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1. Introduction

1.1 General Remarks

In the family of bridge systems the cable supported bridges are
distinguished by their ability to be used for large spans. A cable supported
system permits the flexural stiffness of the girder to be less and the dead load
reduction enablesthe span to be lengthened as a result.

It is indeed reported V2 that cantilevered bridges with long spans will
need a box girder depth in excess of 30~40 feet at the support whereas a
multiple-cable-stayed bridge of even longer spans may only require a depth of
deck not exceeding about 8 feet. Based on this fact, cable-stayed-bridges are
considered to be most economical for 600~1500 feet span bridges.

For a column structure like type of cable-stayed-bridge tower, reinforced
concrete is effective from an economical point of view, since advantage can be
taken of high concrete compressive strength . However, such towers may often
have long columns and therefore some difficult design problems need to be
resolved.

Under some high axial loads, the secondary moment in columns increases
due to additional creep deformation in service load condition. In addition,
combination with earthquake load may lead to further influence of this
secondary moment. The present study is to investigate the influence of
geometric nonlinearity on hysteretic characteristics and the applicability of
current moment magnifier method to the frame type bridge tower like A-shaped
tower, one of the representative shapes employed for cable-stayed-bridges. A
series of parametric nonlinear analyses of such towers are conducted under a
combination of gravity and seismic lateral load and the results interpreted from a
design view point.

1.2 Current Design Problem

There have been many studies on the hysteretic characteristics of short
columns under cyclic lateral loads. Very few, however are on that characteristics
of a slender column such as the present tower. Geometric nonlinearity may have
an affect even on ultimate load capacity and ductility. In addition the concrete
creep effect due to high gravity load may not be neglected.



The Moment Magnifier Method has been available in the design of slender
column, that is similar to the procedure used as part of the American Institute of
Steel Construction Specifications?.

The desian moment Mc specified by ACI Code? is given by

M = 8pMgp + 5,Ma, ——(1.1)
where
6 - Cm a 1 0
5" 1-P/¢pPc === (1.2)
Cm
88 = ———eee— = 1.
=1 megEee-' e (1.3)
p n’El 1.4
€= ——— e eeeeaen .
(klu)?
(Eclg/5)+ Eslse
o= +pd (1.5)
My,
Cm=06+04— (1.6)
M, ; .

The above design equation was proposed by J.E. Breen alt5' based on
experiments on columns and box type frames under monotonic axial loads with
eccentricity. No axial load variation was considered in these experiments and in
that sense, the above design equation can be applicable for a single column,
whereas axial force variation exists in a frame type bridge tower. When this
structure is subjected to a combination of cyclic lateral and imposed gravity load,
the stress path on the M-N surface would be different from that under
monotonic lateral load corresponding to the current design method. Therefore,
it appears to be necessary to investigate validity of the current Moment
Magnifier Method.

1.3 Objective and Scope of the Present Study

When seismic design is performed consistent with ultimate capacity, it is of
significance to avoid brittle failure such as instability failure, i.e. buckling. The
hysteretic characteristics of a slender frame under cyclic lateral load would be
different mainly dependent on axial load, slenderness ratio of the column and
configuration.

With the purposes to investigate the following :

1) applicability of current Moment Magnifier Method



2) hysteretic characteristics including ultimate load and ductility
3) final failure

a series of parametric analyses are conducted with axial load, configuration,
slenderness ratio, reinforcement ratio, creep effect and lateral load (monotonic
or cyclic) as parameters.

Chapter 2 presents a review of the analytical method used in the computer
program, PCFRAME utilized in this study.

In chapter 3, several numerical test results are represented to verify the
applicability of the program.

Chapter 4 describes the modeling of the structure studied, analytical
parameters and external load assumptions.

In chapters 5, 6 and 7, analytical results for short time gravity + monotonic
lateral load, long term gravity + monotonic lateral load and long term
gravity + cyclic lateral load will be respectively discussed to evaluate concrete
creep and cyclic load effects mainly on load resistance and moment behavior.

Finally, conclusions and recommended future research will be presented in
chapter 8.



2. Review of Analytical Method

2.1 General Remarks

The analytical determination of the displacements, internal forces, stresses
and deformations of reinforced concrete frames throughout their load history
used in the present investigation is based on a comprehensive Ph.d. research study
by Kang 7 at the University of California, Berkeley.

The purpose of Kang's Study was to develope an efficient numerical
procedure and a general computer program (PCFRAME) for the material and
geometric nonlinear analysis of planer reinforced and prestressed concrete
frames including the time dependent effects due to load history, temperature
history, creep, shrinkage and aging of concrete and relaxation of prestress. An
accurate prediction of the response of these structures throughout their service
history, as well as throughout elastic, inelastic and ultimate ranges was the
primary objective.

A complete description of the analytical method and its theoretical bases,
as well as a detailed description of the input-output capabilities of the computer
program PCFRAME are given in Kang’s Ph. d thesis 7. In this chapter a review of
the main features of the analysis as it applies only to the planar reinforced
concrete frames investigated in the present study will be given for easy reference.

The analysis is based on the incremental form of the displacement
formulation of the finite element method. Equilibrium equations for the total
structure are set up and solved in a global coordinate system, which is fixed in
space. The direct stiffness method is used to form the structure stiffness matrix.
The structure is divided into straight, planar one dimensional beam elements with
the usual three degrees of freedom at each end (Fig.2-1), and with the standard
linear and cubic Hermitian shape functions describing the axial and transverse
displacements between ends. Shearing deformations are not considered. The
origin and direction of the local Cartesian coordinate system passing through the
end of the element (Fig. 2-1a) follow the element, which is considered to be in a
continuous quasi-static state. Nonlinear geometric effects are accounted for by a
nonlinear term in the strain formulation and by continuously updating the nodal
point geometry and the transformation matrix between local and global
coordinates.
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Different cross sections, symmetric about the local y-axis (Fig. 2-1¢c), but
otherwise of arbitrary shape, and different material properties may be assigned
to each element. Cross sections are divided into a finite number of concrete and
steel layers, each of which is assumed to be under uniaxial strain. Navier's plane
section hypothesis is assumed to govern the distribution of total strains across
sections. No bond slip is assumed to take place between rebars and concrete.
Nonlinear material properties including cracking of concrete are considered. |

Time dependent load history and time dependent effects of material
properties are considered using a step forward integration approach by dividing
the time domain into a finite number of intervals of constant or varing length.
External loads and equivalent loads due to nonmechanical creep strain are
applied in a specified number of load steps at each time step.

The nonlinear equilibrium equations are solved by an unbalanced load
iteration method for each load step. Internal resisting loads are evaluated
numerically by a 3-point Gaussian quadrature over the current length of the
element combined with a mid-layer integration over the cross section. Stiffness
matrices are evaluated using current material properties at the center of each
element only. Incremental solutions for each load step are added to previous
totals to arrive at the current updated solution. In this manner, the structural
response can be traced through the elastic, cracked, inelastic and ultimate ranges.

In the following sections additional details are given for the modeling of
the material properties for the concrete and reinforcing steel and also for the
solution strategies used in the computer program PCFRAME 7) for the nonlinear
analysis.

2.2 Modeling of Material Properties
(1) Stress-Strain Relationship of Concrete

Concrete is used mostly in compression, so that its compressive stress-strain
curve is of primary interest. A model which represents the stress-strain curve of
wide variety of concrete in a mathematical formula was suggested by Hognestad,
and is shown in Fig. 2-2a. For the present investigation, this model is utilized with
minor modifications.

The ascending part of the curve is described by the equation,

m m
£

o=f—@-=) e (2.1)
0 0
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in which em is the mechanical strain and the strain go corresponding to the
maximum compressive stress f”¢ is given by
Zf"c
=5 (2.2)
3
Where E; is the initial tangent modulus. By differentiating eq. (2.1), the tangent
modulus E¢ is obtained.

d m
E=—=EU-=) e (2.3)

t de™ &

The descending part of the compressive stress-strain curve is a straight line.
In this study, the tangent modulus of this part is assumed to be zero. But the
decrease in stress with the increase with the mechanical strain is accounted for as
unioading. The equation of this part can be written,

m

£ —¢
o=—0.15f “+£; E=0 e (2.4)
Cg —¢ c ¢
u (4]

Maximum compressive strength fc” is given by a fraction of the compressive
strength fc' as follows.

fr=rf; Tl (2.5)

[+ c

And yc=1is assumed in the present study.

There are numerous empirical formulas for the evaluation of the initial
tangent modulus E;. ACl committee 209 recommends the following formula, !

E=83W'fps e (2.6)

where Wiis the unit weight of the concrete in pcf.

The maximum tensile stress in the stress-strain curve of concrete is assumed
to have the value of the modulus of rupture, and will be denoted by ft'.
ACl committee 209 also recommends the following value.

fr=r VW ps (2.7)

where the parameter 7. has the value of 0.6 to 1.0 in general.
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The slope of the tensile stress-strain curve is assumed to be constant and
the same as the initial tangent modulus Ei. Then the tensile stress-strain
relationship can be written as follows.

o=E<~E=E, o (2.8)

Tension stiffening of concrete after cracking is neglected in this study.

Unloading and reloading due to cyclic lateral load history is accounted for
by a simple load reversal model of the stress-strain curve. Even under a constant
sustained load, unloading could take place in the reinforced concrete structure
due to creep.

The load reversal model utilized in this study is shown in Fig. 2-2b.
The following assumptions are made in this model.

1) The slope of the load reversal path in the stress-strain curve is the same
as the initial tangent modulus E;.

2) Tensile failure or cracking of concrete occurs when the tensile stress
reaches its maximum tensile stress f's.

3) Compressive failure of crushing of concrete when the compressive
mechanical strain exceeds its maximum compressive strain gy.

4) Once concrete is cracked, it cannot take any tensile stress again.

But it can take compressive stress upon closing of the crack and
reloading.

Thus the crack is assumed to close in compression and reopen in
tension without any resistance.

(2) Creep deformation of Concrete

Creep strains are the time and stress dependent strains occurring beyond
those defined by the mechanical stress-strain curve.

In this study, creep strain ¢ (t) is expressed with a superposition integral:

' v Bolth)
— L " ———— 4
8c(t)_joc(t;,t_t,l) e A (2.9)
in which the kernel function ¢ (t' , t-t', T) is the specific creep function

dependent on age and temperature variations.



The principle of superposition is assumed to be valid for the equation of
creep strain (Fig. 2-3). Thus, total creep strain at any time t can be obtained as the
sum of independent creep strains produced by stress changes at different ages
with different durations of timeup to t.

Concrete is assumed to be a thermorheologically simple material. such a
material is defined as a material which obeys the time-shift principle for the
temperature variation.

Stress and temperature changes are assumed to occur only at distinct time
step th : n=1,2,.....n¢ (Fig. 2-3a, b). And for the calculation of creep strain
increment during some time interval, the stress and temperature are assumed to
remain constant during the interval.

