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Abstract


Probing Quantum Condensed Matter Through the Polarimetry of High-Order Sidebands


By Seamus D. O’Hara


	 Quantum mechanics views particles as matter waves rippling through space, and 

when there are many of these waves present in the same system, they can interfere with 

one another. While quantum mechanics make the direct measurement of a particular wave 

function’s phase impossible, clever experiments can probe the interference of wave 

functions with different phases. High Order Sideband Generation (HSG) is an optical 

method which uses two frequencies of light to both excite quasiparticle-antiquasiparticle 

pairs and accelerate them through the Brillouin Zone. In the experiments detailed in this 

thesis, a near infrared (NIR) laser creates electron-hole (e-h) pairs in bulk Gallium 

Arsenide (GaAs). A strong Terahertz (THz) electric field ionizes the e-h pair, accelerates 

the pair to a higher energy, and slams the pair back together to have the e-h pair 

annihilate and emit a photon. Because the pair will gain energy from the THz acceleration 

process, the photon emitted by their annihilation will be offset in energy from the initial 

NIR excitation energy; a high order sideband.


	 While the THz is accelerating the e-h pairs, the holes can be in one of four angular 

momentum eigenstates which exists in the valence band of bulk GaAs. The distribution 

of e-h pairs in the four states is determined by the Bloch wave functions and effective 

Hamiltonian of the valence band, called the Luttinger Hamiltonian. By the conservation 
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of angular momentum, a given hole will produce a sideband with a specific polarization, 

and the total polarization of sideband photons at a given energy can be related to the 

Bloch wave functions. The reconstruction of Bloch wave functions in bulk GaAs is 

detailed in this thesis. The change in polarization as a function of sideband energy is 

presented as an interferogram. Analogous to a Michelson interferometer for Bloch waves, 

signal is connected to the difference in dynamical phase accrued by different 

quasiparticles being accelerated by the THz field. A classical model of the quasiparticle 

trajectories leads to an analytical theoretical calculation of the sideband polarization, 

which is in good quantitative agreement with experiment. The sideband polarization 

dependence on the initial energy of the NIR excitation photons is probed, and preliminary 

analysis of the dynamical gap of the driven quasiparticles yields a value of  

eV. In addition, the sideband polarization can be related to the effective Hamiltonian and 

the dispersion relation of the quasiparticles in bulk GaAs.


	 Beyond the experiments detailed in this thesis, HSG offers the opportunity to 

characterize the Bloch wave functions, effective Hamiltonians, and dynamical phases of 

more exotic quasiparticles and more exotic materials. With this thesis acting as a proof-

of-concept for the HSG polarimetery methodology, the ambition is to extend this method 

to highly correlated systems or semiconductors with large spin-orbit coupling, or to 

measure geometric phases, indicative of non-trivial topologies. 

Eg = 1.511
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Chapter 1 — Introduction

	 Quantum mechanics describes all matter as waves, propagating through space and 

time. Mathematically, we would express the oscillating, wave-like features of a particle’s 

propagation with complex numbers and exponentials, writing an expression like


Here we express the function which determines the probability of finding a particle at 

position x at a time t with Ψ, representing it as a product of function dependent on 

position  and a complex exponential expression  [1]. We would call  

the phase of this wavefunction. This phase does most of the work describing the 

propagation of the overall wave Ψ relative to itself and other waves. In the process of a 

quantum measurement, this phase gets ironed out. Along with the collapse of the 

ψ (x) exp[iϕ(t)] ϕ(t)

1

(1.1)Ψ(x , t) = ψ (x)eiϕ(t)



wavefunction, this loss of phase is one of the more frustrating differences between how 

we theorize and explain the behavior  of particles and what we can actually observe. 


	 Whereas the quantum wavefunction phase is frustratingly inaccessible to 

experimentalists, measuring the phase of an electromagnetic wavefront, or light, is a 

classical one. This experimental method of resolving the polarization of an electric field 

is called polarimetry, and will be utilized in all the experiments presented in this thesis. 

Experimentalists are able to measure the magnitude and phase of an electromagnetic field 

up to some arbitrary phase, which is the gauge freedom of the electric field.


	 If there was a quantum process which ends with the emission of a photon, we 

could measure the phases of electromagnetic fields through well established methods and 

try to connect this to the phase of the wavefunctions producing the light. To do this, there 

needs to be a theory connecting the two. Additionally, multiple wavefunctions and 

multiple electromagnetic fields need to be present in the system in order to measure the 

interference of these waves. In this way we propose a simple solution to the impossible 

problem.


Simple Solution — Interfere two or more wavefunctions, and use well 

established optical methods, which can clearly resolve the phase of an 

electromagnetic wave, to measure this interference. In this way we can 

access phases information about the wavefunction, a seemingly impossible 

problem.
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	 In solids, where there are  wavefunctions, there are many opportunities for 

these waves to interfere. The question becomes how to observe systematic inference 

patterns among these waves, or induce states in the solid where there is clearly resolvable 

interference pattern. STM experiments reported observations of interference between 

matter waves in solids [2-4]. Effects resulting from weak Anderson localization also 

demonstrate interference phenomena among solids [5]. While these experiments provide 

insight into the collective behaviors of electrons in solids near the equilibrium state, we 

are limited in what we can learn about individual electronic wavefunctions. 


	 In solids the particle-to-crystal lattice dephasing decreases the fidelity of 

electronic wavefunctions on timescales much faster than conventional consumer 

electronics ( ). If we want to measure the quantum states with a high fidelity, 

we need experiments which occur on timescales faster than dephasing processes. In the 

first section of this introduction, I will outline ultrafast experiments in solids which are 

conducted on timescales faster than these dephasing processes. However, the large laser 

fields in these experiments excite many, many wavefunctions for a given experiment, 

making it difficult for any one experiment to give us a clear measurement of the single-

particle wavefunction.


	 In order to for optical experiments and polarimetry to play a role in our quantum 

experiment, there needs to be some physical process which produces light. This thesis 

focuses on one such phenomena occurring in solids, called High-order sideband 

generation (HSG). In the second section of this introduction, I will build a model for how 

we generate photons from a non-equilibrium condensed matter experiment, and how the 

1023

ω < 5GHz
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microscopic physics of the particles driven from equilibrium is embedded in the outgoing 

sideband polarization.


	 To conclude this chapter, I describe the source of THz radiation used in all these 

experiments. The free electron laser (FEL) at UCSB is a unique source of THz radiation 

which enabled the particulars and subtleties of experiments detailed in this thesis. As the 

upkeep and operation of the FEL has fallen more and more on graduate students, 

outlining the art of FEL maintenance is essential for the continuation of experimentation 

by future graduate students.


1.1 DRIVEN QUANTUM MATTER


	 Before the experiments detailed in this thesis, there were many reported examples 

of interferometry in solid state systems. For example, the advent of strong, ultrafast 

electromagnetic field enabled experiments like High Harmonic Generation (HHG) in 

solids [6-8]. Strong, periodic driving is also the focus of Floquet engineered systems, 

which manifest new collective phases of matter under this driving force. While both types 

of experiments illuminate the behavior of condensed matter systems far from equilibrium, 

[9] both are difficult to understand in the single-particle picture. While non-equilibrium 

quantum matter comes in many forms, the focus of this thesis is the ability of 

experiments to tell us more about the constituent wavefunctions of the system and their 

effective Hamiltonian. The control of the wavefunction is the next major task of the 

quantum age; first scientists must learn more about the wavefunctions we are attempting 

to control to achieve success.
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1.1.1 Ultrafast Experiments in Matter


	 Developments in strong laser field experimentation have allowed for the coherent 

acceleration of quasiparticles in solids on the attosecond to picosecond timescale [10, 11], 

faster than dephasing processes in solids. HHG is an all-optical probe which employs a 

single frequency laser with a high field strength, exciting states in a system and 

accelerating them to higher energies, which leads to the emission of harmonics. In solids 

[12-22] HHG allows for attosecond sensitivity to dynamics of electrons in these systems 

[23, 24], and has demonstrated sensitivity to quasiparticle/crystal interactions [7, 8, 25, 

26].


	 The large laser fields used to generate these harmonics produce interband and 

intraband currents, both of which contribute to the HHG signal [27-29]. HHG is a 

fantastic demonstration of ultrafast light-matter interaction as a probe for quantum 

systems, however, the high laser fields which enable this probe ultimately complicate the 

physical picture of the system. This limits its effectiveness in resolving contributions 

from individual wavefunctions. As will be demonstrated in the subsequent chapters, the 

two frequency nature of HSG avoids this problem.


