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Fluctuations in the entropy of Hawking radiation
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3Institute for Advanced Research, Nagoya University, Nagoya, Aichi 464-8601, Japan
4Department of Physics, Nagoya University, Nagoya, Aichi 464-8602, Japan

(Received 21 August 2023; accepted 4 December 2023; published 16 January 2024)

We use the gravitational path integral (GPI) to compute the fluctuations of the Hawking radiation
entropy around the Page curve in a two-dimensional model introduced by Penington et al. Before the Page
time, we find that δS ¼ e−S=

ffiffiffi
2

p
, where S is the black hole entropy. This result agrees with the Haar-

averaged entropy fluctuations in a bipartite system. After the Page time, we find that δS ∼ e−S, up to a
prefactor that depends logarithmically on the width of the microcanonical energy window. This is not
symmetric under exchange of subsystem sizes and so does not agree with the Haar average for a subsystem
of fixed Hilbert space dimension. The discrepancy can be attributed to the fact that the black hole Hilbert
space dimension is not fixed by the state preparation: even in a microcanonical ensemble with a top-hat
smearing function, the GPI yields an additive fluctuation in the number of black hole states. This result, and
the fact that the Page curve computed by the GPI is smooth, all point towards an ensemble interpretation of
the GPI.

DOI: 10.1103/PhysRevD.109.026006

I. INTRODUCTION

The black hole information paradox can be phrased in
terms of the entropy of the Hawking radiation of an
evaporating black hole. General relativity predicts a struc-
tureless horizon at late times; this implies [1] that the
radiation entropy should increase monotonically. Quantum
mechanical unitarity, on the other hand, implies the Page
curve [2]. That is, the radiation entropy should increase
only until it equals the black hole’s Bekenstein-Hawking
entropy, and thereafter it should be given by the latter.
Recently, the Page curve was derived [3,4] from the

quantum extremal surface (QES) formula [5–8], providing
substantial evidence that black holes return information
(and hence possess structure at the horizon [9]). The QES
formula can be viewed as a direct computation of the
radiation entropy from the gravitational path integral [10],
by analytic continuation of the Renyi entropies [11,12].
The gravitational derivation of the Page curve has put a

spotlight on a curious feature of the gravitational path
integral: it appears to compute an ensemble average. This

feature had already been seen explicitly in the case of
Jackiw-Teitelboim (JT) gravity [13,14], where Euclidean
wormholes destroy factorization of the partition function of
two copies of the boundary theory. Indeed, JT gravity
shares low energy properties [15] with the Sachdev-Ye-
Kitaev model [16,17], an ensemble of quantum mechanical
theories with a statistical distribution of coupling constants.
The QES formula successfully computes the Page curve

not just in JT but in Einstein gravity in any dimension, as
follows. First, the bulk geometry and state is computed
semiclassically, following Hawking. Of course, this picture
would predict a thermal state for the radiation, with
monotonically increasing entropy. But the state is not
extracted from the calculation. Instead the entropy is
obtained by applying the QES prescription to the semi-
classical geometry, yielding the Page curve.
Thus, the derivation of the Page curve uses an inter-

mediate step that is apparently inconsistent with the final
answer [18]. It is vital that the semiclassical geometry is
used in the intermediate step, since the excessive entropy
obtained by Hawking is precisely what causes the domi-
nance of a nontrivial QES after the Page time.
This apparent tension is resolved if we assume that the

gravitational path integral is dual to a suitable ensemble
[19]. Writing E½…� for the ensemble average, it becomes
possible that E½SðρÞ� ≠ SðE½ρ�Þ, where ρ describes the
radiation state produced in each unitary member of the
ensemble and we have suppressed an index labeling these
members. Another way of saying this is that the entropy is
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approximately the same in most states of the ensemble,
whereas the state of the Hawking radiation depends
sensitively on the theory and is not self-averaging.
(Appropriate ensembles dual to gravity theories are not
generally known; indeed, it is not clear whether the
ensemble should consist of unitary theories with different
couplings as in the Sachdev-Ye-Kitaev model, or of some
other form of averaging.)
Here we will study a refinement of the Page curve: we

will use the gravitational path integral to compute the
fluctuations of the entropy of the Hawking radiation. Their
magnitude was not known and is of interest in its own right.
Moreover, the fact that we find a nonzero result not seen in
the Page curve calculation constitutes further evidence
for the ensemble interpretation of the gravitational path
integral.
In a black hole evaporation process described by some

specific unitary evolution, the Page curve should not be
completely smooth. One expects it to exhibit small fluc-
tuations. To see this, consider a system of n qubits. In a
Haar-typical quantum state, the first k bits will have an
entropy approximately given by the Page curve. But there
are special quantum states, such as product states, which
deviate drastically from the Page curve. A consistent

interpolation between these facts requires that typical states
deviate from the Page curve by appropriately small fluc-
tuations. Like the Page curve itself, this argument extends
to a unitarily evaporating black hole.
Our computation is done in a version of JT gravity coupled

to matter, known as the Penington-Shenker-Stanford-Yang
(PSSY)model or west coast model [11].We consider a black
hole in the microcanonical ensemble at energy E, with
Hilbert space dimension eSðEÞ. The dimension of the radi-
ation Hilbert space is denoted k. BothE and k can be chosen
freely but are held fixed in the path integral calculation. For
example, choosing k ¼ eSðEÞ corresponds to computing the
value of some quantity at the Page time. The Page curve for
the entropy of the Hawking radiation R is given by
SR¼min½logk− k

2eSðEÞ ;SðEÞ−eSðEÞ
2k �.

Throughout this paper, we will use the notation

δA ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½A2� − E½A�2

q
ð1:1Þ

for the fluctuation (in the ensemble implicitly dual to the
gravitational path integral) of any quantity A.
We find that the entropy fluctuation in the large k; eS0

approximation is given by

δSR ¼ e−SðEÞ ×

8>>><
>>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
− k

4eSðEÞ þ
logðe32ΔEa Þ

4π2
k2

e2SðEÞ

r
þOðe2SðEÞk−3Þ ð1 ≪ eSðEÞ − kÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2SðEÞ
2k2 − e3SðEÞ

4k3 þ logðe32ΔEa Þ
π2

�
1 − eSðEÞ

2k

�
2

r
þOðe−SðEÞÞ ðk − eSðEÞ ≫ 1Þ

: ð1:2Þ

Here ΔE is the width of the microcanonical energy
window, whose edges are smeared by a ≪ ΔE so that
the energy window becomes continuous. ΔE is chosen to
be an Oð1Þ quantity in the e−S0 expansion, which allows us
to neglect higher order terms in the genus expansion.
A puzzling aspect of this result is that it is not symmetric

under interchange of eSðEÞ and k. By contrast, the Page
curve (including its fluctuations) are manifestly symmetric,
since it does not matter which subsystem dimension we
label eS and which we label k. For example, given that
δSR ∼ e−SðEÞ for k ≪ eSðEÞ, symmetry would require
δSR ∼ 1=k for k ≫ eSðEÞ, which is much smaller than
the result we obtain, e−SðEÞ.
Again, this apparent contradiction is resolved by assum-

ing that the gravitational path integral averages over an
ensemble of theories. The black hole Hilbert space, of
dimension eSðEÞ, is defined by the number of black hole
states in a given energy band. The precise value of this
integer depends on the detailed spectrum, so it will not be
the same in every theory in the ensemble. The black hole
Hilbert space dimension controls the k ≫ SðEÞ regime of
the Page curve. Our result above implies that its fluctuation

dominates over the intrinsic fluctuations in the Page curve
in this regime. Specifically, the lower part of Eq. (1.2)

indicates that δ½eSðEÞ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðe3

2
ΔE
a Þ

q
=π to leading order,

which depends logarithmically on the width ΔE of the
microcanonical window.
To verify that this is what happens, we will also compute

this fluctuation directly. Because the full state is pure,
δ½eSðEÞ� ¼ δTr½ρ̂0þR �. The latter quantity, the rank of the
radiation density operator, can again be computed using the
gravitational path integral. We find

δTr½ρ̂0þR � ¼
8<
:
0þOðk−1Þ ð1≪ eSðEÞ−kÞ
1
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log
�
e
3
2
ΔE
a

�r
þOðe−SðEÞÞ ðk−eSðEÞ ≫ 1Þ

:

ð1:3Þ

In the course of the computation, we demonstrate dia-
grammatically the independence of the resolvent two-point
function from details of matrix integral potential, in the
microcanonical PSSYmodel. This independence is simple to
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understand from the matrix integral view point, yet remains
mysterious from a diagrammatic viewpoint [20]. Since our
method does not refer to a specific potential, we expect that it
can be used for a matrix integral with arbitrary potential.
The content of this paper is as follows. In Sec. II, we

review the PSSY model and the computation of the Page
curve by analytic continuation of the Renyi entropies of the
Hawking radiation. In Sec. III, we compute the fluctuations
around the Page curve in the PSSY model. In particular, we
identify a sector in the PSSY model where entropy
fluctuations are identical to those of the random bipartite
pure state. We discuss our results in Sec. IV.