The following form of age and temperature dependent on specific creep
function is used in this study:

m

tt-t, D)= O a®)1-e MEDED (2.10)
i=1
in which m, aj(t’), A;, ¢ (T) are to be determined from experimental creep curves,
or, if experimental data is lacking, from design curves recommended by ACI
committee 209 'V,

The principle of superposition of creep strain is illustrated in Fig. 2-3 with
given temperature and stress histories. The following definitions for incremental
quantities of time steps, stresses and creep strains are used :

At =t -t . e (2.11)
fo =0 —o _ =olt))-ot _,) cemeemmeam (2.12)
== =)=, ) e (213)

Total creep strain ¢, at typical time step ta can be obtained by:
e h=A0; - c(ty, ty-t;, T) + Aoy - c(ty, ty-ta, T)
+.tboyy et tncte, O (2.14)
Total creep straine®_ at time step t,., can be obtained by :
£n.1 =001 - elty, ta1-t1, 1) + Aoz - c(tg, th.1-tg, T)

+.tBo ,celtpg tyg-tn, D e (2.15)
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Substituting the value ¢ (t', t-t', T) from Eq. (2.10) into Egs. (2.14) and (2.15), and
those results into Eq. (2.13), after some extensive algebraic manipulations, the
recursive relations necessary for calculating the increment of creep strain AeS, at
the time step t, are as follows:

o —AMT At
A= A, [1-e D T (2.16)
i=1
—AHT_ At
it n-2"""n-1
=A e  +Ao att. )y e 2.17
A=A : +oo, 48ty (2.17)
Ai,zonxai(tl) .......... 2.18

A very important advantage of the formulation indicated above is that the
computational procedure for each new creep strain increment requires only the
stress history of the last time step and not total stress history.

(3) Reinforcing Steel

The properties of reinforcing steel, unlike concrete, generally are not
dependent on environmental conditions or time. Thus specification of its
stress-strain relationship is sufficient to define its properties relevant in the
analysis of reinforced concrete structures. In this study a bilinear model which is
symmetrical about origin, as shown in Fig. 2-4a, is used for monotonicloading.

The only modification added to the original PCFRAME computer program
is a cyclic loading model for reinforcing steel as shown in Fig.2-4. The bilinear
cyclic model utilized in the original program is not sufficient to predict hysteretic
behavior under a repeated lateral load such as earthquake load.

The unloading path for stresses of both signs follows the initial elastic
slope. After the first yield excursion the loading parts of the stress-strain curve
may be represented by Ramberg-Osgood relationship8).

e —e = Eé-(l+ | f's— s T — (2.19)
se fch

with the following empirical values determined by Kent and Park for
intermediate grade steel

£ o=f 1 0.744 0.071
ch™ 'y In(1+1000g) 1000e,,

+0.2411 e (2.20)



Fig. 2—4 (a) Stress-sStrain Curve of Reinforging Steel
Assumed in the Present Study (Numbers

Represent the HMaterifal State of Reinforcing
Steel)

Fig. 2-4 (b) Stress-strain curve for stecl with

cyclic loading illustrating the Bauschinger
efTect.




For odd-numbered loading runs (n=1,3,5.....)
_ 449 6.03

T Ind+n g

for even-numbered ioading runs(n=2,4,6.....)

+0.297 (2.21)

2.20 0.469
r= —
In(l1+n) e°_1

+304 (2.22)

where &5 is the steel strain, g is the steel strain at beginning of loading run, fs is
the steel stress, Ege is the modulus of elasticity of steel, ¢jp is the plastic strain in
steel produced in previous loading run, and n is the loading run number (first
yield occurs at n=0, n=1 is the first postyield stress reversal, n =2 is the second
postyield stress reversal, etc.).

The stiffness of reinforcing steel in the nonlinear region is calculated
differentiating Eq. (2.19) by the strain g,

df E
s se

Se————————— e 2
$ode, a4rlfsr, T (2.23)

2.3 Composite Layer System

A composite layer system consisting of concrete and reinforcing steel layers
is constructed in order to account for varied material properties within a frame
element, as shown in Fig. 2-1c. Each concrete or steel layer in a cross section is
assumed to be in a state of uniaxial stress, and for each layer, the cross sectional
area and distance from the reference plane are specified as geometric properties.

Since concrete and reinforcing steel are assumed to be perfectly bonded
together, the displacement field of the reinforcing concrete frame element is
continuous. Then any integral involving varying material properties over the
volume of a frame element, such as the integral required to evaluate element
stiffness matrix or internal force vector, can be performed layer by layer as
follows.

n

nc 1
J ppdv= D I oy dV+ D [ Py dV e (2.24)

i=1 i=1°V
were, ¢ is a function of space, y is a function of varying material properties such
as tangent modulus, stress or various time dependent strains, nc is the number of

concrete layers, and ns is the number of steel layers. Integration along the length
of a frame element is performed by three point Gaussian quadrature.



2.4 Equilibrium Equations Including Geometric and Material Nonlinearities and
Non-mechanical Strains

The displacement of any point aiong the frame axis can be expressed as
follows, assuming a linear variation of uo (x) and cubic variation of v(x).

&=y e (2.25)

¢=0[-p),pl ; p=xL e (2.26)
L

vR=wiol e (2.27)

3
y=[0-3p%+2p%, 3p*~2p%), L(p—2p+p),L(=p+ p]

in which ¢ and y are shape functions for ug(x) and v(x) respectively, and these
quantities are defined in local coordinates. Then, by the plane section assumption
the x-displacement of any point in the element can be written as follows.

u(x,y):uo(x)—y'dv(x)/dx=[g.—y_lg.x]};, ---------- (2.29)
vx)=0,9lc e (2.30)
where
= -2 (2.31)
9

Axial strain ¢ (x, y) is defined by ¥

_dulxy) 1 dv(x) o e (2.32)
== 3

in which the second term represents the nonlinear displacement effect.

Based on these equations, the tangential strain-displacement relationship
at the state A (Fig.2-5b) is

dg:_BdL -------- (233)
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where
g_ = [gf! .'Y£.xx]
= [-VUL, /L, 6y(1-2p)/L2, 6y(-1+2p) /L2,2y(2-3p)/L,2y(1-3p)/L] ~ --=--- (2.34)

By considering virtual work equation, we obtain the total equilibrium equations
at the state A.

5!':[ s%av (2.35)
v ) .

The tangential strain-displacement at the next state B can be written
de = Bdr+drTeTelr
= drrBT+efeA) e, (2.36)

Similarly, we obtain the total equilibrium equations at the state B.

R+ AR = [(BT+ccAD (0 + A0)dV e (2.37)

The incremental equilibrium equations at the state A are then obtained by
subtracting Eq. (2.35) from Eq. (2.37) and neglecting the higher order term

f,cTAocdV-Ar
AR=[,B"AadV+[ycTocdV-ar, e (2.38)
The tangential equilibrium equations can be obtained from Eq. (2.38) by

replacing Ar by dr, ARI by dRi and Ao by do. The tangential stress-strain
relationship for both concrete and reinforcing steel can be written

do=Ede™ = E(de~de>*) = (2.39)
where de™, de™™ are the infinitesimal increments of the mechanical strain, the

total strain and the non-mechanical strain respectively, and Et is the tangent
modulus as defined befare. By substituting Eq. (2.33) for deinto eq (2.39),

do=EBdr—Ede™ e (2.40)
Substitution of Eq. (2.40) into Eq. (2.38), after replacing the incremental operator
A by the differential operator d, gives us the following tangential equilibrium
equations at the current state A.

d§j=(l B'EBAV + ] o ng)-d,g-.[ B'E d"dV (2.47)
v A\

v

By defining the following terms



dR™ = J B4V e (2.42)
dR=dRi+dR™ e (2.43)
K= J B'EBaV e {2.44)
K = f Jgoedv e +2.45)
Kr=Ke+Kg (2.46)

We can rewrite the Eq.(2.41)

dq@=K¢ed e (2.47)

2.5 Time Dependent Analysis Procedure

For the time dependent analysis, the time domain is divided into a discrete
number of time intervals each of which need not have the same duration in time.
The junctions of these time intervals are defined as time step t,. Thus, a discrete
number of time steps th = 1,2........ , Ny, exist, where nq is the total number of time
steps considered in the analysis. Then a step forward integration is performed in
which incremental solutions are successively added to the previous total to obtain
the solution at the current time step, as follows.

At time step tn.1, all the joint displacements r, total strains ¢, total
non-mechnical strains enm, and stresses at every part of the structure are known.
Evaluate the increments of non-mechanical strains Ae"™,, due to creep (Aes,) and
shrinkage (Ae®,) of concrete and temperature changes (Ae",) occurring during
time steps th.1 and tn. Then calculate the equivalent joint load increments AR
at time step t, which would produce the non-mechanical strain increments Ae™,
by treating them as initial strains. AR,"™ for each element can be calculated by
the equation: |

AR "= J . B'EAS™V {2.48)

where B is the strain-displacement matrix, and E is the tangent modulus.

At the time step tn, load increment AR, is obtained by adding external joint
load increment ARy and unbalanced load R¥n.; left over from time step tn-1, to the
equivalent joint increment AR,"™ due to the non-mechanical strains:

—_ J nm u
AR =AR° +AR V4R, (2.49)

-1



Then ARn is divided into load increments AR, each of which need not be of equal
magnitude. Then the incremental load analysis and the unbalanced load iteration
are performed for each load step as follows.

(1) Form tangent stiffness for each element based on current geometry and
material properties. Assemble structure tangent stiffness K¢ in global coordinates
using current displacement transformation matrix for each element.

(2) Solve KtAg = AR for displacement increments Ar and transform into local
coordinates to obtain element end displacement increments.

(3) Compute strain increment Ae from element end displacement
increments by using nonlinear incremental strain-displacement relationship, and
add to previous total to obtain current total strain ¢.

(4) Add displacements Af to previous total to get current total joint
displacements r. Based on current total displacements f, update member
geometry, i.e. update element length and displacement transformation matrix.

(5) Subtract current total nonmechnical strain enm due to creep, shrinkage
and aging of concrete and temperature changes from current total strain ¢ to
obtain current total mechanical strain e™. Compute current stress o from
nonlinear stress-strain (o-e™) law valid for the present time step t,, taking load
reversals into account.

(6) Compute element end forces by integrating current total stresses in
concrete and reinforcing steel layers for each element in local coordinates, and
transform into global coordinates using updated displacement transformation
matrixes to assemble for the internal resisting loads R'.

(7) Subtract internal resisting loads R! from current total external joint
loads Rl to obtain unbalanced loads R".

R=R-R e (2.50)

(8) Set AR=R", and go back step (1). Steps (1) to (8) are continued until
unbalanced loads R are within allowable tolerances. At this point, the current
unbalanced loads R* are added to the load increment AR for the next load step,
and the iterative procedure (1) to (8) is performed again. At the end of the final
load step, proceed to next time step th+ 1.

2.6  Solution Technique of Equilibrium Equation

There are various effective solution method for nonlinear problem. These
method can be generally classified into three categories as follows.




1) Incremental Load Method
2) lterative Method
3) Combined Method

The incremental load method generally gives a good approximation to the
intermediate and final solutions while the iterative methods yields the final
solution to the desired degree of accuracy. For concrete structures, the solution is
generally path-dependent mainly due to the progressive cracking in tensile
regions, so that it is desirable to use the incremental method. For this study the
combined method is used to enhance the accuracy of the solution. An option is
provided to use either tangent stiffness or constant stiffness during iterations.

In solving nonlinear equilibrium equations by iterative methods, the
convergence at the end of an iteration can be measured by two criteria. The first
criterion is the magnitude by which equilibrium is violated. This can be measured
by the magnitude of the unbalanced loads. The second criterion is the accuracy of
the total displacements. This can be measured by the magnitude of additional
displacement increments.

For this study the displacement criterion is used as a primary convergence
criterion. But to guard against the excessive violation of equilibrium, the
unbalanced load criterion is also provided.