1.1.2 Floquet Engineered Quantum States


	 Driven quantum systems have occupied the attention of the experimental and 

theoretical community [9, 30] for the ability to manifest non-trivial, non-equilibrium 

phases of matter [31]. Driven Floquet-Bloch bands as the result of ultrafast drives have 

been observed in topological insulators [32, 33], and flat bands have been theorized to 

exist in driven graphene systems [34].


5



	 In general, these systems form non-equilibrium Fermi-seas, which produce 

emergent phenomena for collective quantum states. While the phenomena induced by this 

Floquet engineering cannot be observed in the equilibrium state of a system, these 

experiments do not provide insight to the single particle wavefunctions. Experiments with 

greater control over constituent wavefunctions are necessary for the next-generation 

quantum systems to be built. In the next section, I will detail HSG as one of these 

systems, and use the rest of the thesis to elaborate what can be learned from 

experimentation.


1.2 HSG IN BULK SEMICONDUCTORS


	 In condensed matter systems, as in many physical systems, there exists more than 

one relevant energy scale. For example, the energy required to create an excited state for 

a conventional semiconductor normally resides in the optical region, but the energy scale 

for the dispersion relation of quasiparticles in this semiconductor is in the µeV to meV 

region. Experiments like HHG, which only use one frequency of light, are limited to 

focusing on only one of these scales. However, an experiment which uses two 

frequencies, like High-order sideband generation, is able to probe these energy scales of 

disparate size.


	 Like HHG, HSG can be broken down into three steps [35-37]. There is a general 

description of the phenomena, and a more specific description of the experiments 

conducted in this thesis, and I will outline both in this section. The general case is 

intentionally broad in an effort to emphasize the large number of systems on which HSG 

6



experimentation could be conducted. The specific case will provide a more detailed 

picture and intuition for the experiments included in this thesis. After this section, the 

specific nature of the HSG experiments conducted will dominate the text. The general 

case of HSG will be revisited at the end of the thesis


1.2.1 Three Step Model


	 Generally, the phenomena of HSG in a condensed matter system can be described 

in the three steps: excitation, acceleration, and annihilation. 


Excitation: Laser light with photon energy  creates an excited state in the 

system with the same creation energy. I will call this the creation field. This 

ground state will consist of the excited quasiparticle and an anit-quasiparticle left 

behind in the vacated state.


Acceleration: A second laser, with photon energy  and significantly greater 

peak field strength, rips apart the bound state of the quasiparticle pair. I will call 

this the acceleration field because it accelerates the quasiparticle and anti-particle. 

The two move in opposite directions due to their opposite charge. During this 

acceleration process, the effective Hamiltonian of the system will govern how the 

quasiparticle wavefunctions move through the condensed matter system.


Annihilation: The polarity (sign) of the acceleration field changes sign, driving 

the quasiparticle and anti-quasiparticle back together, where they annihilate. The 

pair will have gained kinetic energy during the acceleration process, meaning the 

photon they emit upon annihilation will be offset from the initial creation energy, 

ℏΩ

ℏω
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, by a multiple of the acceleration field’s photon energy, , for a photon 

energy with total energy .


	 This model sets specifications of what lasers can be used for HSG 

experimentation in a particular system. Constraints on the creation field are mostly to 

simplify the physics of the systems probed. For all the data presented in this thesis, we 

assume no Coulomb interactions between the different quasiparticle pairs created by the 

creation field. For this to be true, the field strength must be low enough for HSG 

experiments to be in the linear response regime of the creation field. This is verified 

experimentally by measuring the intensity of low order sidebands with respect to creation 

field strength. If the increases in field strength leads to a proportional increase in 

sideband signal, then the increasing number of quasiparticle pairs created by stronger and 

stronger creation fields does not dampen the sideband signal [38]. For materials with 

larger binding energy like two dimensional semiconductors, Coulomb interaction is an 

important force to consider [39-41]. However, we can say Coulomb interaction is not 

relevant to the HSG experiments presented in this thesis and other HSG works.


	 With this enforced maximum on the creation field, we can say most of the 

quasiparticle excitation processes are single photon processes. This is a distinction 

between HSG and HHG. Later on, when we examine the sideband data and develop a 

theoretical model to describe the experimental data, we shall see this single photon 

creation process will greatly simplify the non-equilibrium physics at hand, to the point 

ℏΩ nℏω

ℏ(Ω + nω)
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where analytical models will provide a strong quantitative agreement between experiment 

and theory.


1.2.2 Solids in Large, Fast Electric Fields


	 The field strength of the acceleration field must be large enough to ionize the pair 

and drive the two around the crystalline lattice. For an oscillating electric field, the 

average kinetic energy imparted on a particle with fundamental charge e in a single cycle 

is called the ponderomotive energy, , derived from the expression





Here µ is the reduced mass of the quasiparticle pair. Using the kinematic expression 

, the expression for the electrostatic force, and representing the 

electric field of the accelerating field as , where  is the peak 

field strength of the accelerating field, we can derive an expression for the velocity of the 

charged particle





Here e is the charge of the particle being accelerated. With this expression, we can 

express  as 





The expression in parenthesis evaluates to 1/2. With this expression for ponderomotive 

energy in terms of the accelerating field parameters,  and ω, and the quasiparticle pair 
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parameters, µ and e, we can set an explicit condition for the field strength of the 

accelerating field. As a general rule, the quasiparticle pair will not be accelerated semi-

classically through the crystal, and thus not produce high-order sidebands, unless 

,  [42, 43] therefore, 





For HHG, this expression is also true, however, due to the single-frequency nature of 

HHG experimentation, this field strength is also the creation field, which normally 

implies the creation field is not in the single-photon excitation regime.


	 There are a few features of  Eq. 1.5 which are worth dwelling on, as they provide 

insight onto the types of condensed matter systems and lasers which are conducive to 

HSG experimentation. For the following analysis, consider  is constant:


The dependence on µ - The larger the effective mass of the quasiparticle pair, the 

larger the required .


The dependence on ω - The higher the frequency, the higher the requisite . 

This creates an upper-bound on the frequencies used for HSG experimentation, 

assuming a constant .


The dependence on binding energy - As one might expect, the binding energy 

sets a minimum threshold for  required to observe sidebands. For systems, 

such as two dimensional semiconductors, which hosts excitons with binding 

Up > 2 ⋅ Ebind

Facc >
8Ebμω2

e2

Facc

Facc

Facc

Facc

Facc
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energies an order of magnitude larger than their III-V counterparts [44-52], HSG 

experimentation requires larger .


With these conditions met, the accelerating field drives the quasiparticle pair to higher 

energies non-perturbativly, i.e subsequent pairs which are driven to higher energies 

decrease in population sub-exponentially. This manifests in the resulting sideband 

spectrum with decreasing peak intensities as a function of sideband order less rapidly 

than perturbation theory would predict [35, 36, 53-55]. Semiclassical propagators, as will 

be introduced in Chapter 3, better model the population of quasiparticle pairs driven to 

higher energies. Because of this, HSG is considered a non-equilibrium, non-linear, non-

perturbative process. 


1.2.3 Experimentally Specific Three-Step Model


	 Now that we have a general intuition for the constraints on HSG experimentation, 

it is time to discuss the three step method for specific experiments conducted in this 

thesis. This begins by looking at the crystalline system used to generate the sidebands, 

bulk Gallium Arsenide (GaAs). 


	 GaAs has a direct band gap at the zero quasi-momenta (k) point in the Brillouin 

Zone (BZ), labeled the Γ point. There is an energy gap of 1.519 eV between the lowest 

energy unfilled band (conduction band) and the highest energy fully-filled band (valence 

band) at the Γ point at 0 Kelvin [44]. Furthermore, the valence band at the Γ point is 

doubly degenerate, with the two bands often labeled heavy hole (hh) or light hole (lh), 

due to the different dispersion relations and effective masses the bands posses moving 

Facc
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away from the Γ point. Like all crystalline materials, quantum mechanics in the form of 

Bloch’s theorem well-describes the behavior of quasiparticles in these bands. However, 

scattering induced by phonons and crystal impurities cause these pure quantum states to 

decohere on the order of picosecond (10-12). Therefore, we need an acceleration field 

which produces high-order sidebands on timescales shorter or comparable to this 

dephasing timescale. This leads to the following picture for HSG experiments conducted 

in our lab:


Excitation: We use near-infrared (NIR) lasers tuned to the energy gap of bulk 

GaAs in order to resonantly excite electrons from the valence band to the 

conduction band. In the valence band, the recently vacated electron state now 

behaves like a positively charged electron, called an electron-hole (hole). Due to 

the degeneracy at the Γ point, both hh and lh states are formed by this excitation. 

