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ABSTRACT OF THE DISSERTATION

Stochastic Optimization and Its Applications

in Time-Varying Wireless Systems.
by
Yih-Hao Lin

Doctor of Philosophy in Electrical Engineering

(Communication Theory and Systems)
University of California, San Diego, 2007

Professor Rene L. Cruz, Chair

With the advent of third generation wireless cellular systems, new func-
tionalities are deployed to support dynamic adjustments of system parameters and
operating points. How to effectively manage the resources using these functions
with system state information, such like queue dynamics, packet delay and channel
fluctuation, is very critical to the system performance.

For delay tolerant data, instead of continuously sending it in every slots,
allowing some tolerable delay between consecutive transmissions could greatly in-
crease the chance of encountering better channel states, and helps in achieving

better average resource utilization. In this dissertation, we investigate the optimal



channel-aware scheduling policy for applications concerned with the long-term av-
erage performance (such as average power consumption and throughput, etc.), and
the realization of the policy in various contexts. A broad class of scheduler design
problems can be expressed as optimal stochastic control problems concerned with
the time and ensemble average of controlled processes. In light of this, we devise a
framework for stochastic dynamic control utilizing a mathematical tool, referred to
as Stochastic Optimization. Leveraging the duality approach developed for convex
optimization, we simplify the constrained Stochastic Optimization problem into
an unconstraint one. Furthermore, we develop an online algorithm for solving the
stochastic optimization problem. For a broad class of stationary stochastic pro-
cesses which satisfy a set of mixing conditions, the behavior of the algorithm can
be approximately characterized by a projected differential inclusion. Exploring
the trajectory of the projected differential inclusion, it is proved that the long-
term average of the control variables generated by the proposed algorithm along
its recursive steps converges asymptotically to the optimal one.

To demonstrate the use cases of the established framework, we study the
power-optimized routing problem in multi-hop wireless networks. A distributed
implementation of the algorithm is devised. Applying the same framework, we also
look into the problem of joint source distortion management and wireless downlink
scheduling, in which we aim to minimize the maximum average distortion of the
data requested by each user. The proposed algorithm comes with the properties

of finite receiver buffer occupation as well as the negligible packet-drop ratio.
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Chapter 1

Introduction

With the advance of modem communication theory, it was noticed that
instead of attempting to compensate for the channel impairments, dynamically
allocating resources according to the channel states provides better system perfor-
mance in terms of the average throughput or power comsumption [30] [24] [50].
This new viewpoint of the varying channels founds the basis of this dissertation,
in which we seek the optimal scheduling rule for resource management adapting

to the continuous changes in the channel states.

1.1 Stochastic Optimization

Due to different degree of user mobility and the movement of surrounding
obstructions, the variations of the wireless channel states occur in different time
scales. In this dissertation, we focus on the slow time varying channel so that

the channel states can be accurately measured or estimated. One widely acknowl-



edged approach for describing the slow time scale channel varying behavior is the
block fading channel model [19, p.p. 102], in which the time series of channel
states is represented by a random process {", n = 1,2,3,...}. For designing
an effective scheduling algorithm, the most important question to be answered is
how to address the uncertainties and variations inherent in {£", n = 1,2,3,...}.
From the literature, we notice that many of the channel aware scheduling prob-
lems (e.g. [24] [30] [48] [11]) can be expressed as optimizations with respective to
the time and/or ensemble average of controllable random sequences. For example,
to maintain the expected average rate at 1Mbps over a wireless link using the
minimum average transmit power, the optimal scheduler defines a solution to the

following optimization:

N-1

1
e li - E{ P 1.1
minimize imsup nz_o {P"} (1.1)
L N
bject t lim inf — E{R"! >1 1.2
subject to imin NnZ:O {R"} > (1.2)
R" < ¢(h"P"/n) (Mbps), (1.3)

where P" is the scheduled transmit power at time n, h"™ is the channel gain at time
n, n is the noise power of additive white Gaussian noise at the receiver, R" is the
transmit rate in time n, and ¢(-) is the capacity function of the channel. The use
of limsup and liminf in the above equation is to ensure the existence of the limits.

This type of problem settings are within the scope of Stochastic Opti-
mization, which is an extension to the classical convex optimization with infinite

dimensional control variables. Specifically, unlike traditional nonlinear optimiza-



tion which deals with finite dimensional deterministic variables, stochastic opti-
mization problems work with basic variables representing the time and ensemble
average of randomized control sequences. The generic setting of stochastic opti-

mization problem is displayed in the following form:

N-1

1
C 1i S E{X™ 14
minimize im ]\f.up N 2 {X"} (1.4)
| N
biject t li — E{Y"l <0 1.5
subject to 1m]\§upN nz% {Y"} < (1.5)
(X", Y") € D(EM), (1.6)

where X" € R and Y € R" are control variables, {€"} represents the underlying
random process, and D(£") is a set with its elements determined by £". The
solution to this problem is a policy controlling the value of X" and yn along
the time index n = 0,1,2,...,00. The generic stochastic optimization problem
is investigated in detail in Chapter 2, and a framework for solving the problem
is established via rigorous mathematical analysis. An important class of online
recursive algorithms for solving the optimization are presented in Chapter 2, in
which we demonstrate that the algorithm converges asymptotically to the optimal

solution if {£"} belongs to a particular set of ¢-mixing processes.



1.2 Multi-hop Wireless Networks: Routing, Link

Scheduling, and Power Control

To demonstrate the utilization of Stochastic Optimization in practical
problems, we look into power efficient routing for wireless networks.

Along with the growing interest of ad-hoc wireless network, power efficient
scheduling algorithms has become an important research topic. In [14], the authors
studied the power efficient scheduling assuming fixed wireless channels; in [8], the
authors studied the optimal tradeoff between the average delay and the average
power consumption; and in [48], the authors studied the power efficient scheduling
for a time-varying multi-access network. Each of these works touched a piece of
the ultimate scheduling problem from the perspectives of network routing, power
control, link capacity, and scheduling, respectively. In this dissertation, we seek the
optimal scheduling policy which jointly considers routing, scheduling, and power
control under the time-varying channels.

Usually, wireless devices are short of steady power supplies, hence saving
transmit power is crucial to extending the device’s life time. To address this issue,
we focus on the power efficient routing problems in Chapter 3 and 4, where we
assume the block fading channel model for characterizing the channel variations.
In routing problems, the data originating from a set of nodes are sent to their des-
tination in a stored-and-forward fashion with the assistance of intermediate nodes.

The data traffic belonging to the same source and destination pairs constitute a



end-to-end data stream called flow, and a minimum average rate requirement is
assumed for each flow. Similar to the network flow optimization with determin-
istic capacity constraint [17], the optimal selection of routes in a network can be
expressed as a set of flow rate assignments. A flow rate assignment is feasible if the
average ingressive and egressive flow rates at each node are equal. This requirement
constitutes the flow conservation constraint. In addition to the flow conservation
constraint, we have link capacity constraints accounting for the limit of maximum
aggregated flow rates borne on each link, and the channel capacity constraints
accounting for the feasible transmit rate vectors under the instantaneous channel
conditions. Subject to these constraints, the problem of optimal power efficient
routing is formulated as the minimization of average power consumption. The
details are discussed in Chapter 3.

Exploiting the stochastic approximation algorithm developed in Chapter
2, we derive the asymptotically optimal strategy that minimizes the long-term
average transmit power under average rate constraints for each flow. From the
numerical results in Chapter 3, we observe that to combat the interference, for low
data rate demands, the system should work in a time division multiplexing (TDM)
manner to avoid excessive co-channel interferences. However, as the rate demands
increase, more frequently, a large number of links are activated concurrently to
support the required QoS.

Although our theoretical results substantiate the optimality of the algo-

rithm, it still leaves some room for further enhancement. This can be seen from



the following observations: 1) the realization of the algorithm generally relies on
centralized controllers, and 2) the complexity of the scheduler raises up along with
the number of users.

To construct a scalable scheduler, in Chapter 4, we consider decomposing
the system into multiple isolated subsystems so that the transmit signals are or-
thogonal at the receivers. A distributed algorithm is proposed in Chapter 4, which
is proven to be asymptotically optimal under the given decomposition. Note that
decomposition is the approach we take to address the complexity issue; it may
result in inefficient use of system resources, and sacrificing system performance.
However, it provides some good effects compensating the loss. One important
gain contributed by the decomposition is the provision of more structured model
for designing systems, which makes problem more manageable in the sense that
each node relies only on the parameters exchanged with the nearby nodes to make

decisions.

1.3 Rate Distortion Management and Downlink

Transmission

As the second application of our stochastic optimization framework, in
Chapter 5, we investigate the joint source distortion management and transmit
rate control problem in a multi-user downlink wireless system. Similar research

works include [37] [16] [21] [39]. All of them are concerned with systems consisting



of single user or link and exclude the gains of employing multi-user communication
[20] [49]. Our work starts with a generic setting considering the capacity achieving
schemes for the broadcast channel. Although, at the first place, we do not consider
delay and buffer size in the problem formulation, surprisingly, we can build on this
to construct a system that performs well in terms of average delay and buffer size.

We assume a set of sources generate sequence of symbols stored at the ac-
cess point. The rate distortion function R(D,,,) for each source is available so that,
given the target average distortion D,,,, the scheduler knows the average number
of bits needed to represent the quantized data. The requested data is transmitted
to and buffered at the receiver, and the received data is used by the target applica-
tion at a constant rate (data consumption rate). If user’s buffered data reach zero
and the arrival rate is less than the data consumption rate, a buffer underflow oc-
curs. In this work, we focus on applications which are distortion tolerant. In each
scheduling interval, the scheduler chooses the appropriate parameter for quantizing
the transmit data sequence, and compresses the processed data before sending it
onto the channel. The scheduler needs to balances the distortion caused by the
quantization and the distortion caused by buffer underflows. Specifically, the goal
we set for this source distortion management and transmit rate control problem is
to minimize the maximum long-term average distortion among users. Built on top
of the fundamental results established in Chapter 2 for Stochastic Optimization,
we derive the scheduler reaching this end. Moreover, with the recognition of the

equivalence between the evolution of queue size and that of the dual variables [22]



using the subgradient methods, we obtain the property of boundedness on the
user’s queue size for our algorithm, which gives asymptotically negligible buffer

underflow frequency.

1.4 Main Contributions

The main contributions of this work are summarized in the following list.

o We develop a systematic framework using Stochastic Optimization to design

and analyze channel aware scheduling algorithms.

e Under the framework, we propose a generic online recursive algorithm to

reach the optimal solution asymptotically.

e We prove, through Stochastic Approximation, that the asymptotic behavior
of the proposed algorithm follows the solution of a projected differential
inclusion in expectation, and the trajectory of the solution converges to the

optimal point of the optimization.

e We develop an online algorithm to handle scheduling and power control for
power efficient multi-hop wireless networks, and we propose a heuristic ex-

tension to implement the algorithm in a distributed manner.

e We develop an online algorithm for jointly managing the source distortion
and scheduling the wireless downlink transmissions. The algorithms ensure

the stability of the system.



To explain in detail, we begin with establishing the fundamental basis
and framework for Stochastic Optimization, and move on later to the applications

using this framework.



Chapter 2

Stochastic Approximation and

Stochastic Optimization

In this chapter, we introduce an optimization framework for stochastic
systems, namely stochastic optimization, which is motivated by various interest-
ing stochastic dynamic control problems to be discussed in this dissertation. The
formulation of stochastic optimization problems have very similar appearance as
that of the classical convex optimization problems. In addition, many important
concepts in stochastic optimization are adopted from the classical convex opti-
mization. The main difference between the two is that unlike the classical convex
optimization, which considers finite dimensional deterministic variables, stochastic
optimization works with controllable stochastic decision processes. Specifically,
stochastic optimization deals with the average behavior (time and the ensemble)

of the stochastic processes which can be dynamically controlled via adjusting a set

10



of parameters. An example for the controllable stochastic decision process is the
sequence of transmit rates on a time varying channel.

Our contribution in this subject focuses on the convergent proof of an
adaptive recursive algorithm which reaches the solution of the stochastic optimiza-
tion problem asymptotically. Moreover, to update the value in each time instant,
this recursion only requires the observation of the underlying exogenous stochastic
process which is a process unaffected by the control actions (e.g. channel con-
ditions). Therefore, this algorithm can be run concurrently as the system goes,
and provides online scheduling information to the system. The proof for the al-
gorithm’s convergent behavior heavily relies on the fundamental basis developed
for a particular class of recursive algorithms called stochastic approximation. The
feasibility and optimality of the proposed recursive algorithm follows the conver-
gent behavior we established in this chapter. To explain in detail, we start with
the stochastic approximation (SA) in the first section of this chapter. Later on,

we will built the framework of stochastic optimization on top of SA.

2.1 Stochastic Approximation Algorithms

Basic stochastic approximation methods are generally known as a family
of recursive algorithms attempting to find the zeros or the extremes of functions
when only the noisy observation of the function values are available. The outcome
of the recursive algorithm is a sequence which approximates the zeros or the ex-

treme point of the function. The well-known Robbins-Monro algorithm [41] and

11



Kiefer-Wolfowitz algorithm [23] belong to this category.
The generic stochastic approximation algorithms consist of three major

components:

1. Step Size: € >0

2. State Variable: 07 = (0" 0".) € R", which is updated in each iteration

€1 ) Ve,r

3. Search Direction: Y = (Y[,--- ,Y") € R"; Y is a stochastic process that

€
depends on an exogenous process {£}.
More detailed explanations on the terminologies and presentation about these three

quantities are described below.

e A stochastic process is called erogenous with respect to the system if its
future evolution, given the past history of the system, depends only on the
past history of . More precisely, let {F¢} be a sequence of nondecreasing o-
algebras, where F¢ measures at least {67, Y771 &: 7 < n}, then a exogenous

process satisfies
P& | F) = PEE | €,j=0.1,....n) for k >n. (2.1)

For applications in wireless communications, channel state is a major source
contributing the randomness. Suppose that the system operates in discrete
time, one can regard & as the vector representing the states of all channels

in the system at time n.

e The variables are subscripted with step size € to emphasize the fact that the

selection of these variables may depend on the step size that we take.

12



Recursive Algorithm

The evolution of state variable 07 is determined by the projected stochastic differ-

ence equation given below,

(SA)
0" =Ty (0" + €Y™) (2.2)

where I15(-) denotes the projection of input onto the constraint set H = {6 : 0 <
0; < K,} with certain fixed constant K,. Function Iy (-) translates its argument
to the closest point in constraint set H. The displacement from the vector v
to its projection Iy (v) is called the reflection term. Define the reflection term

Zr = (20, ,Z") € R" by rewriting (2.2) as
Ot =08 + €Y + 2], (2.3)

Since the constraint set is restrict to R™", 6" is componentwise nonnegative. The
output of (2.2) is a sequence {(07,2"), n = 0,1,2,...}, and stochastic approxi-
mation is concerned with the asymptotic behavior (n — oo) of 8" and Z" with
small step size. Before we delve into the analytical sections, we first review some
fundamental probability concepts and terminologies which are used frequently in

this work.

Definition 2.1. Let {A,} be a sequence of RF-valued random variables on a com-
mon probability space (2, P, F) with (an;,i = 1,...,k) being the real-valued com-
ponents of A,. Let P, denote the measures on the Borel set of RF determined by

Ay, and let x = (z1,...,7;) denote the canonical variable in R*. If there is a

13



R*-valued random variable A with real-valued components (ay, ..., ay) such that
Plap: < oq,... a0, < og} — Pla, < ai,...,a, < ap} (2.4)
for each a = (au, ..., ) € R* at which the right side of is continuous , then we

say that A, converges to A in distribution. Let Py denote the measure on the Borel

sets of RF determined by A. An equivalent definition is that
EF(A,) = /F(JE)dPn(a:) — EF(A) = /F(w)dPA(a:) (2.5)

for each bounded and continuous real-valued function F(-) on R*. Convergence
in distribution is also called weak convergence, we use the following notation to
denote the weak convergence.

A, = A (2.6)

2.1.1 Interpolated Process

The recursive algorithm (SA) (2.2) generates a sequence {6"}. We are
particularly interested in the evolution of {6”} in two extreme cases. First, how
does the sequence {0} behave as the step size € goes to zero? Second, does
the sequence converge as n goes to infinity? These questions can be answered
by looking into the interpolated process of sequence {67}, {Y"} and {Z"}. The
interpolated process of a sequence with respect to step size € is the ”continuous-

time” interpolations®' of the sequence with the interpolation interval equal toe.

IPlease be aware that the term ”continuous-time” is not the real "time”, but a virtual con-
tinuous index used to describe the asymptotic behavior of the interpolated process.

14



Define interpolations 6.(t), Y.(¢) and Z.(t) as follows.

6° fort <0
(2.7)
0" on the time interval [ne, ne + €).
\
)
627281 Y, wheret >0
(2.8)
0 fort <0
(
e 71 where t >0
(2.9)

0 fort <0

\

The integer part? of /e is always used in describing the scope of summations when

they are defined. An example of 0.(t) is illustrated in Figure 2.1

We are most interested in the asymptotic behavior of (6.(t), Z(t)) with

small step size. In the next subsection, we will present a theorem about the conver-

gent results. Precisely, it states that under certain appropriate conditions, the in-

terpolated process (0.(t), Z(t)) converges weakly to a limiting processes (6(t), Z(t))

along a subsequence of step size {e;}. Before the theorem is revealed, we first

present a set of assumptions which are sufficient to ensure the existence of the

limiting processes (0(t), Z(t)).

2The integer part of a real number is defined to be the largest integer less than or equal to it.

15
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Figure 2.1: Interpolated Process 0.(t)

2.1.2 Limiting Process and Its Behavior

Assumptions

Let {£"; n > 0} be random variables over certain complete and separable metric
space Z; {F<} be a sequence of nondecreasing o-algebras, where F¢ measures
at least {07, Y771 ¢J: 5 < n}; and ES be the expectation conditioned on F¢. In

the following, we list a set of assumptions served as sufficient conditions for the

convergence of our algorithm.

(A.1) {Y™€,n} is uniformly integrable.

(A.2) There are measurable functions g”(-) such that

E.Y" =gl (6¢,60) (2.10)

16



(A.3) For each 6 > 0 there is a compact set A; C = such that

inf P{€" € As} >1—0. (2.11)

(A.4) For each 6, the sequences
{90 (62,62 e ny, {92(0,€7); e n} (2.12)
are uniformly integrable.

(A.5) There is a set-valued function® G(-) that is upper semi-continuous, and for

each compact set A, and any sequence «, af, satisfying

lim  sup |of) —al=0, (2.13)

nM—00 n<i<ntm

we have
1n+m71 ' . 4
Liﬁquldistance p” Z E5g'(0,,£"),G(a) | Iggneay =0 w.p.l. (2.14)

Specifically, the upper semi-continuous property referred in (A.5) is defined below.

Definition 2.2. Upper semi-continuity Let Ns(z) be a 6-neighborhood of x. A

set-valued function B(-) is said to be upper-semi-continuous if it satisfies

Neo | |J B)| =B), (2.15)

6>0 yEN;(z)

where co(A) denotes the convex hull of the set A.

We note that:

3In our work, a set-valued function is a mapping from R” to the subsets of R".
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Remark 2.1. Assumption (A.5) holds under simple mizing conditions, M -dependence,

or ergodicity type conditions on {&'}.

Keeping assumptions (A.1-5) in mind, we now introduce the convergent

theorem for stochastic approximation.

Theorem 2.1. [27, Chapter 8, Theorem 2.5] Assume (A.1-5), for any nondecreas-
ing sequence of integers q., for each subsequence of {0.(eqc + ), Z.(eqe + ), e > 0},

there exists a further subsequence and a process (0(-), Z(+)) such that
<9€<6q€ + '>’ ZE(qu + )) = (9()7 Z()) (216)

as € — 0 through the convergent subsequence, where 0(t) and Z(t) have Lipschitz
continuous paths with probability one. In addition, there is an integrable z(-) such

that
t
Z(t) = / z(s) ds, where z(t) € —C(0(t)) for almost all ¢, w (2.17)
0

and

0 € G(A) + z, for almost all £, w. (2.18)

For completeness, we summarize some key properties of C'(z) in the fol-
lowing list.

Remarks on C(x)

e The set-valued function C(x) is defined for € H (The constraint set defined
for the recursive algorithm (SA)). If x € H®, the interior of H, C(x) contains
only the zero element; if x € OH, the boundary of H, C(x) is the infinite

convex cone generated by the outer normals at x of the faces on which x lies.



e Since an “infinitesimal” change in x does not increase the number of active

constraints, C'(+) is upper-semi-continuous.

In brief, Theorem 2.1 provides a rule to check if the updated sequence generated
by the stochastic approximation algorithm follows the trajectory of a projected
differential inclusion.

Essentially, the stochastic optimization problems are convex (This will
be shown shortly.). Therefore, to solve the problem, we expect certain “gradient-
type” recursive algorithms (originally designed for convex optimization) will work.
This conjecture can be verified using those fundamental basis developed in Section
2.1.

In general, the functions that we deal with are not necessarily differen-
tiable. In other words, the gradient of the function may not exist. To be cautious,
in order to continue applying the “gradient-type” algorithm, we need to consider a
generalization of gradient called “subgradient”. The definition of subgradient for

nondifferentiable convex functions is defined as follows.

Definition 2.3. Given a convex function f : R" — R, we say that a vector d € R"

1s a subgradient of f at a point x € R™ if

f(z) > f(x)+ (z —x)'d, VzeR" (2.19)

If instead f is a concave function, we say that d is a subgradient of f at x if —d
15 a subgradient of the convex function —f at x. The set of all subgradients of

a convex (or concave) function f at x € R™ is called the subdifferential of f at
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x, and is denoted by Of(x). Note that subdifferentials are upper-semi-continuous

set-valued functions [27, p. 25]. (For more details about the subgradient, please

refer to [9, p.p. 711].)

