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ABSTRACT OF THE DISSERTATION

Binary Recompilation via Dynamic Analysis and the Protection of Control and Data-flows Therein

By

Joseph Nash

Doctor of Philosophy in Computer Science

University of California, Irvine, 2020

Professor Michael Franz, Chair

Legacy binaries need to continue functioning even when no source code has been preserved, to

support the workflows of government and industry. The binaries often lack recent improvements in

compiler design and software engineering practices, causing them to be slower and less secure than

modern binaries. Binary rewriting seeks to patch, optimize, instrument, or harden binaries to bridge

this gap, but existing practice is limited by the underlying static analysis. We created a framework,

BinRec, to use dynamic analysis to lift binaries to LLVM IR then recompile them, which overcomes

the limitations of static analysis.

The protection of software against memory corruption exploits has a rich history, which this thesis

both systematizes and extends. We present a study of the performance, precision, and security of

control-flow integrity (CFI). Data-only attacks can bypass CFI, and so we present a defense against

these attacks. The application of these hardening techniques to binaries deserves further study, and

we discuss the extent to which security hardening can be applied to recompiled binaries.

This dissertation presents building blocks for the securing of legacy binaries using dynamic analysis,

which we hope will become a dominant paradigm in the secure software ecosystem of tomorrow.
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Chapter 1

Introduction

The fact of the matter is there are many binary only programs being used today. Source code

modification is not suitable for these cases, for example the source code or toolchain to produce

the binary may no longer be available. This could happen if the source code license expires while

the right to distribute the binary persists. Alternatively, the distribution of software in binary form

increases the likelihood users will have a binary but its source code becomes lost when the vendor

goes bankrupt. The downside of legacy binary software is it does not have the benefit of recent

improvements and knowledge. These improvements could be in algorithms, toolchains, hardware,

best practices, or use patterns. Even modern binaries may not be optimized for a particular use case.

A famous example in this space is when Microsoft patched a buffer overflow in their equation editor.

But they did not change the source code. They did a surgical binary patch where they inserted a

bounds check by hand to prevent the overflow. We don’t know why they chose to go this route,

but according to the news site ArsTechnica, this was third-party code which Microsoft didn’t have

the license to adjust the source [3]. In addition to patching, practitioners like to reverse engineer,

re-optimize, or harden binaries for security. In all these cases, they are faced with a fundamental

challenge, analyzing the binary. Analyzing a binary is quite hard. There are many properties
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of binaries one can attempt to understand, including what instructions are executed, where do

functions start and end, what is the control flow of the binary [12]. On the way to understanding

these properties, an analysis must answer questions like “ Is this sequence of bytes code, or data?”

Horspool and Marovac showed 40 years ago [93] that separating code and data is undecidable, but

that has not stopped countless projects attempting binary analysis since then.

The two broad categories of binary analysis are dynamic and static. Dynamic analysis runs the

binary, static analysis does not. Within these categories, different projects make design choices

based on the properties of their input binaries (such as presence or absence of symbol information),

and their goal. Binary recompilation uses binary analysis to perform program instrumentation and

transformation and in addition produce a standalone executable. Some popular recent static works

in the space are Secondwrite [9], Superset Disassembly [18] and McSema [68]. Yet even after

years of development effort, these tools and others like them face serious shortcomings from their

fundamental roots in static analysis. The use of heuristics mean these approaches are tuned to work

for a particular use case, cannot be relied on in general [18].

Dynamic analysis provides a way to overcome the limitations of static binary rewriting. To that

end, we created BinRec [8, 103]. BinRec takes dynamic traces through a binary and lifts them into

LLVM IR. We produce a well formed LLVM IR module that is accessible to off-the-shelf LLVM

optimizations and transformations. Then we produce an executable which faithfully executes the

functionality of the original application, along with the desired transformations. We use BinRec

to successfully run the SPEC 2006 integer benchmark suite. In addition we demonstrate BinRec’s

ability to apply off the shelf compiler transformations like SafeStack, and Address Sanitizer. The

rewritten binaries we produce have good performance, about 29% relative to optimized input

binaries, which is much lower than the comparable static recompilation tools ( >100% overhead).

One of the main applications for dynamic recompilation is retrofitting on hardening against memory

corruption attacks. There is a continual arms race between attackers and defenders in the memory

corruption battle [185]. The attacks can be classified into control flow altering attacks, and attacks
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which stay within the intended control flow of a program [32, 38] (aka Data-only attacks). To

prevent control flow altering attacks, we have Control-flow Integrity [5]. In this thesis, we include

a systematization of knowledge of the CFI literature, including an analysis of its performance,

precision, and security in Chapter 4. We explore in depth the control flow protection we can afford

to binaries rewritten with BinRec.

As we will discover in Chapter 3, rewriting a binary in a sense creates an emulator for the original

binary. As a consequence, the control flow of the original binary becomes data-flow in the rewritten

binary. It is then important to consider defenses against data-only memory corruption attacks. We

present a defense against data-only attacks which uses hardware acceleration to perform context-

sensitive data space randomization (DSR) [21] in Chapter 5.

Since the publication of our work on CFI [28], Chapter 4, further work has brought to light the

compatibility issues faced by CFI implementations [203]. Most CFI schemes need to exclude some

programming constructions, and external code compatibility is a significant design point. We find

external code is also a significant concern for data space defenses and binary rewriting, and we

address those issues in this thesis.

In summary, the dissertation addresses the following research questions, and makes these contribu-

tions.

1.1 Research Questions

• How does dynamic analysis compare with static analysis for binary rewriting?

• What are the limits of the protection against memory corruption we can apply to

binaries? Can we protect both data and control flows?
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1.2 Contributions and Outline

This dissertation makes the following contributions, organized by chapter:

Chapter 3

• To the best of our knowledge, we create the first binary lifting framework that employs

dynamic program analysis, trace merging, and incremental recovery to lift programs to a

compiler-level intermediate representation. Our prototype successfully handles stripped,

real-world release binaries. It is available at

https://github.com/securesystemslab/BinRec.

• We show that the BinRec prototype robustly recovers all SPEC INT 2006 benchmarks without

heuristics, the first lifting framework to do so. We also show that these recovered binaries

outperform those that are successfully lifted by state-of-the-art lifting tools.

• We evaluate the efficacy of dynamic binary lifting in three application domains: i) Binary

re-optimization, leveraging alias analysis tailored to the lifted IR resulting in improved

performance in non-optimized binaries. ii) Binary hardening through CFI and compiler-level

transformations such as Address Sanitizer and SafeStack. iii) Binary de-obfuscation through

successful recovery of partial program semantics in virtualization-obfuscated binaries.

Chapter 4

• We create a systematization of CFI mechanisms with a focus on discussing the major different

CFI mechanisms and their respective trade-offs.

• We introduce a taxonomy for classifying the underlying analysis of a CFI mechanism.
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• We present both a qualitative and quantitative security metric and the evaluation of existing

CFI mechanisms along these metrics.

• We include a detailed performance study of existing CFI mechanisms.

Chapter 5

• We propose the first context-sensitive data space randomization scheme, which offers greater

security guarantees than prior solutions by dynamically choosing context-specific encryption

keys based on the results of a context-sensitive analysis.

• We describe an ISA extension that efficiently supports our DSR scheme in hardware, and is

also general enough to support all prior DSR designs.

• We implemented our DSR scheme and ISA extension and show that it achieves high precision

with low overhead.
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Chapter 2

Background

Binary analysis and the subsequent use of the analysis has seen tremendous academic interest.

Likewise source based security transformations have a rich literature, and it is important to be

familiar with both to understand what security we can achieve by recompiling binaries. We discuss

here some of the foundational concepts. Additional background is in the beginning of Chapter 3

and Chapter 5. Additionally, Chapter 4 is a systematization of control-flow integrity knowledge and

is a contribution of this thesis, so we discuss CFI only briefly in this background chapter.

2.1 Goals of Binary Analysis

Those outside the original implementation of software may be faced with the challenge of under-

standing the purpose and implementation of a binary in a process known as reverse engineering [41].

Their purpose may be to reimplement the functionality, or often to find vulnerabilities and construct

exploits against the software. Binary patching seeks to change some portion of a binary. This could

be to remove a bug, use a new instruction in the hardware, replace one function with another, or

add a security check. Software patching can be seen as a limited form of software rewriting. The
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ratio of rewritten code to unmodified code typically determines whether patching techniques with

limited scope are used, or ’high-touch’ rewriting techniques are used instead. Binary rewriting is

constituted by program wide analysis, and program wide transformation. Rewriting can be used for

optimization [26], program hardening, wide-scale functionality modification, or analysis. All of

these goals are facilitated by binary analysis.

2.2 Fundamentals of Binary analysis

Binary analysis comes in two fundamental categories, dynamic and static. There have been hybrids

of the two approaches. The strengths and weaknesses are quite distinct between the categories.

Static analysis is any analysis that does not execute the code. For an excellent recent discussion of

static analysis, see Andrisse [12]. The principal limitation of static analysis is that the detranslation

of programs is equivalent to the halting problem, i.e., undecidable [93]. Static analysis turns

to heuristics, which are specialized for a certain domain of input binary and desired application

[18]. These heuristics enable the analysis to converge, but will give false positive or false negative

results. It is essential to match the false result characteristics of a particular static analysis with the

requirements of the application. We identified 5 critical challenges for the static analysis used for

binary rewriting and discuss them in Section 3.2. Please see Section 3.9 for a review of static binary

rewriting as well as related dynamic techniques such as Dynamic Binary Translation (DBT).

Dynamic analysis observes what a binary does during execution by using hardware or software

instrumentation. An example software based analysis is a dynamic binary translation system (DBT)

such as DynamoRIO [26] or PIN [119]. An example of a hardware mechanism for dynamic analysis

is Intel Processor Trace [159]. On top of these capabilities, authors can examine program properties

of interest such as instructions, call graphs, memory usage, or any number of higher level properties.

The principal limitation of dynamic analysis is it needs to execute code paths of interest. Techniques
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such as fuzzing [126, 169] and symbolic execution try to explore more paths through a program, but

are inefficient. Alternatively the execution through one carefully selected path can be recorded [70].

Symbolic execution [31, 99] is a technique developed to find bugs in software. It finds inputs

for each possible code path in a program by replacing concrete values in memory with symbolic

expressions. Concolic execution [43, 80] takes concrete input as a starting point, and maintains

the concrete value as well as a symbolic expression for each data item. It can generate new, valid

concrete values using the symbolic expression at any program statement. Concolic execution

straddles the gap between static and dynamic analysis. With either concolic or symbolic execution,

the principal limitation is due to the runtime cost of path explosion. Path explosion occurs because

the number of paths through a program is exponential in the number of statements.

2.3 Static Analysis Properties

We present here some topics from static analysis that are relevant to both binary and source code

analysis.

We are particularly interested in static analysis that identifies indirect calls/jump targets. Researchers

refer to this kind of static analysis as points-to analysis. We refer the interested reader to Smaragdakis

and Balatsouras [180]. Many compiler optimizations benefit from points-to analysis. As a result,

points-to analysis must be sound at all times and therefore conservatively over-approximates results.

The program analysis literature (e.g., [89, 90, 137, 180]) expresses this conservative aspect as a

may-analysis relationship: A specific object “may” point to any members of a computed points-to

set.

The following orthogonal dimensions in points-to analysis affect precision:

• flow-sensitive vs. flow-insensitive: this dimension states whether an analysis considers
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control-flow (sensitive) or not (insensitive).

• field-sensitive vs. field-insensitive: this dimension states whether an analysis considers struct

members separately (sensitive) or not (insensitive).

• context-sensitive vs. context-insensitive: this dimension states whether an analysis considers

various forms of context (sensitive) or not (insensitive). The literature further separates the

following context information sub-categories: (i) call-site sensitive: the context includes a

function’s call-site (e.g., call-strings [175]), (ii) object sensitive: the context includes the

specific receiver object present at a call-site [125], (iii) type sensitive: the context includes

type information of functions or objects at a call-site [181].

Both dimensions, context and flow sensitivity, are orthogonal and a points-to analysis combining

both yields higher precision.

Context-Sensitivity Figures 2.1d – 2.1f show the effects of context sensitivity on points-to

analysis. In Figure 2.1d we see that the function id is called twice, with parameters of different

dynamic types. Context-insensitive analysis (Figure 2.1f), does not distinguish between the two

different calling contexts and therefore computes an over-approximation by lumping all invocations

into one points-to set (e.g., the result of calling id is a set with two members). A context-insensitive

analysis, considers a function independent from its callers, and is therefore the forward control-

flow transfer symmetric case of a backward control-flow transfers returning to many callers [137].

Context-sensitive analysis (Figure 2.1e), on the other hand, uses additional context information to

compute higher precision results. The last two lines in Figure 2.1e illustrate the higher precision by

inferring the proper dynamic types A and B.
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Object o;
o= new A();
...

o= new B();

(a) Flow-sensitivity example.

o→ A

...

o→ B

(b) Flow-sensitive result.

o→ {A, B}

(c) Flow-insensitive result.
// identity function
Object id(Object o) { return o; }

x= new A();
y= new B();
a= id(x);
b= id(y);

(d) Context-sensitivity example.

x→ A

y → B

a→ A; id1 → A

b→ B; id2 → B

(e) Context-sensitive result.

x→ A

y → B

a→ id; id→ A

b→ id; id→ {A, B}

(f) Context-insensitive result.

Figure 2.1: Effects of flow/context sensitivity on precision.

2.4 Memory Corruption

After analyzing a binary, practitioners are faced with the decision of what transformation to perform.

In our work, one of our main goals is to add security by means of hardening transformations. In the

next section we include some background on memory corruption to set up the context for Control

Flow Integrity, and Data Space Randomization. Work on CFI and DSR is a contribution of this

thesis, so those are discussed in their own chapters.

Due to the use of unsafe languages (C, C++), software is prone to temporal and spatial memory

safety violations [15]. Out-of-bounds array access is an example of a spatial error, and heap use-

after-free is an example of a temporal error. The presence of these errors gives “attackers” the

capability to read or write memory they should not have access to. Measures have been taken

to detect and eliminate these memory errors [185], but they are still present in modern software.

Software hardening and countermeasures have come into practice to prevent adverse consequences

given these vulnerabilities. Defenders are in a continual race to introduce new hardening schemes,

and attackers to bypass them.
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Code injection allows attackers to inject executable bytes of their choosing and cause them to be

executed. A classic example is the stack smashing attack [115]. Code injection today is largely

prevented by Data Execution Prevention[11]. Since attackers could not introduce their own code,

they turned to re-purposing already existing snippets of code in vulnerable programs [161]. The

most popular way to reuse code in an attack is known as Return Oriented Programming (ROP) [171].

Attackers push a sequence of code addresses to the stack. At each address are a few instructions the

attacker would like to execute, ending in a return instruction that invokes the next attacker controlled

address on the stack.

Randomization-based or integrity-based mitigations have been used to combat code reuse exploits.

Layout randomization-based approaches make make the attacker’s job more difficult by making the

locations of reusable pieces of code unpredictable. Address Space Layout Randomization (ASLR)

is deployed on all commodity systems, and it randomizes the base address of libraries [148]. There

are also more finely-grained code layout randomizations, which raise the bar for adversaries [107].

In either case, memory disclosure may allow attackers to bypass the mitigation.

Control-flow Integrity is an integrity based code reuse defense which enforces control-flow to stay

within the intended control-flow of a program. Yet attackers have learned to exploit a program while

staying within the restrictions of CFI. If these attacks exploit a difference between the programmer’s

intent, and the precision of applied control flow protection, they are known as Control-flow Bending

attacks [32]. If these attacks do not use any illegitimate control flow edges, they are known as

data-only attacks [38]. Data only attacks have been shown to be Turing-complete [95].

The defenses against data-only attacks are comparatively less mature than those defending against

code reuse. In general, defenses against data-only exploits try limit the amount of data which is

writable or readable by a particular memory accessing instruction. We have seen randomization

based and integrity based approaches, in a parallel manner to the control flow protections. Integrity

based defenses include Hardware-Assisted Data-flow Isolation [182], and in the randomization

space, there is Data Space Randomization[22]. Both these approaches suffer from a lack of
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precision, meaning the number of data items which are potentially readable or writable from a

given instruction is larger than necessary to correctly execute the program. In addition to precision

limitations, existing approaches to DSR suffer from something that is a challenge is many domains,

securely storing secrets, namely encryption keys. In Chapter 5, we correct these flaws with DSR to

create a state of the art data-only attack mitigation.

2.5 Memory Corruption Defenses for Binaries

Binary rewriting has been explored as a method to make software more secure. The two main

approaches for increasing the security of a binary are attack surface reduction, and hardening.

Attack surface reduction is a form of program specialization that removes unneeded code or code

paths from a program or API [123, 173]. It makes use of the fact that attackers can find code reuse

gadgets in statically or dynamically dead code. The dead code can safely be removed from the

binary, so it is no longer available to attackers.

Binary hardening is another name for the application of exploit mitigations to a binary. It is in

general more difficult to harden a binary than a source program because there is less semantic

information available in the binary. The security consequence of the analysis difficulty is that

typically, static binary analysis based solution solutions restrict attackers less than the source based

versions of that hardening transformation. Approaches such as BinCFI [212] work on stripped

binaries, but need to use heuristics to over approximate the set of program behaviors which should

be allowed. Other approaches rely on symbol tables and debug information to determine more

precisely what binary behaviors should be allowed [111, 211]. On the other hand, through the use

of dynamic information, binary hardening transformations can be more precise than the source level

counterparts, as we accomplish in BinRec.

The overhead of mitigations is always critical to their deployment prospects. Multiverse [18] is
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flexible enough to apply precise hardening transformations like shadow stacks to binaries, but the

associated overhead means the system is not likely to be deployed in practice.

The evaluation of security properties in rewritten binaries is non-trivial. Any runtime component or

instrumentation added to a binary is potentially new attack surface. Several binary rewriting systems

including our system, BinRec, and McSema [68] rewrite a program by means of constructing an

emulation of the original binary. As a consequence, what was control-flow in the original binary

becomes data-flow in the rewritten one. We explore this concept in section 3.6.
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Chapter 3

Dynamic Binary Lifting and Recompilation

Binary lifting and recompilation allow a wide range of install-time program transformations, such

as security hardening, deobfuscation, and reoptimization. Existing binary lifting tools are based on

static disassembly and thus have to rely on heuristics to disassemble binaries.

We present a new approach to heuristic-free binary recompilation which lifts dynamic traces of a

binary to a compiler-level intermediate representation (IR) and lowers the IR back to a “recovered”

binary. This enables rich program transformations, such as compiler-based optimization passes,

on top of the recovered representation. We identify and address a number of challenges in binary

lifting, including unique challenges posed by our dynamic approach. In contrast to existing

frameworks, our dynamic frontend can accurately disassemble and lift binaries without heuristics,

and we can successfully recover obfuscated code and all SPEC INT 2006 benchmarks including

C++ applications. We evaluate the prototype, BinRec, in three application domains: i) binary

reoptimization, ii) deobfuscation (by recovering partial program semantics from virtualization-

obfuscated code), and iii) binary hardening (by applying existing compiler-level passes such as

AddressSanitizer and SafeStack on binary code).
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3.1 Introduction

Binary rewriting [69, 195, 196] has many applications such as post-installation program harden-

ing [39, 121, 154, 191, 192, 212], (de)obfuscation [50, 200, 204], and reoptimization [61]. However,

its effectiveness is limited in practice by the complexity of analysis and transformation in the absence

of source code.

To overcome the limited expressiveness of assembly code, researchers introduced “binary lifting”

which raises machine instructions to higher-level intermediate representations (IR) such as LLVM

bitcode [9, 67, 68]. Binary lifting has the potential to capitalize on powerful compiler-level analysis

and transformations already available in production compilers such as binary reoptimization. Despite

its benefits, binary lifting has not seen widespread adoption in practice because existing approaches

rely on static disassembly, which is fundamentally unable to accurately model indirect control-flow

targets, differentiate between code pointers and data constants, or identify the boundary between

data and instruction bytes [12, 93].

While heuristics have been used to successfully circumvent these limitations for certain binaries that

adhere to specific assumptions [9, 196], binaries that are the target of analysis are typically release

builds, stripped of symbols and debug information, and sometimes even intentionally obfuscated by

vendors or malware authors. Code patterns found in such binaries easily violate these assumptions,

e.g., handwritten assembly, highly optimized code, code produced by non-standard compilers,

obfuscated or packed code, and even position-independent code, which is commonly used in shared

libraries [18].

In contrast to static translation methods, dynamic binary translation (DBT) tools such as Pin [119],

DynamoRIO [26] and Valgrind [136] analyze concrete executions of a target program, and thus can

seamlessly handle all statically unknown components such as mixed code and data, and indirect

control-flow targets. Unfortunately, the usability of existing DBT tools is limited for two reasons:

first, they operate on the level of machine code, limiting the availability of complex analysis tools.
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Second, the rewritten code in their output is tailored to the tool’s runtime environment, and can not

be reused for subsequent executions. In other words, any transformation on the binary has to be

done again each time the program runs. This introduces performance and portability problems for

instrumented applications.

We present a framework that employs dynamic analysis to lift binary code to LLVM IR in order

to apply complex transformations, and subsequently lowers it back to machine code, producing a

standalone executable binary which we call the recovered binary. To the best of our knowledge,

BinRec is the first binary lifting framework based on dynamic disassembly, enabling lifting of

statically unknown code for the first time. Additionally, BinRec is the first dynamic binary rewriting

tool that persists its transformations in a standalone output binary.

Our main goal is to recover code that is opaque to static analysis. While our use of dynamic analysis

solves this issue, it brings with it the problem of covering code that is not exercised during lifting:

when dynamically lifting a program from a single trace, one only observes one out of many possible

code paths. Hence, the recovered binary only supports code paths for which all control flow edges

are present in the code path observed during lifting. A control flow miss occurs when the recovered

binary reaches a code path that was not covered during lifting. Much like page faults are handled by

a page fault handler in modern operating systems [52], control flow misses may be handled means

of customizable handlers that may disallow the unknown control flow transfer by stopping execution.

Alternatively, the handler may be configured to apply incremental lifting, allowing unknown edges

and retrofitting the binary with the newly found code path. For optimization scenarios, the handler

may even be left empty to allow for aggressive branch pruning, specializing the binary for a specific

input format. Applications of our framework may select a handler that best suits their needs, for

instance depending on whether unknown control flow is assumed to be malicious or not. The use of

dynamic tracing enables us to produce recovered binaries with precise control-flow integrity (CFI).

The allowable targets for any indirect control-flow are hence limited to the ones observed during

(optionally incremental) lifting. We show that BinRec produces recovered binaries hardened with
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control flow integrity (CFI) with slowdowns of 0.98x – 1.29x, depending on the optimization level

of the binary.

Crucially, we harness the power of existing IR-level compiler analyses and transformations on

binaries where static lifting fails. Our evaluation on SPEC CPU2006 shows that BinRec successfully

lifts code patterns in optimized input binaries that state-of-the-art static lifters such as McSema [68]

and Rev.ng [67] cannot. To demonstrate the immediate benefits of lifting binary code to compiler

IR, we show that BinRec improves performance of some of our non-optimized input binaries

and successfully applies two security transformations available in LLVM—SafeStack [105] and

AddressSanitizer [170]—to our lifted IR. In contrast to previous binary rewriting approaches, BinRec

naturally enables these compiler transformations without any additional engineering effort. We

also show that trace-based lifting enables us to recover partial program semantics of virtualization-

obfuscated binaries, by combining IR-level analysis with readily available compiler optimizations.

3.2 Analysis Limitations for Static Binary Lifting

Analyzing binary code – or translating it to an accurate high-level representation that is better for

analysis, transformation, and recompilation – is a challenging problem. The problem is compounded

in cases where the binary code is encrypted or obfuscated. While many general problems of (static)

disassembly have been well documented in the literature [12, 93], in this section we reiterate

in detail some of the current unsolved challenges in the context of binary lifting and program

transformation through static methods. We describe these challenges below and motivate our new

dynamic approach by explaining why static, heuristic-driven approaches are inherently insufficient

for lifting arbitrary binaries.
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3.2.1 L1 Code and Data Separation

By default, stock compilers do not attach labels to the data and references they embed into a program.

To distinguish code from data and references from constants, the appropriate labels must be inferred

through program analysis. This problem is undecidable in the general case [93], so state-of-the-art

analysis tools employ heuristics to approximate the correct label set [195, 196, 212]. A data value,

for example, can be considered a code reference if it is aligned correctly, and if it represents a valid

code address in the binary. However, value collisions occur frequently [195] and alignment is not

mandatory on many platforms. A dynamic tool can accurately assign labels by observing how the

CPU interprets the values it reads from memory.

3.2.2 L2 Indirect Control Flow

Indirect Control Flow transfers (iCFTs) may transfer control to one or more target locations

depending on their execution context. Indirect calls are used to implement calls to function pointers

in C code, which are even more prevalent in C++ code in the form of virtual functions. Indirect

branches often implement switch statements and position-independent code (PIC). In PIC, all direct

branches are replaced with indirect branches that add the offset at which the binary/library is mapped

in memory, to the branch target.

Statically identifying all potential targets of iCFTs is, again, undecidable in the general case [93].

Static approaches do achieve high accuracy when identifying the potential targets of iCFT instruc-

tions that load their destination address from jump tables [66, 212]. Resolving indirect function

calls and returns, on the other hand, remains a challenge. Wang et al. [196] argue handling iCFTs

can be supported through their approach, but their prototype Uroboros does not handle iCFTs. The

underlying analyses [66] used in Rev.Ng [67] claim 90-95% jump target recovery depending on

architecture.
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Meanwhile, Qian et al. [156] as well as Zhang and Sekar [212] use a lookup-table that translates

original target addresses to the new addresses at run time, effectively resulting in a hybrid approach

between static and dynamic rewriting. The table contains potential targets collected based on

heuristics.

Dynamic tracing can reliably identify control flow targets as it follows the CPU to any jump target

regardless of how the target address is computed.

