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Fluctuations in the entropy of Hawking radiation
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We use the gravitational path integral (GPI) to compute the fluctuations of the Hawking radiation
entropy around the Page curve in a two-dimensional model introduced by Penington et al. Before the Page
time, we find that S = ™5/ V2, where S is the black hole entropy. This result agrees with the Haar-
averaged entropy fluctuations in a bipartite system. After the Page time, we find that 6S ~ ™5, up to a
prefactor that depends logarithmically on the width of the microcanonical energy window. This is not
symmetric under exchange of subsystem sizes and so does not agree with the Haar average for a subsystem
of fixed Hilbert space dimension. The discrepancy can be attributed to the fact that the black hole Hilbert
space dimension is not fixed by the state preparation: even in a microcanonical ensemble with a top-hat
smearing function, the GPI yields an additive fluctuation in the number of black hole states. This result, and
the fact that the Page curve computed by the GPI is smooth, all point towards an ensemble interpretation of

the GPL

DOI: 10.1103/PhysRevD.109.026006

I. INTRODUCTION

The black hole information paradox can be phrased in
terms of the entropy of the Hawking radiation of an
evaporating black hole. General relativity predicts a struc-
tureless horizon at late times; this implies [1] that the
radiation entropy should increase monotonically. Quantum
mechanical unitarity, on the other hand, implies the Page
curve [2]. That is, the radiation entropy should increase
only until it equals the black hole’s Bekenstein-Hawking
entropy, and thereafter it should be given by the latter.

Recently, the Page curve was derived [3,4] from the
quantum extremal surface (QES) formula [5-8], providing
substantial evidence that black holes return information
(and hence possess structure at the horizon [9]). The QES
formula can be viewed as a direct computation of the
radiation entropy from the gravitational path integral [10],
by analytic continuation of the Renyi entropies [11,12].

The gravitational derivation of the Page curve has put a
spotlight on a curious feature of the gravitational path
integral: it appears to compute an ensemble average. This
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feature had already been seen explicitly in the case of
Jackiw-Teitelboim (JT) gravity [13,14], where Euclidean
wormholes destroy factorization of the partition function of
two copies of the boundary theory. Indeed, JT gravity
shares low energy properties [15] with the Sachdev-Ye-
Kitaev model [16,17], an ensemble of quantum mechanical
theories with a statistical distribution of coupling constants.

The QES formula successfully computes the Page curve
not just in JT but in Einstein gravity in any dimension, as
follows. First, the bulk geometry and state is computed
semiclassically, following Hawking. Of course, this picture
would predict a thermal state for the radiation, with
monotonically increasing entropy. But the state is not
extracted from the calculation. Instead the entropy is
obtained by applying the QES prescription to the semi-
classical geometry, yielding the Page curve.

Thus, the derivation of the Page curve uses an inter-
mediate step that is apparently inconsistent with the final
answer [18]. It is vital that the semiclassical geometry is
used in the intermediate step, since the excessive entropy
obtained by Hawking is precisely what causes the domi-
nance of a nontrivial QES after the Page time.

This apparent tension is resolved if we assume that the
gravitational path integral is dual to a suitable ensemble
[19]. Writing E[...] for the ensemble average, it becomes
possible that E[S(p)] # S(E[p]), where p describes the
radiation state produced in each unitary member of the
ensemble and we have suppressed an index labeling these
members. Another way of saying this is that the entropy is

Published by the American Physical Society
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approximately the same in most states of the ensemble,
whereas the state of the Hawking radiation depends
sensitively on the theory and is not self-averaging.
(Appropriate ensembles dual to gravity theories are not
generally known; indeed, it is not clear whether the
ensemble should consist of unitary theories with different
couplings as in the Sachdev-Ye-Kitaev model, or of some
other form of averaging.)

Here we will study a refinement of the Page curve: we
will use the gravitational path integral to compute the
fluctuations of the entropy of the Hawking radiation. Their
magnitude was not known and is of interest in its own right.
Moreover, the fact that we find a nonzero result not seen in
the Page curve calculation constitutes further evidence
for the ensemble interpretation of the gravitational path
integral.

In a black hole evaporation process described by some
specific unitary evolution, the Page curve should not be
completely smooth. One expects it to exhibit small fluc-
tuations. To see this, consider a system of n qubits. In a
Haar-typical quantum state, the first £ bits will have an
entropy approximately given by the Page curve. But there
are special quantum states, such as product states, which
deviate drastically from the Page curve. A consistent
|

5Sg = e S(E) x

3
|k log(e28f) g 25(E) -3
\/i—m‘FTezs(E)"'O(e (E)=3)

interpolation between these facts requires that typical states
deviate from the Page curve by appropriately small fluc-
tuations. Like the Page curve itself, this argument extends
to a unitarily evaporating black hole.

Our computation is done in a version of JT gravity coupled
to matter, known as the Penington-Shenker-Stanford-Yang
(PSSY) model or west coast model [11]. We consider a black
hole in the microcanonical ensemble at energy E, with
Hilbert space dimension e5(), The dimension of the radi-
ation Hilbert space is denoted k. Both £ and k can be chosen
freely but are held fixed in the path integral calculation. For
example, choosing k = ¢5(£) corresponds to computing the
value of some quantity at the Page time. The Page curve for
the entropy of the Hawking radiation R is given by

S =min[log k= S(E) ~ 2.

Throughout this paper, we will use the notation

5A = /E[A?] — E[A]? (1.1)
for the fluctuation (in the ensemble implicitly dual to the
gravitational path integral) of any quantity A.

We find that the entropy fluctuation in the large k, %

approximation is given by

(1 < eSE) —k)
(1.2)

log(e3AE
ASE)  3(E) + og(e25E)
2k? 413 2

Here AFE is the width of the microcanonical energy
window, whose edges are smeared by a < AE so that
the energy window becomes continuous. AE is chosen to
be an O(1) quantity in the e~ expansion, which allows us
to neglect higher order terms in the genus expansion.

A puzzling aspect of this result is that it is not symmetric
under interchange of ¢5¥) and k. By contrast, the Page
curve (including its fluctuations) are manifestly symmetric,
since it does not matter which subsystem dimension we
label ¢ and which we label k. For example, given that
8Sg ~eSE) for k< eSB), symmetry would require
8Sg ~ 1/k for k> ¢%F), which is much smaller than
the result we obtain, ¢=S(E),

Again, this apparent contradiction is resolved by assum-
ing that the gravitational path integral averages over an
ensemble of theories. The black hole Hilbert space, of
dimension ¢5), is defined by the number of black hole
states in a given energy band. The precise value of this
integer depends on the detailed spectrum, so it will not be
the same in every theory in the ensemble. The black hole
Hilbert space dimension controls the k > S(E) regime of
the Page curve. Our result above implies that its fluctuation

(1 - e;(,f))z FO(eSEY (k= eSE s 1)

dominates over the intrinsic fluctuations in the Page curve
in this regime. Specifically, the lower part of Eq. (1.2)

indicates that 8[eS(F)] = /log(e2E)/z to leading order,
which depends logarithmically on the width AE of the
microcanonical window.

