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Single-cell transcriptomics of 20 mouse organs creates a Tabula 
Muris:
The Tabula Muris Consortium
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Abstract

We have created a compendium of single cell transcriptomic data from the model organism Mus 
musculus comprising more than 100,000 cells from 20 organs and tissues. These data represent a 

new resource for cell biology, reveal gene expression in poorly characterized cell populations, and 

allow for direct and controlled comparison of gene expression in cell types shared between tissues, 

such as T-lymphocytes and endothelial cells from different anatomical locations. Two distinct 

technical approaches were used for most organs: one approach, microfluidic droplet-based 3’-end 

counting, enabled the survey of thousands of cells at relatively low coverage, while the other, 

FACS-based full length transcript analysis, enabled characterization of cell types with high 

sensitivity and coverage. The cumulative data provide the foundation for an atlas of transcriptomic 

cell biology.

The cell is a fundamental unit of structure and function in biology, and multicellular 

organisms have evolved a variety of cell types with specialized roles. Although cell types 

have historically been characterized by morphology and phenotype, the development of 

molecular methods has enabled increasingly precise descriptions of their properties, 

typically by measuring protein or mRNA expression patterns1. Technological advances have 

also expanded measurement multiplexing such that highly parallel sequencing can now 

enumerate nearly every mRNA molecule in a single cell2–8. This approach has provided 

novel insights into cell biology and organ composition from a variety of organisms9–18. 

However, while these reports provide valuable characterization of individual organs, it is 

challenging to compare data collected from different animals by independent labs with 
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Code Availability
All data, protocols, and analysis scripts from the Tabula Muris are shared as a public resource (http://tabula-muris.ds.czbiohub.org/). 
All code used for analysis is available on GitHub (https://github.com/czbiohub/tabula-muris).

Data Availability
All data, protocols, and analysis scripts from the Tabula Muris are shared as a public resource (http://tabula-muris.ds.czbiohub.org/). 
Gene counts and metadata for FACS (https://doi.org/10.6084/m9.figshare.5829687.v7) and microfluidic droplets (https://doi.org/
10.6084/m9.figshare.5968960.v2) from all single cells along with all produced R objects (https://doi.org/10.6084/m9.figshare.
5821263.v1), as well as FACS Index data (https://doi.org/10.6084/m9.figshare.5975392) are accessible on Figshare (https://
figshare.com/projects/Tabula_Muris_Transcriptomic_characterization_of_20_organs_an d tissues from Mus musculus at single cell 
resolution/27733), and raw data are available on GEO (GSE109774).
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varying experimental techniques. It therefore remains unknown whether these data can be 

synthesized as a more general resource for biology.

Here we report a compendium of cell types from the mouse Mus musculus. We analyzed 

multiple organs from the same animal, generating a dataset controlled for age, environment, 

and epigenetic effects. This enabled the direct comparison of cell type composition between 

organs, and the comparison of shared cell types across organs. The compendium is 

comprised of single-cell transcriptomic data from 100,605 cells isolated from 20 organs 

from 3 female and 4 male, C57BL/6JN, 3-month-old mice (10–15 weeks), analogous to 20-

year-old humans (Fig. 1). Aorta, bladder, bone marrow, brain (cerebellum, cortex, 

hippocampus, striatum), diaphragm, fat (brown, gonadal, mesenteric, subcutaneous), heart, 

kidney, large intestine, limb muscle, liver, lung, mammary gland, pancreas, skin, spleen, 

thymus, tongue, and trachea from the same mouse were immediately processed into single 

cell suspensions. All organs were single-cell sorted into plates with FACS, and many were 

also loaded into microfluidic droplets (see Extended Data and Methods).

All data, protocols, analysis scripts, and an interactive data browser are publicly shared 

(http://tabula-muris.ds.czbiohub.org/ ). Gene counts and metadata are on Figshare (https://

figshare.com/projects/

TabulaMurisTranscriptomiccharacterizationof20organsand_tissues_from_Mus_musculus_at

_single_cell_resolution/27733), raw data on GEO (GSE109774), and code is on GitHub 

(https://github.com/czbiohub/tabula-muris). This release allows for the exact replication of 

all results, facilitates in-depth analyses not completed here, and provides a comparative 

framework for future studies using the large variety of murine disease models. While these 

data are by no means a complete representation of all mouse organs and cell types, they 

provide a first draft attempt to create an organism-wide representation of cellular diversity.

Defining organ-specific cell types

To define cell types, we analyzed each organ independently by performing principal 

component analysis (PCA) on the most variable genes between cells, followed by nearest-

neighbor graph-based clustering. We then used cluster-specific gene expression of known 

markers and genes differentially expressed between clusters to assign cell type annotations 

to each cluster (Extended Data Fig. 1, 2, Supplementary Table 1). All organs used a standard 

annotation method; an example using liver is contained in the Organ Annotation Vignette. 

Cell type descriptions and defining genes for each organ are available in the Supplementary 

Information. For each cluster, we provide annotations in the controlled vocabulary of a cell 

ontology19 to facilitate inter-experiment comparisons. Many of these cell types have not 

previously been obtained in pure populations, and our data provide a wealth of new 

information on their characteristic gene expression profiles. Some unexpected discoveries 

include a potential new role for Neurog3, Hex3, and Prss53 in the adult pancreas, a cell 

population expressing Chodl in limb muscle, transcriptional heterogeneity of brain 

endothelial cells, the expression of MHC class II genes by adult mouse T cells, and sets of 

transcription factors that distinguish cell types across organs.