3.2.3 L3 External Entry Points

Dynamic linking is prevalent in real world software, and it presents additional hurdles to binary

analysis and rewriting. Analyzing and rewriting external libraries at a binary level is generally

infeasible; this requires static linking for all the library code [67] and incurs significant overhead [18].

Without visibility of all the code, however, the control and data flow between program modules is

only partially observable to binary analysis through the interface of external modules.

Such partial visibility can be a problem when a code pointer of the main module is passed as an

argument to an external module and is used to re-enter the main module, e.g., callbacks. After binary

rewriting, this code pointer will become invalid because the code layout changes. Some existing

binary rewriters attempt to support such callbacks by implementing special case handlers for the

interface of known libraries [9, 198]. However, they cannot correctly handle external callbacks

through unknown interfaces. Multiverse instead implements run-time lookup tables to handle

callbacks [18] as a generic but heavyweight solution to support unknown external entry points.

Dynamic tracing can easily capture such entry points by recording control flow transfers going in

and out of the targeted code space, which enables performant, surgical control and data modification

at these points.
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3.2.4 L4 Ill-formed code

Manually written assembly code is not only used for optimization, but as an anti-debugging and

anti-disassembly technique as well. While generated code is somewhat predictable, aggressive

compiler optimizations can lead to similar ill-formed instruction constructs [12].

Overlapping instructions are a classic anti-disassembly technique [117] but occasionally appear in

highly-optimized libraries too [12]. Selection control structures (e.g. switch/case) are lowered as

Inline data and jump tables by some compilers. Overlapping basic blocks, multi-entry functions,

and tail calls obscure the detection of function boundaries.

Dynamic tracing bypasses handling of ill-formed code during disassembly by observing the actual

instructions executed by the CPU instead.

3.2.5 L5 Obfuscation

In addition to naturally occurring technical challenges, binary lifting approaches may have to deal

with binaries that have explicitly been modified with the intent to obstruct analysis. While these

obfuscation techniques are well documented [1, 2, 46], they still pose significant challenges in

practice.

For instance, virtualizing obfuscators transform executable code stored in code sections into

bytecode stored in data sections, and embed a virtual machine into the program to interpret the

bytecode [1, 10]. In a program protected by such an obfuscator, the static code sections reveal little to

no information about the behavior of the program. Other problematic obfuscation techniques include

opaque predicates [47], control-flow flattening [46], and aliasing [194]. All these transformations

can be used to artificially inflate the size and complexity of the program’s control-flow graph to a

point where static disassembly becomes intractable.
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Dynamic lifting can revert all of these obfuscating transformations to some extent. In the case of

virtualizing obfuscation, a dynamic lifting tool can capture the run-time semantics of the program

in the form of executable code, which can then be transformed into an equivalent deobfuscated

trace [50, 163, 174, 204]. In the other cases, a dynamic tool can remove dead code and spurious

aliases.

3.3 Design

Our design overcomes the fundamental limitations identified in Section 3.2. We achieve this by

leveraging dynamic program analysis to recover accurate disassembly of binaries which is then

translated into a transformable, high-level intermediate representation (IR).

Figure 3.1 shows a high-level overview of our approach, consisting of three logical components: an

extensible dynamic lifting engine and data collector, a transformation component that rewrites the IR

code in a canonical way, and a back-end that compiles the transformed IR back to machine code and

produces an executable binary. The lifting engine is extensible to support different execution driving

paradigms. After running the canonicalization component, the full range of existing LLVM-based

transformations can be applied to the client program.

3.3.1 Factors Significant to Dynamic Lifting

While our dynamic approach naturally sidesteps the limitations of static disassembly, it comes with

its own set of challenges that need to be carefully addressed.

Coverage A fundamental challenge for any dynamic analysis is to drive execution through all

desirable code paths [130]. Which code paths are desirable, however, depends on the type and goal
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Figure 3.1: The steps of binary recovery: lifting to compiler IR, transformation on the IR, and
lowering back to machine code.

of the analysis. To optimize binaries, for example, it is sufficient to explore the most frequently

executed paths. For security hardening, it might be acceptable to explore only those paths reachable

through trusted inputs and to prune all unexplored paths. For testing, the execution may need to

cover all the code paths in the binary.

The paths the analysis covers depend on the set of inputs that drive execution, as is the case for any

other dynamic analysis. We designed BinRec with configurable execution driving paradigms to

accommodate a wide spectrum of applications (Section 3.3.2). We also merge multiple traces into a

single transformable IR module, thereby recovering multiple sets of code paths (Section 3.3.3).

However, even with an ideal execution driver, the desirable control flow paths may not be fully

exercised. This can lead the execution of the recovered binary to flow to code that was not covered

during lifting, an event we refer to as a control flow miss. Lack of coverage can occur because

the control flow of the program depends on implicit program inputs such as timing information,

random numbers, and literal memory addresses. The coverage may also be incomplete because

the concrete or symbolic inputs that achieve full coverage cannot be feasibly calculated. BinRec

therefore handles control flow misses by means of customizable miss handlers, again, based on the

application scenarios: The handler may be configured to disallow or ignore an unknown control

flow transfer, or to incrementally recover the binary with the newly found code path (Section 3.3.5).
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Scalability To dynamically disassemble or lift binary programs, they must be executed with

concrete or symbolic inputs according to coverage considerations. Generating inputs to achieve

maximum coverage is not only difficult, but may lead to path explosion for complex programs.

To address this, we designed the dynamic analysis to record multiple, independent, traces of the

binary (resulting from multiple executions of the binary with different inputs). We can merge

the resulting traces at a later stage to increase global coverage. This design splits the analysis of

complex, large binaries into smaller manageable chunks which can be lifted in a distributed and/or

parallel infrastructure (Section 3.4.1).

In contrast to DBT approaches, which must recompute analysis facts and insert instrumentation on

every run of a program, BinRec separates the analysis and transformation from the execution of

the rewritten binary. In this way, we can do those heavyweight operations ahead of time, and have

better performance of rewritten binaries.

3.3.2 Dynamic Lifting Engine

Execution Driver BinRec takes a multi-pronged approach, using several complementary methods,

to drive dynamic execution. These methods use different types and sources of inputs. The first

source of input to drive a program for dynamic lifting should be a test corpus exercising desired

features. The more closely this corpus matches the real workload on the rewritten binary, the better.

However, user-specified tests alone are unlikely to fully exercise all the code paths that should be

lifted. Besides the obvious sources of explicit input to a program (command line, stdin), there can

be implicit inputs that are much less obvious to users but still need to be accounted for. These can

include address layout, timers, random number generators, interrupts and network packets. Even

if users can specify the explicit inputs for every conceivable desired behavior of their specialized

program, it is highly unlikely they would be aware of all the implicit inputs. We therefore turn to

alternative techniques to produce specialized programs that are robust enough to function correctly
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in the presence of implicit input.

One potential solution to this problem is to drive execution through all or most of the program

paths that depend on implicit input. Towards this solution, we drive some of the implicit inputs that

cannot be triggered merely through explicit inputs. For example, we found an interesting case in the

Perl interpreter where the control-flow depends on the virtual address space layout (specifically on

the alignment of argv strings). We exercise this implicit input source by controlling the lengths

of environment strings in a way that results in different argv alignments. Similarly, we enable

address space randomization (ASLR) during tracing, to exercise more code paths dependent on the

address space layout.

While achieving complete code coverage is not our objective, the users may still require nearly

complete code coverage depending on the application. For this use case, BinRec supports concolic

execution [43] to explore more code paths.

Alternatively, BinRec can take fuzzer-generated, concrete inputs to drive the binary lifting frontend.

Concolic execution and fuzzing have complementary strengths and weaknesses [80, 209]. Fuzzing

scales well to large programs, but has difficulty exploring all branches of complex conditional

statements. Concolic execution is useful to drive execution through such conditionals. We found

concolic execution to become untenable on programs with cryptography or hashing, such as SHA2.

In those programs, the SMT solver becomes a bottleneck. The input generation interface is flexible

and extensible, which allows the dynamic driver to be customized for a particular client application,

and so explore program paths using the best methodology for the target.

Figure 3.2 shows how we symbolically execute Listing 3.1 by passing two symbolic arguments of

one byte each, recovering all possible code paths.

Dynamic Data Recording We record dynamic data about the execution of each program path

specified by the driver. This data is key to overcome the fundamental limitations of static binary
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int main(int argc, char **argv) {
if (argc == 3) {

char a = argv[1][0];
char b = argv[2][0];
if (a == b) {

puts("arguments are equal");
}

}
return 0;

}

Listing 3.1: A simple C program that checks if the leading characters of two provided arguments
are equal.

if (argc == 3)

char a = argv[1][0];
char b = argv[2][0];
if (a == b)

argc == 3 

return 0

  argc != 3

puts("leading characters are equal");

 argc == 3  
 a == b

  argc == 3
  a != b

Figure 3.2: Symbolic execution of Listing 3.1. argc, a and b are symbolic values, causing the
execution state to fork twice as represented by the different arrow styles. Edge labels show the
constraints recorded in each execution state.

lifting as explained in Section 3.2. We currently record which instructions were executed, where the

function boundaries are, and the observed targets of each branch instruction. We use this information

to accurately disassemble binaries and produce canonical IR, as explained in Section 3.3.3. Our

framework is extensible, so other data can be recorded to fill the needs of downstream transfor-

mations. The recorded data is fully accurate on paths which are exercised by the dynamic lifting

engine, but we cannot reason about data that is not covered by the dynamic traces.

The front-end decodes and records each instruction executed by the client binary using the program
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counter. This procedure is agnostic to the static representation of the executable code and is therefore

not affected by any intentional or unintentional differences between the static and dynamic (actual)

instruction trace. Such differences would arise in the presence of unaligned, packed, or encrypted

code. We therefore address L4 and some aspects of obfuscation L5 . A tradeoff incurred by this

design choice is a potentially slower lifting front-end. A scheme that dynamically records control

flow, but that lifts disassembled basic blocks statically would occupy another point in the design

space, and would sacrifice compatibility with non-standard binaries for faster lifting.

3.3.3 Canonicalization

Merging Traces BinRec can compose program traces generated over different runs using different

execution driving paradigms. We implemented a technique to merge distinct traces into one

specialized program which will behave correctly on all covered paths. In concrete terms, merging

proceeds by lifting N instances of the target program in parallel. The different execution paths can

be driven by fuzzing, concolic execution, or a chosen corpus of inputs. Then, we create one LLVM

IR module from N LLVM IR modules using metadata we collected during lifting.

In a dynamic binary lifting system, execution traces serve a fundamental role in mapping between

program input, program semantics, and lifted program structure. A lifted program based on exactly

one dynamic trace is a version of the original program which has been specialized for exactly one

input and execution path. The ability to merge multiple traces into one program is both a selling

point for system users, and a desirable engineering capacity. Any unnecessary features of the

original binary can then be removed from the attack surface of the recovered binary.

Merging depends on the ability to correlate the code and data addresses of one dynamic trace with

another. In the case of position independent code, the addresses change from trace to trace, but

are correlated by simple subtraction of the section base addresses. Traces from programs using

fine grained code and/or data layout randomization (at load or run-time) could be merged using a
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specific mapping function taking the randomization seed as input. We leave the implementation of

such correlation techniques as future work.

Trace merging relies on canonicalization of code to identify which instructions in different traces

represent should be considered equal in the merged trace. We currently identify an instruction by

the address where it is mapped during lifting. This mapping differs across invocations of programs

containing position-independent code or fine-grained randomized code layouts [107]. To support

trace merging for these programs, future work can record the mappings of code and data sections

during lifting, and use them to canonicalize traces before merging them.

The code of the combined program is the union of all basic blocks observed in the merged traces.

The allowed targets of each control flow statement in the combined program are the union of the

observed targets for each observation of that branch in the merged traces.

It may be observed that this is a path-insensitive procedure. The resulting control-flow graph,

before optimization, resembles the original program’s CFG but lacks the nodes that were not

executed while lifting. One could imagine an alternative, path-sensitive, reassembly technique,

where only control flow paths exactly following one of the recorded traces are allowed. However,

it is likely unprofitable to construct such a recovered program, as in effect this would be a tree

traversal of the original program’s control flow graph, and the resulting program would have a code

size explosion. This method of combining program paths shares many similarites with the tail

deduplication compiler optimization [120].

Removing Lifting Instrumentation BinRec uses an emulation-based dynamic lifting engine,

which allows us to lift programs compiled for a different instruction set architecture than the host

system. IR generated from such an emulation-based engine, however, is heavily instrumented

to facilitate execution in a virtualized environment. This code cannot be used as a standalone

program, unless we remove the instrumentation code. Our framework contains a deinstrumentation
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cmp eax, 3

jne label

(a) x86 assembly
%loc_16ptr = alloca i32
%loc_17ptr = alloca i32
%loc_18ptr = alloca i32
%loc_20ptr = alloca i32
%1 = getelementptr i64* %0, i32 0
%env_v = load i64* %1
%2 = add i64 %env_v, 864
%3 = inttoptr i64 %2 to i64*
store i64 140511314359696, i64* %3
call void @helper_s2e_tcg_execution_handler(i64 140510798588512, i64 134513702)
%4 = getelementptr i64* %0, i32 0
%env_v1 = load i64* %4
%5 = add i64 %env_v1, 48
%6 = inttoptr i64 %5 to i32*
store i32 134513702, i32* %6
%7 = add i64 %env_v1, 317320
%8 = inttoptr i64 %7 to i64*
%tmp5_v = load i64* %8
%tmp5_v2 = add i64 %tmp5_v, 1
%9 = add i64 %env_v1, 317320
%10 = inttoptr i64 %9 to i64*
store i64 %tmp5_v2, i64* %10
%11 = add i64 %env_v1, 0
%eax_ptr = inttoptr i64 %11 to i32*
%eax_v = load i32* %eax_ptr
%12 = add i64 %env_v1, 36
%cc_src_ptr = inttoptr i64 %12 to i32*
store i32 1, i32* %cc_src_ptr
%tmp-10_v = sub i32 %eax_v, 1
%13 = add i64 %env_v1, 40
%cc_dst_ptr = inttoptr i64 %13 to i32*
store i32 %tmp-10_v, i32* %cc_dst_ptr
%14 = add i64 %env_v1, 48
%15 = inttoptr i64 %14 to i32*
store i32 134513705, i32* %15
%16 = add i64 %env_v1, 317320
%17 = inttoptr i64 %16 to i64*
%tmp5_v3 = load i64* %17
%tmp5_v4 = add i64 %tmp5_v3, 1
%18 = add i64 %env_v1, 317320
%19 = inttoptr i64 %18 to i64*
store i64 %tmp5_v4, i64* %19
%20 = add i64 %env_v1, 32
%cc_op_ptr = inttoptr i64 %20 to i32*
store i32 16, i32* %cc_op_ptr
store i32 16, i32* %cc_op_ptr
%tmp8_v = add i32 %tmp-10_v, 1
%21 = icmp sne i32 %tmp8_v, 3
br i1 %21, label %label_0, label %22, !nextpc !30, !succs !31

%23 = getelementptr i64* %0, i32 0
%env_v5 = load i64* %23
%24 = add i64 %env_v5, 48
%25 = inttoptr i64 %24 to i32*
store i32 134513707, i32* %25
call void @helper_s2e_tcg_execution_handler(i64 140510795831888, i64 134513705)
store i8 0, i8* inttoptr (i64 140511758082432 to i8*)
ret i64 140511314359696

%26 = getelementptr i64* %0, i32 0
%env_v6 = load i64* %26
%27 = add i64 %env_v6, 48
%28 = inttoptr i64 %27 to i32*
store i32 134513727, i32* %28
call void @helper_s2e_tcg_execution_handler(i64 140510798974624, i64 134513705)
store i8 1, i8* inttoptr (i64 140511758082432 to i8*)
ret i64 140511314359697

(b) Instrumentation after lifting

store i32 134513702, i32* @PC
 %112 = load i32* @R_EAX
 store i32 1, i32* @cc_src
 %tmp-10_v.i33 = sub i32 %112, 1
 store i32 %tmp-10_v.i33, i32* @cc_dst
 store i32 134513705, i32* @PC
 store i32 16, i32* @cc_op
 store i32 16, i32* @cc_op
 %113 = icmp sne i32 %112, 3
 br i1 %113, label %label_0.i34, label %114, !nextpc !36, !succs !37

store i32 134513707, i32* @PC
 br label %Func_8048426.exit

store i32 134513727, i32* @PC
 br label %Func_8048426.exit

(c) Deinstrumented

store i32 %tmp0_v.i, i32* @R_EAX
 %3 = icmp sne i32 %tmp0_v.i, 3
 %storemerge = select i1 %3, i32 134513727, i32 134513707
 br i1 %3, label %BB_80484cd, label %BB_804842b

(d) Optimized

Figure 3.3: Deinstrumentation of a small basic block from Listing 3.1 (a). Dynamic code lifting
captures instrumented, decoupled code (b). Deinstrumentation shortens the code and adds explicit
control flow instructions (c). After optimization, a single basic block remains in the IR (d).

component that eliminates dependencies on the run-time environment from lifted code, and merges

all captured code together into a single LLVM module that is suitable for use in subsequent

transformation passes and compilation into a standalone binary.

Whereas a program binary can explicitly use physical CPU registers and memory references, the

lifted IR of a recovered program has an abstract representation of the memory model in the original

binary. To handle this abstraction gap, we represent physical registers, stack and memory locations

as objects in the high-level IR. This enables us to generate programs which contain two stacks and

register sets. The native stack contains data such as register spills and return addresses, as well as any

data we add while transforming the lifted program. The emulated stack and register set contain the

data of the original binary. Generated code interacts with this emulated environment to reproduce

the functionality of the original program. The emulated state cannot be fully optimized into native

state due to the lack of semantic information about the size and lifetime of stack allocations.
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To illustrate the state of the deinstrumented code compared with other stages of lifting, we recover

a simple C program that prints whether two arguments are equal. We use symbolic execution

to recover a complete control flow graph. The front-end initially lifts the binary to 630 LLVM

instructions. 36 instructions remain after deinstrumentation and optimization, a reduction of one

order of magnitude. We also compiled the example to LLVM IR using the Clang compiler, counting

33 instructions as a baseline for recovery. The 3 instructions of overhead in the recovered program

are generic set-up code.

Design of IR

A key point of differentiation between binary rewriting approaches is how they represent the results

of the binary analysis. On one extreme, there may be only local information and no stored state.

For example, substituting one instruction for an equivalent one wherever it is found in the binary.

On the other extreme, a binary could be decompiled into source code[4]. Compiling an binary is

an inherently lossy procedure, so it is extremely difficult to recover a source representation from a

binary without debug symbols or other additional information. In between these two approaches

is to represent some properties of the binary under analysis in an intermediate representation(IR).

The IR can be a very low level assembly like language, or it can have richer semantic constructs to

represent program code. There are benefits on each side. A low level IR is closer to the original

binary, so it is more suitable for producing minimal binary rewriting and maintaining a mapping

between program points in the original binary and the rewritten one. With a high level IR, it is

easier to perform large scale transformation. Another dimension of IR is its existing ecosystem.

The IR can be ad-hoc and unique to a binary rewriting tool, or it can be standardized. Valgrind [136]

IR and LLVM [108] IR are two popular choices for representing analyzed binaries. The choice

of IR can drastically effect the usability and development speed of implementing analysis and

transformation within the binary rewriting framework. The use of a standardized IR may allow

existing transformations and analysis to be paired with a novel binary analysis with little additional
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effort. For BinRec we have chosen to lift binaries to LLVM IR. It is not trivial, however, to represent

a binary in this way. LLVM IR is a more abstract language than one can typically obtain from

binary analysis, so some aspects have to be embedded as metadata within LLVM IR.

Control-Flow Canonicalization

Indirect Control Flow Resolution Our lifting front-end produces a collection of executed basic

blocks, and a list of control-flow graph edges. We use this data to emit control-flow transfers

with sound and precise lists of allowed targets. Direct control flow transfers have a one-to-one

correspondence between nodes and edges in the observed control-flow graph of the client binary,

and the recovered binary. We therefore represent them in a straightforward way in recovered code,

using the original semantics.

Even the most precise static analysis allows more control flow targets than necessary due to analysis

imprecision (see challenge L2 ). In contrast, we simply record the exact dynamic targets of each

indirect control flow transfer in a client binary in the lifting engine. To execute the corresponding

control flow in the recovered binary, we determine the address that original code would jump to, then

use that address as a key to look up the recovered code target. This is represented as a switch table

in LLVM IR. We emit the minimal set of dynamic targets, which can enable further optimization by

limiting the lifetime of values. Static lifting can only receive these benefits to the extent that indirect

branch targets can be statically determined. This has been extensively explored in the program

analysis [12] and CFI literature [28, 33], and previous work has found even the most precise static

analysis overapproximates the set of possible targets.

Library Calls BinRec supports calls to external (i.e., non-recovered) libraries. The principal step

necessary to execute such a library call is to marshall the emulated program state into concrete state

before the call. Marshalling is necessary to match the ABI of linked libraries. Upon return from
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Recovered Binary

Recovered Code Region

Original Code Region

Library Code Region

qsort(..., void *compare) :

function main_recovered():

(2)

compare(a, b);

return value;

...

qsort(..., &compare);

function compare_recovered():

compare: jmp compare_recovered ...

...

return value;

...
...

(3)

(4)

(1)

(5)

...

call/jmp
return

...
...

Figure 3.4: The address space of a recovered program that calls the qsort library function. Control
flows as follows: (1) Call to library with original function pointer; (2) Callback via function pointer;
(3) Original function was replaced with jump to recovered code; (4)(5) Returns.

the library, the concrete state is reloaded into the emulated state. The maximum amount of state

that may need to be transferred is the full register set, including the stack pointer. When possible,

we can use the function signatures of external library calls to optimize the state marshalling. With

signature information, only caller saved registers which are actually read or written need to be

marshalled from emulated state to concrete state. Our prototype implementation of BinRec uses

signature information to optimize calls to the C library.

External Callbacks Our approach to solving the external callback challenge L3 is both sound

and performant. Only a dynamic lifting approach can achieve both these properties at once. In the

lifting front-end, we detect execution of the binary under analysis, and record call targets where

the caller is outside the analysis region (i.e., callback functions). There is no need to track callback
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pointers at any other time because we detect when they are actually invoked. We also record the

instruction pointer values when the called-back code exits to external library code via a call or

ret instruction. We insert entry stubs for the external code to recovered code transitions, and exit

stubs at recovered code to external code transitions. These stubs also perform the state marshalling

mentioned in the previous paragraph. During the ELF stitching phase (Section 3.3.4), we insert

code trampolines at the original virtual addresses of the called-back functions. Figure 3.4 visualizes

the resulting control flow for a call to qsort which includes a simple callback.

If a static binary lifter attempted to use trampolines to handle callbacks as we have, they would lack

the dynamic information about which functions are actually executed via callback. Without the

dynamic information, the only sound approach would be to mark every function as a potential entry

point. Creating many entry points to recovered code is deleterious to performance, as it increases

code size and forces variables to be stored and reloaded.

Data Canonicalization

Accurately lifting data structures from binaries is a hard problem and the focus of orthogonal

research [179]. Some architectures allow interleaving of code and data. This is true for ARM, but

also for x86 where compilers often embed jump tables into code sections. We take a conservative

approach by including data from the client binary as global variables in the IR, as well as copying

any code sections in the binary that may contain data. We preserve their base mapping addresses in

order not to invalidate existing references in the lifted code. We leave the task of applying existing

analysis methods to split up the data into variables and creating typed references in the lifted code

to future research. Thanks to our lifting engine, such analysis methods can benefit from strong data

flow analysis at the level of compiler IR.
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3.3.4 Lowering Lifted IR

After the client program IR has been transformed as desired, we produce a functional recovered

binary. We use an unmodified LLVM compiler (llc) to generate a temporary ELF binary from

the recovered IR. Then, our lowering toolchain stitches together ELF sections from the temporary

binary and the original binary into one combined binary. We use the majority of sections from the

temporary binary, and data sections from the original. Finally, we execute binary patching to insert

the trampolines to support external callbacks (Section 3.3.3), and update dynamic linking structures

(Section 3.3.4).

Dynamic Linking We lift all dynamic data and code references into canonical LLVM IR, and

then lower this IR using LLVM’s code generation infrastructure. This functionality requires us to

redirect references to external functions and data used by the client binary. In addition to static

references, we collect the dynamic addresses of every indirect load, which enables us to redirect

those references to external symbols as well. We then ensure the dynamic linker operates on only

lifted data structures, which is necessary given our atypical ELF layout. We utilize the ELF dynamic

symbols section to determine the address of data symbols which will be filled by the dynamic linker.

Even stripped binaries must retain this information. This approach could be extended to non-ELF

binaries with minimal effort by implementing the API of the platform-specific dynamic linker.

The real world benefit of dynamic linking support is that BinRec can support any off-the-shelf

instrumentation scheme that acts via inserted calls to an external library. We use this functionality

to enable the AddressSanitizer and SafeStack applications in Section 3.6.

3.3.5 Path Miss Handling

Binaries recovered with dynamic analysis may encounter unrecovered paths during testing or after

deployment due to the coverage limitation of dynamic analysis (see Section 3.3.1). BinRec handles
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these control flow misses by forcing the recovered binary to invoke a control flow miss handler

whenever it encounters an unrecovered path. Several control flow miss handlers are available.

The log hander logs the instruction pointer value that is missing from the recovered binary, and

then aborts execution. This mode is useful when divergence between the recovered binary and the

original is more dangerous than program termination.

The fallback handler diverts execution from the recovered code into the original code of the input

binary. This involves marshalling of the emulated CPU state in the recovered code into the physical

state of the original binary (see also Section 3.3.3), and then jumping to the original binary at the

intended address. This miss handler is only available when the original binary and recovered binary

target the same architecture. It is ideal for use cases that require program instrumentation without

unexpected termination. Note that in a mitigation scenario, in which BinRec is used to augment

lifted code with security instrumentation, this requires a binary-level mitigation for the remaining

binary code. The binary mitigation may be heavyweight and hence inefficient. However, the fallback

code is not expected to be on the hot path since it is not exercised by the lifting workload.

