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Abstract

Coupled-mode theory (CMT) has been widely used in optics and photonics design. Despite its

popularity, several different formulations of CMT exist in the literature, and their applicable range

is not entirely clear, in particular when it comes to high-index-contrast photonics platforms. Here

we propose an improved formulation of CMT and demonstrate its superior performance through

numerical simulations that compare CMT-derived quantities with supermode calculations and full

wave propagation simulations. In particular, application of the improved CMT to asymmetric

waveguides reveals a necessary correction in the conventional phase matching condition for high-

index-contrast systems, which could lead to more accurate photonic circuit designs involving

asymmetric elements.

I. INTRODUCTION

Coupled-mode theory (CMT) is a simple, yet powerful method which has been widely used

in many disciplines of physics and engineering [1, 2]. In the field of optics/photonics, CMT

has proven to be an indispensable tool for optimizing coupling between various photonic

components such as waveguides and resonators, despite the availability of commercial

softwares that are capable of performing electromagnetic simulations without approximation

[3, 4]. This is because a full three-dimensional (3-D) simulation for typical photonic

structures still takes a significant amount of computing time and resources. On the other

hand, the CMT-based approach only needs the electromagnetic fields from individual

components, whose simulation can often be simplified to 2-D by utilizing the inherent
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geometric symmetry. As a result, CMT provides a significant speedup in the device design

and optimization compared to approaches based on full 3-D numerical simulations [5–13].

To illustrate the CMT formulation in the context of coupling between adjacent photonic

structures, here we use two coupled waveguides – a system of great practical relevance (e.g.,

in directional couplers) – as an example. Our methodology is as follows: we first review

existing CMT formulations and examine how key quantities produced by these approaches

compare against exact supermode calculations. We discuss the physical origin of observed

differences in the context of superposition rules that are often the starting point for CMT, but

which do not necessarily satisfy electric and magnetic field boundary conditions at interfaces

or even the self-consistency of Maxwell’s equations themselves (e.g., that the electric and

magnetic fields cannot be independently specified). We use this insight to propose a new

improved CMT formalism that obey Maxwell’s equations and boundary conditions (at least

for the dominant field components), and examine how these results compare to both

supermode calculations and full wave propagation simulations in the specific case of

asymmetric waveguides, where existing CMTs tend to most egregiously fail.

Being a first-order perturbation method, a general two-mode CMT would take the following

form [2, 14]:

da(z)
dz = iΓa(z), (1)

where a(z) ≡ [a1(z) a2(z)]T with aj(z) representing the normalized power amplitude for the

waveguide mode j (j = 1, 2) propagating in the z direction. Γ = [γ11 γ12; γ21 γ22] is a 2×2

matrix with γij representing the coupling coefficients between the two waveguide modes (i, j
= 1, 2). While in some cases it is necessary to extend the above two-mode CMT to include

more than one mode from each waveguide [15], which itself is a straightforward process, the

two-mode CMT formulation is sufficient for many applications. This is because in a typical

coupling scenario, only a limited number of modes from each waveguide would contribute

to the coupling process, while the rest of the modes are strongly phase mismatched and

therefore can be ignored [2]. In addition, the modes under consideration in Eq. 1 are

typically well confined in their respective waveguide geometries, resulting in insignificant

coupling to radiation modes which can often be neglected in the first-order approximation.

For this reason, the system can be considered as lossless, and the coupling matrix Γ becomes

real after proper phase normalization (see discussions below) [4, 8].

The two eigenvalues of Eq. 1 are found as γ± = γ11 +γ22 /2 ± γ11 − γ22
2/4 + γ12γ21 [2].

Combined with appropriate initial conditions at z = 0, aj(z) can then be determined. For

instance, for a1(0) = 1 and a2(0) = 0, the maximum power transfer ratio from waveguide 1 to

2 is obtained as [4]:

T21
max =

γ21
2

γ11 − γ22
2

2
+ γ12γ21

.
(2)
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A similar equation can be obtained for T21
max by switching the subscripts in Eq. 2. From these

results, we see that if γ11 − γ22 ≫ max γ12 , γ21 , the maximum power transfer ratio between

the two waveguides is much less than 100 %, a scenario commonly depicted as being phase-

mismatched [4]. On the other hand, if |γ11 − γ22| is comparable or smaller than max(|γ12|, |

γ21|), efficient power transfer between the two waveguides would occur. In fact, one can

identify the exact phase-matching condition as γ11 = γ22. In this case, power conservation

requires |γ21| = |γ12|. This is because if |γ21| ≠ |γ12| when γ11 = γ22, the maximum power

transfer ratio from one waveguide to the other (T21
max or T12

max) will be larger than 100%,

which is clearly unphysical. As a result, we conclude that the maximum power transfer ratio

in the phase-matched scenario has to be 100 % (assuming there is no loss in the coupling

process).