II. PSSY MODEL

In this section, we consider a version of Jackiw-
Teitelboim gravity first introduced by Penington et al.
(PSSY) [11]. In Sec. II A, we will review the PSSY model.
In Sec. II B we will define the microcanonical ensemble of
width ΔE around some energy. We introduce a smooth
smearing function that becomes top hat in a limit.
(Obtaining the top hat as a limit will be important in this
paper, whereas in earlier work the top hat could be used
directly.) In Sec. II C, we review the Page curve result, and
we compute the rank of the radiation density matrix.

A. Action and canonical ensemble

The PSSY model consists of JT gravity [13,14,21–26]
with a matter sector given by an end-of-the-world (EOW)
brane with k flavors and tension μð≥0Þ, anchored at the
boundary. The action is

S ¼ SJT þ SBrane; ð2:1Þ
where

SJT ¼ −
S0
4π

�Z
M

ffiffiffi
g

p
Rþ 2

Z
∂M

ffiffiffi
h

p
K

�

−
1

2

�Z
M

ffiffiffi
g

p
ϕðRþ 2Þ þ

Z
∂M

ffiffiffi
h

p
ϕK
�
; ð2:2Þ

Sbrane ¼ μ

Z
Brane

ds: ð2:3Þ

We impose the standard asymptotic boundary condition

ds2j
∂M ¼ dτ2

ϵ2
; ϕj

∂M ¼ 1

ϵ
: ð2:4Þ

Here τ is the boundary Euclidean time. Note that this model
does not contain loops of EOW branes that are not
anchored at the boundary. The model is dual to an ensemble
of boundary Hamiltonians; see Appendix D in [11].
One considers a state in which the EOW brane is

maximally entangled with an auxiliary nongravitating
system R:

jΨi ¼ k−1=2
Xk
i¼1

jiiRjiiEOW: ð2:5Þ

This is a toy model for the semiclassical state of a black
hole whose interior is entangled with Hawking radiation.
The boundary description of the bulk state is given by

jiiEOW ∝
X
s

ffiffiffiffiffiffiffiffiffiffiffiffi
fðEsÞ

p
21=2−μΓ½μ − 1=2þ i

ffiffiffiffiffiffiffiffi
2Es

p
�CisjEsi;

ð2:6Þ

where jEsi are eigenstates of single instance of
Hamiltonian ensemble of the matrix integral dual to the
JT gravity, and note that the state (2.5) is normalized
only in the ensemble-averaged sense: E½hΨjΨi� ¼ 1, but
E½hΨjΨi2� ≠ 1. The fluctuation of the normalization is not
relevant here, but we will need to take it into account in the
next section.
The reduced density matrix of the radiation is

ρR ¼ k−1
Xk
i;j¼1

jiihjjRhjjiiEOW: ð2:7Þ

The eigenvalue density DðλÞ of ρR is encoded in the
resolvent R

DðλÞ ¼ Rðλ − iϵÞ − Rðλþ iϵÞ
2πi

; ð2:8Þ

where

RijðλÞ ¼ hi
���� 1

λ − ρR

����jiR; ð2:9Þ

and

RðλÞ ≔
X
i

RiiðλÞ ¼
k
λ
þ
X∞
n¼1

Tr½ρnR�
λnþ1

¼ Tr
1

λ − ρR
: ð2:10Þ

When k and eS0 are both large, the resolvent can be
computed from the gravitational path integral by only
considering planar geometries. One finds the following
recursion relation:

RijðλÞ ¼
1

λ
δij þ

1

λ

X∞
n¼1

ZðnÞ
Disk

ðkZð1Þ
DiskÞn

RðλÞn−1RijðλÞ; ð2:11Þ

where ZðnÞ
Disk is the single-topological-disk contribution to

the JT gravity partition function for n boundaries, with
fixed boundary condition. [Thus the n anti–de Sitter (AdS)
boundary segments are connected by n EOW branes to
form a single boundary.] In the canonical ensemble, each
boundary has a fixed length xi ¼ β=2 corresponding to the
inverse temperature β; thus
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ZðnÞ
Disk½canonical ensemble; temperature β−1on each boundary� ¼ eS0

Z
∞

0

dEDDiskðEÞhðE; μÞne−nβE=2; ð2:12Þ

where

DDiskðEÞ ¼
sinhð2π ffiffiffiffiffiffi

2E
p Þ

2π2
;

hðE; μÞ ≔ jΓðμ − 1=2þ i
ffiffiffiffiffiffi
2E

p Þj2
22μ−1

: ð2:13Þ

B. Microcanonical ensemble and smearing function

In this paper, we will focus on the microcanonical
ensemble. From the canonical partition function, one
can obtain the density of states by the inverse Laplace
transform. By applying a top-hat smearing function
gðE;ΔEÞðẼÞ ¼ θðΔE=2 − jẼ − EjÞ to the density of states,
one would obtain the microcanonical ensemble in the sharp
energy window ½E−ΔE=2;EþΔE=2�. Here θðxÞ¼1ðx>0Þ,
θðxÞ¼0ðx<0Þ is the step function. However, for a top-hat

smearing function, the two-point function of partition
functions is sensitive to fine-grained spectrum of the theory,
so it depends on higher genus contributions in the GPI.
Thus, instead of using top-hat smearing function, we will

use a smoothmicrocanonical smearing function fðE;ΔE;aÞðẼÞ
that limits to gðE;ΔEÞðẼÞ for small a. As long as we keep
e−S0 ≪ a ≪ 1, we expect that the two-point function of
partition functions does not receive large contributions from
higher genus contributions in the GPI.
The conditions for fðE;ΔE;aÞðẼÞ are

� 0 ≤ fðE;ΔE;aÞðẼÞ ≤ 1

lim
a→þ0

fðE;ΔE;aÞðẼÞ ¼ gðE;ΔEÞðẼÞ : ð2:14Þ

An explicit example we will use is the trapezoid function
that is continuous

fðE;ΔE;aÞðẼÞ ¼

8>>>>><
>>>>>:

− Ẽ−ðEþΔE=2þaÞ
a ðEþ ΔE=2 < Ẽ < Eþ ΔE=2þ aÞ

1 ðE − ΔE=2 < Ẽ < Eþ ΔE=2Þ
Ẽ−ðE−ΔE=2−aÞ

a ðEþ ΔE=2 − a < Ẽ < E − ΔEÞ
0 ðotherwiseÞ

: ð2:15Þ

The corresponding microcanonical disk n-boundary partition function is

ZðnÞ
Disk½microcanonical; energy ¼ E;width ¼ ΔE�

≔ Πn
i¼1

	Z
∞

0

dEifðE;ΔE;aÞðEiÞ
Z
xi ∈ γþiR

dxiexiEi �ZðnÞ
Disk½canonical; boundary length ¼ xi�;

¼ eS0
Z

∞

0

dẼDDiskðẼÞ½fðE;ΔE;aÞðẼÞ�nhðẼ; μÞn: ð2:16Þ

In the limit ΔE ≪ 1 and small a, as we explain in detail in Appendix B 1, we have

ZðnÞ
Disk½microcanonical; energy ¼ E;width ¼ ΔE� ¼ eSðEÞhðE; μÞn þOðeS0ðΔEÞ3Þ: ð2:17Þ

Here we defined

eSðEÞ ≔ eS0DDiskðEÞΔE; ð2:18Þ

which is the number of states in the microcanonical window
with width ΔE. We assume that 1 ≪ eS0ΔE ≪ eS0 , so that
the second term is subleading.Note that the result (2.17) does
not depend on the details of the smooth microcanonical

smearing function, so long as the function satisfies (2.14) and
a being small.1

1The smearing function fðẼÞ ¼ expð−ðE − ẼÞ2=ð4ΔEÞ2Þ
used in [27] would not give (2.17), because it violates the second
condition of (2.14); that is, it does not limit to the sharp
microcanonical smearing function gðE;ΔEÞðẼÞ.
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C. Entropy and rank of the radiation state

In the following, we will assume that a is small. The
calculation below does not depend on whether our smear-
ing function is sharp or smooth with a → 0, unlike the
entropy fluctuation considered in the next section. The
sharp smearing function was used in [11]. With Eq. (2.17),
the trace of Eq. (2.11) yields a quadratic equation inde-
pendent of μ for RðλÞ

RðλÞ2 þ RðλÞ
�
eSðEÞ − k

λ
− keSðEÞ

�
þ k2eSðEÞ

λ
¼ 0: ð2:19Þ

The limiting behavior RðλÞ →jλj≫1
k=λ dictates that

RðλÞ ¼ keSðEÞ

0
B@1

2
−

w
2x

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

4
þ x2

4
− xð1þ w

2
Þ

q
x

1
CA; ð2:20Þ

where we defined w ≔ eSðEÞ−k
k and x ≔ eSðEÞλ. The density

of eigenvalues is

DðλÞ ¼ keSðEÞ

2πλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ − λ−Þðλþ − λÞ

p
þ ðk − eSðEÞÞδðλÞθðk − eSðEÞÞ; ð2:21Þ

where λ� ¼ e−SðEÞð2þ w� 2
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ w

p Þ give the end points
of the continuous spectrum. We have

R
dλDðλÞλ ¼ 1 for

normalization of ρR and
R
duDðuÞ ¼ k for the rank of ρR.

