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Abstract 24 

Citizen science is increasingly being used to collect data for research. However, there is often 25 

concern about the accuracy of the data. Here we use 63 peer-reviewed case studies in ecology 26 

and environmental science that compare citizen science data against reference data to statistically 27 

evaluate the accuracy of citizen-collected data. Citizen science data is not significantly different 28 

from professional data in 62% of the comparisons using p-values, shows moderate to strong 29 

correlation (r ≥ 0.5) with professional data in 51% of the comparisons using correlations, and has 30 

at least 80% agreement with professional data in 55% of the comparisons using percent 31 

agreement. Data collected by participants who were involved for longer time periods, by 32 

participants who had training, by larger groups, and in research related to volunteers’ economic 33 

and health situations are more accurate. Citizen science can provide useful data, but accuracy for 34 

a given task may be low and researchers should design tasks that increase the accuracy of data 35 

collected by citizen scientists.  36 

 37 

 38 

 39 

 40 

 41 

 42 

 43 

 44 

 45 
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1. Introduction 46 

Citizen science involves volunteers who participate in scientific research by collecting data, 47 

monitoring sites, and even taking part in the whole process of scientific inquiry (Roy et al. 2012, 48 

Scyphers et al. 2015). In the past two decades, citizen science (also called participatory or 49 

community-based monitoring) has gained tremendous popularity (Bonney et al. 2009, Danielsen 50 

et al. 2014), due in part to the increasing realization among scientists of the benefits of engaging 51 

volunteers (Silvertown 2009, Danielsen et al. 2014, Aceves-Bueno et al. 2015, Scyphers et al. 52 

2015). In particular, the cost-effectiveness of citizen science data offers the potential for 53 

scientists to tackle research questions with large spatial and/or temporal scales (Brossard et al. 54 

2005, Holck 2007, Levrel et al. 2010, Szabo et al. 2010, Belt and Krausman 2012). Today, 55 

citizen science projects span a wide range of research topics concerning the preservation of 56 

marine and terrestrial environments, from invasive species monitoring (e.g., Scyphers et al., 57 

2015) to ecological restoration and from local indicators of climate change to water quality 58 

monitoring (Silvertown 2009). They include well-known conservation examples like the 59 

Audubon Christmas Bird Count (Butcher et al. 1990) and projects of the Cornell Lab of 60 

Ornithology (Bonney et al. 2009).  61 

 62 

Despite the growth in the number of citizen science projects, scientists remain concerned about 63 

the accuracy of citizen science data (Danielsen et al. 2005, Crall et al. 2011, Gardiner et al. 2012, 64 

Law et al. 2017). Some studies evaluating data quality have found volunteer data to be more 65 

variable than professionally collected data (Harvey et al. 2002, Uychiaoco et al. 2005, Belt and 66 

Krausman 2012, Moyer‐Horner et al. 2012) and others that volunteers’ performance is 67 

comparable to that of professionals or scientists (Hoyer et al. 2001, Canfield Jr et al. 2002, 68 
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Oldekop et al. 2011, Hoyer et al. 2012). For example, Danielsen et al. (2005) concluded that the 69 

16 comparative cases studies they reviewed only provided cautious support for volunteers’ 70 

ability to detect changes in populations, habitats, or patterns of resource use. In a more recent 71 

review, (Dickinson et al. 2010) found that the potential of citizen scientists to produce datasets 72 

with error and bias is poorly understood.   73 

 74 

The evidence of problems with citizen science data accuracy (e.g., Hochachka et al. 2012; 75 

Vermeiren et al. 2016) indicates a need for a more systematic analysis of the accuracy of citizen 76 

science data derived from individual studies of accuracy. To our knowledge, despite useful 77 

qualitative reviews (e.g., Lewandowski and Specht 2015), there are to date no reviews that 78 

combine the case studies to quantitatively evaluate the data quality of citizen science. In this 79 

paper, we conduct a quantitative review of citizen science data in the areas of ecology and 80 

environmental science. We focus on the universe of peer-reviewed studies in which researchers 81 

compare citizen science data to reference data either as part of validation mechanisms in a citizen 82 

science project or by designing experiments to test if volunteers can collect sufficiently accurate 83 

data. We code the authors’ qualitative assessments of data accuracy and we code the quantitative 84 

assessments of data accuracy. This enables us to evaluate both whether the authors believe the 85 

data to be accurate enough to achieve the goals of the program and the degree of accuracy 86 

reflected in the quantitative comparisons. We then use a linear regression model to assess 87 

correlates of accuracy. With citizen science playing an increasingly important role in expanding 88 

our scientific knowledge and enhancing the management of the environment, we conclude with 89 

recommendations for assessing data quality and for designing citizen science tasks that are more 90 

likely to produce accurate data.  91 
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2. Methods  92 

