Let us consider the capacitor plate as a center-driven open transmission line of total 
length L and characteristic impedance ZL' From standard transmission line theory we 
find that the open line presents at its center an impedance of - (j/2) ZL cot (kLL/2) (plus 
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losses), i.e. for kLL < 1r it behaves like a capacitance. If we denote the unloaded quality 
factor of the circuit by Q, at the resonant frequency, Q = Rro,C, so that 

R = t Q ZL cot (kJ2) (7.7) 

where in Eq. 7.7, kL is now the transmission-line wave number at the resonant frequency. 

~R 
ZL I 

, I~:~o 
ZL 

, ... P, ~I 
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Fig. 11. Resonated Capacitive Plate 

IT we excite the plate as a kicker with a voltage Vo at the center point, the voltage at the 
ends of the line (i.e., the plate) will be V (J St.'.C (kLLI2). If we assume that the longitudi­
nal fields at the ends of the plate are concentrated in a distance short compared with l/kL 
so that the transit time factor associated with them is negligible, the beam voltage at the 
outer wall, as defined by Eq. 4.2, can be approximated by 

(7.8) 

where the inequality signs in the above integrals are merely to indicate that the integration 
limits are sufficiently beyond the ends of the plate to include the full effect of the end-gap 
fields. Using the arguments made at the end of Sect 2, we can now obtain the beam 
voltage at the location of the beam which, after some rearrangement of tenns gives 

V 11 2' V sin (kB42) 
= g Y waiF 'J g 0 M 

cos (kLD2) 
(7.9) 

We can now use Eq. 4.9 to obtain the shunt impedance, by noting that the power to the 
kicker is simply the power dissipated in R, namely Vo2(lR, whereby 

R r 2 2 Q Z 2 sin2 (kB1l2) ,,= £g 
cos (kLL/2) sin (kLL/2) 

(7.10) 

from which, using Eq. 4.23 with Zc = Ro' we obtain 
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IZ~ = g sin (kBL/2) I Ro ZL Q -
"V cos kL 112 sin k L L 

(7.11 ) 

To fmd the short-plate or button limit, wr- apply the usual small angle approximations to 
Eq. 7.11 and convert the line impedance to the total capacitance using 

(7.12) 

to obtain 

(7.13) 

Comparison with Eq. 7.5 shows that the transfer impedance for the resonated capacitive 
button is a factor of Ql2 greater than the high-frequency limit of the resistively loaded one. 

Because the single-plate g-factor is position-dependent, it is customary to use a pair of 
plates, adding their signals to obtain a longitudinal signal, and differencing them to obtain a 
transverse one. We will defer a detailed discussion on sum and difference behavior, , as 
well as the relevant g-factors and methods by which they can be calculated, until the fol­
lowing section on stripline electrodes. 

A recent application of tuned-plate detectors for measuring the position of small extrac­
ted beam currents at Fermilab [18] has been able to resolve transverse beam position to 
within 0.1 mm at a beam current of 1.7 x 10-8 ampere using plates one meter long. The 
circuits operate at 53.1 MHz (the Tevatron rf frequency, and hence a frequency at which 
there is a strong coherent signal) and have an unloaded Q of about 380. 

8. Stripline Electrodes 

We have referred earlier to the use of stripline electrodes as pickups/ kickers~ and 
mentioned that in a sense the stripline pair can be thought of as a realization of the parallel­
plate pickup in which the electrode structure has a characteristic (real) impedance. We 
begin this section with a description of the electrode structure and the electromagnetic 
fields. Following this we will calculate the various response functions; for pedagogical 
purposes, we will analyze the pickup behavior directly using the image-current approach, 
as well as obtaining it from the kicker performance using reciprocity. 

a. Stripline Geometry and Electromagnetic Fields 

A schematic model of a stripline electrode pair is shown in Fig. 12. Each of the 
stripline plates with its adjacent ground plane (walls) forms a transmission line (for TEM 
waves) of characteristic impedance Zv The output signal line is likewise assumed to be of 
impedance ZL; typically the output line impedance will subsequently be transforme.d to 
some standard output impedance ZC' In the center (away from the ends) of these short 
lines the fields are purely transverse and propagate at a line velocity vL' That velocity 
would be the velocity of light for smooth two-dimensional conductors, but may be reduced 
by the presence of magnetic or dielectric media or by longitudinal variations in the cross 
sections of the conductors. Excitation of/by the beam takes place at the gaps at the ends of 
the line, where longitudinal fields occur. 
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Fig. 12. Schematic representation of a pair of stripline electrodes. The left-hand figure views the 
structure looking along the beam; the right-hand figure, looking perpendicular to iL 

Although concentrated in the region of the plates, the fields of each line extend into the 
region between them (as of course they must, in order for the electrodes to interact with the 
beam) where they overlap. The resulting coupling of the two lines produces two 
characteristic modes of joint excitation, as shown in Fig. 13. In the first of these, the 
voltages on the upper and lower striplines are of equal magnitude and are in phase; in the 
second, they are also of equal magnitude but 180· out of phase. The fonner mode, as we 
shall see, is associated with the device's use as a longitudinal pickup/kicker; the latter, as a 
transverse one. Because of the relative phases of the individual signals, these two modes 
are frequently known as sum and difference modes, respectively. It generally turns out that 
the two modes have slightly different characteristic impedances, a complication we shall 
usually ignore in the following discussion. 12 Because in either the sum or difference 
mode equal signals appear on both striplines, if they are symmetrically driven and/or 
loaded, we can treat the two striplines as independent transmission lines, each with a 
charactenstic impedance twice that of the combined line, rather than as a single bi-filar line. 

Fig. 13. The sum (left-hand figure) and difference (right-hand figure) modes of a stripline pair. The 
"field" lines represent equipotentials of the beam voltage, or more accurately, equipotentials 
of the equivalent two-dimensional electrostatic problem (see text). 

12The situation is analogous to that of the coupled motion of two identical pendula. That s~stem has two 
characteristic modes in the first of which the two pendula oscillate in phase, in the seconCl 1800 out of 
phase; analogous to the two different stripline impedanCes, the two pendulum modes have different oscilla­
tion frequencies. 
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b. Pickup Analysis Using Image Cwrents 

Let us depart from our usual practice, and regard the current shown in Fig. 12 as being 
a short pulse in the time domain, iB(t). We assume that each of the plates intercepts a 
fraction g of the image current (we neglect for the moment any possible distinction 
between the g's associated with the two modes of excitation). 