This entanglement spectrum is identical to that of the reduced
density matrix on Ck of random state on Ck ⊗ CeSðEÞ . Thus
the Renyi entropy is identical to that of the random state. The
Renyi entropy ðn > 0; n ≠ 1Þ is [28]

SðnÞR ¼ 1

1−n
log
Z

dλDðλÞλn;

¼ log
k�

1−
ffiffiffiffiffiffiffi
k

eSðEÞ

q �
2

þ 1

1−n
log2F1

0
B@1−n;

3

2
;3;−

4
ffiffiffiffiffiffiffi
k

eSðEÞ

q
�
1−

ffiffiffiffiffiffiffi
k

eSðEÞ

q �
2

1
CA: ð2:22Þ

In particular, one obtains the Page curve for the von
Neumann entropy of the radiation:

SR ¼
� log k − k

2eSðEÞ þOðk−1Þ ðk < eSðEÞÞ
SðEÞ − eSðEÞ

2k þOðe−SðEÞÞ ðk > eSðEÞÞ
: ð2:23Þ

Note that (2.23) is identical to the entanglement entropy of
a random pure state for large Hilbert space dimensions
[2,29,30]. The rank of the reduced density matrix is

Tr½ρ0þR � ¼
�
kþOð1Þ ðk < eSðEÞÞ
eSðEÞ þOð1Þ ðk > eSðEÞÞ

: ð2:24Þ

III. ENTROPY FLUCTUATION IN THE
PSSY MODEL

In this section, we compute the fluctuation of the entropy
of the Hawking radiation, δSR, in the PSSY model. We
begin by setting up the calculation in Sec. III A. The
leading diagrammatic contributions come from two
types of topologies. We consider them separately in
Secs. III B and III C, and we combine their contributions
in Sec. III D.

A. Setting up the calculation

At this order, it is important to note that the normali-
zation of ρR defined in Eq. (2.7) fluctuates. To avoid
artifacts in δSR, we must take care to compute SR from the
normalized reduced density matrix

ρ̂R ≔
ρR

Tr½ρR�
: ð3:1Þ

The entanglement spectrum of ρ̂R, written as a density of
eigenvalues, will be denoted D̂ðλÞ. The associated resolvent
R̂ðλÞ ≔ Tr 1

λ−ρ̂R
is equal to RðλÞ at leading order in e−S0 , so

the distinction between R̂ðλÞ and RðλÞwill not be important
for us. However, below we introduce the resolvent two-
point function, to which the normalization fluctuation
would contribute at the leading order.
The fluctuation of the entropy can be obtained via

ðδSRÞ2 ¼ ∂n1∂n2R̂n1n2 jn1¼n2¼1; ð3:2Þ

where

R̂n1n2 ≔ E½Tr½ρ̂n1R �Tr½ρ̂n2R �� − E½Tr½ρ̂n1R ��E½Trρ̂n2R ��: ð3:3Þ

It is convenient to consider the connected part of the
resolvent two-point function

R̂ðλ1; λ2Þ ≔
X∞

n1;n2¼0

R̂n1n2

λn1þ1
1 λn2þ1

2

¼ E

	
Tr

1

λ1 − ρ̂R
Tr

1

λ2 − ρ̂R




− E

	
Tr

1

λ1 − ρ̂R



E

	
Tr

1

λ2 − ρ̂R



; ð3:4Þ
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whose discontinuity across its cut encodes the two-point function D̂ðλ1; λ2Þ of the entanglement spectrum D̂ðλÞ of
ρ̂R via

D̂ðλ1; λ2Þ ¼ −
R̂ðλ1 − iϵ; λ2 − iϵÞ − R̂ðλ1 − iϵ; λ2 þ iϵÞ − R̂ðλ1 þ iϵ; λ2 − iϵÞ þ R̂ðλ1 þ iϵ; λ2 þ iϵÞ

4π2
: ð3:5Þ

In the following, we will evaluate R̂ðλ1; λ2Þ in the PSSY
model. We can divide the geometries contributing to
R̂ðλ1; λ2Þ into two classes, by whether they include handles
or an annulus topology (with possible handles) called
double trumpet. Geometries containing neither a double
trumpet nor a handle will be called nontubular wormholes.
Those containing a double trumpet or handles will be called
tubular wormholes. See Fig. 1 for geometries that contrib-
ute to the resolvent two-point function.
We will evaluate R̂ðλ1; λ2Þ diagrammatically. To avoid

overcounting, it is convenient to consider the quantity

UðλÞ ≔ −
X∞
n¼1

Tr½ρ̂nR�
nλnþ1

; ð3:6Þ

which is related to the resolvent by

R̂ðλÞ ¼ ∂λðλUðλÞÞ þ k
λ
: ð3:7Þ

We will compute the connected two-point function of U,

Uðλ1; λ2Þ ≔ E½Uðλ1ÞUðλ2Þ� − E½Uðλ1Þ�E½Uðλ2Þ�; ð3:8Þ

from which we can then easily deduce the resolvent two-
point function, via

R̂ðλ1; λ2Þ ¼ ∂λ1∂λ2ðλ1λ2Uðλ1; λ2ÞÞ: ð3:9Þ

B. Nontubular wormholes

Nontubular wormholes consist of reconnections of
EOW branes without containing double trumpet geo-
metries nor handles. We denote contributions from non-
tubular wormholes by a superscript or subscript, such
as Dðλ1; λ2ÞNontubular; ðδSRÞNontubular.
We first study the general situation using diagrammatic

expansion. The resolvent two-point function for the random
matrix with quartic potential was computed using a dia-
grammatic expansion in [20]. The expression given in this
section applies to arbitrary potential. In order to sum over
all possible nontubular wormholes connecting Rðλ1Þ and
Rðλ2Þ, it is convenient to define a sum of irreducible ladder
diagrams

FIG. 1. Examples of geometries that contribute to R̂ðλ1; λ2Þ. (a) and (b) contribute at leading order, while (c) and (d) are subleading at
large eSðEÞ and large k. (a), (c) contain double trumpets; (c) contains a handle; (d) is nonplanar; and (b) and (d) contain neither double
trumpet nor handle.
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ð3:10Þ

where L is defined through the last equality. Then we show
in Appendix C that

Uðλ1; λ2ÞNontubular

¼ 1

λ1λ2

X∞
n¼1

1

n

�X
i;j

Rijðλ1ÞRjiðλ2Þ
�

n
Lðλ1; λ2Þn

−
1

λ1

X∞
n¼1

Zðnþ1Þ
Disk Rðλ1Þn
ðkZð1Þ

DiskÞnþ1
Rðλ2Þ

− Rðλ1Þ
1

λ2

X∞
n¼1

Zðnþ1Þ
Disk Rðλ2Þn
ðkZð1Þ

DiskÞnþ1

þ Rðλ1ÞRðλ2Þ
kZð2Þ

Disk

ðkZð1Þ
DiskÞ2

: ð3:11Þ

The first term in (3.11) corresponds to the wormhole
exchanges between TrρnR and TrρmR, see Fig. 2.

2 The second
and third terms correspond to those between TrρnR and
ðTr½ρR�Þm or TrρmR and ðTr½ρR�Þn. The forth term corre-
sponds to those between ðTr½ρR�Þn and ðTr½ρR�Þm.

1. Microcanonical ensemble

We now consider the microcanonical ensemble. Using
Zn ¼ eSðEÞhn, one finds

Lðλ1; λ2Þ ¼ eSðEÞ
1

keSðEÞ − Rðλ1Þ
1

keSðEÞ − Rðλ2Þ
: ð3:12Þ

Therefore,

Uðλ1; λ2ÞNontubular

¼ 1

λ1λ2

X∞
n¼2

1

n

�
1

keSðEÞ
ðλ1Rðλ1Þ − kÞðλ2Rðλ2Þ − kÞ

�
n

þ k

eSðEÞ
1

λ1λ2
: ð3:13Þ

We now define x≔eSðEÞλ, a�≔eSðEÞλ�, and σðx; a�Þ ≔
ðx − a−Þðx − aþÞ. One finds by explicit computation that

∂λ1∂λ2ðλ1λ2Uðλ1; λ2ÞNontubularÞ
¼ e2SðEÞRxðx1; x2∶ 2; a�Þ

−
1

keSðEÞ
∂x1ðx1Rxðx1ÞÞ∂x2ðx2Rxðx2ÞÞ; ð3:14Þ

where RxðxÞ ≔ k−1e−SðEÞRðλÞ and [25]

Rxðx1; x2∶ β; a�Þ

≔
1

βðx1 − x2Þ2
�
x1x2 −

a−þaþ
2

ðx1 þ x2Þ þ a−aþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σðx1; a�Þσðx2; a�Þ

p − 1

�
;

ð3:15Þ

is the resolvent two-point function of the Dyson β ensemble,

ðΠiduiÞðΠ1≤i<j≤Ljui − ujjβÞe−L
β
2

P
i
VðuiÞ; ð3:16Þ

with β ¼ 2. Importantly, Rxðx1; x2∶ β; a�Þ depends on the
potential V only through the endpoints a� of the density of
states.
With (3.14), we can obtain the continuous part of the

fluctuation of the density of eigenvalues

FIG. 2. Nontubular wormholes connecting TrρnR and TrρmR in
the first term of (3.11). Solid red lines are EOW branes, and the
black dotted lines represent flavor index contractions. R repre-
sents the resolvent one point function.

