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Mitochondrial DNA Variation and Changes in Adiponectin
and Endothelial Function in HIV-Infected Adults

After Antiretroviral Therapy Initiation

Todd Hulgan,1 James H. Stein,2 Bruno R. Cotter,3 Deborah G. Murdock,1

Marylyn D. Ritchie,4 Michael P. Dube,5 Mariana Gerschenson,6 David W. Haas,1

and Francesca J. Torriani,3 for the AIDS Clinical Trials Group A5152s and DACS 252 Study Teams

Abstract

Studies in persons of European descent have suggested that mitochondrial DNA (mtDNA) haplogroups in-
fluence antiretroviral therapy (ART) toxicity. We explored associations between mtDNA variants and changes in
endothelial function and biomarkers among non-Hispanic white, ART-naive subjects starting ART. A5152s was
a substudy of A5142, a randomized trial of initial class-sparing ART regimens that included efavirenz or
lopinavir/ritonavir with nucleoside reverse transcriptase inhibitors (NRTIs), or both without NRTIs. Brachial
artery flow-mediated dilation (FMD) and cardiovascular biomarker assessments were performed at baseline and
at weeks 4 and 24. Ten haplogroup-defining mtDNA polymorphisms were determined. FMD and biomarker
changes from baseline to week 24 by mtDNA variant were assessed using Wilcoxon rank-sum tests. Thirty-nine
non-Hispanic white participants had DNA and 24-week data. The nonsynonymous m.10398A > G mtDNA poly-
morphism (N = 8) was associated with higher median baseline adiponectin (5.0 vs. 4.2 lg/ml; p = 0.003), greater
absolute ( - 1.9 vs. - 0.2 lg/ml) and relative ( - 33% vs. - 3%) adiponectin decreases ( p < 0.001 for both), and lower
week 24 brachial artery FMD (3.6% vs. 5.4%; p = 0.04). Individual mtDNA haplogroups, including haplogroups H
(N = 13) and U (N = 6), were not associated with adiponectin or FMD changes. In this small pilot study, adiponectin
and brachial artery FMD on ART differed in non-Hispanic whites with a nonsynonymous mtDNA variant asso-
ciated with several human diseases. These preliminary findings support the hypothesis that mtDNA variation
influences metabolic ART effects. Validation studies in larger populations and in different racial/ethnic groups that
include m.10398G carriers are needed.

Introduction

Metabolic abnormalities frequently complicate anti-
retroviral therapy (ART). Some protease inhibitors

cause dyslipidemia that contributes to increased rates of
cardiovascular disease, and have been associated with endo-
thelial dysfunction in HIV-infected1 and uninfected2–4 persons.
Nucleoside reverse transcriptase inhibitors (NRTIs) are asso-
ciated with mitochondrial and metabolic toxicities,5,6 including
endothelial dysfunction in some studies,7,8 but not in others.9

Mitochondrial DNA (mtDNA) encodes electron transport
chain subunits that are critical for energy production, and mi-

tochondrial function influences vascular health.10 Combina-
tions of single nucleotide polymorphisms (SNPs) within
mtDNA allow for categorization of individuals into hap-
logroups.11 Variation in mtDNA sequence has been implicated
in aging and neurodegenerative diseases,12 and more recently
in type 2 diabetes mellitus13 and metabolic syndrome.14 Our
group15,16 and others17–19 have identified mtDNA variants that
may influence metabolic ART toxicities in HIV-infected per-
sons. Potential roles for mitochondria in endothelial dysfunc-
tion and atherosclerosis have been described,20 and a recent
study reported associations between high-dose statins, mito-
chondrial dysfunction, and impaired endothelial function.21

1Vanderbilt University School of Medicine, Nashville, Tennessee.
2University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.
3University of California-San Diego, San Diego, California.
4Pennsylvania State University, University Park, Pennsylvania.
5University of Southern California, Keck School of Medicine, Los Angeles, California.
6University of Hawaii at Manoa, John A. Burns School of Medicine, Honolulu, Hawaii.