When the pulse reaches the upstream end of the stripline, it repels positive charges into 
the output line and along the stripline. Since both lines are of impedance ZL, half the 
image charge goes into each, and a signal of! giB(t)ZL propagates both in the output line 
and downstream (with velocity =:s c) on the stripline. At time Llc later the beam, also 
assumed to move at c, and this latter pulse both arrive at the downstream end, where the 
departing beam releases a negative current pulse of - giB' As at the upstream end, the 
pulse divides, with the downstream half cancelling the positive pulse from the upstream 
end, and the other half propagating upstream,13 where it enters the output line at time 
2L/c, and is seen as a negative pulse of voltage - ~ giB(t)ZL' Hence the pulse emerging 
from the output line is a bi-polar pulse whose two lobes as separated by time 2L/c. If 
one Fourier analyzes the response to an infinitely sharp pulse of unit amplitude, one obtains 
the the response function for a single stripline 

(8.1) 

The single-plate g-factor is (transverse-) position sensitive" However, to frrst order 
the sum of the g-factors of the upper and lower plates, which we will define as gll' is 
constant. Hence by summing the output of the two plates, we obtain a relatively posiuon­
independent longitudinal signal which is simply proportional to (tIff) gll.14 If we then 
transfonn the signal to a "standard" output impedance Zc (e.g. 50 ohms) we obtain for the 
longitudinal transfer impedance 

Zp = ~ZL/C gil ej (tr/2 - k..lJ sin koL (8.2) 

Because the difference in the g-factors of the two plates is to first order proportional 
to t,he transverse position of the bearn, we can obtain a transverse signal by taking the djf­
ference of the signals from the two striplines. To obtain a position-independent transverse 
g-factor gl.' we would need to divide the difference in the individual g-factors by x; to 
keep g.l dimensionless, we divide instead by x/b, where b = h/2 is the half-gap. Using 
the definition of transverse transfer impedance (Eq. 4.13) and again transfonning to an 
output impedance of Zc ohms, we obtain the result 

(8.3) 

We will defer discussion of Eqs. 8.2 and 8.3 until the next subsection. 

13Note that no signal appears at the downstream end (this would have been equally true had the 
downstream end been connected to a matched output cable rather than a tenninating resistor). Hence the 
~!p'pline is sensitive to the direction of the beam. ana is frequently referred to as a directional coupler. 

A certain amount of confusion may arise from the fact that gil is defined for the combination of the two 
striplines. yet Zt is defined for a single line. The logic behino this disparate lreatemenl is thal we want a 
longitudinal g- actor to be position independent (which means defining it for the pair of striplines). 
whereas for impedance matchmg. the relevant quantity is the impedance of Ule individual striplines. 
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c. Analysis Based on Kicker Behavior 

1'0 calculate the kicker constant (see Eq. 4.1), we must evaluate the integral for the 
beam voltage along the strlpline. Recall from our dlscussion in Sect. 4b that for directional 
devices, the beam direction when the device is used as a kicker must be opposite that to its 
direction when the device is used as a kicker. IS Hence, for a stripline kicker the beam 
must move in the direction opposite that shown in Fig. 12. If we define the coordlnate of 
the right .. hand gap as s = 1., and the left hand as s = 0, and define t(s = 0) = 0, then the 
time along the path in the integral for the beam voltage (see Appendix 2) is t = - slv, 
giving for the beam voltage integral 

1
<0 1<0 

V = Es(s) e jCft ds = Es(s) e ..,.jkss ds 
>L >1 

(8.4) 

As previously, we use inequality signs to indicate that the integration linlits are sufficiently 
beyond 0 and L to include the full effect of the end-gap fields. 

If the end gaps are short compared with the relevant wavelengths, we can separate the 
integral in Eq. 8.4 into two pieces, one for each gap, over each of which the factor e-jkBs 
is approximately constant. The beam voltage at the outer wall, across the gap at s = O. is 
just the the stripline voltage at that point, V L(O), multiplied by the unit phase factor e jkBO 
(times a transit-time factor which, for short gaps we assume to be unity) 16; for the ~ap at 
s = L it is just -V L( L) multiplied by the phase factor e '-jkB L. Since the wave In the 
stripline is moving from left to right, we have 

we have for the integrated beam voltage at the outer wall 

V(x=b) = V L (0) ( 1-e -j(ks + kt.) ~ = 2 V L ej(Tr/2 - 8) sin 9 

where (J == (kL + kB)/2. 

(8.5) 

(8.6) 

Based on the arguments made at the close of Sect. 2, the value of the beam voltage at 
x = 0 is just g(O)· V(x=b), where g is the pickUp g-factor for a beam at x = O. Using 
arguments similar to those made for the stripline pickup, we see that if we put equal volt .. 
ages on both the upper and lower striplines, then to first order the longitudinal voltage will 
be position-independent, and given by 

V 11= 2 gil VL eJ(Tr/2 - 8) sin 9 (8.7) 

For the (only slightly) idealized stripline geometry in Fig. 12, the solution near the 
lateral centerline of the electrodes can be obtained in closed fonn: 

gil =;- tan-} (sinhIDi) , (8.8) 

15 At the conclusion of this discussion it may be useful to the reader to convince himself that in the case 
in which the wave and beam velocities are exactly equal

i 
for a beam moving in the direction shown in Fig. 

l~' there is no net kick to the beam, analogous to the ear ier-noted pickup result. 
Refer to our earlier discussion at the conclusion of Sect. 2. 



an expression whose value exceeds 0.95 for w/2h > 1. 

In general, g .. factors need to be calculated empirically. If we neglect the transit-time 
factor in the end-gaps, or at least assume it to be independent of lateral position, then the 
longitudinal mid-point of the stripline plate defines an equipotential of the beam voltage. 
Hence at the longitudinal mid .. plane, the electrical surfaces shown in the left hand figure in 
Fig. 12 serve as a suitable boundary for solving Eq. 2.9b., the beam voltage equation. As 
noted in the discussion following that equation, for highly relativistic particles, that 
equation reduces to Laplace's equation and so we can calculate V using, for example, a 
numerical electrostatic solver. From our discussion of the Green's reciprocation theorem, 
we see that g(x,y) for a given electrode is simply the calculated V(x,y) when that 
electrode is placed at unit potential, gll(x,y) is V(x,y) when both electrodes are at 
positive unit potential, and 8--L (x,y) is V(x,y)/(x/b) when the electrodes are at equal 
and opposite unit potentials. In fact, the equipotentials in the left and right halves of Fig. 
13 were obtained by solving the electrostatic field problems with boundary conditions 
appropriate to calculating 811 and g1., respectively. 