To verify that this is what happens, we will also compute
this fluctuation directly. Because the full state is pure,
5[eSB)] = STr[p%']. The latter quantity, the rank of the
radiation density operator, can again be computed using the
gravitational path integral. We find

0+O0(k™) (1< eSB) —k)
STr[p%H] = : .
Prl=q0 1og(ea¥) L O0(e 5B (k=SB > 1)

(1.3)

In the course of the computation, we demonstrate dia-
grammatically the independence of the resolvent two-point
function from details of matrix integral potential, in the
microcanonical PSSY model. This independence is simple to

026006-2



FLUCTUATIONS IN THE ENTROPY OF HAWKING RADIATION

PHYS. REV. D 109, 026006 (2024)

understand from the matrix integral view point, yet remains
mysterious from a diagrammatic viewpoint [20]. Since our
method does not refer to a specific potential, we expect that it
can be used for a matrix integral with arbitrary potential.

The content of this paper is as follows. In Sec. II, we
review the PSSY model and the computation of the Page
curve by analytic continuation of the Renyi entropies of the
Hawking radiation. In Sec. III, we compute the fluctuations
around the Page curve in the PSSY model. In particular, we
identify a sector in the PSSY model where entropy
fluctuations are identical to those of the random bipartite
pure state. We discuss our results in Sec. IV.

II. PSSY MODEL

In this section, we consider a version of Jackiw-
Teitelboim gravity first introduced by Penington et al.
(PSSY) [11]. In Sec. IT A, we will review the PSSY model.
In Sec. II B we will define the microcanonical ensemble of
width AE around some energy. We introduce a smooth
smearing function that becomes top hat in a limit.
(Obtaining the top hat as a limit will be important in this
paper, whereas in earlier work the top hat could be used
directly.) In Sec. I C, we review the Page curve result, and
we compute the rank of the radiation density matrix.

A. Action and canonical ensemble

The PSSY model consists of JT gravity [13,14,21-26]
with a matter sector given by an end-of-the-world (EOW)
brane with k flavors and tension p(>0), anchored at the
boundary. The action is

S= SJT + SBrancv (21)

where

SJT:—3—2<//\A\/§R+2/0M\/EK>

_%</A4\/§¢(R+2)+AMJE¢K), (2.2)

Sbrane = H / ds.
Brane

We impose the standard asymptotic boundary condition

(2.3)

dr? 1

ds?|op = 2 Plop = e (2.4)
Here 7 is the boundary Euclidean time. Note that this model
does not contain loops of EOW branes that are not
anchored at the boundary. The model is dual to an ensemble
of boundary Hamiltonians; see Appendix D in [11].

One considers a state in which the EOW brane is
maximally entangled with an auxiliary nongravitating

system R:

i Eow- (2:5)

—k 1/22‘

This is a toy model for the semiclassical state of a black
hole whose interior is entangled with Hawking radiation.
The boundary description of the bulk state is given by

) Eow Z VIF(E) 22T (= 1/2 + iy/2E]C, |E,),
(2.6)

where |E;) are eigenstates of single instance of
Hamiltonian ensemble of the matrix integral dual to the
JT gravity, and note that the state (2.5) is normalized
only in the ensemble-averaged sense: E[(¥|¥)] = 1, but
E[(W|¥)?] # 1. The fluctuation of the normalization is not
relevant here, but we will need to take it into account in the
next section.
The reduced density matrix of the radiation is

k

pr = k7! Z 1)Ul (D) EOW-

ij=1

(2.7)

The eigenvalue density D(1) of pr is encoded in the
resolvent R

b - R )Z;im +ie) o)
where
Ro®) = 1 7|, 29)
and
= Ral2) = + ZT;K‘} = _lpR . (2.10)

When k and e% are both large, the resolvent can be
computed from the gravitational path integral by only
considering planar geometries. One finds the following
recursion relation:

: AZ

where Z]()"ilk is the single-topological-disk contribution to

the JT gravity partition function for n boundaries, with
fixed boundary condition. [Thus the n anti—de Sitter (AdS)
boundary segments are connected by n EOW branes to
form a single boundary.] In the canonical ensemble, each
boundary has a fixed length x; = /2 corresponding to the
inverse temperature f; thus

Rz Dlsk R(/{ n lR (/1)’

Dlsk

(2.11)
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Zg?sk [canonical ensemble, temperature #~'on each boundary] = % / ” dEDp (E)h(E, p)"e™"PEI2 (2.12)

where
sinh(27V/2E)
Dpi(E) = o2
IT(u—1/2+4 iV2E)?
h(E,p) = pEr= . (2.13)

B. Microcanonical ensemble and smearing function

In this paper, we will focus on the microcanonical
ensemble. From the canonical partition function, one
can obtain the density of states by the inverse Laplace
transform. By applying a top-hat smearing function
9ear)(E) = 0(AE/2 — |E - E|) to the density of states,
one would obtain the microcanonical ensemble in the sharp
energy window [E—AE/2,E+AE/2]. Here 0(x)=1(x>0),
0(x)=0(x<0) is the step function. However, for a top-hat
|

_ E—(E+AE/2+a)
a

0

|
smearing function, the two-point function of partition
functions is sensitive to fine-grained spectrum of the theory,
so it depends on higher genus contributions in the GPL

Thus, instead of using top-hat smearing function, we will
use a smooth microcanonical smearing function f (g ag.q) (E)
that limits to g(E,AE)(E) for small a. As long as we keep
e S < a < 1, we expect that the two-point function of
partition functions does not receive large contributions from
higher genus contributions in the GPI.

The conditions for f (E.AE,,,)(E) are

{ 0< fleara(E) <1

) - o 2.14
al_lg_lof(E,AE,a) (E) = 9(£.a5)(E) 21

An explicit example we will use is the trapezoid function
that is continuous

+AE/2 <E<E+AE/2+a)

f(EAEQ) (E) =1 .
E-(E-AE/2-a) E+AE/2—a < E < E— AE)

(E

i 1 (E—-AE/2 <E < E+ AE/2)

a (
(otherwise)

0

The corresponding microcanonical disk n-boundary partition function is

Zglizk [microcanonical, energy = E, width = AE]

=117, { A dE;f g.aE.q)(E;) / . a’x,-e)"'Ef]Zl()"i)Sk [canonical, boundary length = x;],
X €Ey+i

= &% Am dEDDiSk(E)[f(E.AE,a) (E)]nh<E,/¢)”,

In the limit AE < 1 and small a, as we explain in detail in Appendix B 1, we have

(2.15)

(2.16)

Zl()"i)sk[microcanonical, energy = E, width = AE] = 5F)h(

Here we defined

eS\E) = e Dpyig (E)AE, (2.18)
which is the number of states in the microcanonical window
with width AE. We assume that 1 < ¢S9AE < €%, so that
the second term is subleading. Note that the result (2.17) does
not depend on the details of the smooth microcanonical

E,u)" + O(e%(AE)?). (2.17)

[

smearing function, so long as the function satisfies (2.14) and
a being small.’