Schaum et al. Page 2

Nature. Author manuscript; available in PMC 2019 July 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://tabula-muris.ds.czbiohub.org/
https://figshare.com/projects/TabulaMurisTranscriptomiccharacterizationof20organsand_tissues_from_Mus_musculus_at_single_cell_resolution/27733
https://figshare.com/projects/TabulaMurisTranscriptomiccharacterizationof20organsand_tissues_from_Mus_musculus_at_single_cell_resolution/27733
https://figshare.com/projects/TabulaMurisTranscriptomiccharacterizationof20organsand_tissues_from_Mus_musculus_at_single_cell_resolution/27733
https://figshare.com/projects/TabulaMurisTranscriptomiccharacterizationof20organsand_tissues_from_Mus_musculus_at_single_cell_resolution/27733
https://github.com/czbiohub/tabula-muris


Methodological comparison

We performed single-cell RNA-sequencing with two methods: FACS-based cell capture in 

plates and microfluidic droplet-based capture. To understand the technical biases of each 

approach, we performed both methods on many organs. Overall, 44,949 FACS cells and 

55,656 microfluidic droplet cells were retained after quality control. Single-cell 

transcriptomes were sequenced to an average depth of 814,488 reads per cell (FACS) and 

7,709 unique molecular identifiers (UMIs) per cell (microfluidic droplet). Comparing 

methods shows organ-specific differences in the number of cells analyzed (Fig. 1b, c), reads 

per cell (Extended Data Fig. 3a, c) and genes per cell (Extended Data Fig. 3b, d). 

Furthermore, with both methods the most abundant cell types analyzed are epithelial cells 

and leukocytes, although FACS captured a larger diversity of cell types (Extended Data Fig. 

4).

Any individual single-cell sequencing experiment offers only a partial view of cell type 

diversity within an organism and gene expression within each cell type. We illustrate the 

expected variability between methods and experiments by comparing our two measurement 

approaches to a third method, microwell-seq, from Han et al.20. One striking feature is the 

variability in the number of genes detected per cell between organs and methods. For 

example, the median number of genes detected in bladder is ~4,900 (FACS), 2,900 (droplet), 

and 900 (microwell-seq), while in kidney it is ~1,400 (FACS), 1,900 (droplet), and 500 

(microwell-seq). The bladder, liver, lung, mammary gland, trachea, tongue, and spleen show 

nearly twice as many genes detected per cell with FACS compared to microfluidic droplet, 

whereas heart and marrow show comparable numbers (Extended Data Fig. 5a). This 

difference is likely not due to sequencing depth, as both FACS and microfluidic droplet 

libraries are nearly saturated (Extended Data Fig. 5b). In these comparisons, a gene is 

considered detected if a single read maps to it, as that is the only value at which reads and 

UMIs can be treated equally. We also found that the number of detected genes decreases 

similarly across organs as the read or UMI threshold for a detectable gene is increased 

(Extended Data Fig. 6).

Next, we investigated whether the three methods agree on the genes defining each cell 

cluster (Methods). As expected, FACS and microfluidic droplet agree most, likely because 

they used the same biological samples. However, there are several dozen to several hundred 

genes common to all methods which define each cluster (Extended Data Fig. 7, 

Supplementary Table 2). This suggests that combining independent datasets can lead to 

more robust characterizations of gene expression.

Spleen and kidney are two organs for which FACS was performed without marker-based 

sorting, allowing us to compare the number and relative abundance of different cell types 

between methods. For those cell types captured by both methods, the proportion of each cell 

type is equivalent (Pearson correlation coefficient: spleen = 0.99, kidney = 0.99). 

Nonetheless, microfluidic droplets identified cell types missed by FACS in both organs, for 

example kidney mesangial cells, and splenic dendritic and natural killer cells. This is 

partially explained by cellular abundance and sampling depth (12,333 microfluidic droplet 
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cells vs. 2,216 FACS cells, Supplementary Table 1), and possibly from cell capture and lysis 

biases between methods.

As FACS captures fewer cells but detects more molecules per cell than microfluidic droplets, 

we asked if the two methods agree in their “bulk” gene expression profiles for the 33 shared 

cell populations (Methods). Such gene expression profiles largely correlate (Pearson 

correlation coefficient: 0.74 – 0.90), suggesting that while biases between methods exist, 

both accurately recapitulate average cell type gene expression profiles.

Global clustering across organs

To detect relationships between cells from different organs, we visualized all FACS cells 

with tSNE and grouped them with unbiased, graph-based clustering (Fig. 2, Extended Data 

Fig. 8). As expected, cells from different organs often mixed, with 25 of 54 clusters 

containing (at least five) cells from distinct organs (Fig. 3). For example, clusters 3 and 48 

each contain endothelial cells from five or more organs, and clusters 1 and 24 contain 

mesenchymal and stromal cells from four or more organs. Cluster 2 contains B cells from 

fat, limb muscle, lung, spleen, marrow, and liver, but also cells annotated as leukocytes and 

lymphocytes from the thymus, heart, and limb muscle. This suggests that the effect of cell 

type on measured gene expression is stronger than the effect of batch or dissociation 

protocol.

Cluster co-membership alone, however, is insufficient to conclude that two cell populations 

from different organs represent the same or similar cell types; at any given resolution, 

unbiased clustering that groups related cells may also group unrelated cells21. Therefore, to 

determine which clusters are composed of related or unrelated cell types, we computed a 

heterogeneity score for each cluster (Methods), and found low scores for the biologically 

sensible clusters discussed above (Extended Data Fig. 9). In contrast, the astrocytes and 

epithelial cells in cluster 53 are as different from one another as two random cells.