The incremental lifting handler feeds back the logged missing instruction pointers into the dynamic

lifting engine, where we capture a trace covering the new control-flow edge, and merge it with the

existing traces. Using this incremental lifting paradigm, the recovered binary can be continuously

updated. Our current incremental lifting prototype lifts instructions until the next conditional

control-flow transfer.

The recovered program can invoke the fallback miss handler, or the log handler. Meanwhile, the

dynamic lifting engine can generate one or more new program traces via the logged instruction

pointers in an asynchronous background process. We incorporate the new and existing traces to

generate a new recovered binary.

An advantage of incremental lifting is it directly lifts new code without the need to reproduce the

(explicit or implicit) input that triggers the miss during lifting. Consider a program feature that is
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only exercised due to unconstrained system randomness on the test system. There is no need to

isolate and constrain the source of randomness to replicate it on the lifting system. Alternatively,

there is no need to wait for non-deterministic fuzzing or concolic execution techniques to drive

execution through the new paths.

Finally, when it is known that the tracing stage has already covered all paths that implement

the features of interest, the miss handler can be optimized out completely. This is useful for

aggressive optimization scenarios in which the lifting input is known to cover all necessary code,

and eliminating a branch leads to new optimization opportunities.

3.4 Implementation

We implemented a prototype of BinRec, spanning 13,338 SLOC of which 9,709 are C++ code that

implements lifting and canonicalization. The implementation targets single threaded 32-bit x86

binaries on Linux.

Our dynamic lifting engine is built on top of S2E [43], a framework that facilitates symbolic

execution of a single process running in the QEMU virtual machine [20]. Code is translated

to LLVM IR in order to be symbolically executed by the KLEE symbolic executor [30]. S2E

automatically provides multi-architecture support and sandboxing of input binaries, since it is based

on QEMU. This flexibility comes at the cost of a relatively long lifting time, which we discuss in

Section 3.5.4.

3.4.1 Parallel Lifting

To address the scalability challenge (see Section 3.3.1), we architected BinRec with high parallelism.

Dynamic tracing is expensive in time (due to dynamic binary translation) and disk usage (due to
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virtual machine images). We implemented a flexible run configuration scheme that allows operators

to describe test cases to saturate a server’s CPU and memory resources. Multiple traces through the

same binary are lifted in parallel, and we can also lift different binaries in parallel.

The dynamic traces do not all have to be conducted at one time, so a lifted binary can be produced

and used while more paths are being explored for the next version of the lifted binary. A dynamic

trace is a stable artifact on disk that can be copied, shared, and reused. This allows the coverage of

a binary to continuously be improved, and traces will not have to be regenerated.

3.4.2 Optimization

S2E represents all instructions as modifications to a struct which stores the complete state of the

original binary. This hinders existing LLVM passes from precisely analyzing and optimizing code.

To address this issue, we optimize lifted code in several ways. First, our deinstrumentation described

in Section 3.3.3 brings the code into a state where LLVM can perform existing optimizations

including aggressive constant propagation and dead code elimination. Next, we guide the alias

analysis with the fact that pointers to non-overlapping registers in the emulated register state cannot

alias [64]. Third, we aggressively promote global variables representing the client binary state

to equivalent local variables; even inlining functions that use them if it is favorable. Figure 3.5

shows the performance benefit obtained by applying our custom alias analysis and global variable

promotion.

Stack unwinding optimization Client binaries often utilize error handling mechanisms such as

setjmp and longjmp which save and restore the program state. Lifted binary programs have two

contexts, the physical context of the recovered program, and the emulated context of the original

program. Setjmp and longjmp calls in the original program should be translated to a save and restore

of the emulated context in the recovered program. It would be possible to copy the emulated state
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to physical state, the same way we do for library calls, and thereby use the native setjmp/longjmp

handlers. Instead, we implemented our own handlers to avoid the extra state copy by directly

operating on emulated state.

3.4.3 Debugging

The current version of BinRec does not do anything with debug information. In principle, there

are multiple useful vectors for its use as input or output. One vector would be to consume debug

info in input binaries to aid analysis. This has been explored in prior work [72, 155, 168, 183].

Debug info is inherently static in nature, so using it for analysis would result in quite different

capabilities, worthy of their own study. As static analysis is typically faster than dynamic analysis,

it may accelerate certain analysis operations to use debug information.

Debug information could also be generated by a dynamic rewriting tool. There is potential to pass

through initial debug information that was present in the input binary, or generate our own. If we

wanted to pass through, the workflow could be as follows. Use a static process to parse debug

strings and map them to addresses in memory. Then, attach the debug string for a particlar address

to the lifted ir representation of the program, by look at the basic block address, or stores to the

PC global variable. That would result in debug information in the liftd llvm ir assigned to the set

of instructions that emulate the initial instruction the debug info was attached to. That debug info

could be output by the regular llvm toolchain, and we could copy it into the final binary in elf

stitching procedure. This construction would be extremely useful to debug both semantic bugs in

the recompiled program, and bugs in the recompilation toolchain.

We implemented a prototype version of gdb integration and debugging info that was attched to

recompiled programs, in order to debug our recompilation toolchain. The gdb integration was a

script to print what values are in the emulated registers, when attached to a recompiled program.

We are often interested in what functionality in the original binary is being emulated at a particular
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program point, and this script facilitated it. We also added a llvm pass for debug purposes to print

the emulated stack contents.

3.5 Evaluation

In this section, we first compare our prototype against state-of-the-art static lifting approaches. We

then assess the performance of programs lifted by BinRec in terms of run time and code coverage,

as well as the lifting speed of our BinRec prototype. We use the SPEC CPU2006 benchmark

suite, which is standard in the binary lifting literature [9, 18, 67], because it contains CPU-bound

benchmarks, providing us with a pessimistic view of run-time overheads (as opposed to I/O-bound

programs whose I/O performance is unaffected by lifting). We conducted our lifted binary run-time

experiments on a system with 8GB RAM and an Intel i5-3210M running at 2.5GHz, with frequency

scaling turned off to ensure stable performance. Lifting time experiments were conducted on an

Intel Xeon E7-4870 @ 2.40GHz with 188 GB RAM. We used gcc 4.8.4 to compile all programs

with optimization levels O0 and O3 (see Table 3.1). Our prototype is based on S2E, which emulates

floating-point instructions using integer instructions for portability. In this prototype implementation,

we do not aim to optimize floating-point performance, so we limit our evaluation to the CINT subset

of SPEC CPU2006.

3.5.1 Dynamic vs. Static Lifting

BinRec reliably lifts and recompiles a large number of real-world binaries. In addition to the

qualitative benefits of our dynamic technique as discussed in Section 3.3, we investigated quantitative

advantages of our approach. We compared BinRec to McSema [68] and Rev.ng [67], popular state-

of-the-art binary lifting frameworks.1 We limit our comparative study to active, open source binary

1Code snapshot on July 25th, 2019

38



1 void c a l l b a c k _ f u n c ( j_common_ptr c i n f o ) {
2 p r i n t f ("." ) ;
3 }
4
5 int main (int argc , char ∗∗ a rgv ) {
6 struct j p e g _ d e c o m p r e s s _ s t r u c t i n f o ; //jpeg info
7 struct j p e g _ p r o g r e s s _ m g r p r o g r e s s ;
8 . . .
9 //After some initialization code

10 p r o g r e s s . p r o g r e s s _ m o n i t o r = c a l l b a c k _ f u n c ;
11 p r o g r e s s . p a s s _ l i m i t = 0 x8048860 ;
12 p r o g r e s s . p a s s _ c o u n t e r = 0L ;
13
14 i n f o . p r o g r e s s = &p r o g r e s s ;
15 j p e g _ s t a r t _ d e c o m p r e s s ( &i n f o ) ;
16
17 char ∗ d a t a = (char ∗ ) m a l lo c ( d a t a S i z e ) ;
18 r e a d D a t a ( i n f o , d a t a ) ;
19 . . .
20 }

Listing 3.2: Excerpt of decompress.c: libjpeg example in C.

lifters which, like BinRec, aim to be compiler-agnostic.

We found McSema [68] could only recover a limited number of binaries correctly in our tests.

While trying to lift binaries compiled without optimization, we encountered errors with McSema’s

handling of double-precision floating point operations in 32-bit applications, unsupported xmm

instructions (xmm xorpd, xmm andpd) on 64-bit, and segmentation faults in the C++ delete operator.

In addition, some binaries lifted from compiler-optimized code caused segmentation faults upon

launch or produced incorrect output.

We also identified cases where binaries generated by McSema interpreted data as code pointers,

illustrating L1 in real-world code. McSema uses IDA Pro for control flow graph recovery and

analysis. Hence, it is limited by IDA’s inability to correctly identify function pointers in real-world

code. This can lead to problems as illustrated by Listing 3.2: a structure type in libjpeg contains a

member field that holds the address of a callback function (line 10), while another holds an integer

that represents a loop bound (line 11) which happens to be in a similar value range. IDA is closed

source, but we suspect it uses heuristics to identify integers with values in the executable segment as

code pointers, which fails in this case. The recovered binary McSema generates from this program

mistakenly changes the integer, thereby changing program semantics. Similarly, failure to identify
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code pointers correctly could cause mishandling of callbacks in this program. Unfortunately, the

authors do not provide any performance numbers for correctly lifted binaries using McSema.

We were unable to recover most of the dynamically linked SPEC INT2006 binaries with Rev.ng [67].

While we managed to get some of the binaries running by reducing the optimization level to O0

(a classic example of L4 —due to aggressive optimization), this still yielded mixed results. For

instance, the tool was able to produce a lifted version of libquantum but its output differed from

the output of the original program. The only test that was correctly recovered was mcf. Some tests

failed completely (even at O0), e.g., gcc, gobmk, perlbench, and xalancbmk.2 Table 3.1 compares

the performance of BinRec to Rev.ng using the most recent published results [85]. The authors

note that these were all statically linked. Although their client binaries’ optimization level is not

specified, BinRec’s performance (0.98x for O0, 1.29x for O3) exceeds Rev.ng’s (2.25x) in either

case.

In summary, both state-of-the-art tools we looked at were unable to reproducibly recover even

standard binaries, despite being actively developed and widely used open-source frameworks for

binary lifting. We would like to stress that this does not reflect a lack of sophistication behind those

tools (or the developers), but instead highlights the tremendous difficulty faced by static lifting

approaches. Crucially, we found our dynamic tracing technique to aid the lifting process within

BinRec significantly: we are able to recover all of the test binaries in question while the recovered

binaries performed favorably by comparison and produced correct output.

3.5.2 Performance

Table 3.1 presents the performance of binaries lifted with BinRec. For every input program we

compiled both optimized (O3) and unoptimized (O0) binaries which produce correct output in

2The error message indicated failed assertions in the IsolateFunctionsImpl class upon replacement of indirect branch
targets, strongly hinting towards an instance of L2 . We contacted the developers but did not get any detailed feedback
in time for the submission.
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Table 3.1: Measured execution time normalized to the original binaries. Rev.ng results are reported
from publication [85].

BinRec McSema Rev.ng
Benchmark O0 O3 O0 O3 reported
400.perlbench 1.25 1.48 – – 3.7
401.bzip2 0.76 1.05 2.84 – 2.2
403.gcc 1.26 1.37 – – 2.1
429.mcf 0.83 1.00 2.31 1.41 1.5
445.gobmk 1.04 1.56 – – 3.3
456.hmmer 0.77 0.74 – – 2.2
458.sjeng 0.77 1.08 3.43 – 2.6
462.libquantum 0.95 1.30 2.07 1.04 1.1
464.h264ref 0.80 1.24 – – 2.7
471.omnetpp 1.92 3.09 – – 2.8
473.astar 0.80 0.94 – – 1.5
483.xalancbmk 1.12 1.66 – – 2.8
geomean 0.98 1.29 – – 2.25

the test cases. Our results show that there is a potential for performance improvement by using

BinRec as a post-release optimizer—particularly, if the original was not optimized at the source

level. With BinRec, six benchmarks – bzip2, mcf, hmmer, sjeng, h264ref, and astar – run faster

than the unoptimized client binaries. In some cases, BinRec can re-optimize release builds to be

faster than even the optimized binaries (e.g., hmmer and astar). Compared to the optimized client

binary, the hmmer "nph3.hmm swiss41" workload finished in 0.62x the time. Interestingly, hmmer

is the only SPEC binary to be faster when re-optimized from an optimized (0.62x) rather than an

unoptimized client binary (0.85x).

There are factors that accelerate and factors that slow down programs recovered by BinRec. We

discussed several of the accelerating factors in Section 3.4.2 and show their benefit in Figure 3.5.

Floating point instructions are emulated in the lifted binaries, which incurs a performance penalty

(e.g., we found this to be one of the main factors for the slowdown of omnetpp ). Further, the

IR of recovered programs contains less accurate information about the size and lifetime of stack

allocations compared to source code, which impedes optimization. The geometric mean run time

factor of BinRec binaries compared to unoptimized and optimized input binaries is 0.98x and 1.29x,

respectively.

In addition to the performance of rewritten but uninstrumented binaries, users of binary rewriting
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Figure 3.5: Execution time improvement from CPU state variable de-aliasing and global variable
promotion.

frameworks care about the runtime performance with added hardening transformations and instru-

mentation. Multiverse, while able to support a wide variety of programs and transformations, suffers

from particularly slow performance with instrumentation. This is because it must support a huge

variety of possible program paths, due to its nature of deferring determination of the correct path till

runtime, and the instrumentation must work on any of these paths. In contrast, BinRec does not

have to support paths that will not be taken, since we record what paths will be dynamically taken.

In addition, we can optimize the instrumentation using LLVM in BinRec. It would be interesting

future work to develop standardized benchmarks for the overhead with a fixed set of instrumentation

in a set of fixed programs.
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Figure 3.6: Coverage with respect to the original binaries. The input set is the ref workload of
SPEC CPU2006.

3.5.3 Code Coverage

Figure 3.6 shows the instruction coverage of lifted binaries as we increase the number of supported

input workloads. The rate of coverage change is substantially different between binaries, and reflects

both the number of unrelated features in the binary and the similarity of the test cases. bzip2, for

instance, exercises nearly the same code path for each input. In contrast, gobmk and gcc see a steady

increase in code coverage for each added input. The level of instruction coverage should therefore

be dependent on the application, lifted feature set, and use case. Users of our framework may aim to

increase coverage or to keep it low, limiting the attack surface for attackers. In both cases, BinRec’s

ability to report code coverage provides the user with a practical metric to determine if incremental

lifting is effective; either in maintaining low coverage or in increasing coverage.
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Figure 3.7: Incremental lifting progression of bzip2.

Incremental Lifting To show the effectiveness of incremental lifting, we conducted an experiment

with bzip2 as illustrated in Figure 3.7. We first lifted the binary with SPEC training inputs,

which is the origin point of the graph. Then, we ran the lifted binary with reference inputs

and incrementally lifted code to support each new input. The callouts on Figure 3.7 indicate when

each additional input became functional in the recovered binary. Each triangle represents one cycle

through the lifting frontend, and each cycle took approximately 140 seconds.

3.5.4 Analysis Time

BinRec’s ability to robustly lift binaries without relying on heuristics comes at the cost of lifting time.

As a dynamic lifting tool, BinRec’s lifting time depends on the execution time of its input programs.

Table 3.2 shows BinRec’s lifting times for each input binary. In order to show the worst case lifting

time, we used a SPEC reference input—which fully excercises loop iterations—for lifting. The

lifting could be much faster with an optimized trace input which is designed to reach more paths

and minimize loop counts, but such an optimization would not reflect real world workloads. Since

the current prototype of BinRec uses S2E [43] as its tracing frontend, we also present the time to
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Table 3.2: Time in seconds to capture LLVM IR from input binaries with BinRec and McSema
toolchains, alongside execution time for S2E without BinRec instrumentation. For BinRec and S2E
we report the maximum time among the reference workloads from SPEC CPU2006.

BinRec S2E McSema
Benchmark O0 O3 O0 O3 O0 O3
400.perlbench 425,619 321,078 62,482 49,221 3,375 3,385
401.bzip2 86,181 69,389 27,614 18,311 117 122
403.gcc 37,276 28,468 6,156 4,929 6,996 7,378
429.mcf 283,413 227,999 209,914 197,910 11 8
445.gobmk 84,214 72,307 15,496 8,721 1,332 1,063
456.hmmer 179,127 144,529 87,911 28,159 204 189
458.sjeng 727,675 548,432 95,936 86,153 294 368
462.libquantum 421,269 176,536 – 49,334 21 16
464.h264ref 86,433 65,202 31,012 15,233 336 586
471.omnetpp – 312,665 – 105,015 258 224
473.astar 211,782 119,436 80,613 66,201 22 18
483.xalancbmk – – – – 74,948 17,103
geomean 178,480 138,379 44,810 35,021 371 320

execute those workloads without instrumentation in S2E. The lifting time of static lifting toolchains,

such as McSema, does not depend on the input, and is in general faster than our dynamic approach.

We present the lifting time which we collected with McSema here for comparision.

Binary lifting is a one-time, offline process and thus it does not affect performance of actual binary

execution. If fast lifting times were in fact desired, it could be accomplished using a faster tracing

frontend such as Pin, KVM-enabled QEMU, or native execution with a hardware control-flow

tracing feature (e.g., Intel PT). In that case, however, we may miss the flexibility of disassembly in

S2E, and its ability to explore multiple code paths through concolic execution.
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3.6 Applications

One of this project’s main goals is to enable complex transformations on real-world program

binaries. Since BinRec can lift binaries to a compiler-level IR and supports dynamic linking, this

enables us to make use of a large ecosystem of off-the-shelf compiler-based transformations and

analysis tools. In addition to compiler transformations, existing, black box binary utilities such as

readelf or LD_PRELOAD remain usable on binaries recompiled with BinRec. In this section,

we showcase some applications that demonstrate this ability: deobfuscation, AddressSanitizer and

SafeStack through compiler transformations, and control-flow hijacking mitigation. Developers

who are familiar with these transformations do not need any knowledge of binary analysis to use

them within our framework. While we only provide a limited set of example applications in this

section, we note that BinRec reliably enables—for the first time—a large number of interesting,

feature-rich program analyses and transformations through extensive compiler-based tooling for

binary programs.

3.6.1 Control-flow Hijacking Mitigation

Even without additional compiler-based transformations, BinRec has an endogenous ability to

mitigate memory-corruption vulnerabilities in the original program. A recovered program emulates
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Figure 3.8: Our deobfuscation approach.
(1) We lift the binary using symbolic execu-
tion or high-coverage inputs. (2) We iden-
tify the lifted interpreter loop and instru-
ment it to log the virtual program counter
(VPC) at the entry. (3) The instrumented
binary is exercised for all uncovered code
paths, yielding a control-flow graph of VPC
nodes. (4) The interpreter loop is copied
into each VPC node. (5) Standard opti-
mizations eliminate non-taken paths in each
VPC node.
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the execution of the original program. Because of the emulation, what was control flow in the

original program becomes data flow in the recovered program. BinRec does not natively mitigate

data-only attacks [38], though they may be mitigated using additional transformation on the IR.

A control-flow hijacking attack typically subverts control flow by overwriting a code pointer. This

pointer could be used by an indirect jump, indirect call, or return instruction. When tracing indirect

control flow in the original program within BinRec, we observe actual control flow targets. The

recovered program then contains switch statements where cases are jumps to these observed targets.

The value of the instruction pointer (%rip) in the original program is emulated by the recovered

program, and it is used as the index into the switch statement. The switch statements are lowered

into assembly consisting of trees of compare and direct jump instructions, so no new attack surface

is introduced by this dispatch mechanism. This is functionally equivalent to what is commonly

Table 3.3: Number of allowed targets for indirect branches/calls in SPEC CPU2006 binaries lifted
by BinRec, compared to the number statically found by BinCFI [212].

O0 O3
BinRec CFI BinCFI BinRec CFI BinCFI

Benchmark Median IQR Max Median IQR Max
400.perlbench 5 7.5 176 2,101 4 7 176 1,916
401.bzip2 3 0 22 151 3 0 22 117
403.gcc 4 3 212 6,593 3 3 212 5,407
429.mcf 3 1 7 68 3 0 7 66
445.gobmk 3 0 492 2,780 3 0 492 2,590
456.hmmer 3 0 8 671 3 0 7 620
458.sjeng 4.5 3 12 223 5.5 3.3 12 215
462.libquantum 3 0 2 177 3 0 5 161
464.h264ref 3 0 10 686 3 0 10 617
471.omnetpp 3 4 168 3,167 3 1.3 168 2,482
473.astar 3 0 3 213 3 0 4 139
483.xalancbmk 3 4 38 35,106 4 3 38 15,950

IQR: inter-quartile range
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known as context-insensitive control-flow integrity on forward and backward edges [28].

Consider an original binary with a vulnerable stack buffer overflow using an unsanitized strcpy

call, that can be used to overwrite a return address. In the recovered program, that buffer is located

in a @memory array which emulates the memory of the original program. The strcpy call will

proceed in the same way in the recovered program, allowing the attacker to overwrite the emulated

return address of the vulnerable function. The original return instruction is emulated using a switch

statement, loading an attacker-provided value via the emulated register @RIP. If the target is not

one of the traced return sites of the vulnerable function, the error case of the switch statement will

abort execution. Otherwise, execution will proceed in the style of a control-flow bending attack [33],

since the target address represents a valid execution under context-sensitive (but not path-sensitive)

analysis of the original program. If optimization is applied to the recovered binary and the error

case is deleted from this switch statement, one of the observed return targets of the vulnerable

function will be chosen in a compiler-specified manner. In this case, an attacker aware of BinRec

could still perform control-flow bending. However, any attempt to hijack control flow via writing

code pointers (vtable overwrite, indirect code pointer write via heap overflow, etc.) is mitigated.

To evaluate the security properties of the resulting solution, we measured the number of allowed

targets across all the recovered edges. Though our approach also protects returns, we only present

forward edges in Table 3.3 for easier comparison with other approaches. Our results show that

BinRec can enforce a median number of around 3 indirect callees on a nontrivial fraction of the

target programs. The table also shows these results for binCFI [212], a static binary-level CFI

solution. Because it can not statically predict valid branch targets with precision, binCFI’s policy

must allow transfers to any address-taken function, increasing the number of allowed branch targets

by orders of magnitude when compared to BinRec.
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3.6.2 Virtualization-deobfuscation

We used BinRec to lift programs obfuscated by virtualization (cf., Section 3.2.5). Figure 3.8

illustrates our deobfuscation approach. For this use case, we detect the Virtual Program Counter

(VPC) and virtual interpreter loop through known techniques [174]. We instrument the recovered

IR to log the value of the VPC at the entry point of the interpreter loop, then produce a binary. We

exercise the instrumented binary to obtain a graph of VPC nodes. We create a new program from

this graph by copying the body of the virtual interperter loop into the VPC nodes. After applying

standard compiler optimizations (most notably constant propagation and dead code elimination),

only one virtual opcode handler remains for each duplicated interpreter. The result is a program

with the semantics and static structure of the original program; the virtualiztion obfuscation has

been removed.

To evaluate our deobfuscation approach, we implemented a virtualizer that supports a set of bytecode

instructions. We then created a source-to-source virtualization-obfuscated version of two simple

programs: eq checks if two arguments match, and fib computes the n-th Fibonacci number.

Table 3.4 shows how deobfuscation affects the size of the recovered code. We attain a code size

close to that of IR recovered from the unobfuscated binary. Figure 3.9 depicts the fib program,

showing its control flow graph obfuscation and subsequent deobfuscation.

Figure 3.9: Deobfuscation of the fib program. The control flow graph structure of the deobfuscated
binary matches that of the original bytecode, rather than that of the interpreter, which indicates the
control flow obfuscation was successfully removed by the analysis implemented in BinRec.

49



Table 3.4: The number of LLVM instructions: after lifting, after optimization without deobfuscation,
and after deobfuscation and optimization. The baseline is the number of LLVM instructions obtained
by compiling the unobfuscated program with clang.

Lifted Optimized Deobfuscated Baseline
eq 2,362 152 35 38
fib 3,163 210 63 43

3.6.3 AddressSanitizer

AddressSanitizer (ASan) is a widely deployed bug finding tool that detects spatial and temporal

memory errors [170]. It consists of an LLVM instrumentation pass and a run-time monitor. The

ASan instrumentation pass identifies and registers memory allocations, and inserts checks for

memory accesses. For binaries lifted by BinRec, all memory reads and writes are identified and

instrumented automatically using the unmodified ASan instrumentation pass. Heap allocations

(e.g., malloc or new) are recorded in the BinRec lifting frontend and rewritten in the recovered

IR, making them visible to ASan. We leave the identification of stack and global allocations for

future work as the problem is currently unsolved for binaries. While ASan has been applied to

binaries recently [69], we note that this required a re-implementation of both the analysis and

instrumentation passes—a substantial disadvantage in maintainability compared to BinRec. Our

recovered IR enables the use of ASan to detect spatial and temporal heap access violations. We

used two test programs containing (1) a heap use-after-free error and (2) an out-of-bounds write and

lifted both test programs in BinRec before applying ASan, successfully discovering these errors.

3.6.4 SafeStack

SafeStack is a compiler-based transformation pass that separates sensitive data, such as return

addresses, and potentially insecure data, such as large application buffers, into separate stacks [105].

If memory isolation features such as x86 segmentation or Intel Memory Protection Keys are

available, they are used to isolate the two stacks. If hardware features are unavailable, SafeStack

leverages ASLR to hide the safe stack, requiring attackers to bypass ASLR in order to corrupt
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sensitive data.

By default, BinRec generates programs which contain two stacks with SafeStack-like security

properties. The native stack contains sensitive data such as register spills and return addresses, as

well as any new instrumentation and library code frames. The emulated stack, which contains the

stack data of the original binary, resides at an ASLR-randomized location.