II. MAJOR EXISTING CMT FORMULATIONS

Major existing CMT formulations can be summarized by the following formula [2]:

Γ = Δβ
2

1 0
0 −1 +

P11 P12
P21 P22

−1 κ11 κ12
κ21 κ22

, (3)

where Δβ ≡ β1−β2 is the intrinsic phase mismatch (βj is the propagation constant of the

waveguide mode j when isolated), and Pij and κij are defined as

Pi j = 1
4∬ ei* × h j + e j × hi* ⋅ zdS, (4)

κi j = ω
4 ∬ ϵ − ϵ j ei* ⋅ e jdS, (5)

where ej, hj, and ϵj are the electric field, magnetic field, and permittivity of the waveguide

mode j when isolated (j = 1, 2), respectively; ϵ denotes the permittivity of the coupled

waveguide system (note that ϵj and ϵ are assumed to be uniform along z but can have

distributions in the x-y plane, which is the waveguide cross section); and dS ≡ dxdy denotes

the integration in the waveguide cross section. Pjj in Eq. 4 represents the propagating power

of waveguide mode j and hence equals one when normalized. In addition, a nonzero

P12 = P21*  indicates that the two waveguide modes are not necessarily orthogonal to each

other due to field overlap [16]. By properly choosing the relative phase of the two waveguide

modes, we can always make P12 real. For the rest of the paper, we define a real parameter X
to represent this power overlap factor in the CMT formulation (X = P12). Finally, κij can be

understood as a first-order dipole perturbation from the waveguide mode j (δPj ≡ (ϵ − ϵj)ej)

to the waveguide mode i (i, j = 1,2) [17]. By adopting the same phase choice for a real P12,

κij coefficients are all real and hence γij will also be real.

The CMT formula described in Eq. 3 was primarily developed in the 1980s by a number of

authors (Streifer, Hardy, Haus, Chuang, among others) [2, 16–18]. To show that this theory
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(hereafter referred to as CMT-X) is consistent with our discussion following Eq. 2, we use

the following identity [18] (also see Appendix A):

κ12 − κ21 = P12Δβ . (6)

A straightforward calculation for Γ in Eq. 3 then results in:

γ11 − γ22 =
γ12 − γ21

X =
κ11 − κ22 + Δβ

1 − X2 , (7)

showing explicitly that when the phase matching condition is satisfied (i.e., γ11 = γ22 for

which ΔβPM
X = κ22 − κ11), γ12 = γ21. Another widely used CMT formulation, initially

developed by Snyder, Yariv, et al., only focuses on the cross-coupling terms (i.e., κ12 and

κ21), while intentionally neglecting the self-coupling terms (i.e., κ11 and κ22) and the power

overlap factor between the two waveguide modes (i.e., X) [3, 19]. This simple CMT

formulation (hereafter referred to as CMT-O) can be obtained from Eq. 3 by forcing κ11 =

κ22 = 0 and P12 = P21 = 0. As a result, the phase matching condition is reduced to γ11 − γ22

= Δβ = 0, which is commonly used in the weak-coupling regime but is generally different

than that predicted by the CMT-X formulation. We want to point out that CMT-O also

satisfies power conservation in the phase-matched scenario. This is because when ΔβPM
O = 0,

γ12(= κ12) equals γ21(= κ21) according to Eq. 6.

An effective way to examine the accuracy of various CMT formulations is to compare the

eigenvalues of Eq. 1 (γ±) to the exact propagation constants of the coupled system (i.e., the

supermode propagation constants denoted as β±) [20]. We start with a discussion for

symmetric waveguides, for which the phase matching condition of CMT-X and CMT-O is

identical and satisfied since κij = κji and Δβ = 0. For ease of comparison, we define δβsum ≡
(β+ + β− − β1 − β2)/2 and δβdiff ≡ (β+ − β−)/2. For symmetric waveguides, δβdiff

characterizes the coupling strength while δβsum gives rise to additional phase induced by the

coupling process [8, 21]. Their corresponding variables in the CMT formulation are defined

based on the the eigenvalues of Eq. 1 as δγsum ≡ (γ++γ−)/2 and δγdiff ≡ (γ+−γ−)/2.