The electron (e) excited to the conduction band forms a bound, excitonic state 

with its partner hole state.


Acceleration: We ionize the excitons with a large terahertz (THz) field generated 

by the UCSB Free Electron Laser (FEL) facility. The details of this THz field and 

the FEL will be detailed in the next section. Due to their opposite charge, the 

electron and hole will be accelerated in opposite directions by the THz field. 

While they are no longer in an excitonic state, the electron and hole’s dynamics 

are still correlated, and from this point are referred to as an electron-hole pair (e-h 

pair). The dynamics of the e-h pair through the GaAs are determined by their 
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effective Hamiltonian. The specific Hamiltonian of e-h pairs in bulk GaAs will be 

explained further in the next section.


Annihilation: Due to the ultrafast nature of the quasiparticle acceleration by the 

THz field, compared to the timescale of scattering dynamics in bulk GaAs, many 

e-h pairs will be driven apart and back together before their wavefunctions 

dephase. These quasiparticles produce sidebands, which in turn can be studied to 

reconstruct the dynamics and quantum properties of these quasiparticles in the 

GaAs crystals.


	 From this specific picture we can start to see how HSG provides a platform for 

ultrafast, all-optical, non-equilibrium experimental probe of the quantum behavior of 

electronic states in condensed matter systems. A large portion of this quantum behavior is 

parameterized by the effective Hamiltonian of the quasiparticle/crystalline system, which, 

for the conduction electrons, hh, and lh states in bulk GaAs, is the Luttinger Hamiltonian.


1.2.4 GaAs and the Luttinger Hamiltonian


	 The bulk GaAs samples we use in HSG experiments come from a wafer grown 

via molecular beam epitaxy (MBE). Through a controlled process which consists of 

depositing layers of Gallium and Arsenide atoms one atomic layer at a time, our 

collaborators are able to grow ultra-pure crystalline lattices, which greatly simplifies the 

physics of our experiments. By properly choosing the substrate on which the GaAs 

crystal is grown, our collaborators define the orientation of the crystal on our wafer. For 
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the experiments in this thesis, we used a GaAs wafer with face orientation (100) pointing 

out from the growth direction.


	 GaAs is a member of the III-V semiconductor family, a class of materials which 

are insulators by nature but have band gaps in the optical frequency range. III-V 

semiconductors have been widely studied for decades due to their use in conventional 

semiconductor electronics and optical systems [45]. Early on, Luttinger and Kohn [56, 

57], among other scientists, developed a theory of the electronic structure of these 

materials. 


	 Utilizing a perturbative method called k*p theory (read k dot p) and the symmetry 

of the III-V crystals, they were able to derive a general effective Hamiltonian for this 

class of materials [38, 58-62]. The resulting Hamiltonian is a reduction of the eight band 

Kane Hamiltonian of zinc-blend crystals. Therefore, this Luttinger Kohn effective 

Hamiltonian describes quasiparticle interactions with the III-V lattice in the two highest 

energy valence bands (hh and lh) and the conduction band (e). The valence band effective 

Hamiltonian looks like:





Here the three scalar parameters  are called the Luttinger parameters and are 

specific to a given material,  is the bare electron mass, and  are the 4x4 spin 3/2 

matrices [58, 61]. 


Hv(k) =
ℏ2

2m0 ((γ1 +
5
2

γ2) k2 − 2γ3(k ⋅ J)2 − 2 (γ3 − γ2) (k2
x J2

x + k 2
y J2

y + k2
z J2

z ))

γ1, γ2, & γ3

m0 Ji
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	 Looking at the three terms of the Hamiltonian, the first is the normal  dependent 

dispersion relation, the second is a spherically symmetric spin orbit coupling (SOC) term. 

The third breaks continuous rotational symmetry and introduces the cubic symmetry of 

the Ga and As sub lattices with an additional SOC term. The Luttinger parameters 

 moderate the contributions of these terms, which determines the dispersion 

relation and wavefunctions for a given material [45].


	 In HSG, the conduction band of the Kane model for an 8 band system describes 

the dynamics of the electron portion of our e-h pair [58]. This Hamiltonian is a typical  

dispersion relation of a free particle, but with the conduction band mass of the electron in 

Bulk GaAs, , as opposed to the free electron mass, . 





The measurement of this  value can be measured through cyclotron resonance, and for 

bulk GaAs is a well known value, quoted at  [44]. 


	 The valence Hamiltonian can be simplified under the assumption , allowing 

the 4X4 spin 3/2 matrices to be represented by the 2X2 Pauli spin matrices. The reduced 

form breaks the nonzero components of the Hamiltonian into two 2X2 blocks [58, 

61-63], denoted by 





Here  is the identity matrix,  are the Pauli spin matrices,  is the bare electron mass, 

and


k2
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The eigenstates of these blocks are , which form e-h pairs with the 

 electron state in the conduction band. In this way, each block of the Hamiltonian 

can be viewed as the electron-hole states created for a particular electron state when 

excited below the resonant energy of the band gap.


	 By exciting our e-h pairs with NIR frequencies lower than the band gap in bulk 

GaAs, we can experimentally create the conditions for the block diagonal Luttinger 

Hamiltonian to be a good description of the dynamics of our quasiparticles through bulk 

GaAs. For the rest of this thesis, I will be using various experimental data to learn 

features of this Hamiltonian and the quasiparticle dynamics as they are driven by large 

electric fields.


1.3 THE FREE ELECTRON LASER


The quasiparticles producing the HSG photons are accelerated by THz radiation 

generated by the FEL facility at UCSB [64]. Even among FELs, the UCSB FEL is a 

unique source of THz radiation [65-71], which enables the particular HSG experiments 

detailed in the rest of this thesis. First I will detail how THz is generated by the FEL, and 

in so doing explain why the FEL produces radiation unique to its peer group. 


1.3.1 Relativistic Electron Beam Generating Radiation


	 THz is generated in the FEL by using a magnetic field to wiggle (or accelerate) 

electrons of the free variety. For the FEL to output coherent radiation like that of a solid 

n±(θ ) = [ 3
2

sin(2θ ), ∓
3γ3

2γ2
cos(2θ ), −

1
2 ]

±3/2⟩, ∓1/2⟩

∓S⟩
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state laser, the beam of free electrons needs to be energetic enough in order for the 

radiative gain in the cavity to outweigh  losses. 


	 Without belaboring the exact beam energies required to produce high gain THz 

radiation, we will take the need for relativistic electron beams for granted. What has not 

been taken for granted are how the relativistic electron beams are produced, and how FEL 

operators guide the beam to the lasing cavity. 


	 To begin, we generate the high energy electron beams with an electrostatic 

gradient which can be tuned up to 4.5 MV. The “accelerator” is what we call the 

component containing this large electrostatic gradient and electronics which shape the 

temporal and spatial nature of the electron beam. Since we are accelerating free electrons 

with this gradient, this means the electron energies top off at 4.5 MeV, in the relativistic 

limit. For perspective, CERN is currently operating in the 10 TeV regime, or  

larger energies, with a full time staff  larger than our own. To create the 

electrostatic environment used in the FEL, you would need one million commercial DC 

batteries wired in series. So the FEL operates between a conventional, consumer grade 

electrostatic environment and the highest energy environment produced on Earth. A more 

apt comparison for the energy scale is lightning, which also presents an engineering 

challenge for the accelerator. The accelerator needs a more inert environment than air, 

because air will breakdown at the voltages at which we hold the accelerator. As a result, 

the FEL accelerator is filled with , held at a pressure of 70 psi, which is less prone to 

electrostatic breakdown compared to ambient conditions. With all this in place, we are 

able to produce pulses of our relativistic electron beams. 


2 ⋅ 106

2 ⋅ 103

SF6
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	 Unlike linacs, which are often employed to produce x-ray and THz radiation, the 

FELs utilize a closed-cycle electrostatic environment. This greatly reduces the necessary 

power consumption and geographical footprint when compared to other radiative sources 

[64], however, it most notably caps the peak output power and repetition rate of the 

source. One limits the other, as, in order for the beam to reliably recirculate for each THz 

pulse, the quasi-dc electronics need to regain the operating potential before each pulse. 