2Note that we have RijðλÞ ¼ δijRðλÞ=k, which leads to a
simplification

P
i;j Rijðλ1ÞRjiðλ2Þ ¼ Rðλ1ÞRðλ2Þ=k.
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D̂ðλ1; λ2ÞNontubular ¼
e2SðEÞ

2π2ðx1 − x2Þ2
x1x2 −

aþþa−
2

ðx1 þ x2Þ þ aþa−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx1 − a−Þðaþ − x1Þðx2 − a−Þðaþ − x2Þ
p

−
keSðEÞ

4π2
ðx1 − aþþa−

2
Þðx2 − aþþa−

2
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx1 − a−Þðaþ − x1Þðx2 − a−Þðaþ − x2Þ

p : ð3:17Þ

The first term comes from the fluctuation of unnormalized
density matrices, and the second term comes from the
fluctuation of the normalization. Thus we can write the
fluctuations as

R̂Nontubular
n1n2 ¼

Z
1

0

dλ1dλ2λ
n1
1 λn22 Dðλ1; λ2ÞNontubular: ð3:18Þ

The integral of Dðλ1λ2Þunnormalized in (3.18) needs to be
performed analytically in order to regulate a divergence
coming from 1=ðx1 − x2Þ2.
We can evaluate this integral in complete generality for

certain values of n. For example by explicitly expanding
(3.14), we find the Renyi entropy fluctuations

ðδTr½ρ̂2R�ÞNontubular¼
ffiffiffi
2

p

keSðEÞ
;

ðδTr½ρ̂3R�ÞNontubular¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
18k2þ39keSðEÞ þ18e2SðEÞ

p
k2e2SðEÞ

: ð3:19Þ

We will now show that the nontubular contributions to
the resolvent two-point function are identical to the
resolvent two-point function of the random bipartite pure
state of large dimensions k and eSðEÞ. Hence, the nontubular
contributions to the entropy fluctuation are the same as the
entropy fluctuation of the random biparatite pure state,
which is known [31].
Consider the Hilbert space H ¼ Cm ⊗ Cn with m ≤ n,

and the random pure states in H of the form

jΨi ¼
X

1≤i≤m;1≤a≤n
Ψiajii ⊗ jai: ð3:20Þ

Here Ψia ≔ UðiaÞð00Þ is a matrix element with fixed column
of a Haar-random unitary matrix U∈UðmnÞ. The matrix
element of the reduced density matrix ρ for the subsystem
Cm is

hijρjji ¼
X
a

ΨiaΨ�
ja: ð3:21Þ

Instead of treating matrix elements of Haar random
unitary directly, we consider the Gaussian probability
distribution for Ψia

PðΨÞ ∝ e−mnΨiaΨ�
ia : ð3:22Þ

Note that the random state jΨi and the reduced density
matrix ρ are normalized only at their average, and thus
their normalization can fluctuate. One might wonder if
there are subleading contributions to (3.22). This is not
the case up to normalization for the following reason.
Suppose we consider random unitary U∈UðmnÞ
and corresponding random complete orthonormal basis
jUðjbÞi ≔

P
1≤i≤m;1≤a≤n UðiaÞ;ðjbÞjii ⊗ jai. The standard

way to obtain such random unitary matrix is to first
consider ðnmÞ2 independent complex Gaussian random
variables Ψia with zero mean and common variance (called
Ginibre ensemble), and applying Gram-Schmidt ortho-
normalization to the vectors vðjbÞ ≔ ðΨðiaÞ;ðjbÞÞðiaÞ. The
final set of vectors forms a complete orthonormal basis
with unit probability, and the resulting measure on UðmnÞ
can be shown to be the Haar measure, see Proposition 7.2 of
[32] for proof. Since the first entry jΨð11Þi is the random
pure state produced by the measure (3.22) up to normali-
zation, we can conclude that the entanglement spectrum of
the random state can be simulated by (3.22) after properly
normalizing the state. We note that when we consider
correlation between distinct random state, the Gaussian
approximation (3.22) begins to deviate from the actual
result. Nevertheless, it was shown in corollary 5 of [33] that
for large mn, the first mn=ðlogmnÞ2 basis vectors can be
treated as if they are independently chosen random states.3

From now on, we will use matrix integral to evaluate
resolvent correlators. The ensemble induced by the prob-
ability distribution (3.20) is known as complex Wishart
ensemble or Laguerre β ¼ 2 ensemble, whose integration
measure in terms of eigenvalues λi of ρ is given by [34]

e−mnΨiaΨ�
iaΠiadΨiadΨ�

ia

→ CðΠidλiÞðΠ1≤i<j≤mðλi − λjÞ2ÞðΠiλiÞn−me−mn
P

i
λi ;

ð3:23Þ
where C is a constant. After rescaling xi ≔ nλi, we have an
ordinary Altland-Zirnbauer matrix integral [35] with β ¼ 2
and α ¼ 1 (or the Dyson β ¼ 2), whose measure is

ðΠidxiÞðΠ1≤i<j≤mjxi − xjjβÞðΠijxijα−12 Þe−m
β
2

P
i
VðxiÞ ð3:24Þ

3More precisely, it was shown that the maximum of matrix
element difference mnjUðiaÞðjbÞ − ΨðiaÞðjbÞj among mn=ðlogmnÞ2
entries goes to zero in the limit mn → ∞.
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with potential

VðxÞ ¼ x − w log x; w ¼ n −m
m

: ð3:25Þ
The leading order resolvent and the resolvent two-point
correlator in 1=m expansion can be obtained via loop equa-
tions [25]. For the resolvent RxðxÞ ¼ Rðλ ¼ x=nÞ=ðnmÞ,
the loop equation gives

RxðxÞ2 − V 0ðxÞRxðxÞ ¼
− w

mE½
P

i
1
xi
�

x
; ð3:26Þ

at the leading in m. Combined with RxðxÞ →x→∞
1
x, we obtain

RðxÞ ¼ nmRxðxÞ ¼ nm

 
1

2
−

w
2x

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

4
− ð1þ w

2
Þxþ x2

4

q
x

!
:

ð3:27Þ

In particular, E½Pi pi� ¼ 1. The two-point correlator
Rxðx1; x2Þ of RxðxÞ is given by

Rxðx1;x2Þ¼ n2Rxðx1;x2∶ β¼ 2;a� ¼ 2þw�2
ffiffiffiffiffiffiffiffiffiffiffi
1þw

p Þ:
ð3:28Þ

So far, we have been considering the unnormalized reduced
density matrix. We will now take into account the normali-
zation and consider the normalized reduced density of state

hijρ̂jji ¼
P

aΨiaΨ�
jaP

kbΨkbΨ�
kb
: ð3:29Þ

To this end, we introduce new coordinates, normalized
eigenvalues p̂i ¼ pi=r, and r ¼Pi pi. The integral mea-
sure is then

drðΠidp̂iÞδ
�
1 −

X
i

p̂i

�
rmn−1ðΠ1≤i<j≤mðp̂i − p̂jÞ2Þ

× ðΠip̂iÞn−me−mnr: ð3:30Þ

Since E½Pi pi� ¼ 1, r is peaked at r ¼ 1. The fluctuation is

E½ðr − 1Þ2� ¼
R
∞
0 drrmn−1e−mnrðr − 1Þ2R

∞
0 drrmn−1e−mnr ¼ 1

mn
: ð3:31Þ

Thus we can treat the fluctuation of normalization pertur-
batively. At the leading order around r ¼ 1, we have

E½Tr½ρ̂n1 �Tr½ρ̂n2 ��−E½Tr½ρ̂n1 ��E½Tr½ρ̂n2 ��
¼E½Tr½ρn1 �Tr½ρn2 ��−n1n2E½Tr½ρn1 ��E½Tr½ρn2 ��E½ðr−1Þ2�:

ð3:32Þ

Thus the connected resolvent two-point function defined in
(3.4) is given by, using (3.15),

R̂ðλ1; λ2Þ ¼ Rxðx1; x2Þ −
1

mn
∂x1ðx1Rxðx1ÞÞ∂x2ðx2Rxðx2ÞÞ:

