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Genomic signatures of spatially divergent
selection at clownfish range margins
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Understanding how evolutionary forces interact to drive patterns of selec-
tion and distribute genetic variation across a species’ range is of great
interest in ecology and evolution, especially in an era of global change.
While theory predicts how and when populations at range margins are
likely to undergo local adaptation, empirical evidence testing these models
remains sparse. Here, we address this knowledge gap by investigating the
relationship between selection, gene flow and genetic drift in the yellowtail
clownfish, Amphiprion clarkii, from the core to the northern periphery of the
species range. Analyses reveal low genetic diversity at the range edge, gene
flow from the core to the edge and genomic signatures of local adaptation at
56 single nucleotide polymorphisms in 25 candidate genes, most of which
are significantly correlated with minimum annual sea surface temperature.
Several of these candidate genes play a role in functions that are upregulated
during cold stress, including protein turnover, metabolism and translation.
Our results illustrate how spatially divergent selection spanning the range
core to the periphery can occur despite the potential for strong genetic
drift at the range edge and moderate gene flow from the core populations.
1. Introduction
Understanding how environmental heterogeneity drives patterns of selection
and partitions adaptive variation into discrete populations is increasingly
important in today’s changing world. Species with large geographical ranges
often span a similarly wide array of environmental conditions, which may
result in natural selection favouring distinct sets of alleles across the species
range [1]. Such a process is commonly referred to as spatially divergent selec-
tion and can shape the evolutionary trajectory of a population by causing
allele frequencies at select loci to move away from a global mean and towards
local optima [2]. While there exists a large body of work investigating spatially
divergent selection, the scale at which such patterns can manifest, and the
extent to which populations may become locally adapted, remains an area of
intense debate [3,4].

Selection, however, is only one of several evolutionary processes operating
in a natural system and rarely acts in isolation. Gene flow and drift also

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2021.0407&domain=pdf&date_stamp=2021-06-09
mailto:rene.clark@rutgers.edu
https://doi.org/10.6084/m9.figshare.c.5438761
https://doi.org/10.6084/m9.figshare.c.5438761
http://orcid.org/
http://orcid.org/0000-0002-9874-8863
http://orcid.org/0000-0002-7206-6311
http://orcid.org/0000-0003-3393-4574
http://orcid.org/0000-0002-1486-8404
http://orcid.org/0000-0003-0848-1024
http://orcid.org/0000-0002-9041-915X
http://orcid.org/0000-0002-8523-8952


120

–40

–30

–20

–10

0

10

20

30

40

Japan
Philippines
Indonesia

northern range
extent

southern range
extent

130 140
longitude (°)

la
tit

ud
e 

(°
)

150 160

Figure 1. Map of the three sampling locations: Japan (n = 8), Philippines
(n = 10) and Indonesia (n = 7). Northern and southern range extents are
marked with horizontal dashed lines. Red shading indicates the relative prob-
ability of occurrence of A. clarkii (data from AquaMaps). (Online version in
colour.)
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shape the distribution of genetic variation, and the interplay
of these forces can influence population dynamics, patterns of
range expansion and evolutionary trajectories [5,6]. Gene
flow is commonly thought to decrease the fitness of edge
populations through gene swamping, as immigrants from
the range core may be suboptimally adapted to edge environ-
ments [7,8]. Alternatively, gene flow can increase adaptive
potential at the edge by transporting in novel genetic vari-
ation and replenishing genetic diversity that is otherwise
depleted owing to drift and serial founder events [9,10].

Empirical evidence detailing how migration–selection
balance affects adaptation in peripheral populations is rare,
especially in marine taxa ([11]; although see [12]). Many
marine species are historically thought to have large, well-
mixed populations owing to a lack of geographical barriers
and high dispersal capabilities [13,14]. Such conditions
would tip migration–selection balance away from local adap-
tation and towards range-wide adaptation to a global trait
mean. However, recent studies have found that adaptive
and neutral genetic variation can be differentially distributed
within marine populations, suggesting that selection may be
strong enough to cause differentiation even in the face of
heavy gene flow [15,16] and across pronounced environ-
mental gradients [17,18].