Specifically, CMT-O and CMT-X predict [2]:

CMT‐O:δγsum = 0, δγdiff = κ12; (8)

CMT‐X:δγsum =
κ11 − Xκ12

1 − X2 , δγdiff =
κ12 − Xκ11

1 − X2 . (9)

The results shown in Eqs. 8 and 9 become identical |κ11| ≪ |κ12| if |X| ≪ 1 and 1. However,

neither condition is necessarily satisfied in practice in high-index-contrast waveguides. This

can be seen from the numerical example provided in Fig. 1 for 2-D symmetric waveguides,

where we define two quantities, σamp ≡ (δγdiff−δβdiff)/δβdiff and σphase ≡ (δγsum

−δβsum)/δβdiff, which quantify how the CMT-based estimates related to coupling strength

and phase compare with the exact supermode calculations (the latter determined by a finite
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element method eigenmode solver). While both formulations perform reasonably well for

the transverse-electric (TE) polarization (Figs. 1(a) and 1(b)), where for 2-D waveguides the

only electric field component is Ey, the CMT-X formulation is more accurate in the

prediction of δβsum (Fig. 1(b)). Note that here the error in estimating δβsum through a CMT

approach is normalized by the coupling coefficient δβdiff, considering that the induced phase

from coupling is a product of δβsum and the coupling length Lc, with the latter inversely

proportional to δβdiff. The relatively large errors in estimating δβsum in the CMT-O approach

can be understood by comparing Eq. 8 to Eq. 9: while for the TE polarization the self-

coupling term κ11 is typically much smaller than κ12, the power overlap factor X may

become significant (see the inset of Fig. 1(b)), leading to appreciable errors in δβsum if

neglected.

In spite of its overall better performance for the TE polarization, the CMT-X formulation

produces erroneous results for the TM polarization in high-index-contrast waveguides [22].

One such example is provided in Figs. 1(c) and 1(d), where the errors for both δβdiff and

δβsum based on the CMT-X formulation diverge as we increase the refractive index contrast

between the waveguide core and cladding (we note that for 2-D waveguides, Hy is the only

magnetic field component for TM polarization). Surprisingly, the CMT-O formulation still

works reasonably well despite the lack of justification for ignoring κ11 and X. In fact, for the

TM polarization the self-coupling term κ11 defined in Eq. 5 can be even larger than κ12 (see

the inset of Fig. 1(d)), resulting in significant errors in the CMT-X formula (Eq. 9) if κ11 is

not modeled correctly.

The divergent errors in CMT-X were revealed to stem from the incorrect assumptions made

in its derivation [23]. While multiple approaches exist for deriving the CMT-X formula

shown in Eq. 3, one invariable assumption is that the transverse electric field (ET(z) with“T”

denoting the transverse coordinates) and magnetic field (HT(z)) of the coupled system can

be expressed as superposition of individual waveguide modes [2]. That is,

ET(z) = a1(z)E1T + a2(z)E2T, (10)

HT(z) = a1(z)H1T + a2(z)H2T, (11)

where EjT (HjT) denotes the transverse electric (magnetic) field of the individual waveguide

mode j (j = 1,2). For the TM polarization in 2-D waveguides, one can easily verify that the

assumption for the electric field fails to satisfy the required boundary condition for the Ex

component in Fig. 1(c). Moreover, the two superposition rules specified by Eqs. 10 and 11

are not necessarily compatible with each other, as the electric and magnetic fields are

intimately connected through Maxwell’s equations and therefore cannot be independently

assigned.

III. IMPROVED CMT AND DISCUSSIONS

For the above reason, in this work we only adopt the superposition rule for the magnetic

field alone (i.e., H(z) = ∑ ja j(z)Hi), for which the required boundary conditions hold for both
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polarizations. The electric field is then obtained by applying Maxwell’s equations, resulting

(details in Appendix A):

E(z) = i
ωϵ ∇ × ∑

j
a j(z)H j

= ∑
j

a j(z)
ϵ j
ϵ E j + i

ωϵ
da j(z)

dz z × H j,
(12)

which is different than the assumption made in Eq. 10 for the electric field. With the aid of

this result, a corrected version of Eq. 3 for symmetric waveguides is derived as (details in

Appendix A):

Pi j′ = 1
4∬ ϵi

ϵ ei* × h j +
ϵ j
ϵ e j × hi* ⋅ zdS, (13)

κ11′ =
nclad

2

ncore
2 κ11, κ12′ = κ12 . (14)

While Eqs. 13 and 14 reduce to Eqs. 4 and 5 respectively for low-index-contrast materials,

there are two important corrections for the CMT formulation when the index contrast is

large enough. First, Eq. 14 suggests that for the self-coupling term, we should use κ11′  which

is significantly smaller than κ11 used in the CMT-X theory for high-index-contrast

waveguides. Second, Eq. 13 indicates that the power overlap factor X should also be

modified P12′ , which is numerically smaller than P12 used in the CMT-X theory (examples

are provided in the inset of Fig. 2). In fact, these two corrections partially justify the

assumptions made in the CMT-O formulation regarding κ11 and X (both forced to be zero).