ð3:33Þ

This is identical to (3.14), the resolvent two-point function
of the microcanonical PSSY model restricted to nontubular
wormholes, with n ¼ eSðEÞ and m ¼ k. Hence, the non-
tubular contributions to the entropy fluctuations in the
PSSY model are the same as the entropy fluctuations in the
random pure state [31]4,5:

4The fluctuation is far smaller [31] than a previously known
upper bound [36,37]:

for 3 ≤ m ≤ n; Pr ðjSðρÞ − E½SðρÞ�j ≥ δÞ

≤ 2 exp

�
−

mnδ2

36π3ðlogmÞ2
�
; ð3:34Þ

which leads to

δSðρÞ ≤ ð6πÞ3=2 logmffiffiffiffiffiffiffi
mn

p : ð3:35Þ
We note that this result is not a trivial consequence of the
canonical typicality [37,38] because the combination of the
Fannes inequality and E½jρA − E½ρA�j1� ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffi
dA=dB

p
[37] yields

an estimate for the upper bound of the entropy fluctuation
proportional to dA

dB
log dA. We can also obtain an independent

upper bound for the probability of the entropy fluctuation using a
method given in the Appendix of [39]. Indeed, since we have
− log dA ≤ − log Tr½ρ2A� ≤ SA in general, we can apply Markov’s
inequality to the non-negative variable dATr½ρ2A� − 1 to obtain
Pr½S ≤ logdA − δ� ≤ Pr½eδ − 1 ≤ dATrρ2A − 1� ≤ ðdAhTr½ρ2A�i− 1Þ=
ðeδ − 1Þ≈ ðdA=dBÞ=ðeδ − 1Þ, where we assumed large dA, dB at
the last approximate equality. Thus we obtain E½ðSA − log dAÞ2�≲
2ζð3Þd2A=d2B. This bound constrains the fluctuation around the
average when dA ≪ dB.5This result implies that the typical pure state jΨi on Cm ⊗
Cn ≔ HA ⊗ HB fluctuates as

SðTrBjψihψ jÞ ¼ E½SA� þ
1

dB
Ri; ð3:36Þ

where Ri is a real random variable with zero average with Oð1Þ
variance. It would be interesting to relate this result (3.38) to the
properties of energy eigenstates. The entropy and entropy
variance for typical pure state and Gaussian pure state, which
are models of eigenstates of chaotic and integrable system,
respectively, are given in [40]. It would also be interesting to
relate this result to the eigenstate thermalization hypothesis
(ETH) [41–46]. The ETH states that any few-body operator O
and the majority of energy eigenstates jEii satisfy,
hEijOjEji ¼ OðEÞmicroδij þ e−SðĒÞ=2fðĒ; Ei − EjÞRij; ð3:37Þ
where Ē ¼ ðEi þ EjÞ=2, f is a smooth realOð1Þ function, and Rij
is a randomvariablewith unit variance and zeromean. TheETH for
observables of a small subsystem, including entanglement entropy,
was proposed in [44–46]. For few-body Hermitian operators it
reduces to the random state prediction when we take a sufficiently
small energy window of width given by the Thouless energy [47],
by assuming that the transformation between eigenstates of the
Hamiltonian and ofO is a randommatrix. Yet it is not clearwhether
such an argument exists for entanglement entropy.
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δSðρÞRandom Pure State ¼

8>><
>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2n2 −

m
4n3

q
þO

�
1

nm2

�
ðm < nÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2m2 − n

4m3

q
þO

�
1

mn2

�
ðm > nÞ

ð3:38Þ
for large m, n. Combined with the equivalence, this result
implies that

δSNontubularR ¼
8<
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2e2SðEÞ −
k

4e3SðEÞ

q
þO

�
1

ke2SðEÞ

�
ðk < eSðEÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2k2 −

eSðEÞ
4k3

q
þO

�
1

k2eSðEÞ

�
ðk > eSðEÞÞ

:

ð3:39Þ

We also obtain this result directly, albeit only for k ≫ eSðEÞ

and k ≪ eSðEÞ in Appendix D.
Another byproduct of the equivalence between the non-

tubular PSSYmodel and the random pure state is the absence
of any fluctuations of the rank of the density matrix. In the
random pure state, this property is not restricted to the
Gaussian approximation employed here. This is because in

the space of pure states on H ¼ Cm ⊗ Cn, the subspace of
states with rank strictly smaller thanm has lower dimension-
ality. Thus its measure is zero, and therefore the fluctuation
vanishes. This is confirmed by explicit calculation [31]. Thus
we can conclude that

ðδTr½ρ̂0þR �ÞNontubular ¼ 0 for all k: ð3:40Þ

However, in the next subsection we will see that tubular
wormholes contribute a nonzero rank fluctuation in the
PSSY model.

C. Tubular wormholes

In this section, we consider contributions to δS from
tubular wormholes. Recall that tubular wormholes are
defined as geometries that contain either double trumpets
or handles. Since higher genus geometries are suppressed,
we only need to consider geometries that contain a single
double trumpet. Note that adding handles contributes to the
fluctuation only at subleading order. Using similar reason-
ing as the nontubular case, we show in Appendix C that

Uðλ1; λ2ÞTubular ¼
1

λλ̄

X∞
n;m¼1

Zðn;mÞ
Double TrumpetRðλ1ÞnRðλ2Þm

nmðkZð1Þ
DiskÞnþm

þ Rðλ1ÞRðλ2Þ
k2Zð1;1Þ

Double Trumpet

ðkZð1Þ
DiskÞ2

−
1

λ1

X∞
n1¼1

kZðn;1Þ
Double TrumpetRðλ1Þm
nðkZð1Þ

DiskÞnþ1
Rðλ2Þ − Rðλ1Þ

1

λ2

X∞
m¼1

kZð1;mÞ
Double TrumpetRðλ2Þm
mðkZð1Þ

DiskÞn2þ1
: ð3:41Þ

The first term in (3.41) corresponds to the tubular worm-
hole exchanges between Trρn1R and Trρn2R , see Fig. 3. The
second and third terms correspond to those between Trρn1R
and ðTr½ρR�Þn2 etc. The fourth term to those between
ðTr½ρR�Þn1 and ðTr½ρR�Þn2 .

1. Microcanonical ensemble

For the microcanonical ensemble, the double trumpet
partition function can be written as

Zðn;mÞ
Double Trumpet ≈

logðe3
2
ΔE
a Þ

π2
hðE; μÞnþm; ð3:42Þ

which was derived in Appendix B 2. Using (2.17) and
(3.42), we can write explicitly

Uðλ1;λ2ÞTubular ¼
logðe3

2
ΔE
a Þ

π2λ1λ2

�X∞
n¼1

Rðλ1Þn
nðkeSðEÞÞn −

λ1Rðλ1Þ
eSðEÞ

�

×

�X∞
m¼1

Rðλ2Þm
mðkeSðEÞÞm −

λ2Rðλ2Þ
eSðEÞ

�
: ð3:43Þ

The continuous part of the density two-point function is
then

D̂ðλ1; λ2Þcont

¼ logðe3
2
ΔE
a Þ

π2e2SðEÞ
Dðλ1Þcont

�
1þ x1 þ w

ðw − x1Þ2 − 4x1

�

×Dðλ2Þcont
�
1þ x2 þ w

ðw − x2Þ2 − 4x2

�
; ð3:44ÞFIG. 3. Double trumpet connecting Rðλ1Þn and Rðλ2Þm in the

first term of (3.41).
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where DðλÞcont is the continuous part of the density one point function. Writing α ¼ k=eSðEÞ, we obtain

R̂Tubular
n;m ¼ logðe3

2
ΔE
a Þ

π2e2SðEÞ
Gðα; nÞGðα; mÞ; ð3:45Þ

where

Gðα; nÞ ≔
�ð1 − ffiffiffi

α
p Þ2
k

�
n−1�

2F1

�
−nþ 1;

3

2
; 3∶ −

4
ffiffiffi
α

p
ð1 − ffiffiffi

α
p Þ2

�

−
1

2
ð1 − ffiffiffi

α
p Þ22F1

�
−n;

1

2
; 1∶ −

4
ffiffiffi
α

p
ð1 − ffiffiffi

α
p Þ2

�
−
1

2
ð1 − αÞ2F1

�
−nþ 1;

1

2
; 1∶ −

4
ffiffiffi
α

p
ð1 − ffiffiffi

α
p Þ2

��
: ð3:46Þ

The expression (3.46) can have discontinuity at α ¼ 1. Such discontinuity implies that the expression is no longer valid near
jk − eSðEÞj ¼ Oð1Þ. For this reason, we will assume jk − eSðEÞj ≫ 1 in the following calculation.
Let us first consider the limiting cases k ≪ eS0 and k ≫ eS0 . When k ≪ eS0 , the leading order terms are

R̂Tubular
n;m → log

�
e
3
2
ΔE
a

�
nðn − 1Þmðm − 1Þ
4π2e4SðEÞknþm−4 ;