Despite such evidence, it is still unclear how selection and
gene flow interact to shape adaptation at range peripheries.
Populations near the range centre are thought to maintain
high enough densities to withstand an influx of maladaptive
alleles from elsewhere in the range [7]. Less dense popu-
lations at the range edge may not benefit from the same
demographic processes, however [6]. Nevertheless, direc-
tional selection at the edge may be strong enough to
overcome asymmetrical migration rates, especially as periph-
eral populations tend to inhabit novel environments [6,8].
Thus, our understanding of how evolutionary forces interact
to either suppress or replenish genetic diversity at marine
range peripheries remains lacking.

At the same time, it is these edge populations that play a
critical role in enabling species to adapt to changing environ-
ments [19]. Species shift their ranges to track environmental
conditions, and it is often individuals at the edge that first
colonize novel habitats [20]. The oceans are predicted to
warm by 1–3°C over the coming century, presenting serious
challenges for marine taxa [21]. Many biological pathways
are sensitive to temperature change [22], and water tempera-
ture has been shown to influence development, reproduction
and survival in many ectotherms [23]. Thus, adaptation to
thermal regimes often provides a large fitness advantage
[24] and shifting thermal environments may impose strong
selective pressures on populations as they respond in situ.
Such responses may vary across a species range, as adaptive
potential is unlikely to be uniform from the core to the per-
iphery. Thus, understanding the roles that evolutionary
forces play in partitioning genetic variation among popu-
lations is important when trying to predict how species will
fare in the coming years.

The yellowtail clownfish, Amphiprion clarkii, provides an
ideal system for investigating how different evolutionary pro-
cesses interact to shape genetic diversity and adaptive
potential across a species range. Amphiprion clarkii occupies
one of the broadest latitudinal ranges of all anemonefish
species, with populations from the Indo-Pacific tropics to
the subtropics (figure 1) [25]. Anemonefish are philopatric,
remaining on the same anemone for the duration of their
adult lives [25]; as such, populations are only connected by
pelagic larval dispersal (PLD). However, with a PLD of
approximately two weeks [26], the larval duration of A. clar-
kii is relatively limited, and few larvae regularly disperse
farther than 27 km, although rare long-distance migration
is possible [27].

Here, we explore the relationship between gene flow,
selection and drift across the northern half of the species
range of A. clarkii to determine if edge populations have
responded to spatially divergent selection despite (or perhaps
because of) gene flow from the core and the potential for
stronger genetic drift at the edge. Specifically, we address
three questions: (i) how is genetic diversity, both adaptive
and neutral, partitioned across the northern extent of A. clar-
kii’s range; (ii) are there signatures of selection in edge and
core populations; and (iii) what are the underlying biological
or molecular processes targeted by such selection?
2. Material and methods
(a) Study species and sample collection
We sampled a total of 25 A. clarkii individuals (4–11 cm fork
length) from three locations. These locations represent the core
of the species distribution (near the equator), part-way to the
northern edge and near the northern edge of the species range.
We collected seven individuals from Sulawesi Tengah, Indonesia
(six from 0.652217 °S, 119.739 °E and one from 0.65695 °S,
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119.741 °E), 10 from Leyte, Philippines (10.87304 °N, 124.7122 °E)
and eight from Shikoku Island, Japan (33.005133 °N, 132.5047 °E)
(figure 1). All sampling took place in 2012 (May–August). Upon
capture, a sample of heart tissue was taken and immediately pre-
served in RNAlater. The heart was chosen as it plays an important
role in determining thermal sensitivity through oxygen transport
and aerobic capacity [28]. As taking heart tissue is lethal, we
designed our sampling scheme to capture the largest sample
possible while minimizing cost and population impact.

We extracted total RNA using a Qiagen RNAeasy spin
column (Qiagen, Hilden, Germany) following the manufacturer’s
recommendations and made cDNA libraries with an Illumina
TruSeq v2 kit (Illumina, San Diego, CA, USA) at half reaction
volumes. We assessed concentrations with a Qubit dsDNA HS
assay (ThermoFisher Scientific, Waltham, MA, USA), quality
with a NanoDrop spectrophotometer (ThermoFisher Scientific),
and fragment length with an Agilent 2100 BioAnalyzer and a
DNA 1000 kit (Agilent, Santa Clara, CA, USA). We sequenced
the libraries on an Illumina HiSeq 2500 (Illumina) with 140 and
187 bp single-end reads at Princeton University’s Lewis-Sigler
Institute Genomics Core Facility.