This study uses the case survey method to compile the set of studies published before 2014 that 93 

directly compare citizen science data with reference data. The goal of this method is to 94 

supplement qualitative, in-depth case studies with a quantitative analysis. As with all large-n 95 

studies, this prioritizes generalizability over detailed analysis of each case. It supplements 96 

existing published case studies and qualitative reviews (e.g., Freitag and Whiteman 2016, 97 

Kosmala, et al. 2016).  98 

 99 

2.1 Compilation of comparative case studies  100 

We used a ‘snowball’ approach to identify studies published before 2014 that compare citizen 101 

science data with some sort of reference data. Beginning with the 16 studies reviewed in 102 

Danielsen et al. (2005), we performed a cited reference search on Google Scholar 103 

(http://scholar.google.com/) for papers that cited these 16 studies. Next, we identified every 104 

paper cited in this group of papers that compared citizen science data to reference data and again 105 

performed a cited reference search on this new group of papers. We repeated this process 106 

iteratively until we encountered no new case studies, giving confidence that we had identified the 107 

universe of papers in ecology and environmental science that compare citizen science data to 108 

reference data. This process yielded a preliminary list of 72 articles. We eliminated 9 studies 109 

either because they presented their statistical results in figures (e.g., (Rock and Lauten 1996, 110 

Osborn et al. 2005, Thelen and Thiet 2008), did not directly compare citizen science data against 111 

professionally collected data (e.g., (Mellanby 1974), or conducted only qualitative comparisons 112 

(e.g., (Mueller et al. 2010). Bibliographic information on each of the 63 studies used in this study 113 

is provided in Appendix A.   114 
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 115 

2.2 Extraction of statistical information 116 

For each of the 63 papers, we identified each comparison between citizen scientists and 117 

professionals that was made. This yielded 1,363 comparisons, which spanned a wide range of 118 

measurements from identification and counts of specific species (Lovell et al. 2009) to 119 

calculation of total nitrogen concentration in water (Loperfido et al. 2010). We extracted 120 

quantitative statistical results for each comparison. For example, in a study on invasive species 121 

(Crall et al. 2011), volunteers’ estimates of cover across species were compared to professionals' 122 

estimates using a Student t-test, so we recorded the t-statistic, p-value, and degrees of freedom 123 

when provided. In that same paper, citizen scientists' correct identification of species was 124 

compared to professionals' using percent agreement and a chi-squared test, so each of those 125 

values (% agreement, chi-squared value, and p-value) was recorded. That paper also included 126 

breakdowns of easy and difficult species identification, as well as the presence or absence of 127 

species, resulting in five observations that compare the data from volunteers to that of 128 

professionals. To assure data quality, the accuracy of the data extracted from each paper was 129 

checked by a second coder after inclusion into the database. 130 

 131 

Each comparison of different tasks or different subsets of the tasks is used as an observation 132 

here. Where more than one statistical test was used to compare the same set of observations, each 133 

was included in the summary of the data presented here. As a result, some comparisons appear 134 

more than once among the 1,363 comparisons. Specifically, 182 observations were counted 135 

twice and five observations were counted three times to capture all statistical methods that 136 

researchers reported in 63 studies. These duplications were eliminated in the analysis that 137 
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compares citizen science data to professionals. The order of selection for the p-value where 138 

multiple tests were used was Student t-test, Wilcoxon signed rank, ANOVA, then Mann-139 

Whitney. In the few examples where no p-value was available and a correlation r-value was 140 

available, the correlation r-value was used. We define minimally acceptable levels of accuracy as 141 

not being significantly different (p<0.05) according to statistical tests, having a correlation 142 

greater than 0.5, or having at least 80% agreement. These are relatively low standards for 143 

accuracy. We return to what defines an acceptable level of accuracy in our recommendations for 144 

comparing citizen science and professional data (section 5.1). 145 

 146 

2.3 Authors’ Qualitative Evaluations of Citizen Science Data 147 

In addition to collecting the statistical comparisons between citizen science and reference data, 148 

we qualitatively code the authors’ evaluations of the quality of the citizen science data. For each 149 

paper, a coder read the abstract and qualitatively coded whether the authors used words like 150 