We were additionally able to apply SafeStack’s transformations to recovered programs without

requiring any modifications to its analysis or transformation passes, since BinRec lifts programs to

well-formed LLVM IR. After the SafeStack transformation, recovered programs therefore contain

three stack-like memory regions. The native stack contains library frames and newly added safe

variables. The emulated stack, at an ASLR-randomized offset, emulates the original binary stack. A

third stack in a separate x86 memory segment contains new, potentially insecure buffers. We do not

identify stack variables within the original binary, which impedes the transformation’s ability to

move unsafe buffers from the emulated stack to the third, segmented stack (see Section 3.7).

3.7 Limitations of the Prototype Implementation

Our prototype implementation of BinRec can only handle single threaded x86 ELF binaries. There

are no theoretical limitations on threaded-ness or architecture. The architecture constraint comes

from the engineering effort required to implement inline assembly snippets, mostly for library

code interfacing. Additional snippets are required for the fallback path miss handler, and floating

point arithmetics. The calling convention abi must be well understood and implemented to achieve

these operations with efficiency. For example, in a library call, callee saved values do not need

to be marshalled from emulated to concrete state, only parameters and return values need to be

marshalled.

Supporting other binary formats such as PE is no fundamental problem, but requires reimplementing
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binary stitching in the new format. In particular, the decision of which sections to use from the

original binary vs the rewritten binary would need to be revisited. The majority of extensible

dynamic linking support in the compiler passes should be reusable, but the ELF manipulation would

need to be modified.

It would require a modest amount of additional engineering effort to implement support for multi-

threaded programs. Recording of control flow successors should be done on a per thread basis,

to avoid control flow edges being erroneously inferred between unrelated executions in different

thread contexts. S2E contains support for OS level threads, and these could be used to separately

collect control flow successors. For user space thread, and cooperative multi-tasking, further study

is needed. However, collecting traces through such a program should result in a lifted program

that executes one valid serialized execution of the many possible schedules possible in the original

program. To ensure accurate CFG recording in the presence of multi-processing and multi-threading,

the data structures used to record CFG successors should be thread safe.

We did not implement handling of self-modifying code. To support it, we would need to add

‘version labels’ to each recovered code address. Our existing labels use the address of recovered

code to uniquely identify them. In the presence of self-modifying code, we would additionally

need a temporal label. One possible temporal label is trip count through the code address. Using

temporal labels would incur some additional lifting time (because code cannot be cached). It would

also add complexity while merging traces into one CFG. It is possible that each trip through a code

address would have different code. The control flow graph would therefore be tree-shaped. On the

other hand, the code at a certain address may never change, ie, that code is not self-modifying. We

would need to do code clone detection to determine if CFG nodes which represent the same address

at different time points should be merged. A simple diff based clone detection may be sufficient,

since the candidates are generated programmatically.

BinRec does not recover a mapping between stack slots and variables. Such a mapping would

improve optimization and allow more fine grained instrumentation by transformations such as
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SafeStack and ASAN. SecondWrite [9] determined such a mapping for a limited set of input

binaries using heuristics, but we leave the determination of a general procedure as future work. See

Section 3.8.

Hardware backed trusted computing paradigms like SGX mean the dynamic analysis will not be

able to observe or modify the interesting code in the enclave. Anti-debugging techniques make

tracing of the program more difficult. Anti-fuzzing [84] techniques will limit the helpfulness of

fuzzing and symbolic-execution for driving tracing, placing more emphasis on manual test case

selection.

3.8 Future Work

3.8.1 Symbolization

The process of determining which memory locations in a binary represent semantic variables in the

source program at different times has many facets and is known by many names. We will refer to it

as symbolization. The difficulty of the problem is greatly determined by what auxilliary information

is available (debug symbols) and what assumptions are made (frame layout). In BinRec, we tried to

solve the problem with no heuristics or assumptions, and no auxialliary information. We attempted

symbolization in one analysis domain, stack locations with both static and dynamic approaches. We

did not yet achieve effective solutions, and greatly encourage further study of the area.

The benefit of symbolization is it results in more precise data-flow relations. These relations can be

used to aid optimization, or to apply a precise security policy.

In the context of BinRec we approached the problem of stack symbolization in detail. Stack

symbolization is the subset of the symbolization problem which deals with stack allocated variables.

The main difficulties for stack symbolization are temporal aliasing via stack frame pushes and pops,
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and dynamic access to arrays on the stack. If a stack frame has been released, and another one has

been reallocated in its place, then the same memory address now refers to a different symbol. This is

a form of temporal aliasing. Without a stack symbolization analysis, each dynamic memory access

may alias with every stack access. Therefore, all stores to the stack must be completed before any

dynamic access, and no loads may be hoisted before any dynamic access.

In some architectures and programming paradigms, a function may access any memory location

on the stack, even outside its own frame. A heuristic which simplifies the stack symbolization

problem is to assume functions only access their own stack frame, and parameters passed to them in

their parent’s frame. This heuristic is based on the traditional way that compilers emit code. It was

used in Secondwrite[9]. Secondwrite made an attempt and had good success at symbolizing stack

variables within the subdomain they chose which was well formed compiler generated stack frames,

no position independent code, and no inline assembly.

With or without the use of this heuristic, a stack symbolization routine should detect when a frame

as has been deallocated, and therefore mark the end of the lifetimes of the variables contained

within. The movement of the stack pointer in a way consistent with the way a compiler emits stack

frames is a heuristic that can be used to detect the deallocation of a stack frame. However, in the

face of arbitrary assembly, is is not easy to determine when the lifetime of a stack allocation ends.

A conservative choice is to assume a value is live until it is overwritten, however, this choice will

impede downstream optimization, and is such a low level abstraction it is not easy for programmer

to reason about. A symbol under this assumption is not like a symbol in the source code.

Another program construct which impedes stack variable symbolization is dynamic access to stack

allocated arrays. Such accesses are via a base address and an offset. The bounds of the array are

typically not recoverable from the binary. The problem is therefore, to determine which locations

on the stack may be accessed by an instruction which uses a base plus offset. Under the heuristic

where functions can only access their own frames, dynamic accesses only alias variables in frame

containing their base address. One way to tighten the bound on which locations will be accessed
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via a dynamic memory access is to use value set analysis to determine bounds on the offset. If the

offset is bounded, any variables stored outside of that bound will not be accessed, and therefore

they will be unchanged by the memory access.

Another way to view the optimization possibilities of symbolization is to remove loads and stores,

hoist loads, and sink stores. If a variable is symbolized, we guarantee that there are no reads to it

or writes of it within a region of code. The value can be kept in a register, instead of being stored

back to memory after every operation. Yet, another way to look at the symbolization problem

is as an extension of the single static assignment [55], scalar replacement of aggregates (SROA

transformations [132]). Instead of the traditional alloca stack storage locations which are the

usual input to the SSA transformation, each physical stack slot is an initial storage location. Each

initial storage location may be representable by a symbol in SSA form.

We are in the early stages of a prototype symbolization scheme using dynamic analysis. Dynamic

analysis has the potential to fully symbolize the stack without heuristics, however, it has a key caveat.

The symbolization will only be correct as long as the data flows in the rewritten program follow

the traced data flows. There can be a spectrum of correct program rewriting based on dynamic

symbolization. At one extreme is to make no modifications to the data access pattern. At the other

is to hoist loads as early as possible and sink stores as late as possible given the data flow observed

in they dynamic traces. The longer data remains un-stored to memory, the more likely that data

flows on unobserved traces would conflict with the rewritten data flow. This is related to the fact

that a rewritten program will only be correct when the control flow in the rewritten program follows

the control flow in the traces. The space of all possible data flows is distinct from all control flows,

and one does not necessarily imply the other.
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3.9 Related Work

Binary rewriting and analysis Many projects target the problem of low-level binary analysis

and rewriting. PEBIL [111], UQBT [45] and Uroboros [196] all statically rewrite binary programs

either at the machine code level or using a custom low-level IR. Their main aim is to support

the insertion of simple instrumentation, where efficiency is more important than the ability to

perform complex code transformations (such as altering the CFG). angr [178] supports static and

dynamic analysis techniques, including symbolic execution, but does not target code rewriting

(unlike BinRec). Earlier work such as ATOM [72], PLTO [168], Diablo [155], and Vulcan [183]

are powerful tools, but to our knowledge they do not work well without debug symbols. Also, they

typically do not support a generic compiler-level IR.

Bauman et al. [18] disassemble instructions from every offset of code sections, creating a superset

of all possible disassemblies. They statically rewrite binaries without heuristics by preserving the

superset of disassemblies, such that only the legal part of the rewritten binary will be executed at

run time. However, deferring correct disassembly until runtime adversely affects rewritten binary

performance. Yardimci and Franz [206] use a mostly static approach to automatically vectorize

loops in stripped binaries. The approaches of both Yardimci and Bauman both use an indirect

branch table which maps original program addresses to rewritten program addresses to support

indirect control flow. BinRec uses a similar indirect branch table for external callback support, but it

generates more optimal code because only those callbacks which are actually invoked need branch

table entries and control flow graph entry points in rewritten code.

DBT and JIT compilation Dynamic instrumentation tools such as PIN [119], Dyninst [27],

DynamoRIO [26] and Valgrind [136] are dynamic binary translation (DBT) tools, providing runtime

APIs to analyze and instrument code at run time. These tools do not support saving the changes to

an output binary with the intent of replacing the original binary. They can have substantial runtime
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overhead [144], and require specific assembly-level transformation passes for each application,

whereas BinRec leverages existing techniques present in production compilers.

Just-in-time (JIT) compilers such as V8 [82] and SpiderMonkey [131] collect dynamic traces to

determine which code to optimize and to speculate dynamic data types. Sulong [160] is a frontend

for the Graal compiler that effectively creates an LLVM bitcode execution engine. Similar to

BinRec, Sulong optimizes LLVM bitcode using dynamic traces and applies instrumentation such as

bounds checks to detect safety violations. However, such source-level JIT compilation approaches

leverage language semantics and thus do not address the problem of binary lifting or analysis.

Instead, they focus on solving a different set of problems such as how to optimize dynamic type

checks or when to trigger different tiers of execution.

Binary code lifting LLBT [176, 177] statically retargets binaries to different ISAs after lifting

them to LLVM IR. McSema [68], Dagger [24], Rev.ng [67] and RevNIC [42] (based on S2E) and

SecondWrite [9] lift machine code for the purpose of high-level static binary translation on LLVM

IR.

HQEMU [92] extends QEMU’s back-end to lift code to LLVM IR similarly to S2E, for the purpose

of optimization. It does not decouple lifted code from the QEMU runtime to produce a standalone

executable binary, like BinRec.

Our prior work, a short workshop paper [103] presents a high-level idea of dynamic binary lifting.

This prior work constructs a rewritten binary from a single dynamic trace, which in turn fails to

produce a binary that covers a whole targeted input corpus. This version addresses this issue i) by

stitching multiple, parallel traces into a single executable binary; ii) by incrementally recovering

missing basic blocks and control flow edges from the original binary. Compared to our previous

work, BinRec shows evaluation results with the complete set of SPEC CINT2006 benchmarks, with

significant performance improvement due to our new optimized alias analysis. Furthermore, the
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prior work was solely targeted for attack surface reduction and it does not present a mechanism to

modify the dynamic linkage of their input binaries, limiting code instrumentation. This extended

work, on the other hand, shows effectiveness with a rich set of applications including virtualization-

deobfuscation, AddressSanitizer, SafeStack, and a control-flow hijacking defense. Moreover, it

outlines unsolved challenges of static disassembly in the context of binary lifting.

3.10 Conclusion

We presented a new solution for binary lifting based on dynamic analysis. Our prototype, BinRec,

lifts a program to compiler-level intermediate code for ease of analysis, while ensuring that it can

still compile the result to executable code. Compared to existing static analysis-based techniques,

dynamic approaches can seamlessly handle indirect control flow transfers, handwritten assembly

and obfuscations. We designed BinRec to overcome the coverage issue of dynamic analysis by using

trace merging and incremental recovery. We demonstrated the powerful applications made possible

by BinRec: recovering program semantics of virtualization-obfuscated binaries, and applying

compiler-level optimizations and hardening transformations to stripped binaries.
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Chapter 4

Control-Flow Integrity: Precision, Security,

and Performance

4.1 Abstract

Memory corruption errors in C/C++ programs remain the most common source of security vulnera-

bilities in today’s systems. Control-flow hijacking attacks exploit memory corruption vulnerabilities

to divert program execution away from the intended control flow. Researchers have spent more than

a decade studying and refining defenses based on Control-Flow Integrity (CFI), and this technique

is now integrated into several production compilers. However, so far no study has systematically

compared the various proposed CFI mechanisms, nor is there any protocol on how to compare such

mechanisms.

We compare a broad range of CFI mechanisms using a unified nomenclature based on (i) a qualitative

discussion of the conceptual security guarantees, (ii) a quantitative security evaluation, and (iii) an

empirical evaluation of their performance in the same test environment. For each mechanism, we

evaluate (i) protected types of control-flow transfers, (ii) the precision of the protection for forward
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and backward edges. For open-source compiler-based implementations, we additionally evaluate

(iii) the generated equivalence classes and target sets, and (iv) the runtime performance.

4.2 Introduction

Systems programming languages such as C and C++ give programmers a high degree of freedom to

optimize and control how their code uses available resources. While this facilitates the construction

of highly efficient programs, requiring the programmer to manually manage memory and observe

typing rules leads to security vulnerabilities in practice. Memory corruptions, such as buffer

overflows, are routinely exploited by attackers. Despite significant research into exploit mitigations,

very few of these mitigations have entered practice [185]. The combination of three such defenses,

(i) Address Space Layout Randomization (ASLR) [150], (ii) stack canaries [188], and (iii) Data

Execution Prevention (DEP) [11] protects against code-injection attacks, but are unable to fully

prevent code-reuse attacks. Modern exploits use Return-Oriented Programming (ROP) or variants

thereof to bypass currently deployed defenses and divert the control flow to a malicious payload.

Common objectives of such payloads include arbitrary code execution, privilege escalation, and

exfiltration of sensitive information.

The goal of Control-Flow Integrity (CFI) [5] is to restrict the set of possible control-flow transfers to

those that are strictly required for correct program execution. This prevents code-reuse techniques

such as ROP from working because they would cause the program to execute control-flow transfers

which are illegal under CFI. Conceptually, most CFI mechanisms follow a two-phase process. An

analysis phase constructs the Control-Flow Graph (CFG) which approximates the set of legitimate

control-flow transfers. This CFG is then used at runtime by an enforcement component to ensure

that all executed branches correspond to edges in the CFG.

During the analysis phase, the CFG is computed by analyzing either the source code or binary
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of a given program. In either case, the limitations of static program analysis lead to an over-

approximation of the control-flow transfers that can actually take place at runtime. This over-

approximation limits the security of the enforced CFI policy because some non-essential edges are

included in the CFG.

The enforcement phase ensures that control-flow transfers which are potentially controlled by an

attacker, i.e., those whose targets are computed at runtime, such as indirect branches and return

instructions, correspond to edges in the CFG produced by the analysis phase. These targets are

commonly divided into forward edges such as indirect calls, and backward edges like return

instructions (so called because they return control back to the calling function). All CFI mechanisms

protect forward edges, but some do not handle backward edges. Assuming code is static and

immutable 1, CFI can be enforced by instrumenting existing indirect control-flow transfers at

compile time through a modified compiler, ahead of time through static binary rewriting, or during

execution through dynamic binary translation. The types of indirect transfers that are subject to such

validation and the number of valid targets per branch varies greatly between different CFI defenses.

These differences have a major impact on the security and performance of the CFI mechanism.

CFI does not seek to prevent memory corruption, which is the root cause of most vulnerabilities in

C and C++ code. While mechanisms that enforce spatial [134] and temporal [135] memory safety

eliminate memory corruption (and thereby control-flow hijacking attacks), existing mechanisms are

considered prohibitively expensive. In contrast, CFI defenses offer reasonably low overheads while

making it substantially harder for attackers to gain arbitrary code execution in vulnerable programs.

Moreover, CFI requires few changes to existing source code which allows complex software to be

protected in a mostly automatic fashion. While the idea of restricting branch instructions based

on target sets predates CFI [100, 101, 149], Abadi et al.’s seminal paper [5] was the first formal

description of CFI with an accompanying implementation. Since this paper was published over a

1DEP marks code pages as executable and readable by default. Programs may subsequently change permissions to
make code pages writable using platform-specific APIs such as mprotect. Mitigations such as PaX MPROTECT,
SELinux [122], and the ProcessDynamicCodePolicy Windows API restrict how page permissions can be
changed to prevent code injection and modification.
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decade ago, the research community has proposed a large number of variations of the original idea.

More recently, CFI implementations have been integrated into production-quality compilers, tools,

and operating systems.

Current CFI mechanisms can be compared along two major axes: performance and security. In

the scientific literature, performance overhead is usually measured through the SPEC CPU2006

benchmarks. Unfortunately, sometimes only a subset of the benchmarks is used for evaluation. To

evaluate security, many authors have used the Average Indirect target Reduction (AIR) [212] metric

that counts the overall reduction of targets for any indirect control-flow transfer.

Current evaluation techniques do not adequately distinguish among CFI mechanisms along these

axes. Performance measurements are all in the same range, between 0% and 20% across different

benchmarks with only slight variations for the same benchmark. Since the benchmarks are evaluated

on different machines with different compilers and software versions, these numbers are close

to the margin of measurement error. On the security axis, AIR is not a desirable metric for two

reasons. First, all CFI mechanisms report similar AIR numbers (a > 99% reduction of branch

targets), which makes AIR unfit to compare individual CFI mechanisms against each other. Second,

even a large reduction of targets often leaves enough targets for an attacker to achieve the desired

goals [34, 60, 81], making AIR unable to evaluate security of CFI mechanisms on an absolute scale.

We systematize the different CFI mechanisms (where “mechanism” captures both the analysis and

enforcement aspects of an implementation) and compare them against metrics for security and

performance. By introducing metrics for these areas, our analysis allows the objective comparison

of different CFI mechanisms both on an absolute level and relatively against other mechanisms.

This in turn allows potential users to assess the trade-offs of individual CFI mechanisms and choose

the one that is best suited to their use case. Further, our systematization provides a more meaningful

way to classify CFI mechanism than the ill-defined and inconsistently used “coarse” and “fine”

grained classification.
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To evaluate the security of CFI mechanisms we follow a comprehensive approach, classifying them

according to a qualitative and a quantitative analysis. In the qualitative security discussion we

compare the strengths of individual solutions on a conceptual level by evaluating the CFI policy

of each mechanism along several axes: (i) precision in the forward direction, (ii) precision in the

backward direction, (iii) supported control-flow transfer types according to the source programming

language, and (iv) reported performance. In the quantitative evaluation, we measure the target

sets generated by each CFI mechanism for the SPEC CPU2006 benchmarks. The precision and

security guarantees of a CFI mechanism depend on the precision of target sets used at runtime, i.e.,

across all control-flow transfers, how many superfluous targets are reachable through an individual

control-flow transfer. We compute these target sets for all available CFI mechanisms and compare

the ranked sizes of the sets against each other. This methodology lets us compare the actual sets

used for the integrity checks of one mechanism against other mechanisms. In addition, we collect

all indirect control-flow targets used for the individual SPEC CPU2006 benchmarks and use these

sets as a lower bound on the set of required targets. We use this lower bound to compute how close

a mechanism is to an ideal CFI mechanism. An ideal CFI mechanism is one where the enforced

CFG’s edges exactly correspond to the executed branches.

As a second metric, we evaluate the performance impact of open-sourced, compiler-based CFI

mechanisms. In their corresponding publications, each mechanism was evaluated on different

hardware, different libraries, and different operating systems, using either the full or a partial set of

SPEC CPU2006 benchmarks. We cannot port all evaluated CFI mechanisms to the same baseline

compiler. Therefore, we measure the overhead of each mechanism relative to the compiler it was

integrated into. This apples-to-apples comparison highlights which SPEC CPU2006 benchmarks

are most useful when evaluating CFI.

We first give a detailed background of the theory underlying the analysis phase of CFI mechanisms.

This allows us to then qualitatively compare the different mechanisms on the precision of their

analysis. We then quantify this comparison with a novel metric. This is followed by our performance
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results for the different implementation. Finally, we highlight best practices and future research

directions for the CFI community identified during our evaluation of the different mechanisms, and

conclude.

4.3 Foundational Concepts

We first introduce CFI and discuss the two components of most CFI mechanisms: (i) the analysis

that defines the CFG (which inherently limits the precision that can be achieved) and (ii) the runtime

instrumentation that enforces the generated CFG. Secondly, we classify and systematize different

types of control-flow transfers and how they are used in programming languages. Finally, we briefly

discuss the CFG precision achievable with different types of static analysis. For those interested, a

more comprehensive overview of static analysis techniques is available in ??.

4.3.1 Control-Flow Integrity

CFI is a policy that restricts the execution flow of a program at runtime to a predetermined CFG

by validating indirect control-flow transfers. On the machine level, indirect control-flow transfers

may target any executable address of mapped memory, but in the source language (C, C++, or

Objective-C) the targets are restricted to valid language constructs such as functions, methods and

switch statement cases. Since the aforementioned languages rely on manual memory management,

it is left to the programmer to ensure that non-control data accesses do not interfere with accesses to

control data such that programs execute legitimate control flows. Absent any security policy, an

attacker can therefore exploit memory corruption to redirect the control-flow to an arbitrary memory

location, which is called control-flow hijacking. CFI closes the gap between machine and source

code semantics by restricting the allowed control-flow transfers to a smaller set of target locations.

This smaller set is determined per indirect control-flow location. Note that languages providing
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1 void foo(int a){
2 return;
3 }
4 void bar(int a){
5 return;
6 }
7 void baz(void){
8 int a = input();
9 void (*fptr)(int);

10 if(a){
11 fptr = foo;
12 fptr();
13 } else {
14 fptr = bar;
15 fptr();
16 }
17 }

Figure 4.1: Simplified example of over approximation in static analysis.

complete memory and type safety generally do not need to be protected by CFI. However, many of

these “safe” languages rely on virtual machines and libraries written in C or C++ that will benefit

from CFI protection.

Most CFI mechanisms determine the set of valid targets for each indirect control-flow transfer

by computing the CFG of the program. The security guarantees of a CFI mechanism depend

on the precision of the CFG it constructs. The CFG cannot be perfectly precise for non-trivial

programs. Because the CFG is statically determined, there is always some over-approximation due

to imprecision of the static analysis. An equivalence class is the set of valid targets for a given

indirect control-flow transfer. Throughout the following, we reference Figure 4.1. Assuming an

analysis based on function types or a flow-insensitive analysis, both foo() and bar() end up in

the same equivalence class. Thus, at line 12 and line 15 either function can be called. However, from

the source code we can tell that at line 12 only foo() should be called, and at line 15 only bar()

should be called. While this specific problem can be addressed with a flow-sensitive analysis, all

known static program analysis techniques are subject to some over-approximation (see 2.3).
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Once the CFI mechanism has computed an approximate CFG, it has to enforce its security policy.

We first note that CFI does not have to enforce constraints for control-flows due to direct branches

because their targets are immune to memory corruption thanks to DEP. Instead, it focuses on

attacker-corruptible branches such as indirect calls, jumps, and returns. In particular, it must protect

control-flow transfers that allow runtime-dependent, targets such as void (*fptr)(int) in

Figure 4.1. These targets are stored in either a register or a memory location depending on the

compiler and the exact source code. The indirection such targets provide allows flexibility as, e.g.,

the target of a function may depend on a call-back that is passed from another module. Another

example of indirect control-flow transfers is return instructions that read the return address from

the stack. Without such an indirection, a function would have to explicitly enumerate all possible

callers and check to which location to return to based on an explicit comparison.

For indirect call sites, the CFI enforcement component validates target addresses before they are

used in an indirect control-flow transfer. This approach detects code pointers (including return

addresses) that were modified by an attacker – if the attacker’s chosen target is not a member of the

statically determined set.

4.3.2 Classification of Control-Flow Transfers

Control-flow transfers can broadly be separated into two categories: (i) forward and (ii) backward.

Forward control-flow transfers are those that move control to a new location inside a program.

When a program returns control to a prior location, we call this a backward control-flow2.

A CPU’s instruction-set architecture (ISA) usually offers two forward control-flow transfer instruc-

tions: call and jump. Both of these are either direct or indirect, resulting in four different types of

forward control-flow:
2Note the ambiguity of a backward edge in machine code (i.e., a backward jump to an earlier memory location)

which is different from a backward control-flow transfer as used in CFI.
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• direct jump: is a jump to a constant, statically determined target address. Most local control-

flow, such as loops or if-then-else cascaded statements, use direct jumps to manage control.

• direct call: is a call to a constant, statically determined target address. Static function calls,

for example, use direct call instructions.

• indirect jump: is a jump to a computed, i.e., dynamically determined target address. Examples

for indirect jumps are switch-case statements using a dispatch table, Procedure Linkage Tables

(PLT), as well as the threaded code interpreter dispatch optimization [19, 63, 102].

• indirect call: is a call to a computed, i.e., dynamically determined target address. The

following three examples are relevant in practice:

Function pointers are often used to emulate object-oriented method dispatch in classical

record data structures, such as C structs, or for passing callbacks to other functions.

vtable dispatch is the preferred way to implement dynamic dispatch to C++ methods. A C++

object keeps a pointer to its vtable, a table containing pointers to all virtual methods of its

dynamic type. A method call, therefore, requires (i) dereferencing the vtable pointer, (ii)

computing table index using the method offset determined by the object’s static type, and (iii)

an indirect call instruction to the table entry referenced in the previous step. In the presence

of multiple inheritance, or multiple dispatch, dynamic dispatch is slightly more complicated.