AIDS RESEARCH AND HUMAN RETROVIRUSES
Volume 29, Number 10, 2013
ª Mary Ann Liebert, Inc.
DOI: 10.1089/aid.2013.0079

1293



AIDS Clinical Trials Group (ACTG) study A5142 was a
randomized trial comparing class-sparing ART regimens for
the initial treatment of HIV infection.22 Metabolic results from
A5142 demonstrated less limb fat loss by dual-energy X-ray
absorptiometry (DEXA), but greater increases in fasting se-
rum lipids among persons receiving NRTI-sparing ART over
96 weeks.23 ACTG study A5152s was a substudy of A5142
designed to characterize endothelial function over the first 24
weeks of ART. Using brachial artery flow-mediated dilation
(FMD), this study demonstrated impaired endothelial func-
tion at baseline, but an improvement of endothelial function
at week 24 that was associated with the magnitude of HIV
RNA reduction, and was similar across treatment arms.24

Cardiovascular and metabolic biomarker data were also col-
lected in A5152s. In this pilot study, we explored relationships
between FMD, biomarkers, and mtDNA variants in a sub-
group of these trial subjects, with the primary hypothesis that
variation in mtDNA influences changes in endothelial func-
tion and biomarkers relevant for cardiovascular disease in
HIV-infected individuals receiving ART.

Materials and Methods

Study subjects

This analysis included subjects from ACTG study A5142
(NCT #00050895), a multicenter, randomized, open-label trial
that enrolled HIV-1-infected, ART-naive volunteers in the Uni-
ted States with plasma HIV-1 RNA ‡ 2,000 copies/ml.22 Subjects
were randomized to one of three class-sparing ART regimens:
lopinavir/ritonavir plus efavirenz (NRTI-sparing) or two NRTIs
plus either lopinavir/ritonavir [non-NRTI (NNRTI)-sparing] or
efavirenz (protease inhibitor-sparing). As described else-
where,22,23 investigator-selected NRTIs (zidovudine, stavudine,
or tenofovir) were given with lamivudine if the subject was
randomized to the NRTI-containing arms; randomization was
stratified by NRTI choice. A subgroup of A5142 subjects from six
U.S. sites also coenrolled in substudy A5152s (NCT #00050908)24

and underwent additional cardiovascular risk assessments at
baseline and 4 and 24 weeks after starting A5142 ART regimens.
Exclusions for A5152s included known cardiovascular disease,
diabetes mellitus, or current use of lipid-lowering medications,
antioxidant vitamin supplementation, or hormones at greater
than replacement doses. Pharmacologic treatment of diabetes
mellitus, dyslipidemia, and changes in doses of angiotensin-
converting enzyme inhibitors were not permitted on the study.
Race/ethnicity categories were by self-report.

This pilot analysis focused on ‘‘white, non-Hispanics’’ as data
on European mtDNA haplogroups from A5142 were available
from our prior study (Fig. 1).16 Protocols A5142, A5152s, and
A5128 (the ACTG Human DNA Repository) were approved by
institutional review boards at each study site, and subjects
provided written informed consent. The Vanderbilt Committee
for the Protection of Human Subjects and the ACTG approved
the use of deidentified genetic and clinical data.

Brachial artery flow-mediated dilation

Subjects underwent FMD at baseline and weeks 4 and 24 on
the same day as phlebotomy using recommended techniques,25

and were required to be fasting and to not have used tobacco
products for 8 h prior to the study.24 Trained sonographers per-
formed FMD assessments using standardized equipment at each

site. Steps were taken to minimize inter- and intrasonographer
variability, and measurements were performed by a single reader
at a core reading center blinded to subject information and
treatment arm.24 In A5152s subjects who underwent repeat scans
within 16 days of the week 24 scan (N = 20), the difference in FMD
was 0.26% ( - 0.43 to + 0.72%, p = 0.498). Blinded rereading of 57
scans revealed correlations of 0.97–0.99 ( p < 0.001) and small
median differences of - 0.14 to + 0.09% at each week.24