3. Preliminary Numerical Studies

The PCFRAME computer program’’ was developed mainly for monotonic
loading analysis whether it is mechanical or time dependent load. Therefore, its
applications’'? have been so far for monotonic loading. The present study is
also due to cyclic loading and in that respect it is necessary to discuss its validity of
prediction for such a loading case. In addition, the numerical accuracy due to
load or time increments should be also investigated since the accuracy of

numerical solution is generally governed by such increments.

3.1 Theoretical Studies
(1) Timoshenko Beam

This computer program can deal with material and geometric
nonlinearities. In this section, the accuracy of numerical prediction for a
geometeric nonlinear problem will be discussed. An elastic beam with pinned
supports at both ends under uniform load is the example for this purpose, which
was earlier shown by Kang”. Focusing point is the comparison of numerical
solutions between 5, 10 and 20 load increments up to /€ =0.1 of displacement
level, where § isthe central deflection and € is the span length of the beam.

Fig.3-1 shows load-deflection curve, in which each case similarly provides
slightly higher but good agreement with the exact solution. Also shown are axial
stress and bending stress of central section in Fig.3-2. Excellent agreement is
obtained for g5 and slightly higher values, but good agreement for g, compared
with the exact solution. Significant difference between various load increments
is not observed. Based on this example, this computer program can provide good
predictions even using coarse load increments in the finite deformatidn analysis

of a pinned support beam with uniform load.
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(2) Uniaxial Stress-Strain Relationship of Concrete and Steel under Cyclic Loading

Fig.3-3 shows a concrete stress-strain relationship under cyclic loading in
which the solid line shows an exact solution and the round circle an analytical
result.  With the purpose of analysing behavior up to the softening branch, a
cyclic load is applied to the two element model illustrated in the figure which
consists of concrete and elastic spring elements. Loading procedures are 0—high
compression(1) —»unioading(2) —tensile loading(4) —compression(5)—>maximum
load(7) — softening(8) — unloading(9) —tensile loading(10)—compression(11)—>
softening(12)—crushing(13). Also shown together in the figure are similar
relationships of elastic spring and total model.  Perfect agreement is achieved
between an analytical and an exact solution and sufficient applicability of the
computer program for cyclic load problem is verified.

Fig.3-4 provides a similar result for the Ramberg-Osgood model which is
used for rebar modelling.  In the original computer program?”, only a bi-linear
model has been available for use which is not predictable for cyclic behavior of
steel. In the figure, similarly shown are a solid line for the exact solution and a
round circle for the analytical solution which provides perfect agreement. By
setting a restriction of Ifs| < Ifyl during cyclic loading, perfect plastic flow occurs in

the 1stloading cycle of compression side.

(3) Creep Deformation of Concrete

Fig.3-5 shows the unit creep function (solid line) specified by ACI Committee
209'" and the analytical model (dashed line) which will be utilized in the bridge
tower analysis of the present study. Analytical results, round circle with ten time
step, two fraction for each time step and cross symbol with two time step, nine
fraction for each time step are also provided as creep strains under unit
compressive load.  The former case achieves good agreement with the input
curve shown as the dashed line and the latter finally provides the same result with

a considerable difference for the fraction of transient region. However,
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sufficient time step discretization may be required to trace stress path dependent
behavior since the present tower study has more complicated stress states under
design load combinations. Based on these consideration, five time steps with

two fractions for each time step will be employed in the present study.

3.2 Reinforced Concrete Member

The stress-strain rélationships for individual materials have been studied in
the previous sections, however more is needed to investigate the composite
behavior of these materials together.

Moment-curvature relationships of a reinforced concrete member are
presented in Fig.3-6 and 3-7. Fig.3-6 provides a comparison of analytical results
using a bilinear rebar model with the experimental results by Aoyama and the
analytical by Park®. Relatively good agreement around maximum load and in the
unloading region around maximum load is observed, but significant difference in
the transient regions from positive to negative loading and vice versa. This
discrepancy is considered to be dependent on no consideration of Bauschinger
effect of rebars since concrete fiber stress is not so serious in compression.
Indeed, Park’s analytical result using Ramberg-Osgood model for rebars presents
good comparison.

Fig.3-7 shows good agreement by the present analysis based on Ramberg-
Osgood model for rebars. Asthe result, the updated computer program is found
to be applicable to a flexural analysis involving hysteretic characteristics of

reinforced concrete frames.



(STeqaY 10] [9POJN IedUI[Ig)Hg Ureag Jo SIAINY) 3INJBAIN))-JUIWON 9-8 31

juswadxy seweloy |
1uaj pue jled our pijos
|[9PON Jeauljig Juasald durl payseq
M\_
0-01* 0002
N
Ul
@ |[»
+021 ol
d(urdiy )T
\ S
001=2/7 4, W _
& — _
o m— =)y O . P6b
e
_ |
_ ,Q0028=7



(s4Dqay 40} [39pOW PpoobsQ —blaqupy ) {2 WDAQ JO SAAIND 3INJDAIND — JUBWON ) —¢ by

1U3dd puD YidDd
|9PON 1UdSIid

d/

0002  00S I/

000¢-




4. Analytical Model

4.1 A-shaped Reinforced Concrete Bridge Towers

T. Y Lin" states that cable stayed concrete is more economical than cable
stayed steel for less than 1200~2000ft span bridges and also that cable stayed
bridges will take over from the cantilevered segmental bridges for span lengths
exceeding some 500~700ft. He concluded that the cable stayed concrete bridge
is most economical for 600~ 1500ft span brides. Leonhardt?, on the other hand,
has concluded that the cable stayed bridges are particulary suited for spans in
excess 2000ft (600m) and may be constructed with the span of more than
5000ft(1500m). The longest span cable stayed bridge in the world is currently the
new Annacis Bridge'?'® across the Frazer River, Canada which has a center span
of 1526ft and a tower heigth of 502ft.

A free standing single column is mostly used as a cable stayed bridge
tower. However, if considering lateral and torsional stiffness requirements, this
single column type is less effective than the frame types shown in Fig.4-1. The
East-Huntington'?-'4 and the Pasco-Kennwick Intercity Bridges'?-'s), which are
both current representative concrete cable stayed bridges in the U.S., have a A
shaped (Fig.4-1b) and a potral type tower (Fig.4-1c) respectively. And the new
Annacis Bridge, the longest span cable stayed bridge as described before, has also
a portal type tower (Fig.4-1d). A A-shaped which has a relatively short vertical
column on top, can be considered a kind of A-shaped type.

Of these types, an A-shaped reinforced concrete tower will be employed in
the present study. In the Fig.4-2, the general shape of this tower and its finite
element mesh utilized in the analyses are shown. A 400ft tower height is chosen,
which would be used with a bridge span of 1300~1600ft. However, the results
which will be discussed in the following chapter are all expressed in non-
dimensional form and therefore can be applicable for other A-shaped reinforced

concrete towers with different heights.
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Supporting condition at the tower base can be variable due to design
condition. Generally speaking, however it can be recognized that it is
advantageous to use fixed supports from the following design and construction
aspects's).

(1) The increased rigidity of the structure resulting from a fixed pylon
base may offset the disadvantage of high bending moments in the
pylon. |

(2) A fixed base may be more practical from an erection point of view and
be less costly than a heavy pinned bearing.

Based on these discussions, a fixed support is assumed in the present

model.

4.2 CrossSection of a Column
According to the investigation by P. W. Poston alt.'”, the following facts
were reported regarding a cross section for existing concrete bridge piers.
(1) Usage of hollow section piers increases dramatically with height and
over 80 percent of the recent piers over 100t (30.5m) in height are
of hollow section.
(2) For the taller piers of over 100ft (30.5m) in height, over 70 percent of

the piers have variable cross section dimensions

When considering the application of a cable stayed bridge to a longer
span, usage of hollow section column may be most applicable.

However, since the objective of this study is to provide basic information to
the preliminary design, a uniform column with rectangular cross section is
assumed. The study on hollow section concrete bridge piers by R. W. Poston
alt.’® which indicates that a plane section assumption appears completely valid
except for the case with a very thin wall, can be helpful.  From their study, the

result of the present study organized based on cross section characteristics such as



‘flexural stiffness El and slenderness ratio l/r, would be applicable for columns with

any type of cross section.

4.3 Analytical Parameters
" There seems to be several factors which determine the structural behavior
of present towers under the combination of seismic lateral and gravity loads :

(1) Configuratioh : W/H where W is the distance between bottom legs

and His the height of tower (Fig.4-2)

(2) slenderness ratio : Ur (I/h), where 1is the length of leg, his the cross

section height and ris the radius of gyration

(3) Reinforcement ratio : py=(As +A's)/Ag

(4) Gravity Load (Axial load) : 0g/f'c = No/Agf'c

(5) Concrete creep

(6) Cyclic lateral load
where (1) to (3) and (4) to (6) are factors corresponding to dimension and load
type respectively.

In addition to these, eccentricity and dynamic loading effect are possible
principal parameters which will be neglected in the present study. The reasons
for this neglection are as follows. A gravity load is basically applied symmetrically
and even if being considered, the eccentricity is generally quite small compared
with the displacement due to lateral load. And as the main objective of cyclic
lateral load analysis in this study is to focus on the hysteretic behavior under static
load, the dynamic load effect is removed.

Itshould be noted that the shrinkage, thermal strain and aging dependent

concrete properties are not considered for simplicity

(1) Configuration Factor
This factor varies dependent on the design condition. ltis considered that

if W/H becomes larger, frame action contributes more against lateral load and



that the internal axial force and the flexural moment may be different among
these factors. The structural resistance as an entire structure and the secondary
moment could be different as a result.

Three cases of W/H =0.2, 0.4 and 0.6, considered to be in the practical
range, will be employed in the present study.

(2) Slenderness Ratio ,

The slenderness ratio is one of the most important factors which affect the
structural behavior of a slender column such as the present bridge tower.
Geometric nonlinear effects appear more with increase of this factor.  The
practical range of this factor Vr is considered to be from 40 to 80. Indeed, the
practical examples of existing towers show 44~69 for Pasco Kennewick'® ,74 for
Hast Huntington'® and 71 for James River bridges'?.  The use of a small column
section, i, e. large slenderness ratio should be economical, but critical in a brittle
failure such as buckling. It is of importance to investigate the limitation of a
slendeness ratio in use for the future design of such a slender structure.  On the
basis of these discussions, six cases are chosen as parameters including a short
column case without considering geometric nonlinearity and a very long column
case up to over 200.

(3) Reinforcement Ratio

In the current ACl code®, area of longitudinal reinforcement for
compression members are required to be not less than 0.01 nor more than 0.08
times gross area of cross section.

As a practical example, Pasco Kennewick bridge's! has about a 1.5% rein-
forcement ratio ( Pg=(As+A's) /Ag). And the experimental test specimens by
Iemura alt.'?, which have been conducted for the study of seismicsafety of a cable
stayed bridge tower, have 1.27 and 2.25% reinforcement ratios.

Reinforcement ratios of Pg=1.5 and 3.0%, which are employed in the
present study are considered to be in the practical range in reference to above

values of cable stayed bridge towers in the moderate or high seismic zones.




(4) Gravity Load (Axial Load)

It is recommended in the ACI code? that design axial load ¢$Pn of
compression members shall not be taken greater than the following value.