Smalltalk-style send-method dispatch that requires a dynamic type look-up. Such a

dynamic dispatch using a send-method in Smalltak, Objective-C, or JavaScript requires

walking the class hierarchy (or the prototype chain in JavaScript) and selecting the first

method with a matching identifier. This procedure is required for all method calls and

therefore impacts performance negatively. Note that, e.g., Objective-C uses a lookup cache to

reduce the overhead.

We note that jump instructions can also be either conditional or unconditional.
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All common ISAs support backward and forward indirect control-flow transfers. For example, the

x86 ISA supports backward control-flow transfers using just one instruction: return, or just ret. A

return instruction is the symmetric counterpart of a call instruction, and a compiler emits function

prologues and epilogues to form such pairs. A call instruction pushes the address of the immediately

following instruction onto the native machine stack. A return instruction pops the address off the

native machine stack and updates the CPU’s instruction pointer to point to this address. Notice that

a return instruction is conceptually similar to an indirect jump instruction, since the return address is

unknown a priori. Furthermore, compilers are emitting call-return pairs by convention that hardware

usually does not enforce. By modifying return addresses on the stack, an attacker can “return” to all

addresses in a program, the foundation of return-oriented programming [36, 161, 172].

Control-flow transfers can become more complicated in the presence of exceptions. Exception

handling complicates control-flows locally, i.e., within a function, for example by moving control

from a try-block into a catch-block. Global exception-triggered control-flow manipulation, i.e.,

interprocedural control-flows, require unwinding stack frames on the current stack until a matching

exception handler is found.

Other control-flow related issues that CFI mechanisms should (but not always do) address are: (i)

separate compilation, (ii) dynamic linking, and (iii) compiling libraries. These present challenges

because the entire CFG may not be known at compile time. This problem can be solved by relying

on LTO, or dynamically constructing the combined CFG. Finally, keep in mind that, in general, not

all control-flow transfers can be recovered from a binary.

Summing up, our classification scheme of control-flow transfers is as follows:

• CF.1: backward control-flow,

• CF.2: forward control-flow using direct jumps,

• CF.3: forward control-flow using direct calls,
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• CF.4: forward control-flow using indirect jumps,

• CF.5: forward control-flow using indirect calls supporting function pointers,

• CF.6: forward control-flow using indirect calls supporting vtables,

• CF.7: forward control-flow using indirect calls supporting Smalltalk-style method dispatch,

• CF.8: complex control-flow to support exception handling,

• CF.9: control-flow supporting language features such as dynamic linking, separate compila-

tion, etc.

According to this classification, the C programming language uses control-flow transfers 1–5, 8 (for

setjmp/longjmp) and 9, whereas the C++ programming language allows all control-flow transfers

except no. 7.

4.3.3 Classification of Static Analysis Precision

As we saw in Section 4.3.1, the security guarantees of a CFI mechanism ultimately depend on

the precision of the CFG that it computes. This precision is in turn determined by the type of

static analysis used. The following classification summarizes prior work to determine forward

control-flow transfer analysis precision . In order of increasing static analysis precision (SAP), our

classifications are:

• SAP.F.0: No forward branch validation

• SAP.F.1a: ad-hoc algorithms and heuristics

• SAP.F.1b: context- and flow-insensitive analysis

• SAP.F.1c: labeling equivalence classes

• SAP.F.2: class-hierarchy analysis
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• SAP.F.3: rapid-type analysis

• SAP.F.4a: flow-sensitive analysis

• SAP.F.4b: context-sensitive analysis

• SAP.F.5: context- and flow-sensitive analysis

• SAP.F.6: dynamic analysis (optimistic)

The following classification summarizes prior work to determine backward control-flow transfer

analysis precision:

• SAP.B.0: No backward branch validation

• SAP.B.1: Labeling equivalence classes

• SAP.B.2: Shadow stack

Note that there is well established and vast prior work in static analysis that goes well beyond the

scope of this discussion [138]. The goal of our systematization is merely to summarize the most

relevant aspects and use them to shed more light on the precision aspects of CFI.

4.3.4 Nomenclature and Taxonomy

Prior work on CFI usually classifies mechanisms into fine-grained and coarse-grained. Over time,

however, these terms have been used to describe different systems with varying granularity and have,

therefore, become overloaded and imprecise. In addition, prior work only uses a rough separation

into forward and backward control-flow transfers without considering sub types or precision. We

hope that the classifications here will allow a more precise and consistent definition of the precision

of CFI mechanisms underlying analysis, and will encourage the CFI community to use the most

precise techniques available from the static analysis literature.
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4.4 Static Analysis for CFI

Object-Oriented Programming Languages A C-like language requires call-string or type

context-sensitivity to compute precise results for function pointers. Due to dynamic dispatch,

however, a C++-like language should consider more context provided by object sensitivity [116, 125].

Alternatively, prior work describes several algorithms to “devirtualize” call-sites. If a static analysis

identifies that only one receiver is possible for a given call-site (i.e., if the points-to set is a singleton)

a compiler can sidestep expensive dynamic dispatch via the vtable and generate a direct call to the

referenced method. Class-hierarchy analysis (CHA) [62] and rapid-type analysis (RTA) [17] are

prominent examples that use domain-specific information about the class hierarchy to optimize

virtual method calls. RTA differs from CHA by pruning entries from the class hierarchy from objects

that have not been instantiated. As a result, the RTA precision is higher than CHA precision [83].

Grove and Chambers [83] study the topic of call-graph construction and present a partial order

of various approaches’ precision (Figure 19, pg. 735). With regards to CFI, higher precision in

the call-graph of virtual method invocations translates to either (i) more de-virtualized call-sites,

which replace an indirect call by a direct call, or (ii) shrinking the points-to sets, which reduce

an adversary’s attack surface. Note that the former, de-virtualization of a call-site also has the

added benefit of removing the call-site from a points-to set and transforming an indirect control-

flow transfer to a direct control-flow transfer that need not be validated by the CFI enforcement

component.

4.4.1 A Practical Perspective

Points-to analysis over-approximation reduces precision and therefore restricts the optimization

potential of programs. The reduced precision also lowers precision for CFI, opening the door for

attackers. If, for instance, the over-approximated set of computed targets contains many more

“reachable” targets, then an attacker can use those control-flow transfers without violating the CFI
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policy. Consequently, prior results from studying the precision of static points-to analysis are of key

importance to understanding CFI policies’ security properties.

Mock et al. have studied dynamic points-to sets and compared them to statically determined points-

to sets [128]. More precisely, the study used an instrumentation framework to compute dynamic

points-to sets and compared them with three flow- and context-insensitive points-to algorithms. The

authors report that static analyses identified 14% of all points-to sets as singletons, whereas dynamic

points-to sets were singletons in 97% of all cases. In addition, the study reports that one out of two

statically computed singleton points-to sets were optimal in the sense that the dynamic points-to sets

were also singletons. The authors describe some caveats and state that flow and context sensitive

points-to analyses were not practical in evaluation since they did not scale to practical programs.

Subsequent work has, however, established the scalability of such points-to analyses [86–88], and a

similar experiment evaluating the precision of computed results is warranted.

Concerning the analysis of devirtualized method calls, prior work reports the following results.

By way of manual inspection, Rountev et al. [164] report that 26% of call chains computed by

RTA were actually infeasible. Lhotak and Hendren [116] studied the effect of context-sensitivity to

improve precision on object-oriented programs. They find that context sensitivity has only a modest

effect on call-graph precision, but also report substantial benefits of context sensitivity to resolve

virtual calls. In particular, Lhotak and Hendren highlight the utility of object-sensitive analyses for

this task. Tip and Palsberg [187] present advanced algorithms, XTA among others, and report that it

improves precision over RTA, on average, by 88%.

4.4.2 Backward Control Flows

Figure 4.2 shows two functions, f and g, which call another function h. The return instruction in

function h can, therefore, return to either function f or g, depending on which function actually

called h at run-time. To select the proper caller, the compiler maintains and uses a stack of
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g
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{f, g}

Figure 4.2: Backward control-flow precision. Solid lines correspond to function calls and dashed
lines to returns from functions to their call sites. Call-sites are singletons whereas h’s return can
return to two callers.

activation records, also known as stack frames. Each stack frame contains information about the

CPU instruction pointer of the caller as well as bookkeeping information for local variables.

Since there is only one return instruction at the end of a function, even the most precise static

analysis can only infer the set of callers for all calls. Computing this set, inevitably, leads to

imprecision and all call-sites of a given function must therefore share the same label/ID such that

the CFI check succeeds. Presently, the only known alternative to this loss of precision is to maintain

a shadow stack and check whether the current return address equals the return address of the most

recent call instruction.

4.5 Security

In this section we present a security analysis of existing CFI implementations. Drawing on the

foundational knowledge in Section 4.3, we present a qualitative analysis of the theoretical security

of different CFI mechanisms based on the policies that they implement. We then give a quantitative

evaluation of a selection of CFI implementations. Finally, we survey previous security evaluations

and known attacks against CFI.
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Figure 4.3: CFI implementation comparison: supported control-flows (CF), reported performance
(RP), static analysis precision: forward (SAP.F) and backward (SAP.B). Backward (SAP.B) is
omitted for mechanisms that do not support back edges. Color coding of CFI implementations:
binary are blue, source-based are green, others red.

4.5.1 Qualitative Security Guarantees

Our qualitative analysis of prior work and proposed CFI implementations relies on the classifications

of the previous section (cf. Section 4.3) to provide a higher resolution view of precision and security.
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Figure 4.4: Quantitative comparison: control-flows (CF), quantitative security (Q), reported perfor-
mance (RP), static analysis precision: forward (SAP.F) and backward (SAP.B).

Figure 4.3 summarizes our findings among four dimensions based on the author’s reported results

and analysis techniques. Figure 4.4 presents our verified results for open source LLVM-based

implementations that we have selected. Further, it adds a quantitative argument based on our work

in Section 4.5.2.

In Figure 4.3 the axes and values were calculated as follows. Note that (i) the scale of each axis

varies based on the number of data points required and (ii) weaker/slower always scores lower and

stronger/faster higher. Therefore, the area of the spider plot roughly estimates the security/precision

of a given mechanism:

• CF: supported control-flow transfers, assigned based on our classification scheme in Sec-

tion 4.3.2;

• RP: reported performance numbers. Performance is quantified on a scale of 1-10 by taking

the arctangent of reported runtime overhead and normalizing for high granularity near the

median overhead. An implementation with no overhead receives a full score of 10, and one

with about 35% or greater overhead receives a minimum score of 1.

• SAP.F: static-analysis precision of forward control-flows, assigned based on our classification

in Section 4.3.3; and

• SAP.B: static-analysis precision of backward control-flows, assigned based on our classifica-

tion in Section 4.3.3.
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The shown CFI implementations are ordered chronologically by publication year, and the colors

indicate whether a CFI implementation works on the binary-level (blue), relies on source-code

(green), or uses other mechanisms (red), such as hardware implementations.

Our classification and categorization efforts for reported performance were hindered by method-

ological variances in benchmarking. Experiments were conducted on different machines, different

operating systems, and also different or incomplete benchmark suites. Classifying and categorizing

static analysis precision was impeded by the high level, imprecise descriptions of the implemented

static analysis by various authors. Both of these impediments, naturally, are sources of imprecision

in our evaluation.

Comprehensive protection through CFI requires the validation of both forward and backward

branches. This requirement means that the reported performance impact for forward-only ap-

proaches (i.e., SafeDispatch, T-VIP, VTV, IFCC, vfGuard, and VTint) is restricted to partial

protection. The performance impact for backward control-flows must be considered as well, when

comparing these mechanisms to others with full protection.

CFI mechanisms satisfying SAP.B.2, i.e., using a shadow stack to obtain high precision for backward

control-flows are: original CFI [5], MoCFI [58], HAFIX [13, 59], and Lockdown [151]. PathArmor

emulates a shadow stack through validating the last-branch register (LBR).

Increasing the precision of static analysis techniques that validate whether any given control-flow

transfer corresponds to an edge in the CFG decreases the performance of the CFI mechanism. Most

implementations choose to combine precise results of static analysis into an equivalence class.

Each such equivalence class receives a unique identifier, often referred to as a label, which the CFI

enforcement component validates at runtime. By not using a shadow stack, or any other comparable

high-precision backward control-flow transfer validation mechanism, even high precision forward

control-flow transfer static analysis becomes imprecise due to labeling. The explanation for this loss

in precision is straightforward: to validate a control-flow transfer, all callers of a function need to
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carry the same label. Labeling, consequently, is a substantial source of imprecision (see Section 4.5.2

for more details). The notable exception in this case is πCFI, which uses dynamic information, to

activate pre-determined edges, dynamically enabling high-resolution, precise control-flow graph

(somewhat analogous to dynamic points-to sets [128]. Borrowing a term from information-flow

control [165], πCFI can, however, suffer from label creep by accumulating too many labels from

the static CFG.

CFI implementations introducing imprecision via labeling are: the original CFI paper [5], control-

flow locking [23], CF-restrictor [152], CCFIR [211], MCFI [140], KCoFI [54], and RockJIT [141].

According to the criteria established in analyzing points-to precision, we find that at the time of this

writing, πCFI [143] offers the highest precision due to leveraging dynamic points-to information.

πCFI’s predecessors, RockJIT [141] and MCFI [140], already offered a high precision due to the

use of context-sensitivity in the form of types. Ideal PathArmor also scores well when subject to

our evaluation: high-precision in both directions, forward and backward, but is hampered by limited

hardware resources (LBR size) and restricting protection to the main executable (i.e., trusting

libraries). Lockdown [151] offers high precision on the backward edges but derives its equivalence

classes from the number of libraries used in an application and is therefore inherently limited in the

precision of the forward edges. IFCC [186] offers variable static analysis granularity. On the one

hand, IFCC describes a Full mode that uses type information, similar to πCFI and its predecessors.

On the other hand, IFCC mentions less precise modes, such as using a single set for all destinations,

and separating by function arity. With the exception of Hypersafe [197], all other evaluated CFI

implementations with supporting academic publications offer lower precision of varying degrees, at

most as precise as SAP.F.3.
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4.5.2 Quantitative Security Guarantees

Quantitatively assessing how much security a CFI mechanism provides is challenging as attacks are

often program dependent and different implementations might allow different attacks to succeed.

So far, the only existing quantitative measure of the security of a CFI implementation is Average

Indirect Target Reduction (AIR). Unfortunately, AIR is known to be a weak proxy for security [186].

A more meaningful metric must focus on the number of targets (i.e., number of equivalence classes)

available to an attacker. Furthermore, it should recognize that smaller classes are more secure,

because they provide less attack surface. Thus, an implementation with a small number of large

equivalence classes is more vulnerable than an implementation with a large number of small

equivalence classes.

One possible metric is the product of the number of equivalence classes (EC) and the inverse of the

size of the largest class (LC), see Equation 4.1. Larger products indicate a more secure mechanism

as the product increases with the number of equivalence classes and decreases with the size of the

largest class. More equivalence classes means that each class is smaller, and thus provides less

attack surface to an adversary. Controlling for the size of the largest class attempts to control for

outliers, e.g., one very large and thus vulnerable class and many smaller ones. A more sophisticated

version would also consider the usability and functionality of the sets. Usability considers whether

or not they are located on an attacker accessible “hot” path, and if so how many times they are used.

Functionality evaluates the quality of the sets, whether or not they include “dangerous” functions

like mprotect. A large equivalence class that is pointed to by many indirect calls on the hot path

poses a higher risk because it is more accessible to the attacker.

EC ∗ 1

LC
= QuantitativeSecurity (4.1)
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This metric is not perfect, but it allows a meaningful direct comparison of the security and precision

of different CFI mechanisms, which AIR does not. The gold standard would be adversarial analysis.

However, this currently requires a human to perform the analysis on a per-program basis. This leads

to a large number of methodological issues: how many analysts, which programs and inputs, how

to combine the results, etc. Such a study is beyond the scope of this work, which instead uses our

proposed metric which can be measured programatically.

This section measures the number and sizes of sets to allow a meaningful, direct comparison

of the security provided by different implementations. Moreover, we report the dynamically

observed number of sets and their sizes. This quantifies the maximum achievable precision from the

implementations’ CFG analysis, and shows how over-approximate they were for a given execution

of the program.

Implementations

We evaluate four compiler-based, open-source CFI mechanisms IFCC, LLVM-CFI, MCFI, and

πCFI. For IFCC and MCFI we also evaluated the different analysis techniques available in the

implementation. Note that we evaluate two different versions of LLVM-CFI, the first release in

LLVM 3.7 and the second, highly modified version in LLVM 3.9. In addition to the compiler-based

solutions, we also evaluate Lockdown, which is a binary-based CFI implementation.

MCFI and πCFI already have a built-in reporting mechanism. For the other mechanisms we extend

the instrumentation pass and report the number and size of the produced target sets. We then used

the implementations to compile, and for πCFI run, the SPEC CPU2006 benchmarks to produce the

data we report here. πCFI must be run because it does dynamic target activation. This does tie our

results to the ref data set for SPEC CPU2006, because as with any dynamic analysis the results will

depend on the input.
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IFCC3 comes with four different CFG analysis techniques: single, arity, simplified, and full.

Single creates only one equivalence class for the entire program, resulting in the weakest possible

CFI policy. Arity groups functions into equivalence classes based on their number of arguments.

Simplified improves on this by recognizing three types of arguments: composite, integer, or function

pointer. Full considers the precise return type and types of each argument. We expect full to yield

the largest number of equivalence classes with the smallest sizes, as it performs the most exact

distribution of targets.

Both MCFI and πCFI rely on the same underlying static analysis. The authors claim that disabling

tail calls is the single most important precision enhancement for their CFG analysis [142]. We

measure the impact of this option on our metric. MCFI and πCFI are also unique in that their policy

and enforcement mechanisms consider backward edges as well as forward edges. When comparing

to other implementations, we only consider forward edges. This ensures direct comparability for

the number and size of sets. The results for backward edges are presented as separate entries in the

figures.

As of LLVM 3.7, LLVM-CFI could not be directly compared to the other CFI implementations

because its policy was strictly more limited. Instead of considering all forward, or all forward and

backward edges, LLVM-CFI 3.7 focused on virtual calls and ensures that virtual, and non-virtual

calls are performed on objects of the correct dynamic type. As of LLVM 3.9, LLVM-CFI has added

support for all indirect calls. Despite these differences, we show the full results for both LLVM-CFI

implementations in all tables and graphs.

Lockdown is a CFI implementation that operates on compiled binaries and supports the instru-

mentation of dynamically loaded code. To protect backward edges, Lockdown enforces a shadow

stack. For the forward edge, it instruments libraries at runtime, creating one equivalence class per

library. Consequently, the set size numbers are of the greatest interest for Lockdown. Lockdown’s

precision depends on symbol information, allowing indirect calls anywhere in a particular library if

3Note that the IFCC patch was pulled by the authors and will be replaced by LLVM-CFI.
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it is stripped. Therefore, we only report the set sizes for non-stripped libraries where Lockdown is

more precise.

To collect the data for our lower bound, we wrote an LLVM pass. This pass instruments the program

to collect and report the source line for each indirect call, the number of different targets for each

indirect call, and the number of times each of those targets was used. This data is collected at

runtime. Consequently, it represents only a subset of all possible indirect calls and targets that are

required for the sample input to run. As such, we use it to present a lower bound on the number of

equivalence sets (i.e. unique indirect call sites) and size of those sets (i.e. the number of different

locations called by that site).

4.6 Quantitative security results

We conducted three different quantitative evaluations in line with our proposed metric for evalu-

ating the overall security of a CFI mechanism and our lower bound. For IFCC, LLVM-CFI (3.7

and 3.9), and MCFI it is sufficient to compile the SPEC CPU2006 benchmarks as they do not

dynamically change their equivalence classes. πCFI uses dynamic information, so we had to run

the SPEC CPU2006 benchmarks. Similarly, Lockdown is a binary CFI implementation that only

operates at run time. We highlight the most interesting results in Figure 4.4, see Table 4.1 in

Section 4.6 for the full data set.

Figure 4.5 shows the number of equivalence classes for the five CFI implementations that we evalu-

ated, as well as their sub-configurations. As advertised, IFCC Single only creates one equivalence

class. This IFCC mode offers the least precision of any implementation measured. The other

IFCC analysis modes only had a noticeable impact for perlbench and soplex. Indeed, on the sjeng

benchmark all four analysis modes produced only one equivalence class.

On forward edges, MCFI and πCFI are more precise than IFCC in all cases except for perlbench
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Figure 4.5: Total number of forward-edge equivalence classes when running SPEC CPU2006
(higher is better).

where they are equivalent. LLVM-CFI 3.9 is more precise than IFCC while being less precise than

MCFI. MCFI and πCFI are the only implementations to consider backward edges, so no comparison

with other mechanisms is possible on backward edge precision. Relative to each other, πCFI’s

dynamic information decreases the number of equivalence classes available to the attacker by 21.6%.

The authors of MCFI and πCFI recommend disabling tail calls to improve CFG precision. This only

impacts the number of sets that they create for backward edges, not forward edges, see Section 4.6.

As such this compiler flag does not impact most CFI implementations, which rely on a shadow

stack for backward edge security.

LLVM-CFI 3.7 creates a number of equivalence classes equal to the number of classes used in the

C++ benchmarks. Recall that it only provides support for a subset of indirect control-flow transfer

types. However, we present the results in Figure 4.5 and Figure 4.6 to show the relative cost of

protecting vtables in C++ relative to protecting all indirect call sites.

We quantify the set sizes for each of the four implementations in Figure 4.6. We show box and
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Figure 4.6: Whisker plot of equivalence class sizes for different mechanisms when running SPEC
CPU2006. (Smaller is Better)

whisker graphs of the set sizes for each implementation. The red line is the median set size and

a smaller median set size indicates more secure mechanisms. The blue box extends from the 25th

percentile to the 75th, smaller boxes indicate a tight grouping around the median. An implementation

might have a low median, but large boxes indicate that there are still some large equivalence classes

for an attacker to target. The top whisker extends from the top of the box for 150% of the size of

the box. Data points beyond the whiskers are considered outliers and indicate large sets. This plot

format allows an intuitive understanding of the security of the distribution of equivalence class sizes.

Lower medians and smaller boxes are better. Any data points above the top of the whisker show

very large, outlier equivalence classes that provide a large attack surface for an adversary.

Note that IFCC only creates a single equivalence class for xalancbmk and namd (except for the

Full configuration on namd which is more precise). Entries with just a single equivalence class

are reported as only a median. IFCC data points allow us to rank the different analysis methods,

based on the results for benchmarks where they actually impacted set size: perlbench and soplex.

In increasing order of precision (least precise to most precise) they are: single, arity, simplified,

and full. This does not necessarily mean that the more precise analysis methods are more secure,
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however. For perlbench the more precise methods have outliers at the same level as the median for

the least precise (i.e., single) analysis. For soplex the outliers are not as bad, but the full outlier is the

same size as the median for arity. While increasing the precision of the underlying CFG analysis

increases the overall security, edge cases can cause the incremental gains to be much smaller than

anticipated.

The MCFI forward-edge data points highlight this. The MCFI median is always smaller than the

IFCC median. However, for all the benchmarks where both ran, the MCFI outliers are greater than

or equal to the largest IFCC set. From a quantitative perspective, we can only confirm that MCFI is

at least as secure as IFCC. The effect of the outlying large sets on relative security remains an open

question, though it seems likely that they provide opportunities for an attacker.

LLVM-CFI 3.9 presents an interesting compromise. As the full set of whisker plots in Section 4.6

shows, it has fewer outliers. However, it also has, on average, a greater median set size. Given

the open question of the importance of the outliers, LLVM-CFI 3.9 could well be more secure in

practice.

LLVM-CFI 3.7’s sets do not have extreme outliers as only virtual calls are protected. Additionally,

Figure 4.6 shows that the equivalence classes that are created have a low variance, as seen by the

more compact whisker plots that lack the large number of outliers present for other techniques. As

such, LLVM-CFI 3.7 does not suffer from the edge cases that effect more general analyzes.

Lockdown consistently has the largest set sizes, as expected because it only creates one equivalence

class per library and the SPEC CPU2006 benchmarks are optimized to reduce the amount of external

library calls. These sets are up to an order of magnitude larger than compiler techniques. However,

Lockdown isolates faults into libraries as each library has its independent set of targets compared to

a single set of targets for other binary-only approaches like CCFIR and binCFI.

The lower bound numbers were measured dynamically, and as such encapsulate a subset of the

actual equivalence sets in the static program. Further, each such set is at most the size of the static
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set. Our lower bound thus provides a proxy for an ideal CFI implementation in that it is perfectly

precise for each run. However, all of the IFCC variations report fewer equivalence classes than our

dynamic bound.

The whisker plots for our dynamic lower bound in Figure 4.6 show that some of the SPEC CPU2006

benchmarks inherently have outliers in their set sizes. For perlbench, gcc, gobmk, h264ref, om-

netpp, and xalancbmk our dynamic lower bound and the static set sizes from the compiler-based

implementations all have a significant number of outliers. This provides quantitative backing to

the intuition that some code is more amenable to protection by CFI. Evaluating what coding styles

and practices make code more or less amenable to CFI is out of scope here, but would make for

interesting future work.

Note that for namd and soplex in Figure 4.6 there is no visible data for our dynamic lower bound

because all the sets had a single element. This means the median size is one which is too low to be

visible. For all other mechanisms no visible data means the mechanism was incompatible with the

benchmark.

Table 4.1 contains the number of equivalence sets for each benchmark and every CFI mechanism that

we evaluated. Figure 4.7 contains the full set of box and whisker plots. As this data is fundamentally

three dimensional, these plots are the best way to display it. As a final note, the holes in this data

reflect the fact that the CFI mechanisms that we evaluated cannot run the full set of SPEC CPU2006

benchmarks. This greatly complicates the task of comparatively evaluating them, as there is only a

narrow base of programs that all the CFI mechanisms run.

4.6.1 Previous Security Evaluations and Attacks

Evaluating the security of a CFI implementation is challenging because exploits are program

dependent and simple metrics do not cover the security of a mechanism. The Average Indirect target
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Table 4.1: Full quantitative security results for number of equivalence classes.