Numerical results for the TM polarization based on the modified CMT formulation

(hereafter referred to as CMT-M), with two examples provided in Figs. 1(c)–(d) (blue

circles), indeed confirm that it consistently produces more accurate prediction in δβsum,

while yielding essentially the same results as the CMT-O formulation for δβdiff. The

application of the CMT-M formulation for the TE polarization, as shown by blue circles in

Figs. 1(a)–(b), also produces reasonable results which have a slightly worse percentage error

than those based on the CMT-X theory.

The failure of the CMT-X theory for the TM polarization in high-index-contrast waveguides

and the improved results based on the CMT-M formulation underscores two important

principles in the electromagnetic theory: satisfying the boundary conditions as well as

Maxwell’s equations. For TM-like modes the dominant magnetic field is Hy, rendering the

magnetic field a natural choice for the superposition rule in the CMT derivation [24]. A

close inspection of the CMT-M formulation reveals that the resulting electric field Ex

satisfies the correct boundary conditions though the Ez component fails to do so (see

Appendix A for details). However, since the CMT-M formulation satisfies Maxwell’s

equations, such errors can be largely suppressed due to the variational principle (which

removes errors to the first order) [2]. In contrast, the CMT-X formulation violates Maxwell’s
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equations by assigning the electric and magnetic fields of the coupled system simultaneously

for the TM polarization, leading to divergent first-order errors as evidenced in Figs. 1(c) and

1(d). This new understanding of CMT also allows us to explain the superior performance of

the CMT-X theory for the TE polarization from a different perspective: given in this case the

dominant electric field is Ey (see Fig. 1(a)), we can apply the superposition rule for the

electric field alone (i.e., E(z) = ∑ ja j(z)Ei) and derive the magnetic field from Maxwell’s

equations. Following the exact same procedure, we can show that this approach leads to the

CMT-X formulation (see discussions in Appendix A). In this sense, a unified understanding

of the CMT-X and CMT-M theories has been developed in this work, with the former based

on the superposition rule for the electric field and the latter based on the superposition rule

for the magnetic field.

Given the superior performance of the CMT-X and CMT-M formulations in their respective

regimes, an improved CMT (termed as CMT-I) can be formulated by combining their unique

features (see Appendix A for details):

Pi j
I = 1

4∬ ϵi
ϵ eix*h jy − eiy*h jx +

ϵ j
ϵ e jxhiy* − e jyhix* dS, (15)

κii
I = ω

4 ∬ ϵ − ϵi
ϵi
ϵ eix

2 + eiz
2 + eiy

2 dS, (16)

κi j
I (i ≠ j) = ω

4 ∬ ϵ − ϵ j ei* ⋅ e j −
βi − β j

ϵω e jxhiy* dS . (17)

Numerical simulations carried out for 3D symmetric waveguides in Fig. 2 confirm that this

improved CMT indeed provides an overall better performance than the other two, using the

quantities σamp and σphase that quantify the difference between CMT-derived values and

exact supermode simulations. At the same time, the similar performance of the CMT-M and

CMT-O formulations in estimating the coupling strength δβdiff and coupling phase δβsum

justifies the widespread use of the simple coupled-mode theory (i.e., CMT-O) for high-

index-contrast waveguides in certain applications [10]. Table I summarizes the principal

differences between the CMT formulations described in this work with more detailed

information provided in the Appendix.

So far our discussion has been limited to symmetric waveguides. We now examine these

CMT formulations in the context of asymmetric waveguide coupling. In this case, the exact

phase matching condition predicted by CMT-X and CMT-I is generally different than that

based on CMT-O, whose phase matching condition is simply ΔβPM
O = 0, or β1 = β2. To

investigate their difference, we carry out numerical simulations based on fully vectorial

wave propagation between two asymmetric waveguides. As illustrated in Fig. 3(a), our

model comprises two asymmetric waveguides, with a waveguide mode with unit power

launched at the lower input [21]. We examine the phase matching condition by varying the

upper waveguide width and coupling length and compare the obtained power transfer ratio
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between the simulation and various CMT formulations. As can be seen in Fig. 3(b), CMT-O

and CMT-I (which is reduced to CMT-M in this 2-D example) predict the phase-matched W2

to be 340 nm and 320 nm, respectively. The wave propagation results shown in Fig. 3(c)

confirm that CMT-I is more accurate, achieving a maximum power transfer of 98.5 %

(limited by the scattering loss) for W2 = 320 nm (blue solid line in Fig. 3(c)) while W2 =

340 nm (black dotted line in Fig. 3(c)) based on CMT-O only reaches a peak coupling

efficiency of 90 %. This example confirms that the phase-matching condition in high-index-

contrast materials is not necessarily β1 = β2, which may require correction arising from the

self-coupling terms in the coupling process. Finally, comparing the simulated maximum

transfer ratio from Eq. 2 and plotted as a magenta solid line in Fig. 3(d) for different

waveguide widths W2 (and hence differing values of (β1 −β2)/β1) with the results from

various CMTs, we find the CMT-I formulation again provides the overall best agreement. It

is worth pointing out that the maximum T21 predicted by CMT-O and CMT-I can slightly

exceed 100 % in the phase-mismatched regime, which is an inherent limitation in such

coupled-mode formulations [18].