For nonprestressed members with spiral reinforcement,

¢ p,=0.85[0.85Fc (Ag-As) +fyAel e (4.1)

Now, assuming ¢ = 1.0 and fy /f'c = 10 and dividing both side of Eq. (4.1) by Agf'e.

Pn

- =0.85[0.85(1-pst) + 10pst] =0.85[0.85 + 9.15pgt]  «eoveeeeeee (4.2)
gle

where Ag is a gross area of section and pst is total area of longitudinal
reinforcement divided by Ag.

If considering reinforcement ratios, pg=1.5 and 3.0% provided in the
previous section, the right side of Eq. (4.2) Pn/Agf'c is given as 0.84 and 0.96. High
axial load may cause a brittle failure of structure under seismic load and may lead
to poor ductility design. On the other hand, the usage of high axial design load is
cost effective.

Based on the above discussion, a relatively wide range of gravity loads
Oo/f'c=0.1, 0.2, 0.4 and 0.6 are employed as the present parameters. This would
cover a sufficient range to provide effective information for ductility and cost
effective design.

(5) Concrete Creep

Concrete creep may bring significant influence on geometric nonlinear
hehavior of structures.  Time dependent-deformation-increase enlarges the
secondary moment. With an increase in axial load and in slenderness ratio, the
above influence becomes large. In the present study, the creep deformation is
assumed to take place under gravity load, but not under lateral load since the

duration time of lateral load is far less than that of gravity load. In order to



evaluate the influence of creep deformation on the secondary moment behavior
and the ultimate capacity, both cases with and without considering creep effect
will be analyzed.

The following creep function is employed assuming no temperature
dependence. |

Ct, t-t', T) =Za(t) [1-et0ter)] e (4.3)

Coefficients a(t’) are given corresponding to the ACI Committee 209
recommendation'”,

a(t)=a(t)) (t'/t,) 018, t =28days e (4.4)

In the present study, however constant coefficients are assumed as

follows

a,(t') = as(t)) = 0.35Cu{ty), as(t) =0.3Cu(ty)

3
(T at)=Culte’)) e (4.5)

f=1

Assuming the follows about the ultimate creep such as
Culto)E,=2.0 e (4.6)
Substituting Eq.(4.6) into eq. (4.5),

2 2
a;(t') = a,(t) = 0.35-—E— , az{t)= 0,3-E—- ............... 4.7
i {

(6) Cyclic Lateral Load

It must be of great significance to predict a hysteretic behavior under
cyclic lateral loads for a seismic design performance. A number of studies have
been so far conducted by many researchers on this hysteretic behavior of short
columns under seismic lateral loads. Meanwhile, there have been very few

studies on this behavior of a slender column. In the case of a cable stayed bridge




tower with relatively large slenderness ratio, geometric nonlinerarity can be
considered to affect its behavior.

As a simple example, the following discussion will be given about the
single column behavior under a cyclic lateral load combined with a constant axial
load. A moment displacement relationship between base moment and lateral
displacement of top is illustrated as the dotted line in Fig.4-3a. Considering the
linear relationship between secondary moment Mg’’ and displacement § due to a
constant axial load, the primary moment by lateral load and displacement
relationship, Mg'-§ is shown as the solid line. In Fig.4-3b and 4-3c, similar
relationships for the tri-linear model under a constant axial load and a bi-linear
mode! under a varying axial load are shown as well. It is obvious that the
hysteretic characteristics of columns subjected to cyclic lateral loads may be
different dependent on geometric nonlinearity.

The following is a discussion about absorbed energy using the bi-linear
type of Fig.4-3a, where absorbed energy is defined as the area enclosed by load-
displacement skelton curve.  Fig.4-4 shows the relationship between the
equivalent lateral load H and the top displacement § , where H is given as a total
base moment Mg divided by 1.

The area surrounded by points A, B, C and D in the figure is given

88-0a
A= JACOSO = 2 (8a-8a)  eeeeeeeeeenn 48
C0os0 y(Os-0a) (4.8)

where, Hy is independent on axial force since it is defined as an equivalent
lateral load due to zero displacement.

Based on the above description, it can be said that the shape of hysteretic
curve is dependent on the axial load, but the absorbed energy is not.

In the present study, both monotonic and cyclic lateral load analyses are
needed to be carried out in order to evaluate the cyclic load effect on hystertic

behavior and ultimate capacity.
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4.4 Applied Gravity Load

A bridge tower has as a major function to support live and dead load from
girders through supporting cables. Support distribution is different due to cable
stayed system (Fig.4-5). In the fan system, cables are supported at the tower top
and as a result uniform axial force acts along columns. On the other hand, in
the harp or modified fan system, cable supports are distributed along the columns
and the column axial force varies as a result.  In the present study, it is assumed
that dead and live load from girders including tower dead load itself act on the
tower top together as a vertical concentrated load. Uniform axial force
distribution 'along columns seems to provide greater influence of geometric
nonlinearity on the behavior.

In the following analytical study, the gravity load effect described above
will be handled as a constant average stress 0g/f'c = Ng/Agf'c.

Flexural stress can occur at both ends of columns in a fixed base frame type
tower such as present structure even under a symmetric gravity load. This flexural
stress will be encouraged when deformation increases with time. So-called creep
buckling of a column is the failure which is caused by further increase of secondary
moment due to this time dependent deformation. This type of failure may occur
when slenderness ratio or axial load becomes large.

In the present study, two types of load combination as shown in Fig.4-6
will be considered to evaluate time dependent effect of a gravity load.

® Type (a) : Time dependent gravity load + Lateral load

Gravity load itself does not vary but does internal force due
to concrete creep. This case corresponds to realistic load
combination of seismic lateral load and stational gravity load.

@ Type (b) : Constant gravity load + Lateral load

This case is the neglection of time dependent effect of gravity

load and is necessary to evaluate its effect.




%&%&

Fig. 4—5 Cablestayed bridge systems; top, pure fan system;
centre, harp system; bottom, modified fan system
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Fig 4-6 Load Combination Models



4.5 Applied Lateral Load

The structural behavior of a tower under seismic lateral loads
perpendicular to longitudinal axis is focused neglecting interaction with
supporting cables.

It is difficult to define this lateral load distribution since it varies due to
tower shapes and flexural stiffnesses. Indeed, for instance it may be different in
the nonlinearrange.

In the present study, this lateral load distribution is respectively
determined based on an elastic modal analysis for a tower with each
configuration and slenderness ratio. Some results are shown in Fig.4-7. Smaller
slenderness ratio cases (I/r = 35) show like triangular-shape distribution for smaller
W/H as the result of dominant overturning moment behavior, and like bulging
shape for larger W/H due to more local flexural deformation being involved. In
the very slender case with 1/r =208, this local flexural deformation appears more
and a paraboloidal distribution is obtained as the resuit.

By assuming that this elastic lateral load distribution is constant even in
the nonlinear range, an incremental load will be proportionally applied .

The present study concerns the hysteretic behavior under static cyclic
lateral load, not that under dynamic lateral load.

Two cases, i.e. monotonic and cyclic load analyses are to be carried out.
The former case is not only for investigating the essential behavior of the present
tower under combination of gravity and lateral load but for estimating the cyclic

load effect.

4.6 Material Constants
Material constants utilized in the analysis are as follows
(1) Concrete

f'' =f'c =6000psi



P=P/Pmax
(a) W/H=0.2 Prmdx O
4 — ATC Code
A A —=Modal Analysis
o AHB (1st Mode
L/r=35 w 2/r=208 )
(b) W/H=04
P=P/Pmax
(c) W/H=0.6
7
£2/r=208

Fig.4-7 Seismic Lateral Load Distribution of A-Shaped Tower
(W/H=02,04,06, 4/r=35,208)



Ei=33W'SV{'c=4.42 x 10 psi
(W = 1441b/ft? based on E; = 57000V psi)
€, =0.0038
f'v=7r,VWF =581 psi
(7¢=0.625 basedonf'y=7.5Vf,
Creep Constants :
a;(t')=a,(t')=0.1586x 10
as(t')=0.1359x 106

All the materials of concrete are assumed as constant and independent of

time. And noshrinkage is assumed.

(2) Reinforcement Bar

fy= 60 ksi (Grade 60 steel bar)
Es = 29000 ksi - ggy = 0.00207
E's= 290 ksi (Monotonic loading)

= 0 (Cyclicloading)



5. Nonlinear Behavior against Monotonic Lateral Load Combined

with Short Term Gravity Load

5.1 Analytical Parameters

Analyses are carried out considering all the parameters described in the
previous section since they are essentially geometric nonlinearity related factors
when the present model is subjected to gravity load combined with lateral load.

Adopted parameters are as follows :

1) Configuration factor ; W/H =0.2, 0.4 and 0.6 (3 cases)

2) Slenderness ratio ; I/r=35,69, 104, 156 and 208 (5 cases)
No

1

=0.2,0.4 and 0.6 (3 cases)
ciig
where 0g is an average axial stress of columns under gravity load

3) Gravity load ; gg/f'¢=

given by a concentrated load at top and is defined by axial force Ng
divided by a concrete nominal strength f'c and by the area of column
cross section Ag.

4) Reinforcement Ratio ; pg=1.5and 3.0% (2 cases)

5) Geometric nonlinearity ; for its estimation on ultimate strength,
analyses without considering geometric nonlinearity are additionally

conducted for the only pg = 3% series.

Therefore, in this chapter, analytical results based on a total of 120 cases
(3 x5x 3 x2) due to from 1) to 4) will be basically discussed including short column

analyses due to 5).

5.2 Influence of Geometric Nonlinearity on Ultimate Strength

Both analyses with and without considering geometric nonlinearity are



carried outforp = 3% series to evaluate its effect on ultimate strength.

Non-dimensional ultimate load (Q /Q,°) - slenderness ratio (I/r) relations
are shown in Fig.5-1 for the cases of og/f'¢=0.2, 0.4 and 0.6, where Qu is an
ultimate load based on the analysis with considering geometric nonlinearity and
Q° without that. This value varies from 0.99 to 0.25 for g¢/f'c = 0.2, from 0.99 to
0.03 for ag/f'c=0.4 and from 0.98 to 0.12 for gg/f'c=0.6. Asa slenderness ratio
increases, the value decreases dependent on the geometric nonlinearity effect.
Such a tendency will be dominant with increases of gravity load. Lessreduction is
observed for smaller configuration factor of W/H, but not significant differences
are observed among these values.

In the case of 0g/f'c=0.6 and l/r=208, a larger value is obtained than
expected since the negative overturning moment by a concentrated gravity load
on top is encouraged so as to cancel the lateral load moment. This phenomenon
will be further discussed later. In general, the influence of geometric

nonlinearity appearsin the range of l/r larger than 69.

5.3 Ultimate Strength
Normalized ultimate strength-slenderness ratio relationships are shown in

Fig.5-2 for gg/f'c=0.1 and in Fig.5-3 for og/f'c=0.6, where the vertical axis is
defined as an maximum average shear stress at base section divided by a
conventional uni-axial compressive strength of concrete as follbws.

Q. : Ultimate total lateral load given at base

Ty . Maximum shearstre‘ss at the base section

T,=QuCOSO 2bh b :sectionwidth h:section height

f'c : conventional uniaxial compressive strength of concrete

T, /f'c : normalized ultimate strength

QuCOSso

Tafffem To T i @2 T S S i) (5.1)
<
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Ultimate strength decreases as a slenderness ratio becomes larger.  This
value seems to be inversely reduced in proportion to a slenderness ratio. This can
be theoretically explained by considering a typical ultimate equlibrium as a short
column in the foliowing.