	 This places a great emphasis on precisely guiding the electron beam through the 

beam line. Two conventional magnetic components are used for such a task. The first is a 

steering coil, which is more or less a pair of Helmholtz coils arranged with orthogonal 

magnetic fields, used to deflect the electron beam in the x or y direction. The second is a 

quadrupole, which uses current running through four loops to create a magnetic field, 

used for shaping the beam. Both have local magnetic environments modulated by the 

amount of current running through their coils, which in turn can be controlled by an end 

user in the control room. The directing and shaping of this electron beam is directly 

dependent on the energy of the electron beam. As a result, the electrostatics in the 

accelerator need to be operating consistently in order for the beam to be reliably steered 

by the magnetic components.


	 Using these magnetic components, the electron beam can be steered through the 

beam line such that the electron beam is focused at the center of the lasing cavity of the 

FEL and the beam is still making a roundtrip through the entire beam line. The former is 

monitored with metallic screens which are inserted into the beam line and fluoresce 

where they are hit by the electrons. This fluorescence is imaged by CCD cameras for 
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monitoring. The latter is measured by the amount of electrons which return to the 

electrostatic components at the to the accelerator, reported through the voltage measured 

on the corona triode. 


	 Going back to the UCSB FELs utilization of a closed cycle electrostatic 

environment, this measurement on the corona triode is equivalent to how stable the 

electrostatics of the accelerator are under the current operation of the FEL. When the 

electrostatics are unbalanced, the FEL will electrostatically discharge, or “arc”, as it is 

often referred to among users. This arc is the equivalent to a lightning bolt going off 

somewhere in the FEL, which, for obvious reasons is something we want to avoid. 


	 Figure 1.1 shows the consequences of both a single arc and repeated arcs 

displayed on a copper plate which was in the beam line. The singular lines are produced 

by the relativistic electron beam momentarily pulsing at a lower energy after an arc, and 

as a result taking a drastically different path. This “drastically different path” intersects 

with the copper plating running throughout the beam path, scraping off copper in the 

process. The hole is the product of many arcs over the decades; eventually the electron 

beam punctured a hole in the beam path. This catastrophe brought all the components to 

ambient condition, destroying all the equipment operating at high vacuum like the ion 

pumps and cathode, or electron source. This event is often recognized as the most 

catastrophic event to occur in the FEL facility.


	 Given the engineering constraints and limitations of this closed cycle, relativistic 

electron beam, care is taken by the research staff to insure the electron beam is properly 

recirculating at a lower electron beam pulse width. This reduces the instability of the 
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accelerator’s electrostatic environment, making the system more tolerant to imperfections 

and reducing the possibility of an arc. In this less volatile environment, the magnetic 

components are tuned outside the vault. Decades ago, the current in these magnetic 

components were controlled via analogue dials, with FEL operators tuning components 

by hand and writing historically successful values down on notepads (see the upper 

image of Figure 1.2). Nowadays, a PC talks to the magnetic components using NI 

Fieldpoint firmware and software written on NI LabVIEW. (See the lower image of 

Figure 1.2 for an example) Given the obsolesce of Fieldpoint on the more current 

versions of LabVIEW, an update to the LabVIEW version on the control PC would be 

catastrophic, cutting off all communication between the PC and components in the vault.


	 Using the florescent screens placed strategically throughout the beam path, FEL 

users tune the beam to match historical images of the electron beam which have been 
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Figure 1.1 - Catastrophic E-Beam Degradation of a Copper Plate

A copper component which was a part of the electron beam transport system, near the 
accelerator tube. Scrapes are the result of errant electron beam pulses after an arc, and 
the hole on the right is the result of an electron beam which punctured the copper plate 
and exposed the entire electron beam path, including the cathode, to ambient 
conditions.



known to recirculate an induce lasing in the cavity. Starting at the most upstream point of 

the beam line, where the electrons are exiting the accelerator, to the most downstream, 

users make small adjustments to the magnetic components to create a beam path which 
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Figure 1.2 - Analogue and Modern FEL tuning

(Above) A man, known to FEL lore as “The Wizard”, using analogue components to 
tune the different magnetic components of the FEL. (Below) Three befuddled graduate 
students look on while the maestro (Dave Enyeart) conducts his symphony. Here David 
is using a LabVIEW program to interface with the magnetic components in the vault, 
used to tune the electron beam.



recirculates most of the electrons. Once this is achieved and verified with the CT voltage 

readout, the beam length can be increased to induce lasing.


	 In sub microsecond steps, users increase the pulse length, which is in effect 

increasing the gain of the electrons in the FEL cavity. Eventually, with a long enough 

pulse, the gain in the cavity will be greater than the loss in the cavity, and lasing will be 

induced. It should be noted that beam alignment in the cavity is the most direct way to 

increase the gain. Put another way, a beam could be so misaligned going into the cavity 

that no beam width will induce lasing. Additionally, optical components in the cavity 

which interact with the generated THz field could be lossy enough that no electron beam 

will be able to lase in the cavity. This has occurred once during my PhD, and the 

experience is detailed in a section of the Appendix.


1.3.2 THz Generation in the FEL


	 Now that we have an electron beam entering the FEL cavity with enough energy 

at the right alignment as to induce lasing, we are producing coherent THz radiation. 

Compared to other THz sources, the radiation output from the FEL has a few 

distinguishing characteristics:


Quasi-cw Operation — Whereas other sources of THz generation [cite ZnTe and 

LiNbO3 papers] emit only one or a few cycles of THz radiation, any given FEL 

THz pulse will contain ~10,000 cycles of the THz field.


Narrow Frequency — Because the wiggling of electrons in a well defined 

magnetic array determines the frequency of output THz radiation, the bandwidth 

22



of the output FEL radiation is on the order of 1 GHz, 1000 times less than the 

typical THz source bandwidth  [68]. Given the relationship between the frequency 

of light and the energy of a photon [72], for HSG experimentation this implies 

there is a well defined energy scale for the physics we are probing.


Moderate Power, High Energy — While the peak field and power output of the 

FEL is ~100 times less than the top of the line THz sources, these other THz 

sources output few cycles THz radiation. When you multiply the power output by 

the timescale the THz field is present on the sample, the FEL makes up for this 

lower peak power with its much longer pulse width. This leads to ~mJ of THz 

energy in a single pulse from the FEL, unprecedented in any THz source [find 

citation].


Tunable Frequency — The frequency generated by the FEL is determined by the 

periodicity of the magnetic field wiggling the free electrons. Due to relativistic 

length contraction [73] electrons of different energies experience magnetic fields 

of different periodicities. In this way, the FEL is a broadly tunable source of THz 

radiation, where the output THz frequency is determined by the terminal voltage 

of the accelerator.


These characteristic features of the FEL are embedded in the sideband spectra we observe 

in lab on a regular basis. The narrow line width of the THz radiation from the FEL 

generate sideband photons well defined in frequency space. The quasi-cw mode also 

allows for large signal acquisition on moderate time scales for optical experimentation 
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(~10 sec, or 10 FEL pulses), allowing for a greater signal to noise ratio. This high signal 

to noise environment, with photons well defined in frequency space and tuned to relevant 

energy scales enables HSG polarimetry to precisely measure the polarization state of 

sideband photons.


	 The FEL also offers a mode of operation which allows for higher power output, 

called the cavity dump mode. In this mode, three mirrors form a closed cavity, coupling 

out little THz radiation. Once the FEL starts lasing, THz radiation builds up in the cavity. 

In order to actually use this build up THz radiation, there needs to be a mechanism for 

coupling it out.


	 In-between two of the mirrors sits a silicon (Si) slab, mounted at Brewsters angle. 

By exciting the Si with a green laser pulse, the newly created conduction electrons make 

the Si reflective to THz frequencies. At Brewsters angle, this Si slab acts a lot like a 

metallic mirror, and couples the THz out of the cavity and into the optical transport 

system [65, 67, 68, 70, 74, 75]. Because the THz is released from the cavity all at once, 

the FEL no longer produces a low-field pulse lasting on the order of the electron beam 

width, but instead a high-field pulse with a duration determined by the speed of light and 

the length of the cavity. For the FEL cavity we use, this round trip time is ~40 ns.


	 Because the Si slab is never perfectly at Brewsters angle, and even if it were, by 

dint of geometry the full THz wavefront is not all  confronting the Si at Brewseters angle, 

some of the THz radiation is coupled out during the cavity building process. This low 

power portion of the THz pulse is called the front porch. An FEL operational heuristic 

says the larger the THz energy in the front porch, the less there is in the high-power 
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cavity dump. Therefore, it is a goal of FEL operation to set the Si at an angle where this 

front porch signal is minimized using a stepper motor. After this parameter is tuned, the 

high field THz output is optimized for experiments, such as the HSG experiments 

detailed in this thesis.