accurate, reliable, comparable, statistically similar, or valuable to describe the citizen science 151 

data or whether they used words like no significant correlations, overestimated, or 152 

contradictions. This results in a binary coding of the authors’ assessment of the data as either 153 

positive or negative. A second coder confirmed the binary coding of the authors’ assessments of 154 

the data.  155 

 156 

2.4 Covariates of Accuracy 157 

In addition to coding the statistical comparisons between citizen science data and reference data, 158 

we coded the attributes of the task and citizen scientists that might affect accuracy. To 159 

characterize the task, we coded the discipline as geology, atmospheric science, biology of 160 
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animals, or botany and the location of the research as marine, freshwater, terrestrial, or the 161 

atmosphere. We also coded whether the author noted any particular difficulty with the task, as 162 

difficulty affects accuracy (Kosmala et al. 2016). To understand the attributes of the citizen 163 

scientists, we coded the length of participation of the citizen scientists into 6 categories ranging 164 

from 0-1 month to more than 10 years, whether they participated only once or repeatedly, and the 165 

number of citizen scientists participating. We coded whether the paper mentioned that the citizen 166 

scientists received training prior to the task and whether the citizen scientists had an economic or 167 

health stake in the scientific/research question. Details of the coding are in Appendix B. A linear 168 

regression model was fit to assess whether various attributes of the citizen science project affect 169 

the percent agreement between citizen science data and reference data.  170 

3. Results  171 

3.1 Characteristics of the Data 172 

Figure 1 provides a summary of the characteristics of the papers. Most of the studies focused on 173 

terrestrial systems (47.7%), followed by freshwater systems (29.2%), marine systems (21.5%) 174 

and atmospheric studies (1.5%). The majority (69.0%) of the studies were relatively short, with 175 

lengths of participation of less than 1 month; a smaller fraction had longer monitoring periods, 176 

varying from 2-6 months (34.2%) to 7-12 months (8.5%) to 1-5 years (2.8%). The number of 177 

citizen scientists participating in studies tended to be small, with 20.55% of studies using fewer 178 

than 10 people. Very few studies (2) used more than 1000 people (2.7%). Other studies engaged 179 

11-50 people (19.2%), 51-100 people (13.7 %), 101-500 people (16.4%), or 501-1000 people 180 

(6.9%). Figure 2 shows that more than 60% of the statistical comparisons we analyzed were from 181 

animal studies, followed by botany studies and geology-related studies which comprised slightly 182 
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over 20% and 18%, respectively. Only 0.6% of the comparisons generated by citizen science 183 

studies focused on the atmosphere. 184 

 185 

Citizen science data and professional data were compared using more than 10 different statistical 186 

methods (Figure 2). The comparisons most commonly used percent agreement (42.0%), Mann-187 

Whitney (13.7%), or Student’s t-tests (14.2%). The least-used comparison methods were 188 

correlations such as linear regression, Spearman’s Rank correlation, and Pearson’s correlation. 189 

Table 1 shows the number of studies and the number of comparisons using each of the statistical 190 

methods. Each test measures accuracy in a slightly different way.  191 

 192 

3.2 Statistical Comparisons of Citizen Science and Reference Data 193 

 While authors tend to be optimistic about the use of citizen science data in their qualitative 194 

discussions, we find only 51 to 62% of the comparisons between citizen science data and 195 

reference data show accuracy levels that meet our minimum thresholds for accuracy in scientific 196 

research. We present results from each of the main data comparison methods (percent agreement, 197 

statistics using p-values, correlations, and authors’ qualitative evaluations of accuracy) separately 198 

in this section and present results from regression analysis in the following section. 199 

 200 

Percent Agreement: Is there agreement between the data collected by citizen scientists and 201 

professionals? 202 

The most common means of comparing citizen science data to data collected by professionals 203 

was percent agreement (525 out of 1363; Table 1); yet this method does not allow for hypothesis 204 

testing. As shown in Figure 3, 55.2% of comparisons had a percent agreement equal to or greater 205 
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than 80%. There was at least 50% agreement in about 86.1% of the comparisons. Percent 206 

agreement of 10% or less was reported less than 2% of the time. We note that percent agreement 207 

fails to account for agreement by chance (Lombard et al. 2002), so these figures likely overstate 208 

the degree of accuracy of citizen scientists. 209 

 210 

Statistics using p-values: Are the data collected by citizen scientists and professionals 211 

different? 212 

A total of 528 comparisons used various statistical tests that resulted in p-values to test the 213 

hypothesis that citizen scientist and professional data are different. Considering a p-value ≤ 0.05 214 

as significant, differences between citizen science and professional data were significant in 203 215 

observations (38.4%) and not significant in 325 observations (61.6%), as shown in Figure 4. 216 