Reduction (AIR) metric [212] captures the average reduction of allowed targets, following the idea

that an attack is less likely if fewer targets are available. This metric and variants were then used to

measure new CFI implementations, generally reporting high numbers of more than 99%. Such high
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Figure 4.7: Whisker plot of equivalence classes size for all SPEC CPU2006 benchmarks across all
implementations (smaller is better).
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numbers give the illusion of relatively high security but, e.g., if a binary has 1.8 MB of executable

code (the size of the glibc on Ubuntu 14.04), then an AIR value of 99.9% still allows 1,841 targets,

likely enough for an arbitrary attack. A similar alternative metric to evaluate CFI effectiveness is

the gadget reduction metric [140]. Unfortunately, these simple relative metrics give, at best, an

intuition for security and we argue that a more rigorous metric is needed.

A first set of attacks against CFI implementations targeted coarse-grained CFI that only had 1-3

equivalence classes [34, 60, 81]. These attacks show that equivalence classes with a large number

of targets allow an attacker to execute code and system calls, especially if return instructions are

allowed to return to any call site.

Counterfeit Object Oriented Programming (COOP) [167] introduced the idea that whole C++

methods can be used as gadgets to implement Turing-complete computation. Virtual calls in C++

are a specific type of indirect function calls that are dispatched via vtables, which are arrays of

function pointers. COOP shows that an attacker can construct counterfeit objects and, by reusing

existing vtables, perform arbitrary computations. This attack shows that indirect calls requiring

another level-of-indirection (e.g., through a vtable) must have additional checks that consider the

types at the language level for the security check as well.

Control Jujutsu [74] extends the existing attacks to so-called fine-grained CFI by leveraging the

imprecision of points-to analysis. This work shows that common software engineering practices

like modularity (e.g., supporting plugins and refactoring) force points-to analysis to merge several

equivalence classes. This imprecision results in target sets that are large enough for arbitrary

computation.

Control-Flow Bending [32] goes one step further and shows that attacks against ideal CFI are

possible. Ideal CFI assumes that a precise CFG is available that is not achievable in practice, i.e.,

if any edge would be removed then the program would fail. Even in this configuration attacks are

likely possible if no shadow stack is used, and sometimes possible even if a shadow stack is used.
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Several attacks target data structures used by CFI mechanisms. StackDefiler [49] leverages the

fact that many CFI mechanisms implement the enforcement as a compiler transformation. Due to

this high-level implementation and the fact that the optimization infrastructure of the compiler is

unaware of the security aspects, an optimization might choose to spill registers that hold sensitive

CFI data to the stack where it can be modified by an attack [6]. Any CFI mechanism will rely on

some runtime data structures that are sometimes writeable (e.g., when MCFI loads new libraries

and merges existing sets). Missing the Point [73] shows that ASLR might not be enough to hide

this secret data from an adversary.

4.7 Performance

While the security properties of CFI (or the lack thereof for some mechanisms) have received most

scrutiny in the academic literature, performance characteristics play a large part in determining

which CFI mechanisms are likely to see adoption and which are not. Szekeres et al. [185] surveyed

mitigations against memory corruption and found that mitigations with more than 10% overhead do

not tend to see widespread adoption in production environments and that overheads below 5% are

desired by industry practitioners.

Comparing the performance characteristics of CFI mechanisms is a non-trivial undertaking. Differ-

ences in the underlying hardware, operating system, as well as implementation and benchmarking

choices prevents apples-to-apples comparison between the performance overheads reported in the

literature. For this reason, we take a two-pronged approach in our performance survey: for a number

of publicly available CFI mechanisms, we measure performance directly on the same hardware

platform and, whenever possible, on the same operating system, and benchmark suite. Additionally,

we tabulate and compare the performance results reported in the literature.

We focus on the aggregate cost of CFI enforcement. For a detailed survey of the performance cost

89



of protecting backward edges from callees to callers we refer to the recent, comprehensive survey

by Dang [56].

4.7.1 Measured CFI Performance

Selection Criteria It is infeasible to replicate the reported performance overheads for all major

CFI mechanisms. Many implementations are not publicly available or require substantial modifi-

cation to run on modern versions of Linux or Windows. We therefore focus on recent, publicly

available, compiler-based CFI mechanisms.

Several compiler-based CFI mechanisms share a common lineage. LLVM-CFI, for instance,

improves upon IFCC, πCFI improves upon MCFI, and VTI is an improved version of SafeDispatch.

In those cases, we opted to measure the latest available version and rely on reported performance

numbers for older versions.

Method Most authors use the SPEC CPU2006 benchmarks to report the overhead of their CFI

mechanism. We follow this trend in our own replication study. All benchmarks were compiled using

the -O2 optimization level. The benchmarking system was a Dell PowerEdge T620 dual processor

server having 64GiB of main memory and two Intel Xeon E5-2660 CPUs running at 2.20 GHz. To

reduce benchmarking noise, we ran the tests on an otherwise idle system and disabled all dynamic

frequency and voltage scaling features. Whenever possible, we benchmark the implementations

under 64-bit Ubuntu Linux 14.04.2 LTS. The CFI mechanisms were baselined against the compiler

they were implemented on top of: VTV on GCC 4.9, LLVM-CFI on LLVM 3.7 and 3.9, VTI on

LLVM 3.7, MCFI on LLVM 3.5, πCFI on LLVM 3.5. Since CFGuard is part of Microsoft Visual

C++ Compiler, MSVC, we used MSVC 19 to compile and run SPEC CPU2006 on a pristine 64-bit

Windows 10 installation. We report the geometric mean overhead averaged over three benchmark

runs using the reference inputs in Table 4.2.
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Some of the CFI mechanisms we benchmark required link-time optimization, LTO, which allows

the compiler to analyze and optimize across compilation units. LLVM-CFI and VTI both require

LTO, so for these mechanisms, we report overheads relative to a baseline SPEC CPU2006 run that

also had LTO enabled. The increased optimization scope enabled by LTO can allow the compiler to

perform additional optimizations such as de-virtualization to lower the cost of CFI enforcement.

On the other hand, LLVM’s LTO is less practical than traditional, separate compilation, e.g., when

compiling large, complex code bases. To measure the πCFI mechanism, we applied the author’s

patches4 for 7 of the SPEC CPU2006 benchmarks to remove coding constructs that are not handled

by πCFI’s control-flow graph analysis [140]. Likewise, the authors of VTI provided a patch for

the xalancbmk benchmark. It updates code that casts an object instance to its sibling class, which

can cause a CFI violation. We found these patches for hmmer, povray, and xalancbmk to also

be necessary for LLVM-CFI 3.9, which otherwise reports a CFI violation on these benchmarks.

VTI was run in interleaved vtable mode which provides the best performance according to its

authors [25].

Results Our performance experiments show that recent, compiler-based CFI mechanisms have

mean overheads in the low single digit range. Such low overhead is well within the threshold for

adoption specified by [185] of 5%. This dispenses with the concern that CFI enforcement is too

costly in practice compared to alternative mitigations including those based on randomization [107].

Indeed, mechanisms such as CFGuard, LLVM-CFI, and VTV are implemented in widely-used

compilers, offering some level of CFI enforcement to practitioners.

We expect CFI mechanisms that are limited to virtual method calls—VTV, VTI, LLVM-CFI 3.7—

to have lower mean overheads than those that also protect indirect function calls such as IFCC.

The return protection mechanism used by MCFI should introduce additional overhead, and πCFI’s

runtime policy ought to result in a further marginal increase in overhead. In practice, our results

show that LLVM-CFI 3.7 and VTI are the fastest, followed by CFGuard, πCFI, and VTV. The
4The patches are available at: https://github.com/mcfi/MCFI/tree/master/spec2006.
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reported numbers for IFCC when run in single mode show that it achieves -0.3%, likely due to

cache effects. Although our measured overheads are not directly comparable with those reported

by the authors of the seminal CFI paper, we find that researchers have managed to improve the

precision while lowering the cost5 of enforcement as the result of a decade worth of research into

CFI enforcement.

The geometric mean overheads do not tell the whole story, however. It is important to look closer at

the performance impact on benchmarks that execute a high number of indirect branches. Protecting

the xalancbmk, omnetpp, and povray C++ benchmarks with CFI generally incurs substantial over-

heads. All benchmarked CFI mechanisms had above-average overheads on xalancbmk. LLVM-CFI

and VTV, which take virtual call semantics into account, were particularly affected. On the other

hand, xalancbmk highlights the merits of the recent virtual table interleaving mechanism of VTI

which has a relatively low 3.7% overhead (vs. 1.4% reported) on this challenging benchmark.

Although povray is written in C++, it makes few virtual method calls [210]. However, it performs

a large number of indirect calls. The CFI mechanisms which protect indirect calls—πCFI, and

CFGuard—all incur high performance overheads on povray. Sjeng and h264ref also include a high

number of indirect calls which again result in non-negligible overheads particularly when using

πCFI with tail calls disabled to improve CFG precision. The hmmer, namd, and bzip2 benchmarks

on the other hand show very little overhead as they do not execute a high number of forward

indirect branches of any kind. Therefore these benchmarks are of little value when comparing the

performance of various CFI mechanisms.

Overall, our measurements generally match those reported in the literature. The authors of

VTV [186] only report overheads for the three SPEC CPU2006 benchmarks that were impacted the

most. Our measurements confirm the authors’ claim that the runtimes of the other C++ benchmarks

are virtually unaffected. The leftmost πCFI column should be compared to the reported column for

5Non-CFI related hardware improvements, such as better branch prediction [162], also help to reduce performance
overhead.
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πCFI. We measured overheads higher than those reported by Niu and Tan [143]. Both gobmk and

xalancbmk show markedly higher performance overheads in our experiments; we believe this is in

part explained by the fact that Niu and Tan used a newer Intel Xeon processor having an improved

branch predictor [162] and higher clock speeds (3.4 vs 2.2 GHz).

We ran πCFI in both normal mode and with tail calls disabled. The geometric mean overhead

increased by 1.9% with tail calls disabled. Disabling tail calls in turn increases the number of equiv-

alence classes on each benchmark Figure 4.5. This is a classic example of the performance/security

precision trade-off when designing CFI mechanisms. Implementers can choose the most precise

policy within their performance target. CFGuard offers the most efficient protection of forward

indirect branches whereas πCFI offers higher security at slightly higher cost.

4.7.2 Reported CFI Performance

The right-hand side of Table 4.2 lists reported overheads on SPEC CPU2006 for CFI mechanisms

that we do not measure. IFCC is the first CFI mechanism implemented in LLVM which was later

replaced by LLVM-CFI. MCFI is the precursor to πCFI. PathArmor is a recent CFI mechanism

that uses dynamic binary rewriting and a hardware feature, the Last Branch Record (LBR) [96]

register, that traces the 16 most recently executed indirect control-flow transfers. Lockdown is

a pure dynamic binary translation approach to CFI that includes precise enforcement of returns

using a shadow stack. C-CFI is a compiler-based approach which stores a cryptographically-secure

hash-based message authentication code, HMAC, next to each pointer. Checking the HMAC of a

pointer before indirect branches avoids a static points-to analysis to generate a CFG. ROPecker is a

CFI mechanism that uses a combination of offline analysis, traces recorded by the LBR register,

and emulation in an attempt to detect ROP attacks. Finally, the binCFI approach uses static binary

rewriting like the original CFI mechanism; binCFI is notable for its ability to protect stripped,

position-independent ELF binaries that do not contain relocation information.
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The reported overheads match our measurements: xalancbmk and povray impose the highest

overheads—up to 15% for ROPecker, which otherwise exhibits low overheads, and 1.7x for C-CFI.

The interpreter benchmark, perlbench, executes a high number of indirect branches, which leads to

high overheads, particularly for Lockdown, PathArmor, and binCFI.

Looking at CFI mechanisms that do not require re-compilation—PathArmor, Lockdown, ROPecker,

and binCFI we see that the mechanisms that only check the contents of the LBR before system calls

(PathArmor and ROPecker) report lower mean overheads than approaches that comprehensively

instrument indirect branches (Lockdown and binCFI) in existing binaries. More broadly, comparing

compiler-based mechanisms with binary-level mechanisms, we see that compiler-based approaches

are typically as efficient as the binary-level mechanisms that trace control flows using the LBR

although compiler-based mechanisms do not limit protection to a short window of recently executed

branches. More comprehensive binary-level mechanisms, Lockdown and binCFI generally have

higher overheads than compiler-based equivalents. On the other hand, Lockdown shows the

advantage of binary translation: almost any program can be analyzed and protected, independent

from the compiler and source code. Also note that Lockdown incurs additional overhead for its

shadow stack, while none of the other mechanisms in Table 4.2 have a shadow stack.

Although we cannot directly compare the reported overheads of binCFI with our measured overheads

for CFGuard, the mechanisms enforce CFI policies of roughly similar precision (compare Figure 4.3i

and Figure 4.3w). CFGuard, however, has a substantially lower performance overhead. This is

not surprising given that compilers operate on a high-level program representation that is more

amenable to static program analysis and optimization of the CFI instrumentation. On the other hand,

compiler-based CFI mechanisms are not strictly faster than binary-level mechanisms, C-CFI has the

highest reported overheads by far although it is implemented in the LLVM compiler.

Table 4.3 surveys CFI approaches that do not report overheads using the SPEC CPU2006 bench-

marks like the majority of recent CFI mechanisms do. Some authors, use an older version of the

SPEC benchmarks [5, 129] whereas others evaluate performance using, e.g., web browsers [98, 211],
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or web servers [151, 201]. Although it is valuable to quantify overheads of CFI enforcement on

more modern and realistic programs, it remains helpful to include the overheads for SPEC CPU2006

benchmarks.

Table 4.3: CFI performance overhead (%) reported from previous publications. A label of C

indicates we computed the geometric mean overhead over the listed benchmarks, otherwise it is the
published average.

Benchmarks Overhead
ROPGuard [76] PCMark Vantage, NovaBench, 3DMark06, Peacekeeper, 0.5%

Sunspider, SuperPI 16M
SafeDispatch [98] Octane, Kraken, Sunspider, Balls, linelayout, HTML5 2.0%
CCFIR [211] SPEC2kINT, SPEC2kFP, SPEC2k6INT C 2.1%
kBouncer [145] wmplayer, Internet Explorer, Adobe Reader C 4.0%
OCFI [129] SPEC2k 4.7%
CFIMon [201] httpd, Exim, Wu-ftpd, Memcached 6.1%
Original CFI [5] SPEC2k 16.0%

4.7.3 Discussion

As Table 4.2 shows, authors working in the area of CFI seem to agree to evaluate their mechanisms

using the SPEC CPU2006 benchmarks. There is, however, less agreement on whether to include

both the integer and floating point subsets. The authors of Lockdown report the most complete

set of benchmark results covering both integer and floating point benchmarks and the authors of

binCFI, πCFI, and MCFI include most of the integer benchmarks and a subset of the floating point

ones. The authors of VTV and IFCC only report subsets of integer and floating point benchmarks

where their solutions introduce non-negligible overheads. Except for CFI mechanisms focused

on a particular type of control flows such as virtual method calls, authors should strive to report

overheads on the full suite of SPEC CPU2006 benchmarks. In case there is insufficient time to

evaluate a CFI mechanism on all benchmarks, we strongly encourage authors to focus on the ones

that are challenging to protect with low overheads. These include perlbench, gcc, gobmk, sjeng,

omnetpp, povray, and xalancbmk. Additionally, it is desirable to supplement SPEC CPU2006

measurements with measurements for large, frequently targeted applications such as web browsers
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and web servers.

Although “traditional” CFI mechanisms (e.g., those that check indirect branch targets using a

pre-computed CFG) can be implemented most efficiently in a compiler, this does not automatically

make such solutions superior to binary-level CFI mechanisms. The advantages of the latter type of

approaches include, most prominently, the ability to work directly on stripped binaries when the

corresponding source is unavailable. This allows CFI enforcement to be applied independently of

the code producer and therefore puts the performance/security trade off in the hands of the end-users

or system administrators. Moreover, binary-level solutions naturally operate on the level of entire

program modules irrespective of the source language, compiler, and compilation mode that was

used to generate the code. Implementers of compiler-based CFI solutions on the other hand must

spend additional effort to support separate compilation or require LTO operation which, in some

instances, lowers the usability of the CFI mechanism [185].

4.8 Cross-cutting Concerns

This section discusses CFI enforcement mechanisms, presents calls to action identified by our study

for the CFI community, and identifies current frontiers in CFI research.

4.8.1 Enforcement Mechanisms

The CFI precursor Program Shepherding [101] was built on top of a dynamic optimization engine,

RIO. For CFI like security policies, Program Shepherding effects the way RIO links basic blocks

together on indirect calls. They improve the performance overhead of this approach by maintaining

traces, or sequences of basic blocks, in which they only have to check that the indirect branch target

is the same.
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Many CFI papers follow the ID-based scheme presented by Abadi et. al [5]. This scheme assigns a

label to each indirect control flow transfer, and to each potential target in the program. Before the

transfer, they insert instrumentation to insure that the label of the control flow transfer matches the

label of the destination.

Recent work from Google [48, 186] and Microsoft [124] has moved beyond the ID-based schemes

to optimized set checks. These rely on aligning metadata such that pointer transformations can be

performed quickly before indirect jumps. These transformations guarantee that the indirect jump

target is valid.

Hardware-Supported Enforcement Modern processors offer several hardware security-oriented

features. Data Execution Prevention is a classical example of how a simple hardware feature can

eliminate an entire class of attacks. Many processors also support AES encryption, random number

generation, secure enclaves, and array bounds checking via instruction set extensions.

Researchers have explored architectural support for CFI enforcement [13, 44, 59, 184] with the

goal of lowering performance overheads. A particular advantage of these solutions is that backward

edges can be protected by a fully-isolated shadow stack with an average overhead of just 2% for

protection of forward and backward edges. This stands in contrast to the average overheads for

software-based shadow stacks which range from 3 to 14% according to Dang [56].

There have also been efforts to repurpose existing hardware mechanisms to implement CFI [40,

145, 190, 208]. kBouncer [145] was first to demonstrate a CFI mechanism using the 16-entry LBR

branch trace facility of Intel x86 processors. The key idea in their kBouncer solution is to check

the control flow path that led up to a potentially dangerous system call by inspecting the LBR; a

heuristic was used to distinguish execution traces induced by ROP chains from legitimate execution

traces. ROPecker [40] subsequently extended LBR-based CFI enforcement to also emulate what

code would execute past the system call. While these approaches offer negligible overheads and do

not require recompilation of existing code, subsequent research showed that carefully crafted ROP

98



attacks can bypass both of these mechanisms [34, 60, 81]. The CFIGuard mechanism [208] uses the

LBR feature in conjunction with hardware performance counters to heuristically detect ROP attacks.

[201] used the branch trace store, which records control-flow transfers to a buffer in memory, rather

than the LBR for CFI enforcement. C-CFI [121] uses the Intel AES-NI instruction set to compute

cryptographically-enforced hash-based message authentication codes, HMACs, for pointers stored

in attacker-observable memory. By verifying HMACs before pointers are used, C-CFI prevents

control-flow hijacking. Mohan et. al. [129] leverage Intel’s MPX instruction set extension by

re-casting the problem of CFI enforcement as a bounds checking problem over a randomized CFG.

Most recently, Intel announced hardware support for CFI in future x86 processors [146]. Intel

Control-flow Enforcement Technology (CET) adds two new instructions, ENDBR32 and ENDBR64,

for forward edge protection. Under CET, the target of any indirect jump or indirect call must be a

ENDBR instruction. This provides coarse-grained protection where any of the possible indirect

targets are allowed at every indirect control-flow transfer. There is only one equivalence class

which contains every ENDBR instruction in the program. For backward edges, CET provides a

new Shadow Stack Pointer (SSP) register which is exclusively manipulated by new shadow stack

instructions. Memory used by the shadow stack resides in virtual memory and is protected with page

permissions. In summary, CET provides precise backward edge protection using a shadow stack,

but forward edge protection is imprecise because there is only one possible label for destinations.

4.8.2 Open Problems

As seen in Section 4.5.1 most existing CFI implementations use ad hoc, imprecise analysis tech-

niques when constructing their CFG. This unnecessarily weakens these mechanisms, as seen in

Section 4.5.2. All future work in CFI should use flow-sensitive and context-sensitive analysis for

forward edges, SAP.F.5 from Section 4.3.3. On backward edges, we recommend shadow stacks as

they have negligible overhead and are more precise than any possible static analysis. In this same
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vein, a study of real world applications that identifies coding practices that lead to large equivalence

classes would be immensely helpful. This could lead to coding best practices that dramatically

increase the security provided by CFI.

Quantifying the incremental security provided by CFI, or any other security mechanism, is an open

problem. However, a large adversarial analysis study would provide additional insight into the

security provided by CFI. Further, it is likely that CFI could be adapted as a result of such a study to

make attacks more difficult.

4.8.3 Research Frontiers

Recent trends in CFI research target improving CFI in directions beyond new analysis or enforcement

algorithms. Some approaches have sought to increase CFI protection coverage to include just-

in-time code and operating system kernels. Others leverage advances in hardware to improve

performance or enable new enforcement strategies. We discuss these research directions in the CFI

landscape which cross-cut the traditional categories of performance and security.

Protecting Operating System Kernels. In monolithic kernels, all kernel software is running at

the same privilege levels and any memory corruption can be fatal for security. A kernel is vastly

different from a user-space application as it is directly exposed to the underlying hardware and an

attacker in that space has access to privileged instructions that may change interrupts, page table

structures, page table permissions, or privileged data structures. KCoFI [54] introduces a first CFI

policy for commodity operating systems and considers these specific problems. The CFI mechanism

is fairly coarse-grained: any indirect function call may target any valid functions and returns may

target any call site (instead of executable bytes). Xinyang Ge et al. [78] introduce a precise CFI

policy inference mechanism by leveraging common function pointer usage patterns in kernel code

(SAP.F.4b on the forward edge and SAP.B.1 on the backward edge).
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Protecting Just-in-time Compiled Code. Like other defenses, it is important that CFI is deployed

comprehensively since adversaries only have to find a single unprotected indirect branch to compro-

mise the entire process. Some applications contain just-in-time, JIT, compilers that dynamically

emit machine code for managed languages such as Java and JavaScript. Niu and Tan [141] presented

RockJIT, a CFI mechanism that specifically targets the additional attack surface exposed by JIT

compilers. RockJIT faces two challenges unique to dynamically-generated code: (i) the code

heap used by JIT compilers is usually simultaneously writable and executable to allow important

optimizations such as inline caching [91] and on-stack replacement, (ii) computing the control-

flow graphs for dynamic languages during execution without imposing substantial performance

overheads. RockJIT solves the first challenge by replacing the original heap with a shadow code

heap which is readable and writable but not executable and by introducing a sandboxed code heap

which is readable and executable, but not writable. To avoid increased memory consumption,

RockJIT maps the sandboxed code heap and the shadow heap to the same physical memory pages

with different permissions. RockJIT addresses the second challenge by both (i) modifying the

JIT compiler to emit meta-data about indirect branches in the generated code and (ii) enforcing a

coarse-grained CFI policy on JITed code which avoids the need for static analysis. The authors argue

that a less precise CFI policy for JITed code is acceptable as long as both (i) the host application is

protected by a more precise policy and (ii) JIT-compiled code prevents adversaries from making

system calls. In the Edge browser, Microsoft has updated the JIT compilers for JavaScript and Flash

to instrument generated calls and to inform CFGuard of new control-flow targets through calls to

SetProcessValidCallTargets [75, 127, 199].

Protecting Interpreters. Control-flow integrity for interpreters faces similar challenges as just-in-

time compilers. Interpreters are widely deployed, e.g., two major web browsers, Internet Explorer

and Safari, rely on mixed-mode execution models that interpret code until it becomes “hot” enough

for just-in-time compilation [16], and some Desktop software, too, is interpreted, e.g., Dropbox’s

client is implemented in Python. We have already described the “worst-case” interpreters pose to CFI

from a security perspective: even if the interpreter’s code is protected by CFI, its actual functionality

101



is determined by a program in data memory. This separation has two important implications: (i)

static analysis for an interpreter dispatch routine will result in an over-approximation, and (ii)

it enables non-control data attacks through manipulating program source code in writeable data

memory prior to JIT compilation.

Interpreters are inherently dynamic, which on the one hand means, CFI for interpreters could rely

on precise dynamic points-to information, but on the other hand also indicates problems to build

a complete control-flow graph for such programs. Dynamically executing strings as code (eval)

further complicates this. Any CFI mechanism for interpreters needs to address this challenge.

Protecting Method Dispatch in Object-Oriented Languages. In C/C++ method calls use vtables,

which contain addresses to methods, to dynamically bind methods according to the dynamic type

of an object. This mechanism is, however, not the only possible way to implement dynamic

binding. Predating C++, for example, is Smalltalk-style method dispatch, which influenced the

method dispatch mechanisms in other languages, such as Objective-C and JavaScript. In Smalltalk,

all method calls are resolved using a dedicated function called send. This send function takes

two parameters: (i) the object (also called the receiver of the method call), and (ii) the method

name. Using these parameters, the send method determines, at call-time, which method to actually

invoke. In general, the determination of which methods are eligible call targets, and which methods

cannot be invoked for certain objects and classes cannot be computed statically. Moreover, since

objects and classes are both data, manipulation of data to hijack control-flow suffices to influence

the method dispatch for malicious intent. While Pewny and Holz [152] propose a mechanism for

Objective-C send-like dispatch, the generalisation to Smalltalk-style dispatch remains unsolved.
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4.9 Conclusions

Control-flow integrity substantially raises the bar against attacks that exploit memory corruption

vulnerabilities to execute arbitrary code. In the decade since its inception, researchers have made

major advances and explored a great number of materially different mechanisms and implementation

choices. Comparing and evaluating these mechanisms is non-trivial and most authors only provide

ad-hoc security and performance evaluations. A prerequisite to any systematic evaluation is a set of

well-defined metrics. We have proposed metrics to qualitatively (based on the underlying analysis)

and quantitatively (based on a practical evaluation) assess the security benefits of a representative

sample of CFI mechanisms. Additionally, we have evaluated the performance trade-offs and have

surveyed cross-cutting concerns and their impacts on the applicability of CFI.