ðδSRÞTubular →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðe3

2
ΔE
a Þ

q
2πe2SðEÞk−1

; ðδTr½ρ̂0þR �ÞTubular → 0: ð3:47Þ

When k ≫ eSðEÞ, the approximation (D4) yields

R̂Tubular
n;m → log

�
e
3
2
ΔE
a

� ðn − 1Þðm − 1Þ
π2eðnþmÞSðEÞ ;

ðδSRÞTubular →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðe3

2
ΔE
a Þ

q
πeSðEÞ

; ðδTr½ρ̂0þR �ÞTubular →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðe3

2
ΔE
a Þ

q
π

: ð3:48Þ

Next, we let k; eSðEÞ be arbitrary but consider particular values of n, m. Using the quadratic transformation of variables of
hypergeometric functions and expanding around n ¼ m ¼ 1, we obtain

R̂Tubular
n;m →

n;m→1

8>>><
>>>:

log
�
e
3
2
ΔE
a

�
ðn−1Þðm−1Þ

4π2e4SðEÞknþm−4 þOðk−ðnþmþ1ÞÞ ð1 ≪ eSðEÞ − kÞ

log
�
e
3
2
ΔE
a

��1−eSðEÞ
2k

�
2

ðn−1Þðm−1Þ
π2eðnþmÞSðEÞ þOðe−ðnþmþ1ÞSðEÞÞ ðk − eSðEÞ ≫ 1Þ

: ð3:49Þ

We can confirm that (3.49) reproduces (3.47) and (3.48) for n;m → 1 in the limits. As a result, the entropy fluctuation is

ðδSRÞTubular ¼

8>>><
>>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log
�
e
3
2
ΔE
a

�r
k

2πe2SðEÞ þOðe2SðEÞk−4Þ ð1 ≪ eSðEÞ − kÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log
�
e
3
2
ΔE
a

�r
1−eSðEÞ

2k

πeSðEÞ þOðe−2SðEÞÞ ðk − eSðEÞ > 1Þ
: ð3:50Þ

A similar expansion around n ¼ m ¼ 0þ yields

ðδTr½ρ̂0þR �ÞTubular ¼

8>><
>>:

0þOðk−1Þ ð1 ≪ eSðEÞ − kÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðe32ΔEa Þ

q
π þOðe−SðEÞÞ ðk − eSðEÞ ≫ 1Þ

: ð3:51Þ
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For completeness, we note that the exact fluctuations for n ¼ 2, 3 are given by

ðδTr½ρ̂2R�ÞTubular ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðe3

2
ΔE
a Þ

q
πe2SðEÞ

; ðδTr½ρ̂3R�ÞTubular ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log

�
e
3
2
ΔE
a

�s
3þ 2 k

eSðEÞ

πke2SðEÞ
: ð3:52Þ

D. Sum of wormhole contributions

Summing up the two kinds of wormhole contributions, we obtain the total fluctuations of the entropy and of the rank of
the Hawking radiation state. We assume large k and eSðEÞ with ke−SðEÞ fixed, as well as jk − eSðEÞj ≫ 1. Then

δSR ¼ e−SðEÞ ×

8>>><
>>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
− k

4eSðEÞ þ
logðe32ΔEa Þ

4π2
k2

e2SðEÞ

r
þOðe2SðEÞk−3Þ ð1 ≪ eSðEÞ − kÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2SðEÞ
2k2 − e3SðEÞ

4k3 þ logðe32ΔEa Þ
π2

�
1 − eSðEÞ

2k

�
2

r
þOðe−SðEÞÞ ðk − eSðEÞ ≫ 1Þ

; ð3:53Þ

δTr½ρ̂0þR � ¼
8<
:

0þOðk−1Þ ð1 ≪ eSðEÞ − kÞ
1
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log
�
e
3
2
ΔE
a

�r
þOðe−SðEÞÞ ðk − eSðEÞ ≫ 1Þ

: ð3:54Þ

The behavior of the rank fluctuation can be explained in the
following manner. When k < eSðEÞ, the rank of the total
pure state (2.5) is kwhich is maximal and thus is insensitive
to the fluctuation of the bulk Hilbert space dimension eSðEÞ.
On the other hand, when k > eSðEÞ, the rank is eSðEÞ and
receives corrections directly from the fluctuation of eSðEÞ.

IV. DISCUSSION

The entropy fluctuation (3.53) is exponentially sup-
pressed in the black hole entropy at all times. At first this
is surprising: like the Page curve itself, the fluctuations
should be symmetric under exchange of the Hilbert space
dimension of the two subsystems.
What breaks this symmetry is the fact that the black hole

is prepared in the microcanonical ensemble, whose Hilbert
space dimension can vary between different theories in the
ensemble of theories. By contrast, the radiation Hilbert
space has fixed dimension k.
Once the black hole becomes the smaller subsystem—

after the Page time—its Hilbert space size controls both
the Page curve and its fluctuations. The entropy is approx-
imately given by the log of the rank in this regime.
The nonzero rank fluctuation (3.54) in the microcanon-
ical ensemble dominates over the much smaller entropy
fluctuation expected if both Hilbert space dimensions
were fixed. To see this, substitute (3.54) into (2.23); this
yields (3.53).
A fluctuation of the bulk Hilbert space dimension could

be modeled by a generalization of the random state model.
Consider the direct product of factorized Hilbert spaces
H ¼ ð⊕a CmaÞ ⊗ Cn, in the state

jΨi¼
X
a

ffiffiffiffiffiffi
pa

p jΨai; where jΨai∈Cma ⊗Cn;
X
a

pa ¼ 1:

ð4:1Þ

Here jΨai is a random state in Cma ⊗ Cn, and pa obeys an
appropriate probability distribution. The reduced density
matrix on Cn, for ma < n, is the probabilistic sum of the
reduced density matrices for jΨai, whose rank is ma. The
average entropy is logma −

ma
2n. If pa is sufficiently peaked

as a function of ma at some value ma ¼ m̄, then this
generalized model will reproduce the fluctuations of the
rank and the entropy observed in the PSSY model.

ACKNOWLEDGMENTS

We are grateful to Douglas Stanford for initial collabora-
tion, and for generously sharing results on the nontubular
contributions to the fluctuations in the PSSY model. The
matrix integral portion of Sec. III was developed based on a
note shared by Douglas Stanford, with his kind permission.
We thank Eugenio Bianchi for making us aware of Ref. [31],
where the fluctuation of the entropy of the random pure
state was analytically computed. We also thank L. Iliesiu, Y.
Nakata, G. Penington, and T. Takayanagi for discussions and
correspondence. R. B. was supported in part by the Berkeley
Center for Theoretical Physics; by theDepartment of Energy,
Office of Science, Office of High Energy Physics under
QuantISEDAward No. DE-SC0019380 and under Contract
No. DE-AC02-05CH11231; and by the National Science
Foundation under Award No. 2112880.

RAPHAEL BOUSSO and MASAMICHI MIYAJI PHYS. REV. D 109, 026006 (2024)

026006-12



APPENDIX A: RENYI ENTROPY FLUCTUATIONS

In this appendix, we explain the details of the computation of Renyi entropy fluctuations.

1. Nontubular wormhole

In this appendix, we compute contributions to R̂n1n2 from contributions of second, third, and forth terms in Eq. (3.11),
which we write as R̂Nontubular

n1n2Normalization. We can perform the integration directly in this case and find explicit contribution to the

entropy fluctuation for any value of ke−SðEÞ. We have

R̂Nontubular
n1n2Normalization ≔

Z
1

0

dλ1dλ2λ
n1
1 λn22 Dðλ1; λ2ÞNontubularNormalization; ðA1Þ

where

D̂ðλ1; λ2ÞNontubularNormalization ≔ −
keSðEÞ

4π2
ðx1 − aþþa−

2
Þðx2 − aþþa−

2
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx1 − a−Þðaþ − x1Þðx2 − a−Þðaþ − x2Þ

p ; ðA2Þ

which is the second term of Eq. (3.17).
We can explicitly see that

R̂Nontubular
n1n2Normalization ¼

−eSðEÞ

4k
Fðα; n1ÞFðα; n2Þ; ðA3Þ

where α ¼ k=eSðEÞ and

Fðα; nÞ ¼
8<
:

1
kn ð2F1ð−n − 1;−n − 1; 1; αÞ − ð1þ αÞ2F1ð−n;−n; 1; αÞÞ ðα < 1Þ
1

enSðEÞ

�
α2F1

�
−n − 1;−n − 1; 1; 1α

�
− ð1þ αÞ2F1

�
−n;−n; 1; 1α

��
ðα > 1Þ ; ðA4Þ

Near n1, n2 → 1, we have

R̂Nontubular
nmNormalization →

(
− ð1þðα

2
þ1Þðn−1ÞÞð1þðα

2
þ1Þðm−1ÞÞ

knþm−1eSðEÞ ðα < 1Þ
− ð1þð 1

2αþ1Þðn−1ÞÞð1þð 1
2αþ1Þðm−1ÞÞ

keðnþm−1ÞSðEÞ ðα > 1Þ
: ðA5Þ

And for n1 ¼ n2 ¼ 0þ,

R̂Nontubular
0þ0þNormalization ¼ 0: ðA6Þ

2. Tubular wormhole

This subsection completes the derivation of Eq. (3.49) from (3.46), by studying the behavior of the function (3.46) at
n → 1. We first invoke the quadratic transformation of variables of hypergeometric function