IV. CONCLUSION

In summary, an improved coupled-mode theory was developed for photonics platforms with

high index contrast. Moreover, our work provides new insight into the applicable range of

existing CMT formulations. It theoretically justifies the use of simple coupled-mode theory

for high-index-contrast photonic elements under certain circumstances, while revealing a

necessary correction in its phase matching condition for the coupling between asymmetric

elements. While our discussion in this work is focused on two waveguides, it would be

straightforward to extend our theoretical framework to including multiple waveguides or

converting it to the time domain for coupling description between waveguides and

resonators or that of multiple cavities [4, 5, 25]. As such, we believe the proposed coupled-

mode theory will find a plethora of applications and lead to more accurate designs in various

photonics platforms.
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Appendix A: Derivation of the CMT formulations

In this section, we provide a detailed derivation of the modified coupled-mode formulation

as well as numerical examples to compare its performance with existing CMT formulations.

Our approach follows closely to the one developed by Chuang [18]. For two arbitrary

waveguide modes, they should satisfy the following Maxwell’s equations (assuming exp(iβz
− iωt) format):

∇ × H( j) = − iωϵ( j)E( j), (A1)
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∇ × E( j) = iωμH( j), (A2)

where the superscript j denotes the mode index (j = 1, 2) and ϵ(j) is the corresponding

permittivity (here we focus on the coupling between dielectric waveguides so permeability μ
is assumed to be the same). We proceed by multiplying H(2)∗ to both sides of Eq. A2 for j =
1 (dot product) and then multiplying H(1) to the complex conjugate of Eq. A2 for j = 2.

Adding the resultant two equations together to cancel their right-side term, we obtain the

following equation with the aid of Eq. A1:

d
dz∬ E(1) × H(2) * + E(2) * × H(1) ⋅ zdS

= iω∬ ϵ(1) − ϵ(2) E(1) ⋅ E(2) *dS .
(A3)

If we take the two modes as the two waveguide modes under consideration, i.e., E(1) = E1 ≡
e1 exp(iβ1z)(ϵ(1) = ϵ1) and E(2) = E2 ≡ e2 exp(iβ2z)(ϵ(2) = ϵ2) using the notations in Eqs. 4

and 5 in the main text, we can prove Eq. 6 in a straightforward fashion.

In general, a coupled-mode formulation can be derived based on Eq. A3 by taking E(1)(H(1))

as the electromagnetic fields of the coupled system with ϵ(1) = ϵ and E(2)(H(2)) as one of the

individual waveguide modes i with ϵ(2) = ϵi (i = 1, 2) [18]. As discussed in the main text, one

typical assumption for E(1)(H(1)), as adopted by Chuang, Haus, et.al.[2], is that

ET
(1)(z) = a1(z)E1T + a2(z)E2T, (A4)

HT
(1)(z) = a1(z)H1T + a2(z)H2T . (A5)

The z components of EM waves can then be obtained using the other two Maxwell’s

equations, i.e., ∇ · D = 0 and ∇ · H = 0, resulting in:

Ez
(1) ≈ a1(z)

ϵ1
ϵ E1z + a2(z)

ϵ2
ϵ E2z, (A6)

Hz
(1) ≈ a1(z)H1z + a2(z)H2z . (A7)

Substituting Eqs. A4–A7 to Eq. A3 for E(1)(H(1)) leads to the CMT-X formulation displayed

in Eq. 3 in the main text.

However, there are two major issues with the CMT-X approach for high-index-contrast

waveguides. First, the assumption for the transverse electric field could violate the boundary

conditions, especially for the TM polarization as discussed in the main text (Ex component

in Fig. 1(c)) [22, 23]; and second, the assumptions made for the transverse electric and

magnetic fields in Eqs. A4 and A5 are not necessarily compatible with each other. In fact,

one key basis leading to Eq. A3 is that the electric/magnetic fields must satisfy Eqs. A1 and
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A2 simultaneously, indicating that they are intimately related to each other and therefore

cannot be assigned independently.