(b) Read mapping and variant calling
We demultiplexed the sequenced reads by Illumina index using a
Python script adapted from FASTX Barcode Splitter [29], trimmed
to bases with a quality score greater than 20 with TQSfastq.py
from the SSAKE assembly pipeline [30], and removed reads less
than 30 bases long after trimming. Reads from individual N3
were assembled into a de novo reference transcriptome using
TRINITY v. 2.2.0 [31] (details in the electronic supplementary
material). The final reference transcript contained 103 518
transcripts, varying in length from 201 to 7323 nucleotides. We
mapped reads to the reference transcriptome using STAMPY

v. 1.0.28 [32], filtered for mapping quality greater than 20 using
SAMTOOLS v. 1.3.0 [33], marked read duplicates using the Mark-
Duplicates function in PICARD TOOLS v. 1.119 (https://
broadinstitute.github.io/picard/), and realigned indels using
IndelRealigner in GATK v. 3.8.1 [34]. Variants were called with
HaplotypeCaller in GATK. We removed all variants except bialle-
lic single nucleotide polymorphisms (SNPs) genotyped in at least
24 samples. Additional filtering with VCFTOOLS v. 1.16 [35]
removed SNPswith a minor allele count of less than 2. After filter-
ing, we had 4212 SNPs, distributed across 1002 transcripts.

(c) Genetic diversity
Weassessed twomeasures of genetic diversity and onemeasure of
relatedness. We calculated per-site nucleotide diversity (π) for
each sampling site using VCFTOOLS. The mean inbreeding coeffi-
cient (FIS) was estimated from observed heterozygosity and
expected gene diversity with the hierfstat package in R v. 3.4.4
[36,37]. We assessed the mean within-population pairwise relat-
edness using the relatedness R package [38] and the Wang
relatedness estimator [39] that has reduced bias with small
sample sizes [40]. We calculated 95% confidence intervals (CIs)
for all metrics by bootstrapping with replacement across individ-
uals 1000× in R. Tajima’s D was calculated across each transcript
using VCFTOOLS. To include rare variants and avoid potential
biases from purifying selection, Tajima’s D was calculated using
only synonymous sites from an SNP dataset unfiltered for
minor allele count (1453 SNPs). Synonymous sites were identified
using SNPEFF [41] (see the annotation section for details).

(d) Outlier test and environmental association analyses
To identify candidate SNPs under selection, we used an outlier
test and two environmental association analyses (EAA). For the
outlier analysis, we ran the core model implemented in the
program BAYPASS v. 2.1.1 [42] using default parameters and all
4212 SNPs. This model generates an XtX statistic [43], which is
an FST-type measurement that considers population structure.
We determined a threshold XtX value for outliers by creating
pseudo-observed datasets under a null model and analysed
them with the core model [42]. We used the 99% quantile of
this empirical XtX distribution under no selection as the
selection/neutrality threshold.

For the EAAs, we used two methods. First, we ran the stan-
dard covariate model implemented in BAYPASS which tests for
associations between allele frequencies and environmental cov-
ariables while accounting for the neutral covariance among
localities. We used annual mean sea surface temperature (SST
mean), minimum SST (SST min), maximum SST (SST max),
latitude and mean sea surface salinity (SSS mean) (electronic
supplementary material, table S2) from the MARSPEC database
[44]. For every variable, we ran a burn-in of 5000 iterations and
then 25 000 Markov chain Monte Carlo (MCMC) steps thinned
to every 25. We used the full dataset of 4212 SNPs. Bayes factors
(BFs) in deciban (dB) units were used to determine whether an
SNP was associated with an environmental variable. As rec-
ommended in [42], we considered SNPs with a BF greater than
20 dB to be strongly associated. To assess these associations, we
randomly reassigned individuals among locations to create per-
muted datasets that we then analysed in BAYPASS (details in the
electronic supplementary material).