Each comparison of citizen scientists to professionals was given the same weight, regardless of 217 

the sample size or the degree of replication. Alternately, Fisher’s method aggregates the results 218 

and suggests that there are significant differences between citizen science and professional data 219 

when all studies are considered together (results in Appendix C). 220 

 221 

Correlations: Are there significant correlations between the data collected by citizen scientists 222 

and professionals? 223 

The correlation between citizen scientist and professional data was reported in 81 pairings. 224 

Overall, 72% of correlations were significantly greater than zero, but a quarter of the positive 225 

correlations were quite weak. We considered values of r ≥ 0.5 to show moderate to strong 226 

correlation between citizen scientist and scientist data. There were 41 observations (50.6%) with 227 

r ≥ 0.5, of which 36 (87.8%) were significant (p ≤ 0.05), 2 (4.9%) were not significant, and 3 228 



11 
 

(7.3%) were not reported. A total of 35 observations (43.2%) showed weak positive correlation 229 

between citizen scientist and scientist data (0 ≤ r < 0.5). Of these observations, 12 (34.3%) were 230 

significant, 17 (48.6%) were not significant, and 6 (17.1%) had no reported p-values. A total of 5 231 

observations (6.2%) indicated a negative correlation between citizen scientist and scientist data, 232 

and in all of these cases the correlations were not significant (Figure 5).  233 

 234 

3.3 Authors’ Qualitative Evaluations of Citizen Science Data 235 

This analysis shows that, depending on the comparison method, between 51% and 62% of the 236 

comparisons resulted in accurate citizen science data. In the 63 papers analyzed, 73% of the 237 

abstracts described the contributions of citizen science positively, using words like accurate, 238 

reliable, comparable, statistically similar, or valuable. Only 8 of the papers (13%) assessed 239 

citizen scientists’ performance negatively, using words like no significant correlations, 240 

overestimated, or contradictions in their abstracts. There are two likely reasons for these 241 

differences. First, many papers have multiple comparisons between citizen science and reference 242 

data, which may allow the authors to conclude that citizen science data is sufficiently accurate 243 

for certain tasks. In other words, the authors of the studies frequently saw the usable data within 244 

the noise. Second, there is no agreed-upon definition of terms like “reliable”. For some scholars, 245 

70% agreement is reliable, yet for others 70% agreement would not be sufficient for the 246 

scientific questions they seek to answer. This highlights the crucial role that research design and 247 

researcher judgement plays in deciding whether data are accurate enough for a given use.  248 

 249 

4. Covariates of Accuracy 250 

The main covariates of citizen scientists’ accuracy are location, participation length, monitoring 251 
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frequency, group size, training, and volunteer type, with about 20% of the total data variance 252 

explained by the model (Table 2). Research conducted in marine and terrestrial locations tends to 253 

have over 40% higher percent agreement than in freshwater locations. A longer participation 254 

length and holding a training session have a positive effect on the percent agreement, both with 255 

around 20% increases. This suggests that the studies to quantitatively compare citizen science 256 

data to professional data currently available may underestimate the accuracy of projects with 257 

longer participation. Surprisingly, citizen scientists who participate repeatedly in the monitoring 258 

program perform about 13% worse than those participate only once. If the citizen scientists have 259 

an economic or health stake in the outcome, percent agreement is, on average, 68% higher than 260 

the general volunteer type.  261 

 262 

5. Discussion and Conclusions 263 

5.1 Recommendations to increase transparency and make determination of accuracy more 264 

comparable across studies  265 

• Most importantly, we recommend that authors be explicit about their criterion for 266 

determining whether the data are “good enough”, as assessment criteria appeared to vary 267 

considerably. Ideally, this threshold should be determined prior to data collection to more 268 

quickly identify problematic tasks during collection and to avoid post-hoc rationalization 269 

of the accuracy of collected data. For example, if the goal is to identify catastrophic 270 

changes in mussel coverage in the intertidal zone, sufficient accuracy might be that 271 

citizen scientists can detect changes of at least one or two standard deviations in existing 272 

data. In other research, sufficient accuracy might require detecting much smaller changes. 273 
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This lack of explicit criteria for accuracy is particularly acute when correlations are used. 274 

For example, one paper reported a Spearman’s rank correlation of 0.55 with p<0.001. 275 