1.4 MAIN TEXT OUTLINE


	 The remaining chapters of this thesis will detail different experiments which 

utilize sideband polarimetry to gain insight into the quantum mechanics of non-

equilibrium quasiparticles in solids. The synopsis of the subsequent chapters goes as 

follows:


Chapter 2 —  What can the altered polarizations of sidebands tell us about the 

Bloch Wavefunctions which created them?


Chapter 3 — How can we move from a basis centered around optics to a basis 

centered on the constituent wavefunctions?


Chapter 4 — Can we model the polarization of sidebands we observe as an 

interferometry experiment?


Chapter 5 — How do the initial energies of the quasiparticles change the 

observed sideband polarization?


Chapter 6 — What role does the dispersion relation play in the sideband 

polarization state? Can we reconstruct the constituent components of the 

dispersion relation, i.e. the effective Hamiltonian of the particle?
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Chapter 7 — What lies ahead for HSG experimentation?


To answer such questions, we need both a theory connecting the influence of different 

experimental parameters to the predicted sideband polarization state and an experimental 

method to isolate the influence of one variable. My goal is to present experimental data 

which mastered the latter, and delivering the most insight possible from results utilizing 

the former. 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Chapter 2 — Reconstructing 
Bloch Wavefunctions

The discovery of Dynamical Birefringence (DBR) lead to the development of Dynamical 

Jones Calculus formalism used to characterize chaining sideband polarimetry [76]. The 

methods developed to investigate the mechanisms of DBR, specifically pulsed Stokes 

polarimetry, form the majority of experiments conveyed in this thesis, and are worth 

detailing. 


	 This chapter details how conventional optical measurements can be used to 

reconstruct of the Bloch wavefunctions when connected to the proper theory. The 

experiments detailed in this chapter are the first demonstrations of HSG reconstructing 

the wavelike behavior of quantum condensed matter. By connecting the outgoing 

polarization of our sidebands to the quantum processes producing them, we generated 
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newfound access to the behavior of quasiparticle wavefunctions in these systems. In the 

process, a new paradigm of HSG as a Bloch wave interferometer was born, which serves 

as the motivation for the remaining chapters of this thesis.


2.1 DYNAMICAL JONES CALCULUS


The intensity of outgoing sidebands generated in GaAs/AlGaAs quantum wells are 

dependent on the incoming NIR laser’s polarization [76]. The sidebands generated by 

quasiparticles excited by NIR light parallel to the THz field were stronger than those 

excited by NIR light perpendicularly aligned to the THz. Further investigations saw the 

polarization of each sideband was changing, and dependent on NIR excitation.
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Figure 2.1 - Dynamical Birefringence In Bulk GaAs.

An example of DBR in a 500 µm sample of bulk GaAs. The two spectra are taken with 
different NIR polarizations: parallel to the THz polarization (red) and perpendicular (black). 
Each spectra are normalized to the laser line of their NIR laser field.



2.1.1 Dynamical Birefingence and Dynamical Jones Calculus


	 GaAs is not a birefringent material. Along the (001) face, which is the direction of 

the NIR propagation, are the same along all crystal axes. However, when driven by the 

THz field, the outgoing sidebands do demonstrate a birefringent-like behavior. Due to the 

necessity of the THz driving field in this phenomenon, the group labeled this behavior 

Dynamical Birefringence [76]. Figure 2.1 is an example of two spectra which 

demonstrate dynamical birefringence in bulk GaAs, with the green peaks and blue peaks 

having been acquired with orthogonal NIR excitation pulses. The responsibility of the 

THz field in DBR and the energy gained by the sidebands also required an upgrade to the 

traditional Jones matrix formalism, which the group called Dynamical Jones Calculus.


	 The modified Jones Calculus equation looks incredibly similar to the original 

Jones calculus used to map an incoming polarization state to an outgoing polarization 

state [77]





With the n in the outgoing electric field indicating the higher frequency of the outgoing 

electric field, , and the n in the Jones matrix elements indicating the existence of 

a different Jones matrix for each sideband order. Put another way, the sideband 

polarization changes with sideband order, and the set of Jones matrices captures both the 

transformation from NIR to sideband polarization.


(
Ex,n

Ey,n) = (
Jxx,n Jxy,n

Jyx,n Jyy,n) (
Ex,NIR

Ey,NIR)

Ω + nω
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	 Because the Jones matrix elements are independent of NIR polarization, they can 

be reconstructed through experiment. The outgoing sideband polarization is measured 

through Stokes polarimetry, which is the next subject of discussion.


2.1.2 Pulsed Stokes Polarimetry


	 After the realization that sidebands had a different polarization than the input NIR 

polarization, a pulsed polarimetry experimental apparatus was used to fully characterize 

the polarization states of the sidebands observed in the Sherwin group’s CCD sideband 

detection scheme. The full polarization state of an electric field can be parameterized by 

the four Stokes parameters. For a generic electric field , the Stokes parameters are 

defined as





The  parameter is the electric field’s overall intensity, and the other three parameters, 

normalized by the electric field intensity, take on values between -1 and 1. Here  is 

the horizontal component of the electric field, and  is the vertical component, so the 

 parameter quantifies the relative difference between horizontal and vertically polarized 

light in the electric field. In the same manner,  quantifies the relative difference 

between the diagonal component  and anti diagonal component , and  

quantifies the relative difference between the right handed circularly polarized (RHCP) 
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component  and left handed circularly polarized (LHCP) component . With these 

four parameters, the electric field  is fully defined.


	 In order to measure these values for each sideband, directly after the cryostat, a 

quarter wave plate (QWP) and polarizer were installed to the CCD HSG detection 

scheme. This combination of  QWP and polarizer is called a polarimeter. The polarizer 

was tuned to the horizontal axis of the optical table. Because of the polarizer determines 

the polarization of the output light, this insures that regardless of the sideband 

polarization state, reflections off of further elements on the optical table are uniform. 

Conventional optical mirrors have slight differences in reflection coefficients in the s and 

p orientation, so having a uniform, defined polarization of light reflecting off of the 

mirrors directing sidebands into the CCD provides experimental consistency. In addition, 

the diffraction gratings used for frequency resolved measurements in the CCD and PMT 

have preferential NIR orientations, making a consistent NIR polarization on these 

components essential.


	 If the polarization of light exiting the polarimeter is constant and independent of 

sideband polarization, what is the experimental value which is dependent on the Stokes 

parameters of a sideband? The dependent variable we measure is the intensity of the 

sideband measured on the CCD.


	 Using the Muller matrices for a QWP with fast axis at an angle  from the 

polarizer axis and a polarizer with a horizontal orientation, we can calculate the measured 

intensity of a sideband, , in terms of an arbitrary set of Stokes parameters.


R⟩ L⟩

E⟩

φ

Sout
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For a defined , the measured  is not unique to one set of Stokes parameters. 

However, by measuring how  changes with , , we can reconstruct the unique 

set of Stokes parameters for a given sideband. 


	 In order to do this, the QWP is mounted on a motorized rotation mount, in order 

to measure  for many QWP orientations. Due to the periodicity of the sine and 

cosine terms, we need to sample a certain number of angles in order to resolve 

contributions by all the Stokes parameters. Standard operating procedure is to take data at 

16 QWP orientations, sweeping 360 degrees of rotation in 22.5 degree steps. Figure 2.2 

shows a plot of one such scan, where the y-axis is the measured , and the x-axis 

being the QWP fast axis orientation, with the sixteen discrete steps visible in the data. 

Half of this scan is technically redundant, due to the periodicity of the trigonometric 

terms, however, experimental discrepancies in the first and second half of the sweep 

reveal misalignments in optical components in the polarimeter. If the two halves are not 

equivalent, something is wrong with the apparatus, must be realigned, and the data set 

must be retaken.


	 Given the four Stokes parameters are multiplied by orthogonal trigonometric 

expressions, Fourier analysis can transform  into different Fourier components, 

which are related to contributions of different Stokes parameters. Using the Fourier 

transform


Sout =
S0

2
+

S1

4
−

S3

2
sin(2φ) +

S1

4
cos(4φ) +

S2

4
sin(4φ)

φ Sout

Sout φ Sout(φ)

Sout(φ)

Sout(φ)

Sout(φ)
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We can express the Stokes parameters as





From this systematized rotating QWP measurement, we can reconstruct the Stokes 

parameters of a sideband. Because this method is broadband and we are simultaneously 

measuring the  of all sidebands peaks recorded on the CCD, we are 

simultaneously measuring the Stokes parameters of all the sidebands.