To power a pair of striplines of impedance ZL at voltage V L from a single line of 
some standard input impePance Zc , using a matched transfonner and splitter, requires an 
input voltage V K = V L ,.j2 ZjZL' Inserting this expression into Eq. 8.7 and using Eq. 
4.1 we obtain for the longitudinal stripline kicker constant 

Ku = ~ ZL 2 gil einl2· 0) sin () 
2Zc 

Inserting Eq. 8.9 into Eq. 4.17, we in turn obtain the longitudinal transfer impedance 

Zp = ~ Z~ Z, glle} (1r/2 - 9) sin () 

(8.9) 

(8.10) 

As expected, this is the same as Eq. 8.2, under the assumption made in deriving that 
equation that both vL and VB are c. 

n. 
N 

°l~--~--~------__ ~ __ ~~ __ ~ __ ~ 
a 1t 21t \ 3n 

\'" e = .Q!.!. (.1. + J..) 
.. h .......... 2 V vL 
\ .. ~p ase 

)UIL 9110-2167 

Fig. 14. Amplitude of the longitudinal kicker/pickup response function for striplines. 
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The amplitude of the kicker/pickup response function is shown in Fig. 14 which may 
be regarded as the response to either frequency, length, or velocity. If both beam and line 
velocities equal c, then Ku (or Zp) is maximum at .L = A/4~ for this reason, the electrode 
is often called the "quarter .. wave loop". The reason for the maximum under this condition 
is quite straightforward. In a pickup, the (sinusoidal) voltage from the downstream gap 
arrives in phase with that from the upstreanl gap: There is a delay of 1T/2 in generating the 
downstream signal, an additional rr/2 for it to propagate back to the upstream end, and an 
additional phase shift of n due to its opposite polarity. Similarly, under this condition, in 
the kicker the voltage kicks experienced at the upstream and downstream gaps will be in 
phase (they will be TC out of phase if the beam passes through in the same direction as in 
the pickup). From the (square of the) response function it can be seen that the stripline is a 
broad .. band device that provides a bandwidth of one octave width at 1.25 dB down from 
the maxinlum, or a 3 .. to-1 range at 3 dB down. 

Power for broad .. band, high frequency operation is expensive, motivating one to 
maximize the shunt impedance which is, using Eq. 4.10 

(8.11 ) 

Note that as mentioned before, in this more fundamental figure of merit the source (or 
terminal) impedance Zc does not appear. At frequencies below about 100 MHz, the use of 
ferrite is very effective for increasing ZL and shortening the electrode length. On the other 
hand, because it is necessary to make the electrode width less than )J4 in order to avoid 
parasitic modes, at very high frequencies, a lower ratio w/h may reduce gil; another 
problem at higher frequencies is that so-called waveguide modes may propagate in the gap 
h and mod; fy the response. 

Typical stripline electrodes [19,20] have single-line impedance in the range, 25-to .. 100 
ohms and g 2 ~ !, giving at maximum response 

R IIT2 ~ 25 .. lOOn 
Zp~18 .. 35Q 
KII := 0.7 - 1.4 

A recent application of stripline electrodes in which weak signal and costly power were 
concerns was in the stochastic cooling systems in the Fennilab antiproton accumulator.[21] 
Stochastic cooling systems require large bandwidth, and, because they require the detection 
of Schottky signals, also require high-efficiency electrodes. At GHz frequencies, the one­
octave bandwidth of striplines meets the former requirement, and as a result of their 
reduced length (proportional to the wavelength)at these freque ncies, the relatively modest 
shunt impedance could be compensated for by employing la1.'ge numbers of such loops. 
(The response of the individual electrodes was itself raised by using a relatively high 
stripline impedance of ZL = 100 ohms.) Electrodes having a response range of l-to-2 
GHz were used in 128-element arrays, giving RIIT2 = 128x 130 = 16.6 kD and Zp = 40 
ff2"B"" = 450 n. 

We now examine the behavior of the same stripline electrode configumtion used as a 
transverse device. As is our wont, we shall calculate the response by applying the 
Panofsky-Wenzel theorem to the longitudinal fields which are present in the excitation 
mode for which the device is used as a transverse kicker. Not surprisingly, that again 
involves exciting the two striplines with voltages of equal magnitude, but with the polarity 
of the lower being the negative of the upper. 



Follow'lng the arguments that led from Eq. 8.6 to Eq. 8.7, and invoking the definition 
of gl (see the discussion preceding Eq. 8.3) we can obtain an equation analogous to Eq. 
8.7 for this mode of excitation, 

v l.(x) = 2 gl. t VL ej(1f/2 - 8) sin () (8.12) 

Note that in this excitation mode, Es' and hence the beam voltage, are zero for x = 0; also, 
by Green t s reciprocity, to the extent that the transverse pickup signal varies linearly with 
the transverse position, so does the longitudinal kicker voltage in this mode. As with gil, 
one can obtain a closed-form expression for g 1; near the centerline, where the linear 
approximation is accurate, we have 

gl. = tan~ · (8.13) 

The coupling between the two striplines also changes producing a lower value of ZL' 
Fol1owin~ the arguments leading to Eq. 8.9, we obtain for the longitudinal kicker function 
K'll for th1s excitation mode 

(8.14) 

Applying Eq. 4.7, we obtain for KJ. 

Kl. = ~ .Zr.. 2gl. Le-JB sin fJ 
2Zc hw 

(8.15) 

This result is very similar to the longitudinal K in Eq. 8.9, but the factor 1/ hro further 
penalizes (i.e., over and above its adverse effect on g) large aperture, and shifts the fre­
quency for maximum response downward to W = 0, confinning our earlier observation 
that, unlike the longitudinal case, a transverse kicker can have a dc response. 