While this allows for a significance test (an advantage over percent agreement), it is 276 

unclear whether 0.55 should be considered a high enough correlation. These definitions 277 

of accuracy are specific to the research question for which the data will be used and 278 

should be specified before data collection commences or analysis proceeds.  279 

• Since percent agreement fails to account for agreement by chance (Lombard et al. 2002), 280 

we recommend augmenting it with Fleiss’s K coefficient, a more conservative index 281 

(Landis and Koch 1977) that is less likely to overstate agreement. While percent 282 

agreement is appealing for ease of interpretation, Fleiss’s K coefficient has been 283 

employed extensively in studies requiring intercoder reliability and both can be reported 284 

to balance ease of interpretation with conservative estimates of accuracy. 285 

 286 

5.2 Limitations 287 

The case survey method of analysis has well-known shortcomings. First, the case survey method 288 

relies on published case studies, which may not adequately cover all areas. In this case, many 289 

well-known citizen science projects are long-term and use many citizen scientists. Studies 290 

evaluating data quality, however, typically analyze data over a short period of time with fewer 291 

participants (Wiggins et al. 2011). The available comparisons of citizen science and reference 292 

data may not be fully representative of citizen science projects, which leaves open the possibility 293 

that the longer term and larger projects have better data quality. Thus, the conclusions here 294 

should be taken to apply mainly to shorter projects. It is clear that studies comparing citizen 295 

science data to reference data should continue, as there is more to learn about the correlates of 296 
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data quality and how to design citizen science projects that produce quality data. Second, the 297 

analysis hinges on the quality of the data in the studies. There are reasons to believe that the 298 

studies used here likely represent relatively good quality data. They were primarily designed 299 

explicitly to test the quality of citizen science data, which likely indicates that the researchers put 300 

more thought into how to obtain quality data. Most of the studies here (75.3%) provided training, 301 

which improves data quality. Nonetheless, this study must rely on published comparisons and 302 

data quality issues are not unique to citizen science. The papers examined here most often 303 

compare citizen science data to professional data, a common means of assessing data quality that 304 

often makes the assumption that the professional data is fully accurate (Kosmala et al. 2016). Yet 305 

data collected by professionals can also have quality issues (Dickinson et al. 2010, Crall et al. 306 

2011, Lewandowski and Specht 2015). We are therefore cognizant that the conclusions drawn 307 

here necessarily come from a subset of the citizen science activities that are undertaken, 308 

compared with professional data, and published so care must be taken in generalizing to other 309 

citizen science projects.  310 

 311 

5.3 Conclusions 312 

Despite these limitations of the case survey methodology, it offers the best way to draw 313 

quantitative conclusions across the published case studies, since most citizen science studies are 314 

not designed with reference data for comparison. As a result, researchers can only qualitatively 315 

assess the accuracy of the data. Such qualitative assessments can be valuable, as when a 316 

researcher notices citizen scientists struggling to identify uncommon species. But they may be 317 

overly optimistic. Although the abstracts of papers comparing citizen science data to professional 318 

data indicated that the citizen science data quality was good in 73% of the abstracts, the results of 319 
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our quantitative assessment cast more doubt on the accuracy of the data. For those studies 320 

reporting p-values we found that citizen science was not significantly different from professional 321 

data in 62% of the cases. We also found a moderate to strong correlation in 51% of the 322 

comparisons reporting correlation, and 55% of the comparisons reporting percent agreement had 323 

at least 80% agreement with professional data. Depending on the needs of the researchers, such 324 

levels of accuracy may not be sufficient. Monitoring in marine or terrestrial environments, longer 325 

participation length, prior training program, larger group size, and conducting research related to 326 

volunteers’ economic and health situations are good ways to increase the accuracy of the data. 327 

This analysis of more than 1,300 comparisons between citizen science and professional data 328 

offers some actionable recommendations for researchers using or considering the use of citizen 329 

science.  330 

 331 

First, the low overall accuracy of the data suggests that researchers should consider collecting 332 

reference data so as to easily identify suspect citizen science data. If collection of reference data 333 

is impractical, researchers should closely supervise citizen scientists to enable qualitative 334 

accuracy checks or employ other quality assurance methods. Jacobs (2016) analyzes existing 335 

methods for automated and semi-automated quality assurance and existing citizen science 336 

projects are constantly innovating to improve data quality (Jacobs). For example, the eBird 337 

project establishes a maximum number of birds that may be entered for every species in each 338 

month for a given region and then follows up with the original observers if these values are 339 

exceeded (Wood et al. 2011) and has continued to improve its data quality procedures. 340 