Some Comments on G(0)

The set-valued function G(6) defined in assumption (A.5) is the key ele-
ment determining the asymptotic behavior of state variable 67 for small step size.
In the remainder of this section, we will focus on the case when G(0) = 9V (0), the
subdifferential of a concave function V' (6) at 6. The lessons we learned from this
class of G(0) form a strong basis for solving the stochastic optimization problems
when the exogenous process {{"} is ¢-mixing [15] (uniformly mixing [10]).

Mixing condition is a stochastic property which limits the difference be-
tween the conditional and the unconditional probability distribution. A process is
called ¢-mixing (uniformly mixing) if there exists a sequence {¢y, £ =0,1,2,...}

such that the difference between the following two quantities is bounded uniformly

by ¢

(i) The marginal distribution of the process at time i + k

(ii) The distribution of the process at time ¢ + k conditioned on the history of

the process up to time .

Moreover, the bounding sequence ¢, — 0 as k goes to co. The formal definition is

summarized below.

Definition 2.4. Let B} be the o-algebra generated by the random variables
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{em gmtl &}, Define ¢y by

¢ Ssup  sup | P{A|B} — P{A}| (2.20)
i AeFITF BeF]

If limy ¢y, = 0, then {€*} is called a ¢-mizing process.

For a ¢-mixing process {£"}, the difference between the expectation of a
B2 measurable function and its expectation conditioned on {£*, 0 < m < n} is

negligible if the time separation k is large. In other words, it means that:

Lemma 2.1. /26, Chapter 6, Lemma 4]

Let £ be ¢p-mizing, and let g™ be measurable on F2° with |g"| < K, then
|E[g""* By ] —E[¢"""]| < 2K (2.21)

The following theorem presents an important class of functions satisfying

assumption (A.5).

Theorem 2.2. Consider a bivariate function V (-,-) which is concave in the first
argument. Let {&'} be a stationary ¢-mizing stochastic process, and gI'(-,&") be a
subgradient of V(-,&"). Assume |g*(-,&")| < K for some K > 0. For any sequence
al', « satisfying

lim  sup o) —al=0, (2.22)

n,M—00 n<i<ntm

we have
n+m—1
lim — ES Y £ QFE° 0 2.2
;{gm z; n9e(0,, 1) € Gla) £ OBV (0, &), (2.23)

where E€ denotes the unconditional expectation, and OBV (a, £°) denotes the sub-

differential of E{V (o, €%} at a.
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Proof.
n+m—1
lim — E€ g (', 2.24
nlrgm Z; nge(00, &) (2.24)
1 n+m—1 1 n+m—1
= g%% Z ]EEQE n7§)+grgl1% Z (Enge(arw e) ]EE l( n’é))

The second limit in the equality above goes to zero, since

1n+m1 (a) 1n+m1
lim — E g(al, &) —Eg(al, €] < 2Klim — iin (2.25
lim — Zn | Efge (@, &) — Ege(a},, &) lim — Z ¢ )

1
oK lim— S ¢; 9.9
gnm;¢ (2.26)

—
=

20 (2.27)

The inequality (a) above follows Lemma 2.1, and the equality (b) holds because
the Cesaro mean of a convergent sequence leads to the same limit of that sequence.

The proof is then completed with the use of the following fact.

1 n+m—1 ‘ ( ) n+m—1
lim — Eqg(a’ 1 — Eg( 0 e OEV 0 2.98
711,171;11771 Z;L Q(Oén, 6) 11’11 IZ; Oénvé ) (a 5 ) ( )

where (c) follows the the stationarity of £ and (d) follows the the upper-semi-

continuous property of the subdifferentials. n

2.1.3 Asymptotic Behavior of the Limiting Process

In Theorem 2.1, it has been demonstrated that limiting behavior of the
stochastic approximation algorithm is governed by a projected differential inclu-
sion. In this subsection, we look into the cases when the right-hand-side of the
projected differential inclusion (2.18) is equal to the subdifferential of a certain

concave function.
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Theorem 2.3. Let V(-) be a scalar valued concave function. The solution to the

projected differential inclusion(PSGI)
0cavV(h)+z 60)=06 z2(t)e—-CO(t) (2.29)
is unique. (The definition of C(-) was given in Theorem 2.1.)

Proof. For ease of explanation, we only prove the one dimensional case, in which
6 € R!. The proof is valid for two or higher dimensional space after minor modifi-
cations. Let x(t) and y(t) be two solutions of (2.29) with initial conditions x° and

Y, respectively. By definition, we have

(1) = ga(t) + 2.(t) (2.30)
Y (t) = gy(t) + 2(1), (2.31)

where g, (t) € OV (z(t)) and g,(t) € OV (y(t)). The derivative of 1/2[|z(t) — y(t)|*
satisfies:

ety =yl = @) —y)- @0 —y(©) (2.32)

dt 2
= (2() =y(1) - (92(t) = gy (t) + 2:(t) — 2,(1)) (2.33)

< 0. (2.34)

The last inequality can be proved using the following two facts. To make it clear,

without loss of generality, we assume that x(t) < y(t).

1. By the definition of subgradient, we have: (i) V(y(t)) =V (z(t) < g.(¢)(y(t) —

z(t)), and (i) V(z(t)) = V(y(t)) < gy(t)(x(t) = y(t)). Summing up (i) and

(ii), we end up with the inequality (z(t) — y(t)) - (9.(t) — g4(t)) <0
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2. If 2(t) = y(t), we have (x(t) — y(t)) - (2,(t) — 2,(t)) = 0. Otherwise, we have
(x(t) —y(t)) < 0 and (z,(t) — z,(t)) > 0. Both cases give us the inequality

(@(t) = y(t)) - (z(t) — 2y(t)) < 0.

Since ||z(t) — y(t)|| has non-positive derivative, ||z(t) — y(t)|| must be a

non-increasing function in t. Comparing with the initial conditions, we have:
lz(t) = y(@)II < [|l2° — y°|| for £ > 0. (2.35)

Moreover, if 2° = ¢ = 6°, the monotonicity of ||z(t) — y(t)|| implies that x(t) =

y(t) Vt > 0. This proves the uniqueness of the projected differential inclusion. [

In Theorem 2.3, the uniqueness of the solution to the projected differential
inclusion (2.18) has been established when G(-) is the subdifferential of a concave
function V'(-). As we move on, the next step is to demonstrate that the trajectory
of the projected differential inclusion (PSGI) defined in Theorem 2.3 converges to
a maximizer (if there are many) of V() over H = {0 | 0 < 0, < K, }. To achieve

this goal, we need the following lemma.

Lemma 2.2. If 0(t) is a continuous solution to (PSGI) defined in Theorem 2.3,

its derivative Q(t) 15 Tight continuous for all but a countable set of t.

Proof. Let’s focus on the i component of 8(t) = (6,(t),0x(t),...,0.(t)). Since
0;(t) is continuous, I; = {t | 6;(t) € (0, K,)} is an open set. Moreover, I; can be
expressed as a countable union of open intervals [6, Theorem 10.1.9]. Specifically,
there exist disjoint open intervals I;; = (a;j, b;;) such that [; = Uj I;;. For con-

venience, we further denote the boundary points a;; and b;; (i = 1,...,r, j =
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1,2,...) by an ordered sequence {0 < ¢; < ¢3 < ¢ < ---}, which partitions RT.

In each interval [c cgy1], one of the following three conditions must hold.
1. 0;(t) =0 for all ¢ in (¢ cgy1), Or
2. 0;(t) € (0,K,) for all ¢ in (cx cy1), OF
3. 0;(t) = K, for all t in (¢x criq).
Our strategy is to show that if the solution of
0 caV(h)+z 6(0) =48 (2.36)

in time interval [c; ¢x41] has invariant components, by taking away those invariant
parts from the solution, we arrive at a lower dimensional function, which is the
solution to a differential inclusion without projection. Equation (2.36) can be

rewritten in the following form:

01(t) g1 (01(1),....0.(1)) z1(t)
s (t) 92(01(1), ..., 6:(1)) 2(t)

= + : (2.37)
0, (t) gr(01(2), ..., 0:(1)) 2 (1)

where

€ oV (h). (2.38)




For ease of explanation, let’s assume that 6,(¢) is the only component which is
invariant in the interval € [c; cx41]. Without loss of generality, we assume that
65(t) = 0. Note that our proof can be generalized to the case when 6(t) has multiple
invariant components in [¢j ¢xy1]. In the current setting, for ¢ € (¢x cxr1), we have
05(t) = 0, and z(t) = 0 for ¢ # 2. This results from the facts that 6,(t) = 0 and

0;(t) > 0 for ¢ # 2 over the interval (¢ cx41). One can check that

91(61(2),0,05(t)...,0.(t))

93(61(1),0,05(t)...,0.(t)) € AV (01(t),05(t),....0,(t)) over (cx Cri1),

gr(61(t),0,05(t)...,0.(t))
(2.39)

where V(0,(t),05(t),....0.(t)) = V(6:(1),0,05(t),...,0,(t)) is a concave function
of (01(t),05(t),...,0.(t)). Moreover, by Theorem 2.3, (61(t),05(t),...,6,(t)) is the
unique solution to the new differential inclusion without projection:

0, (1)

03(t) .
€ AV (0,(1), 05(1), ..., 0,(1)) (2.40)

0,(t)

given the same initial condition of (2.36) at t = ¢;. The remainder proof follows
the fact that the derivative of the solution to non-projected gradient inclusion is
right continuous [4, p. 147, Theorem 1]. Using the equivalence between (2.37) and
(2.40), we conclude that A(t) is right continuous at all but a countable number of

points in {cy,co, - }. O
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Lemma 2.3. Let 6(t) be the unique solution of the projected differential inclusion
(PSGI) (2.29) defined in theorem 2.3. The trajectory of 0(t) converges to a point.
That is

lim 0(t) = 0", (2.41)

where 0% is a mazimizer of V(-) over H.

Proof. Let 0(t) be the solution to the projected differential inclusion
0 € OV (0) + z, for almost all £, w. (2.42)
with 6(0) = 6°. Since 0(t) — z(t) is a subgradient of V' (8(t)), by definition, we have:

V(O(t+s)—V(O()) O(t) — (1), (0(t + 5) — 0(1))) (2.43)

IN

—
INs

(1), (O(t + s) — (1)) (2.44)

The last inequality (a) holds because z(t) - (6(t + s) — 6(t)) < 0. This results from
the following facts, for simplicity, we focus on the one dimensional case. The same

argument can be generalized to higher dimensional space.
1. IF0 < O(t) < K, 2(t) = 0, hence z(t) - (0(t + 5) — 0(t)) = 0.
2. T O(t) = Ky, 2(t) <0, (0(t+ ) — 0(t)) < 0, hence z(t) - (0(t + s) — O(t)) > 0.
3. I 0(t) =0, 2(t) > 0, (0(t +s) — O(t)) > 0, hence z(¢) - (0(t + 5) — 0(t)) > 0.

Similarly, we have

V(@) —V(@t+s) <(@(t+s)),0t)—0(t+s))) (2.45)



Divide both sides of (2.44) and (2.45) by s, and let s | 0. Exploiting the fact that
0(-) is right continuous (Lemma 2.2) at all but a countable number of points, we
end up with this equality

d

ZVO®) =001, (2.46)

which holds at all but a countable set of t. Integrating this equality from 0 to ¢,

we end up with
V(O(t) — V() = /t |]9(5)H2d5. (2.47)
0
Following the same arguments given in [4, p. 160, Theorem 2|, we can prove that
li{n o(t) = 67, (2.48)
where #* is a maximizer of V(-) over H. O

The following theorem states that the trajectory of interpolated process

0.(t) follows its limiting process in expectation uniformly over finite time interval.

Theorem 2.4. Under the same setting of Theorem 2.1, in which G(0) is equal
to the subdifferential of a concave function V(0) at 0, the interpolated process of
the stochastic approximation 0.(t) and its limiting process 0(t) have the following

convergence property. For any T > 0, we have
lir% E{||0(t) — 0(t)||} =0, uniformly on [0 T almost surely, (2.49)
where O(t) is the unique solution of (PSGI) (2.29) with initial condition 6(0) = 6°.

Proof. We start with the proof of convergence. Our strategy is to take the proof
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in contrapositive form. Assuming that
limesup]E{HGe(t) — 0|} = «a, (2.50)
for some t € [0,7] a > 0, one can find a subsequence ¢, — 0 such that
lim E{[[6, (1) = 0(t)[[} = @ (2.51)

and 0, (t) = 6(t) (Theorem 2.1). Note that, by uniqueness, 6(t) is a constant
if ¢ is fixed. Since weak convergence to a constant implies the convergence in

probability [40, Proposition 8.5.2], it follows that
| 6. (t) —O(t) || — 0 in probability as k — oo. (2.52)

For simplicity, we assume that ||Y*|| < B; uniformly in n and e for some constant
B,. However, the proof can be generalized to the case when Y is uniformly

€

integrable. From the definition of interpolated process 6.(t), we have the following
bound.

16.(t + 5) — 0.(t)|| < Bis + By, (2.53)

where the left-hand-side results from s/e + 1 times of interpolations multiplied by
the bound eBy. Since 6., (t) is uniformly bounded by tB; + €, B;, through [40,
Theorem 6.6.1 (c)], it follows that E{|| 0, (t) — 6(¢) ||} converges to 0 in L' at time
t, which contradicts to (2.51). Hence we complete the proof of convergence.

The uniformity of the convergence follows the extended Arzela-Ascoli

theorem [27, Theorem 4.2.2]. O
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Theorem 2.5. Under the same setting of Theorem 2.1 with the additional assump-
tion that the set-valued function G(0) is taken from the subdifferential of a concave
function V(0) at 0, the sequence {67} generated by the stochastic approzimation
algorithm (2.2) has the following property:

Suppose that 0* is the unique mazimizer of V(-) over H, given 6 > 0,

there exists € > 0 such that, for any € < €,
E{| 67 — 0|} <6 for all but a finite number of times in n. (2.54)

Proof. Let (t) be the weak limiting process of 6(t) with (0) = 6°. Theorem 2.3
ensures that 0(t) is unique. Moreover, from lemma 2.3, we know that lim, ., 6(t) =
0* with probability one. By the dominated convergence theorem, it follows that

lim; oo E{||0(t) — 6*|| } = 0. As a result, there exists 7" > 0 such that
E{||0(t) —0|| } <d/2 forallt >T. (2.55)

We apply the method of proof in contrapositive form. If, for every o > 0, there
exists € € (0, o) such that E{||0" — 6*||} > 2§ infinitely often in n, we will be
able to find a sequence ¢, — 0 such that E{||0., (T) — 6*||} < ¢ (by Theorem
2.4 and (2.55)) and E{[|67 — 6*[} > 20 infinitely often in n. Let 7 be the
first time after time 7" such that E{ |6, (1) — 6* ||} > 20 and 7., the last time
before time 7., that E{|6. (r,) — 0" |} < . Defining q., = 7, /ex, since g, is
a sequence of nonnegative integers, one can always find a subsequence which has

ey, nondecreasing®. Let Xex = Nep — Ten» Dy Theorem 2.1, there exists a further

4This can be done by picking the infr>n ge,



subsequence which converges weakly

(Ocr (erdey + ), Zey (e, +)) = (0(-), Z())- (2.56)

If there exists a further subsequence {e; i > 0} such that x.,, — 7T for some

T > 0, we get
E{0(0) — 6" ||} <& and E{||6(T) — 6" |} > 26. (2.57)

Otherwise, we have x,, — oo and § < E{ 16(t) — 6* ||} < 26 for t > 0. Both cases
contradict to the fact that the difference ||0(t) —6* || is monotonically decreasing in
time t. This monotonicity can be reasoned as follows. In the proof of Theorem 2.3,
we have shown that the difference between two solutions are monotone decreasing.
Since 0* is the unique maximizer, if we take 8* as the initial value of the differential
inclusion (2.29), the solution is z(t) = 6* for t > 0. Therefore, ||0(t) — 6* | =

10(t) — z(t)|| decreases in time . O

Briefly speaking, Theorem 2.5 states that, if G() is the subdifferential
of concave function V' (), which has unique maximizer over H, the sequence gen-
erated by the stochastic approximation algorithm converges in expectation to a
neighborhood of this unique maximizer.

Although, in general, V(-) may have multiple maximizers , if the set
consisting of the maximizers of V(-) is compact, the sequence generated by the
stochastic approximation still converges to the set of all maximizers in expectation
. This result is summarized in the following theorem. Since its proof is very similar

to that for Theorem 2.5, the details are omitted.
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Theorem 2.6. Let O be the set of mazimizers of V(-) over H. Under the same set-
ting in Theorem 2.5, except the uniqueness of the maximizer, we have the following

result. Given 6 > 0, there exists € > 0 such that, for any € < €,

E{dist(0",0)} < ¢ for all but a finite number of times in n, (2.58)

where dist(6, A) denotes the distance from point 0 to set A.

Remark to Theorem 2.6

Note that dist(f, A) is a convex function of ¢ if A is a convex set [12, p.p.
88]. The concavity of V(-) implies the convexity of ©. By Jensen’s inequality, we
therefore have dist(E{ 6}, 0) < 4.

Lastly, we have two important results for stochastic approximation, refer-

ing to the reflection terms.

Lemma 2.4. Under the same setting in Theorem 2.5, let Z(t) be the limiting
process of the interpolated process defined for the reflection term, and let © be the
set of mazimizers of V(-) over H, we have the following boundedness property. If
© C H° (interior of H) and |Y"|| < By for some constant By, there ezists By

such that ||Z(t)|| < Bg for allt > 0.

Proof. For the sake of simplicity and clarity, we only prove the case when the
maximizer of V() is unique, which means that © = {0*}. The proof for set ©
consisting of more than one point can be done under the same rationale, and is

omitted.
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Consider one realization of the limiting process (0(t), Z(t)). Since H is
compact, it implies there exist p points, {ay, as,--- ,a,}, in H such that
\UY_; Nsj2(a;) = H, where Njjs(a;) denotes the neighborhood of a; of radius §/2.
Moreover, under the initial condition #° = a;, the limiting process converges asymp-
totically. In other words, we have lim;_,, 6(t) = 6*. This ensures the existence of
a positive time 7" > 0 such that ||§(t) — 0*|] < 6/2 for all t > T" under the initial
condition #° € {a;; i =0,1,2,...,p}. Recall that, in the proof of Theorem 2.3, we
demonstrated that the difference between two solutions decreases with time. Since
every point in H is covered by a neighborhood Njs/s(a;) (due to the compactness
of H), via the triangular inequality and the decreasing distance between solutions
along the time index, we can obtain the equality ||0(t) —6*|| < ¢ for all t > T" which
holds for any initial point in H. This means that (¢) locates in the interior of H
after time 7", and no reflection occurs after time 7”. In other words, Z(t) = Z(T1")
fort >1T".

To complete this proof, it remains to show that Z(7") is bounded. By

the definition of reflection terms, we have the inequality
(t+s)/e |
1Ze(t +5) = Z @) < D ellY?] < (s+€)By. (2.59)

i=t/e

Let € — 0. For each sample path of the limiting process Z(t), we have
|Z(t+s)— Z(t)|| < sBy with probability one. (2.60)

The boundedness of Z(T") follows this inequality, and the proof is done by setting

By, =T'B [l
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Theorem 2.7. Assume the same setting of Theorem 2.1 with two additional terms

(i) The set valued function G(0) is the subdifferential of a concave function V (0)

at 0,

(i) The mazimizers of V(0) constitutes a compact set ©, and © C H°.

Given 6 > 0 there exists € > 0 such that lim sup, w <9 for all e <.

Proof. We use proof in contrapositive form. Suppose that the conclusion of the
theorem is false, then for any given 7" > 0, there must exist a decreasing sequence

€ — 0 and a nondecreasing sequence ¢, such that

E{Z, (exqr +T)}
T

>0 (2.61)
By Theorem 2.1, there is a subsequence of step size {¢,} such that

4

€k,

(ex,qr, +T) = Z(T) (2.62)

along the subsequence. Via the definition of weak convergence, the following rela-
tion holds.

E{Zq, (enan, + T)} — E{Z(T)} (2.63)

This implies that E{Z(T")} > T, which contradicts to Lemma 2.4 when we set
T = % using the same constant By defined in Lemma 2.4. Therefore, the

conclusion made by the theorem is true. O

Remarks on Theorem 2.7
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1. The definition of interpolated process Z(t), we have

Z(t) Y, Z

t n

< By/n fort/e—1<n<t/e, (2.64)

where B; is the same constant defined in Lemma 2.4. As a result, given

n—1 i
0 > 0, there exists € > 0 such that limsup,, w < g forall e <e.

2. Recall that, for our applications, the constraint set is defined as H = {0 || 0 <
0; < K,}. Before, we assumed the interpolated process Z(t) counts all the
reflections either at the boundary below at 0 or at the boundary above at K.
Alternatively, we can separate these reflection terms according to whether
they touch the lower or the upper boundaries of H. We define the reflection
term from above Z. > 0 and the reflection term from below Zn > 0 by

rewriting the recursive algorithm (2.2) as
O = 0" (Y + 2. — 7). (2.65)

Also, we define the interpolated processes Ze(t) and Z.(t) analogously to

Z.(t) using respectively Z. and Z." in lieu of Z".

On these definitions, all the results proved so far for Z,, Z(t), and Z(t) are

still applicable for the terms defined for the upper or the lower reflections.

2.2 Stochastic Optimization

In this section, we focus on establishing the framework for stochastic

optimization. Mathematically, stochastic optimization can be viewed as a discrete



time stochastic dynamic control problem, in which the actions and the resulting
performance is controlled by a policy. To explain in detail, we start with an

overview of control policies.