Our second EAAwas a redundancy analysis (RDA). We used
the vegan v. 2.4.1 R package [45] to perform RDA with the same
environmental variables as in BAYPASS and a centred allele fre-
quency dataset with all 4212 SNPs. We used two methods to
identify potential outlier SNPs: (i) those with a q-value of greater
than 0.1 [46] and (ii) those with scores ± 3 s.d. from the mean
axis score for each of the first two constrained axes that also had
a p≤ 0.0001 when regressed against an environmental variable
[47]. Both methods identified similar sets of outlier SNPs. How-
ever, the second method was more stringent, so we used only
those SNPs for downstream analyses. The mean outlier allele fre-
quencies were calculated for each sampling site, polarized so that
the Japanese allele frequency was highest. Because one pair of
individuals appeared highly related, we also conducted all outlier
analyses without one of the highly related individuals (N4).

(e) Population structure
We analysed population structure with principal component
analysis (PCA) and STRUCTURE [48]. PCA was performed with
all 4212 SNPs using PLINK v. 1.9 [49]. In addition, SNPs out of
the Hardy–Weinberg proportions (HWP) were identified using
VCFTOOLS and PCAwas redone without these SNPs. We also per-
formed PCAs with only outlier SNPs and with all outlier SNPs
removed. STRUCTURE v. 2.3.4 was run assuming admixture and
correlated allele frequencies. We ran five replicates of each K
(number of populations) from 1 to 5 with a burn-in of 100 000 fol-
lowed by an additional 10 000 MCMC steps. STRUCTURE was run
on the same four datasets as PCA. The optimal value of K was
identified using the Evanno method [50]. Results were visualized
with CLUMPP [51] and the pophelper v. 2.3.0 package in R [52].
Finally, pairwise FST estimates calculated with all 4212 SNPs
and 95% CIs were evaluated using the hierfstat package in R
[36]. We also conducted all analyses without one of the highly
related individuals (N4), though we note that removing related
individuals can bias inference [53].

( f ) Demographic analyses
We estimated dispersal rates and long-term effective population
sizes (Ne) with fastsimcoal2 [54] by fitting a model of population
splits and ongoing migration against the multidimensional site
frequency spectrum (details in the electronic supplementary

https://broadinstitute.github.io/picard/
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Table 1. Mean per-site nucleotide diversity (π), the inbreeding coefficient (FIS), mean within-population pairwise relatedness (r), mean Tajima’s D (with either
all transcripts included or only transcripts with outlier SNPs) and effective population sizes (Ne) from fastsimcoal2 for each sampling location. (The 95%
confidence intervals are provided in brackets. s.e. provided after ± for Tajima’s D.)

sampling

location π (×10−4) FIS r

Tajima’s D

(all)

Tajima’s D

(outliers) Ne

Japan 8.44 (8.22, 8.67) −0.189 (−0.201, −0.178) 0.222 (0.202, 0.243) −0.28 ± 0.052 0.031 ± 0.255 2176 (1773, 3117)

Philippines 9.64 (9.45, 9.84) −0.057 (−0.069, −0.046) −0.011 (−0.063, 0.04) −0.29 ± 0.046 0.066 ± 0.244 2090 (1931, 3527)

Indonesia 9.53 (9.30, 9.73) −0.101 (−0.113, −0.087) 0.018 (−0.061, 0.097) −0.166 ± 0.05 0.006 ± 0.244 1988 (1552, 3272)
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material). We also ran STAIRWAY PLOT v. 2 [55] to estimate changes
in abundance in each location from the folded site frequency
spectrum (see the electronic supplementary material), though
we acknowledge challenges with inference based on less than
106 SNPs [56].

(g) Functional and structural annotation
The de novo transcriptome assembly was mapped to Amphiprion
frenatus with BLASTn searches against A. frenatus with an
E-value cut-off of 10−6 [57,58]. Structural annotation was
performed on these mapped SNPs with SNPEFF [41]. Amphiprion
frenatus is one of the most closely related and completely anno-
tated transcriptomes available [59]. Gene ontology (GO) terms
were annotated to predicted proteins from the best BLASTn
match against the SwissProt database.
3. Results
(a) Genetic diversity and relatedness
Per-site nucleotide diversity and the inbreeding coefficient
(FIS) were both lowest in Japan and highest in the Philippines
(table 1). The mean within-site Tajima’sD ranged from −0.29 ±
0.046 in the Philippines to −0.166 ± 0.05 in Indonesia and was
−0.355 ± 0.041 with all individuals pooled together (table 1;
electronic supplementary material, figure, S1). The mean pair-
wise relatedness (r) varied as well, from r = 0.222 in Japan to
r =−0.011 and r = 0.018 in the Philippines and Indonesia,
respectively (table 1).