'"The smearing function f(E) = exp(—(E — E)/(4AE)?)
used in [27] would not give (2.17), because it violates the second
condition of (2.14); that is, it does not limit to the sharp
microcanonical smearing function gz, AE>(E).

026006-4
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C. Entropy and rank of the radiation state

In the following, we will assume that a is small. The
calculation below does not depend on whether our smear-
ing function is sharp or smooth with a — 0, unlike the
entropy fluctuation considered in the next section. The
sharp smearing function was used in [11]. With Eq. (2.17),
the trace of Eq. (2.11) yields a quadratic equation inde-
pendent of u for R(1)

K2eS(E)
A

R(A)? + R(2) <65(E)_k - ke5<E>> + =0. (2.19)

A

The limiting behavior R(4) 7> k/A dictates that

[A]>

R(A) =keSEV | = —— . (220
(1) = k"D | 5= . (2.20)
where we defined w := &k)‘k and x := e5(F) ). The density
of eigenvalues is
keS(E)
D(1) = A=2_)(Ay =2
(W) ==V O=1)G =7
+ (k= eSENS(A)(k — e5E)),  (2.21)

where A, = e™5()(2 4w + 21/1 + w) give the end points
of the continuous spectrum. We have [diD(1)A =1 for
normalization of pg and [ duD(u) = k for the rank of pg.
This entanglement spectrum is identical to that of the reduced
density matrix on C* of random state on C* ® c™™ . Thus
the Renyi entropy is identical to that of the random state. The
Renyi entropy (n > 0,n # 1) is [28]

1
SW=—"log / dAD(A)a",

1-n

k
2
(/)

1 3
+m10g2F1 1—n,§,3,—

=log

s
2
(1- =)

In particular, one obtains the Page curve for the von
Neumann entropy of the radiation:

(2.22)

log k — ﬁ + 0>k (k< S 2.23)
Sp = { ¢ . 2.23
S(E) =92+ 0(e™5E) (k> 5B))

Note that (2.23) is identical to the entanglement entropy of
a random pure state for large Hilbert space dimensions
[2,29,30]. The rank of the reduced density matrix is

k+0(1)
SE + 0(1)

(k < e5(F))

Trlpr'| = { (k> 5B’ (2.24)

III. ENTROPY FLUCTUATION IN THE
PSSY MODEL

In this section, we compute the fluctuation of the entropy
of the Hawking radiation, 6Sg, in the PSSY model. We
begin by setting up the calculation in Sec. III A. The
leading diagrammatic contributions come from two
types of topologies. We consider them separately in
Secs. [II B and III C, and we combine their contributions
in Sec. III D.

A. Setting up the calculation

At this order, it is important to note that the normali-
zation of pgp defined in Eq. (2.7) fluctuates. To avoid
artifacts in 6Sg, we must take care to compute Sg from the
normalized reduced density matrix

PR = PR
Trlpg]

(3.1)

The entanglement spectrum of pg, written as a density of
eigenvalues, will be denoted D(1). The associated resolvent
R(2) = Tr 75 1s equal to R(4) at leading order in ¢™%, so
the distinction between R(2) and R(4) will not be important
for us. However, below we introduce the resolvent two-
point function, to which the normalization fluctuation
would contribute at the leading order.
The fluctuation of the entropy can be obtained via

(5SR>2 = anlanzknlnz (32)

|n1=n2=1’

where

R,,., = E[Trpg |Trlpg]] — E[Tr[p IE[TrpR ] (3.3)

It is convenient to consider the connected part of the
resolvent two-point function

N

= R

fa nn
R 1) =) prEsprea)
ny,n,=0"1 2
[E{T ! T ! ]
= T —Tr -
Ai—=pr h—Pr

—[E{Tr lA ][E[Tr lA ], (3.4)
Al — PR A — Pr

026006-5
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whose discontinuity across its cut encodes the two-point function D(1,,4,) of the entanglement spectrum D(1) of

ﬁR via

R(Ay —ie, Ay — i€) — R(Ay — i€, Xy + i€) — R(Ay + i€, Ay — i€) + R(A| + i€, A, + i€)

IA)(A'I’AZ) = -

In the following, we will evaluate R(4,4,) in the PSSY
model. We can divide the geometries contributing to
R(A,, ;) into two classes, by whether they include handles
or an annulus topology (with possible handles) called
double trumpet. Geometries containing neither a double
trumpet nor a handle will be called nontubular wormholes.
Those containing a double trumpet or handles will be called
tubular wormholes. See Fig. 1 for geometries that contrib-
ute to the resolvent two-point function.

We will evaluate R(1,,4,) diagrammatically. To avoid
overcounting, it is convenient to consider the quantity

= Tr[ph]
U@) == o (3.6)
n=1 n
which is related to the resolvent by
R k
R(A) = 0,(AU(4)) +E' (3.7)

We will compute the connected two-point function of U,

= . (35)

[

U(d1,4) =E[U()U()] - E[UL)IE[U(4)],  (3.8)

from which we can then easily deduce the resolvent two-
point function, via

R(21.4y) = 0;,0,, (M AU (A1, 2p)). (3.9)

B. Nontubular wormbholes

Nontubular wormholes consist of reconnections of
EOW branes without containing double trumpet geo-
metries nor handles. We denote contributions from non-
tubular wormholes by a superscript or subscript, such
as D(ll ’ lz)NontubulaI’ <5SR)Nontubular'

We first study the general situation using diagrammatic
expansion. The resolvent two-point function for the random
matrix with quartic potential was computed using a dia-
grammatic expansion in [20]. The expression given in this
section applies to arbitrary potential. In order to sum over
all possible nontubular wormholes connecting R(4;) and
R(2,), it is convenient to define a sum of irreducible ladder
diagrams

FIG. 1. Examples of geometries that contribute to R (11, 42). (2) and (b) contribute at leading order, while (c) and (d) are subleading at

large eS(E)

trumpet nor handle.

and large k. (a), (c) contain double trumpets; (c) contains a handle; (d) is nonplanar; and (b) and (d) contain neither double

026006-6
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e
Ll (A, do) 1= ) ( +

2 I, L

o0 ("+m)R()\ )nflR()Q)mfl

I T DlSk
- 511125]1]2 E

(3.10)

n,m=1

- 5’i1i2 5j1j2L()‘17 )\2)-

where L is defined through the last equality. Then we show

in Appendix C that

U ()“1 , 22 ) Nontubular

)n (A1, 42)"

I D”t: R(4)"
1S, l
/11 ( )n+l ( 2)
oo (n+1) n
1 Z 1S ()“ )
- R(4) A_ZLZI
> (kZ )n+
()
kZ
+ R(A))R(4y) —=Disk (3.11)
(kZDlsk)

The first term in (3.11) corresponds to the wormhole
exchanges between Trpg and Trpg, see Fig. 2.7 The second
and third terms correspond to those between Trpg and
(Trlpr])™ or Trpg and (Tr[pg])". The forth term corre-
sponds to those between (Tr[pg])" and (Tr[pg])™.