In addition to these heterogeneous groups, the clustering reveals small populations of 

potentially mislabeled cells inside homogenous populations. For example, 10 thymus cells in 

cluster 3 (composed of 2379 cells) are annotated as ‘leukocytes’, but they are Pecam1+, an 

endothelial marker. This is a predictable artifact of the annotation scheme: since entire 

clusters, rather than individual cells, were annotated in each organ, a sufficiently rare cell 

type that was algorithmically grouped with a more populous cell type will be mis-annotated. 

This seems only to occur for populations smaller than ~30 cells, which comprise under 4% 

of the overall dataset, and represents a lower limit of sensitivity in the current release of data 

interpretation.

The fact that most cells of similar cell types cluster together across organs and biological 

replicates shows that batch effects are not the main source of variance in the dataset. Our 

findings also show that manual annotation of cell types is consistent with unbiased 

transcriptomic clustering for sufficiently large populations. We expect that further 

development of multi-scale comparison algorithms will facilitate the discovery of both 

universal and organ-specific gene modules within these shared cell types.
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To demonstrate an example of investigating common cell types across organs, we 

collectively analyzed all FACS cells annotated as T cells, revealing 5 clusters (Fig. 4). 

Cluster 0 comprises thymic cells undergoing VDJ recombination characterized by RAG 

(Rag1, Rag2) and TdT (Dntt) expression, and includes uncommitted double positive T-cells 

(Cd4+, Cd8a+). Cluster 4 contains predominantly proliferating thymic T cells which may 

represent pre-T cells expanding following VDJ recombination. Clusters 1–3 contain mostly 

single positive T cells (Cd4+ or Cd8a+). Cluster 3 contains Cd5high thymic T cells possibly 

undergoing positive selection, while Cluster 2 contains mostly non-thymic T cells expressing 

the high affinity IL2 receptor (Il2ra, Il2rb), suggesting they are activated. Interestingly, they 

also express MHC class II genes (H2-Aa, H2-Ab1). While this is known in human T cells, 

MHC class II was previously thought restricted to professional antigen presenting cells in 

mice22. Finally, Cluster 1 also represents mature T cells, but primarily splenic.

Global transcription factor analysis

One major goal of defining cell identities is to understand the underlying regulatory 

networks. We investigated how transcription factors (TFs) contribute to cell type identity by 

clustering averaged gene expression profiles for each cell type using only the 1,016 TFs 

expressed in our dataset (Figure 5a). The resulting dendrogram closely resembles the 

dendrogram produced using all expressed genes, indicating that TFs can be used to 

reconstruct known cell ontology relationships between bulk populations (entanglement = 

0.11; Extended Data Fig. 10a). In contrast, when we repeated the analysis using cell surface 

markers, RNA splicing factors, or the two groups combined (equivalent to a random set of 

genes), the entanglement was 0.22, 0.25 and 0.34, respectively, suggesting that none of these 

molecular classes define cell type to the extent that transcription factors do.

We then analyzed organ-specific TFs by performing correlation analysis on shared cell types 

between organs23 (epithelial cells, endothelial cells, B-cells, T-cells; Fig. 5b–e, Extended 

Data Fig. 10b–i). To understand which TFs were most informative for specifying cell types, 

we performed variable selection from random forests (Methods) and determined that 136 

TFs are needed to simultaneously define all cell types across all organs (Fig. 5f, 

Supplementary Table 3). We then determined the TF sets distinguishing each individual cell 

type from all other cells. These sets vary substantially in size (from 2 to 813 TFs) and are 

not necessarily unique to each cell type (Fig. 5g–i; Supplementary Table 4).

A possible application for such TF networks is the design of reprogramming protocols. 

Indeed, the TFs used in published methods are also found in the cell type-specific TFs found 

here (Supplementary Table 5). For some cell types, such as hepatocytes, satellite cells, and 

oligodendrocytes, those reprogramming factors are the top variables segregating cell types 

(Fig. 5g–i). In fact, for nearly all reprogramming protocols the TFs used also specified the 

targeted cell type in our data (Supplementary Table 5), suggesting that our data can inform 

novel reprogramming schemes.
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Discussion

A key challenge for single-cell studies is to understand transcriptomic changes caused by 

dissociation. A previous study showed that quiescent limb muscle satellite cells activate 

upon dissociation and consequently express immediate early genes and other dissociation-

related markers24. We clearly observed these markers in several organs including limb 

muscle (Extended Data Fig. 11), but many showed little evidence of cellular activation. 

Therefore, the dissociation- related satellite cell markers are not universal, and organs likely 

display unique dissociation-related expression profiles. Importantly, the presence of such 

gene expression changes does not prevent cell type identification or the comparison of cell 

types across organs.

Another challenge faced by single-cell studies is experimental design amid the choice of 

multiple technologies. Droplet-based technologies offer certain advantages for discovering 

rare cell types or states, for example when many cells (10,000s) are required to reconstruct 

whole-organism architecture and developmental lineages25,26. FACS-based methods 

generate high coverage over small cellular populations (10s - 1,000s), and are beneficial for 

enriching specific or rare cell types, and for studying subtle heterogeneity involving lowly 

expressed genes27, alternative splicing15, and sequence variation analysis28. There are 

opportunities to combine the two methods, such as by running sorted cells on a microfluidic 

droplet platform, which could potentially accommodate both cell type enrichment and cost.