In fact the transverse kicker response is much like a typical sin8/8 transit-time 
response. This will be more recognizable if we rearrange Eq. 8.15 using the definition of 
() given following Eq. 8.6 

Kl.= ~Zr.. 2g/(1+-)L)e-j8~. 
2Zc h vL 8 

(8.15a) 

Applying Eq. 4.19 to Eq. 8.15, we obtain the transverse transfer impedance 

(8.16) 

Note that transverse transfer function does not contain the Vro factor and, except for the 
small difference between gil and g. L (and numerically different ZL) is the same as the 
longitudinal case divided by the harr-gap, so that, unlike the longitudinal case, the trans­
verse kicker and pickup exhibit different frequency responses. 

The transverse shunt impedance is obtained by applying Eq. 4.11 to Eq. 8.15 



RJ.T2 = 2ZL(gJ. ~)2 sin2 6 (8.17) 

As expected, like its longitud;nal counterpart, R1T2 is independent of Zc' The frequency 
dependence of RIT2 mirrors that of K .1; it is interesting to note how the kB2 in the 
numerator of Eq. 4.24 removes that frequency dependence from the transverse pickup 
output power. 

Finally, as we noted earlier, an interesting feature of the strlpline pickup is that, if the 
beam velocity v equals the line velocity vL.' no voltage appears at the downstream end. In 
principle, this allows that end to be electncally connected to any impedance, including a 
short or an open circuit, with no effect on the picked-up signal. However, the output line 
will then not be back-terminated to absorb reflections in the circuit, so in practice this 
apparently spurious resistor is generally present. (In the case of the stripline kicker, the 
far end of the line [in this case, the upstream end] must be tenninated in a matched load to 
avoid reflection of the usually sizable kicker signals.) 

d. Stripline Beam Impedance 

Because it gives a result different from the resistive-wall case, it is of pedagogical 
interest to look at the beam impedance of the stripline electrode. We will restrict ourselves 
to the case of the longitudinal impedance at the frequencx of m,aximum response, i.e. the 
quarter-wave condition; we will leave it as the proverbial 'exercise for the reader" to work 
out the result for the full band, as well as for the transverse case. 

Referring to our earlier image-current analysis, and denoting the upper and lower plates 
with subscripts 1 and 2, respectively, we see that when beam passes the upstream gap, it 
induces a voltage g ,I B ZJl2 (.1) in the upper stripline which propagates both downstream 
and out the signal hne. The beam induces an equal and opposite signal (plus a rr/2 phase 
delay) at the downstream gap, which, when it arrives at the upstream gap is in phase with 
the upstream-gap signal, thereby doubling it. The beam voltage at the beam location for the 
upstream gap, which will bring in another factor of gT, is therefore 

(8.18) 

On the other hand, when the upstream signal reaches the downstream gap, its phase is such 
that it will exactly cancel the gap voltage induced by the beam at that point, so there is no 
beam voltage kick at that gap. 

}n like manner, the total beam voltage due to the signals induced in the lower stripline is 
-g} IBZLT, giving a total beam voltage for the two lines of 

(8.19) 

Dividing by the beam current, and noting that gll2 = (8) + g2)2 = 2 (8}2 + g22), we 
obtain for the longitudinal beam impedance 

(8.20) 

COlllparison with the maximum shunt impedance given by Eq. 8.11 shows that 
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(8.21) 

Le. it is one .. fourth the longitudinal shunt impedance, rather than one half it, as was the 
case for the resistive wall or resonant cavity. (It is not meaningful to rompare the results 
for the unloaded devices, where the resistive-wall beam impedance is the same as the shunt 
impedance, because without a tenninating load on the s01pline, there would be reflected 
waves from the upstream end, invalidating the above analysis. In fact it is just this absence 
of any dissipative load within the stripline which is responsible for the difference in the two 
results.) 

9. Stwnding-Wave Devices; A Summary 

All the devices considered thus far can be categorized as standing-wave electrodes 
because (regarding them for the moment as kickers) the electromagnetic fields they generate 
remain localized in space, rather than propagating along with the beam. I7 We can com­
pare expressions for the peak shunt impedances of a variety of standing wave devices 
(some of these expressions are derived in this note; for others, see Ref. 22). If we intro­
duce the 3-dB bandwidth flO) (for resonant devices, this means replacing the Q in the for­
mulas by wl.6.w), and use Lfor the overall length, we get the relations shown in Table 
II. 

TABLE II 

Longitudinal 

SLripline Pair 

N on-Resonan 1; 

length L = ;";4 

Resonant; 
length L = ;";4 

Inductively resonated; 
length L« ;";4 

Square Cavity 

2 flO) 2 L 
RIIT -=4nZllgll-

w A 

R 110 T2 fl(J) _ 4 Z T2 L 
II --- 0 -

0) n A. 

Transverse 

R 11 0 T2 fl(J) = .1.2.. Zo T2 !.. 
0) 25n A. 

The similarities of the functional fonns of these gain-bandwidth values can be expected 
from general considerations of energy storage and flow, (we will discuss these in more 
detail in Sect. 10); what is notable is that this variety of practical devices shows only a 
small range in the value of a (typically ..... 250-1000 n) as defin~d by Eq. 9. L (For the 
transverse shunt impedances, there is an additional factor of [?\,IJIb] .) 

17The stripline is in som; sense a mixed case. However, because its fields travel in a direction Opposile 
that of the beam, it is usually regarded as an SW device. This should be clarified by the discussion in Sect. 
10 
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(9.1) 

Note that in Eq. 9.1 we consider the product of shunt impedance andfractional band­
width t per unitfractionallength (of wavelength). To understand better the "nonnalization" 
of the bandwidth to the frequency and the length to the wavelength. consider the stripline. 
It has a roughly 1.5 octave bandwidth irrespective of frequency, and is always (at 
midband) 1/4 wave long. If we put Eq. 9.1 into the alternate fonn 

RII r2 Ilro I 2 ---=a ro (9.2) 
L 

we see that, on the one hand, the gain-bandwidth product per unit length increases as the 
square of the frequency; again thinking of the stripline, this arises because the absolute 
bandwidth of the octave increases with frequency, as does the number of quarter wave­
lengths per absolute length. On the other hand, Eq. 9.2 says that, at a given frequency, the 
overall factor is pretty much the same for all the devices shown. The reader may recall that 
we mentioned at the beginning of this portion of the report that choice of detector necessi­
tated a trade-off among these quantities; Eqs. 9.1 and 9.2 cirnmatically illustrate the point. 
There is one possible exception to the rule, which has thus far had limited practical use with 
accelerator beams, and that is the subject of the following section. 