2F1ða; b; a − bþ 1∶zÞ ¼ ð1 − ffiffiffi
z

p Þ−2a2F1

�
a; a − bþ 1

2
; 2a − 2bþ 1∶ −

4
ffiffiffi
z

p
ð1 − ffiffiffi

z
p Þ2

�
; jzj < 1: ðA7Þ

We can apply this relation to Gðα; nÞ for z ¼ α assuming α < 1, obtaining

Gðα; nÞ ¼ 22F1ð1 − n;−n; 2∶αÞ − 2F1ð−n;−n; 1∶αÞ − ð1 − αÞ2F1ð1 − n; 1 − n; 1; αÞ
2kn−1

: ðA8Þ

Applying for z ¼ 1=α assuming α > 1 yields

Gðα; nÞ ¼ 22F1ð1 − n;−n; 2∶1=αÞ − α2F1ð−n;−n; 1∶1=αÞ − ð1 − αÞ2F1ð1 − n; 1 − n; 1; 1=αÞ
2eðn−1ÞSðEÞ

: ðA9Þ
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Using these identities we can compute the fluc-
tuation Rn1n2;Tubular for general replica number. For expres-
sion near n1 ¼ n2 ¼ 1, we use expansions such
as 2F1ð−nþ 1;−n; 2∶αÞ ¼ 1þ α

2
ðn − 1Þ þOððn − 1Þ2Þ,

2F1ð−n;−n;1∶αÞ ¼ 1þ αþ 2αðn− 1Þ þOððn− 1Þ2Þ and

2F1ð−nþ1;−nþ1;1∶αÞ¼ 1þOððn−1Þ2Þ. Using these
relations, we arrive at (3.49).

APPENDIX B: JT GRAVITY
PARTITION FUNCTIONS

In this appendix, we explain some results in JT gravity
[13,14,21–26,48] used in this paper. Themain objectives are
the microcanonical partition functions (2.17) and (3.42).

1. Disk

This subsection completes the derivation of Eq. (2.17).
We first consider the disk partition function. The normal-
ized density of states of the disk is

DDiskðEÞ ¼
sinhð2π ffiffiffiffiffiffi

2E
p Þ

2π2
: ðB1Þ

The disk partition function is

ZDiskðβÞ ¼ eS0
Z

∞

0

dEDDiskðEÞe−βE ¼ eS0
e
2π2

βffiffiffiffiffiffi
2π

p
β

3
2

: ðB2Þ

The Hartle-Hawking wave function for a disk with a
boundary segment x and geodesic boundary with length
l is [23,26]

ψDiskðx; lÞ ¼
Z

∞

0

dEDDiskðEÞψDiskðE; lÞe−xE; ðB3Þ

where

ψDiskðE; lÞ ¼ 4e−l=2Ki
ffiffiffiffi
8E

p ð4e−l=2Þ: ðB4Þ

The Hartle-Hawking wave function satisfiesZ
∞

−∞

dlel

2
ψDiskðβ1; lÞψDiskðβ2; lÞ

¼
Z

∞

0

dEDDiskðEÞe−ðβ1þβ2ÞE ¼ ZDiskðβ1 þ β2Þ; ðB5Þ

where we usedZ
∞

−∞
dlKi

ffiffiffiffi
8E

p ð4e−l=2ÞKi
ffiffiffiffiffi
8E0p ð4e−l=2Þ

¼ δðE − E0Þ
8DDiskðEÞ

: ðB6Þ

The path integral of a disk with n geodesic boundaries with
lengths l1;…; ln is

Inðl1;…; lnÞ ¼ 2n
Z

∞

0

dEDDiskðEÞKi
ffiffiffiffi
8E

p ð4e−l1=2Þ � � �Ki
ffiffiffiffi
8E

p ð4e−ln=2Þ: ðB7Þ

This satisfies

el=2ψDiskðx1 þ � � � þ xn−1; lÞ ¼ 2

Z
∞

−∞
dl1…dln−1e

l1þ���þln−1
2 Inðl1;…; ln−1; lÞψDiskðx1; l1Þ…ψDiskðxn−1; ln−1Þ; ðB8Þ

and

ZDiskðx1 þ � � � þ xnÞ ¼
Z

∞

−∞
dl1…dlne

l1þ���þln
2 Inðl1;…; lnÞψDiskðx1; l1Þ…ψDiskðxn; lnÞ: ðB9Þ

The path integral for a disk with n geodesic boundaries with lengths l1;…; ln and n conformal boundary segments with
lengths x1;…; xn is

eðl1þ���þlnÞ=2ψDiskðx1;…; xn∶ l1;…; lnÞ ¼ 2n
Z

∞

−∞
dl01…dl0neðl

0
1
þ���þl0nÞ=2I2nðl1;…; l01;…:ÞψDiskðl01; x1Þ…ψDiskðl0n; xnÞ

¼ 22n
Z

∞

0

dEDDiskðEÞKi
ffiffiffiffi
8E

p ð4e−l1=2Þ…Ki
ffiffiffiffi
8E

p ð4e−ln=2Þe−ðx1þ���:þxnÞE: ðB10Þ

Replacing the n geodesic boundaries by n EOW branes with action SEOWi
¼ μli, we obtain the bulk partition function

ZðnÞ
Disk½canonical; boundary lengths ¼ xi� ¼

Z
∞

−∞
dl1…dlnel1þ���þlnψDiskðx1;…; xn∶ l1;…; lnÞe−μðl1þ���þlnÞ

¼ eS0
Z

∞

0

dEDDiskðEÞhðE; μÞne−ðx1þ���:þxnÞE; ðB11Þ
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where

hðE; μÞ ≔ 22
Z

∞

−∞
dlel=2Ki

ffiffiffiffi
8E

p ð4e−l=2Þe−μl

¼ jΓðμ − 1=2þ i
ffiffiffiffiffiffi
2E

p Þj2
22μ−1

; ðB12Þ

for Re½μ� − 1
2
− jIm½ ffiffiffiffiffiffi8E

p �j > 0.

2. Double Trumpet

This subsection completes the derivation of Eq. (3.42). A
tubular wormhole can be divided into two trumpets along a
geodesic. We first consider a single trumpet bounded by a
geodesic with length b. The path integral for fixed geodesic
boundary b and AdS boundary segment with length x, and
a geodesic boundary anchored from the AdS boundary with
length l is given by [26]

ψTrumpetðl; x; bÞ ¼
Z

∞

0

dEDTrumpetðE; bÞψDiskðE; lÞe−xE;

ðB13Þ

where

DTrumpetðE; bÞ ¼
cosðb ffiffiffiffiffiffi

2E
p Þ

π
ffiffiffiffiffiffi
2E

p : ðB14Þ

We first consider the partition function without EOW
branes. We define

DDouble TrumpetðE;E0Þ

≔ lim
d→2

Z
∞

0

bd−1dbDTrumpetðE; bÞDTrumpetðE0; bÞ

¼ −
Eþ E0

4π2
ffiffiffiffiffiffiffiffi
EE0p

ðE − E0Þ2 : ðB15Þ

Note that it follows thatZ
∞

0

dEDDouble TrumpetðE;E0Þ

¼
Z

∞

0

dE0DDouble TrumpetðE;E0Þ ¼ 0: ðB16Þ

Defining

DDouble TrumpetðE;E0∶dÞ ≔ −
Eþ E0

4π2
ffiffiffiffiffiffiffiffi
EE0p

ðE − E0Þd ; ðB17Þ

the partition function of the double trumpet with boundary
length x and y is then given by

ZDouble Trumpetðx∶yÞ

¼ lim
d→2

Z
∞

0

dEdE0DDouble TrumpetðE;E0∶dÞe−xE−yE0

¼
ffiffiffiffiffi
xy

p
2πðxþ yÞ : ðB18Þ

Next we generalize to the partition function with an
arbitrary number of AdS boundaries and geodesic boun-
daries anchored from them. The path integral for a trumpet
Hartle-Hawking wavefunction with n geodesic boundaries
with length liði ¼ 1;…; nÞ and AdS boundary segments of
length xaða ¼ 1;…; nÞ can be written as

eðl1þ���þlnÞ=2ψTrumpetðl1;…; ln∶ x1;…; xn∶bÞ

¼ 2n
Z

∞

−∞
dl01…dl0neðl

0
1
þ���:þl0nÞ=2I2nðl1;…; ln; l01;…; l0nÞψTrumpetðl01; x1; bÞψDiskðl02; x2Þ…ψDiskðl0n; xnÞ