Final failure mechanism with yield hinges at both leg ends is assumed as
shown in Fig.5-4. It is also assumed that ultimate strength is determined by
concrete crush of cross section-A (Node-23).

Equilibrium of vertical, horizonta! load and overturning moment can be

written as followings.

Py - (Na¥+Ng") xCOSO-(Qa¥- Qs") xSINB=0  coeeveeremeneeee (5.2)
Qu + (Na¥ - Ng¥) XSING - (Qal +Qs¥) xCOSB =0 weeeeeneeeeeenees (5.3)
Qu X He + (Na¥ - Ng¥) x W/2 x COSO + (Qa¥ + Qs¥) X W/2 x SING

S (Ma¥+Mg¥) =0 e (5.4)

where, Qq is the total lateral load at ultimate state and Hc is the height from base
to the applied centroid of that total load.
From eq.(5.3), the following equation is derived.

(Qa¥ + QaY) ={Qqu +(Na¥ - Ng¥) x SINB}/COSG ................. (5.5)

Substituting eq.(5.5) in (5.4), the equation for the lateral load capacity is
obtained.
Qu X He +(Nal - Ng¥) x W/2 x COSO + W/2 x {Qu + (Na¥ - Ng¥) x SINO}
xtanf - (Ma¥+Msg¥) =0

Accordingly,

Q 2 % (Ma¥ + Mg¥) + W x (NgU-NaY) x (COSO + SIND x tanb) (5.6)
4 2 X He + W x tan9 ’




Hc

Fig.5-4 Applied Loads and Reactions at an
Ultimate State

AN(Comp.)

Fig.5-5 Stress Path of Base Section




Therefore, if flexural moment and axial force at ultimate state are such as
shown in Fig.5-5, the ultimate lateral load capacity can be predicated by eq.(5.6)
Substituting the following non-dimensional forms in eq.(5-6),
M, =fcbhimat N, "=fcbhna"
Mg" = f'cbh?mg" Ny =fcbhng
2f'ch? f'cbWCOS6 + SINBtand

Q,= (maY + mg¥) + X (Ng¥-NaY)h
2H¢ + Wtan0 2H¢ + Wtano

Dividing both sides of eq.(5.7) by A =2bh/COS 8 with considering H¢ = aH,
H=£-COSO and W = 2¢-SIND , the following equation for an average strength, Ty is
finally derived.

Ty (mA“+mg“)x_b_+ SINBtan6(1 +tan0) 1 1
f. 2a+tan®) °  2(a+tan®) 5

Y o SN (5.8)

From above equation, the ultimate strength is inversely proportinal to a
slenderness ratio.
A non-dimentional ultimate strength - slenderness ratio relationship under

uniformly distributed lateral load is shown in Fig.5-6 as an example.

With increase of configuration factor for W/H, the value increases because
of enlargement of overturning moment resistance. However, a significant
difference is not observed among these values in the range of slenderness ratio of
I/r larger than 104 since of less variation of axial force compared with that of
flexural momentin legs. In other words the contribution by axial force becomes
independent of the slenderness ratio in that region.

As a gravity load level increases, these values generally become smaller

except that of largest slenderness ratio of oo/f'c=0.6, apparently the most
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dominant case of geometric nonlinearity. Unexpectedly obtained is a relatively

larger strength in I/r =208 than in I/r = 104 case based on the following fact.

The deformation modes under gravity load and under lateral load are
shown in Fig.5-7 for the case of l/r=208 and of I/r =104 respectively (W/H=0.2,
oo/f'c=0.6 and pg=3%). Observed in the former case is the so called pinching
mode that lateral deformation of columnsin the opposite direction is forced by an
additional external moment due to a concertrated gravity load as soon as lateral
load being applied. The left side columnin which axial force increases in tension
will be soon recovered to normal mode under increasing lateral load, while notin
the counterpart (right side column).  As the result, a flexural moment in the left
side column removes to positive, but yet negative in the right side asshown in M-N
relationship of Fig.5-8. Such an additinal overturning moment by gravity load is
likely to contribute to increase of loading capacity. However, above behavior is

not observed for the I/r = 104 case which behaves in a normal deformation mode.

5.4 Failure Mode
Failure status at the several representative sections and the failure
mechanism as an entire structure are shown in Table5-1 and 5-2 for each pg=1.5
and 3.0 percentage series.
A failure mode shown in the table is defined as follows (see Table.5-3);
eRank 1 : more than 3 yield hinges created including that of bottomleg
section in the action of tensile axial force.
eRank 2 : atotal of 2 yield hinges created including that of above section.
e®Rank 3 : either one yield hinge created atthe above section or concrete
compressive failure at bottom leg section, counterpart of the
above portion.

®Rank B : buckling failure in an inelasticregion
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Fig.5-7 Deformation Mode (W/H=0.2 , Jo/fc =0.6, Pg=3%)
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with Pinching Mode

® : Yield Hinge x : Concrete Crush
Rank Failire Mode
AN D
= | ) A
B 7/> Inelastic Buckling
EB / ,> Elastic Buckling
Inelastic Buckling
B with Pinching Mode
Elastic Buckling
EB’

Table. 5-3 Failure Mode




®Rank EB : buckling failure in an elasticregion
®Rank B’ or EB’ : inelastic or elastic buckling failure accompanied by an
pinching mode explained in the previous section.
In the above definision, 'Yield Hinge' is assumed to be created by a tensile

yielding of rebar..

More ductility can be expected in smaller failure mode rank which creates
as many yield hinges as, or close to collapse mode of structure in flexure.
Therefore, a brittle failre is potentially caused for rank 3 and for buckling failure
such as rank B or EB and B  or EB’, which are not recommendable from a ductility
design point of view.

Some results with intermediate slenderness ratio present no convergence
in numerical solution in spite of no occurence of crush after rebar yielding.

It is possibly considered that a convergent solution is not reach during
interation for unbalanced force because of a relatively rapid failure appearance by
concrete crushing at Elem-22.

Furthermore, there are some cases which reach failure without any
yielding and crushing after some or no crack occurence especially for larger
slenderness ratio cases. Even when fairly small load increments are intentionally
applied near ultimate load, deformation suddenly increases without any
appearance of yielding and crushing followed by divergence of solution. Based
on these facts in the numerical solution, this type of failure can be defined as
buckling.

In the practical range of slenderness ratio less than 104, it can be said that
the cases of gravity load of og/f'c less than 0.2 indicate Rank 1 Mode in general,
but some of them Rank 2 mode especially for rebar ratio of pg=3%. And a brittle
failure may be encouraged with such as rank 2 or 3 for gg/f'c =0.4 and rank 3 for

OO/f’c =0.6.



In the range of slenderness ratio larger than 156, extremely brittle
buckling failure seems to occur even with low gravity load, particularly elastic

buckling with high gravity load.

Low gravity load cases of gg/f'c =0.2 indicate yielding of tensile rebar of
Elem-1, predominant section in axial tension due to overturning moment, prior to
compressive yielding or crushing of Elem-22, counterpart of Elem-1 except for
large slenderness ratio cases. And compressive yilding of rebar or concrete
crushing occurs afrewards at Elem-22 for relatively small slenderness ratio, and
additional tensile yielding of rebar at that section for large slenderness ratio. The
increase of configuration factor,W/H provides slightly dominant flexural moment
behavior with less variation of axial force, which encourage tensile rebar yielding
of Elem-22. With decrease of gravity load and of a slenderness ratio, a yield
hinge tends to be produced even at mid part legs.

For larger slenderness ratio, especially larger than 156, highly possible is a
buckling failure. And even an elastic buckling failure may occur if the gravity
load is large. In the case with the largest slenderness ratio of I/r =208 and with
high gravity load of ag/f'c = 0.4, possibly observed is a buckling as well with the
pinching mode previously described.

In general, it can be said that a ductile failure is not obtained for gravity
load of og/f'c larger than 0.2 and that no significant differences of failure mode by

a configuration factor, W/H and by rebar ratio, pg are observed.

5.5 Moment Magnification Factor
It is one of objectives to evaluate the applicability of the moment
magnifier method specified in the current design code® to a bridge tower such as

the present structure.

In order to discuss the moment magnification factor, it is appropriate to



focus on the forces at the bottom leg section such as Node-23 under a large
compressive axial force since analytical results provide that section as critical in
failure.

A typical stress path at that particular section under lateral load combined
with gravity load is shown in Fig.5-9, where the solid line shows a nonlinear stress
path, while the dashed line, linear path is based on a conventional elastic analysis.
(M1, N7) and (M,&, N,®) are the stress points respectively for the nonlinear and the
linear analysis under gravity load, and (Mg,N2) and (Mg?, N2¢) under ultimate load.

M, and M ¢ are the absolute values of that moment under gravity load,
while M_and M ¢ are the differences under gravity load and under lateral load
respectively.

The gravity load behavior up to N=Ni;=N;® shows that the nonlinear
moment, M is less than the linear moment, M:® because of stress relaxation based
on the stiffness reduction of the botom leg section.

The subsequent linear moment, M ¢ is calculated so that an axial force, Ny
equals the ultimate value, N; in nonlinear analysis. In the current design code, a

magnified moment is specified by following equations.

MC=6bM2b+85M25 ................. (5.9)
where
C
8p = m =10 e (5.10)
C
8 = T =10 e (5.11)
L Py
P,
2El

Pc=
(kly?)
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Fig.5-9 A Typical Stress Path at the Bottom Leg Section
(Node-23)



In the eq.(5-9), the first term is the moment for frames braced against
sildeway and the second is for frames not braced against sideway. Inthe present
study, the comparison between analytical and design values calculated as a braced
frame both under gravity and lateral load, will be carried out since the both legs
are connected at top with to other and the prediction as an unbraced frame may
produce a too conservative value. Therefore, the second term in eq.(5.9) will be

neglected in the present study.

(1) Design Moment Magpnification Factor
The moment magnification factor as a design value will be calculated as
follows.

The flexural stiffness in eq.(5.12) is specified as

Eclg
5

1+ Bd

(

) + Eglse

where Bq can be assumed as zero because the gravity load moment is far smaller
than that of a total moment including lateral load moment. Ineq.(5.12), ly=1,is
a full length of the leg and k =0.625 is based on the assumption as a braced frame
in which f,=0 at a fixed end and f_=1 at a top end are to be used??.  The
assumption, fp =1 is based on that of a column laterally supported and
rotationally restricted by each other with the same flexural rigidity El/1.

In the eq.(5.10), a factored axial load, $Py is to be equal to the analytical
values, N1 = N;¢ for a gravity load and N2 = N2® for a combined load respectively as
shown in Fig.5-9. ¢ =1 as a strength reduction factor is assumed, which can be
rather comparable to an analytical result with no reduction of material strength.

Additionally assumed is Cm =1 since the member of the present structure has

transverse loads between supports.




—70—

(2) Analytical Moment Magnifiction Factor
An analytical moment magnification factor is to be calculated on the
following basis.
Based on the previous assumption of a braced frame ,eq.(5.9) can be
rewritten referring to the Fig.5-9 as
My =5bgM1‘-‘,' Mz =08snM28 e (5.14)
Moment magnification factors for the gravity and the combined load can

be estimated respectively by rewriting eq.(5-14).

V1
§ L s (5.15)
bg Mq®

M:
5. = e (5.16)

In the present model, the gravity load moments, M1 =M_and M1 =M ®are
both far smaller compared to the combined load moment M. and M.®.
Therefore, M2 and M;® can be almost equal to M, and M, ® respectively.