 341 

Second, researchers should design citizen science tasks with the skill of the citizens in mind and 342 
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employ strategies to improve data quality. Our regression results suggest that researchers should 343 

strive to employ citizen science on projects where citizens participate for longer time periods and 344 

should provide training sessions. Training, in particular, has been shown elsewhere to enhance 345 

accuracy and credibility (Freitag et al. 2016, Kosmala et al. 2016). A novel finding from this 346 

research is that scientists should consider seeking out volunteers with an economic or health 347 

stake in the research outcomes, as these volunteers produce data of better quality. For example, 348 

researchers might recruit citizens for a mussel study from among recreational harvesters, rather 349 

than the general population. Kosmala, et al. (2016) offer other strategies, such as iterative project 350 

design, employment of statistical methods for error correction, and good data curation, for 351 

improving data quality. 352 

 353 

This somewhat pessimistic assessment of citizen science accuracy should not discourage 354 

researchers from using citizen science for conservation science, as it has other advantages such 355 

as cost-effectiveness and stakeholder engagement (Aceves-Bueno et al. 2015, Newman et al. 356 

2017). Nonetheless, it does call into question the accuracy of the data and suggest that 357 

researchers put safeguards like the recommendations above into place when employing 358 

volunteers in monitoring and data collection. 359 

 360 
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 479 

Table 1. Methodsa applied by the studies reviewed to test the accuracy of citizen science data. 480 

Methods # of studies # of comparisons 

Percentage Agreement 27 525 

T-test 15 183 

Spearman's Rank Correlation 9 69 

Wilcoxon Signed Rank Test 8 61 

Pearson's Correlation 8 52 

ANOVA 6 21 

Linear Regression 5 18 

Mann-Whitney Test 4 185 

Chi-Square 4 25 

ANOSIM 2 7 

Kendall's Coefficient of Rank 2 12 

 a Only methods used by 2 or more papers are presented. This table includes comparisons 481 

where multiple methods were used. Later analyses eliminate these duplicates. 482 
 483 

 484 

 485 

  486 
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Table 2. The fitted model coefficients and the corresponding significant levels and standard 487 

errors. 488 

Coefficient Estimate Standard Error P-value 

Intercept 74.87 10.29 1.51E-12 

Location – marine 54.49 8.04 3.78E-11  

Location – terrestrial 44.90 6.81 1.20E-10  

Participation length – 7 

months to 1 year 

18.80 9.87 0.057  

Monitoring frequency – 

repeated 

-12.92 3.45 0.0002 

Group size – medium 0.61 8.22 0.94 

Group size – small -8.38 8.20 0.31 

Training – yes 22.14 5.05 1.44E-05  

Volunteer type  - volunteer -67.84 7.21 < 2E-16  

Specialized knowledge - yes 10.40 4.56 0.023 

Adjusted R-Squared 0.20   
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 491 

 492 
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 495 
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 500 

  501 



22 
 

Figures 502 

 503 

Figure 1. The characteristics of the 63 papers used to compare citizen science and professional 504 

data (from left to right): study location, length of participation, citizen scientist group size, and 505 

training. NA means data could not be inferred and NR means not reported. 506 

 507 

Figure 2. The statistical comparisons of data employed by the papers reviewed in this study. The 508 

papers reviewed were grouped into distinct disciplines (first column). This figure shows the type 509 

of statistical analysis performed in each study (second column) and the type of result reported 510 

(third column). The grey bars represent the proportion of analyses that performed each type of 511 

statistical analysis and reported each type of result.  512 

 513 

Figure 3. Percent agreement between citizen science data and reference data. The bars represent 514 

the amount of analyses (y axis) that reported each level of percent agreement (x axis). The 515 

percentage of papers reporting each level of agreement is shown on top of each bar.   516 

 517 

Figure 4. Number of comparisons where the data collected by citizen scientists and professionals 518 

are significantly different (grey) or not significantly different (pattern). For p-values > 0.05 519 

where the exact p-value was not reported, we randomly and uniformly generated values between 520 

0.051 and 1. A total of 137 comparisons were treated in this way. 521 

 522 

Figure 5. Correlation r values for data collected by citizen scientists and professionals, and their 523 

associated p-values. Significant correlations are shown in grey, non-significant correlations are 524 

shown in pattern, and correlations with no reported p-values are shown in blank. The numbers 525 
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within columns represent the number of observations.  526 

 527 