1. Microcanonical ensemble

We now consider the microcanonical ensemble. Using

Z, = eSE " one finds
LA, 4) = 5F) ! : . (3.12)
keSE) — R(Ay) keSE) — R(4,)
Therefore,
U(/ll 7lz)Nontubular
= LS Ry - (R - )
Alﬂz — n k€ (E) 1 2 2
k1
— 3.13
* eS<E) 1112 ( )

*Note that we have R, i(4)

= 6;;R(4)/k, which leads to a
simplification >, ; R;;(41)R;i(4) =

R(A1)R(12)/k.

(kZb )

We now define x:=e5F)), a, :==e5F)1,, and 6(x,a, ) :=
x—a_)(x—a.). One finds by explicit computation that
+ y €xXp p

0,116,12 (AIAZU(AI’AZ)NOHtubuIar)
= eXER (x), x5 2,a4)
1

5 On (IR (x1))0y, (2R (x2)),

- (3.14)

where R*(x) := k~'e™S(F)R(1) and [25]

R¥(xy,x2: poay)

1 <x1x2 — (x4 x0) +a_ay )
= 5 -1,
ﬁ(xl _x2) \/6 xlvai x2vai)
(3.15)

is the resolvent two-point function of the Dyson f ensemble,

(M) (T < e [ty — ] )e 222000 (3.16)

with § = 2. Importantly, R*(x,,x,: f3, a.) depends on the
potential V only through the endpoints a.. of the density of
states.

With (3.14), we can obtain the continuous part of the
fluctuation of the density of eigenvalues

‘

FIG. 2. Nontubular wormholes connecting Trpg and Trpg in
the first term of (3.11). Solid red lines are EOW branes, and the
black dotted lines represent flavor index contractions. R repre-
sents the resolvent one point function.
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o25(E)

a,+a_
XXy = 5= (X +x) +aja_

D ()41 /12>Nontubular _

keS(E)

27 (x) = x,)? \/(xl—a Nay —x1)(x2 —a_)(ay —x)

() = *5%) (3 =

a, JZra_)

(3.17)

T —a)(as - )@ —a)(as —x)

The first term comes from the fluctuation of unnormalized
density matrices, and the second term comes from the
fluctuation of the normalization. Thus we can write the
fluctuations as

pNontubular __
R nyn, -

/1 dAydAa 2 252 D (A, Ay )Nontubular, (3.18)
0
The integral of D(4;43)ummormaiized 11 (3-18) needs to be
performed analytically in order to regulate a divergence
coming from 1/(x; — x,)2.

We can evaluate this integral in complete generality for
certain values of n. For example by explicitly expanding
(3.14), we find the Renyi entropy fluctuations

V2
keSE)’

V 18K% 4+-39keS(E) 1 18¢25(E)
k22S(E)

(5TI' m%] )Nontubular —

(5Tl‘[ﬁ%] )Nontubular —

(3.19)

We will now show that the nontubular contributions to
the resolvent two-point function are identical to the
resolvent two-point function of the random bipartite pure
state of large dimensions k and ¢5(£). Hence, the nontubular
contributions to the entropy fluctuation are the same as the
entropy fluctuation of the random biparatite pure state,
which is known [31].

Consider the Hilbert space H = C" @ C" with m < n,
and the random pure states in H of the form

Z ‘Pia|i> ® |a>

1<i<m,1<a<n

p) = (3.20)

Here W}, = U|jq)(00) is @ matrix element with fixed column
of a Haar-random unitary matrix U € U(mn). The matrix

element of the reduced density matrix p for the subsystem
C™ is

Z\Pm

Instead of treating matrix elements of Haar random
unitary directly, we consider the Gaussian probability
distribution for ¥,

(ilplj) = (3.21)

P(¥) o e7mn¥ia¥i, (3.22)

Note that the random state |¥) and the reduced density
matrix p are normalized only at their average, and thus
their normalization can fluctuate. One might wonder if
there are subleading contributions to (3.22). This is not
the case up to normalization for the following reason.
Suppose we consider random unitary U € U(mn)
and corresponding random complete orthonormal basis
|U(jb)> = ZISiSm,ISaSn U(ia),(jb)|i> ® |a> The standard
way to obtain such random unitary matrix is to first
consider (nm)? independent complex Gaussian random
variables ¥;, with zero mean and common variance (called
Ginibre ensemble), and applying Gram-Schmidt ortho-
normalization to the vectors V() = (¥(ia).(jt)) (ia)- The
final set of vectors forms a complete orthonormal basis
with unit probability, and the resulting measure on U(mn)
can be shown to be the Haar measure, see Proposition 7.2 of
[32] for proof. Since the first entry |¥(;y)) is the random
pure state produced by the measure (3.22) up to normali-
zation, we can conclude that the entanglement spectrum of
the random state can be simulated by (3.22) after properly
normalizing the state. We note that when we consider
correlation between distinct random state, the Gaussian
approximation (3.22) begins to deviate from the actual
result. Nevertheless, it was shown in corollary 5 of [33] that
for large mn, the first mn/(log mn)? basis vectors can be
treated as if they are independently chosen random states.’
From now on, we will use matrix integral to evaluate
resolvent correlators. The ensemble induced by the prob-
ability distribution (3.20) is known as complex Wishart
ensemble or Laguerre # = 2 ensemble, whose integration
measure in terms of eigenvalues A; of p is given by [34]

e—mn‘l’ialPTa Hia leia dlp}ka
=4Iy 2k,
(3.23)

- C(Hidﬂi)(nlgiqs;n (4

where C is a constant. After rescaling x; := n4;, we have an
ordinary Altland-Zirnbauer matrix integral [35] with f = 2
and @ = 1 (or the Dyson f = 2), whose measure is

) (I 2 2

(Hidxi)(nlsi<jSm|xi - (3.24)

*More precisely, it was shown that the maximum of matrix
element difference mn\U (ia)(jb) — Pia)(jb) )| among mn/ (log mn)?
entries goes to zero in the limit mn — oo.
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with potential

n—m

V(x) = x —wlog x, w= (3.25)
The leading order resolvent and the resolvent two-point
correlator in 1/m expansion can be obtained via loop equa-
tions [25]. For the resolvent R*(x) = R(A = x/n)/(nm),
the loop equation gives

—_wES. L
o - THEIS]

- (3.26)

R*(x)? = V/(x)R*
1

at the leading in m. Combined with R*(x) =, -, we obtain

2 2
L ow E-( 4P
R(x) = nmR*(x) = nm = — — — .
(x) = nmR*(x) nm(2 % .

(3.27)

In particular, E[Y; p;] = 1. The two-point correlator
R*(xy,x,) of R*(x) is given by

R¥(x1,%) =n?R*(x1, %22 f=2,a. =2+ w+2V1+w).