2.2.1 Control Policy

A control policy consists of a sequence of control actions performed to the
system based on the observations of system states and other available information.
In each discrete time instant, the control action is restricted to a set described
below.

Feasible Set

We enumerate the sequence using the time index n (= 0,1,2,...). Two
sequences of control variables X™ € R and Y™ € R” are used in the problems.
At each time n, the feasible choices of X™ and Y™ are coupled together by a set
determined by the exogenous process {{"}. As we mentioned earlier, the evolution
of sequence {£"} is unaffected by the control actions. Assume that the statistics
of {£"} is unknown, but the outcome £"(w) at each time instant n is perfectly
observed by the controller. The scheduler can therefore choose X™ and yn utilizing
the information of " (w). The selected X™ and Y™ are called feasible if the vector
(X", Y™) € R™" locates in the set D("). We note that D(:) is a set-valued
mapping from the range space of £ to the subsets of R™"!. We also assume that
the elements in D({"(w)) are bounded in norm uniformly in 7 and w. Specifically,

there is a constant B; such that if (z,7) € D({"(w)), we have ||z|| < By and



|7]] < By, which is true for any n and w,.

Feasible Control Policy

A control policy 7 decides the values of X™ and Y™ at time n (=0,1,2,...).
If the control policy chooses X™ and Y™ from the set D(£), it is called a feasible
policy. In this work, we consider the randomized control policies which make de-
cisions based on the perfect observations (possibly non-causal) of the sample path
{"(w), n=0,1,2,...}. For a non-randomized control policy, given a realization
{€"(w)}, the output of the decision is a deterministic sequence. However, for a
randomized control policy, the output corresponding to the same realization is a
random sequence of vectors (X", }7”) More precisely, a randomized control policy
produces the distribution of random process {(X", 17"), n=0,1,...}. Clearly, the
scope of randomized control polices is a broader than that of the non-randomized
control polices.

Different randomized control polices may result in different distributions
for the process {fO,Xo,}70,51,)(1,}71,52,)(2,}72, ...}. To identify the control se-
quences generated by different policies, we denote X and Y;” as the value of

control variables chosen by the randomized policy 7 at time n.

System Design Criterion

In this work, we seek the feasible randomized control policy which aims
to minimize the long-term average of E{X”} while keeping the long-term average

of E{Y;”} nonnegative. For this reason, we call X' the cost control variable and
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Y:r" the demand control variable. Note that the expectation E{-} is taken over the
probability space established from {£"} and the chosen randomized policy 7.

To get a clear idea about this framework, lets consider a wireless downlink
system. Suppose the system design criterion is to minimize the long-term average of
total transmit power and keep a long-term average rate vector C= (Cy,Cy,...,CL)
for user 1 to L, one can apply the framework by setting X" = ZzL:1 P/ as the in-

stantaneous transmit power, and Yn = ¢ — R" as the difference between the

instantaneous transmit rate and the target rate, where R" = (RY, R}, ..., R}) de-
notes the instantaneous rate vector to users 1, 2, ..., L. The instantaneous channel
gains for user 1 to L constitutes the exogenous process £" = (hY{, hy, ..., hY). If

the peak transmit power is limited, for every time slot n, the feasible choices of X"
and Y™ must be restricted to a set D(£™) determined by the instantaneous channel

gains £".

2.2.2 Stochastic Optimization Problem

The generic form of stochastic optimization is displayed in the following

set of equations.

Problem 2.1 (Stochastic Optimization).

38



(SOP)

N-1
1
C .. I; — E E{ X" 2.66
minimize 1mj\§up N 2 {X7} ( )

N-1

1 -
bject t li — E{Yr} < 2.
subject to lim sup = Z {Yr} <0 (2.67)

n=0

policy 7 such that (X”,Y") € D(¢") (2.68)

Before delving into the solution, we remarks two important information

regarding the problem formulation.

1. We use “limsup” instead of “lim” because the limsup of a sequence always
exists, but the limit does not. In this dissertation, “the limsup of a sequence
of vector is defined componentwise”. Given a sequence of vector

{v",n=1,2,3,...}, where 0" = (v}, v}, ... ,0"), then

»Er

. A . . .
limsup ¢" = (limsup v, limsup vy, ..., limsup o).
n n n n

2. The elements in D({"(w)) are bounded in norm uniformly in n and w. In
other words, the norms of any feasible control variables X™ and Y™ are
bounded by a certain fixed constant. This is a reasonable assumption for
real applications. For example, let £" denote the channel gains, and let
X" and Y™ denote respectively the transmit power and rates in a wireless
downlink system. Although in theory unbounded channel gains are allowed
(e.g. Rayleigh fading channel model), in practice, the feasible transmission
rate over channels can never go beyond certain constant bound irrespective
of the realization of the channel. This bound is determined by the applicable

modulation schemes and the peak transmit power limited by the amplifier.



The first constraint (2.67) displayed in the stochastic optimization (SOP)
can be regard as the linear constraint of the long-term average of sequence Y;"
The second constraint (2.68) can be regard as the restrictions on the sequence
{(X™, Y1)} at every time n, which forms a constraint set for the long-term average
of {(X™,Y™)}. For ease of explanation, we call (2.68) the instantaneous constraints.
Constraints (2.67) and (2.68) limit the values taken by the sequence {(X™,Y7)}
in different time scale. To unify the expression of the constraints using the same
time scale, we replace the instantaneous constraints with their relaxed version in
the format of expected long-term average of {(X?2, Y:r”)} For convenience, we call
this the average relaxation of the instantaneous constraint.

Mathematically, the average relaxation of the instantaneous constraint
gives the following constraint set for the expected long-term average of the control
sequence {(X7,Y™)}.

N-1 N-1

D £ {(x, ) | where z = limNsup N Z E{X"}, and § = limNsup N Z E{Y"}
n=0 n=0

for some randomized policy 7 with (X, Y?) € D(€™). }

To solve (SOP), we first convert the problem to the domain consist-
ing of expected long-term average of feasible control sequences. More precisely,
we treat the time and ensemble average of control sequences as the new basic
variables, and use the term “Sequence Average Space” to name the set of these

. . . . . 1 N—-—1 n e .
new variables. By substituting X with limsupy >,y E{X7} and Y with

limsupy + SV E{Y}, we arrive at the following optimization problem in the
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sequence average domain.

Problem 2.2 (Optimization in the Sequence Average Space).

(OSAS)
minimize X (2.69)
subject to Y <0 (2.70)
(X,Y)eD (2.71)

Note that Problem 2.1 (SOP) and Problem 2.2 (OSAS) share the same
optimal value. This is because Problem 2.2 is a relaxed version of Problem 2.1,
and every solution of Problem 2.2 corresponds to a feasible randomized policy in
Problem 2.1.

We can further extend the set D to its convex hull co(D) without altering

the solution to Problem 2.2. This is justified via the following lemma.

Lemma 2.5. Given two point (Xl,ﬁ) and (XQ,?Q) in D with Yy <0 and Y, < 0.
Considering the convex combination ( AX; + (1 — N)Xs, AY; + (1 = \)Y; ) with
0 < A< 1, one can always find a point (X3, Ys)in D which satisfies Y3 < \Y; +

(1 =XN)Y5 <0 and also gives a smaller value of X3 than X1 + (1 — \) Xs.

Proof. By the definition of D, there exist feasible policies 7, and 7 such that:

N-1

N-1
— . 1 n . 1 —on
(X0, T = (imgup 7 5 E(X B limgup 3 S B(TRY) (272

N-1 N-1
. _ 1 o 1 .
(X2, Y2) = (limsup nE_O E{X7, }, imsup = ; E{Y]})  (273)
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For 0 < X\ <1, we have:
AX) + (1= )M)Xs
| Nl | N
= Alimsup — E{X] } + (1 = A)limsup — E{X
sup BN 41 g S B
s, s,
= 1l — E{ X" li — E{(1-MX"
1mj\§upNnZ:0 { 7T1}+IHFINSHPNHZ:O {( )Xot

|
> — NTEIXT 4 (1= MNX"
> 1m1\§upN; X+ ( )Xo}

L N
li — E{X
i sup ; {

(2.74)

(2.75)

(2.76)

(2.77)

(2.78)

where 73 is the randomized policy which chooses 7; with probability A, and 7 with

probability 1 —\. The inequality (a) above holds because lim sup a,, +lim sup b,, >

limsup a,, + b, [42, p. 78]. Similarly,

Defining X3 £ limsupy +~ SN E{X? } and Y; £ limsupy ~ SV E{ﬁg

0 > A+ (1- MY,
L V=
= Alimﬁupﬁgo E{Y! i (D) hmsup Z]E{
1

>_A

N— N-1
1 - 1 =
= i < Y E{AY]} 41 ~ > E{(1- NV}
lmj\fup N o {)\ 7T1} + lm]\f’up N o {( A) 7T2}

N-1
: 1 _‘n _‘n
> hmj\fup N nz% E{AY +(1-NY]}
N-1
= limsup — Z E{Y.}
n=0

(2.79)

(2.80)

(2.81)

(2.82)

(2.83)

}, we

therefore have (Xg,}_/tg,) c D with Y3 < \Y; + (1-=XNY; <0and X3 < AX;+ (1-—

A)Xo.

The relaxation from D to co(D) gives Problem 2.3.
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Problem 2.3.

minimize X (2.84)
subject to Y <0 (2.85)
(X,Y) € co(D) (2.86)

Note that Problem 2.3 is a convex optimization problem. Its Lagrangian
is defined as:

—

LIX,Y,0)=X+6-Y, (2.87)

where @ is the vector of dual variables for the constraint ¥ < 0. The dual function

—

V' (0) is defined as the following optimization parameterized by 0

V(@)= min L(X,Y,0), (2.88)
(X,Y)€co(D)

which is a concave function of 6 [9, Proposition B.25(a)].

Problem 2.4. The mazimization of the dual function over 6 > 0 is called the dual

problem.

—

maximize  V/(6)

subject to 52 0

Lemma 2.6. For convex optimization problems, if the Slater constraint qualifica-
tion /9, Chapter 5, Assumption 5.3.1] is satisfied, the strong duality theorem [9,
Chapter 5, Prop. 5.3.1] assures that the optimal values of the primal problem and

the dual problem are equal. That is V* = X*.
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This lemma shows that the minimum of the convex primal problem meets
the maximum of the dual problem®. Moreover, if (X*, }7*, 5*) satisfies the following

properties, (X*, }7*) is a solution to the Problem 2.2.

Lemma 2.7 (Proposition 5.1.5, [9]). (X*,Y* 6*) is an optimal solution-Lagrange

multiplier pair if and only if

0* € X, (X,Y) € co(D) (Primal Feasibility)
0*>0 (Dual Feasibility),
(2.89)
(X*,Y*) = arg My 7)eeo(m) DX, Y,6*) (Lagrangian Optimality)
0,Y;=0,1=1,...,r (Complementary Slackness)
Recall that any solution of the problem expressed in the sequence average
domain can be achieved by certain feasible randomized policy 7.
Since the dual problem has simpler constraints then the primal problem
does, we will tackle the problem from the dual. The value of the dual function

V(+) can be evaluated using the optimization in the original space. Specifically, it

works this way:

Lemma 2.8.

min  L(X,Y,0) (2.90)
(X,Y)€eco(D)

N-1 N-1
1 - 1 -
= min {lim Sup E E{X}+6- lim]?up N E E{YW"}} (2.91)

el N

>

V(0)

where I' is the set of feasible randomized policy for the optimization problem.

% Actually, the minimum of the primal problem is always greater than or equal to the maximum
of the dual problem. This is called the Weak Duality Theorem. This result is good enough for
us to prove the optimality and feasibility .
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Proof. Since D C co(D), we have

min  L(X,Y,0) < min L(X,Y,0) (2.92)
(X,Y)eco(D) (X,Y)eD

However, for (X*, }7*) that achieves the minimization of the left-hand side, it can
be expressed as a convex combination of finite points from D. Lemma 2.5 ensures

the existence of vector (X#,?#) € D such that X# < X* and Y# < Y* < 0.

Since 6 is componentwise nonnegative, this implies that

min  L(X,Y,0)> min L(X,Y,0) (2.93)
(X,Y)€Eco(D) (X,Y)eD
Combining (2.92) and (2.93), we have
min  L(X,Y,f)= min L(X,Y,0) (2.94)

(X,Y)eco(D) (X,Y)eD

To finish the proof, lastly, we need to show the equivalence between the right-hand
side of (2.91) and the right hand side of (2.94).
By the definition of D, for each feasible randomized policy , the corre-

sponding expected long-term average of control sequences satisfy

N-1 N-1
1 1 — _
lim sup — E E{X"}, limsup — E E{Y'} | € D. 2.95
( N panO { ﬂ} N panO { }) ( )

This inclusion gives the inequality:

min L(X,Y,0) < (2.96)
(X,Y)eD

N-1 N-1
1 - 1 -
1;161%1 {lim]\fup N HZ:O E{X"}+0- lim;up i TLZ:O E{YW”}} . (2.97)
Conversely, for each (X, 17) € D, there exists a randomized feasible policy 7 such

that
N—1

N-1
. 1 . 1 o) .
(hmj\fupﬁ g E{Xﬂ},hmj\fupﬁ g E{Y] }) = (X,Y). (2.98)

n=0 n=0
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This establishes the inequality in the opposite direction of (2.97) and completes

the proof.
min L(X,Y,0) > (2.99)
L N2 L N2
IﬂI-lelII} {hm}sup N HZ:O E{X"}+0- lim;up N HZ:O ]E{Yﬂ”}} (2.100)
O

Note that the dual problem is a concave maximization problem, which
can be solved using the projected subgradient methods [9, p. 610]. Based on the
Danskin’s Theorem [9, Proposition B.25(b)], the control variables chosen by the
policy 7# that minimizes the left-hand side of (2.91) with respect to 0 constitutes
a subgradient of V(f) at 6, that is limsupy & S0V E{Y",}.

Ideally, using the subgradient, we can apply projected subgradient meth-
ods numerically to obtain one optimal dual variable g%. The randomized feasible
policy that satisfies the “Lagrangian optimality” and the “complementary slack-
ness” of Lemma 2.7 with respect to 0 is the optimal policy.

Unfortunately, in general, the evaluation of (2.91) may require the knowl-
edge of the probability distribution and the complete realization of {£", n =
0,1,2,...}. Therefore, causally computing the subgradient may not be applica-
ble. This suggests that the traditional subgradient methods may not be useful
when instantaneous decision making is required. To address this issue, we first

consider a function that bounds the dual function V(-) from below, and look into

the policies based on this bounding function.
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Subsidiary Bounding Function V(-)

Following Lemma 2.8, we bound the dual function as follows.

—

N-1 N-1
, 1 o 1 .
V(#) = min {hm sup E > E{X}+6- hmj\?up N nE_O E{Y }} (2.101)

mel’

Q 1 =

> minlimsup — E{X+60-Y"} (2.102)
mel N N o

The last inequality () results from the fact “lim sup,, a,,+lim sup,, b, > limsup,,(a,+
b,)”, and the equality holds if the limits of the sequences exist. For notational sim-

plicity, we define

N-1
T\ A - n n

V(e) = I;lellzlllm]\?up nZOE{X +6-YrY, (2.103)
V(&) & min X"4+0-Y" (2.104)

(X™,Y™)eD(¢n)
Please be aware that we slightly abuse the notation V' to emphasize that V' (6,£")
is a analog of V(0) in each discrete time instant.

Following the definition, we derive the following results:

N-1
L 1
V() >V() = mmhmsup—ZE{X”+9 Yol (2.105)
n=0
= hmsup—ZE min X"40-Y"} (2.106)
£ (xn Pr)eD(en ()
| V1
= i — > E{V(6,¢"). 2.1
lmNS“pN% {vio.¢)} (2.107)

Remark 2.2 (Some Results about the Concavity and the Subgradient).

—

By definition, V (6, ") is concave in 0. Indeed, E{V (0,¢™)} and V(0) are
concave functions, too. This fact can be proved using the linearity and the equal-

ity (2.107) for 17(5) According to [9, Proposition B. 25], the minimizer Y. o of



(2.109) is a subgradient of V(0,&™). This result implies that E{Y 4} is a subgra-
dient of E{V (0,&™)}. Hence, its long-term average, limsup * SV E{Y ,}, is

—

a subgradient of V().

Note that it is legitimate to move the min operator inside the expectation
in (2.106) because the feasible sets {D(£"), n = 0,1,2,...} are separable, which
means that any decision made at time n has no impact on the feasible set D(£™) of
the control actions at time m # n. Therefore, the minimum of the right-hand side
of (2.105) is achievable via the policy which minimizes X" + §-Y™ over D(™(w))
for each realization of " at each time n. Such policy is determined by the dual
variable 6.

In our case, instead of solving the dual problem, we opt to find the maxi-
mizer of V(-). Since V(-) is also concave, ideally, we can apply numerical algorithm,
referred to subgradient algorithm, to find the solution. For finding the maximizer
of V(-), the outcome of the numerical algorithm is a sequence of dual variables
{5”, n=0,1,2,...}. In the following, we define a class of policies which sequen-
tially (n = 0,1,2,...) assign the control values utilizing the solution to a specific
minimization with respect to a sequence of dual variables and the realization of
€"(w). This decision making only requires the instantaneous information about
the dual variables and the {"(w). Therefore, it can be implemented as an online

algorithm.

Definition 2.5. For a sequence {0", n = 0,1,2,...}, we define ™ as the policy
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which decides the control values at time n according to the following rule:

—

X" o, Y2 ) €arg min  z+0" -7 2.108
( 0 0 ) g(%g)ep(gn) Y ( )

In the degenerate case, when the sequence gn is only the repetition of a fixed vector
5, 7™ is defined as the policy which chooses the control values at time n with the
following law:
XY, €earg min z+6-1. 2.109
( 0 ,9) g () eD(en) Yy ( )

Since V(f) > V(#), the following problem gives a lower bound on the

optimal values of the dual problem and the primal problem:

Problem 2.5.

max V' (6). (2.110)

>0

Note that V(-) is concave , and V (f) = V(f) if the limit (instead of lim-
sup) of the expected long-term average in (2.103) exists. Unlike the dual function
V(+), for which the optimal policy of (2.91) is unknown, we have the close form of
the policy 7 that minimizes (2.103) for V(-). But still, we have the problem of
evaluating the subgradient for V(-) when {£*(w)} can only be observed causally,
i.e. only the values of {¢*(w), k=0,...,n} are known up to time n. For this rea-
son, in general, the direct approach using subgradient method is not applicable.
We need new approaches to find the solution. Hopefully, we can leverage some
concepts inherent in the subgradient method to design the new algorithm. Most

importantly, we need to find the best policy from those using only casual infor-

mation. With these prerequisites in mind, we try the recursive algorithm below
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which updates the dual variables under the control policy 7*,
0D = My [0 + V2 4], (2.111)

where IIy denotes the projection onto the set H = {6 | 0 < §; < K,}. Note
that this algorithm takes the place of the subgradient method, and it degenerates
to the subgradient method if we replace Y% p. by a subgradient of V(6). The
behavior of this recursive algorithm are covered by the analytical work on stochastic
approximation established in Section 2.1. In reality, the dynamics of 5”, ?ﬁﬁ’gn and
X7 gn depends on the step size €. However, for notational simplicity, we omit
the subscript € which appeared in the stochastic approximation (2.2). Shortly,
we will prove that if the assumptions (A.1-5) given in Theorem 2.1 are satisfied,

the expected long term average of the controlled sequence {(X7. ju, Y gn), 1 =

0,1,2...} actually reaches the optimal solution asymptotically.

2.2.3 Feasibility and Optimality

In this subsection, we will prove two important properties for our algo-
rithm: the feasibility and optimality . We restrict our analysis to the case where
{€"} is a stationary ¢-mixing process. Applying Theorem 2.2 with Y. ; taking the
place of g7, the assumptions (A.5) of Theorem 2.1 are satisfied if G(6) £ OV (6).
Therefore, under the same setting described in Theorem 2.1, all the results given
in the last section for stochastic approximation can be applied to the recursion
(2.111). To explain in detail, we begin with the proof of feasibility.

Asymptotic Feasibility
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We assume that, for each maximizer of V(-), the values of its components
are within the interval [0, K,). If the set of all maximizers of V(-) is compact,
this assumption is valid when K, is sufficiently large. In practice, one can set K,
to the maximal supported value used by the computing processor. We define the
compensation terms from below Z" € R and above Z" € R"* by rewriting the

recursion (2.111) as

gin+) — gn 4 . (fn L gn Zm. (2.112)

ﬂ.*’gn

The equation (2.112) can be rewritten as

—

ﬂ.*’en

We add both sides of (2.113) from n = 0 to n = N —1. Summing the left-hand side

of (2.113)from 0 to N forms a telescoping sum, this results the equation below.

=

O — 0 =€y (V" o +2m =27 (2.114)

* n
T*.0

n=0
After taking the expectation both sides of (2.114) and dividing them by €N, we

arrive at the equality

E{0™N ="} 1= on o on omn @ L x=nyion .
—— = B2 -2 > 5 ) B{(Y] 5 - 27} (2.115)
n=0 n=0

The inequality (a) above results from the fact Z" > 0. To get the end result, we

take limsup on both sides of (2.115).

N-1 . -
1 - . E{oN) _ g0
limesup lim ]\?up N nZ:O E{(Yﬂ’f" P 7MY} < limesup lim Nsup % ® 0

(2.116)
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The equality (b) holds because E{||[#™) — 6*||} is bounded (Theorem 2.5). Lastly,

the proof of the feasibility is complete by showing

lim sup lim sup Z E{Z"} = 0. (2.117)

€

This is what given in Remarks for Theorem 2.7.