	 The Stokes parameters are sufficient to describe the polarization of an electric 

field, however, with well polarized light the sideband electric field can parameterized 

ℱm =
1

2π ∫
2π

0
Sout(φ)eimφdφ

S0 = 2ℱ0 − 4Re(ℱ4)
S1 = 8Re(ℱ4)
S2 = − 8Im(ℱ4)
S3 = 4Im(ℱ2)

Sout(φ)
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Figure 2.2 - Polaragram Used To Reconstruct Stokes Parameters

The measured intensity of the 24th order sideband as a function of the angle between 
the QWP fast axis and the horizontal analyzer. The data are normalized to the highest 
intensity datum. (Inset) A cartoon of the polarimeter, with the QWP and Analyzer 
depicted with respect to the SB field.

(2.4)

(2.5)



with just two values, the linear orientation, α, and the ellipticity, γ, which can be 

calculated from the Stokes parameters





These values can be used to express the sideband polarization in the Cartesian basis





The same expression is true for the NIR polarization, and these two expressions 

combined with Eq. 2.1 give the linear expression





From this, we can reconstruct the Jones matrix elements up to an arbitrary phase by 

independently tuning three or more  and measuring the outgoing  and 

solving the resulting system of linear equations. This method sets , for all n,  so 

it is experimentally resolved up to a phase  which cannot be resolved 

experimentally since the THz and NIR source are not phase locked. 


αn =
1
2

tan−1 ( S2(n)
S1(n) )

γn =
1
2

tan−1 S3(n)

S2
1(n) + S2

2(n)

(
Ex,n

Ey,n) = ( cos αn sin αn

−sin αn cos αn) ( cos γn

i sin γn) ≡ (
cos βn

eiδn sin βn) eiζn

cos βn (
Jyx,n

Jxx,n
cos βNIR +

Jyy,n

Jxx,n
eiδNIR sin βNIR)

−eiδn sin βn (cos βNIR +
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eiδNIR sin βNIR) = 0
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Jxx,n = 1

ζNIR − ζn
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2.1.3 the Circular Basis of the Jones Matrix


Due to the optical selection rules of bulk GaAs, the circular basis is more natural for the 

theoretical description of sideband polarization. Fortunately, the Jones matrices measured 

in the Cartesian basis can be converted to the circular basis using a unitary 

transformation. If we define the two Jones matrices in the different bases as








Where  denote the RHCP and LHCP basis, respectively. The unitary transform 

matrix , where  is the orientation between the [100] crystal axis of GaAs and the 

horizontal lab frame/THz field orientation, and





Can be used to transform form one basis to another, using the relation





Because  is known, this transformation is possible for experimentally measured values.


2.1.4 Expected Jones Matrix Values in Bulk GaAs


	 For reasons which are extensively detailed in the next Chapter and other 

publications [63], the expected values of ratios of these circular Jones matrix elements


𝒥n ≡ (
Jxx,n Jxy,n

Jyx,n Jyy,n)

𝒯n ≡ (
T++,n T+−,n

T−+,n T−−,n)
+ & −

U(ϕ) ϕ

U(ϕ) ≡ ( e−iϕ −eiϕ

ie−iϕ ieiϕ )

𝒯n = U†(ϕ)𝒥nU(ϕ)

ϕ
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Here θ is the orientation from the [110] axis of bulk GaAs to the THz electric field 

orientation, which governs the direction of the quasiparticles thought the crystal lattice. 

The values  are two of the Luttinger parameters discussed in the previous Chapter. 

These expected Jones matrix relations have a few expected behaviors


Constant Magnitude of  - In both of these expressions, the 

magnitude of the Jones matrix relations  is a constant value of 1, 

independent of sideband order and THz-to-crystal axis orientation.


Zero Phase of  - Even though  are complex numbers 

with non-zero phases, their ratio should have no phase, for all sideband orders and 

crystal axis orientations.


Phase of  depends on crystal angle - The phase of  should vary with 

the crystal orientation and, besides special values of θ, be non-zero.


Phase of  is constant for sideband order - While the phase of  should 

vary with θ, it should be constant for all sidebands observed at a given crystal 

orientation. This is related to the fact that the block diagonal wavefunctions are 

constant in |k|, because the sideband order is related to the quasimomenta where 

the quasiparticles annihilated. 


T++,n(θ )
T−−,n(θ )

≡ ξn(θ ) = 1

T+−,n(θ )
T−+,n(θ )

≡ χn(θ ) =
sin(2θ ) − iγ3 /γ2 cos(2θ )
sin(2θ ) + iγ3 /γ2 cos(2θ )

γ3 & γ2

ξn(θ ) & χn(θ )

ξn(θ ) & χn(θ )

ξn(θ ) T++,n(θ ) & T−−,n(θ )

χn(θ ) χn(θ )

χn(θ ) χn(θ )
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Phase of  depends on the ratio  - Along with the dependence on 

crystal angle, the values of  depend on the ratio . Because the numerator 

and denominator of  are complex conjugates, this dependence is only 

expected to manifest in the phase. With the crystal orientation θ experimentally 

set, the ratio  is the unknown value influencing the measured , allowing 

for the ratio to be reconstructed from experimentation. 


	 In order for experimental data to convincingly reconstruct the ratio , all five 

of the listed behaviors of  should be apparent in the experimental data. As 

the beginning of the next section will detail, all five of these behaviors were not observed 

in previous iterations of HSG experimentation, leading to overhauls in the sample 

fabrication process and the standard experimental process.


2.1.5 the Ratio  and the Bloch Wavefunctions


	 Going back to the expression for the valence bands of the block diagonal 

Luttinger Hamiltonian in the previous chapter, 





The eigenvalues of these two matrices are the dispersion relations, or energies as a 

function of quasimomenta, of these hole states. The eigenfunctions are the Bloch 

wavefunctions of these hole states. The first term in the parentheses is in the form of the 

identity matrix, and gives us information about the eigenvalues of the matrix. The second 

term in the parentheses has off-diagonal elements, which give us the form of the Bloch 

χn(θ ) γ3 /γ2

χn(θ ) γ3 /γ2

χn(θ )

γ3 /γ2 χn(θ )

γ3 /γ2

ξn(θ ) & χn(θ )

γ3 /γ2

Hv,s(k) =
ℏ2k2

2mo
(γ1τ0 + ns ⋅ τ)
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wavefunctions. The Pauli spin matrices are known, and the only missing piece of 

information is the spinor component, 





The ratio  is the only unknown in the spinor component, so an experimental 

measurement of this ratio could lead to a reconstruction of the Bloch wavefunctions of 

the holes in bulk GaAs.


2.2 LIMITING THE INFLUENCE OF STRAIN IN SIDEBAND 
POLARIMETRY


There are ways to conduct HSG polarimetry experiments which do not yield the expected 

χ and ξ values predicted from the block diagonal Luttinger Hamiltonian. This suggested 

the predictions of sideband emissions required higher order physics, making it more 

convoluted and difficult to extract values like the Luttinger parameters from experimental 

data. However, many data sets with this behavior have a common trait. The sideband 

signal was not well polarized, parameterized by the degree of polarization 





For polarized light, the DOP is 1. Coherent processes like HSG take polarized light (the 

incoming NIR pulse) and output well polarized light. Among other simplifications, the 

coherent nature of HSG radiation allows us to use the reduced Jones matrix formalism to 

map incoming NIR light to outgoing HSG photons. For light of arbitrary polarization, the 

more involved 4x4 Muller matrix formalism must be used. This sections details 

n±(θ ) = [ 3
2

sin(2θ ), ∓
3γ3

2γ2
cos(2θ ), −

1
2 ]

γ3 /γ2

DOP = S0(n) ⋅ (S2
1 (n) + S2

2 (n) + S2
3 (n))−1/2
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modifications made to the HSG experimental setup which enabled the reconstruction of 

Bloch wavefunctions, and serves as a demonstration of how sensitive HSG polarimetry is 

to the microscopic physics of quasiparticles.


2.2.1 Role of Strain on Hamiltonian and Jones Calculus


	 By interpreting the sideband signal as the sum total of the physics contained in the 

region encircled by the THz and NIR beam spot on our sample, our intuition honed in on 

the strain of our sample. Strain on the GaAs lattice will lift the degeneracy of the HH and 

LH pairs at the Γ point and distort the band structure nearby. This is the band structure 

which determines the dynamics of the quasiparticle pairs as they are driven by the THz 

field, and by extension influences the outgoing sideband polarization. Samples with 

different strain, or even spots on the sample with different strain, have different outgoing 

sideband polarizations from the same NIR excitation.