(b) Spatially divergent selection
BAYPASS identified 93 highly diverged SNPs with an XtX
value≥ 6.03, the 99% significance threshold. BAYPASS also
revealed 192 SNPs with a strong association with at least
one environmental variable (BF > 20 dB). Most SNPs were
associated with SST mean. Of those 108 SNPs, 81% were
also associated with SST min and latitude. Most of these
latter SNPs were more strongly associated with either SST
variable than with latitude (electronic supplementary
material, figure S2). The empirical cumulative distribution of
BFs for each environmental covariate was significantly different
from the permuted distribution (Mann–Whitney U-test; p <
0.001; electronic supplementary material, figure S3). RDA
identified 67 SNPs with a significant association with at least
one environmental variable (p≤ 0.0001) (electronic supplemen-
tary material, figure S4). Of these, most were associated with
SST min (electronic supplementary material, table S3).

Across all analyses, 56 SNPs had an XtX greater than the
99% threshold and a significant association with at least one
environmental variable according to both EAAs (figure 2). Of
these, most were associated with SST mean (54 SNPs), SST
min (52 SNPs) or latitude (49 SNPs) (electronic supplemen-
tary material, table S3). Again, most of these SNPs (80%)
were more strongly associated with either temperature vari-
able than with latitude (electronic supplementary material,
table S3). The mean polarized outlier allele frequency was
0.847 in Japan, 0.179 in the Philippines and 0.162 in Indonesia
(electronic supplementary material, figure S5). When within-
site Tajima’s D was calculated for only the outlier sequences
(transcripts that contained at least one outlier SNP), the mean
estimate trended slightly positive (table 1; electronic sup-
plementary material, figure S1). However, the difference
between the outlier-only and overall Tajima’s D distributions
was not significant for any combination of individuals (elec-
tronic supplementary material, figure S6). The outlier
analyses after removing related individual N4 did not differ
substantially from the findings with all individuals included
(electronic supplementary material, table S4).

(c) Population structure
PCA revealed that individuals from Japan clustered more
tightly relative to the Philippines or Indonesia (figure 3a; elec-
tronic supplementary material, figure S7a). PC 1 explained
13% of the total variance, while PC 2 explained 10%. How-
ever, the PCA with only outlier SNPs revealed that
Japanese individuals were much more diverged from an
Indonesian and Philippines cluster (figure 3b). PC 1
explained 73% of the variance in this latter case, while PC 2
explained 7%. STRUCTURE analyses also revealed population
clustering. The Evanno method suggested three clusters
(K = 3), regardless of whether the full dataset was used,
only SNPs in HWP, or only non-outlier SNPs (figure 3c; elec-
tronic supplementary material, figure S7c,d ). However, with
only outlier SNPs, only two clusters were suggested (K = 2),
one for Japan and one for the Philippines and Indonesia com-
bined (figure 3d ). Pairwise FST ranged from 0.0247 to 0.0767
and was highest for the Japan–Indonesia comparison, con-
gruent with patterns of isolation-by-distance (electronic
supplementary material, table S5). Population structure ana-
lyses without one of the highly related individuals (N4) did
not differ substantially (electronic supplementary material,
figure S8).

(d) Demographic analyses
Analyses with fastsimcoal2 revealed moderate Japan–
Philippines migration rates of 0.0038 (95% CI: 0.0025, 0.0047)
and 0.0056 (95% CI: 0.0038, 0.0072) for Philippines–Indonesia,
or the equivalent of approximately 10 individuals per gener-
ation. Long-term Ne estimates did not differ substantially
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between the three localities (table 1). STAIRWAY PLOT analyses
suggested slow declines in the Philippines but did not reveal
recent bottlenecks or expansions (electronic supplementary
material, figure S9).