Asymptotic Optimality

In this subsection, we move on to prove the asymptotic optimality of
Algorithm (2.111), with the assumption that ||| < B; uniformly in n for any
feasible policy 7. For clarity, we first assume that the maximizer of 17(9) is unique.
We note that the core of the proof relies on some bound on the cross product term

g - Y’i g Taking square on both sides of (2.111), we have

167112 < 77 + 2607 - V7 5+ (VR 1, (2.118)

or equivalently we have

Hé’n+1H2 . He"nHQ < 26(9” Yn +€2Hyn

" (2.119)

9n||2

For simplicity, we assume that 0° = 0. In this way, we do not sacrifice
the generality of the proof since the initial value is asymptotically negligible after
averaged over n. We add up both sides of (2.119) from n = 0 to N — 1, and divide

them by eN. It follows that

B 0V < ZE{en WHE—ZE{H w P (2120)

Note that the second term on the right-hand side of (2.120) is bounded by eB;.

52



23

As a result, we have

— Z E{0"- V" 5} > —eB. (2.121)

— —

We denote 6% as the unique solution® of V(6) over § > 0. Recall that:

V(&) = X" ot oY P (2.122)

Summing up both sides from n =1 to N, we get

F
F

1 A oen - 1 n
T EVELEY = Y BNt ZE{O Y2t (%)

i
=)
i
- o

IN

E{X[- }+ ZE{Q” Y”

N-1

1 n 1 Nk \n
= ¥ ZOE{XW;:*} + 5 ;E{Q YD
N—

—_

By comparing equations (x) with (x*), and exploiting inequality (2.121), we have

1 N-1 1 N-1 1 N-1
— _ < * ¢m - n__ px '_’Z
NEOE{X*G"} s 2 BV ,§>}+N;E{<G o) Y}

N—

1 L 1 L
< X en - n __ p* )
< § LEVEE)+ 5 B - T

The proof is complete after taking lim, lim sup, on both sides of the equality.

N-1 N-1
1 ~
hmsuphmsup— g E{XT, en} < lim sup— g E{V(6*, &M} =V (6*) < V* = X*
n=0 n=0
(2.123)

6The proof can be accomplished in more general setting, in which we allow the solutions to
the problem is not unique. The outline of the proof for this general case will be given at the end
of this section.



Remark 2.3 (The Uniqueness of 5*) In the previous proof of asymptotic feasi-
bility and optimality, we assumed unique maximizer G of ‘N/() In general, the
uniqueness of solution s may not hold. Nevertheless, as long as the set of 0% is
included in a certain compact set A where for each elements of A, the values of its
components are in [0, K,), the same results for optimality and feasibility are still

valid. The outline of the proof is given in the Appendiz of this chapter.

The core results of stochastic optimization are summarized in the follow-

ing theorem.

Theorem 2.8. Consider a stochastic system created by the stationary ¢-mizng
exogenous process {"}. The stochastic optimization below are concerned with the

optimal randomized control policy m over the control variables X' € R and ?ﬂ" €

R".
L V2
minimize lim]\?up N ; E{X"} (2.124)
S
subject to  lim sup % E{Yr} <0 (2.125)
policy 7 such that (X, V) € D(E™). (2.126)

Assume that D(€") C R™ is a set function determined by £", and there is a
compact set A C R"™™ such that D(£") C A for all n. If, in addition, at time
n=20,1,2,..., the following three conditions hold:

1. the scheduler selects the control variables (X:* G )7:* gn) under the policy m*

that follows the rule

Y o) €arg min x40, 2.127
v Vo) € 008 T Y (2.127)
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2. " is updated according to the recursive algorithm

Ot —Tu[0" + V™ ], H={0]0<6; < K,}, (2.128)

ﬂ.*79n

3. the set of the mazimizers to V() (defined in (2.103)) over 6 > 0 does not

touch the upper boundary” (K,) of the constraint set H,

then the expected long-term average of the control sequence (X" yn ) con-

on?
T O T o g

verges to the optimal solution asymptotically as the step size € goes to zero, that

18:
| v
limesup limNsup N ; E{X:*,gn} =X (2.129)
S
limgsup lim;up i ; E{Yﬂ’iﬁn} <0 (2.130)

2.3 Appendix

In this appendix, we outline the proofs for the asymptotic feasibility and
optimality of the algorithm (2.111) when Problem 2.5 has more than one solutions.
Let’s denote © as the set consisting of all the solutions to Problem 2.5.

Asymptotic Feasibility

From the case of unique maximizer, we learned that the proof of feasibility
requires: (i) the boundedness of E{#"} and (i) the negligible contribution of the
reflection term from above. Since A is compact and does not touch the upper

boundary of H, meaning for each element in A its component values € [0, K,,),

"The upper boundary is defined componentwise for 0 at K. 0 does mot touch the upper
boundary of H if 0; < K, fori=1,...,r.

25



Figure 2.2: Projected Point and Partition Points.

(i) and (ii) hold. The proofs for these two facts are vary similar to what we did in
Theorem 2.5 before for the stochastic approximation when G(-) is a subdifferential,
and hence is omitted.

Asymptotic Optimality

Since O is bounded by a compact set A, given § > 0, one can find a finite
set of points {6%(1),6(2),...,6*(rs)} in © such that © c U2, Ns(6*(3)).

For notational simplicity, we define on & e ( 5”), which is the projection
of 9" onto the solution set © of Problem 2.5. In the proof, we need to identify
which neighborhood Ns(6%(i)) does 6" lie in. To this end, we denote " as the
point in {#*(1),...,0%(rs)} that is closest to 6". Figure 2.2 illustrates an example
in which the point " is projected onto the set © at 6", the set © is covered by

—

U2, Ns(6%(i)), and ™ = 6(1) is the point in {6*(1),...,6*(5)} which is closet to
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o".
Before the proof of asymptotic optimality, we establish the following facts.
(Fact 1)
| AL | mLAL- L-1
- > B{XI g} + - >R YR ) <X+ - Z 2B, (Bs + 1),
n=mlL n=mlL
where By = max{ ||6*(1)]],...,]|6*(rs)|}.

Proof. Since the right-hand side of the inequality above is a constant, it is suffi-
cient to show that the inequality still holds if the expectation is replaced by the
conditional expectation. If this conjecture is true for the conditional expectation,
by taking the expectation over the conditional expectation, we then end up with

the same result. The proof is as follows.

- Z E{X". e | 075 = 07(i) } + - > BRIV | 07 =07(0) }
n=mL n=mL
1 mL+L—1
=7 > B{XI, 10m=00))
n=mL
mL+L 1 -
Z ]E{Q* Yo % (i) | ot = 0" (i) }
n=mL
1 1 mL+L—1 mL+L 1
<z S OE{(XI )}+ ZL 2B1¢(n—mL)
n=mL n=m
1 mL+L—1 1 mL+L—1
n=mL n=mL
L-1

®) 1
< X*4 = 2231 By +1)¢,,.

The inequality (1) above follows Lemma 2.1. More precisely, it follows the facts

—

IBLXT . 107 = 6°(i)) — BAXT. .} < 2B16iammiy (2.131)



o8

and

[BAY™ . 107 = 6(0)) — E{Y" . | < 216 (2.132)

The inequality (2) above is a consequence of the following result due to the sta-

tionarity of £€” and the definition of V(-):

mL+L—1 mL+L—1

! > BXL N > E{6°(i) - V7 5.0} = V(i) < X", (2.133)
]
(Fact 2)

There exists L' > 0 such that, for all L > L/,

mL+L—1 I
Y OE{VE,MY< X 42Bi(By+1)5+e

n=mL

1

1 o
" * B2 4 B{dist(6™F,0)} B, + 6B,

Proof. Assume that L is sufficiently large so that %Zﬁ;g on < 9. We have

1mL+L71 .
7 > E{V(6, ¢}
n_n;LmL+L 1 1 mL+L—1
= 7 > E{(X1.5)+ 7 > E{"-Y" 0
L R
< LY BXgudtr Y BT
e o
= < > E{X7. g} + 7 SR YR )
n=mL n=mlWL

1 mL+L—1 B
+7 > OE{(0"-0m") Yt

n=mL
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mL+L—1 mL+L—1

1 1 . .

= = > E{(Xlgultg > B0V
n=mL n=mL
qn amL N ol ~=mL

+7 nzﬂ;L B{(0" — ") - Y2 gs} + 7 RZ;L E{(6™" — 7") - V" 40}
(3) ! L+1 ., L
< X'+ 2 2231 (By+ )60 + €= —B} + E{|§"* — 9"} By,

n=0

@ L+1_, oo s S
< X' +2B(By+ 1)0 + e—o— B2 + E{||6"F — 6L} B, + E{||6"F — 61|} B,

(5) L
< X"+2Bi(By+ 1)) + ¢

1 .
B2 | R{dist (6", ©)) By + 6B,

The inequality (3) above results from Fact 1 and the facts HY Lgme|l < B, HY" P | <
By and ||§" — 6™E|| < ¢(n —mL)B,. The triangular inequality and the assumption
%Zﬁ;g ¢, < 6 give the inequality (4) above. By the definition of 6™, we know

that 6™ € Ny(6™%) and ||§™" — §™F|| < §. This fact in turn gives the inequality

(5) above. O
(Fact 3)
N-1
lim sup — Z E{V(6",€")}
| miAL-
= hmsupM Z anL E{V (6", €")}

L+1
< X*+2B1(Bo+1)5+e B2+ lim sup - Z E{dist(6™",©)} B,

+0B;,

Using the bound on the cross product term (2.121) and the definition of V(gn, &),

we have

| Nl N1
N Z E{X", .} —eB1 < N Z E{V(0",€")}- (2.134)
0 n=0
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Combining (2.134) with Fact 3 and the fact
lim sup lim sup E{dist(gmL, 0)}=0 (2.135)
€ M
provided by Theorem 2.6, it leads to the following inequality:
| Nl
lim sup i sup D E{X" 5} < X*+2Bi(By +1)5 + 6B (2.136)
€ n=0
The end result is hence achieved if we let § goes to 0.
N—-1

. . 1 n *
hmesup hm]?up N Z ]E{Xﬂ*ygn} < X" (2.137)

n=0



Chapter 3

Routing, Link Scheduling and
Power Control in Multi-hop
Wireless Networks over Time

Varying Channels

In this chapter, we investigate the power efficient resource allocation pol-
icy in multi-hop wireless networks with multi-commodity flows. In each time slot,
a scheduler has three decisions to make: 1) How much power should be spent by
each node to transmit signals, 2) How much data should be transmitted on each
channel, and 3) What fraction of the data sent over each channel belong to each
flow. This result in three variables to be controlled by the scheduler. The challenge

of assigning these variables comes from the coupling of feasibility. For example, the
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transmit power and the channel condition determine the achievable transmit rates
on the channels; the achievable transmit rate on a channel limits the aggregate
rate of all flows sent over it; and each flow has its own QoS target rate to meet.
Therefore, any changes made to decision on one of them will affect the value of
the others.

In this work, we seek a control rule that manages these resources (power,
link rate, and flow rate) efficiently so that the predefined end-to-end flow rate
requirements are satisfied using minimal average transmit power. This is essentially
an optimal control problem, and we apply the stochastic optimization to solve it.
Leveraging the techniques developed in Chapter 2, an online algorithm is proposed,
which allocates the resource adapting to the observation of instantaneous time-
varying channel conditions.

Chapter 3 is organized as follows. We begin with the introduction to
channel aware schedulers. After the overview of related research, in Section 3.2,
we introduce the concepts of link, flow, and the time-varying property of channels.
In Section 3.3, we define the system model, notation, and the constraints which
form the basis of analysis framework of this chapter. In Section 3.4, we formulate
our primary problem, power efficient routing, as a stochastic optimization and
solve the problem by a recursive algorithm. This is the most important part of
this chapter. In Section 3.5, we examine our algorithm using an example of two

flows. Lastly, we conclude this chapter with some remarks.
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3.1 Introduction

The growing interest in multi-hop wireless network raises the demand
for efficient resource allocation mechanisms for wireless systems. To maintain
quality of service (QoS) and manage the cost of average resource consumptions,
the scheduler must coordinate the communications taking place within the system.
To be clear, in each time slot, a scheduler specifies the transmit power and rate
on each data link to fulfill the QoS requirements considering the effect of mutual
interference. Wireless channels are subject to dynamic changes caused by user
mobility and the movements of surrounding obstructions. Maintaining a constant
transmission rate continuously over a channel may result in excessively high power
consumptions for severe channel conditions. An efficient scheduler should exploit
the channel state information (CSI) and makes decisions accordingly.

Many research works studied the problem of utility maximization with
respect to link rates under time-varying channels. In [47], T'se proposed the propor-
tional fair scheduler (PFS), which exploits multi-user diversity in a time-varying
environment. Under the assumption of stationarity on the channels, it was demon-
strated that the throughput vector [RY", ..., R7"] of PFS achieves the maximum
of logarithmic utility function 3.7 log(X;™?) [28]. Agrawal [2] and Stolyer [45]
further generalized this idea by considering the utility functions in the format
SOF L A(X™9), where the function fi(-) is concave and differentiable.

The key disadvantage of using this utility based scheduler is that the

optimal scheduler of this kind is likely to favor the users experiencing better channel
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conditions. This behavior implicitly lowers the priority of users with poor channel
quality. However, in practice, certain QoS performance guarantee is required for
each link, which is hard to achieve using utility-optimized scheduler. To address
this issue, Lee et al. [29] reconsidered the throughput maximization problem with
additional minimum throughput constraint on each user. An algorithm is proposed
by them to tackle this refined problem. However, their proposed solution is only
sub-optimal if the number of users is only finite. In their algorithm, the scheduling
decisions are ruled by a parameter, which is updated continuously via a recursive
equation using a “subgradient-type” vector. If the channel state is deterministic
and invariant, this subgradient-type vector is equal to a certain subgradient of the
dual function to their optimization problem. However, for random time-varying
channel, this is not necessary true. In their proof, there is a problematic statement
which claims that, given the history of the system, the conditional expectation
of this “subgradient-type” vector forms a subgradient if the channel process is
stationary. Indeed, their proof works when the underlying process is independent
and identically distributed (IID); however, we can find counter examples to their
proof, utilizing the correlation between different samples of the stationary channel
state process at different time.

In this work, the structure of asymptotically optimal scheduler for power
efficient policies under time-varying channels is investigated. In particular, we aim
to minimize the average power consumptions while maintaining minimum average

end-to-end data rate for multi-commodity flows. The problem is formulated as
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an optimization concerned with time and ensemble average of controllable random
sequences. A recursive scheduling algorithm is proposed for this problem, and its
performance (in terms of power efficiency) can be tuned arbitrarily close to the
optimal value. By means of stochastic optimization, we justify that our algorithm

converges to the optimum irrespective of the system size.

3.2 Channels, Links and Flows

Time-Varying Channel

Due to the user mobility and the movements of surrounding obstruc-
tions, wireless channels are random and time-varying in nature. For a wireless
network with user devices equipped with single omni-directional antenna, the mag-
nitude of power loss over all channels fully determine the network channel capac-
ity. The power loss gain of a channel can be expressed using a product of factors
GrGpG. .G Gy GRr, where G and G denote the transmit and receive antenna
gain, G'p denotes the path loss gain, G. denotes the processing gain, GG;, denotes
the shadowing and G, denotes the multi-path fading. Among these factors, G,
changes most frequently. The frequency of this variation can be roughly quantified
as follows. The mobility of the mobile nodes causes Doppler shift in the carrier
frequency, and the reciprocal of the Doppler shift gives the coherence time 7, of the
channel. Note that the value of T is channel dependent. Within any time interval
of length T,, the power loss gain of the channel is approximately constant. Moti-

vated by this property, in this work, we assume that the system divides the time
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into equally spaced intervals called slots. For analytic simplicity, we also assume
that the power loss gains over all channels are fixed within a slot and can change at
the boundaries of a slot. In other words, the block fading model for time-varying
channels is assumed in this work. In reality, channel states can change within a
slot. However, if the minimum coherence time among all channels is much larger
than the slot size, the fraction of time slots in which channel variation violets the
block fading model is negligible. This assumption is valid for a system with low
mobility.

Links and Link Capacity

In wireless networks, a link is defined by an ordered pair of nodes (a,b)
where node a is called transmit node and node b is called receive node. As a
transmitter, node a encodes the information bit prepared for node b, modulates
the codeword into signal, and sends the signal over the wireless channel connecting
node a to node b. On receipt of the signal, node b performs demodulation and
detection, and extracts the information from the coded symbol. A link denotes a
point-to-point connection bearing the information directly from the transmitter to
the receiver without the help of intermediate nodes.

In wireless setting, the transmit signal power from one node reaches all
other nodes at different levels of attenuation. A signal in the air causes exogenous
interference to a node if the signal does not bear information intended for that
node. From Shannon’s analysis in channel capacity [44], we know that the capac-

ity for memoryless additive white gaussian noise (AWGN) channel is a function
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of the received signal to noise power ratio (SNR). However, the exact capacity
formula of interfering channels is only available in some simplified cases. Never-
theless, from the receiver’s perspective, intuitively, interferences play a similar role
to gaussian noise, which deteriorates the reception quality. It has been examined
in many communication systems, such as CDMA [51], that the quality of reception
is determined by the ratio between the received signal power and the interference
plus noise power. This ratio is called the signal-to-interference and noise power
ratio (SINR). In this chapter, we assume that the maximum information bit rate to
be transmitted over a link is a function ¢(-) of the SINR value at the receiving end
of that link. From high-level view, this assumption is valid in the following two as-
pects: first, if the transmitted signals are independent, the aggregate interferences
act like gaussian noise. This argument follows the central limit theorem. Second,
if gaussian signaling (entropy achieving code) is assumed for channel coding, the
aggregate interference is still gaussian. In both cases, if we include the interfer-
ences into the noise term, by Shannon’s capacity formula for AWGN channel, the
maximum achievable rate can be expressed as a function of SINR.

To achieve link capacity with zero error, in theory, it requires a set of
codewords with infinite length. In a bandlimited wireless system, however, this
amounts to infinite times of transmissions. For real applications, delay require-
ments are restrictive; hence, it is not possible to transfer error free information
over the noisy link at its capacity rate in a finite time duration. Nevertheless,

given any SINR value and physical layer design, there is an achievable bound on
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the link rate satisfying the predefined negligible probability of error (e.g. less than
107%). In the remainder of this chapter, we regard this achievable bound as the
operational link capacity. Unless we state otherwise, the terms ”link capacity”
and "operational link capacity” are used interchangeably. By this definition of
link capacity, the occurrences of errors are negligible. Therefore, when designing
a scheduler, one can neglect these nuisance rare error events and assume perfect
information transfer at a rate below the operational link capacity.

Link rate function ¢(-) is a strictly increasing function. To maintain
transmission rate at R; on each link, it amounts to keep the receiving SINR above
the corresponding threshold ~;. Essentially, there are two approaches to raise the
SINR on a link. The first approach is to increase the transmit power on that link,
the second approach is to reduced the interferences from other links. From the
aspect of system level impact, these two approaches conflict to each other since by
increasing the transmit power it increases the interferences to other nodes as well.

If the requested transmit rates need to be satisfied within each single time
slot, the solution to the optimal power allocation reduces to the classical power
control, which adjusts the transmit power to maintain the SINR for the requested
transmit rate.

However, if the application is delay tolerant, the performance can be
significantly improved if the scheduler exploits the time domain freedom and ap-
propriately assign the link rates, flow rates, and transmit power over consecutive

time slots. Consider the example in Figure 3.2, in which appropriate link schedul-
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ing improves the capacity. The channel gains in this example are 1 and the peak
transmit power limit normalized by the noise power is 10. To maximize the data
rate that is concurrently achievable on the links A — C' and B — D in each time
slot, both links must transmit at the peak power to overcome the interferences
from A to D and B to C. Assuming linear rate function ¢(SINR) = SINR, the
maximum rate achievable on both link is only 1/1.1. However if we relax the delay
requirement to two slots, the maximum rate concurrently achievable on both links
is at least 5. This can be done by alternatively sending data on each link using
maximum power. This example demonstrates that time sharing is more efficient
then concurrent transmissions in high interference circumstances.

In this chapter, we look into the extreme case when there is no delay
restrictions on the data, meaning the requested rates are allowed to met after
averaging over infinite time slots. Due to this nature, our solution may not be
suitable for the delay sensitive applications.

Flows and Routing Conceptually, the links and the nodes in the system can

be described by a directed graph G(V, E), where V is the vertex set consisting of
all nodes and E is the directed edge set consisting of all links. The capacity of
each directed edge is the link rate. A flow is a end-to-end connection representing
a stream of bits originating from the same port of one node and destined for
the same port of another node. Specifically, each flow is described by a 5-tuple
(source node, source port, destination node, destination port, demand data rate).

For analytical simplicity, we assume that for each ordered node pair there is at
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most one flow taking place. Nevertheless, the analysis and schemes used in this
chapter can be applied to the cases with multiple flows over the same source and
destination nodes. Under this assumption, a flow is identified by an ordered pair
(s,d) together with the rate demand v, where node s generates the data sent
to node d at a rate v. A flow relies on routing over links to accomplish the
information transfer. In networks with multiple flows, routings are regarded as
multi-commodity flow assignment problem [3, p. 649]. In a static environment,
the optimal flow assignment is fixed [17]. However, under time-varying channels,
the existence of a static path is not assured. How to assign the flow rate adapting
to channel variations is the key question to be answered in this chapter.