Recently, Han et al.20 published a complementary scRNA-seq study across mouse organs. 

Their data contains four times as many cells and included several sample types not present in 

our data, such as neonatal and fetal organs, cell lines, and young adult ovary, peripheral 

blood, placenta, prostate, small intestine, stomach, testis, and uterus. However, our FACS 

data contains four times as many genes per cell, and we analyzed several organs not present 

in the Han et al. data set, such as aorta, four brain regions, diaphragm, four fat types, four 

adult heart chambers, adult skin, tongue, and trachea. Additionally, several features of our 

study facilitate replication and cross-experiment analysis: 1) All data, analysis, and code is 

freely available, 2) Our web portal allows one to query gene expression in all organs 

simultaneously, 3) We annotated cell types using standard cell ontology terms, thereby 

enabling cross-organ and cross-experiment analyses, 4) Age and sex is controlled in our data 

by collecting all organs from the same animals, 5) Both sexes are represented for all organs 

in our data, 6) Organs were perfused allowing for the analysis of tissue- resident immune 

cells, and 7) Full-length transcript data makes possible transcription factor, splice variant, 

and sequence variant analyses.

In conclusion, we have created a compendium of single-cell transcriptional measurements 

across 20 mouse organs. This Tabula Muris, or “Mouse Atlas”, has many uses, including the 

discovery of new putative cell types, the discovery of novel gene expression in known cell 

types, and the ability to compare cell types across organs. It will also serve as a reference of 

healthy young adult organs which can be used as a baseline for current and future mouse 

models of disease. While it is not an exhaustive characterization of all mouse organs, it does 

provide a rich dataset of the most highly studied organs in biology. Tabula Muris provides a 

framework and description of many of the most populous and important cell populations 
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within the mouse, and represents a foundation for future studies across a multitude of 

diverse physiological disciplines.

Methods

Mice and Organ Collection

Four 10–15 week old male and four virgin female C57BL/6JN (derived from C57BL/6J in 

2016) mice were shipped from the National Institute on Aging colony at Charles River to the 

Veterinary Medical Unit (VMU) at the VA Palo Alto (VA). At both locations, mice were 

housed on a 12-h light/dark cycle, and provided food and water ad libitum. The diet at 

Charles River was NIH-31, and Teklad 2918 at the VA VMU. Littermates were not recorded 

or tracked, and mice were housed at the VA VMU for no longer than 2 weeks before 

euthanasia. Prior to tissue collection, mice were placed in sterile collection chambers for 15 

minutes to collect fresh fecal pellets. Following anesthetization with 2.5% v/v Avertin, mice 

were weighed, shaved, and blood drawn via cardiac puncture before transcardial perfusion 

with 20 ml PBS. Mesenteric adipose tissue (MAT) was then immediately collected to avoid 

exposure to the liver and pancreas perfusate, which negatively impacts cell sorting. Isolating 

viable single cells from both pancreas and liver of the same mouse was not possible, 

therefore, 2 males and 2 females were used for each. Whole organs were then dissected in 

the following order: large intestine, spleen, thymus, trachea, tongue, brain, heart, lung, 

kidney, gonadal adipose tissue (GAT), bladder, diaphragm, limb muscle (tibialis anterior), 
skin (dorsal), subcutaneous adipose tissue (SCAT, inguinal pad), mammary glands (fat pads 

2, 3, and 4), brown adipose tissue (BAT, interscapular pad), aorta, and bone marrow (spine 

and limb bones). Following single cell dissociation as described below, cell suspensions 

were either used for FACS of individual cells into 384-well plates, or for microfluidic 

droplet library preparation. All animal care and procedures were carried out in accordance 

with institutional guidelines approved by the VA Palo Alto Committee on Animal Research.

Tissue dissociation and sample preparation

Specific protocols for each tissue are described in the supplement.

Sample size, randomization, and blinding

No sample size choice was performed prior to the study. Randomization and blinding were 

not performed – the authors were aware of all data and metadata related variables during the 

entire course of the study.

Single Cell Methods

Lysis plate preparation

Lysis plates were created by dispensing 0.4 μl lysis buffer (0.5 U Recombinant RNase 

Inhibitor (Takara Bio, 2313B), 0.0625% Triton™ X-100 (Sigma, 93443–100ML), 3.125 mM 

dNTP mix (Thermo Fisher, R0193), 3.125 μM Oligo-dT30VN (IDT, 

5’AAGCAGTGGTATCAACGCAGAGTACT30VN-3’) and 1:600,000 ERCC RNA spike-in 

mix (Thermo Fisher, 4456740)) into 384-well hard-shell PCR plates (Biorad HSP3901) 
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using a Tempest liquid handler (Formulatrix). 96-well lysis plates were also prepared with 4 

μl lysis buffer. All plates were sealed with AlumaSeal CS Films (Sigma-Aldrich Z722634) 

and spun down (3,220 × g, 1 minute) and snap frozen on dry ice. Plates were stored at 

−80°C until sorting.