(e) Functional and structural annotation
Of the 4770 SNPs that could be mapped to the A. frenatus
assembly, most mapped to either coding regions (2418 SNPs)
or untranslated regions (UTRs) (1406 SNPs) (electronic sup-
plementary material, table S6). Of the 56 outlier SNPs, 48
could be fully annotated, four could only be annotated func-
tionally and two could only be annotated structurally. These
56 outlier SNPs represented 25 distinct candidate genes. We
grouped these candidate genes into general biological cat-
egories based on their GO annotations (table 2; electronic
supplementary material, table S3). Broadly, most of the candi-
date genes were involved in protein turnover and translation.
The structural annotation suggested that 29 of the SNPs were
in coding regions (one nonsense, 11missense, 17 synonymous)
and 19 were in the UTRs (17 in 30 and two in 50). One SNP was
mapped to the upstream region of a gene and onewasmapped
to an intergenic region, which may represent either a currently
unannotated protein coding gene or RNA gene.
4. Discussion
Despite theoretical work predicting how and under what
conditions populations at range peripheries may undergo
local adaptation [5,8,11], empirical support for these models
remains scarce, particularly in the marine realm. Here, we
investigated how evolutionary forces interact to shape pat-
terns of adaptive potential and enable local adaptation
across the northern half of the range of a common coral reef
fish. Comparison of 4212 SNPs from three A. clarkii popu-
lations revealed clear evidence of spatially divergent
selection and reduced levels of genetic variation at the north-
ern periphery of this species’ range. In addition, there was
substantial population structure despite moderate gene flow
between the edge and core populations.

Studies of marine species using putatively neutral genetic
markers frequently report genetic structure in the Indo-West
Pacific [60–62]. However, this study is unique in that multiple
SNPs had strong associations with environmental variables.
Moreover, when only examining outlier SNPs, the edge
versus core population distinction could explain fully 73%
of the genetic variation. These results suggest that selection,
in addition to neutral processes, shapes patterns of genetic
structure in our study system. Combined, our findings
further suggest that neutral and adaptive variation are differ-
ently partitioned among the three sampling locations, a
pattern that is increasingly reported in marine taxa [16].
(a) Life on the edge
Climate change is driving range expansions in marine ecosys-
tems [20], renewing interest in the balance between gene flow
and adaptation at range margins. Here, population structure
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analyses provide evidence for at least two genetic clusters,
with Japanese individuals at the edge appearing genetically
distinct from individuals closer to the core. Clownfish have
a relatively short pelagic larval duration (approx. two
weeks) [26] and exhibit self-recruitment [63]. These character-
istics should limit dispersal, leading to genetic structure as
observed in other clownfish species in the region [60].
Given the large physical distance between our sites, a step-
ping-stone model of gene flow probably explains the
observed genetic patterns.

However, a lack of apparent population structure is not
unusual in marine populations that span large geographical
ranges [14]. Theory also suggests that neutral genetic vari-
ation can become homogenized with even minimal gene
flow, including rates lower than what we estimated [64].
The Kuroshio Current runs northwards to Japan from the
bifurcation of the Northern Equatorial Current off the eastern
coast of the Philippines [65] and may provide an avenue for
migration, particularly from the core to the edge. Indeed,
other damselfish show limited genetic differentiation between
Japanese populations and those in the Coral Triangle [66].
However, the strong genetic differentiation seen between A.
clarkii populations in Japan and the Philippines/Indonesia
suggests these distinct genetic lineages may be maintained
by local adaptation in addition to gene flow.

Evidence for the role of neutral processes comes from
lower genetic diversity at the range edge of A. clarkii as
well. Nucleotide diversity and FIS were lowest, and related-
ness highest, in the peripheral Japanese site. These findings
are congruent with the idea that edge populations are subject
to higher rates of genetic drift owing to reduced Ne [6,10] and
match previous studies that found declining genetic diversity
along the Kuroshio Current towards species’ northern range
margins [67]. However, our analyses also estimated similar
long-term Ne in all three sites and no signatures of recent bot-
tlenecks at the range edge. These results suggest the greater
levels of diversity observed in the core may be maintained
by higher connectivity to other populations in the region,
including those we did not sample. Continued gene flow
could provide a steady influx of alleles to offset the effects
of drift [68]. Populations at the range edge, with fewer con-
nections, may only see reduced benefits of dispersal.