In the following section, a comparison will be carried out between the

design value expressed by eq.(5.10) and the analyticai values by eq.(5.15) or (5.16).

(3) Moment Magnification Factor 8pg for Gravity Load.

The moment magnification factor-slenderness ratio relationships for the
bottom leg section are shown in Fig.5-10~5-11.  As shown in the figures, the
values of 8pg are all less than one and the reduction becomes larger with increase
of I/r and with that of og/f'.

The governing factors for moment behavior under gravity load are 1)
stiffness variation along legs and 2) secondary moment effect.

For small slenderness ratio, less flexural moment reduction is obtained
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dependent on less flexural stiffness reduction near the column ends. The moment
reduction, in other words the value of 8pg less than one obtained for smaller I/r
region is corresponding to this behavior as shown in the Fig.5-12a.

On the other hand, a secondary moment becomes larger dependent on
deformation. As shown in Fig.5-12b, lateral deformation increase near the
intermediate part of legs makes flexural moments of that part larger and end
moments smaller.  As a result, the value of 8pg decreases dependent on the
slenderness ratio, I/r and the axial load, og/f'c, . Subsequently more reduction is
obtained for the large slenderness ratio region as a result.

A configuration factor, W/H does not provide any sigificant difference on

the value.

(4) Moment Magnification Factor 8p for Combination of Lateral and Garvity
Load

The moment magnification factor-slenderness ratio relationships are
shown in Fig.5-13~5-16 for each gravity load case with rebar ratio of pg=3%.
Each solid line is design value, while round marks show analytical results including
buckling failure case for reference. In general, both design and analytical values
as expected become larger with increases of the slenderness ratio and that of the
gravity load. In addition, design values are generally on the conservative side

except in the particular region, small l/r.

Follows are some of noticeable phenomena observed in these figures.

e!Influence of configuration factor

That the design value generally becomes smaller as the configuration
factor of W/H increases for all gravity load cases, is easily realized by the fact that
the variation at a factored axial load, Py in eq.(5.10) becomes smaller with

increase of leg width of W. This trend, however is not necessarily observed in the
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Fig.5-12 Flexural Behavior under Gravity Load
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analyses, i. . the above mentioned is true in lower gravity load cases with oo/f'c=
0.2, but not in higher cases.

The stress paths on the bottom leg section are shown in Fig.5-17 and 5-18
for W/H=0.2 and 0.4 cases respectively with same gravity load of 0¢/f'c=0.4
(I/r=35 and pg=3%). The stress path of the Node-23 is slightly above the elastic
line in the W/H =0.2 case , but almost on that line in the W/H =0.4 case. Slightly
larger axial force variation is observed in the former case than in the latter, and
this phenomenon appears simultaneously on the Node-1 stress path under
incremental tensile axial force.

The contribution of each moment and of axial force at a bottom leg are
represented through the lateral loading stage as shown in Fig.5-18, where M is
the resisting overturing moment due to axial force with neglection of lateral shear
force, and M. the total internal moment as summation in equlilbrium with the
external moment, Mext excluding gravity load participation. These moments are
all expressed in non-dimensional form divided by an external moment, Mext and
similarly is an external lateral load, Qext divided by the ultimate load, Q,. Aslight
difference between M. and Mext is likely caused by no consideration of the lateral
shear force at the bottom section and of the secondary external moment due to a
gravity load.

The main concern in this discussion is the difference of a resisting
overturning moment, M between W/H=0.2and 0.4. The former case (solid line)
presents a slightly larger increase around the ultimate region than the latter one
(dashed line). Thisimplys that the contribution of a resisting overturning moment
becomes larger and on the contrary, that of local end moment smaller in the
former case. This can be the main reason why a smaller moment magnification

factor of analysis is obtained in the smaller configuration factor case.
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eMoment redistribution effect in small slenderness ratio range

It was previously described that design value generally provides a
conservative value. However this is not necessarly true in the relatively small
slenderness ratio range, especially I/r =56, in which an analytical value larger than
the design value is obtained.  The main reason is that the flexural moment at
Node-23 is enlarged for moment redistribution accompanied by axial force
variation. »

The stress paths and contribution of moment are shown for two different
axial load cases of g¢/f'c=0.4 and 0.2 (w/H=0.2, I/r=36 and pg=3%) in the Fig.5-
20~5-21.  Asshown in Fig.5-20, the stress vector at Node-1 drops a bit sharply
after cracks and moves downwards along yield surface.  Such a weakened
moment of that section must be compensated by a increasing moment at the
counterpart, Node-23. The Fig.5-21 shows a sharper increase for 0g/f'c = 0.2 case
than the former one for og/f'c =0.4.

An analytical moment larger than the design value is likely encouraged
with the decrease of og/f'cand that of W/H. Therefore, in case of a structure such
as the present bridge tower in which a frame action is more expected, influence of
moment redistribution must be considered rather than the secondary moment
effect especially in the small slenderness ratio region less than 56 with gravity

load, og/f'c less than 0.2.

eHigh gravity load effct

Analytical values of §,, less than one are presented for higher gravity load
cases with small slenderness ratios as shown in Fig.5-15 and 5-16 . W.ith increase
of gravity load, the bottom section (Node-1) bears more flexural moment under
high axial force. In addition, axial force contribution on the resisting overturning
moment becomes greater. The flexural moment at Node-23 as a result is reduced

less than an elastic moment as shown in the Fig.5-20.
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®Buckling Failure

Fig.5-22 represents several stress paths due to buckling failure. The type-
A corresponds to a intermediate severe case in this failure such as 0g/f'c=0.2 and
I/r=208 or 0p/f'c=0.4 and I/r=156 case.  As shown in the figure, the actual
ultimate stress cannot be predicted since the drastic failure appears prior to
reaching the failure surface.

The moment magnification factor is temporarily evaluated based on
stresses in the stable condition directly prior to failure. Therefore, the values in
Fig.5-13 5-16 corresponding to this failure case are shown for refernce.

The type-B generally represents a fairly severe case such as 0¢/f'c=0.4 and
I/r=208, or gg/f'c=0.6 and I/r =156 case. The corresponding values are excluded
in Fig.5-13 5-16 since the negative value obtained for &, in addition to no
possibility of accurate stress evaluation in ultimate. Moment contribution by
each component is presented in the Fig.5-23 as well as previously shown.
Negative resisting overturning moment unexpectedly appears with the opposite
action of axial force in each bottom leg.

The type-C represents the most severe case in geometric nonlinearity with
0g/f'c=0.6 and l/r =208. The corresponding values are also removed in Fig.5-
13~5-16 because of the negative value obtained asin the former case. Asshown
in the Fig.5-8 the flexural moment at Node-1 moves from the negative to the
positive side under lateral load increasing, while that at Node-23 remains
increasing monotonically on the negative side and is strongly affected by a
negative external overturning moment due to gravity load. The final failure of

this type presents B’ or EB’ as previously described in the section 5.4.
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6. Nonlinear Behavior against Monotonic Lateral Load Combined with

Sustained Gravity Load

6.1 Analytical Parameters

It was described in the previous chapter that a loading capacity is increased
by a larger resistance against overturnig moment with increase of leg width. No
significant differences of substantial behavior except loading capacity, however,
were observed between different configuration factors of W/H.  Therefore,
parametric analyses will be carried out on the particular cases of W/H =0.4 with
several parameters of pg, 0¢/f'c and I/r as shown in Table6-1. The influence of
creep deformation due to gravity load in the inelastic range should be particularly
noted. This influence could be of importance as the axial load and slenderness
ratio become larger. The slenderness ratio range up to l/r=156 as a parameter is

considered practically sufficient.

6.2 Behaviorduring Sustained Gravity Load

The Fig.6-1~6-6 show the bottom leg moment under gravity load followed
by its time dependent variation, where a nondimensional form is provided for the
gravity load coordinate divided by its instant target value. The greater nonlinear
behavior obtained under instant higher gravity load is considered to be caused by
the moment reduction due to a concrete plasticity at the bottom of the legs. This
moment, for the smaller slenderness ratio, also indicates an ascending variation
with time since the flexural moment is enlarged because the structure is entirely
shortended under gravity load. This moment, however declines as the gravity
load of ag/f'c and slenderness ratio of I/r become larger respectively. The reason
is that the stiffness of the bottom leg is relatively reduced by creep deformation.

The Fig.6-7 indicates column moment distributions for slenderness ratios of

I/r=35 and 156. The former case shows a uniform increase of moment, while the
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latter shows more moment increase at the mid-part and less at the bottom due to
a larger secondary moment effect and a change of flexural stiffness along the leg.
The moment magnification factors for gravity load shown in Fig.6-8~6-9
indicate that these factors are generally encouraged by creep deformation, but
notin the case of larger ag/f'c and I/r values in comparison with short term gravity
load cases as explained in the Fig.6-7. However it should be noted that these

moments due to gravity load are far smaller than those due to lateral load.

6.3 Creep Effect on Deformation Characteristics during Lateral Load

The load-lateral dispalcement of the mid-height (Node-7) and the load-
concrete mechanical strain of the bottom section (Elem-22) are shown in Fig.6-
10~6-13 for small axial load cases. As a result of stress relaxation' in the concrete
and a corresponding compressive stress increase in the rebar due to creep
deformation during gravity load, a crack occurence and a stiffness reduction are
encouraged in the early stage of lateral load applied for the L+H case in
comparison with that for the S+H case. However, no significant difference is
‘observed of both loading capacity and maximum displacement as well as concrete
stress behavior of the bottom section.

Similar relations are shown in Fig.6-14~6-19 for the largest axial load case
0o/f'c=0.6 with I/r =108. Asa concrete creep deformation becomes larger under
gravity load, concrete is unloaded back to elastic stress state as shown in Fig.6-
17~6-18, while a considerable amount of compressive stress is imposed in the
rebar to compensate for this (Fig.6-19). As the result, initial stiffness in the load-
displacement relation becomes fairly larger followed by a considerable stiffness
reduction due to concrete cracks and lower loading capacity due to compressive
yielding of the rebar than in the case of S + H (Fig.6-14 and 6-16).

6.4 Creep Effect on Moment Behavior during Lateral Load

The load-axial force and the load-moment relations at the bottom leg
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sections (Node-1 and -23) are shown in Fig.6-20~6-21 for the case of oo/f'c=0.1,
pg=1.5%, and I/r=104. At node 1 where a tensile axial force acts, the
postcracking moment increase is weakened followed by less increase after rebar
yielding. Atnode 23 (Fig.6-21), meanwhile, in which axial compressive force acts,
the moment increase is larger to compensate for the smaller moment at opposite
side, node 1, and then increases with constant gradient. The load-moment
relation for the I/r =35 case indicates a larger axial force variation (Fig.6-22).
There is no significant difference between the result of L+H case with creep
influence and that of S+ H case. Similar results are shown in the Fig.6-23~6-24
for the largest axial load case of 0p/f'c=0.6. Less moment increase is observed for
the L+ H case in the early stage, because of stress redistribution influence and
then yielding of rebar and cracking cause it to be larger across the curve of $ +H
case. It should be noticed that the axial force variation is remarkably small as
compared to the small axial load case of 0¢/f'c=0.1. In other words, the moment
variation becomes much larger than the axial force variation. Similar relations are
presented in Fig.6-25~6-26 for the larger reinforcement ratio of pg =3%, in which
little difference is observed between the results of S+H and L+H for p/f'c=0.1
case.