(3.28)

So far, we have been considering the unnormalized reduced
density matrix. We will now take into account the normali-
zation and consider the normalized reduced density of state

>a¥ia¥,
Zkblpkblpkb

To this end, we introduce new coordinates, normalized
eigenvalues p; = p;/r, and r = >, p;. The integral mea-
sure is then

dr(IL;dp;) (1 - Zp )

X (Hipi)n—me—mnr'

(3.29)

Hl<l</<m<p1 - ijj)z)
(3.30)
Since E[>_; p;] = 1, ris peaked at r = 1. The fluctuation is

fooo drrmn—le—mnr<r_ 1)2 1

El(r—1)] = - =—

fooo drr™ le—mnr mn :

(3.31)

Thus we can treat the fluctuation of normalization pertur-
batively. At the leading order around r = 1, we have
E[Tr[p" | Tr[p"]] = E[Tr[p™ ]E[Tr[p"]]
= E[Tr[p" | Trlp"]] = nyny E[Trlp™ |JE[Tr[p" JE[(r - 1)%].
(3.32)

Thus the connected resolvent two-point function defined in
(3.4) is given by, using (3.15),

N Lnaxl (21 R (x1)) 9y, (x2R* (x2)).
(3.33)

R(/‘lelZ) = Rx('xlv-XZ)

This is identical to (3.14), the resolvent two-point function
of the microcanonical PSSY model restricted to nontubular
wormholes, with n = ¢5) and m = k. Hence, the non-
tubular contributions to the entropy fluctuations in the
PSSY model are the same as the entropy fluctuations in the
random pure state [31]4’5:

*The fluctuation is far smaller [31] than a previously known
upper bound [36,37]:

for 3 < m < n,Pr(|S(p) — E[S(p)]| 2 )
mné>
<2 - 3.34
= <€xp ( 3673 (log m)2)’ (3:34)
which leads to
(67)3/% log m
6S <—7_= 3.35
) <= (3.39)

We note that this result is not a trivial consequence of the
canonical typicality [37,38] because the combination of the

Fannes inequality and E[|ps — E[pall] < \/d4/dp [37] yields
an estimate for the upper bound of the entropy fluctuation

proportional to ‘dl—f;log d,. We can also obtain an independent

upper bound for the probability of the entropy fluctuation using a
method given in the Appendix of [39]. Indeed, since we have
—logd, < —log Tr[p3] < S, in general, we can apply Markov’s
inequality to the non-negative variable dATr[p/zd — 1 to obtain
Pr[S <logd, — 8] < Pr[e® — 1 <d,Trp3 — 1] < (d4(Tr[p3]) - 1)/
(e —1)~(dy/dg)/(e® — 1), where we assumed large d,, dj; at
the last approximate equality. Thus we obtain E[(S, — log d, )?]<

2¢(3)d%/d%. This bound constrains the fluctuation around the
average when dy < dp.

ThlS result implies that the typical pure state |¥) on C" ®
C" := Hy ® Hp fluctuates as

S(Trgly)w]) = E[S4] +d—IBR,-,

where R; is a real random variable with zero average with O(1)
variance. It would be interesting to relate this result (3.38) to the
properties of energy eigenstates. The entropy and entropy
variance for typical pure state and Gaussian pure state, which
are models of eigenstates of chaotic and integrable system,
respectively, are given in [40]. It would also be interesting to
relate this result to the eigenstate thermalization hypothesis
(ETH) [41-46]. The ETH states that any few-body operator O
and the majority of energy eigenstates |E;) satisfy,

(3.36)

(3.37)

where E = (E; + E;)/2, f is a smooth real O(1) function, and R;;
isarandom variable with unit variance and zero mean. The ETH for
observables of a small subsystem, including entanglement entropy,
was proposed in [44-46]. For few-body Hermitian operators it
reduces to the random state prediction when we take a sufficiently
small energy window of width given by the Thouless energy [47],
by assuming that the transformation between eigenstates of the
Hamiltonian and of O is arandom matrix. Yetitis not clear whether
such an argument exists for entanglement entropy.

(E||O|E;) = O(E)™eros,; + e SP2f(E,E; — E;)R;;,
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1
+ 0( ) .
6S(p)R2md0m Pure State _ m ( )
211n el O(ﬁ) (m > n)
(3.38)

for large m, n. Combined with the equivalence, this result

implies that
\/262%'() 3u)+0(k 3S(E ) (k<eS(E>)

d-GrtO(m) (k> )
(3.39)

Nontubular __

We also obtain this result directly, albeit only for k > e5(£)
and k < %) in Appendix D.

Another byproduct of the equivalence between the non-
tubular PSSY model and the random pure state is the absence
of any fluctuations of the rank of the density matrix. In the
random pure state, this property is not restricted to the
Gaussian approximation employed here. This is because in

|

the space of pure states on H = C" ® C", the subspace of
states with rank strictly smaller than m has lower dimension-
ality. Thus its measure is zero, and therefore the fluctuation
vanishes. This is confirmed by explicit calculation [31]. Thus
we can conclude that

(STr[pl])Nenwbular — (- for all k. (3.40)

However, in the next subsection we will see that tubular
wormholes contribute a nonzero rank fluctuation in the
PSSY model.

C. Tubular wormbholes

In this section, we consider contributions to 6S from
tubular wormholes. Recall that tubular wormholes are
defined as geometries that contain either double trumpets
or handles. Since higher genus geometries are suppressed,
we only need to consider geometries that contain a single
double trumpet. Note that adding handles contributes to the
fluctuation only at subleading order. Using similar reason-
ing as the nontubular case, we show in Appendix C that

(n,m) n m 2
1 & ZDouble Trumpe R(j’l) R(/12) k ZDouble Trumpe
U(Ay, ) To0ver = — - R(R (%) — 750
A nm(kZDisk)ner (kZpig)?
= kZDnotllble Trumpet (’11) 1 & Doutzle Trumpet (AZ)m

__Zl N R(4) — R(4) ﬂ_mz (e (3.41)
The first term in (3.41) corresponds to the tubular worm- (nm) log(e %L)
hole exchanges between Trpy and Trpy, see Fig. 3. The ZDouble Trumpet = fah(Evﬂ)Hm’ (3.42)

second and third terms correspond to those between Trpg

and (Tr[pg])™ etc. The fourth term to those between
(Trlpr])™ and (Trlpg])"™.