Cardiovascular and inflammatory biomarkers

Fasting blood samples were collected at baseline and weeks
4 and 24. Biomarker quantification (including adiponectin)
was performed using Luminex bead array (Linco Research, St.
Charles, MO) or ELISA (ALPCO Immunoassays, Salem, NH)
at Northwestern University (Chicago, IL). Routine lipid,
glucose, lipoprotein (a), and high-sensitivity C-reactive pro-
tein (hsCRP) quantification were performed at the ACTG
Central Metabolic Laboratory (Quest Diagnostics, Baltimore,
MD). Homeostasis model assessment-insulin resistance
(HOMA-IR) was determined using [fasting insulin (lIU/
ml) · fasting glucose (mg/dl)]/405.

DNA sequencing and mitochondrial
haplogroup determination

DNA for these analyses was isolated from whole blood
using PUREGENE (Gentra Systems Inc., Minneapolis, MN)

675 non-A5152s 

participants

19 non-A5128 

participants 

(without DNA)

39 non-Hispanic white with 

baseline biomarker data

(37 with baseline FMD)

24 non-white 

race/ethnicity

757 ACTG 

A5142 

participants

63 with DNA 

available in the 

ACTG Human 

DNA Repository

82 A5152s 

participants

FIG. 1. Flow diagram of study participants included in the
primary ACTG study (A5142), substudy (A5152s), and the
analyses presented here. ACTG, AIDS Clinical Trials Group;
FMD, (brachial artery) flow-mediated dilation.
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under protocol A5128 (the ACTG Human DNA Repository).
Genotyping was performed with the ABI PRISM 7900HT
Sequence Detection System (Applied Biosystems Inc., Foster
City, CA) using the 5¢ nuclease allelic discrimination Taqman
assay. Based on reported haplogrouping methods,26,27 we
characterized 10 mtDNA SNPs using probes and primers
described previously.15 In addition to haplogroup analyses
described below, we compared biomarker and FMD out-
comes by mtDNA variant (m.) 10398A > G (rs2853826) status.
This SNP was chosen because it is one of the SNPs used to
define haplogroups, is nonsynonymous (causing a threonine
to alanine amino acid change in the NADH dehydrogenase
subunit of Complex I), and has been associated with human
diseases including metabolic syndrome.28 Genotypic data
were analyzed using ABI Sequence Detection System version

2.0 software and genotype calls were confirmed by visual
inspection of plots.

Statistical analysis

Simple proportions are used to describe demographic and
genetic data. Medians and interquartile ranges (IQR) are
presented for continuous data. Fisher’s exact or Pearson Chi-
squared tests and Wilcoxon rank-sum test were used for
comparisons of categorical and continuous covariates by
haplogroup or m.10398A > G, respectively. Stata SE version 10
(Stata Corp., College Station, TX) was used for statistical an-
alyses. We did not formally correct for multiple comparisons
in this pilot study, but did explore corrected associations
post hoc.

Table 1. Baseline Demographics, Clinical Parameters, and Antiretroviral Therapy Among A5152s Subjects

with Available DNA, Among Self-Reported Non-Hispanic Whites, and by m.10398A > G Status

A5152s with DNA
available (N = 63)

Non-Hispanic
white (N = 39)

m.10398G
(N = 8)

m.10398Aa

(N = 30)b

Age (years) 35 (30, 40) 36 (32, 43) 35 (32, 41) 35 (32, 43)
Male sex, N (%) 58 (92) 36 (92) 8 (100) 27 (90)

Race/ethnicity, N (%)
Non-Hispanic white 39 (62) 39 (100) — —
Non-Hispanic black 14 (22) — — —
Hispanic/other 10 (16) — — —