As we mentioned above, nodes and links form a directed graph, the in-
formation bits from a source node reaches its destination node through the help
of other nodes in a store and forward fashion. Each node can be a source node
of some flows and the helper node of other flows. As a helper node, it maintains
individual queues for each flow that arrives at it. The helper nodes are scheduled
to relay the flow data to the next helper nodes. Data of flows are transmitted from
one helper node to another until they reach their destinations. We do not exclude
the possibility of multiple routes, the data belonging to the same flow can be for-
warded to the destination node through different paths. This behavior provides

the multi-route diversity.
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3.3 Notations and System Model

We consider a wireless network consisting of M nodes, L links and J
flows. Each node is equipped with one omni-directional antenna. We label each
node with unique index taken on the set {1,2,..., M}. The i link is denoted by
l; = (a;, b;), where a; and b; are the indices of the transmitter and receiver of the
i" link, respectively. The j flow is denoted by f; = (s;,d;), where s; and d; are
the indices of the source and the destination nodes of the j* flow, respectively.
The rate demand of flow f; is v(f;). Please be aware that we slightly abuse the
notations of /; and f; so that a link or flow can be identified or described either
using the index or the ordered node pair.

System time is divided into equally spaced intervals called time slots,
which is the basic scheduling time unit. The allocated transmission power and rates
over all links in slot n are given in the vectors P" = [P™(1y), P*(l), ..., P"(I;)]
and RB" = [R"(l,), R"(l), ..., R*(I1)], respectively. From the data sent over the
it" link at time n, the amount of those belonging to the j* flow is denoted by
C™(fj,l;). The set {C™(f;,1;),7 =1,...,J, i =1,...,L} is described by a j x i
matrix C™ . in which the (j,1)-th element is equal to C"(f;,1;). At the beginning
of time slot n (= 0,1,2,...), the scheduler specifies the resource allocation in array
Ve = []3”, B, C(”)]. The underlying time-varying phenomena, such as mobility
and channel variations, are modeled by a stochastic process {{",n > 0}.

The power loss gain from the transmitter of link [; to the receiver of

link /; is denoted by GZ,lw which is a random variable measured by the o-algebra
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generated by {€¥, 0 < k < n}. On link [;, the receiving end experiences noise

power 1;,. The signal to interference and noise ratio (SINR) can be evaluated

G, P 0
J#i GZ;,ziPn(li)Jr’]Z

using the formula ;' = > . For notational simplicity, we denote the
set of all outgoing links at node m by £(m) and the set of all incoming links at
node m by F(m).

Assuming that the maximum instantaneous data rate sent over link [; is
a function ¢(vy) of SINR ~y, under the peak transmission power limit P*** to node

m, a resource allocation policy V™ is feasible if and only if pr, R" and C™ satisfy

the following sets of constraints.

(Power Constraints)

P(;) >0 fori=1,...,L
(3.1)
(Link Rate Constraints)
R™(l;) >0 fori=1,...,L
(3.2)
R"(l;) < ¢(y,) fori=1,....L
(Capacity Constraints)
In time slot n (=0,1,2,...)
S CM (1) < RML)  fori=1,... L
(3.3)

C“(fj,lz)z() ,fOI"j:L...,J, andz'zl,...,L.
For ease of explanation, we define the feasible set D(£") as the collection of all

arrays v = []3", ﬁ", C(”)] satisfying the power constraints, link rate constraints,

73



and the capacity constrains at time n under the channel condition £". Note that
since the channel process {£"} is exogenous', control actions have no effect on the
set D(£™), and hence D(£™) and D(£") are decoupled for m # n. In the following
subsection, we examine the framework developed in Chapter 2 by applying it on
the power efficient routing problem. As we mentioned earlier, a routing problem
can be regard as a multi-commodity flow assignment problem. Its degenerate
case, single commodity flow with static links, were studied in [17], in which it
points out an important fact regarding the feasibility of flow allocation. That is
the average ingressive and egressive rate of a flow at each node must be equal.
Note that one may further relax this constraint by allowing the net flow rate
entering a node to be smaller than or equal to zero. This relaxation does not
alter the answer to the optimization problems since the objective cost function
(total average transmit power)increases as excess transmit rates than necessary
are scheduled. This argument works for a wireless network scheduling problem if
the objective function is the aggregate average transmit power of the entire system.
If we assume that the limit of long-term average flow rate exists, the discussion
above can be translated into the following mathematical equations.

(Flow Conservation Constraints)

LA stochastic process is called exogenous if the control actions have no effect on the evolution
of the process.
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For node m (=1,...,M) and flow f; (j =1,...,J)

.

U(fj), ifm= dj

lim Z E(C"(f;, 1) — Z E(C"(f;,l:)) ¢ = —vu(f;), ifm=s; (3.4)

0, otherwise
\

In general, the existence of the limiting long-term average is not assured.
Therefore, we resort to the following relaxed constraint. Note this relaxed con-
straint does not alter the optimal value, since feasible solutions which over qualify
the constraints result in excess power consumption. The relaxed version of the

flow conservation constraints is of the following form.
(Relaxed Version of Flow Conservation Constraints)

For node m (=1,...,M) and flow f; (j =1,...,J)

(

Nod ’U(fj), if m= dj
timsup - > {ZZ E(C™(f,1) ~ 3. E(C”(fj,zm} <3 _u(fy), ifm=s; (35)

0, otherwise

3.4 Power Efficient Routing

Based on the discussions in the last section, the power efficient routing

problems can be formulated as an optimization problem of the following appear-



ance.

N-1 L
minimize  lim sup Z (3.6)
n=0 =1

subject to  Relaxed Flow Conservation Constraints satisfies (3.5)

Ve D(E) forn=0,1,2,...

The proposed optimization problem fits into the framework of stochastic
optimization, so that we can use the recursive algorithm (2.111) in Chapter 2
to design the scheduling policy. It is asymptotically optimal. The connection
between (3.6) and stochastic optimization becomes more obvious after we replace
the control variable X™ in the stochastic optimization with the aggregate power

consumption ZZ.LZI E(P™(l;)) and the demand control variable Y with the terms

<Zlie£(m) Cn(fj’ li) - Zlie}'(m (fjﬂ ) + Vm]) where

_U(fj)’ it m = dj
Vmi =\ o(f;), ifm=s; - (3.7)

0, otherwise.

\

Following the recursive algorithm for solving stochastic optimization, in each time
slot, the scheduler 7* (given in Definition 2.5 in Chapter 2) solves the following
subproblem and makes decisions in accordance with the corresponding minimizers.
M J
min ZP” 3N 6 [ X o) - D O vy [(38)
VreD(en) m=1 j=1 L€ (m) L,eF(m)
To evaluate (3.8), first, we rearrange the terms immediately behind the

double summation on the right of (3.8) with respect to C™(f;,l;). The new ap-
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pearance of the problem is displayed below,

J L J M
min ZP" ZZ 0i;C"(f;, ;) + oo, where oy = ZZﬁmjl/mj,(&Q)
j=1 i=1

VreD(en) j=1 m=1
and o;; is the new coefficient of variable C"(f;,[;) after the rearrangement. To be

clear, 0;; has the following form

01 = D BuiLueeeny — Lneremn), (3.10)

where Iy 4, is the indicator function of event A. If we fix variables P and R, equa-
tion (3.9) can be regarded as a linear programming on C"(f;,(;) with a polytope
constraint set formed by the capacity constraints (3.3). Therefore, one can find
solutions to this problem at the extreme points of (3.3). Using this observation,

the optimal assignments of flow rates on each link in time slot n has the following

presentation.
.
Rn(lz) lf] = arg minj:1 77777 J Oijs and 055 < 0
™ (fi, i) = (If there is a tie, choose one randomly) (3.11)
0 else.

\
Substituting (3.11) into (3.9) and rearranging the terms according to R"(l;), we
arrive at the minimization below,

L

min Z P (1 Z R (1;) + o0, (3.12)

VreD(en) P

where «; is the corresponding coefficient after the rearrangement.

a; = min( min 0;,0) (3.13)
=1y d
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Similarly, if we fix the variable ﬁ, the optimal transmission rate on link /; has the

following form.

() ifa; <0
R™(l;) = (3.14)
Lastly, substituting (3.14) into (3.12), and grouping the terms according to qb(vl’;),

we arrive at the following optimization involving only the transmission power vec-

tor,

L
min ZP" +Z)\i¢(7l:b)+0-07

V“eD(ﬁn i—1
where \; = min(ay, 0).
According to Theorem 2.8, the solution of (3.6) can be obtained through

the following steps.

Algorithm 3.1.
At time slot n, the scheduler assigns the transmission power P*"(l;) for link I

following the rule

L L
G, P ()
arg min P (1) + i@ o — ,
Pre(3.a) {; ; > G P (lG) +

where the minimum is taken over the power constraints (3.1). The optimal data

rate R*"(1;) and flow rate C*™(f;,1;) can be deduced from (3.14) and (5.11). The

dual variables are updated recursively as follows

Butt=pn eIy | Y C(f, L) — > C™(fi, ) + vy

l;eE(m) l,eF(m)

, where H = {£ 10 < & < K, } contains the optimal dual variables ﬁ* in its interior.
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Note that the selection of appropriate value of K, is a technical issue.
For practical applications, it is sufficient to set K, to the limit supported by the
computing device.

Let V*n = [ﬁ*”,ﬁ*n,c(*">], according to Theorem 2.8, if the process
{£&", n = 0,1,2,...} is ¢-mixing , the long-term average of ﬁ*(k),ﬁ*(k) and
C*(k)]T converge asymptotically to the optimal solution of (3.6) as the step size

¢ diminishes to zero. The following theorem summarizes the key results of this

chapter, which can be deduced directly from Theorem 2.8.

Theorem 3.1 (Asymptotic Feasibility and Optimality).

1. (Optimality)

N-1 L
lim sup lim sup — Z Z P (l;) < P* (3.15)
n=0 =1
2. (Feasibility)
L N2
lim sup lim sup N Z Z E(C™(f;, 1)) — Z E(C™(fj, b)) + vmj p <0
¢ N n=0 | 1e&(m) 1€F(m)

In the next section, we examine a numerical example for power efficient
routing, assuming the linear rate function R(v]') = W'y, The cost function in

the evaluation of (3.15) becomes

L
G, P™(l;)
min P*(l;) + AW ks ;
Pre(3.1) {Z 121 (Z#i GZ,ziPn(lz‘) +

where the minimum is taken over the power constraints (3.1). According to the

observation in [14], this objective function is componentwise concave in P™(l;),
and hence there must exist solutions to the minimization at the extreme points of

power constraints (3.1). In other words, the solution of P**(l;) is either 0 or P™®*.



3.5 Numerical example

This example consists of 7 nodes and 8 links. The topology is illustrated
in Figure 3.2. There are two flows, each requires a minimum throughput of C'. Flow
1 originates at node 1 and ends at node 5, it exploits links 1, 3, 4, 5, and 7 to route
the traffic. Flow 2 originates at node 3 and is destined to node 7, it use link 2, 3, 4,
6, and 8 to route the traffic. The peak transmit power limit P** is set to 50 watts
and the linear rate function factor W’ is set to 50 MHz. For each link, we model the
channel states as a IID stochastic process. The channel states of different channels
are independent. The background noise power &, is the square of a standard
normal random variable. The channel gain Gy, is given by e/d?(ly, l5), where e is
an exponential random variable with unit mean, which models the Rayleigh fading.
The notation d(ly,[l3) denotes the distance between the transmitter of link /; and
the receiver of link /5. The step size is set to e = 0.0005. To investigate how system
performs along with the value of C, we gradually increase the value of C' from 0.5
to 30 Mbps. The traces of the average flow rates carried on each link are plotted in
Figure 3.4. Defining Cj; as the long-term average data rate which belongs to flow j
and passes link 7. We plot the curves of the average flow rate C;; versus the demand
flow rate in Figure 3.4. The upper curve in Figure 3.4 actually contains eight
overlapped traces of the time averages of {C11, Ca2, C31, Cs2, Cy1, Cy2, Cs1, Cea } and
the lower curve contains two overlapped traces of the time averages of {C7y, Cso}.
Since the topology of the network is symmetric, we only focus on the behavior of

flow 1. It is noticed that when the requested throughput is below 5 Mbps, the
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optimal route of flow 1 is {1 — 2 — 4 — 6 — 5}; as the requested throughput
grows, the help from the direct path {1 — 5} starts taking effect. Although
both {1 — 2 — 4 — 6 — 5} and {1 — 5} are energy efficient paths, on route
{1 - 2 — 4 — 6 — b}, each link contributes less interference to the system,
and the possibility that all of the links are in deep fade at the same time is small.
Therefore, the optimal scheduler shall prefer route {1 — 2 — 4 — 6 — 5} over
{1 — 5}. In Figure 3.3, we gather the data from slot 5001 to slot 25000 and plot
the average power consumption with respect to C. It is evident from Figure 3.4
that when C is small, the scheduler works like a TDMA system. In other words,
in every slot, at most one of the links is activated, and the scheduler refrains from
transmitting on a link unless that channel is in good condition. Therefore, the total
power consumptions increase linearly in the low throughput region. However, as
the throughput request C goes up to 20MBps, more links are needed to participate
the routing and forwarding in a slot. The total power consumption then go up

nonlinearly due to the interferences.

3.6 Conclusions

In this chapter, we have shown how a joint link scheduling, power control,
and routing optimization problem over time-varying channels can be solved using
stochastic optimization. In addition, we proposed an recursive algorithm which
exploits the CSI to schedules the transmission. We have proved that the optimal-

ity and feasibility of our proposed algorithm are reached asymptotically. From the
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numerical results, we observed that for flows with minimum throughput require-
ments, to save power consumption the scheduler will opportunistically routes the
traffic through links with better channel conditions. This gives us a guideline for

designing the system with low rate requirements.
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Chapter 4

Distributed Scheduling, Power

Control and Routing for

Multi-hop Wireless MIMO

Networks

In this chapter, we develop a cross-layer, yet distributed, resource allo-
cation mechanism for multi-hop wireless MIMO networks, which works efficiently
over time-varying channels. The design criterion for this work is to use minimum
total power to transfer the data for all end-to-end connections at their requested
rates. To reduce the complexity of scheduling algorithm growing along with the
system size, we decompose the global system into multiple MIMO broadcast sub-

systems, where the communications taking place within each subsystems are or-
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thogonalized to those occurring outside the subsystem. Under this setting, in
every time slot, each subsystem can independently decide the allocation of trans-
mit power, the antenna weights, the transmission rates, as well as the forwarding
rules for each end-to-end traffic. The decisions may depend on the local channel
state information and certain parameters communicated by its neighboring subsys-
tems. Based on this configuration, we propose an distributed adaptive scheduling
algorithm, and its performance is proven to be asymptotically optimal under the
decomposition rule. Apart from the scalability, the proposed decomposition allows
us to quantify the gains associated with multi-user techniques in a MIMO ad-
hoc network against traditional link scheduling solutions. Numerical results are
provided to quantify the advantage of MIMO multiuser techniques under various

network conditions.

4.1 Introduction

Modern wireless communication systems, such as WCDMA and 1xEV-DO,
are capable of dynamically adjusting the operating parameters and the resource
allocations. This feature motivated the extensive research of opportunistic schedul-
ing in cellular networks [24] [2] [1] [7] [11] [29] [35] [36], which studied efficient rate
allocation adapting to the changes in channel conditions. Meanwhile, given the
success of the IEEE 802.11 wireless local area networks, there is growing inter-
est in ad-hoc wireless networks. Since more coordinations are required for ad-hoc

wireless networks, the channel aware algorithms developed for cellular networks is
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not adequate for this use.

Traditional network design philosophy separates the system into decou-
pled layers in accordance with functionality, where the system optimization is
performed in a layer-by-layer fashion. This usually leads to over-design and in-
efficient use of resources. To operate at system’s best performance, an efficient
scheduler adjusts the resource across all layers in accordance with the QoS re-
quirements driven by the applications. Since the operations in higher layers are
realized through the functionalities provided by lower layers, this optimization may
require the cross-layer coordination. The cross-layer dynamic resource allocation
problems for wireless networks with time invariant channels have been studied
in [14] [32] [31]. However, the scope of these research works are limited to station-
ary nodes. To quantify the impacts of channel variation, we consider a dynamic
scheduling approach where channel state information is assumed to be known at
the transmitter as well as the receiver.

To compensate for those insufficiencies described above, we consider a
cross-layer approach to the question of optimal scheduling in MIMO ad-hoc net-
works over random time-varying channels. In particular, we seek the optimal
routing in terms of total transmit power consumption which sends data from a
set of source nodes to their destination nodes at a required average rate. The
methodology used for this work is motivated by the achievements in the following

three research areas.

1. Interfering Link Scheduling Problem
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Research on this subject focuses on how to coordinate the transmissions
within a wireless network to fulfill the target point-to-point transmission
rates, using a minimal allocation of power. It originated from the power
control problem in cellular networks [5], which later was extended to the

context of ad-hoc networks [46] [34].

. Minimum Cost Multi-commodity Flow Optimization Problem

This research topic is concerned with the efficiency in terms of the resource
utilization for moving the information bits from a set of source nodes to their
destination nodes at the requested rate. The simpler version of this problem
(single commodity flow with constant link capacity) was first investigated by
Ford and Fulkerson [17], and later on was extended to a cross-layer context.
The minimum cost flow assignment problem in wireless communications,
accounting for the interference using omni-antennas, was investigated in [14],

and was later extended to include time-varying channels in [33].

. Multi-user Communication

The third motivating factor for our work is the recognition of the signifi-
cant improvements offered by multi-user communication techniques [47]. In
particular, we are interested in techniques such as dirty paper coding or suc-
cessive interference cancelation that allow for simultaneous transmissions of
data to multiple users while keeping the impact of interference at minimal.
Our extension of link constraints to the capacity region ones, in effect, would

generalize the work on interfering links to allow for some level of interference
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cancelation in form of dirty paper coding.

This paper can be viewed as a work combining the above three research
topics, and includes the joint consideration of link scheduling, routing and power
control. Due to co-channel interference, the feasible resource allocations at nodes
are coupled to each other. For instance, all interfering links must cooperate to de-
termine the transmit power so that the target instantaneous rate on each link can
be satisfied. Consequently, the complexity of the optimal cross-layer scheduling
algorithm grows exponentially with the system size [46] [14]. Therefore, scalability
may become an issue in implementing cross-layer scheduling algorithms. In light
of this, we take a divide-and-conquer approach to address the growing complexity.
Specifically, we divide the system into multiple MIMO broadcast subsystems so
that the communications taking place within a MIMO broadcast subsystem do
not interfere with those occurring outside the subsystem. This can be achieved
by exploiting the orthogonality in the time domain, the frequency domain and/or
the code domain. With a MIMO broadcast system, though, we allow for interfer-
ence cancelation via dirty paper coding. Note that the proposed decomposition
may sacrifice system performance although it provides scalability for scheduling
in return. In summary, the contribution of our work is two fold: 1) we extend
previous work in cross-layer optimization using omni-antennas to a MIMO system
where antenna resources are used to enable some level of interference cancelation;
2) we devise a locally centralized scheduling algorithm to coordinate the working

of MIMO broadcast subsystems such that the best performance under the decom-
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position is achieved.

In addition to the main contributions mentioned above, we would like to
emphasize our contribution from the analytical aspect. In this chapter, we utilize
stochastic optimization, an extension of classical convex optimization, to devise
our optimal and localized algorithm. The proposed stochastic optimization is con-
cerned with the time and ensemble average of the stochastic decision processes
subject to 1) the instantaneous resource allocation constraints limited by the in-
stantaneous channel condition, and 2) the long-term average QoS requirements.
Stochastic optimization was used in previous works to deal with scheduling in
wireless networks with dynamic channel changes. However, the proofs provided in
these papers are either oversimplified or inaccurate . For example, in [29], the au-
thors studied the opportunistic downlink scheduling problem under time-varying
channels, in which they applied the duality technique, and used the stochastic sub-
gradient method for solving the problem. The stochastic subgradient algorithm
recursively generates a sequence of dual variables. In every time slot, the scheduler
observes the channel state and updates accordingly the dual variable by adding
to it a scaled “subgradient-like” vector. The proof of optimality for the algorithm
given in [29] depends on an critical assumption: the conditional expectation of
this “subgradient-like” vector given the past history forms a subgradient of the
dual function. In general, this may or may not be true, because the conditional
expectation of the “subgradient-like” vector is, in general, not a subgradient of

the dual function. Some degree of dependency between the instantaneous channel
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condition and the scheduler’s previous decisions may remain. The authors of [29]
overlooked this subtle effect.

We propose an online recursive algorithm for solving the stochastic opti-
mization problem. Moreover, rigorous mathematical proofs of the optimality and
feasibility are provided for our algorithm.

Lastly, we note that in [38] the authors studied a very similar problem to
the one we consider here.

To clarify and distinguish between our contributions, we summarize the

key aspects below.

e The first major distinction between the two comes from methodology. We
tackle the problem directly using classical convex optimization framework
and the duality technique. All the proofs in our work follow the conver-
gent proof for the recursive algorithm on the dual variables on the basis of
stochastic approximation and the projected differential inclusions. In [38],
the author approaches the problem from the aspect of stability, where the
Lyapunov type penalty function is used as the cost of violating the QoS re-
quirements. The Lyapunov drift analysis is applied to prove the stability;

and the feasibility and optimality follow the result of stability.

One major advantage of using stochastic approximation over a Lyapunov
approach is the generality of the channel and arrival processes. Lyapunov
techniques usually rely on the independent renewals over time while the

convergence of stochastic approximation algorithm only requires mild mixing
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conditions.

e Second, unlike the framework developed in [38], which largely relies on the
existence of relative interior feasible point, and hence is not applicable for
equality constraints, our approach can be generalized to accommodate equal-
ity constraints. Consider a simple example of maximizing the aggregate
transmit rates on two links with the requirement of equal rates on both
links. The equal rate constraint contains no relative interior point. Hence, it
is not covered by [38]. However, since our proof does not require the interior

point assumption, it is more general.

e Last, in our work, we utilize MIMO and interference cancelation, while, in
[38], the author assumes a single antenna system. In particular, we identify
the advantages of interference cancelation as well as spatial multiplexing,

under various networks topologies and traffic conditions.