Despite the action of neutral processes, our results also
provide strong evidence of spatially divergent selection
across the northern half of the range of A. clarkii. Fifty-six
SNPs were adaptively divergent and significantly associated
with environmental variables. Surprisingly, within-popu-
lation Tajima’s D for transcripts containing these SNPs was
slightly positive, counter to the negative values expected fol-
lowing recent, hard selective sweeps. Positive Tajima’s D
values indicate an over-abundance of intermediate frequency
alleles, which are often a signature of balancing selection [69].
While it is unlikely that balancing selection acted separately
within each population examined here, balanced polymorph-
isms may nonetheless be maintained by the push of locally
directional selection and the pull of gene flow continuously
re-introducing maladaptive alleles and their linked genetic
background.

Most of the outlier SNPs were significantly associated
with either mean or min SST and latitude. As temperature
and latitude are correlated, these findings are not unexpected.
However, almost every SNP was more strongly associated
with temperature than with latitude, which suggests that
temperature, in particular, may be driving the observed
differences in allele frequencies. In fact, the pattern of outlier
allele frequencies among the three sites closely mirrored



Table 2. List of the contigs (from the de novo transcriptome assembly) containing the 56 candidate SNPs and their functional and structural annotations.
(Number of candidate SNPs in each contig is listed.)

contig
no. of
SNPs

gene
name GO annotation SNP effects

DN14997_c0_g1_i1 3 MCL1 apoptotic process 50 UTR (1); missense (2)
DN2025_c0_g1_i1 2 KRT8 cell structure 30 UTR (1); unannotated (1)
DN20310_c1_g1_i1 1 cstb proteolysis unannotated (1)

DN20701_c0-g1_i1 1 smdt1 calcium ion transport synonymous (1)

DN22229_c0_g1_i1 1 ATP5H ATP biosynthetic process synonymous (1)

DN24358_c0_g1_i1 1 Arl6ip1 protein targeting; cell death synonymous (1)

DN27846_c0_g1_i1 3 KRT8 cell structure 30 UTR (2); unannotated (1)
DN28343_c0_g1_i1 2 CRIP1 signal transduction; protein binding synonymous (2)

DN30912_c0_g1_i1 1 KRT13 cell structure unannotated (1)

DN33929_c0_g3_i1 1 PSMD12 proteolysis 30 UTR (1)
DN34728_c1_g1_i1 1 KRT8 cell structure 30 UTR (1)
DN35673_c1_g2_i2 2 rpl9 translation missense (1); synonymous (1)

DN35709_c0_g2_i1 2 KRT8 cell structure missense (1); synonymous (1)

DN35710_c0_g1_i1 1 SPCS3 proteolysis; protein targeting missense (1)

DN36584_c0_g1_i1 2 ANXA5 calcium ion transport missense (1); synonymous (1)

DN36805_c1_g1_i1 3 PRDX1 antioxidant activity; response to stress missense (2); 30 UTR (1)
DN37204_c0_g1_i1 3 Tomm20 protein targeting synonymous (1); 30 UTR (2)
DN37469_c0_g3_i1 1 rps3a translation synonymous (1)

DN37870_c0_g1_i1 1 CHCHD10 metabolic process; mitochondrial organization synonymous (1)

DN38348_c0_g1_i1 1 CCT5 protein folding missense (1)

DN38348_c0_g2_i1 3 CCT5 protein folding missense (1); synonymous (1); 30 UTR (1)
DN38750_c0_g1_i1 1 GOT2 metabolic process synonymous (1)

DN39050_c0_g3_i1 5 CCT4 protein folding 50 UTR (1); start lost (1); missense (1); synonymous (2)
DN39195_c1_g1_i2 1 YWHAB signal transduction; protein binding 30 UTR (1)
DN39216_c0_g1_i1 3 Rab1A autophagy; protein targeting 30 UTR (3)
DN39927_c1_g1_i1 1 HMGB2 transcription; immune response 30 UTR (1)
DN40382_c0_g2_i1 1 P4hb isomerase activity; protein folding 30 UTR (1)
DN40393_c0_g2_i1 1 — unannotated upstream (1)