Total cholesterol (mg/dl) 146 (127, 163) 148 (132,163) 150 (137, 176) 148 (132, 162)
LDL cholesterol (mg/dl) 88 (75, 109) 88 (75, 104) 86 (80, 113) 90 (74, 107)
HDL cholesterol (mg/dl) 32 (27, 40) 31 (27, 40) 33 (31, 43) 30 (27, 39)
Non-HDL cholesterol (mg/dl) 117 (97, 129) 120 (97, 132) 131 (109, 159) 121 (97, 132)
Triglycerides (mg/dl) 104 (79, 157) 106 (81, 181) 115 (90, 194) 107 (81, 181)
Body mass index (kg/m2) 25 (23, 28) 25 (23, 28) 26 (25, 27) 25 (23, 28)
Insulin (lIU/ml) 6 (5, 10) 6 (3, 10) 6.5 (4, 10) 6 (3.5, 8.5)
Glucose (mg/dl) 85 (79, 94) 86 (80, 94) 89 (83, 95) 85 (80, 95)
HOMA-IR 1.38 (0.80, 2.24) 1.39 (0.78, 1.98) 1.19 (0.79, 1.89) 1.40 (0.74, 2.11)
Limb fat (kg) 6.8 (4.3, 9.8) 6.9 (5.3, 10.1) 7.6 (5.9, 10.5) 6.8 (5.2, 9.7)
Trunk fat (kg) 8.3 (5.5, 11.2) 9.3 (6.5, 11.6) 10.0 (7.9, 11.5) 8.6 (6.2, 11.2)
CD4 + T cells/mm3 260 (138, 363) 273 (183, 378) 228 (61, 437) 286 (203, 378)
HIV RNA (log10 copies/ml) 4.9 (4.4, 5.5) 5.1 (4.5, 5.5) 5.3 (4.6, 5.8) 5.1 (4.5, 5.5)

Randomized ART, N (%)
NRTI-sparing 24 (38) 13 (33) 3 (38) 10 (33)
Protease inhibitor-sparing 16 (25) 11 (28) 2 (25) 9 (30)
NNRTI-sparing 13 (37) 15 (38) 3 (38) 11 (37)

NRTI, N (%)
Zidovudine 13 (33) 10 (38) 2 (40) 7 (35)
Stavudine XR 8 (21) 6 (23) 2 (40) 4 (20)
Tenofovir 18 (46) 10 (38) 1 (20) 9 (45)

mtDNA haplogroups
H 13 (33) — 13
I 2 (5) 2 —
J 4 (10) 4 —
K 2 (5) 2 —
T 4 (10) — 4
U 6 (15) — 6
W 1 (3) — 1
X 4 (10) — 4
Other/nongroupable 3 (8) — 2

aAll m.10398 comparisons are nonsignificant by Wilcoxon rank-sum or Fisher’s exact/chi2 tests (all p > 0.15).
bm.10398 status could not be determined in one subject.
ART, antiretroviral therapy; HDL, high-density lipoprotein; HOMA-IR, homeostasis model assessment-insulin resistance; LDL, low-density

lipoprotein; mtDNA, mitochondrial DNA; NRTI, nucleoside reverse transcriptase inhibitor; NNRTI, non-NRTI; XR, extended release.
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Results

Of 82 A5152s subjects, 63 had DNA available (Table 1 and
Fig. 1). This analysis included the 39 subjects self-described as
non-Hispanic white and with baseline biomarker data; they
had a median age of 36 years, were predominantly male
(92%), and had a median CD4 count of 273 cells/mm3. These
factors did not differ statistically between this subgroup and
the non-Hispanic white A5142 subjects included in prior
mtDNA analyses16 (data not shown). Median body mass in-
dex (BMI) was 25 kg/m2 and median fasting high-density
lipoprotein (HDL) and low-density lipoprotein (LDL) cho-
lesterol concentrations at baseline were 31 and 88 mg/dl, re-
spectively. Similar numbers of subjects were randomized to
protease inhibitor-sparing (N = 11), NRTI-sparing (N = 13), or
NNRTI-sparing (N = 15) ART. Of those who received NRTIs,
six received stavudine and 10 each received zidovudine and
tenofovir. Individual mtDNA haplogroup sample sizes were
small (Table 1). Most subjects (33%) belonged to European
haplogroup H. Of those remaining, six (15%) belonged to
haplogroup U, and haplogroups J, T, and X included four
persons (10%) each.