Fig.6-27~6-28 represent the moment magnification factors from these
analyses accompanied by those by the current ACl code, that are calculated based
on the moment of node 23 critical in comparison with that of another node.

Usage of flexural stiffness

Ec Ig
( ) + Eslse

El = vveeseerevnnneenenes (6.1)
1+ Bd

is specified in the design® in which the creep effect is involved as Bq, the ratio of

gravity load moment to combined moment of gravity and lateral loads. A
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=0, however is assumed in the calculation of design value in these figures since
the moment due to gravity load is much smaller than that due to a combination of
lateral and gravity loads.

in the case of lower axial load ,the analytical results provide a higher value
than the design value in the low slenderness region, based on the effect of
moment redistribution previously described that the additional moment is loaded
in the compressive side leg (Node-23) to compensate for its reduction in the tensile
side (Node-1). Such a tendency will be larger with lower slenderness ratio and
with lower gravity load in which the flexural stiffness reduction in the tensile side
is remarkable. These phenomena could be brought on by stress redistribution
based on material nonlinearity rather than geometric nonlinearity.

On the other hand, analytical values less than one are obtained with an
increase of gg/f'c. Less reduction of flexural stiffness at the bottom of the tensile
leg causes less moment redistribution. In addition, another reason could be more
contribution of the axial forces due to the overturning moment.

Some difference is observed between the analytical values of L+H and
S+ H cases for larger slenderness ratios failed by buckling.  Since an analytical
value is defined based on moment at the previous step directly before failure,
some error could be included for a drastic failure case such as a buckling.

Except for the large slenderness ratio cases with the above drastic failure,
the L + H cases provide almost the same results as that of S + H without considering
creep. It is indicated that the predicted moment magnification factor less than
the design value is generally obtained excluding the low axial load and low
slenderness ratio regions and that a larger difference appears with increase of
axial load.

6.5 Creep Effect on Ultimate Strength, Ductility and Failure Mode
Various quantities on the ultimate state are shown in the Table6-1. As

shown in the ultimate strength-slenderness ratio relation of Fig.6-29~6-30, L+ H
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load cases provide almost the same ultimate strength as S + H load cases in wide
range of slenderness ratio for relatively low axial load up to 0o/f'c=0.2. For high
axial loads such as 0g/f'c =0.4 and 0.6, similar results are obtained for both cases in
the low range of slenderness ratio (I/r =35), but some difference occurs as the
slenderness ratio increases because of stronger influence of creep on ultimate
strength.

Table6-1shows y_. /70, the ratio of maximum displacement of a L+H
case divided by that of a S+H case for ductility estimation.  Slightly reduced
values by 80~100% are generally obtained in the lower range of axial loads such
as 00/f'c=0.1~0.2. In the table, the ductility factor 7 max!Ty less than one obtained
with no yielding of tensile rebar is not presented.

Yielding of the tensile rebar at the bottom leg (Node-1) followed by either
a yielding of the compressive rebar or concrete crushing at opposite bottom leg
(Node-23) is the typical failure pattern in the lower axial load case less than 0.2.

Higher axial load cases, larger than gg/f'c=0.4, on the other hand, provide
critical conditions in compressive yielding or crushing.

These failure patterns are almost similar for both L + Hand S + H cases.
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7. Nonlinear Behavior during Cyclic Lateral Load Combined with Sustained

Gravity Load

7.1 Analytical Parameters
(1) Absorbed Energy

The usage of structural members with sufficient ductility is cost effective in
a seismic resistant design. As shown in Table5-1~5-4, the ductility demand does
not occur in the high axial load cases such as 0g/f'c=0.4 and 0.6 with no tensile
rebaryielding showing failure mode rank of 3 or Buckling.

Fig.7-1~7-2 show non-dimensional absorbed energy calculated by an area
of load-displacement curve from elastic up to ultimate for the case of 0g/f'c=0.1
and 0.2 for which ductility design could be possible. The absorbed energy above
mentioned is defined here as an equivalent external work by applied nodal forces.

It becomes difficult to specify the particular nodal"point for the
representativé displacement for absorbed energy estimation because distributed
lateral loads are applied along legs. Therefore, a representative displacement,
8eq will be defined by considering an equivalence with an actual external work as

shown in eg.(7.1) in incremental form (Fig.7-3).

AW = Z[P;A8; = f(ZPi)Aﬁeq ............... (7.1)
A ZP;iA; 7.2)
eq = P .

Useful is the non-dimensional form dividing both sides by tower height, H.

" 2P;AS; 7.3)
AT ST '

As shown in Fig.7-4, a non-dimensional expression with a load axis divided

by section area and f'¢ and with a displacement axis divided by a tower height
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shown in (7.3), makes it possible to compare substantial characteristics of
structures with different dimensions. Finally a non-dimensional form of absorbed

energy is expressed in eq.(7.4).

T
Weq=/[ -;: dreq e (7.4)
<

An absorbed energy decreases in general as a slenderness ratio becomes
larger since ultimate strength, Ty is getting smaller.

The case of low axial load of 0¢/f'c =0.1 and small reinforcement ratio of
pg=1.5% provides a drasticincrease of absorbed energy in the smaller slenderness
ratio region since a fair amount of plastic deformations can be accumulated under
the action of tensile axial force (Fig.7-1 above). This tendency becomes
remarkable for the smaller configuration case with W/H=0.2. However, an
unexpected result is obtained for the W/H =0.2 and l/r=35 case based on the
reason that the opposite bottom leg section (Elem-22) is possibly critical in
compressive failure under a larger variation of axial force.

The larger axial load case, meanwhile, provides a rather smaller absorbed
energy as shown in Fig. 7-1 below with increased ultimate strength, but smaller
ductility and critical in compression failure of concrete.

On the other hand, in case of larger reinforcement ratio with a pg=3%
(Fig.7-2), a larger value is obtained than former case with a pg=1.5% in the entire
region of I/r due to an increased ultimate capacity, but it is apparently limited by
concrete failure particularly in the smaller slenderness ratio region.

Generally speaking, energy absorptoin cap‘ability decreases significantly in
the region of I/r larger than 100 and therefore slenderness ratio usage in that

region is not effective in the practical design .
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(2) Analytical Parameters

Based on the description discussed above, the usage of members with large
slenderness ratio is not recommendable. In that sense, it can be practically
sufficient to investigate cyclic characteristics of structures with a slenderness ratio
~uptol/r =104.

Therefore, the following parameters are adopted for cyclic load analysis as
shown in Table7-1.

Configuration Factor : W/H=0.4

Reinforcement Ratio : pg=1.5and 3.0%

Slenderness Ratio : I/r=35and 104 (i’/h = 10 and 30)

The examples of slenderness ratio used in practice are in the references as
44~69 for Pasco Kennewnwick'®, 74 for East Huntington'¥, 71 for James River
bridge'?, all of which exist between 35 and 104 as parameters adopted in the

present section.

7.2 CyclicLoading

| It is appropriate to investigate a hysteretic behaviour of the present structure
under cyclic lateral load for estimation of its seismic resistant capability.

| A displacement control type load application, as shown in Fig.7-5, is
“adopted based on the yield displacement, 8%¢q defined by a tensile yielding of
rebar at the bottom leg section. Loaded are two cycles at each displacement level
for the 1.5% reinforcement ratio series. Meanwhile, as no influence of a cyclic
number is found on the behavior through above studies as described later, only
one cycle loading for each displacement level is applied with 3.0% reinforcement

ratio series.

7.3 Deformation Characteristics and Cyclic Load Effect

In Fig.7-6~7-8, load-displacement relations are shown regarding the
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equivalent displacement defined by eq.(7.3), the mid-part displacement (Node-7)
and the top displacement (Node-12) for the case of 0g/f'c=0.1, pg=1.5% and
I/r = 35, where each coordinate is respectively provided as the average shear stress
at bottom leg section divided by f'c and as the displacement divided by a tower
height, H.

Based on the definition of section 7.1, the load-equivalent displacement
relationship of Fig.7-6 can represent hystretic characteristic as an entire structure.
With failure directly before reaching 48y, the loading capacity is slightly smaller,
but the maximum displacement is rather larger than the monotonic loading case.
An S-shaped loop exists in the appearance, but a fairly good energy absorption
capability is obtained. An unsymmertric loop shape is observed for the mid-part
displacement (Node-7) as shown in Fig.7-7. The reason for this is '_that the column
member where that node is located has larger plastic deformafion under the
tensile axial force against positive load, but has larger stiffness under the
compressive axial force against negative load. However, an antisymmetric
relationship is expectedly observed for the top displacement (Node-12) because of
the appearance of the averaged behavior as shown in Fig.7-8.

Fig.7-9~7-11 show similar load-displacement relations for larger
slenderness ratio cases with I/r = 104. With failure in the loading cycle around 28y,
a plastic deformation less than the previous series exists because of a smaller
variation of axial force. The ultimate strength and the ultimate displacement are
both similar to the values of the monotonic loading case. It can be said that
comparatively good capability in absorbed energy appears despite the lack of
ductility. Unsymmetric behavior is also observed for the mid-parf displacement
(Fig.7-10).  The top displacement is considerably smaller as shown inV Fig.7-11
because of less overturning deformation compared with flexural deformation
which dominates more in the mid-part of legs.

Fig. 7-12~7-13 show load-equivalent displacement relations for the higer
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axial load case of 0g/f'c=0.2. Both of them fail with an ultimate displacement
around 28eq since the concrete becomes critical in a compressive failure.

The loop shape becomes thin as affected by higher axial load, and the
ultimate strength, ductility and skelton curves are similar to the monotonic
loading case.

In the Fig.7-14~7-17, load-rebar strains at the bottom section are shown
for Py = 1.5% cases. Larger plastic strain is observed in the lower slenderness ratio
case which provide a larger axial load variation and the unloading curve moves
back to origin more as an axial load becomes larger. These phenomenon
correspond to the displacement characteristics discussed above.

Fig. 7-18~7-21 also show load-equivalent displacement relation for the
larger rebar ratio series of pg=3%. As for the pg= 1.5% series, the lower axial
load case with g¢/f'c =0.1 indicates good energy absorption capability, but the
higher case with gg/f'c =0.2 provides less. The concrete becoming more critical in
compressive failure is one of reasons why only about two as a ductility factor is
obtained in the larger rebar ratio case. However, because no considerable
differences of ultimate strength and ductility in comparison with monotonic

loading occur, it suggests that the influence of cyclic load is less.

7.4 Cyclic Load Effect on Moment Behavior
(1) M-N Relationships

Fig.7-22 show the M-N relationships of nodes 1, 8 and 23 for the pg=1.5%,
0g/f'c=0.1 and l/r=35 case. The unloading path becomes different from the
loading one in the region where the axial force moves to tensile side and when
large plastic strain is loaded in tensile rebar with a larger variation of axial force.
These are dependent on the fact that the resisting section stiffness during
unloading becomes different from that during loading if a certain amount of

residual deformation remains due to the existence of crack and rebar yielding.
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(b) Node-8
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Fig.7-22
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For the larger compressive axial force level, similar stress paths are obtained
in general, but in the maximum displacement cycle, a slight difference exists
between loading and unloading paths. The unloding path is below the loading
one, which means a larger moment is imposed during unloading to compensate
for the reduced moment in the opposite bottom leg section .  Such stress path
differences are not observed in the mid-section as shown in the Fig.7-22b because
less plastic deformation is imposed.