1. Microcanonical ensemble

For the microcanonical ensemble, the double trumpet
partition function can be written as

FIG. 3. Double trumpet connecting R(4,)" and R(4,)"
first term of (3.41).

in the

which was derived in Appendix B 2. Using (2.17) and
(3.42), we can write explicitly

log(e24E) Z R(A)" MR(4)
2&112 n(keS<E))" eS(E)

n=1

© R(ﬂ,z)m /IzR(ﬂz)
X<;m(kes(5>)m_ S(E) > (3.43)

U(/11 , /12)Tubular

The continuous part of the density two-point function is
then

D(ll ’ lZ)com

log(ci2)

X +w
22e25(E) (’11 )com<1 + (w—xl)2—4x]>

X +w
D(A 1+——, 3.44
( 2)cont< + (W _ x2)2 _ 4x2> ( )

026006-10
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where D (). is the continuous part of the density one point function. Writing a = k/e*), we obtain

og(e3 AE
R7ubular lj(eT%)G(a,n)G(a,m), (3.45)
where
_ (1= yapy ! 3 4y/a
o= (1) 1o )
1 I 4\/a 1 1 4\/a
—2(1—\/5)22F1<—n,2,1. (1_\/_>2>—2(1—a)2F1<—n+1,2,1. (1_\/_)2>> (346)

The expression (3.46) can have discontinuity at & = 1. Such discontinuity implies that the expression is no longer valid near

|k — %) = O(1). For this reason, we will assume |k — ¢5(F)| > 1 in the following calculation.
Let us first consider the limiting cases k < e% and k > ¢%. When k < %, the leading order terms are

]’é"’g}lnl;ular — log <€ AE) (I’l - l)m(m - 1)

a 4].[284S(E)kn+m—4 ’
Tubular log(e% A“E) ~0+1) Tubular

When k > ¢5(), the approximation (D4) yields

RTubular _ log<e° AE) (n=1)(m-1)

2, (ntm)S(E) °

a e
log(e%%) log(ez—)
(5SR)TubulaI N S , (5Tr[ﬁ%+])TUbulaI - . (348)
e (E) T

Next, we let k, ¢5(F) be arbitrary but consider particular values of n, m. Using the quadratic transformation of variables of
hypergeometric functions and expanding around n = m = 1, we obtain

log (62 AE) 4752’164;()5()kn+m>—4 + O(k 'l+m+l)) (1 < eS(E) - k)
RTubulaI 3 4
mm n,m_Ll N (1—%) (n—1)(m-1) ( 9)
log (ei %> e + O™ HSEN) - (k— &S1E) > 1)

We can confirm that (3.49) reproduces (3.47) and (3.48) for n, m — 1 in the limits. As a result, the entropy fluctuation is

log (e} 2£) ke 1 0(e3EIR) (1< eS8 k)
(5SR>Tubular — 5 . (350)
tog (e147) S 0(eBE) (k- eSB > 1)

A similar expansion around n = m = 0+ yields

0+ 0(k™) (1 < eSE) —k)

(5TI‘L3%+] )Tubular — (351)

3.
log(e22£)

+0(e5E)  (k—e5B) > 1)

T
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For completeness, we note that the exact fluctuations for n = 2, 3 are given by

log(e? AL)

~2 1\Tubular __
(6Tr[pg ) o =T BE

TR = o5

(3.52)

JAE\ 3+ 245
a

ﬂkEZS(E) '

D. Sum of wormhole contributions

Summing up the two kinds of wormhole contributions, we obtain the total fluctuations of the entropy and of the rank of
the Hawking radiation state. We assume large k and () with ke=5() fixed, as well as |k — e5(¥)| > 1. Then

5Sg = e 5(E) x

3
|k log(e22f) 2
27 45E) =+ 42 5E)

+ 0(e*B)k3) (1 < eSE) —k)

, (3.53)

) 3AE
5E) ) + log(e2%%)
2k> 413 7’

0+ O(k™)
STHpY!] =

3

The behavior of the rank fluctuation can be explained in the
following manner. When k < ¢5(8) the rank of the total
pure state (2.5) is k which is maximal and thus is insensitive
to the fluctuation of the bulk Hilbert space dimension ¢5().
On the other hand, when k > ¢5() | the rank is ¢5() and
receives corrections directly from the fluctuation of e5(£),

IV. DISCUSSION

The entropy fluctuation (3.53) is exponentially sup-
pressed in the black hole entropy at all times. At first this
is surprising: like the Page curve itself, the fluctuations
should be symmetric under exchange of the Hilbert space
dimension of the two subsystems.

What breaks this symmetry is the fact that the black hole
is prepared in the microcanonical ensemble, whose Hilbert
space dimension can vary between different theories in the
ensemble of theories. By contrast, the radiation Hilbert
space has fixed dimension k.

Once the black hole becomes the smaller subsystem—
after the Page time—its Hilbert space size controls both
the Page curve and its fluctuations. The entropy is approx-
imately given by the log of the rank in this regime.
The nonzero rank fluctuation (3.54) in the microcanon-
ical ensemble dominates over the much smaller entropy
fluctuation expected if both Hilbert space dimensions
were fixed. To see this, substitute (3.54) into (2.23); this
yields (3.53).

A fluctuation of the bulk Hilbert space dimension could
be modeled by a generalization of the random state model.
Consider the direct product of factorized Hilbert spaces
H = (&, C") ® C", in the state

1 1og(e%%) +0(e 5B (k—eSE) 1)

(1 _ eS(E)>2 +0(e=SE)) (k-S> 1)

2k

(1 < eSE) —k)
(3.54)

|
¥) = \/Bal¥,). where|¥,)eC™®C". Y p,=1.

a

(4.1)

Here |¥,) is a random state in C"« @ C", and p, obeys an
appropriate probability distribution. The reduced density
matrix on C", for m, < n, is the probabilistic sum of the
reduced density matrices for |¥,), whose rank is m,. The
average entropy is log m, — 5= If p,, is sufficiently peaked
as a function of m, at some value m, = m, then this
generalized model will reproduce the fluctuations of the
rank and the entropy observed in the PSSY model.
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APPENDIX A: RENYI ENTROPY FLUCTUATIONS

In this appendix, we explain the details of the computation of Renyi entropy fluctuations.

1. Nontubular wormhole

In this appendix, we compute contributions to knlnz from contributions of second, third, and forth terms in Eq. (3.11),
which we write as Rl,fl"gﬁ,%‘;}flgﬁmon. We can perform the integration directly in this case and find explicit contribution to the

entropy fluctuation for any value of ke=5(£). We have

D ar ! nyan ontubular
Rl’jfg;]%?galization = A dﬂl dﬂQﬂ“lleZD(ll ’ )’2)§0rrtnz]131izlati0n’ (Al)
where
7 Nontubular ~,_ keS(E) ()C] — “+;“—)(x2 - a+;a_)
D(il ?iZ)Normalization = 4 2 ’ (Az)
7 (i —a)(a; —x)(xn—a)(a; —x)
which is the second term of Eq. (3.17).
We can explicitly see that
pNontubular _eS(E)
RnlnzNormalization = TF((Z’ nl)F(av n2)’ (A3)
where a = k/e5F) and
#(2F1(—n —-1,-n—-1,1,a) - (1+a),F(-n,—n,1,a)) (a<1)
F(a,n) = , (A4)
ﬁ (a2F1 <—n —-1,-n-1, l,é) - (1+a),F, (—n, —n, 1,&)) (a>1)