For the above reasons, here we only use the superposition rule for the magnetic field (i.e.,

H(1)(z) = ∑ ja j(z)H j) and deduce the electric field following Eq. A1. A straightforward

calculation results

E(1)(z) = i
ωϵ ∇ × ∑

j
a j(z)H j

= ∑
j

a j(z)
ϵ j
ϵ E j + i

ωϵ
da j(z)

dz z × H j .
(A8)

To see the difference of electric field between these two approaches, we use the TM

polarization in the 2D case as an example, for which the only nonzero component in the

magnetic field is Hy. In this case, Eq. A8 can be simplified as:

Ex
(1) = ∑

j
a j(z)

ϵ j
ϵ E jx − i

ωϵ
da j(z)

dz H jy, (A9)

Ez
(1) = ∑

j
a j(z)

ϵ j
ϵ E jz . (A10)

One immediately sees that Ex in Eq. A9 now satisfies the required boundary condition while

Ex in Eq. A4 fails to do so. On the other hand, the Ez component given by Eq. A10 is the

same as Eq. A6, neither of which offers the correct boundary condition for Ez (which has to

be continuous across waveguide boundaries). However, we notice that Eq. A3 is essentially a

quadratic in form with respect to the electric fields, suggesting that it is capable of tolerating

their errors to the first-order (which is the basis of variational principle) provided that E and

H satisfy the Maxwell’s equations shown in Eqs. A1 and A2 [23]. In this sense, the errors in

Ez (Eq. A10) can be mitigated to a large extent since we have explicitly satisfied Maxwell’s

equations through Eq. A8. By comparison, the CMT-X formulation prioritizes Eqs. A4 and

A5 over Eqs. A1 and A2. As a result, it cannot guarantee the removal of first-order errors

originated in the incorrect boundary conditions, as evidenced in the divergent errors

observed in Figs. 1 and 2.

We can now substitute the deduced electric field (Eqs. A9 and A10) into Eq. A3 for E(1),

along with E(2) = Ei and H(2) = Hi (i = 1, 2). Using the slow-varying approximation, we only

need items up to the first-order:
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∑
j

d a je
i β j − βi z

dz ∬ ϵ j
ϵ e j × hi* + ei* × h j ⋅ zdS

− ∑
j

da j
dz

d e
i β j − βi z

dz ∬ i
ωϵhiT* ⋅ h jTdS

= ∑
j

a je
β j − βi z

iω∬ ϵ − ϵi ϵ j
ϵ ei* ⋅ e jdS

+ ∑
j

da j(z)
dz e

β j − βi z∬ ϵ − ϵi
ϵ ei* × h j ⋅ zdS

(A11)

The above equations can be simplified by defining a1(z) ≡ a1(z)exp(Δβz/2) and

a2(z) ≡ a2(z)exp( − Δβz/2), with Δβ ≡ β1 − β2. We want to point out that the results presented

in the main text should be interpreted for a j(z) (i.e., we have removed the tilde there). With

some algebra, we arrive at

d
dz

a1(z)
a2(z) = i

Δβ
2 0

0 − Δβ
2

a1(z)
a2(z)

+ i
P11′ P12′ − ΔβH12

P21′ + ΔβH21 P22′

−1

×
κ11′ κ12′ + ΔβW12

κ21′ − ΔβW21 κ22′
a1(z)
a2(z) ,

(A12)

where

Pi j′ ≡ 1
4∬ ϵi

ϵ ei* × h j +
ϵ j
ϵ e j × hi* ⋅ zdS, (A13)

W i j ≡ 1
4∬ ϵ j

ϵ e j* × hi + ei × h j* ⋅ zdS, (A14)

Hi j ≡ 1
4ω∬ 1

ϵ hiT* ⋅ h jTdS, (A15)
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κi j′ ≡ ω
4 ∬ ϵ − ϵi ϵ j

ϵ ei* ⋅ e jdS . (A16)

In Eq. A12, the term ΔβH12(ΔβH21) can be neglected given that both Δβ and |H12|(|H21|) are

small. Comparing ki j′  defined in Eq. A16 to κij defined in Eq. 5 in the main text, we

immediately conclude that:

κ11′ =
nclad

2

ncore2
2 κ11, κ22′ =

nclad
2

ncore1
2 κ22 (A17)

κ12′ = κ21* , κ21′ = κ12* . (A18)

For symmetric waveguides, the above results are reduced to Eq. 14 in the main text. In the

more general case, where Δβ ≠ 0, we can use Eq. 6 to further simplify Eq. A12. For

example, using the identity: κi j − κ ji* = βi − β j Pi j, we obtain:

κ12′ + ΔβW12 = κ21* + ΔβW12 = κ12 + Δβ W12 − P12 , (A19)