10. Traveling-Wave Devices 

Let us imagine the following two scenarios: Assume that we have a total length L 
which is occupied by, in one case, a (properly phased) array of standing-wave (SW) 
kickers, and in the other, by a device capable of generating a voltage wave which moves in 
the same direction and with the same velocity as the beam; it is standard parlance to refer to 
this latter as a traveling-wave (TW) device. Let us further assume that the longitudinal 
fields in both kickers are comparable or, more simply, that they produce the same voltage 
gain per unit length,18 V', and that both the individual SW devices and the TW device 
each require the same input power, Pi' For both devices, the total energy gain in length 
L will simply be V' L. However, the TW device will require an input power of only 
Pi' whereas, assuming n SW devices are required to span the length L, the array will 
require an input power of nPi. 

From the definition of shunt impedance (Eq. 4.9), we see that for the TW pickup, RT2 
will be proportional to 12; in contrast, for the SW array, it will be proportional to flln, 
or since n oc L, simply to L, consistent with the results from Eqs. 9.1 and 9.2. (As 
implied by the former equation, the SW device actually scales as LI A, rather than L; the 
reason for this is that, as a result of transit-time effects, the length of a SW device is 
perforce limited to being only a fraction of a wavelength). 

A similar argument can be made for the efficacy of TW pickups. As we pointed out in 
the introduction to Sect. 5 (beam impedance), the output power from a pickUp comes from 
the work the bean1 does against the fields which it itself generates. If we have an array of 
such pickUps, the power will simply be proportional to the overall length, since as the beam 
moves from pickUp to pickUp, it must regenerate that self field in each element of the array. 
If, on the other hand, the self field were to propagate along with the beam, the self-field 

18Le., we neglect the packing-fraction problem associated with the arrays 
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would increase (more or less linearly) as the beam moved constantly added energy to it as it 
moved along the device (not possible with a standing wave device where, by definition, the 
field remains in one place), then the self-field would be proportional to the length, and 
hence the signal power, to the square of the length. 

A principal practical problem with TW devices is the difficulty in matching the field 
wave's (phase) velocity to that of the beam. Because of dispersion, it is not possible to 
match these velocities exactly over any frequency band; the effect on the bandwidth of the 
resulting (frequency-dependent) phase slip between wave and beam is what usually limits 
the length of such devices. Because the phase-slip factor is dependent on the transit time 
through the device, it is frequently referred to as a transit-time factor (it usually exhibits the 
familiar sin ole form associated with SW devices) even though its physical origins are 
sornewhat different (the 0 for 1W devices depends on the difference between two wave­
lengths, whereas for the SW device it depends on only a single one). 

An additional difficulty with TW devices is the problem of coupling to them the input 
and output power. On the other hand, an additional attraction of TW structures (relative to 
SW ones) is their lesser complexity as rf structures, particularly at frequencies in the multi­
gigahertz range. 

We begin our discussion of TW devices by describing three such devices, and present­
ing their'relevant figures of merit. Following this we present a gain-bandwidth scaling law 
for ~ devices somewhat analogous to Eq. 9.2 for SW ones. 

a. The Helical Line 

XBL 868- 3110 

Fig. 15. Beam on the axis of a helical line 

A helical line (Fig. 15) is a device in which a wave travelling at c on the periphery of a 
helix produces an on-axis longitudinal field travelling at reduced velocity .BLC.[23,24] The 
shunt impedance of this electrode treated as a sheath helix is shown in Ref. 23 to be given 
by 

RIIT2 = ~ (lL)2 [Ko(l2Q) _ Ko(hb)] (Sin e)2 
2n.BL YL lo(lw) lo(hb) e (10.1) 

in which it = 1/(1 - f3i) ,h = kolf3LYL, and e = (kB - kL)LI2. The modified Bessel 
functions 10 and Ko for small arguments, that is, tor f3LYLAo > b reduce to the fonn 

• 
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RIIT2 == ~ In 12. (kLL mLfl)2 
21Cf3L a rL 2 8 

(10.2) 

In this we recognize (ZoI2n) In(b/a) as the impedance of a coaxial line of radii a and b. 
Also, we see sin 8/8 as the transit-time factor in which () is a measure of the phase slip 
between beam and traveling wave. To avoid large dispersion in the wave velocity in this 
periodic structure, f3LA (the wavelength of the slow on-axis wave) must be greater than 
twice the pitch of the gelix. In an exanlple use, [25] the helix was effective at f = 200 
MHz and f3 = 0.5. However, the factor rL -4 makes the device ineffective for very rela­
tivistic particles. 

b. The Slotted-Coax Coupler 

X8L 9110-2169 

Fig. 16. Slotted-coax coupler attached to a beam tube 

The slotted-coax coupler shown in Fig. 16 communicates with the beam tube through a 
row of holes or slots in the outer wall of a coaxial line parallel to the beam. There is a net 
energy transfer from a beam particle to the coaxial line until either an equilibrium is reached 
(there is an equal energy flow back from the coax wave to the beam), or a sufficient phase 
difference develops between beam and coax signal (the slots that provide the coupling also 
reduce the phase velocity in the coax and cause dispersion in that velocity). Perturbation 
calculations [26] for the geometry of Fig. 16 show that the coupling and the velocity are so 
related that the pickup impedance becomes simply 

Z - .koL r ·~R -J'B~ 
P - -j -- YL.Lfl o e 

2ytb () 
(10.3) 

where ZL is the inlpedance of the coax and rL and e are as in Eg. 10.1. The shunt 
impedance is then 
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( )

2 k L r . 
RIIT2 = ZL _0_ llo...fL 

ilb () 
(10.4) 

This is very similar to the result for the helix, but here a very small velocity reduction intro­
duces dispersion that limits the use of the slotted coupler as a broad-band device to f3L > 
- 0.95. Although it is a weak coupler, it is a good high-frequency structure and is useful 
where strong coupling is not demanded. In this role it has been used in cooling the anti­
proton stack in the CERN AA ring. [26] 

c. The Wall-loaded TM Waveguide 

ri I ••••••••••••••••••••••••••••••••••••• 

XBL 9110-2170 

Fig. 17. Downstream end of a corrugated-wall-waveguide pickup 

The phase velocity of a TM waveguide can be reduced to correspond to beam velocity 
by loading its walls with a dielectric liner or with corrugations. Linacs employ such struc­
tures. A corrugated guide has been developed [27] for experiments on stochastic cooling in 
the CERN SPS. This difference pickup is sketched in Fig. 17. It has a bandwidth of 
about 1 GHz at an operating frequency of 11 GHz. The aperture is 16 x 22.9 mm and the 
length of the guide is 0.3 meter. Its relevant figures of merit are 

and 
Rl.T2= 1.76 x I()4ohm 

Z'p = 108 ohm/mm. 