Overall median (IQR) baseline FMD for 37 subjects was
3.3% (1.9, 4.7). After 4 and 24 weeks of ART, median FMD
increased to 4.8% (3.0, 6.4) and 5.1% (3.0, 6.7), respectively
(Table 2). This represented median percentage increases of
43% and 36%, respectively. No haplogroup demonstrated
significant differences in FMD responses over 4 or 24 weeks of
ART (Supplementary Table S1; Supplementary Data are
available online at www.liebertpub.com/aid), nor did com-
bined mtDNA clades IWX or Uk (data not shown). However,
in analyses that considered mtDNA variant (m.) 10398A > G
(rs2853826) status, those with the m.10398G allele and paired
FMD data (N = 7) had significantly lower median week 24
FMD [3.6% (IQR 2.5, 4.7)] than those with the m.10398A allele
[N = 27; 5.4% (3.6, 7.0); p = 0.04; Table 2], indicating impaired

endothelial function. This association would not withstand
correction for multiple comparisons, so should be interpreted
cautiously. Median baseline and week 4 FMD and week 24
FMD change from baseline among persons with m.10398G
were lower but not statistically different than those with
m.10398A.

Baseline adiponectin levels were higher among subjects
with m.10398G ( p = 0.003; Table 2). At week 24, however,
subjects with m.10398G tended to have lower adiponectin
levels ( p = 0.08), and had experienced significantly greater
absolute and relative decreases in adiponectin ( p = 0.0005 for
both; Table 2). These associations remain statistically signifi-
cant after conservative Bonferroni adjustment for multiple
comparisons [p = 0.05/(6 mtDNA variants · 7 biomarkers · 2
time points) = 0.0006]. Of note, there were 13 subjects (43%)
with an increase in adiponectin from baseline to week 24;
none carried the m.10398G allele ( p = 0.03). Although the
small sample size precluded comprehensive multivariate
adjustment, in individual single-covariate linear regression
models, relationships between m.10398G and 24-week de-
crease in adiponectin remained significant with adjustment
for baseline age, BMI, DEXA measures, randomized study
arm, thymidine analog NRTI (zidovudine or stavudine) use,
baseline or 24-week HOMA-IR (all p £ 0.001), and baseline
adiponectin ( p = 0.04). To further assess the impact of ART on
these associations, we compared 24-week adiponectin chan-
ges by the m.10398 allele in various treatment groups. Across
the randomized class-sparing arms and for those who re-
ceived a thymidine analog NRTI (stavudine or zidovudine),
median 24-week adiponectin changes ranged from - 5% to
+ 6% in the m.10398A group, compared with - 27% to - 55%
among the m.10398G group. Wilcoxon p-values ranged from
0.005 to 0.1 for these comparisons.

Regarding other biomarkers, there were marginally statis-
tically significant associations (uncorrected) among persons
with haplogroup H (see Supplementary Table S1). These

Table 2. Brachial Artery Flow-Mediated Dilation and Serum Adiponectin Levels at Baseline

and Weeks 4 and 24, by m.10398A > G Allele Status

Brachial artery FMD (%) All (N = 37)a m.10398G (N = 7) m.10398A (N = 27) p-valueb

Baseline 3.3 (1.9, 4.7) 2.9 (1.1, 4.4) 3.3 (2.0, 5.4) 0.46
Week 4 4.8 (3.0, 6.4) 3.9 (2.9, 6.4) 4.8 (3.3, 6.8) 0.62