κ21′ − ΔβW21 = κ12* − ΔβW21 = κ21 + Δβ W21 − P21 , (A20)

while Wij − Pij can be easily calculated based on their definition as

W i j − Pi j = 1
4∬ ϵ j − ϵ

ϵ e j* × hi ⋅ zdS . (A21)

While the above derivation only relies upon the superposition rule for the magnetic field and

therefore in principle should be applicable in the general case, we find in practice it works

best for the TM polarization for 2D waveguides (and by extension, the TE-like modes in 3D

waveguides). This makes sense considering that the dominant magnetic field for the TM

polarization is Hy. On the other hand, for the TE polarization, the dominant electric field is

Ey. In this case, we can take the superposition rule for the electric field (i.e.,

E(1) = ∑ ja j(z)E j), and then derive the magnetic field using Eq. A2:

H(1) = 1
iωμ ∇ × ∑

j
a j(z)E j

= ∑
j

a j(z)H j + 1
iωμ

da j(z)
dz z × E j .

(A22)

Substituting the obtained E(1) and H(1) into Eq. A3, we find the second term in Eq. A22 can

be neglected since it will produce an expression similar to ΔβH12 in Eq. A12. As a result, we

reproduce the result of the CMT-X formulation (Eq. 3 in the main text) from a different

perspective. That is, instead of viewing CMT-X as a result of assumptions made in Eqs. A4
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and A5, it is actually based on the superposition rule for the electric field as well as

Maxwell’s equations.

Moreover, we want to clarify one common misconception, that the CMT can be further

improved by employing the “correct” dipole perturbation based on their boundary conditions

[2, 23]. For example, in Ref. [23] a correction field was introduced for Ex in the self

perturbation so that it satisfies the required boundary condition. Mathematically, this means

we compute the coupling coefficients κij in the following form:

κii
C = ω

4 ∬ ϵ − ϵi
ϵi
ϵ eix

2 + eiy
2 + eiz

2 dS, (A23)

κi j
C(i ≠ j) = ω

4 ∬ ϵ − ϵ j ei* ⋅ e jdS . (A24)

Using the same example shown in Figs. 1(c)–(d) for the TM polarization, we compare this

approach (termed as CMT-C) to the CMT-X and CMT-M formulations in Fig. A1. As can be

seen, whether we use the Pi j
M (Eq. 15) or Pij (Eq. 4) coefficients for the CMT-C model

(termed as CMT-C1 and CMT-C2, respectively, in Fig. A1), its performance actually is

worse than the CMT-M formulation. The answer again lies in the fact that this correction

field approach fails to satisfy Maxwell’s equations by independently assigning the electric

and magnetic fields, thus resulting in first-order errors in the CMT formulation.

Appendix B: Summary of key quantities and comparison of CMT

formulations

In this section, we provide a systematic definition of various CMT formulations used in this

work to help the readers track different notations. We start by grouping parameters that are

already defined in the text:

• Intrinsic phase mismatch (see Eq. 3) Δβ ≡ β1 −β2;

• Conventional power overlap coefficient Pij used by the CMT-X theory (see Eq. 4)

Pi j = 1
4∬ ei* × h j + e j × hi* ⋅ zdS,

• Conventional coupling coefficient κij used by the CMT-O and CMT-X theories

(see Eq. 5)

κi j = ω
4 ∬ ϵ − ϵ j ei* ⋅ e jdS,
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FIG. A1.
Extended numerical comparisons of various CMT formulations for the TM polarization in 2-

D symmetric waveguides: CMT-O (black dotted line), CMT-X (dashed red line), CMT-M

(blue circles), CMT-C1 (cyan line) and CMT-C2 (magenta line). All the simulation

parameters are the same as Figs. 1(c) and (d), i.e., V = 1.8, gap = W/3 and λ0 = 1 μm.

• Modified power overlap coefficient Pi j′  in the CMT-M theory (see Eqs. 13 and

A13)

Pi j′ = 1
4∬

ϵi
ϵ ei* × h j +

ϵ j
ϵ e j × hi* ⋅ zdS,

• Modified coupling efficient κi j′  in the CMT-M theory (see Eq.14 for the

symmetric case and Eqs. A16–A18 for the general case)

κi j′ ≡ ω
4 ∬ ϵ − ϵi ϵ j

ϵ ei* ⋅ e jdS . (B1)

• Auxiliary power overlap coefficient Wij which is a hybrid version of Pij and Pi j′

(see Eq. A14)

W i j ≡ 1
4∬ ϵ j

ϵ e j* × hi + ei × h j* ⋅ zdS (B2)

Note that Wij and Pij allow us to connect κij to κi j′ (i ≠ j) through Eqs. A19 and

A20.