This chapter is organized as follows. We begin with the notation and
system models in Section 4.2, in which we introduce 1) the constraints on the
transmission power and rate for a given set of instantaneous channel conditions,
and 2) the constraints over the long-term average. Following the overview of the
system operations, in Section 4.3 we formulate the problem as a stochastic opti-
mization. We point out the difficulties in solving the problem in the absence of
knowledge of the probability distribution of the channel conditions, and propose a

subgradient-type online recursive algorithm. Under the mixing assumption on the
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channel dynamics, we show that the proposed algorithm asymptotically leads to
an optimal solution. In Section 4.4, we present numerical examples demonstrating
the performance of the proposed algorithm using a small network of 15 nodes. Fi-
nally, we conclude this work with a discussion of promising future research topics

in Section 4.5.

4.2 Notation and System Models

4.2.1 Network Description

The system consists of M nodes, each equipped with n; transmit antennas
and n, receive antennas. We identify each node with a unique integer index taken
from the set {1,2,...,M}. A MIMO link denotes a logical connection from one
node to another over the matrix channel established by the multiple antennas at
the transmitter and the receiver, i.e., each MIMO link corresponds to an n; X n,
channel matrix. The i*" (i = 1,2, ..., L) link is denoted by I; = (a;, b;), where a; and
b; denote the indices of the transmitter and receiver of the i** link, respectively.
Using this notation, we are able to enumerate the link using the subscript i, or
specify the group of links that originate from the same transmit node (a;), or end
at the same receive node (b;). For simplicity, the terms “MIMO link” and “link”,
are used interchangeably.

System time is divided into equally spaced unit intervals called time slots.

We use the notation n (=0, 1,2,...) to index the slots. At time slot n, the channel
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matrix from node a to node b is described by a random matrix H™ ((a,b)) €
Cm* | where the (i, j)-th element in H™((a,b)) denotes the channel gain from
the i* transmit antenna of node a to the j** receive antenna of node b. The channel
matrix of link /; is H™ (). Note that we slightly abuse the notation, since H™ (I;)
and H™((a;, b;)) represent the same entity. We assume that H™(l;) and H™ (1)
are mutually independent if ¢ # j. Furthermore, we assume for any link [;, the
random sequence of channel matrices {H™(l;), n > 0} is stationary and uniform
mixing [15, p.p. 345] (¢-mixing [27, p.p. 356]). The definition of uniform mixing

(¢-mixing) is given below.

Definition 4.1. Let B! be the o-algebra generated by the random variables

{em gmtt &Y. Define ¢y by

¢, =sup  sup | P{A|B} — P{A}] (4.1)

i AeFt* BeF]

If limy, ¢, = 0, then {&*} is called a uniform (¢-mizing) process.

For notational simplicity, we denote the set of all outgoing links at node
m by £(m) and the set of all incoming links at node m by F(m). Further, we define
the set 1™ (a) = {H™(1;), i € {1,2,...,L}, I; € £(a)} to denote the set of chan-
nel matrices of the links that originate at node a, and the global channel state in-
formation (CSI) is represented by the matrix array (IT™ (1), 1™ (2), ..., IIM™(M)).

In multi-hop wireless systems, data are transferred from their source node
toward their destination nodes through single or multiple routes supported by the

links. The abstraction of this end-to-end connection is called a flow. A number of J
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flows in the system are assumed. The ;™ flow is denoted by f; = (sj,d;), where s;

and d; indicate the source and destination nodes of the j flow, respectively. The
rate required by flow f; is denoted by v(f;). Also, to specify the rate allocation, we
denote C™(f;,1;) as the amount of data belonging to flow f; directly transmitted
from node a; to node b; at time n. Nodes are equipped with J queues storing
information bits of each flow.

At any given time n, and with the full knowledge of the global channel
state (II™(1),...,TI™(M)), a controller (in general, centralized) is responsible to

assign or allocate the following:

System Resource

1. ™ = (SM(1}),8M™(1y),...,S™(I;)): The array of positive semi-definite
covariance matrices' S™(1;) of the signal vector transmitted over link I; (i =
1,...,L) at time n.

For ease of explanation, we denote the array of covariance matrices of all links
that originate at node a by ®™(a) = {S™(;), i =1,...,L, l; € E(a)}, a =

1 M

g ey

2. Pr = [P™(1),P™(2),...,P"(M)]: The array of the transmit powers P of
node m (=1,2,..., M) at time n.

Note that Py =" ceim Tr(S™(1,)).

3. Rn = [R"(l1), R™*(l5), ..., R™(I)]: The array of the transmit link rates R"(l;) >

!The covariance matrix of a signal vector is positive semi-definite.
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0 on link /; at time n.

4. C" ={C"(f;,;); 5=1,...,J, i=1,...,L}: The array of the transmit rate
over link /; belonging to flow f; at time n.

Note that C"(f;,1;) > 0 and 37, C"(f;,1;) < R"(L;).

Moreover, the resource allocations described above are subject to the following

constraints:

Resource and QoS Constraints

C1— (Physical Layer Constraint I)
Given channel states {II™(1),..., 1™ (M)} and covariance matrix alloca-
tion @™ the scheduled transmission rate vector R" is selected from the
capacity region
Canio (I (1), ... TI™ (M), @™), which is a function of channel states and
covariance matrices. We assume that any rate vector in
CMIMO(H(")(l), . ,H(")(M),i)(”)) can be achieved with negligible bit error
rate (e.g., < 1079).

C2— (Physical Layer Constraint II)

The peak transmit power of node m is limited to P»®* that is,

0 < P < pmax,

C3— (Queue Stability)
The queue build-up at each relaying node m is stable, i.e., the long-term av-

erage of the information rate of flow f; entering node m equals the long-term
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average of information bit rate of flow f; leaving node m. This requirement

is satisfied by fulfilling the equation:

N-1
i 34 S B, 0) — Y EC( ) p =0 (42)
n=0 | 1e&(m) L€ F(m)

C4— (Minimum Flow Rate Constraint)
Each flow f; (j = 1,...,J) is guaranteed a long-term average rate equal to

the target rate v(f;). That is,

] 1 N-1 . . ’U(fj), 1fm:d]

lim — DY R (1) - Y E(CM(fL) p = (4.3)
n=0 | le&(m) leF(m) _U<fj)7 ifm= 5

Objective: Given a set of control policies that satisfy (C1)-(C4), we are in-

terested in the one which also minimizes the long-term average transmit power,

lim supy + SNOSM R(PR)

Relaxation of (C3) and (C4)

We first note that to minimize the transmit power consumption, a smart
controller should not schedule excessive transmit rate than necessary to support

the demand. Hence, (C3) and (C4) can be replaced by their relaxed versions given

below:
(C3)
N-1
1
hmj\fup — Z Z E(C"(f;, L)) — Z E(C"(f;, L)) p <0, (4.4)
n=0 | le&(m) leF(m)

and



(ca)
fmsup - 34 3 EC (1) - Y BC () (49
n=0 | 1e&(m) leF(m)

U(fj), ifm= dj
—u(f;), ifm=s;
Note that we use the limsup operator instead of the lim operator because the

limsup of a sequence always exists, but the limit does not. Given a sequence of

vectors {ff" = (A} AL, ... AY) | n=0,1,2,...}, its limsup is defined as:

lim sup Ar 2 (lim sup A7, limsup A3, ..., lim sup Af) )
n n

n n

4.2.2 Reduction of Complexity: System Decomposition us-

ing MIMO techniques

Identifying the necessary and sufficient conditions for (C1), in general,
is a non-trivial task, as it is closely related to the information theoretic capacity
of an ad-hoc networks, which is an open problem. Moreover, as the number of
nodes, M, increases, the complexity of any controller will grow and will depend
on an ever-growing overhead cost of collecting information about system states,
such as channel gain and queue length. Instead, we introduce a more structured
model where the capacity region is known, and the scope of information exchange
of system states, such as the channel conditions and the queue size, is limited to
some locality.

In other words, instead of solving the open problem of the capacity of
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wireless ad-hoc networks, we take a divide-and-conquer approach. We intentionally
partition the system into a number of manageable subsystems, and enforce some
rules to operate each subsystem so that the mutual influence between subsystems
is negligible. Admittedly, in doing this, we may sacrifice optimality, depending on
the choice of system subblocks and the manner in which subblocks are decoupled.

The challenge in identifying and achieving capacity in a given ad-hoc
network is in handling interference. One recent simple and elegant capacity result
relates to a MIMO broadcast (MIMO-BC) when dirty paper coding is used. In this
paper, leveraging the BC, we decompose the system into MIMO-BC subsystems,
and assume the use of ad hoc rules to avoid interference between each BC unit.
In this way, we partially remove the effect of co-channel interference from differ-
ent BC subsystems, but keep some degrees of freedom to manage the co-channel
interference within each BC subsystem. It will become evident shortly that such
a decomposition benefits the scheduler design in reducing the amount of informa-
tion exchange of the optimal scheduling policy to a level which requires only the
cooperation of neighboring nodes.

However, even under such conditions, optimizing the systems at their
best performance is still a challenging and interesting topic. Note that the choice
of ad-hoc rules via which the MIMO-BC subsystems are decoupled is beyond the
scope of this paper.The investigation of tradeoff between different decomposition
schemes is an interesting area for future studies.

Ideally, the above MIMO-BC decomposition will satisfy the following:
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Assumptions on the Decomposition

(A.1) Given each node a, in each time slot, there exists a set of nodes N (a) with
whom node a forms a MIMO broadcast subsystem in which node a is the

transmitter.

(A.2) In time slot n, for node b € N(a), the interference caused by node a at b
is negligible. This is achieved by orthagonalizing the transmissions across

MIMO-BC subsystems. For mathematical convenience, we can assume that

H®™ ((a,b)) ~ 0 for b & N(a)

(A.3) If node ¢ € N(a) N (b), then the transmission of signals from node a and

node b are orthogonal at node c.

The MIMO-BC decomposition along with assumptions (A.1)-(A.3) create a group-
ing of nodes in the network {N(1),N(2),...,N(N)}. We refer to this decompo-
sition as the network topology in time slot n. Note that we do not exclude the
possibility that the decomposition can change dynamically based on the channel
state. In our work, we assume that the protocol for accomplishing the decom-
position is known by all users, and that it depends only on knowledge of the
instantaneous channel states and node positions. Note that this knowledge is only
needed locally. In the remainder of this work, we resort to such model and schedule
the resources for the given decomposition.

Now given the above decomposition, the nodes and the links in the system

form a directed graph G(V, E), where V is the vertex set consisting of all nodes,
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and F is the set of directed edges consisting of all links representing the ability
of a node to participate in a MIMO-BC subsystem. In other word, the set NV (a)
appearing in assumptions (A.1)-(A.3) denotes the neighboring nodes of node a on
the graph G(V, E).

Now under assumptions (A.1)-(A.3), we can simplify constraint C1 as

follows:

C1'— (Physical Layer Constraint I)
(15”, C") is said to be feasible under the channel realization (II™ (1), ..., II(M (M))
if and only if for each node m there exists a link rate schedule {R"(l;) | i =

1,...,L; l; € E(m)} such that for any node m,

J
D CMfl) SRY(L) Vii€€a), i=1,...,L (4.7)
and
{RY(1I)) |i=1,...,L; l; € E(m)} € Cuc(P, I (m)), (4.8)

where Cye (P, TI™ (m)) is the feasible link rate region of the MIMO gaussian
broadcast channels formed by node m and all of the links originating at
node m. In theory, the capacity region of the MIMO gaussian broadcast
channels [49] can be characterized by the total power P” transmitted on the

broadcast channels and the channel states 1™ (m).

Philosophically, our decomposition, along with assumptions (A.1)-(A.3), provides
a generalization of link-based abstraction of a network [43] [18] with non-interfering

links, in which we allow for multi-user techniques to be integrated in the joint link
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scheduling, routing and power control scheduler. In other words, the contribution
of our work remains at the networking layer. We are attempting to modify network
mechanisms of link scheduling, power and routing to take advantage of broadcast
capacity achieving techniques such as dirty paper coding, etc.. Even though we
do not consider the realization of assumptions (A.1)-(A.3) as the main focus or

contribution of our work, we do discuss some possible candidate schemes in Section

4.4.2.

4.3 Problem Formulation

The objective of this work is to develop a locally centralized cross-layer
scheduling algorithm which minimizes the average transmit power consumption
while maintaining minimum end-to-end throughput request for time-varying chan-
nels. Mathematically, the optimization problem described above can be formulated
as a constrained dynamic program with an expected average cost criterion [25].
However, by relaxing condition (C1’) to an average constraint, we consider an
alternative optimization problem (P) whose solution is a lower bound for the orig-
inal problem. We then provide a distributed recursive algorithm to solve the
optimization (P). The important property of this algorithm is that at each in-
stant it satisfies C1’, hence is a solution to the original problem. To describe this
in detail, we start with the formulation of the optimization (P) under conditions

(C1),(C2),(C3) and (C4').
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Primal problem (P)

| No1
minimize  lim Sup i Z Z E(P
n=0 m=1
| Nl
subject to hmsupN E(C"(f;, 1)) — Z E(C"(f;, 1)) ¢ < vi(m)
n=0 | leF (m 1€€(m)
for n =0, 1, ,
(
C”(f],lZ)ZO ,fOI'jIL...,J, andz'zl,...,L
Z] LC™M(fi, 1) < RY(l;) , fori=1,...,L
(4.9)
0< P < Prax ,form=1,.... M
{RM0) | i =1, L; [ € Em)} € Coo(P2, T (m)),
\
where
(
v(f;),  if m = d; (Destination node of the j flow)
vi(m) = 4 —v(f;), if m = s; (Source node of the ;™ flow) (4.10)
0, otherwise

For notational simplicity, we denote the sequence {v" | n = 0,1,2,...}
by (v"). Note that in general , (Pr), (C"(f;,l;)) and (R"(l;)) are randomized
control sequences. One possible solution to (P) gives the optimal distributions
of these random sequences in order to constitute the optimal randomized control
rule. Other solutions, such as the one we define here, will use an online scheme
to provide non-stationary solutions whose time variations maps to the optimal

marginal distributions.
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4.3.1 Dual problem

For convenience, we define D(II™) = D™ (1),... 1M (M)) as the
feasible set jointly determined by the four constraints of (4.9). Note that, for
set D(I1™), the dependency on (II™(1),..., 1™ (M)) is established through the
broadcast capacity region Cpe (P2, 11 (m)) in (C1').

Following the standard optimization approach, the Lagrangian of the pri-

mal problem (P) is defined below:

LO{C™), (P"),0) & limsup%ZE[Z P"] (4.11)

+ ZZQj(m) lim;up%i:E[ Z C™(f5,l:)
)

m=1 j=1 n=0  LEF(m
- > C'(fl) —vi(m)] ¢
l;e€(m)

where 0;(m) > 0 is the dual variable associated with the corresponding flow con-

servation constraint for flow f; at node m. The dual function is defined as

V(@)= min L({C™), (P,
(Cn,Pr)eD(II(M); Vn

—

), (4.12)

which is concave in 6 [9, p.p. 592]. In optimization terminology, the maximization
of the dual function over the space of the nonnegative dual variables is called the

dual problem.

Dual Problem

—

maximize  V(6) (4.13)

subject to 52 0.
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The weak duality theorem ensures that the maximum V* of (4.13) is less than or
equal to the minimum of the primal problem. Although it is not required in the
subsequent proofs, we can demonstrate that the primal problem (P) is essentially
a convex problem. Hence the strong duality theorem [9, p.p. 504, Proposition
5.2.1] ensures that V*, the maximum of the dual problem, is equal to the minimum
of the primal problem. Motivated by this equivalence, we now move on to find the
optimal scheduling policy from the dual problem.

Since the dual function is concave, in theory, we can use the projected
subgradient method [9, p.p. 610] to solve the dual problem (4.13). The projected

subgradient method is an iterative procedure between the two steps of
(a) the evaluation of a subgradient g for the dual function V(-) at 6", and

(b) the dual variable update

0 =Tyl +eg), H=1{00<06; <K}, (4.14)

where € > 0 is called the step size, and K, is a positive value which is large enough
to include the maximizers of V(-) in H. Note that this assumption on K, is for
technical reason in the proof. In reality, K, can be set to the largest positive
number supported by the calculating device, which, in general, should be large
enough to qualify the requirement. A subgradient of the dual function V(-) at
0% can be obtained by solving the minimization in (4.12) [9, Proposition B.25).

Specifically, let the control sequences (C;), (P;") be the solution to (4.12) and
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Cy(f5,1;) be the (4, j)-th component of C. One subgradient of V(-) at 6" is

g = (gmj;m:1 LM j=1,...,J) (4.15)

gmj(e_k) = hmsup—ZE Z e (fili) — Z ok (fj, 1) —vj(m)

n=0 l;eF(m) l;€€(m)
However, we are not able to evaluate g unless we know the distributions of the
channel process. To address this issue, instead of dealing with V(-) directly, we

consider a subsidiary function V() defined as follows:

M M
V@) £ —Y'E Py, 0;( c"(f,
(9) im sup Z o P}Znég(m ) [mz:l ) +mz:1; j l; (i

—ZC"fJ, — v;(m)]

L,eE(m

We first note that V(6) < V/(6). This is because, for any two sequences {(a,,) and
(bn), limsup,, a, + b, < limsup, a, + limsup,, b,. Moreover, if the limit exists
(instead of limsup), V(6) = V().

V(6) is an acceptable approximation of V(6). We exploit this fact and

solve the following problem:

maximize  V(f) (4.16)

—

subject to 08>0 (4.17)

By definition, V() is a concave function. Danskin’s theorem [9, Proposition B.25]

provides us a subgradient of \7(9) at 5, which is obtained using the policy 7* which
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selects the power and flow rate matrix with respect to the value of ] by the rule

(C:*g,ﬁ:*g) = arg min ZP” —1—220 Z C"(f,li)

(n)
(Cn,PryeD(11 el j=1 LeFom

— D C'(fh) — vi(m)].

l,eE(m)

It follows that the subgradient of V(:) at 6 is § = (Gm;; m = 1,...,M; j =

1,...,J), where

N-1
. 1 Z Z n Z n
gm]<0) = thlle E C — f]7 C 0 f]7 - ( )
n=0 lLieF(m l;e€(m)
(4.18)

Note that 7* is a function of the channel states. If the channel state process is

stationary and ergodic, we can take away the expectation from (4.18) and write

im0 2 E| Y Crfl) Z C S(f, 1) — vy(m) (4.19)

LiEF(m) L,eE(m

(i4) 1 N-1

Sl Y0 Cnglfik) = Do Crglfinl) — vs(m) (4.20)
n=0 |L;eF(m) li€€(m)

where equality (i) above follows the stationarity, and equality (ii) above follows
the ergodicity. However, even with the ergodicity assumption, we still cannot
causally compute the exact subgradient g since the channel realizations are not
known in advance. Thereby, subgradient method is not applicable for solving the
minimization (4.16) online using the subgradient method. To address this issue,

we consider the following iterative algorithm which consists of two steps:

(a’) the dual variable update
O =Tyl0" + ¢ Ggu], H=1{010<6; <K,} (4.21)

and
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(b") the evaluation of the search direction g .z.

Grogn (Mo ) 2| Y0 Clp(finl) = Y Ol finl) —vi(m) | (4.22)
)

LieF(m liES(m)

—

If the channel state process is ¢-mixing, the local average of g .z, approximates
the subgradient of ‘7() when the step size € is small. Consequently, as the step size
goes to zero, the expectation of the sequence {67} generated iteratively via (4.21)
and (4.22) converges asymptotically in mean to the set of the maximizers of V(-)
over the constraint set H . This result is summarized in the following theorem. To

emphasize the fact that the dynamics of ™ depends on the step size €, we subscript

the process 0™ with € in the remainder section.

Theorem 4.1. Let © be the set of the mazimizers of of \7() over H. Suppose
that the channel process {(II™(1),... , TI™(M)) | n =0,1,2,...} is stationary and

o-mizing. Then we have the following result.

lim limsup E{ dist(6,©) } =0 (4.23)

n—oo

where dist(0, A) denote the distance from point 0 to the set A. In other words,

Yo > 0, there exists € > 0 such that, Ve < é,
E{dist(0",0)} < ¢ for all but a finite number of times in n, (4.24)
Proof. The proof follows Theorem 2.6. [

Based on this fundamental convergence result, we can further prove that

—
n

the long-term expected average of the sequence (C" ., P" )

generated by the

policy 7 converges asymptotically to the optimal solution of the primal problem.



Theorem 4.2. Assume that the channel process {(II™(1),..., ™M (M)) | n =
0,1,2,...} is ¢-mizing and let © be the set of maximizers of f/( ) over 0>0. In

addition, the following three conditions are assumed,

(i) In every time slot k, the scheduler assigns the control variables under the

policy 7* with respect to 5’“, that s,
M J
(C:*ﬁnﬁp:*_‘n) = a’rg mln Pn + 9( On f7

- Z C™(f5,15) — v(m)] (4.25)

lies(m)
(ii) In every time slot n, 0™ is updated according to the recursive algorithm
n+1 n n n
67" (m) =Tl |6 (Y Clplfil)— Y Crg(fil) —vim)| |

l,eF(m) lieE(m)
(4.26)

(11i) The set © is contained in the set {6 |0 < 6,(m) < K,}.

Under these assumptions, the long-term average of the expectation of sequences

—

(C:*gn, P™ . ) converges to the optimal solution asymptotically if the step size € is

Txem

infinitesimally small. That s,

M
ZE 0nm ) =P

m=1

=

-1

==

lim sup lim sup

€

2:
Ho

€ n=0 1€E(m)

hmsuphm]\?upN { E(C *9n(f]7 i) — Z E(C *gn<f]’ i) ¢ S vi(m),
leF(m)

where P* is the minimum of the primal problem (P).