FACS

After dissociation, single cells from each organ and tissue were isolated into 384- or 96-well 

plates via Fluorescence Activated Cell Sorting (FACS). Most organs were sorted into 384-

well plates using SH800S (Sony) sorters. Heart and liver were sorted into 96-well plates and 

cardiomyocytes were hand-picked into 96-well plates. Limb muscle and diaphragm were 

sorted into 384-well plates on an Aria III (Becton Dickinson) sorter. The last two columns of 

each 384 well plate were intentionally left as blanks. For most organs, single cells were 

selected with forward scatter, and dead cells and common cell types were excluded with a 

single color channel. Combinations of fluorescent antibodies were used for most organs to 

enrich for rare cell populations (see supplemental text), but some were stained only for 

viable cells. Color compensation was used whenever necessary. On the SH800, the highest 

purity setting (“Single cell”) was used for all but the rarest cell types, for which the 

“Ultrapure” setting was used. Sorters were calibrated using FACS buffer every day before 

collecting any cells, and also after every 8 sorted plates. For a typical sort, 1–3 ml of pre-

stained cell suspension was filtered, vortexed gently, and loaded onto the FACS machine. A 

small number of cells were flowed at low pressure to check cell and debris concentrations. 

The pressure was then adjusted, flow paused, the first destination plate unsealed and loaded, 

and sorting started. If a cell suspension was too concentrated, it was diluted using FACS 

buffer or 1X PBS. For some cell types like hepatocytes, 96-well plates were used because it 

was not possible to sort individual cells accurately into 384-well plates. Immediately after 

sorting, plates were sealed with a pre-labeled aluminum seal, centrifuged, and flash frozen 

on dry ice. On average, each 384-well plate took 8 minutes to sort.

cDNA synthesis and library preparation

cDNA synthesis was performed using the Smart-seq2 protocol7,8. Briefly, 384-well plates 

containing single-cell lysates were thawed on ice followed by first strand synthesis. 0.6 μl of 

reaction mix (16.7 U/μl SMARTScribe Reverse Transcriptase (Takara Bio, 639538), 1.67 U/

μl Recombinant RNase Inhibitor (Takara Bio, 2313B), 1.67X First-Strand Buffer (Takara 

Bio, 639538), 1.67 μM TSO (Exiqon, 5’-

AAGCAGTGGTATCAACGCAGAGTGAATrGrGrG-3’), 8.33 mM DTT (Bioworld, 

40420001–1), 1.67 M Betaine (Sigma, B0300–5VL), and 10 mM MgCl2 (Sigma, M1028–

10X1ML)) was added to each well using a Tempest liquid handler. Reverse transcription was 

carried out by incubating wells on a ProFlex 2 × 384 thermal-cycler (Thermo Fisher) at 

42°C for 90 minutes, and stopped by heating at 70°C for 5 minutes.

Subsequently, 1.5 μl of PCR mix (1.67X KAPA HiFi HotStart ReadyMix (Kapa Biosystems, 

KK2602), 0.17 μM IS PCR primer (IDT, 5’-AAGCAGTGGTATCAACGCAGAGT-3’), and 

0. 038 U/μl Lambda Exonuclease (NEB, M0262L)) was added to each well with a Mantis 

liquid handler (Formulatrix), and second strand synthesis was performed on a ProFlex 

2×384 thermal- cycler by using the following program: 1) 37°C for 30 minutes, 2) 95°C for 
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3 minutes, 3) 23 cycles of 98°C for 20 seconds, 67°C for 15 seconds, and 72°C for 4 

minutes, and 4) 72°C for 5 minutes.

The amplified product was diluted with a ratio of 1 part cDNA to 10 parts 10mM Tris-HCl 

(Thermo Fisher, 15568025), and concentrations were measured with a dye-fluorescence 

assay (Quant-iT dsDNA High Sensitivity kit; Thermo Fisher, Q33120) on a SpectraMax i3x 

microplate reader (Molecular Devices). Sample plates were selected for downstream 

processing if the mean concentration of blanks (ERCC-containing, non-cell wells) was 

greater than 0 ng/μl, and, after linear regression of the values obtained from the Quant-iT 

dsDNA standard curve, the R2 value was greater than 0.98. Sample wells were then selected 

if their cDNA concentrations were at least one standard deviation greater than the mean 

concentration of the blanks. These wells were reformatted to a new 384-well plate at a 

concentration of 0.3 ng/μl and final volume of 0.4 μl using an Echo 550 acoustic liquid 

dispenser (Labcyte).

Illumina sequencing libraries were prepared as described in Darmanis et al. 201514. Briefly, 

tagmentation was carried out on double-stranded cDNA using the Nextera XT Library 

Sample Preparation kit (Illumina, FC-131–1096). Each well was mixed with 0.8 μl Nextera 

tagmentation DNA buffer (Illumina) and 0.4 μl Tn5 enzyme (Illumina), then incubated at 

55°C for 10 minutes. The reaction was stopped by adding 0.4 μl “Neutralize Tagment 

Buffer” (Illumina) and centrifuging at room temperature at 3,220 × g for 5 minutes. Indexing 

PCR reactions were performed by adding 0.4 μl of 5 μM i5 indexing primer, 0.4 μl of 5 μM 

i7 indexing primer, and 1.2 μl of Nextera NPM mix (Illumina). PCR amplification was 

carried out on a ProFlex 2×384 thermal cycler using the following program: 1) 72°C for 3 

minutes, 2) 95°C for 30 seconds, 3) 12 cycles of 95°C for 10 seconds, 55°C for 30 seconds, 

and 72°C for 1 minute, and 4) 72°C for 5 minutes.