• Finally, to take advantage of the superior performance of the CMT-X theory for

the TE (2D) polarization and CMT-M theory for the TM (2D) polarization, we

have proposed an improved CMT theory by combining their unique features. The

new power overlap and coupling coefficients are defined as (see also Eq. 15–17):
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Pi j
I = 1

4∬
ϵi
ϵ eix* h jy − eiy* h jx +

ϵ j
ϵ e jxhiy* − e jyhix* dS,

κii
I = ω

4 ∬ ϵ − ϵi
ϵi
ϵ eix

2 + eiz
2 + eiy

2
dS,

κi j
I (i ≠ j) = ω

4 ∬ ϵ − ϵ j ei* ⋅ e j −
βi − β j

ϵω e jxhiy* dS .

These coefficients are constructed such that they are reduced to the CMT-X and

CMT-M formulations for the TE and TM polarizations, respectively.

The various CMT formulations are all given by Eq. 1 and Eq. 3, with different definitions of

the power overlap matrix P and the coupling coefficient matrix K as listed in Table I.
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FIG. 1.
Numerical comparisons of various CMT formulations for 2-D symmetric waveguides

propagating in the z direction: CMT-O (black dotted line), CMT-X (dashed red line) and

CMT-M (blue circles). The quantities σamp and σphase are defined as σamp ≡ (δγdiff

−δβdiff)/δβdiff and σphase ≡ (δγsum−δβsum)/δβdiff, which quantify how the CMT-based

estimates related to coupling strength and phase compare with the exact supermode

calculations realized using a finite-element method eigenmode solver. (a) and (b):

transverse-electric (TE) polarization, whose only nonzero electric field component is Ey, for

a fixed V ≡ πW ncore
2 − nclad

2 /λ0 = 0.75, where λ0 = 1 μm is the wavelength, W is the

waveguide width, and ncore and nclad are the refractive indices of the waveguide core and

cladding, respectively. In this example we choose gap = W. The inset in (b) plots the power

overlap factor in the CMT-X theory (X = P12). (c) and (d): transverse-magnetic (TM)

polarization, whose only nonzero magnetic field component is Hy, for a fixed V = 1.8 and

gap = W/3. The inset in (d) plots the ratio between κ11 and κ12 defined in Eq. 5. Different

values for V are used for the TE and TM polarizations to achieve a similar mode

confinement.
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FIG. 2.
Numerical comparisons of various CMT formulations for the TE-like polarization (whose

dominant electric field components are Ex and Ez) in 3-D symmetric waveguides (note this

TE-like polarization in 3-D corresponds to the TM polarization in 2-D if we reduce the y
dimension using the effective index method): CMT-O (black dotted line), CMT-X (dashed

red line) and CMT-I (blue circles). V ≡ πW ncore
2 − nclad

2 /λ0 with λ0 = 1 μm. (a) and (b):

nclad=1, nsub = 1.444. In this example we choose V = 3, W/H = 2 and gap = W/5; (c) and (d):

nclad = nsub = 1.444. In this example we choose V = 2, W/H = 1.01 and gap = W/5. The inset

in (b) and (d) plots the power overlap factors in the CMT-X (X = P12 for the dashed red line)

and CMT-M theories (X = P12′  for the blue circles). As in Fig. 1, σamp and σphase provided a

comparison of the CMT-derived quantities with the exact supermode quantities determined

from finite element method simulations.
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FIG. 3.
Numerical comparison of various CMT formulations for the coupling of 2-D asymmetric

waveguides for the TM polarization to results from a fully vectorial wave propagation

method: for (b) and (d), CMT-O (black dotted line), CMT-X (dashed red line), CMT-I (blue

circles), and magenta line (wave propagation). (a) Wave propagation simulation: a

waveguide mode with unit power is launched from the input of waveguide 1, and the

transferred power to waveguide 2 is monitored. Both waveguides are terminated with

perfectly matched layers (PMLs), and the overall scattering loss is less than 2%. The phase

matching condition is determined by varying the upper waveguide width W2 and coupling

length Lc, with nclad=1, ncore1 = 1.8, ncore2 = 2.5, W1 = 800 nm, gap = 50 nm, and λ0 = 1.55

μm. (b) Phase matching condition (zero-crossing points) predicted by different CMT

formulations. (c) Simulated power transfer ratio T21 for different W2 and Lc based on wave

propagation, with the blue solid line (W2 = 320 nm) and the black dotted line (W2 = 340

nm) corresponding to the phase matched condition predicted by the CMT-I theory and the

CMT-O theory, respectively. (d) Comparison between the simulated maximum T21 for

varied W2 (magenta solid line) and the predictions from various CMT formulations (color

scheme same as in (b)).
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