Fig.7-23 are the similar M-N relationships for node 23 for different
slenderness ratio and axial load cases. The I/r =104 cases with less axial force
variation provide little difference between loading and unloading paths, and in

other words, impose very little residual strain.

(2) P-M and P-N Relationships

Load-axial force and load-flexural moment relationships are shown in Fig.7-
24 for pg=1.5%, 0p/f'c=0.1 and l/r=35 case. After the large tensile plastic strain
isimposed up to the maximum load of cycle, a resisting moment during unloading
decreases by residual stain due to crack and rebar yielding. Asa result, the P-M
loop shows a different path between loading and unloading, which has already
been described.

The reason why the moment reaches the negative region during unloading
after positive maximum load as shown in the Fig.7-24a, ¢, can be explained as
follows. An axial force variation causes the tensile rebar to recover and reach a
large compressive stress and as a result, momentsign can be chénged. It should be
noted that the moment path could be varied, but axial force path varies very little
under cyclic load. Antisymmetric behavior are expectedly observed between
Node-1and Node-23 (Fig.7-24a and c) and less variation of moment for Node-8.

Fig.7-25 are also added for another case with similar phenomenon.

Although the moment path could be different in the intermediate load region
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under cyclic load, it tends towards the maximum point previously reached and no
significant difference in ultimate stress is observed compared to the monotonic

loading result.

(3) Variation of External Moment

The objective of this section is to investigate the contribution of secondary
moment on a total internal moment.

An external moment can be written as follows accounting for the
component due to geometic change.

M_ =M +AM, e (7.5)

The right side of above equation consists of My based on initial geometry
and an additional moment, AMp based on geometric variation which includes
gravity load contribution in the present model.

Meanwhile, the internal overturning moment at the base is written as

Mint=Ma+Mb+Mn+Mq ............... (7.6)

where M and My, are flexural moments, My, is due to internal axial forces and Mgq
internal transverse forces.

Divide equations (7.5) and (7.6) by an external moment, Mu for initial

geometry.
Mout AMp
O e 1.7)
My My

Mint Ma+Mb+Mn+Mq
Mn Mu

Fig. 7-26 provides the internal moment variation in non-dimensional form

shown in eq.(7.8) against horizontal load. If assuming Mout = Mint,
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Ma + Mp + Mn + Mq AMp
B= =1 4= e (7.9)
My MH

The deviation from unit value of Mijnt/Mu, i.e. p=1 can be thought of as
corresponding to an external moment variation based on geometric change. As
farasa convergent‘ solution is obtained, equation (7.9) should be consistent.

As the deformation becomes larger with increases of load, an additional
moment expressed by the second term in the eq.(7.9) also increases. The reason
why this value becomes larger under cyclic load than under monotoric lood is
based on the hysteretic characteristic in which deformations become larger during
cyclic load as shown in the following :

During unloading, the value moves on the different path from that during
loading since the additional moment, AMp based on geometric change including
gravity load contribution can be relatively larger in comparison with M, because
of the existence of residual deformation when an external lateral load is
decreasing as shown in Fig.7-27b.  On the other hand, directly after loaded in the
negative region beyond origin, an additional moment, AMp remains positive due
to positive residual displacement and its sign differs from first moment M, (Fig.7-
27¢). Accordingly, the value of p becoms less than one in that region. With an
increase of lateral load, the value is recovered to be larger than one on the normal
path. This value , however, is between one to two of perecentage deviation at
maximum load of cycle and is at most two to three of percentage deviation even

in the transient region around zero load.

(4) Moment Magnification Factor

The Fig.7-28~7-29 shows the moment magnification factor obtained by
cyclic lateral load analyses (L + C.H) in addition to the results by monotonic lateral
load analyses (L + H) with and without considering creep effect due to gravity load

(S+H).
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The results of cyclic load analyses are not so different from those of
monotonic load analyses for the extent of 0¢/f'c=0.1~0.2 and l/r =35~104, which
is understandable from the moment behavior explained previously. In case of
I/r =35, analytical values are somewhat above design values because of the
predominance of frame action while in case of I/r = 104, all are below them.

Based on these studies, it can be said that moment redistribution due to
axial force variation should be considered in the region of low slenderness ratio
and that the current design method provides a conservative value in the region of

larger slenderness ratio.

7.5 Ultimate Strength, Ductility and Failure Mode, and Cyclic Load Effect

The ultimate strength obtained by cyclic load analyses are provided in Fig.7-
30~7-31. As shown in Table7-1 of the section 7.1, the reducation is within at
most 5% against the monotonic loading result and therefore, no particular
influence by cyclic load is observed.

The ductility factor also shown in the table suggests a slightly larger value
provided than monotonic loading case for pg=1.5% case and at most 3% less
value for pg=3% case.

Failure patterns show rank 1 mode for go/f'¢=0.1 and rank 2 mode for
oo/f'c = 0.2, which are similar modes to the monotonic loading cases respectively.

Accordingly cyclic load, even if creep effectis included, does not provide any
siginificant influence on ultimate strength, ductility and failure mode as long as in
the regon of low axial load of o¢/f'¢ less than 0.2 and in the region of slenderness

ratio, |/r less than 100.




-156-

0.12 I [ I
2 W/H=0.4 Pg=0.015 oo/fc'=0.1
\
[/p}
[/9}
® 0.08
N
S L
o N Solid Linef S+H Load
&5 0.06 < Small Stay: LFH Logd
° Large Star: L+Cyclid H Load
g
S 0.03 ‘ <
:3 \

\\
0.08 00 50.00  100.00  150.00  200.00 _ 250.00
Slenderness Ratio(l/r)

0.12
0
{ W/H=0.4 Pg=0.019 o o/fc =0.2
a
2 0.09
A *\
E’ N Solid Line: S+H Lodd
& 0.06 Smoll Star. TFH Loéd
" Large Star: L+Cyclig H Load
"CE; )
= 0.03
= *\

0.08 50 50.00  100.00 150.00  200.00 _ 250.00

Slenderness Ratio(l/r)

Fig. 7-30

Ultimate Strength—Slenderness Ratio Relationship(Pg=0.015)



Ultimate Shear Stress/fc'

Ultimate Shear Stress/fc'

0.03 \

-157-

0.12 T I I
W/H=0.4 Pg=0.030 aoo/fc’'=0.1

0.08 %\

N

0.06 \ Solid Linet S+H Load

s>mall Star: L+H Lodgd
\ Large Stdr: L+Cyclid H Load

0.03 \
\

T
0.08 55 50.00  100.00 150.00 200.00  250.00
Slenderness Ratio(l/r)

[~

0.12 I I

;\W/H=O.4 Pg=0.030 oo/fc'=0.2

Solid Linef S+H Load
0.06 Smoll Star. LFH Lodd
\ Large Stqr: L+Cyclig H Load

0.09

AN

~—|

0.08 g5 50.00  100.00 150.00  200.00 _ 250.00
Slenderness Ratio(l/r)

Fig. 7-31
Ultimate Strength—Slenderness Ratio Relatior.ship(Pg=0.03)



-158~
8. Conclusion

Based on the study presented in this report, the following conclusions can
be stated:
(1) Ultimate Strength and Failure Mode

The ultimate strength becomes larger with an increase of the configuration
factor of W/H, because of the predominance of frame action. That action, is
especially effective when a slenderness ratio of column, l/r is less than around 100,
but not when it is larger than that value. With an increase of axial load up to
0o/f'c = 0.4, the ultimate strength also becomes larger. Meanwhile, as an axial
load increases and as a slenderness ratio, l/r becomes larger, a drastic failure tends
to be introduced, especially buckling failure even under low axial load of
0o/f'c=0.1 for 1/r 2 150. Particularly for the go/f'c= 0.4 and I/r = 208 cases, the
unexpected result is that larger ultimate strength is obtained than the smaller
slenderness-ratio case (0¢/f'c= 0.4 and l/r=156) because of the gravity load
moment action remaining during early stage of lateral load so that the
overturning moment by lateral load is cancelled. As the rebar ratio increases,
ultimate strength naturally becomes larger and more stable against buckling
failure, but critical in concrete failure. Generally speaking, however, the rebar

ratio is less sensitive in failure mode.

(2) Ductility and Absorbed Energy

For a lower axial load less than gg/f'c=0.2, ductility can be expectedly
reached to some extent with plastic hinges created by tensile rebar yielding (for
00/f'c=0.1, p=1.8~4.3 and for 0p/f'c=0.2, p=1.3~2.2 both with I/r<100). For
oo/f'c larger than 0.4, less ductility is obtained with rebar or concrete critical in
compression.  With regard to absorbed energy in case of lower axial load case

(00/f'c=0.1), more is obtained for smaller configuration of W/H and for smaller
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slenderness ratio. With an increase of axial load and of rebar ratio, absorbed
energy seems to decline and failures occur with smaller displacements due to
concrete critical in compression. A sufficient value is likely to be obtained for a

slenderness ratio less than 100, but less for that larger than 100. |

(3) Creep Effect on Lateral Load Behavior

Concrete is unloaded in compression during sustained gravity load, while
the rebar is loaded to compensate for it. As a result, a higher initial stiffness is
recovered followed by the earlier stiffness reduction due to crack occurence and
then failure with somewhat lower loading capacity under lateral load when
comparing the case with no creep effect involved. However, in the case of
gg/f' <= 0.2, no considerable difference in loading capacity is obtained, at most
only a two percent reduction especially for I/r= 100. Ductility, on the other hand,
tends to be reduced and a maximum 20% reduction is obtained‘ in comparison
with the case of no creep effect.

Based on above studies, the following restrictions for practical design usage
can be suggested.

® Axial load 0o/f'c at least less than 0.2

® Slenderness ratio, I/r less than 100

(4) Cyclic Lateral Load Analysis

Based on the above proposal, a series of static analyses under cyclic
horizontal load have been conducted with oo/f'c=0.1and 0.2, I/r=35and 104, and
Pg=1.5and 3% as parameters.

The cyclic load analyses considering the creep effect of concrete provide at
most a 5 percent reduction in loading capacity and slightly larger in ductility. This
makes it possible to conclude that there are no significant influences of cyclic load

and creep on loading capacity and ductility as far as design usage of axial load and
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slenderness ratio is restricted in the abéve region.

Load-displacement characteristics provide somewhat pinching shapes for
oo/f'c =0.1 case, but a thin-shape for gg/f'c =0.2 case. In addition, ductility factors
are obtained of 2.2~4.2 for o¢/f'c =0.1 and of 1.3~2.1 for g¢/f'¢=0.2. Therefore,
when considering characteristics of absorbed energy under cyclic lateral loads,
limitation of axial load, gg/f'c less than 0.1 and usage of confined concrete are

suggested for better ductility performance.

(5) Moment Magnification Factor

In comparing current design values with the present analytical results in
regions of gg/f'c less than 0.6 and of I/r less than 200, the cases with small
slenderness ratio of I/r = 35 and with small axial load of og/f'c less than 0.2 present
larger analytical values than design. The main reason is that moment
redistribution takes place between both legs due to axial force variation. And
this phenomenon is more significant as a gravity load decreases and as a
slenderness ratio becomes small.  The current design method, meanwhile
generally provides a conservative value except in the above region. There are no
significant influences of cyclic load and of creep on this factor for the axial load,
og/f'c less than 0.2 and for the slenderness ratio, I/r less than 100 region where the

present structure provides stable failure.
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