Absolute change + 1.7 ( - 0.1, + 3.2) + 2.0 ( - 1.3, + 3.5) + 1.7 ( - 0.1, + 3.2) 0.78
% Change + 43 ( - 7, + 92) + 45 ( - 39, + 246) + 23 ( - 7, + 92) 0.65

Week 24 5.1 (3.0, 6.7) 3.6 (2.5, 4.7) 5.4 (3.6, 7.0) 0.04
Absolute change + 2.1 ( + 0.1, + 4.4) + 0.3 ( - 1.3, + 2.9) + 2.6 ( + 0.4, + 4.5) 0.18
% Change + 36 ( - 16, + 132) + 6 ( - 32, + 257) + 36 ( - 9, + 117) 0.91

Adiponectin (mg/ml) All (N = 39) m.10398G (N = 8) m.10398A (N = 30)c p-valueb

Baseline 4.4 (3.7, 4.9) 5.0 (4.8, 6.3) 4.2 (3.7, 4.7) 0.003
Week 4 4.2 (3.8, 4.9) 4.2 (3.8, 4.9) 4.1 (3.8, 4.8) 1.0

Absolute change - 0.2 ( - 1.0, + 0.3) - 1.3 ( - 2.2, 0) - 0.2 ( - 0.8, + 0.2) 0.14
% change - 5 ( - 21, + 6) - 22 ( - 42, + 8) - 4 ( - 21, + 4) 0.13

Week 24 3.7 (3.3, 4.5) 3.4 (2.8, 3.8) 3.8 (3.3, 4.6) 0.08
Absolute change - 0.4 ( - 1.4, + 0.8) - 1.9 ( - 3.0, - 1.3) - 0.2 ( - 0.9, + 0.8) 0.0005
% change - 10 ( - 27, + 17) - 33 ( - 55, - 27) - 3 ( - 18, + 22) 0.0005

aFMD data were not available at each time point in all subjects.
bWilcoxon rank-sum test.
cm.10398 status could not be determined in one subject.
FMD, flow-mediated dilation.
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included lower baseline and 24-week asymmetrical dimethyl
arginine (ADMA) levels ( p = 0.02 for both), and lower baseline
lipoprotein (a) ( p = 0.03) levels. Four persons belonging to
haplogroup T had a greater percentage increase in hsCRP at
week 4 than non-T individuals ( p = 0.04), and six persons
belonging to haplogroup U had significant increases in
HOMA-IR at week 24 versus non-U individuals ( p = 0.04).
None of these associations remained statistically significant
after adjustment for multiple comparisons.

Discussion

This pilot study of ART-naive clinical trial subjects identi-
fied associations between a nonsynonymous mtDNA SNP
and adiponectin changes consistent with metabolic dysfunc-
tion after 24 weeks of ART. To our knowledge, this represents
the first reported association between an mtDNA variant and
FMD, and the second published report of an association be-
tween mtDNA and adiponectin in HIV-infected persons.17

The m.10398A > G variant that was associated with a de-
creased adiponectin on ART results in a threonine to alanine
amino acid change in the NADH dehydrogenase subunit 3 of
Complex I, and alters in vitro mitochondrial measures (e.g.,
mitochondrial matrix pH and calcium concentration).29 It has
also been studied in human diseases and aging,30,31 but risk
associations have been inconsistent. In a Chinese population,
this variant was associated with an increased risk for meta-
bolic syndrome.28 Interestingly, baseline adiponectin was
higher in persons with the m.10398G allele. This apparent
paradoxical association might suggest a compensatory re-
sponse to chronic HIV infection that precedes a greater de-
crease on ART. Alternately, an effect of ART on adiponectin
may have been most pronounced in those persons with the
highest baseline levels. These interpretations are speculative
and require further study.