Proof. The proof follows Theorem 2.8 in Chapter 2. ]
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The recursive algorithm (4.26) solves the maximization of V(6) asymptot-
ically utilizing the solution to the minimization of (4.25) in every single time slot.
To identify these two optimization problems, we call the maximization of V(6)
(4.16) the outer optimization and (4.25) the inner optimization. The recursive
algorithm (4.26) is also called the outer optimization loop.

As it can be seen, the complexity of the algorithm mainly comes from
solving the inner optimization. In the following sections, we investigate the so-
lutions to the inner optimization problem dedicated for a MIMO ad-hoc network

under the proposed decomposition and assumptions (A.1)-(A.3).

4.3.2 Inner Optimization Problem

Given our proposed decomposition, the inner and outer optimizations can
be solved in a distributed manner. To explain in detail, we start with the inner
optimization problem, assuming the knowledge of the dual variable g,

After rearranging some terms, the inner optimization can be rewritten

as:
M M L J
m=1 m=1 i=1 j=1
subject to  D(TI™(1),...,TIM™ (M) (4.28)

where 09 = — Z}']:1 SSM6;(m)w;(m). Further, from (A.1)-(A.3), we have that
the D(II™(1),...,II™(M)) can be written as a product form. Therefore, the so-

lution to the inner optimization above can be obtained by solving the M separated
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optimization subproblems below at node m for each subsystem N (m).

(P.1) Optimization Subproblem I [ Flow, Power and Link Rate |

L J
minimize P} + Z Z(Qj(bi) —0;(m)) L,eemnC™ (f5, 1)
i=1 j=1
J
subject to ZC”(fj, L) < R"(l;), for l; € E(m), i=1,...,L (4.29)
j=1
C"(f;,l;) >0 (4.30)
0< P < pmex, (4.31)

{R*(ly) |i=1,...,L; I; € E(m)} € Coe(P", TI™ (m)), (4.32)

Note that (P.1) can be solved independently by node m if 6,(b;) and 6;(a;) are
available at node m for all links /;(= (a;,b;)) belong to E(m)|JF(m). In other
words, we assume an out-of-band signaling mechanism for exchanging the dual
variable 6;(b;) between the transmit node a; and receive node b; for each link ;.
If we fix all the variables in (P.1) except C™(f;,l;) (1 = 1,..., M, j =
1,...,L), problem (P.1) can be viewed as a linear programming on C"( f;,[;) with
the linear constraints given by (4.29) and (4.30). These linear constraints form a

polyhedral set of (C™(f1,1;),...,C"(fs,1;)) with the extreme points

((R"(1,),0,...,0), (0, R"(1;),0,...,0), ..., (0,...,0,R"(I,)} . (4.33)

In other words, one can apply the extreme point solutions [9, Proposition B.21(c)]

to arrive at
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(R1)
(
RU(E) it = argmn (8 () — 05 m)) e
C () = (If there is a tie, choose the one with the smallest index.)
0 otherwise,

\

for I; € E(m). If (0j:(m) — 0;:(b;))[,ee(m)y = 0, the trivial solution of C*™(f;,1;)
C*™(fj,1;) = 0 is used. Therefore, (4.29) and (4.30) in (P.1) can be replaced by
the appropriate versions as functions of C*(f;,1;).

Defining

N, = min{j:Hlli“l?J (0;(b:) = 0;(m)) L 11,ee(myy, 0}, (4.34)
and substituting (R1) with the flow variables C"(f;,[;), problem (P.1) is further
reduced to the following optimization concerning only the transmit power and link

rate.

(P.2) Optimization Subproblem II [ Power and Link Rate ]

minimize P + Z v, R (1) (4.35)
1165(771)
subject to 0 < PP < P

{R'(I;) |i=1,...,L; l; € E(m)} € Cyo(P", 1™ (m)).

Notice that now we have a power-rate optimization problem in the context of a
MIMO Gaussian broadcast channel. The information theoretic result shows that
the capacity region of Cy(P?, 11 (m)) is convex. Thereby, we can exploit existing
numerical convex optimization techniques to solve (P.2) efficiently. One common

method to solve this problem is to apply the MAC-BC duality of [49].
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Please note that the framework developed so far can be extended to more
general cases. For example, we can group the nodes so that only one node in
each group is allowed to transmit. This is a time division multiplexing (TDM)
scheme within each group. In this case, the solution to the inner optimization can
be obtained by solving the subproblem independently at each node, and selecting
from each group the node with the minimal optimal value. We will see the impact
of such restrictions in Section 4.4.

Next, we briefly explain the procedure to implement the outer loop in a

distributed manner.

4.3.3 Distributed Implementation of the Outer Optimiza-
tion Loop

Recall that the outer optimization loop updates the dual variables g as
follows:

07 (m) =07 (m) + eIy | Y C(fl) = Y. C™(fi, 1) +vi(m) | (4.36)

LieF(m) l;e€(m)

where the superscript ‘*’ denotes the optimal solution obtained from the inner
optimization.

Note that the updates can be accomplished locally at each node a by
exchanging the values of C*"(f;, ;) with its predecessor and successor nodes in the

directed graph G(FE,V') which describes the system topology. Previously, we have
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shown that under the decomposition assumptions (A.1)-(A.3), the inner optimiza-
tion can be solved in a distributed manner. Therefore, the overall algorithm can be
implemented in a distributed way by exchanging with neighboring nodes certain
parameters, namely the updated dual variables and the optimal flow rates to the
inner optimization .

For completeness, we summarize the proposed online scheduling algo-

rithm as follows.

Algorithm 4.1.

1. At the beginning of the time slot n, each node exchanges the values of its

dual variables 07 (m), j = 1,...,J with the nodes in the set N'(m).

2. Based on this information exchange, each node, m independently, solves the

optimization subproblem (P.1) via (P.2).

3. The scheduler then takes the solution of (P.1) as its decision of the resource

allocation.

4. At the end of the time slot n, node m exchanges the solution of (P.1) with

the nodes A (m), then updates the dual variables according to (4.36).

5. Repeat steps 1 to 5 in the next time slot.
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4.4 Numerical Example

In this section, we use the developed algorithms to identify the benefits

of multi-user detection in MIMO Ad-hoc networks.

4.4.1 Virtual Geographical Cells

In this subsection, similar to [38], we look into an example in which the
geographic plane is virtually partitioned into isolated cells. Exploiting the infor-
mation of its instantaneous position, each node is aware of which cell it belongs to.
This can be done with the aid of the global positioning system (GPS). Each cell is
assigned a frequency band. Two cells that are adjacent to each other are assigned
non-overlapping frequency bands. The nodes in the same cell can transmit using
the frequency band assigned to that cell. However, in each cell, the associated
frequency band is used exclusively by only one node to send data. In other words,
within each cell, the transmissions are scheduled in a time division multiplexing
(TDM) fashion. In Section 4.4.2, we briefly discussed the impact of such con-
straints. We define the neighboring cells of node a as the set consisting of the cell
where node a is present and the cells adjacent to it. For each transmit node, its
potential one-hop receivers lie in this set of neighboring cells. In other words, for
each node a, the set N (a) consists of all other nodes in the cell to which a belongs
and all nodes in its adjacent cells. In practice, all of the transmissions taking
place outside a given node’s neighboring cells cause interference. Here, though,

we assume that with appropriate frequency planning, co-channel interference is
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negligible compared to the transmitted signal. We assume that the geographic cell
partition requires K non-overlapping frequency bands to avoid neighboring cells
using the same frequency band?. To implement this system, each node is equipped
with K transceivers tuned to the K frequency bands. If a node is selected to trans-
mit, it uses one frequency band to send data, and the remaining (K — 1) frequency
bands to receive the data sent from the (K — 1) transmitters in its neighboring
cells (except its own cell). If a node is not selected to transmit, it listens to all K
frequency bands to receive signals from the transmitters in its neighboring cells.

We remark that, in this approach, we lose frequency efficiency by a factor
of K, however, assumptions (A.1)-(A.3) are satisfied so that we can implement our
scheduling algorithm in a decentralized manner.

Based on Algorithm 4.1, in each time slot, each node solves the optimiza-
tion problem (P.1) for the MIMO gaussian broadcasts channels consisting of the
receivers in A (a). Since in each cell the scheduling is TDM, an arbitration rule
is needed to select the transmitter. The criterion is to minimize the inner opti-
mization. After quickly commutating (P.1), each node broadcast its cost value of
(P.1) to all other nodes in the same cell. In each cell, the node with the minimal
solution to (P.1) is selected to transmit (this will give the minimum to the inner
optimization). If there is a tie, it is broken arbitrarily. We note that this process

can be done in a distributed manner with local information exchange in a cell.

2For example, for the hexagon cell, this requires 7 frequency bands.
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Figure 4.1: System Topology with Partition of Hexagonal Cells.

4.4.2 Numerical Results

We consider a MIMO ad-hoc network with 15 nodes, and the network
topology is depicted in Figure 4.1. In the center of each cell we label the frequency
band from 1 to 7. The cells labeled with the same number use the same frequency
band. The small triangles in Figure 4.1 represent the starting locations of nodes.
Nodes are identified by their index. Each node is equipped with 4 antennas rep-
resented by 4 dots around the triangle in Figure 4.1. The peak transmit power of
each node is limited to 1Watt. We set the pathloss exponent to 4, the available

bandwidth to 1IMHz, and the carrier frequency to 2.4GHz. We assume additive
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white gaussian noise with the noise power equal to 5.7e-16Watts. To model the
time-varying behavior, we let each node randomly move around the neighboring
cells of the cell where it is present when the simulation starts. This model captures
variations in the channel gains while keeping the system topology not altering in
small fine scales. To model the effect of multipath, we assume each channel is sub-
jected to five multipaths reflected from the randomly positioned scatterers. We
consider two network traffic scenarios, each with 4 end-to-end flows. The sim-
ulations are run for equal flow demands at 3Mbps, 4Mbps and 5Mbps. Three
MIMO schemes are considered in order to capture the impact of multi-user detec-
tion: MVDR beamforming (BF), point-to-point spatial multiplexing (SM), and the
dirty paper coding (DP) for MIMO broadcast channels.

In the first example, there are four end-to-end flow commodities: node 1
to node 15, node 3 to node 2, node 11 to node 7, and node 9 to node 12. In this
setting, the overall traffic has a left to right flow.

The average power consumption under our algorithms are given in Fig-
ure 4.2. As the flow rate demand is low, the three MIMO techniques (BF, SM,
DP) perform approximately the same. This suggests that TDM is near optimal
at low flow rate demands. However, as the flow rate demand increases, spatial
multiplexing and dirty paper coding outperform the beamforming, but the spatial
multiplexing remains comparable to the dirty paper coding.

In the second example, we reverse the directions of two flows in the first

example, i.e. The flows are between nodes 1 and 15, nodes 3 and 2, nodes 7 and
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11, and nodes 12 and 9. In this case, two flows send data from the right toward
the left of the network while the remaining two send data from the left toward
the right. The total power consumption versus the requested throughput under
different MIMO techniques is plotted in Figure 4.3. Here we see that at high rates,
the SM outperforms the BF. This is because while in this example SM can use
up to 4 eign-modes of the MIMO channel to transmit data, BF uses only the best
one. Further, Dirty Paper Coding significantly outperforms BF and SM. This is
due to the fact that flows traverse across the network in opposite directions. More
specifically, while beamforming and spatial multiplexing are limited to only point-
to-point link transmission, the dirty paper coding scheme allows transmission to
take place in both directions concurrently, resulting in significant improvements

over BF and SM.

4.5 Discussion

In this paper, we have developed distributed algorithms which minimize
the average transmit power of the system, while maintaining end-to-end flow rates,
if feasible. The numerical results shows that the benefit of multi-user transmission
schemes is significant when the average flow rate demand is high.

We emphasis that in this work we treat the MIMO broadcast decom-
position and neighbor associations as given in order to derive cross-layer optimal
solutions. The cost-benefit analysis of such decomposition, on the other hand,

remains largely untouched. In other words, optimizing the decomposition scheme
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itself is an interesting area of future research. It will be interesting to see how to
adaptively change the decomposition with respect to the channel states and the
queue backlogs.

In our setting, the information flows are passed over links in a decode-
store-forward fashion. Incorporating ideas such as cooperative relaying as well as

network coding is another interesting and challenging topic for future research.
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Chapter 5

Opportunistic Source Distortion
Management in a Multi-user

Downlink System

5.1 Introduction

In this chapter, we investigate the joint source distortion management
and data transmission scheduling policies in multi-user wireless downlink systems.
We assume there are L sources of data prepared to serve the users, and each of
them generates sequence of data symbols to be used sequentially by the applica-
tions running on the users’ equipments. For simplicity, we assume that each data
sequence is of infinite length, and each user requests one of the L data sequences

to use. After appropriate processing, the requested data are transmitted from the
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access point (AP) to the users over time-varying wireless channels. At the user
sides, the received data are stored in the buffer and consumed by the applications
at a very high rate in unit of data blocks. Each block consists of a fixed number
of source symbols. We assume that data are generated in advance by the sources
and stored at AP so that users can pre-fetch excessive amount of data than needed
to maintain constant supplies to the application. This provision mitigates the
performance degradation resulting from the deficiencies in the user’s buffer.

In this work, we target the applications which are delay sensitive but data
distortion tolerant. The video and audio applications are the typical examples of
this kind. For delay sensitive data, each output of the source is associated with a
specific deadline. If the server fails to deliver a symbol to its client by the deadline,
the symbol is considered lost. Instead of delay, packet losses can be characterized
in terms of the dynamics of reserve buffer at each user. A symbol lost occurs if
the number of pre-fetched data in the reserve buffer plus the instantaneous ar-
rival of the data is less than the amount of data consumed by the application in
each scheduling interval. Given any channel state, we assume that the achievable
transmit rate on each downlink is solely determined by the transmit power. Under
appropriate transmit rate and power assignments, the perfect reception of trans-
mitted signals is assumed. Thereby, whenever the channel conditions are so bad
that it can not support all of the users supplying the data to the applications at the
required rate, the scheduler inevitably has to make trade-off and temporarily stops

serving some users who actually need the data immediately. This results in buffer
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underflow to these users. The buffer underflow event is analogous to packet drops,
which results the maximum average distortion to the data. A effective scheduler
should keep the frequency of such events as small as possible.

Quantization can be regarded as a lossy process which removes the details
of the information inherent in the data to a controllable granularity. To lower down
the number of buffer underflows, scheduler can do quantization on data and use
fewer bits to represent the quantized data. In this way, the average distortion of
data is slightly increased, but, at the same time, the packing efficiency (in terms
of data symbols) is improved by stuffing more data symbols into each transmit
packet. This in turn reduces the possibility of buffer underflow.

The objective of this work is to seek the optimal joint source distortion
and data transmission scheduling rule which balances the tradeoffs between buffer
underflows and the controlled data distortion from quantization error. In par-
ticular, we opt to design the scheduler which minimizes the maximum weighted
average distortion of data among all users. Beside the average distortion, we also
want to maintain the stability of users’ queues. In this work, stability is defined
in terms of the expected size of the queue. If the expected queue size is finite, we
call it stable. To cope with these challenging requirements, we proposed an online
recursive algorithm that dynamically adjusts its decisions with respect to channel
variations. Based on the theoretical results established in Chapter 2, we prove
that the algorithm is asymptotically feasible and its performance is asymptotically

optimal.
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Our work is motivated by the research in the following two fields.

The first research subject concerns joint source and channel coding of
“single user” systems, which has been comprehensively studied in video processing
society [21] [37]. The main objective of the works in this group is to decide the
quantization level applied on the source using the information of channel condition
and the reserve buffer at the user so that a set of source data are delivered to the
user by a “common deadline”. The most common approach used to tackle this type
of problems is stochastic dynamic programming (SDP). The solutions to SDP rely
on the probability distribution of the wireless channels. The are a few weakness
in these works, one of them can be seen in the example of video transmission.
For video transmission, deadlines are essentially designated on a per video frame
basis. The single deadline setting is meaningful only for the set of data segments
which make up one video frame. In other words, the works done by [21] [37] are
not optimized for scheduling a long sequence of video frames. For applications
in which video sources are pre-recorded and stored, the system can benefit from
pre-fetching larger amount of data under good channel condition. This feature
requires scheduler make decisions across consecutive video frames, and hence is
not covered in [21] [37].

The second research subject is the pure video transmission scheduling
problem, in which the encoding rate of video is determined in advance and not
changeable. The scheduler is only responsible for deciding the transmit rate for

each user. The research works under this setting include [39] and [16]. More
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Figure 5.1: Broadcast Downlink System

precisely, following their algorithms, the scheduler sends packets to the user with
the fewest pre-fetched data reserves. Later in this paper, we will demonstrate that
the dynamics of the pre-fetched data reserves at each user has the notation of dual
variables for certain constraints on the arrival rates. The scheduling policy that
sends data to the user with the shortest queue is equivalent to the policy that
minimizes buffer underflow using TDMA transmission techniques.

Our problem setting is very similar to that of [39] [16] with the enhance-
ment of the ability to control the coding rate of the data. The results given
in [39] [16] are heuristic and lack rigorous proof. To accurately estimate the per-
formance, we adopt a new methodology, “stochastic optimization”, which provides
a solid analytic basis than these given in [39] [16].

To explain in detail, we start with the system model and notation used

in this work.
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5.2 System Model and Notation

We consider a wireless downlink system with one AP and L users. The
system operations are supervised by a control entity called scheduler, which is
responsible for allocating resources to maximize the data reconstruction quality and
the fairness among all users. The scheduling is performed periodically. Specifically,
the scheduler divides time into equally spaced intervals, called slots, and makes
control decisions at the beginning of every time slot. For ease of explanation, we
index the slots by n (=0, 1,2,...,00). During the bootstrap steps, each user sends
request to the AP for a sequence of source data, the AP then redirect the requests
to the server.

Since the AP and the server is connected by the wired infrastructure, the
communication taking place between server and AP is much faster and reliable
than those over the wireless downlink channels. Hypothetically, one can regard
the server and the AP as co-located, and limit the scope of this work to optimizing

the transmissions between the AP and the users over the wireless channels.

5.2.1 Wireless Channel and Rate

The first and the most important factor affecting the performance of the
system comes from the communication over the wireless medium. The system
has a broadcast wireless channel from the AP to the users. The capacity and
the reliability of wireless channels depend on the channel impairments such like

pathloss, shadowing and noise. Moreover, due to mobility and the movements of
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surrounding obstructions, the channel gains between the AP and the users can
vary dynamically. In our work, we characterize these impairments and their time-
varying behaviors by a stochastic process {£", n = 0,1,2,...}. Note that, under
this abstraction, the block fading channel model is implicitly assumed, which means
that the channel state is fixed within a time slot and could change at the boundaries
of each slot. For realistic situations, channel condition actually can vary in the
middle of a slot. Yet, for a low mobility system, which is what assumed in the
work, the coherence time of a channel is much longer than the size of a slot.
Consequently, the relative frequency of the occurrence of channel variation within
a slot is negligible.

From the aspect of control mechanism, the channel process £ is an “ex-
ogenous” process. More precisely, the statistics of £ conditioned on the past of
the system evolution depends only on {{™, m < n}. No control actions can change
the behavior of the stochastic process {£"}.

In time slot n, the scheduler decides transmit rate vector (X7, ..., X7}),
which represents the amount of data sent from AP to the users. Each AP is subject
to the peak transmit power limit denoted by P™**. The set of feasible transmit
rate vectors supported by the system form the capacity region of broadcast chan-
nels. The Capacity region under the peak power limit can be characterized by
the instantaneous channel states € [49]. We denote this set by D(£™). Note that
D(&") is a set-valued mapping from the space of the channel process £" into a

bounded set in RJLF.
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Figure 5.2: Operation Rate-Distortion Curves with J; = 5 Operational Points, the

Red Circle Denotes the null block.

5.2.2 Operational Rate-Distortion Relation

The second factor that affects system performance is the way we follow to
describe the source data. In our work, we assume a fairly generic stochastic model
for the sources. It only requires that the source of data sequence I(=1,...,L) is
a stationary ergodic stochastic process {x} with the sequence index! k. When
the system is running, at user sides, data are consumed in unit of blocks per
slot, where each block consists of L consecutive symbols generated by the source.
Adapting to the channel variations, AP processes the data before sending it over
the channel. In the process, a scheduler selects appropriate number of data blocks
from the source data sequence and passes the chosen blocks through a quantizer

followed by a entropy coder (data compressor). The quantizer parameters, such

!'Note that the source sequence index is different from the time index. The source sequence
index denotes the order that source sequence to be consumed by the application at the user.
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as the granularity of quantization levels, are chosen from a finite selections offered
by the pre-determined quantizers. In this work, we assume the quantizer is given.
We do not opt to find out the optimal source encoder. We only focus on how to
dynamically adjust the parameters to optimize the system performance. The basic
scheduler structure is given in Figure 5.2.

For a given source, each quantizer parameter corresponds to a particular
average rate distortion (R-D) pair, called operational R-D point. Operational R-D
curve is defined as the convex envelop of a finite set of achievable operation points.
With this definition, it follows that operational R-D curve is piecewise linear and
convex. Since the operational R-D curve is convex, to design an efficient scheduler,
it suffices to consider only the points lying on the operational R-D curve. For user
[, we assume its operational R-D curve is defined with J; operational R-D points

denoted by the set

Ly ={(Ri1. D), (Rig. Dig)} (5.1)

where
RZJ > Rl’g > > R[’Jl > 0, (52)
0= Dl,l < Dl72 <0 < DZ’JZ. (53)

An example of operational rate-distortion curve is plotted in Figure 5.2.
We define a null block as a processed transmit data block containing no
information with respect to the source. Consequently, a null block corresponds to

an operational point with maximum average distortion D;*** and zero information.
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We do not include the rate-distortion point of null block in the set I';. Note that
null block is a virtual concept, we do not really send null blocks over the channel.
In implementation, sending null blocks is equivalent to dropping the same amount
of blocks at the AP on purpose. Therefore, sending a null block effectively does
not consume any transmit rate. Due to this unique property, we handle null blocks

separately from I';. However, to unify the notations, we denote
D}y = D™, Rip=0 (5.4)

as the average distortion and rate for the null blocks of user I.