Our systematization serves as an entry point and guide to the now voluminous and diverse literature

on control-flow integrity. Most importantly, we capture the current state of the art in terms of

precision and performance. We report large variations in the forward and backward edge precision

for the evaluated mechanisms with corresponding performance overhead: higher precision results

in (slightly) higher performance overhead.

We hope that our unified nomenclature will gradually displace the ill-defined qualitative distinction

between “fine-grained” and “coarse-grained” labels that authors apply inconsistently across publica-

tions. Our metrics provide the necessary guidance and data to compare CFI implementations in a

more nuanced way. This helps software developers and compiler writers gain appreciation for the

performance/security trade-off between different CFI mechanisms. For the security community,

this work provides a map of what has been done, and highlights fertile grounds for future research.

Beyond metrics, our unified nomenclature allows clear distinctions of mechanisms. These metrics,

if adopted, are useful to evaluate and describe future improvements to CFI.
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Chapter 5

Hardware Assisted Randomization of Data

5.1 Abstract

Data-oriented attacks are gaining traction thanks to advances in code-centric mitigation techniques

for memory corruption vulnerabilities. Previous work on mitigating data-oriented attacks includes

Data Space Randomization (DSR). DSR classifies program variables into a set of equivalence

classes, and encrypts variables with a key randomly chosen for each equivalence class. This thwarts

memory corruption attacks that introduce illegitimate data flows. However, existing implementations

of DSR trade precision for better run-time performance, which leaves attackers sufficient leeway

to mount attacks. We show that high precision and good run-time performance are not mutually

exclusive. We present HARD, a precise and efficient hardware-assisted implementation of DSR.

HARD distinguishes a larger number of equivalence classes, and incurs lower run-time overhead

than software-only DSR. Our implementation achieves run-time overheads of just 6.61% on average,

while the software version with the same protection costs 40.96%.
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5.2 Introduction

Memory corruption exploits remain an important attack vector in practice. Attempts to eliminate this

class of vulnerabilities are being undertaken from many angles including i) migration to type safe

languages, ii) static and dynamic program analysis, and iii) retrofitting unsafe code with memory

safety mechanisms. Automatic exploit mitigations have also been highly effective at driving up the

cost of exploitation, and are transparent to developers and end-users. They also avoid the substantial

overheads associated with full memory safety enforcement [133–135]. Mitigation techniques such

as Address Space Layout Randomization (ASLR), Data Execution Prevention, and Control Flow

Integrity (CFI) are widely deployed in modern systems. These techniques increase the difficulty of

performing arbitrary code execution attacks, which has encouraged attackers to explore alternatives

such as data-oriented attacks [38, 94, 95]. These attacks corrupt program’s data flow without

diverting its control flow.

Data Space Randomization (DSR) is a promising defense that mitigates data-oriented attacks [22,

29]. DSR thwarts unintended data flows while leaving all legitimate data flows unaffected. To do

so, DSR encrypts variables that are stored in the program’s memory, and it uses different random

keys to encrypt unrelated variables. Generating these keys with sufficient entropy makes the results

of load and store operations that violate the program’s intended data flow unpredictable, and thus

hinders reliable construction of data-oriented attacks.

Prior work on DSR makes several trade-offs that favor run-time performance over security. First,

existing versions of DSR do not encrypt variables that cannot be used as the base of an overflow

attack. This leaves programs unprotected against temporal memory exploits such as use-after-free

or uninitialized reads. Second, prior versions often use weak encryption keys to avoid the cost of

handling unaligned memory accesses. Lastly, existing implementations rely on imprecise program

analyses, which leads them to incorrectly classify many variables as related. As a result, these

unrelated variables are encrypted with the same keys. Many unintended data flows are therefore
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still possible, which gives attackers some leeway to construct exploits.

This motivated our work on Hardware-Assisted Randomization of Data (HARD), a hardware-

assisted implementation of more precise DSR. HARD offers greater security than prior approaches

by distinguishing more unrelated variables. To do this, HARD uses a context-sensitive points-to

analysis and generates encryption operations that use calling context-specific keys. HARD also

encrypts all of the program data, and consistently uses strong 64-bit encryption keys. Thus, unlike

existing schemes, HARD does not compromise its security guarantees for better run-time perfor-

mance. Furthermore, HARD incurs less overhead than prior work thanks to its hardware extensions:

specialized instructions to access encrypted data and efficient caches to manage encryption keys.

These extensions also shield our solution against information leakage attacks because the keys are

managed by the hardware and cannot be accessed from user-space.

5.3 Background

Our goal is to thwart attacks that violate the intended data flow of a program. Example 5.1 illustrates

two such violations: a use-after-free and an uninitialized read. Both types of unintended data flows

are highly relevant in practice. Use-after-free is commonly exploited to attack high-profile targets

such as web browsers and operating system kernels [157], and well-known Heartbleed bug was, at

its core, an uninitialized read vulnerability [71].

At lines (a-1) and (a-2) in the example, the program allocates and initializes a list, X, as

depicted in Figure 5.1-(a). At line (b-1), the program frees the second element of list X, so the

Next member of the first element becomes a dangling pointer. The program then allocates a new

list, Y, at line (b-2). The program now reads the contents of list Y without initialization at line

(b-3). Due to the deterministic nature of common memory allocators such as dlmalloc [112], the

two lists will likely be laid out in the memory as shown in Figure 5.1-(b). Thus, the data read at line
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struct list { struct list *Next; int Data; };
list *makeList(int Num) {
list *New = new list;
New->Next = Num ? makeList(Num-1) : 0;
return New;

}
void fillList(list* L, int base) {

if(L->Next) fillList(L->Next, base+1);
L->Data = base;

}
void dumpList(list* L) {

for (list* T = L; T->Next; T = T->Next)
printf("%d\n", T->Data);

}
int main(int argc, char** argv) {

list *X = makeList(3); // (a-1)
fillList(X,10); // (a-2)
free(X->Next); // (b-1)
list *Y = makeList(2); // (b-2)
dumpList(Y); // (b-3)
fillList(Y,20); // (c-1)
dumpList(X); // (c-2)
return 0;

}

Example 5.1: A synthesized program illustrating use-after-free and uninitialized read vulnerabilities.

X Next
Data=10

Next
Data=11

Next
Data=12

Next
Data=13

(a)

X Next
Data=10

Y
Next

Data=11
Next

Data=12
Next

Data=13

Next
Data=##

Next
Data=##

(b)

X Next
Data=10

Y
Next

Data=20
Next

Data=12
Next

Data=13

Next
Data=21

Next
Data=22

(c)

Figure 5.1: The diagram shows the lists generated in Example 5.1. (a) shows list X after initialization
at line (a-2). (b) shows the most likely layouts of lists X and Y at line (b-3). (c) shows the most
likely layouts of the lists at line (c-2).

(b-3) will likely include the recently free’d element of list X.
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The rest of the example demonstrates the use-after-free vulnerability. The program attempts to print

the contents of list X, whose second element was freed at line (b-1). A deterministic memory

allocator may allocate the list X as shown in Figure 5.1-(c), and the dumped list includes elements

of list Y.

5.3.1 Mitigation with DSR

DSR mitigates such unintended data flows by randomizing the representation of program data in

memory. DSR relies on alias analysis to compute the points-to relations between pointers and the

storage locations they can reference. Two pointers are considered aliases if they can reference the

same storage location. Similarly, a pointer p may alias named object o, if p can point to o. Based

on the alias analysis, DSR partitions storage locations into equivalence classes so that all storage

locations belong to an equivalence class. Any two storage locations that may alias each other belong

to the same equivalence class.

DSR encrypts storage locations belonging to different equivalence classes with distinct encryption

keys. Locations belonging to the same equivalence class, however, must be encrypted with the

same key. In the previous example, an ideal implementation of DSR would see that lists X and Y

are disjoint, and would encrypt them with different keys. An attacker that does not know the keys

cannot extract the true contents of the illegally read list element.

Unfortunately, existing implementations of DSR cannot prevent the exploits in this example [22, 29].

They do consider lists X and Y related because of the imprecise (context-insensitive) alias analysis

which does not consider the functions’ calling contexts. In the example, both X (at line (a-2))

and Y (at line (c-1)) are passed as an argument to fillList, and the context-insensitive alias

analysis will report that the formal argument L of fillList may alias both X and Y. Variables X

and Y will therefore be assigned to the same equivalence class.

We avoid this loss of precision by using a context-sensitive alias analysis. If we analyze our example
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program with a context-sensitive alias analysis, we obtain two sets of aliasing relations: one for

the calling context at line (a-2) where fillList’s formal argument L aliases X, and one for

the calling context at line (c-1) where L aliases Y. By taking the calling context into account,

we avoid having to treat X and Y as aliases and can therefore place them in different equivalence

classes.

Leveraging the greater precision of context-sensitive alias analyses is challenging since the DSR

instrumentation code must then take the calling context into account to determine which encryption

key should be used. We discuss this challenge at length in Section 5.5, and present a novel DSR

scheme that supports different contexts via dynamic key binding.

5.4 Threat Model

We assume the following threat model, which is realistic and consistent with related work in this

area [95, 182]:

• The victim program contains a memory corruption vulnerability that lets adversaries read and

write arbitrary locations as long as such accesses are permitted by the MMU.

• The victim program is protected against code injection by enforcing the W ⊕X policy such

that no executable code is writable.

• The victim program runs in user mode and that the host system’s software running in

supervisor mode has not been compromised.

• We do not consider side-channel attacks, flaws in the hardware, or adversaries that have

physical access to the system hosting the victim program.

Note that we do not require that ASLR is enabled, and we do not include any assumptions about it

in our threat model. The approach is fully compatible with ASLR, and additional randomness will
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increase security, for example by making known plaintext attacks harder (see Section 5.10).

5.5 DSR Design

We begin this section by providing a conceptual overview of our design, and then discuss several

key components in detail. Our design can either be realized in pure software, similar to prior

implementations of DSR, or supported by the hardware extensions we present in Section 5.6.

Our scheme transforms input programs at the compiler intermediate representation (IR) level. The

first step is a context-sensitive alias analysis that categorizes the program’s memory locations into

equivalence classes based on the points-to sets computed by this analysis. We then assign two

types of keys to the memory access instructions in the program, according to the equivalence

classes they access. We assign a static key to instructions that always accesses the same equivalence

class, regardless of its calling context, and a dynamic key to the others, which may access multiple

equivalent classes depending on the calling context. The static keys are directly embedded to the

data section of the program so that each instruction can fetch its key, while dynamic keys are passed

to a callee through the context frames, which the caller should construct. Our scheme transforms 1)

function call sites to construct context frames, 2) instructions that use static keys to fetch their keys

from the data section, 3) instructions that use dynamic keys to fetch their keys from the context

frame, 4) all store instructions to encrypt the data, and 5) all load instructions to decrypt the data.

5.5.1 Enabling Context Sensitivity

One of our primary goals is to support dynamic key assignment for memory instructions that may

access multiple equivalence classes depending on their calling contexts. We determine the set

of equivalence classes that can be accessed through dynamic keys as follows. For each function

in the program, we identify the set of equivalence classes reachable from the function’s pointer

arguments or pointer return value. From that set, we remove any equivalence classes which contain
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global variables. If an instruction accesses an equivalence class that contains global variables,

then that instruction always accesses that same class, regardless of which context the function is

called from. Thus, such an equivalence class can safely be removed from the set. The remaining

set of equivalence classes are the dynamic classes in that function. Other classes that are used in

the function, but that are not in the set (i.e., the classes that were removed because they contain

globals, and the classes that are not reachable from the pointer arguments or pointer return value),

are considered static classes. During instrumentation, we assign dynamic keys to memory access

instructions that target dynamic classes, and static keys to those that target static classes.

Managing Context Frames

We store dynamic keys in context frames. For each function that contains instructions with dynamic

keys, we first instrument all of the function’s callers to create the necessary context frame and to

populate the frame with the keys for the actual callee arguments. We then instrument the callee so

that instructions accessing dynamic classes read the keys from the context frame.

Handling Indirect Calls

Instrumenting indirect call sites complicates this process because if care is not taken, different target

functions could require different sets of dynamic keys, even if the target functions have the same

signature. To correctly instrument indirect call sites we constrain all functions that may be called

from the same call site to have the same dynamic classes.

Static Equivalence Classes

Every instruction that accesses a static class will always access that static class, regardless of the

calling context. Thus, we can safely assign static keys to instructions that access static classes.

Equivalence classes that contain global variables are always static classes. To understand why this is
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struct s
int a int b

EC key 11 22 33 44 AA BB CC DD

s.a key = EC key[0..3]
s.b key = (EC key >> 32)[0..3]

int a int b

AA BB CC DD

s.a key = EC key[0..3]
s.b key = EC key[0..3]

AA BB CC DD

Figure 5.2: Calculating keys for unaligned accesses under HARD (left side) and prior work by
Cadar et al. (right side). “EC key" is the key for the equivalence class.

always true, consider how a flow-insensitive alias analysis constructs equivalence classes. An alias

analysis evaluates all of the instructions in the program and incorporates any aliasing relationship

introduced by an instruction into the points-to sets. When a flow-insensitive alias analysis such as

ours evaluates a statement such as:

void* a = condition ? &global : &function_argument;

it will consider pointer a an alias for both global and function_argument, which will

therefore be placed into the same equivalence class. This equivalence class will now be a static

class, because, no matter which context this function is called from, any instruction that accesses

this static class can now potentially access the memory storage location occupied by global.

5.5.2 Memory Encryption

We instrument memory access operations so that the values are xor-encrypted before they are

stored to and after they are loaded from memory. The encryption/decryption instructions we add use

the unique randomly-generated 8-byte key we assign to their respective target equivalence classes.

To use 8-byte keys consistently for all equivalence classes, we must carefully handle memory

accesses which are not 8-byte aligned. For example, consider an equivalence class containing a

structure with two fields, as shown in Figure 5.2. When accessing field s.b, we should shift the

key to mask the field’s data with the correct part of the key (left side of the figure). Cadar et al.’s

DSR implementation assigns weaker, repeating keys (right side of Figure 5.2) to avoid costly shift

operations [29]. We use the hardware support to efficiently handle shift operations.
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Our design encrypts all possible equivalence classes. To reduce the run-time overhead, prior DSR

systems did not protect equivalence classes that are “safe”. An equivalence class is considered safe

if a static analysis can show that none of the accesses to that equivalence class can read or write

outside the bounds of the target object. This weakens their protection against temporal memory

errors such as use-after-free and uninitialized read. Our hardware extension enables higher level of

protection with reasonable overhead.

5.5.3 Support for External Code and Data

We designed our scheme to allow interaction with external code. To do so, we must ensure that any

encrypted data is decrypted before it is accessed by the external code, and re-encrypted afterwards.

Otherwise, we cannot encrypt any equivalence classes that include the data that is passed to the

external functions. To maximize the amount of memory we encrypt, we use wrapper functions

around calls to known external functions, as was done in prior DSR implementations. However,

we cannot encrypt accesses to external global variables because they could be accessed by external

code at any point.

We must also handle function pointers that may escape to external code. An escaping function

pointer could be called by the external code without the proper keys in the context frame. Therefore,

calls through this pointer must not require dynamic keys. However, it is still possible to pass

dynamic keys to direct calls to the same function. To handle this, we maintain two copies of the

affected functions—one that accepts dynamic keys and one that does not encrypt accesses to the

equivalence classes of the arguments. Note that an attacker may seek to use the version that does

not expect encrypted arguments. However, in order to redirect control flow to such a function, she

will need to overwrite a code pointer. This memory access will be encrypted, so the attacker will

already have to bypass DSR to perform such an overwrite.

113



5.6 Hardware Design

We designed an extension of the RISC-V architecture to accelerate our DSR scheme’s encryption

operations and to protect the encryption keys from information leakage attacks. The primary goal of

our hardware design is to achieve low overhead. To accomplish this we use a sophisticated hardware

design to accelerate the encryption operations used by DSR. If both the encryption key and the

data are in the cache, our hardware implementation is able to perform a load or store, key fetch,

and XOR within a single instruction without any additional latency or pipeline stalls compared to a

normal load or store instruction.

Core

Instruction Cache Key Cache Context Cache Data Cache

Level 2 Cache

Memory
Key Table Context Stack

Modified for HARD Added for HARD Allocated for HARD

Figure 5.3: Hardware overview for a HARD-enabled system.

Overview. HARD adds or modifies several hardware components, as shown in Figure 5.3. When

executing a HARD’ened program, the processor uses two reserved memory regions, the Context

Stack and the Key Table, to store and manage the encryption keys used by the program. The processor

accesses these regions directly using their physical addresses and the regions are not mapped into

the virtual address space of the protected program. This design ensures that the encryption keys

cannot be leaked, as the MMU forbids accesses to unmapped memory. The Key Table stores all

encryption keys used in the program. To support dynamically assigned keys, programs must create

context frames on the context stack and copy keys from the Key Table to the context frames.

Both the Context Stack and the Key Table have a corresponding cache: the Context Cache and the

Key Cache respectively. These caches are internal to the processor and cannot be read by an attacker.

Keys are always loaded through the corresponding caches, and if a key is not present in the cache,
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the processor will transparently fetch it from the corresponding memory region. To pair the caches

with their corresponding memory regions, each cache has a base register containing the physical

memory address of the associated memory region.

5.6.1 Hardware Initialization

The OS kernel is responsible for the initialization of the aforementioned memory regions and caches.

When the OS loads a HARD’ened program, the kernel allocates the Key Table and initializes it

with randomly generated encryption keys. The kernel then sets the base address register of the Key

Cache and activates the cache using a control register. Finally, the kernel allocates the Context Stack

and sets the base address register of the Context Cache.

5.6.2 New Instructions

HARD adds two sets of instructions. One set of instructions is used to load data from or store

data to encrypted memory. The other set of instructions is used to manage the Context Cache and

Context Stack.

Memory Access Instructions. The RISC-V instruction set architecture, which we extend, contains

nine load instructions and six store instructions. For each of these, HARD adds a specialized

version that decrypts data when loading or encrypts data when storing. The specialized instructions

use the same mnemonic as the original instructions, but have a um suffix (for loads) or m suffix (for

stores). The double-word load/store instructions, for example, look as follows:

• ldum rd, id(rb): load a double word from the virtual address stored in register rb,

decrypt the data with the key at index id in the Key Table/Context Stack, and write the

decrypted data to register rd.

• sdm rd, id(rb): encrypt the data in register rd with the key at index id in the Key
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Table/Context Stack and store the encrypted data to the virtual address in register rb as a

double word.

The type of encryption key is encoded in the Most Significant Bit (MSB) of the index id. If the

MSB is set to 0, the remainder of the index id is interpreted as an index into the Key Table, and the

instruction therefore has a statically assigned key. We refer to these index IDs as static IDs. If the

MSB is set to 1, the remainder of the index id is interpreted as an index into the current context

frame on the Context Stack, and the instruction therefore has a dynamically assigned key. We refer

to these index IDs as dynamic IDs.

Context Stack Management Instructions. The second group of instructions are used to manage

the Context Stack. Before a new context is entered, the program should prepare a new context frame

on the Context Stack and copy the keys used within the corresponding context into that frame. This

newly prepared context frame must then be activated before entering the corresponding context.

HARD offers four instructions to prepare, activate, and deactivate context frames.

• mksc dest_id, src_id: move the key at index src_id in the Key Table to slot

dest_id in the context frame under preparation.

• mkcc dest_id, src_id: move a key from slot src_id of the currently activated

context frame to slot dest_id of the context frame under preparation.

• drpush cur_len: deactivate the active context frame and activate the context frame under

preparation. cur_len is the number of slots in the current frame.

• drpop: deactivate the active context frame and activate the previous context frame.

The mksc, mkcc, and drpush instructions should be used just before calling a function to provide

the matching context frame. Similarly, the drpop instruction should be used just before a return to

restore the matching frame for the caller.
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5.7 DSR Implementation

We implemented our DSR scheme as a link-time optimization pass in LLVM/Clang 3.8 for RISC-V,

and use alias analysis algorithms from the PoolAlloc module [109].

5.7.1 Computing Equivalence Classes

We use Bottom-up Data Structure Analysis (Bottom-up DSA) [110] to categorize memory objects

into equivalence classes. Bottom-up DSA is a context- and field-sensitive points-to analysis that

scales well to large programs. It is context sensitive to arbitrary length acyclic call paths, and it is

speculatively field-sensitive. It is field-sensitive for type-safe code, and falls back to field-insensitive

for type-unsafe code. The algorithm is unification based and is not flow sensitive. The output of

Bottom-up DSA is a points-to graph for each function, which incorporates the aliasing effects of

all callees of that function (thus "Bottom-up"). A node in the points-to graph represents a set of

memory objects joined through aliasing relationships, and nodes represent disjoint sets of objects.

Each node therefore identifies a distinct equivalence class within that function. For each function

and its associated points-to graph, we assign equivalence classes based on Bhaktar and Sekar’s

mask assignment algorithm [22], with a slight modification to differentiate the static and dynamic

equivalence classes.

The first step in class assignment is identifying the dynamic equivalence classes. To handle indirect

calls, we constrain all possible targets of an indirect call site to have the same dynamic classes.

Bottom-up DSA can create classes of functions that are all callable from the same call site. The

analysis result for these functions is a single points-to graph shared by all functions in the class.

Within this graph all arguments and return values for these functions will share the same set of

nodes. We use this functionality to compute the set of dynamic classes for all functions in the class

simultaneously. We mark all nodes that are reachable from the pointer arguments and the pointer

return values of each function in the class, and then remove all nodes that contain global variables
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or are marked un-encryptable. The resulting nodes become the set of dynamic classes for every

function in the class. We use the same procedure for functions that are only called directly, but

apply the procedure individually to each function.

For each node and its associated equivalence class, we assign a dynamic ID if a node is marked as

dynamic and a static ID otherwise. If a node contains a global variable, we ensure that every such

class in all functions uses the same static ID. If a node is marked un-encryptable, we assign it a null

static ID which indicates that memory accesses to this class should not be instrumented.

5.7.2 Handling External Code and Data

To minimize the number of nodes that need to be marked as un-encryptable, we implemented

wrapper functions for the library functions that our benchmark programs call (cf. subsection 5.5.3).

A wrapper functions decrypts the variables in equivalence classes that may be accessed by an

external function, and re-encrypt them when that external function returns. The wrappers must

access keys from the Context Stack and use the new instructions for memory accesses. To ensure

that the correct instructions are used, the wrappers are written in C using inline assembly code. We

manually implemented the wrapper functions for all 71 C library functions used in SPEC CINT 2000.

Implementing new wrappers is straightforward; writing a wrapper generally takes just a few minutes

after consulting documentation such as man pages. Most wrappers have a predictable structure, and

generating wrappers for many common cases could be automated by adding annotations to augment

the type signature of the function with additional information. For example, an annotation would

distinguish between different uses of char* arguments, indicating if the pointer refers to a single

char variable, an array, or a null-terminated string.
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5.7.3 Program Transformation

Our transformation pass runs after all analysis steps have completed. It starts by creating a

constructor function that runs before the main function. The constructor encrypts the initial values

of all global variables. After we create the constructor, we annotate load and store operations

with the class ID assigned to the memory location accessed by the operation. Next, we insert the

instructions to manage the Context Stack. For each call site, we construct a mapping from the class

IDs of the actual arguments in the caller context to the dynamic IDs of the formal arguments of the

callee function. We use this mapping to insert the mksc and mkcc instructions, which initialize

the callee context. We insert drpush instructions directly before call instructions to switch to

the callee’s context, and we insert drpop before return instructions to restore the caller’s context.

During code generation, we emit the annotated loads and stores as specialized instructions with the

dynamic or static equivalence class ID encoded into the immediate operand.

5.8 Hardware Implementation

We implemented the proposed hardware architecture by extending one of the instances generated by

the Rocket Chip Generator [14]. This instance is composed of a Rocket Core [114] with a 16KiB

L1 instruction cache, a 16KiB L1 data cache, and a 256KiB unified L2 cache. We extended this

system with the two hardware components described in Section 5.6, the Key Cache and the Context

Cache. We also modified the core pipeline to interact with these caches.

5.8.1 Instruction Encoding

To avoid intrusive changes to the existing instruction decoder, we designed our specialized instruc-

tions to resemble the instructions they are based on. Our specialized instructions differ from their
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Core Pipeline

Fetch1 Fetch2 Decode Execute Memory Write Back

Key Cache

Tag Array Data Array

Context Cache

Data Array Controller

Figure 5.4: Overview of the modified Rocket core, showing the interaction between the original
core pipeline, the Key Cache and Context Cache added by HARD.

base instructions in only one respect: the specialized ones interpret their immediate fields as index

IDs, rather than memory offsets. This means that, like these memory offsets, the size of the index

IDs is limited to twelve bits. We use the most significant bit of the index ID to indicate whether the

index should be interpreted as an index into the Key Table, or an index into the current frame on the

Context Stack. This leaves us with eleven bits to encode the ID itself.

The mksc and mkcc instructions each require two index ID operands, a source ID and a destination

ID. For this reason, we based these instructions on the RISC-V instruction that can encode the

longest immediate field, which is 20 bits long. The semantics of the instructions defines the type of

index IDs they operate on, so we do not have to encode it in the MSB. The mksc instruction has

a static ID (index into the Key Table) and a dynamic ID (index into the current context frame) as

its operands, and the mkcc instruction has two dynamic IDs as operands. The size of these pairs

of index IDs cannot exceed the available 20 bits. We therefore limit the size of dynamic IDs to

nine bits, and the size of static IDs to eleven bits. This limits the size of the Key Table to 2048

entries and the size of the context frames to 512 slots. We analyzed a large number of programs

and found that 512 is a realistic limit to the number of dynamic keys in a single context frame. We

discuss the security impact of the Key Table size and how to handle programs that could use a larger

number of keys in Section 5.10. The other context management instructions, drpush and drpop,

are pseudo-instructions using the Control and Status Registers (CSR) interface.
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5.8.2 Processor Pipeline

We modified the core pipeline to enable interaction with the Key Cache and Context Cache, as

shown in Figure 5.4. The modified pipeline sends static and dynamic IDs to the Key Cache or

Context Cache, which respond with the corresponding statically or dynamically assigned encryption

keys respectively.