Adiponectin is an adipose tissue-derived peptide hormone
that mediates energy balance and metabolism, and has anti-
oxidant properties. In HIV-negative populations, low adipo-
nectin is associated with cardiovascular risk factors32,33 and
disease.34 Recent in vitro data suggest adiponectin synthesis is
dependent on mitochondrial function.35 Adipokines are dys-
regulated in HIV-infected persons.36–38 Lean HIV-positive,
ART-treated men had adiponectin levels similar to obese,
insulin-resistant HIV-negative men, and those with extremity
fat loss had even lower levels.36 Baseline trunk and limb fat by
DEXA did not differ by m.10398 allele in our analyses (Table
1). DEXA data from A5142 were not available at week 24, but
48-week limb fat changes did not differ by m.10398, and 24-
week adiponectin levels/changes were not correlated with
48-week trunk or limb fat changes (data not shown), sug-
gesting that adiponectin changes were not merely markers of
adipose changes in this population.

A recent cross-sectional analysis of Spanish HIV/HCV
coinfected subjects reported an association between European
mtDNA haplogroups and serum adiponectin.17 In that study,
subjects belonging to the JT clade (including persons with
both m.10398A and G alleles) had significantly lower adipo-
nectin levels while on ART than those belonging to the HV
clade (including only the m.10398A allele).17 Those subjects
had > 5 years median ART exposure, thus results cannot be
directly compared with a clinical trial population followed
during the first 24 weeks of ART. However, if the 24-week

adiponectin decrease among ACTG m.10398G allele subjects
persisted, the findings of these two studies may be consistent.
Our analysis included eight individuals belonging to the JT
clade. Absolute and relative 24-week adiponectin decreases
tended to be greater in these individuals than in those be-
longing to the HV clade ( p = 0.05; data not shown), consistent
with the m.10398 analyses and with the prior report.17

The small sample size of our study precluded compre-
hensive haplogroup analyses, limited our capacity to adjust
for potential confounders, and may have led to missed asso-
ciations. The m.10398G allele is present in European hap-
logroups I, J, and K, thus a careful analysis in a larger
population might better determine whether m.10398G is a
marker for other variant(s) shared across multiple hap-
logroups or is confined to a single haplogroup. Diabetes was
an exclusion from A5152s, and development of overt diabetes
during the first 24 weeks of ART was not observed. Fasting
insulin levels and HOMA-IR did not change significantly over
24 weeks of ART, and did not differ by m.10398 allele (data
not shown). Due to the small sample size, we were also unable
to fully assess for interactions between ART and mtDNA
variants in robust adjusted models. However, in the primary
A5152s analysis, randomized ART arm was not associated
with 24-week changes in adiponectin or FMD,24 and neither
randomized ART nor NRTI differed significantly by m.10398
allele in the subgroup analyzed here (Table 1). Associations
between 24 week adiponectin change and m.10398G persisted
across multiple ART subgroups and with single-covariate
adjusted models.

In summary, these pilot data support a previously pub-
lished association between an mtDNA SNP and adiponectin
levels17 and suggest a potentially novel association with
poorer FMD on ART. The m.10398G allele was associated
with adverse adiponectin and FMD phenotypes in this pop-
ulation. These findings suggest a potential role for mtDNA
variation in metabolic/cardiovascular complications in HIV-
infected, ART-treated persons. Although not definitive, these
data also suggest a possible mechanistic link between mtDNA
variation and metabolic derangements through relatively
short-term (24 week) effects on adiponectin. Analyses in lar-
ger and more ethnically diverse populations are needed to
define whether the m.10398G allele and/or other variants are
associated with longer-term cardiovascular measures, bio-
markers, or outcomes in these populations.
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RR 00039, RR 16176, and DA 12121 from the National Institute
of Allergy and Infectious Disease, National Institutes of
Health. The collaborating pharmaceutical companies pro-
vided lopinavir–ritonavir (Abbott), efavirenz and stavudine
(Bristol-Myers Squibb), and tenofovir DF (Gilead).
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Conference on HIV Pathogenesis, Treatment, and Prevention,
July 17–20, 2011, Rome, Italy (Abstract #A-361-0075-03110).
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