Library pooling, quality control, and sequencing

Following library preparation, wells of each library plate were pooled using a Mosquito 

liquid handler (TTP Labtech). Pooling was followed by two purifications using 0.7x 

AMPure beads (Fisher, A63881). Library quality was assessed using capillary 

electrophoresis on a Fragment Analyzer (AATI), and libraries were quantified by qPCR 

(Kapa Biosystems, KK4923) on a CFX96 Touch Real-Time PCR Detection System 

(Biorad). Plate pools were normalized to 2 nM and equal volumes from 10 or 20 plates were 

mixed together to make the sequencing sample pool. A PhiX control library was spiked in at 

0.2% before sequencing.

Sequencing libraries from 384-well and 96-well plates

Libraries were sequenced on the NovaSeq 6000 Sequencing System (Illumina) using 2 × 

100bp pairedend reads and 2 × 8bp or 2 × 12bp index reads with either a 200- or 300-cycle 

kit (Illumina, 20012861 or 20012860).

Microfluidic droplet single cell analysis

Single cells were captured in droplet emulsions using the GemCode Single-Cell Instrument 

(10x Genomics, Pleasanton, CA, USA), and scRNA-seq libraries were constructed as per the 
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10x Genomics protocol using GemCode Single-Cell 3′ Gel Bead and Library V2 Kit. 

Briefly, single cell suspensions were examined using an inverted microscope, and if sample 

quality was deemed satisfactory, the sample was diluted in PBS with 2% FBS to a 

concentration of 1000 cells/μl. If cell suspensions contained cell aggregates or debris, two 

additional washes in PBS with 2% FBS at 300 × g for 5 minutes at 4°C were performed. 

Cell concentration was measured either with a Moxi GO II (Orflo Technologies) or a 

hemocytometer. Cells were loaded in each channel with a target output of 5,000 cells per 

sample. All reactions were performed in the Biorad C1000 Touch Thermal cycler with 96-

Deep Well Reaction Module. 12 cycles were used for cDNA amplification and sample index 

PCR. Amplified cDNA and final libraries were evaluated on a Fragment Analyzer using a 

High Sensitivity NGS Analysis Kit (Advanced Analytical). The average fragment length of 

10x cDNA libraries was quantitated on a Fragment Analyzer (AATI), and by qPCR with the 

Kapa Library Quantification kit for Illumina. Each library was diluted to 2 nM, and equal 

volumes of 16 libraries were pooled for each NovaSeq sequencing run. Pools were 

sequenced with 100 cycle run kits with 26 bases for Read 1, 8 bases for Index 1, and 90 

bases for Read 2 (Illumina 20012862). A PhiX control library was spiked in at 0.2 to 1%. 

Libraries were sequenced on the NovaSeq 6000 Sequencing System (Illumina)

Data Processing

Sequences from the NovaSeq were de-multiplexed using bcl2fastq version 2.19.0.316. Reads 

were aligned using to the mm10plus genome using STAR version 2.5.2b with parameters 

TK. Gene counts were produced using HTSEQ version 0.6.1p1 with default parameters, 

except “stranded” was set to “false”, and “mode” was set to “intersection-nonempty”.

Sequences from the microfluidic droplet platform were de-multiplexed and aligned using 

CellRanger version 2.0.1, available from 10x Genomics with default parameters.

Clustering

Standard procedures for filtering, variable gene selection, dimensionality reduction, and 

clustering were performed using the Seurat package version 2.2.1. A detailed worked 

example, including the mathematical formulae for each operation, is in the Organ 

Annotation Vignette. The parameters that were tuned on a per-tissue basis (resolution and 

number of PCs) can be viewed in the tissue-specific Rmd files available on GitHub. For each 

tissue and each sequencing method (FACS and microfluidic droplet), the following steps 

were performed:

1. Cells were lexicographically sorted by cell ID to ensure reproducibility.

2. Cells with fewer than 500 detected genes were excluded. (A gene counts as 

detected if it has at least one read mapping to it). Cells with fewer than 50,000 

reads (FACS) or 1000 UMI (microfluidic droplet) were excluded.

3. Counts were log-normalized for each cell using the natural logarithm of 1 + 

counts per million (for FACS) or 1 + counts per ten thousand (for microfluidic 

droplet).
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4. Variable genes were selected using a threshold (0.5) for the standardized log 

dispersion, where the standardization was done in separately according to binned 

values of log mean expression.

5. The variable genes were projected onto a low-dimensional subspace using 

principal component analysis. The number of principal components was selected 

based on inspection of the plot of variance explained.

6. A shared-nearest-neighbors graph was constructed based on the Euclidean 

distance in the lowdimensional subspace spanned by the top principal 

components. Cells were clustered using a variant of the Louvain method that 

includes a resolution parameter in the modularity function13.

7. Cells were visualized using a 2-dimensional t-distributed Stochastic Neighbor 

Embedding of the PC-projected data.

8. Cell types were assigned to each cluster using the abundance of known marker 

genes. Plots showing the expression of the markers for each tissue appear in the 

extended data.

9. When clusters appeared to be mixtures of cell types, they were refined either by 

increasing the resolution parameter for clustering or subsetting the data and 

rerunning steps 3–7.

A similar analysis was done globally for all FACS processed cells and for all microfluidic 

droplet processed cells to produce an unbiased clustering.

Heterogeneity Score

Let C be a cluster, decomposed into annotated cell types C = T1 ∪ ⋯ ∪ Tk . For each pair of 

cell types Ti,Tj, we compute the average distance between their members: 

di j = 1
Ti T j

∑x ∈ Ti, y ∈ T j
x − y| . The heterogeneity score C is the maximum of those 

distances over cell types T with at least five cells. For the FACS data, the vector x for a cell 

is the PC-projection from step 5 above. Extended Data Figure 9 contains heatmaps of the 

cell-type distance matrix dij for select clusters and a barplot of the heterogeneity scores for 

all clusters containing multiple cell types.