If we compare the product of shunt impedance and bandwidth per unit l~ngth for the 
TW device with what could be realized with a SW device such as a stripline [21], we find 
that the fonner outperfonns the latter by roughly a factor of 2.5, and has the additional 
virtue of being able to operate at high frequency without the penalty for large aperture that 
the (1i.8Ib)2 tenn imposes on transverse SW devices. Designing such a loaded guide is 
rather straightforward; the major development effort has gone into the transition from the 
waveguide to the output coaxial signal line. 
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d. The Gain-Bandwidth Product for TW Devices 

We can inquire if the TW structure, like the SW (see Eqs. 9.1 and 9.2), has a gain­
bandwidth product proportional to length. But for reference, let us flfSt consider the origin 
of that factor for a typical SW device, say a cavity with bandwidth ll{J) = w/Q. Its 
kicker power is given by Eq. 6.1 as 

P = y2 = fJJ!.L 
2RT2 Q 

(10.5) 

where U is the field energy contained within the device's volume. From these relations, 
we find 

(10.6) 

which is proportional to length (U is proportional to length, and as we have already 
discussed, V2 is proportional to length-squared). 

To obtain an equivalent starting point for the TW structure, if the field propagates 
within the device at group velocity Vg' exiting at the downstream end into a matched load, 
then the input power is just the energy per unit length times the group velocity 

P= Vg U 

L 

y2 L 
RIIT2=_­

I 2v U g 

(10.7) 

(10.8) 

which, as expected, is proportional to ,12. We shall then define the bandwidth by obtain­
ing the frequencies ± tlro/2 at which the transit time factor drops to 1 If[. T is given by 

T = L f La ejk •• e-jkt.S tis = sin...D. 
L -LIl f) 

(10.9) 

where f) = (kL - kB) l/2. At ± tl m/2, () has the value 9 = 91 = ± 1.39 radian. If 
we assume f) varies linearly with (J), then to frrst order we have 

f) = tl{J) .dO.. = tl{J)L(dkL _ dkB) 
1 2 d{J) 4 d{J) dw (10.10) 

Using k = OJ/vB and dkIldw = l/vg' we find 

(10.11) 

Combining this with Eq. 10.8 and the value of 9}, we get 



-54-

RIIT2 fJ.(j) s::= V2 2.8 
U 1 - Vg/VB 

(10.12) 

Hence we see that, due to transit time effects, the product of gain-per-unit-Iength and 
bandwidth is proportional only to length, as is the case for SW devices; however, compari­
son with Eq. 10.6 also shows that because the denominator in Eq. 10.12 can (in principle, 
at least) be made quite small, the TW structure can rersonably be a much stronger pickup 
than the standing-wave type. This last relation stands as a guide for the further 
development of TW devices as beam detectors. 
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APPENDIX 1: REVIEW OF RELATIVISTIC DYNAMICS 

One difficulty in writing for a broad audience is the variety of backgrounds of the 
readers. Instrumentation engineers may find some of the following material helpful in 
understanding some of the derivations and approxh nations given in the text; on the other 
hand, re-cycled particle physicists may find much of it trivial. 

The two important dynamical ~uantities we will be dealing with are the momentum and 
the energy, whose relativistic definttions are 

where 

p =m rv 
E=m~ 

r == ';1- v21c2 

(A.t.1) 

(A.t.2) 

(A.t.3) 

In the non-relativistic limit where v « C, r --+ 1 + v2/2c2, and so p reduces to the 
classically familiar mv, and E becomes mc2 + 1/2 mv2, the familiar classical kinetic 
energy tenn, augmented by the now famous Einstein mass-energy tenn. 

In virtually all the situations we will be dealing with, the transverse (x,y) velocities 
will be negligible with respect to the longitudinal velocity. Several consequences follow 
from this. The quantity r will depend only on the longitudinal velocity, i.e. it will be 
unaffected by changes in the transverse momentum. The direction s, defined by the 
particle's motion, will be regarded as identical to thez direction, defined by the 
longitudinal axis of the beamline hardware (which, incidentally, also defines the transverse 
directions). It is customary in relativistic parlance to define f3 as the ratio vIc; for highly 
relativistic particles {3 #I:: 1, implying that changes in energy and longitudinal momentum 
are reflected primarily in changes in y, rather than in particle speed. Consequently, it will 
be assumed that in the course of traversing a kicker, along the st1'aight line which the 
particle moves, sand t are related by v = {3c= dsldt and v is assumed to be constant; 
we will refer to this assumption of straight-line trajectory at constant speed as the constant 
velocity approximation. We should probably note explicitly that the approximation of 
local horizontal straight-line motion within a kicker is not inconsistent with a deflection on 
the order of a centimeter some tens of meters downstream, as a result of the relatively 
small transverse momentum imparted by the kicker. 

In common parlance, Newton's second law is expressed as F = mat A non­
relativistically equivalent form, which unlike the above one, generalizes correctly to the 
relativistic case when the relativistic fonn of p (Eq. A.I.I) is used, is 

F = dp/dt (A. 1.4) 

whereby we see that the total kick imparted by a force F acting along the path traversed by 
a particle as it moves from point a to point b is given by 

f
'll 

~p = I. F(s(t},t} dt (A.I.S) 
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where we have explicitly allowed for the variation of the force with position as well as 
time, showing that in that case it will also be necessary to know the position as a function 
of time. If we now invoke the constant-velocity assumption, we can convert s to a scalar 
variable and substitute dt= dsl/3c, enabling us to rewrite the integral in the form 

t:.p{3c :: f F(s) ds 

For the longitudinal component of the momentum, Eq. A.l.6 gives 

t:.PII{3c :: f F Js) ds 

If we now consider the energy change over the same path, it is given by 

tiE:: f F'ds :: f Fs tis 

Comparison of Eqs. (A. 1. 7) and (A. 1.8) shows that 

llE = /3c ~II 

(A.l.6) 

(A.I.7) 

(A.1.8) 

(A.I.9) 

It is left as an exercise for the reader to show that the same result could have been obtained 
by using Eq. A.l.3 to show that 

d (f31J = (f3 + yd~) dy= dy 
dy {3 

(A.1.tO) 

and calculating the differentials of energy and momentum directly fiom Eqs. A.l.l and 2. 