Key Cache

The Key Cache is a fully-associative cache that services requests for static IDs by loading the

corresponding keys from its data array or from the Key Table in the memory. The Key Cache has

two components: the pipeline depicted in Figure 5.4 and a miss handler. The cache has a tag array,

containing a set of (valid , id , offset) tuples. For a static ID whose key is currently present in the

Key Cache’s data array, this tuple gives us the offset of that static ID’s corresponding encryption

key in the data array. The data array has a size of 2KiB, which means that it can contain 256 keys.

If the core pipeline requests a key that is not present in the data array, the miss handler loads that

key directly from the Key Table. Keys are never written back to memory upon eviction from the

data array because the Key Table cannot be updated at run time.

Due to the tag array access and tag matching, our Key Cache takes two cycles to respond to a

request, even if the requested key is present in the data array. To avoid stalling the Execute stage,

we forward the raw instruction bytes from the Fetch2 stage to the Key Cache. The Key Cache uses

a minimal decoder to determine if the forwarded instruction contains a static ID. If the instruction

does indeed contain a static ID, the Key Cache will look up the corresponding key immediately.

This allows the Key Cache to provide the Execute stage with the appropriate key without stalling

if the key was present in the cache. Otherwise, it will stall the pipeline to fetch the key from the

memory.

121



Context Cache

The Context Cache consists of two major components, the stack controller and the data array,

following the design of a hardware stack with on-chip memory presented in earlier work [166]. The

cache has dedicated registers to keep track of the locations of three context frames: the previous

frame, the current (activated) frame, and the next frame. The Context Cache’s data array is 1KiB,

which is sufficient to store the top 128 slots on the Context Stack.

When the program copies an encryption key to the Context Stack using the mkcc or mksc instruc-

tions, the key will be stored directly in the corresponding slot of the next frame in the Cache’s

data array. This allows the Context Stack to minimize costly memory accesses. Whenever the

program executes a drpush or drpop instruction to activate a different frame, the stack controller

updates the dedicated registers accordingly. After executing one of these instructions, the cache

may evict the oldest entries or fetch entries from memory depending on the available space in the

data array. Eviction, fetching, and changes to the context frame registers happen at the last stage of

the pipeline. This creates a possible hazard for other instructions accessing the Context Cache. We

therefore modified the pipeline so that whenever a drpush or drpop instruction is decoded, or an

eviction or fetch is in progress, any instructions that access the context cache are stalled until the

drpush/drpop has finished executing, or the eviction/fetch has completed.

5.9 Evaluation

We implemented and tested several configurations of HARD’s analysis and instrumentation passes

and compared them to prior DSR implementations:

• The Prior DSR configuration mimics prior DSR implementations. For this configuration, we

implemented a context-insensitive points-to analysis to calculate the equivalence classes, but

we did not instrument accesses to safe objects and used weak encryption keys for unaligned
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Benchmark Prior DSR Full Key Size Full Ctx Insensitive Ctx Sensitive
SW Only SW Only HW Supp. SW Only HW Supp. SW Only HARD

164.gzip 11.42% 40.17% 3.19% 70.63% 4.43% 70.94% 7.68%
175.vpr 20.14% 40.29% 8.67% 51.24% 9.64% 51.57% 9.81%
176.gcc 12.35% 22.43% 3.23% 29.00% 3.93% 34.68% 6.37%
181.mcf 7.91% 7.88% 3.70% 7.80% 3.74% 7.85% 3.69%
186.crafty 35.61% 58.81% 6.77% 68.20% 7.03% 70.83% 8.04%
197.parser 3.59% 7.21% 0.43% 17.97% 0.87% 25.17% 4.70%
252.eon 10.85% 17.51% 6.18% 18.21% 5.55% 22.59% 8.88%
253.perlbmk 1.65% 1.58% 0.46% 22.22% 1.35% 23.19% 1.11%
254.gap 14.69% 14.20% 5.75% 21.48% 6.32% 24.26% 6.64%
255.vortex 11.95% 28.32% 2.58% 28.75% 4.33% 43.68% 12.33%
256.bzip2 8.52% 76.04% 5.17% 83.92% 6.81% 83.98% 5.78%
300.twolf 16.11% 29.11% 3.51% 48.43% 4.47% 54.13% 4.70%

geomean 12.60% 26.99% 4.11% 36.96% 4.85% 40.96% 6.61%

Table 5.1: Run-time overhead of HARD and software-only DSR on SPEC CINT 2000. HARD’s
run-time overhead is lower than prior DSR implementations, which provide weaker security guaran-
tee due to their less precise analyses and performance-oriented optimizations.

accesses (cf. subsection 5.5.2).

• The Full Key Size configuration uses the same analysis, but uses full 8-byte keys for all

memory accesses (including unaligned accesses).

• The Full Context Insensitive configuration also uses the context-insensitive analysis, but

encrypts accesses to all equivalence classes rather than just the unsafe ones.

• The Context Sensitive configuration uses HARD’s context-sensitive analysis to calculate

equivalence classes.

5.9.1 Performance

We measured the run-time overhead of all four of HARD’s configurations and evaluated them with

and without our architectural support. We instantiated HARD on a Xilinx Zynq ZC702 evaluation

board using the Rocket Chip Generator [14]. The board has an FPGA running at 25MHz and has

256MiB of DDR3 memory. We ran the RISC-V port of the Linux kernel 4.1.17, and modified

the kernel to initialize the Key Table and Context Stack on program startup. As our prototyping

platform is severely resource constrained, we evaluated the run-time performance using the SPEC

CINT 2000 instead of the more recent SPEC CPU 2006. For the same reason, we also ran the
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Bench- Prior Context Context Bench- Prior Context Context
mark DSR Insensitive Sensitive mark DSR Insensitive Sensitive

164.gzip 77 127 ( 64.9%) 145 ( 88.3%) nginx 250 348 (39.2%) 1396 (458.4%)
175.vpr 630 717 ( 13.8%) 801 ( 27.1%) ProFTPD 424 646 (52.4%) 818 ( 92.9%)
176.gcc 1221 2115 ( 73.2%) 2957 (142.2%) sshd 266 352 (32.3%) 412 ( 54.9%)
181.mcf 37 41 ( 10.8%) 41 ( 10.8%) WU-FTPD 579 719 (24.2%) 745 ( 28.7%)
186.crafty 943 1133 ( 20.2%) 1161 ( 23.1%) sudo 125 145 (16.0%) 178 ( 42.4%)
197.parser 289 343 ( 18.7%) 443 ( 53.3%) mcrypt 177 223 (26.0%) 257 ( 45.2%)
252.eon 1160 1556 ( 34.1%) 1722 ( 48.5%)
253.perlbmk 268 491 ( 83.2%) 528 ( 97.0%)
254.gap 196 394 (101.0%) 499 (154.6%)
255.vortex 763 911 ( 19.4%) 1598 (109.4%)
256.bzip2 71 96 ( 35.2%) 106 ( 49.3%)
300.twolf 442 692 ( 56.6%) 797 ( 80.3%)

precision ( 41.4%) ( 68.1%) precision (31.2%) ( 88.2%)increase increase

Table 5.2: The number of static equivalence classes that each analysis finds. For real world programs,
HARD identifies and distinguishes 88.2% more equivalence classes. The impact was notable in
case of nginx (458.4%), a widely used web server.

benchmark programs on the train inputs, as the board does not have enough memory to use the ref

inputs.

Table 5.1 shows our evaluation results for the four configurations. For the Prior DSR configuration,

we only have the results for software-only DSR as our hardware does not support variable-length

keys. Each increasingly secure configuration incurs additional overhead, which is substantially

reduced by HARD’s hardware component. The overhead of the most precise configuration is 6.61%

with hardware support, while the overhead of the software-only implementation is 40.96%.

5.9.2 Area Overhead

We used the yosys open synthesis suite to measure the hardware cost of HARD, and found

that HARD adds 21% die area to an unmodified core. Since HARD makes modifications to the

processor core and L1 caches only and yosys is unable to model L2 caches, the area cost is relative

to the unmodified processor core + L1 cache only. This number would, in other words, be much

lower if we also took L2 into consideration, or if we added HARD to a larger core such as those

found in a mainstream x86 CPU.

124



5.9.3 Precision

HARD can only stop data-oriented attacks if it can place the legitimate targets of attacker-controlled

instructions in different equivalence classes than memory locations the attacker wishes to access. If

an attacker-controlled instruction accesses a memory location in the same equivalence class as its

legitimate targets, an attack will likely succeed. This property also applies to other defenses that

rely on static analysis to restrict data flow, including Data-Flow Integrity [35] and WIT [7]. Thus,

it is important that the analysis distinguishes memory accesses into as many distinct equivalence

classes as possible.

To demonstrate the added security of our context-sensitive analysis, we compiled several programs

using three of the four different configurations of HARD and we counted the number of encrypted

equivalence classes under each configuration. We excluded Full Key Size from this comparison,

as it uses the exact same equivalence classes as Prior DSR. Table 5.2 shows the number of

encrypted equivalence classes for each configuration, as well as the percentage increase from

the first configuration.

We observe that HARD yields an increased number of equivalence classes compared to prior work

and context-insensitive DSR. The greatest increase in the number of equivalence classes was for

nginx. One of the reasons for the large improvement is that nginx uses a single logging function

called from many different program locations. When using a context-insensitive analysis, all

arguments to this function must be placed into a single equivalence class. With the context-sensitive

analysis, the arguments to the logging function are in independent equivalence classes for different

calling contexts. The loss of precision from a context-insensitive analysis increases the chances that

an attacker will manage to find vulnerable code that encrypts data with the desired encryption key.

It is important to note that the additional equivalence classes identified and protected by HARD

include memory that is considered safe and thus left unencrypted by prior work (cf. subsection 5.5.2).

This gives additional resistance against temporal memory vulnerabilities such as use-after-free or

uninitialized-read.
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Benchmark
Context Context

Benchmark
Context Context

Insensitive Sensitive Insensitive Sensitive
Average Max Average Max Average Max Average Max

164.gzip 1.21 8 1.09 8 nginx 3.56 2059 1.29 1318
175.vpr 1.21 71 1.13 48 ProFTPD 1.42 1586 0.88 1063
176.gcc 2.48 2824 1.87 2187 sshd 2.01 331 1.11 220
181.mcf 1.07 3 1.07 3 WU-FTPD 1.44 512 1.15 326
186.crafty 1.11 57 1.08 42 sudo 1.23 105 0.78 90
197.parser 1.73 379 1.41 290 mcrypt 1.01 151 0.90 140
252.eon 1.47 519 1.23 273
253.perlbmk 4.13 1875 4.24 1872
254.gap 4.18 1355 3.73 1270
255.vortex 2.99 1521 3.73 1071
256.bzip2 1.11 11 1.01 3
300.twolf 1.05 18 0.91 9

Table 5.3: Number of allocations per equivalence class.

Another important security property is the size of the equivalence classes, since the larger an

equivalence class gets, the easier it generally becomes to illegitimately access variables within

that class. To quantify equivalence class sizes, we modified our analyses to track the number of

allocation sites (global, stack, and heap) contained within an equivalence class. For global and

stack allocations, these correspond to variable declarations, for heap allocations they are calls to

heap allocator functions like malloc. We counted both the average and maximum number of

allocation sites per equivalence class, as shown in Table 5.3. The results show that, in general, the

context-sensitive analysis used gives lower number of allocation sites across the benchmarks. Note

that some benchmarks actually show an increase in average number of allocation sites. This is

because an allocation site can be counted multiple times in different contexts with context sensitive

analysis.

5.9.4 Real World Exploit

We evaluated our Context Sensitive configuration against a recent data-oriented attack presented by

Hu et al. [94]. Instead of porting the attack to the RISC-V platform, we tested the software-only

variant of HARD on x86 platform. The attack exploits a format string vulnerability in the wu-ftpd

server to perform privilege escalation. Specifically, the attack overwrites a global pointer to a

struct passwd. The overwritten pointer is later read and then dereferenced by the server, and
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the dereferenced value is interpreted as a user ID. This user ID is subsequently used as an argument

for a setuid call. By overwriting the global pointer with the address of a memory location that

contains a value of 0, which is the user ID of the root user, the attacker escalates the privileges of

the vulnerable application.

We built two versions of the wu-ftpd binary: a base and a HARD’ened version. We then tested

the exploit against both versions. The exploit was successful against the base version, but did not

work against the HARD’ened version. While the attacker is still able to overwrite the pointer in

the HARD’ened version, the subsequent read used a different encryption key than the instruction

that overwrote the pointer, making it impossible for the attacker to reliably control the outcome

of the overwrite. This causes the argument to the setuid call to be an unpredictable value.

HARD identifies three equivalence classes involved in this exploit: the class accessed by the

vulnerable instruction during valid executions, the class of the pointer variable, and the class used

for dereferences of the pointer. These classes are accessed using distinct keys, kv, kp, and kd

respectively. To reliably control the result of this exploit an attacker would have to guess two 64-bit

secret values, kv ⊕ kp and kd, and therefore has a low chance of succeeding.

5.10 Limitations

Hardware Limitations. HARD limits the size of static IDs to eleven bits, which limits the number

of equivalence classes with distinct keys to 2048. To run programs with over 2048 equivalence

classes, we are forced to assign some static IDs to multiple equivalence classes. Other techniques

that have a space constraint imposed on the protection mechanism are also limited in the protection

they can provide. For example, the entries in the color table used by WIT [7] are 1-byte long, which

limits WIT to use 256 distinct colors at most. HARD’s limit of 2048 IDs allows it to protect much

more complex programs than WIT. The security impact of static ID reuse could be reduced by

carefully choosing which equivalence classes may share IDs.
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Known Plaintext Attacks. Like the other DSR schemes, HARD is vulnerable against known

plaintext attacks because it uses xor operations with fixed keys to encrypt data. If an attacker

discloses encrypted data and knows the plaintext data, then she can recover the key which can be

used to craft a successful payload. However, to reliably disclose data, she must know the data

layout of the target program. Randomizing this data layout using ASLR or more fine-grained layout

randomization can therefore mitigate this attack vector [51].

Lack of Integrity. Randomizing data using xor operations does not provide any integrity checking.

This gives the attacker leeway to exchange encrypted data within the same equivalence class without

knowing the key. In order to craft an exploit using this technique, the attacker will still need to know

the meaning of the encrypted data, although they do not need to know the exact plaintext value.

This is analogous to the limitation of many CFI approaches where an adversary can swap a pointer

with another pointer as long as both pointers are allowed targets for a given indirect branch. The

lack of integrity checking is an example of a performance-security trade off, and like CFI, DSR

makes attacks substantially harder to construct.

Attacks on Skewed Values. Another attack vector against DSR is to target variables for which

the range of valid values is a small subset of the possible values for the data type. An example

is Boolean variables in C programs. A memory byte representing a Boolean value can have 28

different values, but only one of them will be interpreted as false. If an attacker wishes to change

a false value to true, the attack will have a high probability of succeeding. In practice, many C

programs are written such that Boolean variables will only have a limited number of values, often

just 0 or 1. Attacks targeting these values could be mitigated by using a range analysis to identify

the valid ranges and inserting checks to ensure the plaintext data is always within the allowed range.

Deployment Challenges. Hardware components have a longer time-to-market than a software

based solution. However, hardware vendors have shown that they are willing to develop hardware

components designed to prevent memory corruption exploits. Intel now provides Memory Protection

Extension for bounds checking [158], and Control-Flow Enforcement Technology for control
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flow integrity [97]. These commercial offerings are driven by consumer demand for effective

defenses with low overhead. HARD provides protection against a wide range of exploits with low

performance overhead, using moderate amounts of hardware resources, so we feel it justifies the

additional deployment challenges associated with a hardware-based solution.

5.11 Related Work

DSR was first proposed by Bhatkar et al. [22] and Cadar et al. [29]. Compared with those works,

HARD provides greater security by using context-sensitive analysis and by randomizing all data

using strong keys, which can be done efficiently thanks to our hardware support.

Data-Flow Integrity (DFI) [35] and Write Integrity Testing (WIT) [7] also perform alias analysis

to build a set of equivalence classes and define a data-flow policy. However, they instrument the

code to enforce the data flow and do not randomize the data representation. Both DFI and WIT

used a context-insensitive analysis, so HARD can stop attacks that are not detected by either DFI

or WIT due to the imprecise analysis. Thanks to its architectural support, HARD also incurs less

performance overhead.

HDFI [182] introduced the notion of Data-flow Isolation, which allows a program to place sensitive

data in isolated memory regions effectively and efficiently. The HDFI hardware is used to classify

instructions and prevent those in one group from accessing the memory accessed by the instructions

in the other group. However, HDFI only supports two groups because it uses one bit to distinguish

each group. HARD can classify the memory regions into 211 groups as it uses 11-bit IDs to identify

which class an instruction should access. HDFI is not accompanied with an automated way to

classify the instructions, while HARD relieves developers from this burden.

Enforcement of memory safety also mitigates data-only attacks because most attacks violate memory

safety. Memory safety enforcement usually does not rely on the precision of static analysis and it
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provides a deterministic protection. A number of either software-only or hardware-based memory

safety mechanisms have been proposed. However, some of these mechanisms cannot handle

memory reallocation correctly [37, 65, 79, 193]. Others are incompatible with unprotected external

code [147, 202]. More recently Softbound [134] used fat pointers with disjoint metadata to prevent

violation of spatial memory safety and maintain compatibility with unprotected external binaries,

and low fat pointer mechanisms [104, 106] have also been proposed to reduce the performance

cost. Subsequently, CETS [135] was proposed to prevent the violation of temporal safety by using

identifier to track the allocation states and disjoint metadata. Later DangSan, DangNull, FreeSentry

and Oscar [57, 113, 189, 207] addressed this by nullifying, invalidating or not reusing the pointers

to the freed objects.

Yang and Shin propose using a hypervisor to encrypt memory pages to provide memory secrecy from

the operating system and other processes [205]. Similar to our work, this technique uses hardware

(hypervisor mode) to support data encryption. However, an attempt to extend their technique to

provide intra-process data isolation would change the page lifetime assumptions of their paper

substantially, and incur substantial performance and memory overhead.

Works such as SeCage [118] or Intel’s MPK [96] are designed to restrict memory access to protect

secrets. These techniques could be used to control access to the encryption keys in HARD. However,

these systems are primarily intended for infrequently used secrets, while HARD does consider any

data “secret” and encrypts all program data. Our proposed hardware cache therefore provides a

performant solution to protect many keys.

5.12 Conclusion

We presented a hardware-assisted defense against memory corruption attacks. HARD provides

stronger protection than prior data space randomization implementations, with lower overhead. Our
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protection is stronger than prior work because (i) we use a context-sensitive analysis to distinguish

more illegitimate data flows, (ii) we encrypt all possible equivalence classes to protect against all

types of memory errors, and (iii) we always use 8-byte encryption keys to ensure sufficient key

entropy.

Our hardware extension allows us to provide strong protection with low overhead. HARD’s

overhead is just 6.61% on average, which is 6 times lower than a software-only implementation of

the same policy. The specialized hardware also protects encryption keys from information disclosure

attacks.
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Chapter 6

Contributions to Papers

Some of the chapters included in this thesis are based on papers which are the result of collaborative

work. The below details my involvement in each of these works.

Chapter 3 BinRec is joint work with my co-first authors Taddeus Kroes and Anil Aaltitnay. I

wrote the majority (>70%) of the text for the publication of the paper, and have greatly expanded

the content for this thesis. I drove the main direction for the publication. I implemented the

ELF stitching code, dynamic linking support, and external code trampoline prototypes, as well as

significant development and evaluation tooling support.

Chapter 5 The first author of this work is Brian Belleville. I created data only attacks to evaluate

the efficacy of the HARD defense and wrote the security evaluation. I also supported external code

compatibility by implementing wrappers to decrypt data flowing to libc.

Chapter 4 The first author of this work is Nathan Burow. I performed the performance evaluation

of the CFI works described in the paper. I wrote the performance section and outlined other sections

of the paper.
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Chapter 7

Conclusion

Let us discuss the conclusions we have reached on the research questions proposed in the introduc-

tion of this thesis.

• How does dynamic analysis compare with static analysis for binary rewriting? Dy-

namic analysis based binary rewriting holds promise to place control back in the hands of the

users. It lets users overcome more barriers to reverse engineering and modification on top of

static analysis based rewriting, like code obfuscation, see 3.6.2. On a more fundamental level,

dynamic analysis has different challenges than static. It easily overcomes the 5 challenges for

static rewriting, see 3.2, but has its own difficulties, namely achieving coverage, see 3.3.1.

Lifting to a standardized IR is a great advantage for binary rewriting, because it allows reuse

of analysis and transformation across frameworks. Dynamic analysis allow the production

of a binary that allows a more minimal set of behaviors than static approaches while still

remaining correct, which improves performance, see 3.5.2

• What are the limits of the protection against memory corruption we can apply to

binaries? Can we protect both data and control flows? Binary rewriting enables attack

surface reduction, as well as restricting the control and data flows to what the programmer
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intended by retrofitting hardening transformation to off-the-shelf binaries. With proper

engineering, binary rewriting frameworks can utilize security hardening transformations

originally written for source programs, see 3.6. Control flow integrity, see Chapter 4, based

on static analysis faces a larger challenge in binaries than in source programs, but dynamic

analysis enables the application of a much more restrictive control-flow integrity policy than

is a achievable statically, even with source code (see 3.6.1 ). Rewritten binaries have a unique

emulation representation of the programs that transforms control-flow into data-flow. In

Chapter 5 we introduced a state of the art defense that protects against data-only attacks with

context-sensitive, hardware assisted data space randomization. It would be excellent to apply

the protection to binaries, but the effective application of the technique depends on future

progress towards the symbolization of semantic values in the rewritten programs, see 3.7.
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[14] K. Asanović, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin, C. Celio, H. Cook, D. Dabbelt, J. Hauser,
A. Izraelevitz, S. Karandikar, B. Keller, D. Kim, J. Koenig, Y. Lee, E. Love, M. Maas, A. Magyar, H. Mao,
M. Moreto, A. Ou, D. A. Patterson, B. Richards, C. Schmidt, S. Twigg, H. Vo, and A. Waterman. The rocket
chip generator. Technical report, University of California, Berkeley, Apr 2016.

[15] T. M. Austin, S. E. Breach, and G. S. Sohi. Efficient Detection of All Pointer and Array Access Errors, volume 29.
ACM, 1994.

[16] J. Aycock. A brief history of just-in-time. ACM Computing Surveys, 35(2):97–113, 2003.
[17] D. F. Bacon and P. F. Sweeney. Fast static analysis of C++ virtual function calls. ACM SIGPLAN Notices,

31(10):324–341, oct 1996.
[18] E. Bauman, Z. Lin, and K. W. Hamlen. Superset disassembly: Statically rewriting x86 binaries without heuristics.

In NDSS, 2018.
[19] J. R. Bell. Threaded code. Communications of the ACM, 16(6):370–372, jun 1973.
[20] F. Bellard. Qemu, a fast and portable dynamic translator. In USENIX ATC, 2005.

135

https://www.oreans.com/codevirtualizer.php
https://vmpsoft.com/
https://arstechnica.com/gadgets/2017/11/microsoft-patches-equation-editor-flaw-without-fixing-the-source-code/
https://arstechnica.com/gadgets/2017/11/microsoft-patches-equation-editor-flaw-without-fixing-the-source-code/
https://arstechnica.com/gadgets/2017/11/microsoft-patches-equation-editor-flaw-without-fixing-the-source-code/
https://www.hex-rays.com/products/decompiler/support/
http://support.microsoft.com/kb/875352/EN-US


[21] B. Belleville, H. Moon, J. Shin, D. Hwang, J. M. Nash, S. Jung, Y. Na, S. Volckaert, P. Larsen, Y. Paek, and
M. Franz. Hardware assisted randomization of data. In Research in Attacks, Intrusions, and Defenses - 21st
International Symposium, RAID, 2018.

[22] S. Bhatkar and R. Sekar. Data space randomization. In Detection of Intrusions and Malware & Vulnerability
Assessment (DIMVA), 2008.

[23] T. Bletsch, X. Jiang, and V. Freeh. Mitigating code-reuse attacks with control-flow locking. In Annual Computer
Security Applications Conference (ACSAC), New York, New York, USA, 2011.

[24] A. Bougacha, G. Aubey, P. Collet, T. Coudray, J. Salwan, and A. de la Vieuville. Dagger: Decompiling to IR.
https://llvm.org/devmtg/2013-04/bougacha-slides.pdf, April 2013.

[25] D. Bounov, R. Kici, and S. Lerner. Protecting C++ dynamic dispatch through vtable interleaving. In Symposium
on Network and Distributed System Security (NDSS), 2016.

[26] D. Bruening, E. Duesterwald, and S. Amarasinghe. DynamoRIO. https://dynamorio.org.
[27] B. Buck and J. K. Hollingsworth. An API for runtime code patching. IJHPCA, 2000.
[28] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler, and M. Payer. Control-flow integrity: Precision,

security, and performance. ACM Comput. Surv., 2017.
[29] C. Cadar, P. Akritidis, M. Costa, J.-P. Martin, and M. Castro. Data randomization. Technical Report MSR-TR-

2008-120, Microsoft Research, 2008.
[30] C. Cadar, D. Dunbar, and D. R. Engler. Klee: Unassisted and automatic generation of high-coverage tests for

complex systems programs. In OSDI, 2008.
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