Differential expression overlap analysis

For FACS and microfluidic droplet data, differential expression analysis for each organ was 

performed using a Wilcoxon rank-sum test as implemented in the “FindAllMarkers” 

function of the Seurat package. Differential expression was performed between cell ontology 

groups and resulted in a list of differentially expressed genes (logeFoldChange > 0.25) 

between each cell ontology group and all other ontology groups of the same organ. For 

microwell-Seq we used the corresponding published lists for each cell type and for every 

organ. We then assessed the overlap of those lists between the three methods. As the 

nomenclature is not identical, the analysis was performed between cell types that could be 

matched with a certain degree of confidence between the three methods (Supplementary 

Table 2).
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Correlating bulk gene expression profiles

For the 33 cell populations shared between FACS and microfluidic droplets, the average 

gene expression profile of each population was calculated. The quality of such a bulk gene 

expression profile depends on the total number of detected molecules. FACS detects more 

molecules per cell, but fewer cells. Microfluidic droplets detect fewer molecules per cell, but 

more cells. To assess the agreement between methods on annotated cell types, Pearson 

correlation was used on the log expression profiles of each shared cell population. (Only 

genes with present at 1 CPM or greater in at least one of the datasets were considered. A 

pseudocount of 1 CPM was added before taking logarithms.)

Calculation of dissociation scores

For each organ, principal component analysis was performed on a subset of 140 

dissociation-related genes23. The first principal component was used as the “dissociation 

score” as it corresponds to the variance within these genes.

Defining cell type-enriched transcription factors

Transcription factors were defined as the 1140 genes annotated by the Gene Ontology term 

“DNA binding transcription factor activity”, downloading from the Mouse Genome 

Informatics database (http://www.informatics.jax.org/mgihome/GO/project.shtml, accessed 

on 2017–11-10). Cell types were defined as unique combinations of cell ontology and organ 

annotation (e.g. Lung_Endothelial_cell). All analyses were performed on the full dataset, 

subsampled by randomly selecting 60 cells from each cell type. Enriched TFs were defined 

by the Seurat FindMarkers function with the “Wilcoxon” significance test for the target cell 

type against the all of rest of the cell types combined. These were filtered by p_val < 10–3, 

avg_diff > 0.2, pct.1 – pct.2 > 0.1 (percent detected difference > 0.1), and pct.1 > 0.3 

(detected in > 30% of target cells).

Cell type comparisons between methods using cell ontology classes

We used the OntologyX R package family version 2.4 (libraries ontologylndex, 

ontologyPlot, and ontologySimilarity) to draw the representative cell ontology dendrograms 

(function onto_plot). To compute the tanglegram (function tanglegram from dendextend R 

package version 1.8) we used the dendrogram created from all expressed genes as the 

reference for comparisons to the dendrograms produced using particular GO cellular 

functions (transcription factors, cell surface markers, RNA splicing factors). The 

entanglement scores were calculated using the step2side method (function untangle from 

dendextend R package). Entanglement is a measure of alignment between two dendrograms. 

The entanglement score ranges from 0 (exact alignment) to 1 (no alignment)29.

Defining TF networks with random forests

We used random forests (a classifier that combines many single decision trees) to calculate 

the importance of each gene for defining cell types30. The varSelRF R package version 0.7–

8 uses the out-of-bag (OOB) error as the minimization criterion and carries out variable 

elimination with random forests by successively eliminating the least important variables 

(with importance as returned from the random forest analysis). The algorithm iteratively fits 
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random forests, at each iteration building a new forest after discarding those variables 

(genes) with the smallest variable importance; the selected set of genes is the one that yields 

the smallest OOB error rate. This leads to the selection of small sets of non-redundant 

variables.

Extended Data
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Extended Data Figure 1. 
The number and type of FACS cells composing each organ.

a) Cells for each organ visualized with tSNE, colored by cell type. Cell types were 

determined by differential gene expression of known markers between clusters. b) Barplots 

quantifying the number of each annotated cell type. Cell type colors match their respective 

tSNE plot.
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Extended Data Figure 2. 
The number and type of microfluidic cells composing each organ.

a) tSNE plot of all cells collected by microfluidic droplet, colored by organ, overlaid with 

the predominant cell type composing each cluster. b) Cells for each organ visualized with 

tSNE, colored by cell type. Cell types were determined by differential gene expression of 

known markers between clusters. c) Barplots quantifying the number of each annotated cell 

type. Cell type colors match their respective tSNE plot.
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Extended Data Figure 3. 
The number of reads, UMIs, and genes detected per cell for each organ.

Histogram for each organ of the number of a) reads per cell (FACS), and c) unique 

molecular identifiers (UMIs) per cell (microfluidic droplet). Histogram of the number of 

genes detected per cell for each organ from b) FACS, and d) microfluidic droplet.