	 Further complications ensue for a sample with inconsistent strain, where, on the 

size scale of the NIR beam spot (~100s of µm) the strain was varying significantly. The 

HSG signal will be combination of photons emitted from microscopic regions on the 

sample with measurably different physics. This superimposed signal, with multiple 

sources of different polarizations, will inherently lead to a combined sideband electric 

field with DOP less than one. 


	 Our hypothesis was not rejected with a local absorbance measurement of our 

GaAs sample. Absorbance provides a straightforward but limited measurement of the 

strain of the sample illuminated by the white light. A clear continuum state is visible, with 

an increased density of states in the HH and LH excitonic states. The difference in energy 
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of the two peaks, or peak splitting, can be related to the amount of strain on the lattice. 

However, absorbance does not provide any information on the direction of strain. By 

taking absorbance spectra at spots less than a NIR beam width apart, we saw the peak 

splitting varied on the order of meV, indicative of rapidly changing local physics on our 

GaAs sample. Figure 2.3 demonstrates how spots on the sample with different strain, as 

measured through absorbance in the upper left figure, lead to qualitatively different 

sideband intensities (upper right) and polarizations (lower plot of fans). 


	 Because we are sampling different pockets of microscopic physics from our 

mesoscopic NIR and THz optics experiment, we cannot extract key values 

parameterizing the microscopic physics of our quasiparticles, like the Luttinger 

parameters. If we wanted a more straight forward insight to the effective Hamiltonian, we 

needed to fabricate a sample with a more consistent local strain environment.


2.2.2 Circular Sample Fabrication


From our depolarized HSG signal, it would appear our current methods of sample 

fabrication was not cutting it. Following intuition and popular semiconductor fabrication 

methods, we decided etching a circular epilayer of GaAs could yield samples with a more 

uniform strain environment. This involved incorporating a mesa etch to the front end of 

our sample fabrication process (see appendix for more details).


	 After a successful fabrication process was established and a sample was ready, 

absorbance measurements revealed a sample regions of consistent strain. One of these 

regions was characterized with finely stepped position-based absorbance spectra, and the 
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most stable local region was chosen for future HSG experimentation, the results of which 

are detailed in the next section.


2.2.3 Equipment and Experiment Specifics


Given the hypothesized THz-to-crystal axis dependence of χ and ξ, the ability to mount 

the sample at some arbitrary angle was a desired but missing feature of our cryostat. A 

cryostat was designed and machined to allow for the incorporation of a rotation sample 

stage.
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Figure 2.3 - Role of Strain on Polarimetry

(Above, Left) The absorbance spectra at two positions on the GaAs sample. The strain 
can be qualitatively observed by the splitting of the HH and LH absorbance peaks.  
(Above, Right) Measured sideband intensities for polarimetry runs taken at these two 
different spots. (Below) The fans diagrams from polarimetry data taken at spots A and 
R. The fundamentally different behaviors of α and γ at both spots is visually apparent.



 	 Using pulsed Stokes polarimetry, we measured the Stokes parameters of 

sidebands. To reconstruct the Jones matrix elements, we conducted this method on 

sidebands produced with four different NIR excitations, α = 0, 90, +45, and -45 degrees, 

with γ = 0 degrees for all four excitations. Figure 2.4 displays data from polarimetry 

scans using these four NIR polarizations. The upper plot holds the measured α of the 

sidebands, and the lower plot holds the measured γ of the sidebands, defined with the 

polarization ellipse in the lower plot’s inset. Data taken with different NIR orientations 

are displayed with different colored curves (blue, α = 0; red, α  = 90; yellow, α = + 45; 

green, α = - 45, displayed in the cartoon of the upper plot).


	 Only three of these are required to create a systems of linear equations from Eq. 

2.8 which reconstruct the Jones matrix elements up to an arbitrary phase. By including 

positive and negative 45 degree excitations, we create an internal consistency check for 

an experimental run. The symmetries of the sample and the phenomena are time reversal 

invariant, so excitations by time reversely symmetric NIR should yield equivalent 

polarizations of the opposite sign. If the data do not demonstrate this behavior, we have 

an indication something is flawed with the experimental run.


	 Any particular data set would involve mounting the sample, initially coarsely by 

hand and then finely with a  5 degree manipulator on the rotation stage. Once the 

sample was pumped to vacuum, the closed cycle cryogenic pump would begin cooling 

the sample down to 60 K, the base temperature of the cryostat setup. During this cooling 

process, the FEL laser was tuned at its 15  operating mode, with the cavity dump 

±

cm−1
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folding mirror (mostly) in place. Attention was given to the FEL outputting THz with 

comparable power (~2 mJ) over all of the days experimental data was taken.


	 With the sample at 60 K and the FEL tuned for THz output, the NIR optics were 

tuned to pass one of the four predetermined polarizations using the HWP and QWP. 

Because those two optical components will pass different intensities of NIR light, 

depending on the incoming NIR polarization from the AOM and the set outgoing 
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polarization, we need to tune the amount of radiation exiting the initial NIR optical setup. 

Earlier in the beam path is a a HWP and vertical polarizer, and be tuning the relative 

angle of the HWP fast axis to the vertical axis, we can fine tune the intensity of the NIR 

field encountering the HWP and QWP. As a result, we can ensure the power on the GaAs 

sample is 100 mW for all four NIR polarizations conducted during experimentation.


	 We enhanced our signal-to-noise ratio by peaking up the sideband signal observed 

in our CCD detection scheme while reducing noise introduced by the laser line. The 

former involved fine tuning NIR optics after the cryostat to maximize the observed 

intensity of a lower order sideband for one-pulse acquisitions of our CCD. The latter was 

achieved by tuning a short pass filter to attenuate the 8th order sideband while fully 

passing the 10th order sideband, and setting the edge of the spectrometer to clip the 6th 

order sideband on the CCD aperture. Even though the laser line is ~  more intense than 

the sidebands, these actions make the sharply peaked sidebands the most prominent 

feature in the frequency domain when compared to the tail of the laser field.  


	 Because the experiments detailed in this chapter we run at the same NIR 

frequency and conducted over consecutive days, only a small amount of fine tuning was 

required to maintain a constant acquisition of sideband radiation. However, these steps 

were important for consistency as a few components needed to be snapped in and out of 

magnetic mounts, and the sample had to be macroscopically slid in and out of the NIR 

beam path for the setting of different NIR polarizations. Repeating this process every day, 

at every NIR polarization ensures consistency in the acquisition of polarimetry data.
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2.3 EXPERIMENTAL ANALYSIS


Finally, all of the cards are in place. We have a sample which is confirmed to have a 

uniform strain environment. We have a cryostat which allows us to rotate the sample over 

a 360 degree phase space. We have an FEL which is lasing consistently, and an 

established NIR optical apparatus to capture the sidebands generated under these 

controlled experimental conditions. We have a theory which can take us from 

experimental data to an interpolated story of the microscopic physics of our sample. All 

of this took over two years to develop. Over the span of two weeks, Joe and I clicked 

through polarimetry scans at different THz-to-crystal axis orientations. Each data set 

demonstrated close to the expected behavior of χ and ξ, outlined in bold above. Together 

they told a fascinating story of our quasiparticles, detailed below.


2.3.1 Constant Jones Matrix Ratios


Figure 2.5 A and B and Figure 2.6  show experimentally observed values of χ and ξ 

which are constant in sideband order. Because the Bloch wavefunctions do not vary with 

, we do not expect these values we use to reconstruct the wavefunctions, χ and ξ, to 

vary with a value analogous with quasimomenta, or sideband order. Observing behaviors 

of χ and ξ qualitatively similar to the Bloch wavefunctions brings us a step closer to their 

reconstruction.


2.3.2 Angle Dependent Phase of Jones Matrix Elements


The other important behavior of both the Bloch wavefunctions and thus our reconstructed 

Jones matrix elements is the expected angular dependence. Both should vary with THz 

orientation θ, and should take on the  rotational symmetry of the GaAs crystal in the 

|k |

C4
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(100) plane. As the bolded statements above mentioned, the only value of χ and ξ varying 

with θ should be the argument of χ. The rest should be independent of THz-to-crystal 

angle orientation.


	 Figures 2.5 (a) and 2.6 (b&c) show  and  are independent of θ and 

instead are 1 for all crystal angles observed in experiment. Figure 2.7(a) shows 

χn(θ ) ξn(θ )
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Figure 2.5 - Values of  and  Measured in Experiment.