DN40479_c0_g2_i1 2 EIF3B translation 30 UTR (2)
DN40807_c0_g1_i1 3 — unannotated intergenic region (1); unannotated (2)

DN4487_c0_g2_i1 1 HMGB2 transcription; immune response synonymous (1)

DN58176_c0_g1_i1 1 RPL14 translation synonymous (1)
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those of average SST temperatures. Similarly, most SNPs
associated with the mean SST were also associated with
min SST, suggesting that differences in the mean SST are
probably reflective of differences in the degree of seasonality
(namely, whether a population experiences a winter season).
As many biological pathways are temperature-sensitive [22],
and winter water temperatures at the Japanese site can regu-
larly drop below 15°C [70], changing seasonality across A.
clarkii’s range is probably a strong force driving local
adaptation.

The correlative nature of our evidence for thermal adap-
tation cannot rule out alternative selective pressures,
however. We did not examine other factors like primary pro-
ductivity, dissolved oxygen, carbonate chemistry, population
densities or resource availability that are also likely to differ
between these locations and may drive local adaptation.
Similarly, demographic processes like allele surfing during
expansion waves and isolation-by-distance may also contrib-
ute to the genetic differentiation across A. clarkii’s range [71].
However, the outlier detection methods we used are reason-
ably effective at accounting for these latter sources of
evolutionary non-independence [72]; thus, we do not expect
drift to be the primary force creating these outlier SNPs.

Further evidence that the allele frequency variation in out-
lier SNPs is linked to differences in thermal regimes comes
from the fact that the genetic pathways represented by
these SNPs are similar to those invoked during gene
expression changes that accompany acclimation to cold
shock. Genes and proteins that are important for temperature
acclimation probably also play a large role in temperature
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adaptation [73], and differences in gene expression among
populations may have a genetic basis in addition to being a
plastic response. The candidate genes we identified are lar-
gely involved in energy metabolism, protein turnover, cell
structure, cell death and oxidative stress response; functional
categories that are often upregulated in heart tissue during
short-term acclimation to cold stress [74,75]. Cytoskeleton
reorganization has been shown to occur during thermal
acclimation as well, although this has been at least partially
attributed to cold-induced hypertrophy of heart tissue [75].
Interestingly, many candidate SNPs mapped to the 30 or 50

UTR (including near CpG islands), regions that help regulate
gene expression [76]. Shifting gene expression levels are one
of the ways organisms can plastically acclimate to environ-
mental stressors; thus, SNPs in regulatory regions may
provide a link between plastic and evolutionary responses
involved in thermal adaptation [77]. In addition, most of
the candidate SNPs that mapped to coding regions appear
to be synonymous substitutions. Recent theory has proposed
that silent mutations may not be truly neutral and can
undergo weak selection, via codon bias, linkage and trans-
lation efficiency [78]. Altered gene expression and enhanced
translation accuracy may also be a more feasible route for
adaptation, as opposed to modifications of gene structure
or the development of novel proteins. Theory suggests that
changes in regulatory regions play a major role in adaptation
[76,77], and several studies have linked regulatory region
mutations with adaptive traits, including temperature
response in Drosophila melanogaster [79]. While further work
is needed to link genetic variation to phenotypes, our results
suggest a similar pattern of adaptation within A. clarkii popu-
lations in response to differences in thermal environments.
5. Conclusion
As the oceans continue to change, marine taxa will face
substantial shifts in climatological and ecological parameters.
The effects of climate change will differ by population
depending on their climatic tolerance and local environment
[80]. Here, we show how selection, gene flow and drift com-
bined to shape adaptive variation within an edge population,
including variation associated with thermal environments.
Edge populations are particularly important in predicting
species responses, as they are often the first to start shifting
as climates change [19,20]. Continued connectivity to
warmer core populations may provide an avenue for these
typically cooler-climate demes to access novel genetic vari-
ation that will enable adaptation to warming temperatures
[12]. However, the outcome of adaptation is highly depen-
dent on the extent to which these evolutionary forces
interact in a synergistic or antagonistic manner. Species
with both the genetic variation to allow local adaptation
and the gene flow to transport such variation to novel
environments are likely to have particularly strong abilities
to adapt to future climatic conditions.
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