Schaum et al. Page 16

Nature. Author manuscript; available in PMC 2019 July 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Schaum et al. Page 17

Nature. Author manuscript; available in PMC 2019 July 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Figure 4. 
Graphical representation of cell ontology class representation.

a) FACS and b) microfluidic droplet datasets, colored by the relative amount of each cell 

type in each dataset.
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Extended Data Figure 5. 
Methodological comparison of detected genes and library saturation.

a) The number of genes detected (threshold of > 0 reads or UMIs per cell) by FACS (red; n= 

21,105 individual cells), microfluidic droplets (green; n = 55,032 individual cells), and 

microwell-Seq (blue; n= 25,891 individual cells) (Han et al.). b) Library saturation fraction 

for all microfluidic droplet libraries. Dotted horizontal line demarcates the median saturation 

(~ 0.9). c) Library saturation for all FACS libraries. Saturation was calculated using the 
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number of detected genes while downsampling the number of reads per library. Please refer 

to Supplementary Table 6 for summary statistics.
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Extended Data Figure 6. 
The number of detected genes decreases similarly across organs as the read or UMI 

threshold is increased.

Fraction of all detected genes (defined as > 0 reads or UMIs) for each cell, across all organs, 

detected at increasing read or UMI thresholds for FACS (left; n= 44,949 individual cells), 

microfluidic droplet (middle; n= 55,656 individual cells), and microwell-Seq (right; n= 

28,372 individual cells). Please refer to Supplementary Table 6 for summary statistics.
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Extended Data Figure 7. 
The number of differentially expressed genes for each cell type common between methods.

Venn diagrams showing the overlap between differentially expressed genes for each 

common cell type across three methods (FACS, microfluidic droplet, microwell-Seq). 

Plotted data are provided in tabular form in Supplementary Table 2.
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Extended Data Figure 8. 
tSNE visualization of all FACS cells by cluster ID; n = 44,949 individual cells. Clusters are 

discussed in the text and further analyzed in Figure 3.
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Extended Data Figure 9. 
Metrics of cluster heterogeneity.

a) Barplot showing the heterogeneity score for each cluster containing multiple cell types. b-

f) Heatmaps showing the average between-cell-type distances within select clusters, 

normalized so average distance between pairs of FACS cells is 1, clipped to a max of 1, for 

clusters a) 1, b) 2, c) 3, d) 24, e) 48, f) 53.
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Extended Data Figure 10. 
Transcription factor contribution to cell identity.

a) Tanglegram contrasting the dendrogram obtained using all expressed genes with one 

obtained using only the expression of TFs. The solid lines indicated segments that did not 

change position during the alignment between the two trees, while the dotted lines 

correspond to dendrogram branches re-ordered during the entanglement calculations. The 

colors indicate the branches for which the leaves are identical in both dendrograms. b-e) 

tSNE visualization of b) epithelial, c) endothelial, d) B-, e) T-cells colored by organ. f-i) 
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tSNE visualization of b) epithelial, c) endothelial, d) B-, e) T-cell expression of select TFs 

(grey/low to red/high). In b-i) n = 60 randomly selected cells for each cell type
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Extended Data Figure 11. 
Dissociation-induced gene expression scores for each organ analyzed with FACS.

The dissociation score for each organ represents the magnitude of the first principal 

component of the 140 dissociation-associated genes from Van Der Brink et al. The y-axis 

shows probability density of the normalized histogram.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overview of Tabula Muris.

a) 20 organs from 4 male and 3 female mice were analyzed. After dissociation, cells were 

sorted by FACS and captured in microfluidic oil droplets for some organs. Cells were lysed, 

transcriptomes amplified and sequenced, reads mapped, and data analyzed. b) Barplot 

showing the number of sequenced cells prepared by FACS from each organ (n = 20 organ 

types). c) Barplot showing the number of sequenced cells prepared by microfluidic droplets 

from each organ (n = 12 organ types).
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Figure 2. tSNE visualization of all FACS cells.
tSNE plot of all cells collected by FACS, colored by organ, overlaid with the predominant 

cell type composing each cluster; n = 44,949 individual cells.
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Figure 3. Comparison of cell type determination.
Comparison of cell type determination as done by unbiased whole transcriptome comparison 

versus manual annotation of clusters by organ-specific experts. The x-axis represents 

clusters from Figure 2 with multiple organs contributing, while the y-axis represents manual 

expert annotation of clusters in an organ-specific fashion (Extended Data Fig. 1). The 

unbiased method discovers relationships between similar cell types found in different organs 

(highlighted regions); in particular it groups T cells from different organs into a single 
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cluster, B cells from different organs into a different single cluster, and endothelial cells 

from different organs into a single cluster.
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Figure 4. Analysis of all sorted T-cells.
a) tSNE plot of all T cells colored by cluster membership; n = 2847 individual cells. Five 

clusters were identified. b) Dotplot showing level of expression (color scale) and number of 

expressing cells (point diameter) within each cluster of T cells. c) tSNE plot of all T cells 

colored by organ of origin (Fat, Lung, Marrow, Limb Muscle, Spleen or Thymus); n = 2847 

individual cells. d) tSNE plot of all T cells colored by classification of T cells to 4 categories 

based on expression of Cd4 and Cd8 (Cd4+/ Cd8+/ Cd4+Cd8+ / Cd4-Cd8-); n = 2847 

individual cells.
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Figure 5. Transcription factor (TF) analysis.
a) Dendrogram of cell types constructed with only TFs. b-e) Correlograms of top organ-

specific TFs for epithelial (b), endothelial (c), B- (d) and T- (e) cells. Row colors correspond 

to the organ of the most-enriched cell type; n=60 randomly selected cells for each cell type 

f) Top 20 TFs (mean Gini importance) of the random forest model when classifying all cell 

types. g-i) Top 10 TFs (mean Gini importance) of the random forest model when classifying 

each
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