For longitudinal motion, the two quantities I1E and f3c~p tum out to be physically 
equivalent. Because the fonner form is more intuitive, and because of its ready 
identification with the beam voltage, we use it to define the perfonnance of longitudinal 
kickers. The two quantities are not physically equivalent for transverse motion, and it 
proves to be only the latter form which is physically meaningful for transverse devices. 
(For highly relativistic particles f3 == 1, and so some authors, particularly those writing on 
beam impedance, define the transverse beam voltage as cAp 1. • The only effect of this is 
to redefine slightly some of the figures of merit for pickup and kicker performance [see 
Sect. 4]; the actual values of physical quantities calculated using these re-defined quantities, 
such as transverse momentum changes, will be unaffected by such change in definition.) 
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APPENDIX 2: INTEGRALS INVOLVING TIME-VARYING FIELDS 

1. Denning the Variables 

Consider the integral given in Eq, 1.5, reproduced below, which describes the 
momentum change imparted to a particle by a kicker. Integrals such as this, as well as their 
time derivatives, appear throughout the text. The fonn in which the equation appears is 
actually a shorthand version; not only does it not show that that the position and time 
coordinates along the integration path are interrelated, it does not even show the explicit 
dependence of the fields on those coordinates. 

J
'. 

~p = e (E + v )( B) dt 

'. 
(A.2.1) 

Because fully expanded versions of equations such as this are cumbersome to write 
out, we will generally employ the above shorthand fonn. A principal purpose of this 
appendix is to show the reader how to translate from the shorthand to the fully expanded 
fonn so that he can use the equations in this lecture to do his own calculations. 

Taking into account that each of the fields in Eq. A.2.1 depends separately on space 
and time, and recalling our earlier assumption that the particle moves along a trajectory of 
constant x,y, we can rewrite the equation in the more general fonn 

llF = f .f(s,t) dt (A.2.2) 

Despite the separate dependence of f on s and t, the s and t appearing in the integrand 
are relat~d by the trajectory of the particle. In particular, if we assume the unifonn, 
straight-line trajectory described in Appendix 1, and assume that the entrance and exit 
points a and b are separated by a distance L, we have for the points along the path 

s = a + v(t-ta) 

whereby 
d1.= v =_D.J... 
dt dta 

and 
tb = ta + L/v 

Hence we can write Eq. A.2.2. in the fonn 

t = ta + (s - a)/v 

1
,.·411+-'" 

llF =. ![s(t,ta),t] dt 

(A.2.3.a,b) 

(A.2.4) 

(A.2.5) 

(A.2.6a) 

where we have used s(t.tp) to indicate the time dependence of s given by Eq. A.2.3.a. 
Because of the relation between sand t, we could just as easily have expressed the 
integrand, as well as the integration limits, as functions of s, in which case Eq. A.2.2. 
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would have taken the fonn 

f.
" ... +J 

AF =. I[s,t (s,tal) ds (A.2.6b) 

2. Time-dependence of the Integrated Quantities 

From a casual examination of an equation such as Eq. (A.2.1), it might appear that the 
time dependence of 6p has been "integrated away." Yet from simple physical considera­
tions, we see that this conclusion is manifestly incorrect: A kicker with time-varying fields 
will impart a momentum change which varies with time. 

The answer to the apparent paradox can be seen by examining the more explicit 
expressions given by Eqs. A.2.6a.b; in those equations, t, the time along the path, merely 
serves as the parameter characterizing the infinitesimal kick dp which the particle receives 
at each point; integrating over t is simply adding up the kicks. The time variable on which 
the total momentum change depends is a "real-world" time, e.g., the actual time at which 
the particle enters (or, equivalently, emerges from) the kicker, Le., tao Hence the time 
variation of those quantities is obtained by differentiating with respect to, in this case, tao 

When obtaining the time dependence, it is generally easier to convert the integral to the 
form A.2.6b, where ta appears only in the integrand, and not in the limits as well. (In the 
case of the v x B integrand, this conversion occurs naturally since v x B dt = ds x B.) 
In that case the time derivative takes the form 

(A.2.7) 

It is an instructive exercise-one we leave to the reader-to demonstrate that the same result is 
obtained when one differentiates the expression for M' in the form it appears in Eq. 
A.2.6a (where one must differentiate the limits as well). In fact, the reason we have 
included the apparently trivial intermediate step in Eq. A.2.7 is to remind the reader that 
when differentiating under the integral sign in Eq. A.2.6a, ta appears in the s term, and so 
the partial derivative must be with respect to s. 

We should also mention an important caveat when applying Eq. A.2.7 to electromag­
netic fields. When using the Maxwell Equations to relate partial space- and time-deriva­
tives, one must not take into account the trajectory relation between s and t when taking 
the derivatives; rather one treats them as independent variables when differentiating, and 
only afterwards relates them in order to carry out the integration. 

Finally, note the following bit of sleight of hand. If we convert Eq. A.2.7 back to an 
integration over time, we can write it in the form 

1
'b 101 11 + III 

fa AF =. ~/[s,tl dt (A.2.8) 

making it appear that we simply got the result by (illegally) differentiating Eq. A.2.6a under 



the integral sign with respect to the integration variable. In fact, that is not what Eq. 
A.2.8 implies. In Eq. 2.6a, s is a function of both t.and tat whereas the form of the 
integrand in Eq. 2.8 is intended to imply that differentiation takes place with respect to only 
the explicitly time .. dependent part of f, and that the substitution of s = s(t.ta) takes 
place only after differentiation. In fact the outcome of Eq. A.2.8 is somewhat fortuitous 
(note that the derivative on the left hand side is with respect to ta, not t), and results from 
the independence of ds/dt on ta, a consequence of the constant .. velocity approximation. 