Following the stationary ergodic assumption about the sources, rate dis-
tortion curves are invariant [13] with respect to source sequence index. Conse-
quently, no matter how many symbols has been sent in the current slot, it will not
alter the rate-distortion property of the sources in later time slots. Note that the
stationary ergodicity of the sources is a strong assumption, which may not hold
in general. Here we point out one promising systems where approximations can
be applied to rationalize this assumption to some extent. For example, for video
coding that uses wavelet transform, the distribution of wavelet coefficients in each
subband can be approximated by Laplacian distribution [52]. If the power in each
subband is approximately constant for a long run of video frames, the distribution
of wavelet coefficients can be regarded as identical across these video frames. With
high consumption rates, the scheduler tends to send long sequence of data in each
transmission, which makes the source coding effective. Under these conditions, the

sources of subband wavelet coefficients fit our model. It will become clear shortly
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that our proposed scheduling algorithm adapts to the variations dynamically. Even
R-D curves may vary along the sequence index k, if we update the instantaneous
R-D curves to the scheduler frequently to catch the variation of the statistics of
source data, we conjecture that our algorithm will achieves some neighborhood of

the optimal solution, even though our proof assumes the fixed R-D characteristics.

5.2.3 System Operation

This subsection gives an overview of system operations. We start with
the AP (server) side. At the beginning of time slot n, scheduler draws a number of
data blocks from the storage of each source elements, and classifies these blocks into
multiple groups such that the blocks of the same group is encoded with the same R-
D parameter. For user I(=1,..., L), we denote A}; (i =0,...,J;,) as the number
of blocks to be encoded using the target average distortion parameter Dy;. At the
output of the source encoders, the scheduler collects Z;]; o A7’y encoded blocks for
each user I(= 1,...,L), packs the coded data blocks into transmit packets, and
sends the packets over the wireless link to user [.

At client sides, user [ = (1,..., L) pulls out C; blocks from its receiving
buffer at the end of a time slot, decodes the blocks, and deliver the reconstructed
blocks up to the applications. If, at the instant, the number of buffered blocks @}
plus the arrival minus C) reaches 0, a buffer underflow event occurs. One could
regard buffer underflow events as the server’s sending null blocks to fill up the

deficit in user’s pre-fetch buffer. As we explained earlier, a null block corresponds
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to the largest average distortion. To reduce the frequency of buffer underflow, one
can dynamically assign the amount of bits used to expressing each block. The
assignment is accomplished by selecting different operational R-D parameters for
the encoder at the server.

Following the definition, at time n, the aggregate distortion incurred in

the transmission to user [ is Zi o Al D7, and the aggregate information bits sent

X%
to user [ are Z;]l: L ARy To account for the priorities among users, we weighted
the distortion of each source by the factor w;. The weighted aggregate distortion

1 Jl n n
18 Wy Zi:o Al,iDl,i'

For notational simplicity, we define

A? ﬁ ZAM’ (55)

as the aggregated number of blocks scheduled to transmit for user [ at time n. The

average distortion in a received block of user [ at time n is defined by

Sty ApiDa
Dy & : 5.6
The average bits to represent a distorted data block of user [ at time n is defined

as

LS AR

R = An (5.7)

5.2.4 The Feasible Set

A scheduler is responsible for efficiently managing system resource, such

as the operational R-D parameters of source encoders, the number of blocks sent
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to each user, and the downlink transmit rate to each user. In this subsection, we
introduce the intrinsic constraints that determines the allowable system operation.
We first note that the selections of these resources are coupled together. The
channel state determines the capacity of downlink transmissions to each user in
each time slot; the downlink capacity posts a upper bound on the product of the
number of data blocks sent to each user and the average bits to describe these
data blocks; the average data blocks sent to user [ must be higher than the data
consumption rate Cj.

In the following, we express the constraints present above in mathemati-
cal equations. Note that, in this work, we focus on the applications working in the
regime of high data consumption rate C; (blocks/slot). Therefore, after normal-
ization, we can regard the arrival process A}; as nonnegative continuous variables.
In other words, the fluid model for arrival processes is assumed.

The constraints present below are effective for [ = 1,...,L and n =
1,2,3,....

Feasibility Constraints

(C.1) The achievable transmit rate vector (X7, ..., X}) at time n belongs to the
capacity region D(£") determined by the channel gain process {£", n =

0,1,2,...}. It is represented by the inclusion

(XP,...,X7) € DE). (5.8)

(C.2) The aggregate information bits sent to user [ in unit time slot can not exceed
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Figure 5.3: Scheduler Structure
the scheduled downlink transmit rate.
Ji
n n
N ALR < X (5.9)
=1
0<AY, fori=1,...,J. (5.10)

(C.3) Since block consumption rate is Cj, a smart scheduler shall not send over
C; null blocks in a single time slot. Therefore, we can include the following

constraint without affecting the overall performance.

0< A <O (5.11)

(C.4) The expected long term average of the data blocks sent to user | must be

greater than or equal to the consumption rate Cj.

N Ji
1
lim =Y ED> AL >0, (5.12)
o n=1 =0
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5.3 Problem Formulation

The primary objective of this work is to determine the scheduling policy
that minimizes the maximum weighted average distortion among users. In addi-
tion, we also expect that the policy can be implemented without consuming infinite
buffer spaces.

Intuitively, to minimize the average distortion, the scheduler should not
sends excessive blocks than necessary to users. If user’s backlog length is long,
the user’s buffered data can supply the regular consumption for a longer duration,
hence the scheduler can wait longer for a better channel condition to transmit the
subsequent data blocks. Our strategy is to solve the primary problem first disre-
garding the queue dynamics, and demonstrate later that, our algorithm ensures
that the expectation of buffer dynamics is bounded.

To explain in detail, we begin with the mathematical formulation.

MinMax Distortion Optimization

Recall that our objective is to minimize the maximum average distortion among
all users. To reach this goal, we first consider the following stochastic optimization

problem constrained to (C.1)-(C.4),.
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(P.1)

| &L wE [2 .|
minimize max lim — E
I=1,..L N—oo N

subject to forl=1,...,L

Ji
Jélinm—ZE 2 A

for n=0,1,2,...
(

Z Cl>

S AR < X
0<Af fori=1,...,J

0< A <C

\ (XT7,....X}) e D(E™)

where the expectation [E{-} is taken over the probability space generated by {£", n =
0,1,2,...} under any selected decision rule. Note that the constraints behind the
large brace in (P.1) need to be satisfied in every single time slot.

To reach the solution of (P.1), we introduce nonnegative subsidiary vari-
ables Y, which bounds the long-term average distortions for all users from above.
After substituting the objective function with Y, we arrive at a new stochastic
optimization problem (P.2), in which the solution reaches the same minimum as
that of (P.1).

Equivalent Optimization I
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(P.2)

minimize Y

subject to forl=1,...,L

PN Ji
i Em o So] <
N-1 I Ji n Mn

.1 wi ity AliDr

lim — E T2 Y| <0
Nlinoo N nz—% Cl -

for n=0,1,2,...

0 <Y <Y™ = max{w D™, ..., w, D>}

S AR, < X7
0< Ap fori=1,...,J
0< Al <G

(X7, ..., X}) e D(E™)

\

We can further replace Y by the long-term average of auxiliary sequence {Y™, n =
0,1,2,...}, this replacement gives another equivalent problem (P.3) with the same
minimum value. The equivalence comes from the fact that, for every Y, there exists
an auxiliary sequence {Y™, n =0,1,2,...} with long-term average equal to Y and
vice versa.

Equivalent Optimization II
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(P.3)

N-1
L .1 n
minimize ]\}1_1(}{1)0 N gOE[Y ]

subject to forl=1,...,L
1 [P
pySelo-3
oy Z;']io AL DL

Nhi“ooNZE C, -r

<0 (5.13)

<0 (5.14)

for n=0,1,2,...
(0 <Yn < ymax

S Ap Ry < X

0< Ay fori=1,...,J; (5.15)
0<Ar <C

(X7, ..., X}) e D(E™)

\

The formulation of (P.3) is covered by the framework developed for stochastic
optimization in Chapter 2.
To solve (P.3), we use the duality approach presented in Chapter 2. Let
a = (oq,...,ap) and B = (B1,...,0r) be the dual variables corresponding to
the constraints (5.13) and (5.14). Based on the framework developed for stochas-
tic optimization in Chapter 2, the solution of the dual problem can be achieved
asymptotically through the recursive algorithm defined below:

Recursive Algorithm for Solving the Dual Problem.




(RA)

Forn=20,1,2,...,

an-‘rl _ HH [an +€VZ], 6n+1 — HH [ﬂn + EVZ} 7 H = {(1;1’ L

where |of| < B; and || < By;

J1 n,*
w1 )il Al,i Dy i

Ch

Q3

Jr, n,%
WL 21':1 AL’,iDLyi

Cr

_ YTL,*
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7:EL)|O S Xy S Bl}a

J1 %
Cl - Zi:l Al,i

Jr %
Cl - Zi:l ALJ

and Y"™* A""’s and X" are one of the minimizers to the following minimization

called Inner Optimization.

Inner Optimization

(P.4)

minimize

subject to

n

Li Y™

L Ji n
wy Y ity AlD

Yn_|_§ :{Oél( l zfgl l
=1

Ji
+3(C; — ZA;;)}

i=0
o<Yynr <ym*
Ji
> AR <X
i=1
0< A} fori=1,...,J

(X7, ..., X7}) e D)

Inner Optimization is an intermediate step required to update the recursion (RA).

Optimization (P.4) can be further decomposed into three decoupled subproblems.
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Subproblem I

L

minimize (1 — Z a)Y™" (5.16)
=1

subject to 0 <YY" <Yy™¥ (5.17)

The solution of Y is fairly simple. If (1 — Zle a;) > 0, Y™* = 0, otherwise
Yk — ymax

Subproblem 11

L
L aw D}y — C13)
’ A} 5.18
minimize lz:; ( C 10 (5.18)
subject to 0 < Ay < C (5.19)
aw D'y —C1 3

The solution of Aj is trivial. If >0, Ay =0, otherwise A'y" = C.

G

Subproblem III

(P.5)

L J
l D —
minimize Z {Z(alw lél i )Afz}

=1 =1

Ji
subject to Z ARy < X7
i=1
0< A fori=1,...,J

(XT,...,X}) € D(E)

The solution to Subproblem (P.5) can obtained in two steps. First, we fix trans-
mit rate vector (X7,..., X}). Under this condition, (P.5) reduces to the linear
programming on variables A7;. The solution to this degenerated problem is very

clear, it is to fill up the capacity of the scheduled rate X' by the blocks encoded
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with the R-D parameter ( it D}fizk) based on i; chosen according the rule

" . oDy = Cify
iy = arg min :

5.20
i=1,...,J; ClRl,i ( )

Specifically, we summarize the solutions to (P.5) for the fixed transmit rate vector.

l (5.21)
AN =0 i #7

After clarifying the appearance of optimal A7;, we substitute (S.1) into (P.5)

and solve the optimal transmit rate vector (X7, ..., X}"") from the optimization

below.

(P.6)

L aqw D' —C
minimize Z {( - Rll:;l* G : l)X I

=1
subject to  (XT{,..., X}) € D(&")
Note that (P.6) is equivalent to a downlink weighted sum capacity maximiza-
tion problem. If D(¢") forms a convex set, this problem can be solved efficiently
using numerical techniques. In particular, if the MIMO broadcast Gaussian chan-
nel and the capacity achieving channel coding are assumed, one can exploit two
very effective methods, broadcast to multi-access (BC-MAC) duality [49] and the

polymatroid structure [48], to approach and solve problem (P.6).
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Figure 5.4: Scheduler

5.4 Online Scheduling Algorithm

At our current position, we understand the necessary steps to solve the
dual problem of (P.1). Through Theorem 2.8 (see Chapter 2), it is justified that
the sequences {47, n = 0,1,2,...} and {X;"", n = 0,1,2,...} obtained from
solving subproblem I-III converge asymptotically to solution of (P.1) as step size
€ diminishes to zero.

We note that, however, the algorithm based on these minimizers ( {AZ;*, n=
0,1,2,...} and {X;"", n =0,1,2,...}) does not take the buffer underflow event
into account. In other words, (P.1) does not include the distortion caused by
buffer underflow in the objective function. Therefore, additional processing and

modification on {4}, n=0,1,2,...} and {X;"", n=0,1,2,...} is necessary be-

li o
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fore completing our final algorithm. To explain in detail, we emphasis that for the
recursive algorithm (5.16) its reflection term from above Z > 0 and its reflection

term from below Zﬁ > 0 can be defined by rewriting
nHl— BN (O — AV — 2+ 2. (5.22)

Note that to maintain the same dynamics of ', among the A" blocks
derived from (P.5), we only need to send those blocks encoded using the (A" — Z7)

lowest average distortion. For notational simplicity, we define
A k) A bl >
APt E A - 27, (5.23)

which serves as our new scheduling decision for the number of scheduled blocks.
Since the evolution of 47 is unchanged with the new transmit block A7, the op-
timality to (P.1) is preserved. Moreover, this new assignment A"* does not affect
the feasibility of (C.1)-(C.3), which can be easily examined through the definition.
In particular, following the same proof of feasibility for stochastic optimization in
Chapter 2, the new scheduled data blocks A?’* satisfies the constraint (C.4). With

this in mind, we rewrite (5.22) into the the equation
nH = B0 e(C — AP — 7). (5.24)
and its projected form
Ty |80+ e(Cr— A — Zl”)] . (5.25)

Note that the reflection term Zl” is an important variable used to setup

a bound on the block loss caused by the buffer underflow.
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5.5 Queue Dynamics

Figure 5.5: Inverse Queue: buffer size limited to B;/e

To investigate the net effect of buffer underflow to our algorithm in depth,
we need to understand the evolution of the queue dynamics. We define {Q?, n=
0,1,2,...} as the queueing process with constant arrivals C; and departure process
{A*, n=0,1,2,...}. Since the role of the arrivals A" and departures C; in this
fictitious queuing system are switched relative to the real system, we name Q}"‘

“inverse queue”. The evolution of inverse queue is governed by the recursion:
Qi = Wosq |QF +Cr— 417 (5.26)

where B;/e can be served as one upper bound on the inverse queue size.
Comparing the recursion of {Q7'} with that of {3} (5.25), we induce the

following important relation between 3" and Q?

B = €Qy, (5.27)

which implies that 8] has a notion of scaled inverse queue length. One important
question to ask is how do we relate {37} or {Q7} with the queue dynamics {Q7'}
at each user? The answer to this question is based on the observation that the

evolution of the queue size ()} of user [ obeys the following rule.

ntl— QP 4+ A — Oy (5.28)
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Figure 5.6: Queuing Structure

There are two important facts referring to 7.
e First, the boundedness of the queue, Q7" < B;/e (when QY = 0).

e Second, the average block loss due to the buffer underflow is negligible as the

step size € goes to 0.

We start with an outline of the proof for the boundedness. Based on the definition
of fl?*, we observed that () increases strictly as Q? decreases strictly. If there
exists ny such that Q)" > B;/e+4 for some § > 0, then we can find out ny < ny such
that n is the last time before n; that Q) < §/2. This implies that Q" < B;/e for
ny < n < ny, as aresult, the following result should hold: @' —Q}* = A;” —Q}” >
By /e + 0/2. However, this cause a contradiction, hence Q} < B /e.

Inspecting the recursions dominating the evolutions of )} and Q?, we
notice that, for the dynamics of )7, the buffer underflow occurs only when either
the inverse queue Qf hits a new peak or it reaches its upper bound B;. Further,
based on this fact, we claim that the average block loss due to the buffer underflow
is negligible. An outline of the proof is described below.

A reasonable bound on the block loss from the buffer underflow is deter-

mined by the following two facts.

e The aggregate block loss due to Q}“s trace hitting a new peak is bounded by
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B;.

e When Q? hits the upper bounded By, the block loss is less than the reflection

term Z7'.

Therefore, for user [, the total loss of blocks by time n due to the buffer underflows
is smaller than or equal to B;/e+ > y_, ZF. By Theorem 2.7, the expected average
blocks loss results from the buffer underflow events converges to zero asymptoti-

cally. This is verified through the equation below.

N-1
. . B . . 1 S
hm€sup ]1[1% Ne + hmesup A}LH;O i EO E{Z'} =0 (5.29)

5.6 Numerical Example

In this section, we use a simple example to examine the performance and
behavior of our algorithm. We consider a 10 user system with the rate distortion
curves given in Figure 5.7. In the setup of the example, the maximum average
distortion Dj"** is normalized to 1 by presetting the weights to w;, = 1/D**.
To model the time-varying behavior of the channel, we use a 10 state Markov to
describe the channel condition. The transition matrix of the channel state is given
in (5.30), where the (7,7) entry of the matrix is the transition probability from
channel gain 10%! to 10°%. The channel gain is normalized by the noise power,
and the peak transmit power is limited to 1 Watt. The target data consumption
rate at each user is normalized to C; = 1.

We assume that each user is allocated a dedicated subcarrier. Therefore,
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Operational Rate Distortion Curve for User 1 to 10

06 0.7

Figure 5.7: Operational Rate Distortion Curves

the downlinks are equivalent to a set of parallel gaussian channels. We perform the
simulation for 30, 000 slots. Based on the empirical result, the algorithm converges
in about 1,000 slots. The queue dynamics of users 1 to 10 are plotted in Figure
5.9 to 5.13. In this setting, the weighted long-term average distortion is 0.2066 for
all users.

From the result, we are particularly interested in the dynamics of the
buffer underflow events. From Figure 5.9 to Figure 5.13, we can see that, except
certain initial steps, the queue dynamics of each user rarely touches the zero at
all, and its path oscillates around some constant level asymptotically. These phe-
nomena suggest that our algorithm actually keeps very low frequency of buffer

underflow occupancies. This agrees with our analytical results.
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Figure 5.8: Transition Matrix of the Channel State Process

5.7 Conclusions

In this chapter, we developed an online scheduling algorithm which mini-

mizes the maximum long-term average distortion among users in a wireless down-

link system. We demonstrated that the proposed algorithm converges asymptot-

ically to the optimal solution. Moreover, we provided analytical and numerical

results to point out the fact that, under our algorithm, the distortion (or data

loss) due to the buffer underflow is negligible in the average. Note that the current

version of our analysis applies to the source with fix rate-distortion behavior. In

the following works referring to this paper, we will work towards the extensions
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of our current framework to include time-varying R-D characteristics and more

general source signal models into discussion. It is our conjecture that even the

source process are not stationary ergodic, the performance of our algorithm would

be bounded within some neighborhood of the optimal solution.
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Chapter 6

Conclusions

In this dissertation, we have developed a framework for solving stochastic
optimization problems and analyzing the asymptotic behavior of the solutions.
Moreover, we have demonstrated how to apply the framework to solve channel
aware scheduling problems such as power efficient routing in wireless networks and
the joint source distortion and downlink transmission management. To conclude
this work, we remark some promising improvements for our framework, which lead
to our future research plan.

Recall that in Chapter 2 we solved stochastic optimization problems us-
ing stochastic approximation algorithms. From the simulation results for the nu-
merical examples in Chapter 3-5, we observed that the convergent time of those
stochastic approximation algorithms increases as the step size decreases. However,
the system performance improves when smaller step size is used. This results in a

tradeoff between the convergent time and the system performance, which we can
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be roughly quantify by inspecting the limit process of the projected differential
inclusion introduced in Chapter 2. We note that our proposed algorithm is not
optimized for delay sensitive applications, which require shorter convergent time.
How to incorporate delay sensitive data traffic into our framework is an major task
to be accomplished in our future research plan.

The second improvable part in our current design comes from the as-
sumption of perfect observation of channel states and perfect reception of transmit
data. In reality, channel states are obtained at the receiver using the estimator for
pilot signals sent periodically /continuously from the transmitter. Inevitably, the
estimation incurs errors. Even it does not, the receivers could still make errors in
detecting and decoding the received signals. How to include these realistic con-
ditions and uncertainties into consideration is another important task to research
on.

Finally, for all the applications presented in this dissertation, we ignored
the cost and the overhead accompanied with the control signalling. Since the pro-
posed online stochastic approximation algorithm makes decision relying on instan-
taneous channel state information at the transmitter and other parameters (e.g.
dual variables) exchanged among the nodes, as the system becomes large, massive
information transactions may overwhelm the system. To address this issue, we
have done some preliminary research which show that it is not necessary to update
the dual variables for the algorithm on a per slot basis. The time intervals between

successive updates of the algorithm can be relaxed to a sequence of random vari-
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ables. As long as the mean and the variance of this sequence of time intervals are
finite, the proposed algorithm still converges. Nevertheless, in this way, the sched-
uler still needs the instantaneous channel states to make decisions. We note that
to reduce the frequency of estimating the channel state, one promising approach is
to incorporate more structured stochastic channel models into the framework. The
model should rely on only certain parameters like mean and variance to determine
the distribution of channel state. Instead of observing and reporting the channel
state to the transmitters on a per slot basis, we can measure the channel state
periodically with longer intervals and estimate the channel conditions in between
the measurements. Accompanied with the imperfect channel estimation mentioned
previously, it is anticipated that the issue of frequent channel state updates can be

alleviated to some extent with the cost of minor capacity loss.
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