Near ny, n, — 1, we have

1+E+1)(n=1))(14+(5+1)(m—-1
pNontubular - )(rllc”’?’)'(leS(Ez) o=t (a < 1)
anNormalization (1+(E+1) (n=1) (14 (E+1) (m—1)) . (AS)
1 n— 1 m—
- = ke(n+m—])S(§()l (a > 1)
And for n; = n, = 0+,
RoNﬁgﬁli}];;;alization =0. (A6)

2. Tubular wormbhole

This subsection completes the derivation of Eq. (3.49) from (3.46), by studying the behavior of the function (3.46) at
n — 1. We first invoke the quadratic transformation of variables of hypergeometric function

1 4./z
Fila,ba—-b+1:2)=(1- —2a F ,a—b+=-,2a-2b+1: ———— ],
2 l(a a Z) ( \/E) 2 1<aa 2 a (1_\/2)2>

7l < L. (A7)

We can apply this relation to G(a, n) for z = a assuming a < 1, obtaining

2,F\(1—=n,-n2:a)—,Fi(-n,—n,1:a) — (1 —a),F|(l —n,1 —n,1,a)

G(a,n) = A8
(a.n) = (A8)
Applying for z = 1/a assuming a > 1 yields

Gla, n) = 2,F\(1=n,-n2:1/a) —a,F\(-n,—n,1:1/a) — (1 —a),F;(1 —n,1 —n,1, l/a). (A9)

Ze(iz—l)S(E)
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Using these identities we can compute the fluc-
tuation R,, ,,, Tubular fOr general replica number. For expres-
sion near n; =n, =1, we use expansions such
as LFi(-n+1,-n2:a)=1+%(n—-1)+0((n—-1)?),
JFi(-n,—n,1:a)=14+a+2a(n—1)+0((n—1)*) and
JFi(-n+1,-n+1,1:a)=1+0((n—1)?). Using these
relations, we arrive at (3.49).

APPENDIX B: JT GRAVITY
PARTITION FUNCTIONS

In this appendix, we explain some results in JT gravity
[13,14,21-26,48] used in this paper. The main objectives are
the microcanonical partition functions (2.17) and (3.42).

1. Disk

This subsection completes the derivation of Eq. (2.17).
We first consider the disk partition function. The normal-
ized density of states of the disk is

D () = SETVE) B1)

The disk partition function is

(¢ er
Zpisk (B) = €S"A dEDp (E)e™PE = % \/T—ﬂﬂ; (B2)

L(ly, ... 1) =2" /oo dEDpig (E)K, gp(4e™ /) - K, sgp(4e™"/?).
0

This satisfies

el/zl//DiSk(xl + - + Xn—1> l) = 2/00 dll...dln_le

—0o0

and

I+

ZDisk<xl + "'+xn) = / dl]...dlne—

—0o0

The path integral for a disk with n geodesic boundaries with lengths /i, ..

lengths x, ..., x,, is

L+t

The Hartle-Hawking wave function for a disk with a
boundary segment x and geodesic boundary with length
[ is [23,26]

Wi (x. 1) = A JEDpio( By (E. ). (B3)
where

wpisk(E. 1) = 43_1/21{1‘\/@(46_1/2)- (B4)

The Hartle-Hawking wave function satisfies

o dle!
/ 5 Wbisk (B1. Dypisk (2. 1)

o0

= /oo dEDDiSk(E)e_(/’)'H}Z)E = Zpix(f1 + p2), (BS)
0

where we used

/ VK, g (de K o (de)

_ S(E-F)
~ 8Dpi(E) (B6)

The path integral of a disk with n geodesic boundaries with
lengths [;, ..., 1, is

(B7)
In(llv v by, l)WDisk(xh ll)'--l//Disk(xn—lv ln—l)v (B8)
In(llﬂ ceey ln)l//Disk<x1 ) ll )"'WDisk(xn’ ln) (Bg)

., I, and n conformal boundary segments with

e(llJFMJrl")/zl//Disk(xl, e Xyt l], ey ln) = 2”/ dl/l...dl:le(l/1+.'.+l;)/212n(l], ey l/l’ "")WDiSk(lllﬂxl)"'l//Disk(l;l’xn)

[Se]

=22 / ” dEDng (E)K, gp(4e™/2). K, sgp(4e™"n/?)e=(xitFx)E

0

(B10)

Replacing the n geodesic boundaries by n EOW branes with action Sgow, = pl;, we obtain the bulk partition function

Zl()"i)sk[canonical, boundary lengths = x;| = /oo dly...dle" oy (o x, 1y,

(o]

= /°° dEDpig (E)h(E, p)" e~ +x)E,
0

1,)e i+t

(B11)

026006-14



FLUCTUATIONS IN THE ENTROPY OF HAWKING RADIATION

PHYS. REV. D 109, 026006 (2024)

where

h(E. p) =2 /oo dle'?K, sp(4e™!?)e!

—o0

P(u—1/2 4 iV2E)]?

- 22u—1

(B12)

for Re[u] —1 — [Im[V/8E]| > 0.

2. Double Trumpet

This subsection completes the derivation of Eq. (3.42). A
tubular wormhole can be divided into two trumpets along a
geodesic. We first consider a single trumpet bounded by a
geodesic with length b. The path integral for fixed geodesic
boundary b and AdS boundary segment with length x, and
a geodesic boundary anchored from the AdS boundary with
length [ is given by [26]

WTrumpet(l’ X, b) = / dEDTrurnpet(E’ b)l//Disk(E’ l)e_XE’

0
(B13)
where
cos(bv2E)
Drpumpet (E, b)) = ———. Bl4
T pt( ) ﬂ\/ﬁ ( )

We first consider the partition function without EOW
branes. We define

e(ll+"'+l”)/2WTrumpet(ll’ ey ln: Xl, ...,.xn . b)

DDouble Trumpel(E’ E/)

:= lim bd_l dbDTmmpet(E’ b)DTrumpet(E/7 b)

d—2 0
E+F
_ i . (BIS)
4r>VEE (E — E')?

Note that it follows that

i /

A dEDDouble Trumpet(E’ E )

= A dElDDouble Trumpet(E’ El) =0. (B16)

Defining
E+F

Dpouble Trumpet(Ev E'": d) = (B 17)

4 VEE(E-E)

the partition function of the double trumpet with boundary
length x and y is then given by

ZDouble Trumpet(x 2y )

o0 "’
= }iln% dEdE/DDouble Trumpet(Ev E'": d)e_XE_yE
—<J0
VXY

= Ty

Next we generalize to the partition function with an
arbitrary number of AdS boundaries and geodesic boun-
daries anchored from them. The path integral for a trumpet
Hartle-Hawking wavefunction with n geodesic boundaries
with length [;(i = 1, ..., n) and AdS boundary segments of
length x,(a =1, ...,n) can be written as

(B18)

= / dl/l--~dl;le(l/‘+""H/”)/212n(117 sy I lZ)WTrumpet(l/pxh b)ypisk (L3, %2) - Wpisk (s Xn)

(e8]

= )2 A AEDryympet(E. b)K; gp(4e™1/2) - K, sp(4e™ln/2)e= (01 t0)E,

(B19)