3. Integrals Involving Phasors 

In the course of these notes, we encounter a number of integrals involving phasor 
quantities, I.e. quantities whose time .. dependence takes the particularly simple fonn tdCJX" 

to which we can specialize the results of the preceding sections. In many of these integrals 
there appears, at some point, the related factor eJks. We will s'ee that, despite the 
similarity of appearances, this latter factor may arise from different causes, and therefore 
have different physical significance. 

a. Total Energy Gain, and Related Integrals 

The energy ga,n for a particle in a kicker is generally written in the form 

V= r E·ds (A.2.9) 

where E is a phasor of the form E(x,y,z) drol. Under the constant-velocity assumption 
and using Eq. A.2.3b, we can write Eq. A.2.9 in terms of distance alone 

v = r E(x.y.z)· ds eirul = eitJJ..t.- aIv) r E. eik,. tis 

\ 

where kB is the beam wave number kB = wlv. 

(A.2.1D) 

Note that the "spatial" exponential factor tdkBS has nothing to do with the (instantane­
ous) spatial dependence of either E or of the beam. In fact, E may have a spatial, i.e., an 
s-dependence: In the event that it has none or is a purely real function of s, the E field 
will simply be a standing wa:ve. On the other hand, for, e.g., a travelling wave kicker, the 
E field will have its own e±)kFS dependence (the respective signs depending on whether 
the field is propagating upstream or downstream); in this case kF = wlv F is the field 
wave nun1ber, where vF is the wave velocity of the field (usually different from c). 

Note also that either by applying Eq. A.2.8 to the first integral, or differentiating the 
second with respect to ta we get for the time derivative 

Ib • ~ = jm • E(x,y.z)· ds ejrul = jm ejtJJ..t. - a/v) 1 E,ejk.Sds (A.2.11) 

In addition to the eJ'ro{lo - vIs) term, an additional phase factor may emerge as a result 
of the integration. In bunched-beam machines, the overall phase of the kicker is generally 



adjusted so that the field maximum coincides with the arrival time of the beam bunch; hence 
we will in general implicitly set this phase factor equal to unity, i.e .. for purposes other 
than calculating the time derivative, we will generally ignore it. The following section may 
help clarify this point. 

h. Transit·Time Factor 

It is informative to compare the integral in Eq. A.2.10 with that which would result 
from calculating the instantaneous "voltage" (Le., integrating at constant t) 

Vo = eJ/JII f E,.ds .. (A.2.12) 

appearing across the kicker. The rotio of the magnitudes of these two quantities is defined 
as T, the scrcalled transit-time factor. 

(A.2.13) 

As the name implies, T simply represents the reduction in energy gain due to the fact that, 
because of the finite transit time of the beam through the kicker, it may not experience the 
(time-) maximum field everywhere along its path. The following example serves to 
illustrate this point. 

Longitudinal kickers with a voltage gap are excited in a mode in which the longitudinal 
field is essentially constant, i.e. E~(s) = Eo. If the accelerating gap in such a kicker is of 
length L, we see from Eq. A.2.1 0 that the 'Voltage gain of such a particle is given by 

I 1'·' I E ej(~ +;'LI2) ( I ) V = eJw(I. - a/v). EoeJksds = 0 jk eJkLIZ - e-JkLIZ (A.2.14) 

Defining 8 == kL/2, and rearranging terms, we get 

v = E L ej(ClX + kLI2) .sin..1l o (A.2.15) 
8 

Note that ignoring the overall phase factor is equivalent to asserting that the phase of the 
field is such that it reaches its peak value at the point when the particle is at the center of the 
accelerating gap (Le. setting la = -.tI2v). 

The Eo.! term in Eq. A.2.15 is just what we would get if the field were not time­
varying, i.e., apart from a phase factor, it is Yo' Hence, from Eq. A.2.13 we get the result 
that, for a uniform field in the s direction, 

(A.2.16) 
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For most devices that employ nearly uniform longitudinal fields, it is common to assume 
that, unless stated otherwise, the transit time factor is given by Eq. A.2.16. For devices 
such as striplines (see Sect. ) with short field gaps, T for each gap is approximately unity; 
for devices such as accelerating rf cavities, where the accelerating gap is a non-negligible 
fraction of the wavelength, T may be on the order of 0.5. 

c. Integrals of P/uuor Products,' the Reciprocity Theorem 

The reciprocity theorem as applied to kicker/pickup behavior took the form 

VB=-2~ i EKeJndvol. (1.2) 
K \OJ 

and it was noted that, unlike the integral in Eq. A.2.9, this one was to be evaluated at a 
rued time. It was further noted that Jo was a sinusoidal wave of beam current, i.e. it is a 
tenn of the form J (x,y) ej(CJJt±ks), the sign, as previously noted, depending on the 
direction of beam motion. 

Two parenthetical notes: Although all the above integrals in Section 3 of this Appendix 
are for the frequency dornain, this latter point did not arise in connection with the others; 
despite the fact that all but the one in Eq. A.2.12 related the time and position by the particle 
trajectory, none of them involved a beam-current term. Also, as we have seen from Sect. 3 
in the main text, an actual beam contains not just a single wave of this fonn but is actually 
represented by a superposition of such waves. 

Since the integral, is to be evaluated at fixed time, the first term in the exponential 
assumes the role of (arbitrary) phase factor, to be treated in the same fashion as in the 
previously discussed integrals, and Eq. 1.2 takes the form 

VB = - ~1 dsi dxdy EKe Jne-jks 
2V K...,. ...,. 

p"" -

(A.2.17) 

If we assume that EX does not vary over the beam cross section and make use of the fact 
that Jo, and hence 10 ' define the s direction, we can integrate over the beam area and 
rewrite Eq. A.2.17 in the form 

VB = -~1 EK e ds e-jks 2VK 
~ 

(A.2.18) 

The fonn of the integral is strikingly similar to that of Eq. A.2.2. As in that equation, 
k(J, = (J)/v, the beam wave number. However, not only is the origin of the exponential 
dIfferent (it results from the wave nature of the beam, rother than the frequency dependence 
of the field), but it has the. opposite sign. (The physical import of this sign change is 
discussed in Sect. 4). Finally, as with Eq. A.2.10, we have made no assumptions about 
the s-dependence of EK, and the discussion in the paragraph immediately following that 
equation is equally applicable to Eq. A.2.18. 
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