¼ 22n
Z

∞

0

dEDTrumpetðE; bÞKi
ffiffiffiffi
8E

p ð4e−l1=2Þ � � �Ki
ffiffiffiffi
8E

p ð4e−ln=2Þe−ðx1þ���þxnÞE: ðB19Þ

When the geodesics of this path integral are replaced by EOW branes, we have

ZðnÞ
Trumpetðx1;…; xn∶bÞ ¼

Z
∞

−∞
dl1…dlnel1þ���þlnψTrumpetðx1;…; xn∶l1;…; ln∶bÞe−μðl1þ���þlnÞ

¼
Z

∞

0

dEDTrumpetðE; bÞhðE; μÞne−ðx1þ���þxnÞE: ðB20Þ

Next, we consider a single tubular wormhole exchange between two disk topology n- and m-boundary partition
functions. It is given by

Zðn;mÞ
Double Trumpetðx1;…; xn∶y1;…; ymÞ ¼

Z
∞

0

bdbZTrumpetðx1;…; xn∶bÞZTrumpetðy1;…; ym∶bÞ

¼
Z

∞

0

dEdE0DDouble TrumpetðE; E0Þe−ðx1þ���ÞE−ðy1þ���ÞE0
hðE; μÞnhðE0; μÞm: ðB21Þ
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The microcanonical double trumpet ðn;mÞ-boundary partition function is

Zðn;mÞ
Double Trumpet½microcanonical; energy ¼ E;E0;width ¼ ΔE�

≔ Πnþm
i¼1

	Z
∞

0

dEifðE;ΔE;aÞðEiÞ
Z
xi ∈ γþiR

dxiexiEi



Zðn;mÞ
Double Trumpetðx1;…; xn∶xnþ1;…; xnþmÞ

¼
Z

∞

0

dẼdẼ0DRampðẼ; Ẽ0ÞðfðE;ΔE;aÞðẼÞÞnðfðE0;ΔE;aÞðẼ0ÞÞmhðẼ; μÞnhðẼ0; μÞm: ðB22Þ

Here we assume a ≪ ΔE but 1 ≪ eSðEÞ a
ΔE ¼ eS0DDiskðEÞa, thus a is of order 1 quantity in eS0 . We introduced the

continuous smearing function for microcanonical ensemble. The sharp top hat cannot be used in the approximation we use
in this paper, where higher genus geometries are neglected. The continuous smearing function we use in this paper is

fðE;ΔE;aÞðẼÞ ¼

8>>>>><
>>>>>:

− Ẽ−ðEþΔE=2þaÞ
a ðEþ ΔE=2 < Ẽ < Eþ ΔE=2þ aÞ

1 ðE − ΔE=2 < Ẽ < Eþ ΔE=2Þ
Ẽ−ðE−ΔE=2−aÞ

a ðEþ ΔE=2 − a < Ẽ < E − ΔEÞ
0 ðotherwiseÞ

: ðB23Þ

In the work of PSSY [11], such regularization was unnecessary; thus the sharp window could be used.
Let us compute the microcanonical double trumpet ðn;mÞ-boundary partition function. By utilizing an approximation

DDouble TrumpetðE;E0Þ ≈ −1
2π2ðE − E0Þ2 ; ðB24Þ

we can perform the integration explicitly, arriving at

Zðn;mÞ
Double Trumpet½microcanonical; energy ¼ E;width ¼ ΔE� ≈ logðe3

2
ΔE
a Þ

π2
hðE; μÞnþm: ðB25Þ

So far we have studied the partition function for a trapezoid smearing function. The purpose was to regularize the
divergence of (B15), which is an artifact of cutting off higher genus contributions in the GPI. In the following, for reference,
we assume that the density of state two-point function is given by the sine-kernel

DSine−KernelðE; E0Þ ¼ −
1

π2

�
sin2ðeS0ðE − E0ÞÞ

ðE − E0Þ2 − πeS0δðE − E0Þ
�
; ðB26Þ

which reduces to (B15) after smearing with width larger than e−S0 . The partition function in this case is finite. Assuming that
ΔE is an Oð1Þ quantity, so that eS0ΔE is large, we then obtain

Zðn;mÞ
Sign Kernel½microcanonical; energy ¼ E;width ¼ ΔE� ≈ logð2e1þγeS0ΔEÞ

π2
hðE; μÞnþm: ðB27Þ

This result is similar to (B25) when we take a ≈ e−S0 ,
consistent with the expectation that higher genus contri-
butions in the GPI regularize the spectrum at the scale e−S0 .

APPENDIX C: PROOFS OF (3.11) AND (3.41)

In this appendix, we provide the proofs for (3.11)
and (3.41).

1. Proof of (3.11)

Since the derivation of the second to fourth terms of
(3.11) is straightforward, we will only show that the
multiplicity of the first term in (3.11) correctly captures
the number of geometries. First, we can classify any
diagram by the number n of irreducible ladders. There
are two possibilities: that there is no cyclic symmetry in the
diagram and that there is.
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Let us first consider the case when there is no cyclic
symmetry in the diagram. We denote the number of
boundaries of these diagrams by n1 and n2. In the first
term of (3.11), such a diagram appears n times; therefore,
the factor 1

n in (3.11) cancels this multiplicity. Since this
diagram appears in Rðλ1; λ2Þn1n2 times, we conclude that
the counting for diagrams without cyclic symmetry is
correctly captured.
Next, we consider the case when there is a cyclic

symmetry with periodicity ðs1; s2Þ. Then the diagram
can be decomposed into m ¼ n1=s1 ¼ n2=s2 identical
copies. Each copy contains n=m irreducible ladders.
Therefore, in (3.11), the diagram appears n=m times. By
the factor 1=n in (3.11), the coefficient in (3.11) for the
diagram is now 1

m. On the other hand, the diagram appears
in Rðλ1; λ2Þ

m × s1 × s2 ¼
1

m
× n1n2 ðC1Þ

times, matching precisely with the counting of (3.11). Thus
the counting of diagrams with cyclic symmetry is also
correctly captured in (3.11).

2. Proof of (3.41)

The multiplicity of the first term in (3.41) can be checked
in a similar manner as (3.11). First, we can classify
diagrams by cyclic symmetry of the diagram for each side
Trρn1 and Trρn2 . Let us suppose the periodicity of Trρn1 and
Trρn2 are ðs1; s2Þ. Here we include s1 ¼ n1 or s2 ¼ m2 for
the case where there is no cyclic symmetry. ðn;mÞ
corresponds to the number of boundaries that are connected
to the double trumpet. Thus in the first term of (3.41), the
diagram appears ns1=n1 ×ms2=n2 times. By the factor
1=ðnmÞ, the coefficient for the diagram in (3.41) is
s1s2=ðn1n2Þ. On the other hand, the diagram appears in
Rðλ1; λ2Þs1s2 times, matching precisely with the counting
of (3.41). Thus we conclude that the counting of diagrams
with cyclic symmetry is also correctly captured in (3.41).

APPENDIX D: PERTURBATIVE COMPUTATION

In this appendix, we evaluate the entropy fluctuation δSR
for nontubular wormholes for small and large values of

k=eSðEÞ. A simpler but related integral was studied in [49]
near k ∼ eSðEÞ (see also [50]). It would be interesting to
compare them with the explicit evaluation in [31].
When k ≪ eS0 , we can use the approximation

λRðλÞ − k →
1

λ
þ 1

kλ2
þ 1

k2λ3
þ 1

k3λ4
þ � � � ¼

X∞
n¼1

1

kn−1λn
:

ðD1Þ

Substituting this into (3.14) yields

R̂Nontubular
n1n2 →

n1ðn1 − 1Þn2ðn2 − 1Þ
2kn1þn2−2e2SðEÞ

: ðD2Þ

The fluctuation of the rank and the entropy are

ðδSRÞNontubular →
1ffiffiffi

2
p

eSðEÞ
; ðδTr½ρ̂0þR �ÞNontubular → 0: ðD3Þ

For k ≫ eSðEÞ, we can approximate

λRðλÞ − k →
1

λ
þ 1

eSðEÞλ2
þ 1

e2SðEÞλ3
þ 1

e3SðEÞλ4
þ � � �

¼
X∞
n¼1

1

eðn−1ÞSðEÞλn
; ðD4Þ

which leads to

R̂Nontubular
n1n2 →

n1ðn1 − 1Þn2ðn2 − 1Þ
2eðn1þn2−2ÞSðEÞk2

: ðD5Þ

The fluctuation of the rank and the entropy are

ðδSRÞNontubular →
1ffiffiffi
2

p
k
; ðδTr½ρ̂0þR �ÞNontubular → 0: ðD6Þ

To summarize, we obtain at large k, eSðEÞ

ðδSRÞNontubular ¼
( 1ffiffi

2
p

k
ðk ≪ eSðEÞÞ

1ffiffi
2

p
eSðEÞ

ðk ≫ eSðEÞÞ
: ðD7Þ
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