When the geodesics of this path integral are replaced by EOW branes, we have

(n)
Z rvumpet (X15 05 Xy
(s

0

= /oo dEDTrumpet(E, b)h(E,M)”g—(xl‘i‘"'-*-xu)E_

b) = /oo dl, '-'dlnell+m+l"WTrumpet(-xl P ..., ln . b)e_/‘(ll+"'+1n)

(B20)

Next, we consider a single tubular wormhole exchange between two disk topology n- and m-boundary partition

functions. It is given by

Z("’m)

0

Dotble Tmmpet(xl, s X Vs ey V) = A bdbZrympet (X152 % 2 D) Zrrumpet (V15 s Y - D)

_ /oo dEAE'Dpyubie Trumpet(E’ E/)e_(xl+”')E_<yl+"')Elh(E,,u)nh(E/,/l)m- (B21)
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The microcanonical double trumpet (n, m)-boundary partition function is

Z(”J")

Double Trumpet

= H?:lm |:/ dEif(E,AE.a)(Ei) / ' dx,»ex,-E,} Zl()n(;zlgle Trumpet(xl’ .
0 x; €y+iR

[microcanonical, energy = E, E', width = AF]

o Xp  Xpg 1 ---’anrm)

= A " AEAE Doy (E. E')(f (5050 (E))" (f 2 2.0 (E)) " (E. ) H(E . o)™

(B22)

Here we assume a < AE but 1 < e5F) 4 = ¢SDpy (E)a, thus a is of order 1 quantity in e%. We introduced the
continuous smearing function for microcanonical ensemble. The sharp top hat cannot be used in the approximation we use
in this paper, where higher genus geometries are neglected. The continuous smearing function we use in this paper is

E—(E+AE/2+a)
a

(E+AE/2 <E <E+ AE/2 +a)
(E-AE/2 <E <E+ AE/2)
w (E+AE/2—a < E < E—-AE)
0 (

- 1

fEaeq)(E) = (B23)

otherwise)

In the work of PSSY [11], such regularization was unnecessary; thus the sharp window could be used.
Let us compute the microcanonical double trumpet (n, m)-boundary partition function. By utilizing an approximation

-1
Dpoubie Trumpet (E+ E') & m , (B24)
we can perform the integration explicitly, arriving at
log(e2 AE
Z&;ﬁ}h Trampet MicTOCANONIcal, energy = E, width = AE] ~ g(ﬂz“)h(E ), (B25)

So far we have studied the partition function for a trapezoid smearing function. The purpose was to regularize the
divergence of (B15), which is an artifact of cutting off higher genus contributions in the GPI. In the following, for reference,
we assume that the density of state two-point function is given by the sine-kernel

1 <sin2(es0 (E-E)) (B26)

DSine—Kcrnel(E7 E/> ) (E — E/)Z

— weS5(E — E’)) ,
P

which reduces to (B15) after smearing with width larger than e~%. The partition function in this case is finite. Assuming that
AE is an O(1) quantity, so that e AE is large, we then obtain

(n.m)

log(2e!t7e5 AE)
Sign Kernel h

5 (E,/,l)’hLm.
T

[microcanonical, energy = E, width = AE] ~

(B27)

|
1. Proof of (3.11)

Since the derivation of the second to fourth terms of
(3.11) is straightforward, we will only show that the
multiplicity of the first term in (3.11) correctly captures
the number of geometries. First, we can classify any

This result is similar to (B25) when we take a ~ e,
consistent with the expectation that higher genus contri-
butions in the GPI regularize the spectrum at the scale e 5.

APPENDIX C: PROOEFS OF (3.11) AND (3.41)

In this appendix, we provide the proofs for (3.11)
and (3.41).

diagram by the number n of irreducible ladders. There
are two possibilities: that there is no cyclic symmetry in the
diagram and that there is.
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Let us first consider the case when there is no cyclic
symmetry in the diagram. We denote the number of
boundaries of these diagrams by n; and n,. In the first
term of (3.11), such a diagram appears n times; therefore,
the factor % in (3.11) cancels this multiplicity. Since this
diagram appears in R(1;,4,)n n, times, we conclude that
the counting for diagrams without cyclic symmetry is
correctly captured.

Next, we consider the case when there is a cyclic
symmetry with periodicity (s;,s,). Then the diagram
can be decomposed into m = n;/s; = n,/s, identical
copies. Each copy contains n/m irreducible ladders.
Therefore, in (3.11), the diagram appears n/m times. By
the factor 1/n in (3.11), the coefficient in (3.11) for the
diagram is now % On the other hand, the diagram appears
in R (/11,)«2)

M XS XS =—Xnn, (C1)
m

times, matching precisely with the counting of (3.11). Thus

the counting of diagrams with cyclic symmetry is also

correctly captured in (3.11).

2. Proof of (3.41)

The multiplicity of the first term in (3.41) can be checked
in a similar manner as (3.11). First, we can classify
diagrams by cyclic symmetry of the diagram for each side
Trp™ and Trp"2. Let us suppose the periodicity of Trp™ and
Trp™ are (sy, s,). Here we include s; = n; or s, = m, for
the case where there is no cyclic symmetry. (n,m)
corresponds to the number of boundaries that are connected
to the double trumpet. Thus in the first term of (3.41), the
diagram appears ns,/n; X ms,/n, times. By the factor
1/(nm), the coefficient for the diagram in (3.41) is
518,/ (nny). On the other hand, the diagram appears in
R(2y,4,)s1s, times, matching precisely with the counting
of (3.41). Thus we conclude that the counting of diagrams
with cyclic symmetry is also correctly captured in (3.41).

APPENDIX D: PERTURBATIVE COMPUTATION

In this appendix, we evaluate the entropy fluctuation 6Sg
for nontubular wormholes for small and large values of

k/eSE). A simpler but related integral was studied in [49]
near k ~ e5() (see also [50]). It would be interesting to
compare them with the explicit evaluation in [31].

When k < e%, we can use the approximation

1 1 1 1 =1
AR —k—--+—+—5+—=+-= —.
W=k= gt er et ; k=T
(D1)
Substituting this into (3.14) yields
pNontubular nl(nl - 1)”2(”2 - 1)
R”l m - 2k +n2—ZeZS(E) (DZ)
The fluctuation of the rank and the entropy are
1 .
(8Sg)Nomubular — J25E)” (5Tr[p(l){+DNontubular — 0. (D3)
For k > ¢5F), we can approximate
1 1 1 1
AR(2) —k — T sEp T sEps T sEp T
= 1
= , D4
; e(n—l)S(E)/ln ( )
which leads to
pNontubular nl(nl - 1)”2(”2 - 1)
Rnlnz - 2e(n1 +n,—-2)S(E) k2 (DS)
The fluctuation of the rank and the entropy are
1
5S Nontubular — , STr ~0-+1\Nontubular - 0. D6
(35w) T TR (D6)
To summarize, we obtain at large k, eS(E)
L (k< eSB))
(5SR)Nontubular — { V2k R (D7)
W (k > e ( )>
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