A) The measured values of  and  as a function of 

sideband order. The expected value of 1 for both  and  is plotted with 
the black dash-dot line. B) The measured values of  at different crystal 
angles. The theoretically expected value from Eq. 2.12 and the literature values of the 
Luttinger parameters  are plotted for data sets at each angle, the color of the 
dash-dot line corresponding to the THz-to-[110] crystal axis of the data set, denoted in 
the legend. (THz-to-[110] axis orientation defined in the inset of D). C) The value of 

 and  averaged over sideband index,  
and , as a function of crystal axis orientation. The expected value of 1 
for all crystal angles is denoted with the black dash-dot line. D)  The experimental 
values of  dependent on crystal axis orientation. The blue line denotes the 
expected value from Eq. 2.12 and the literature values of the Luttinger parameters 
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 is also independent of θ and is 0 for all crystal angles observed. All of these 

behaviors mirror what is expected in Eq. 2.12. Figure 2.6(b) shows the changing value of 

 at varying θ. The dash-dot line indicates the expected value for , 

using Eq. 2.12 and the literature values of  [45], with the experimental values lie 

close to the expected values of theory.  


2.3.3 Field Independent Jones Matrix Elements


Given the problems previous samples had with strain affecting the quasiparticle physics 

of our experiment, we were concerned strain would somehow confound our χ and ξ 

values. Because strain distorts the dispersion relation around the Γ point, where the 

sidebands are created, most quasiparticle trajectories producing sidebands would 

experience this strain-induced distortion. The speed at which our quasiparticles interact 

with the altered dispersion relation should lead to noticeable effects if the distortion plays 

any notable role in their dynamics.


	 By observing the values of χ and ξ at different terahertz field strengths, we wanted 

to see if there was any noticeable change to the quasiparticle dynamics. Theory does not 

predict there to be any dependence, and an experimentally observed dependence would 

reveal some larger force distorting the dynamics of our quaisiparticles. Measurements of 

χ and ξ taken with 100%, 75%, and 50% THz field strengths (70 kV/cm, 52.5 kV/cm, and 

35 kV/cm) did not depend on field strength. Figure 2.7 demonstrates measured Arg( χ ) 

with no dependence on THz field strength. Among other conclusions, we take this to 

indicate strain has negligible effects on the measured pollination values we used to 

reconstruct the Bloch wavefunctions.


Arg (ξn(θ ))

Arg (χn(θ )) Arg (χn(θ ))

γ2 & γ3
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2.3.4 Reconstructed Bloch Wavefunctions


With the experimental values of χ and ξ demonstrating all of the expected behaviors, we 

felt confident in using this experimental data to reconstruct the ratio of , which 

appears in the expression for  and . As mentioned before, knowing the 

form of  is all that is necessary to reconstruct the Bloch wave functions of the hole 

states in GaAs. Using our experimental data, we can reconstruct the value of  

γ3 /γ2

Arg (χn(θ )) ny,±(θ )

n±(θ )

γ3 /γ2(θ )
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which would manifest the observed  for each data set at a unique crystal 

orientation θ:


 


Using these reconstructed values of , we can report an mean value and standard 

deviation for the reconstructed values over all the data taken in experiment, 

.


	 From experimentally reconstructed ratio, we also have an experimentally 

reconstructed , and wavefunctions. To represent our reconstructed wavefunctions, 

we utilize the Bloch sphere, as all of our reconstructed states are in a superposition of two 

angular momentum eigenstates. Each of these eigenstates will form a pole on the Bloch 

sphere, and the polar angle of our wavefunctions on the Bloch sphere represent the  hole 

state being in a relative superposition of both eigenfunctions. This polar position Θ is 

quantified by





The azimuthal angle of our wavefunctions on the Bloch sphere also has physical 

significance, equivalent to changing the THz to crystal axis orientation. Figure 2.8 is our 

representation of the reconstructed Bloch wavefunctions on the Bloch sphere. 


Arg (χ (θ ))

γ3

γ2
(θ ) = tan 2θ

1 − cos[Arg (χ (θ ))]

1 + cos[Arg (χ (θ ))]

γ3 /γ2(θ )

γ3 /γ2 = 1.47 ± 0.48

n±(θ )

cos(Θ) = −
1

3(sin2(2θ ) + (γ3 /γ2)2cos2(2θ )) + 1
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2.4 JUST THE BEGINNING 


The experiments detailed above were the first to reconstruct the wavefunction of a 

quasiparticle in a quantum condensed matter system. By connecting the electromagnetic 

fields we measure in lab to the quantum mechanics of the quasiparticles creating them, 

HSG polarimetry gives us access to the quantum phases of our wavefunctions. 
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Figure 2.8 - Reconstructed Bloch Wavefucntions of Hole States in Bulk GaAs.

The Bloch wavefunctions of HH and LH bands associated with H+ are plotted as black 
lines. The red shaded area corresponds to the uncertainty in the wavefunction associated 
with one standard deviation in the measurement of γ2/γ3. For a given θ, each 
wavefunction is represented by a point on the Bloch sphere. The poles correspond to the 
spin −3/2 and spin +1/2 states. The wavefunctions for H− are paths reflected across the 
x–z plane on a Bloch sphere with poles representing the spin +3/2 and spin −1/2 states.




	 With all this in mind, the reconstruction of the Bloch wavefunctions is the 

beginning of the new line of research we have been developing in the Sherwin group. As 

the next chapter will demonstrate, the Bloch wavefunctions act as a key to transforming 

data into a more intuitive, wavefunction-oriented basis. Further on in the thesis, having 

unlocked this more intuitive basis, I start to explore how much we can actually 

understand about the wavefunctions of our quasiparticles. In condensed matter, the 

wavefunction and its Hamiltonian reflect the interaction between the quasiparticle and the 

crystal lattice. By measuring the phases of our wavefunctions, we develop a sensitive 

probe of the environment experienced by our electrons. These probes, through HSG 

polarimetry provide opportunities to measure material parameters previously unmeasured 

in experiment. 
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Chapter 3 — Hole Basis Analysis

With the knowledge of the Bloch wavefunctions, we can transform from the circular 

basis used for the optical observation used in experiment to a construction of a hole basis.  

In this hole basis, we can model the dynamics of the electron-hole pair as it is driven 

through the Luttinger Hamiltonian by the propagator , where . Transforming 

to this basis and developing an experimental method to measure in this basis allows us to 

connect optical measurements of sideband photons to one of hole-species contributions to 

the sideband polarization field. Note: in the SI of [63], and Qile’s subsequent 

publications, Qile uses the character  in leu of ς. Around the time I was developing my 

own contributions to the work, the fringe movement “Q-Anon” was becoming an 

increasingly dangerous presence in American civil life, including the violent storming of 

the U.S. Capitol in an attempt to overthrow a democratic election. Frankly, I was a bit 

ςν
n ν = hh, lh

ℚ
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weary of having the character “Q” littered all over my works, so I transitioned to a more 

anodyne character, ς, which is the “sigma” character at the end of Greek words.


3.1 A QUANTUM THEORY OF SIDEBAND GENERATION


	 By the end of this first section you will see a connection between contribution to 

the sideband polarization field by a hole species, , where ν = hh or lh, and the circular 

Jones Matrix elements, , detailed in the previous chapter. Laying in-between the two 

is the mechanism which converts the hole basis and the circular basis, which are the 

Bloch wavefunctions we reconstructed in the previous section. Bridging these two bases 

by a quantity we convincingly reconstructed in the previous chapter provides insight to 

the hole species basis. With the hole species basis, we can begin to examine intricacies in 

the differences between contributions from the e-hh and e-lh pairs to both the sideband 

intensity and polarization, a powerful tool which will be utilized for the rest of this thesis.


3.1.1 Quantum Path Formalism of Sideband Creation


	 Using a formalism developed in the Supplementary Information of previous HSG 

works [63], we can develop a quantitative theory for sideband generation. Breaking down 

the three step model into three theoretical steps, we can develop an expression for the 

output polarization field , and the Fourier transform for a particular sideband index n, 

.


	 Starting with the optical excitation, we can use the dipole transition matrix  of 

the GaAs crystal to convert incoming NIR light into electronic states. There are a few 

a l l o w e d t r a n s i t i o n s f r o m h o l e b a n d - e d g e d e f i n e d s t a t e s 

ςν
n

Tij,n

ℙ

ℙn

𝔻
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 and electron states in the conduction band 

. The allowed transitions are the non-zero elements of , which takes 

the form





Where the non-zero elements are the transitions between , , 

, and , respectively. Here , where  is the 

scalar representation of the  point group, and  is the vector representation of the  

point group along the [100] crystal axis of GaAs. The dipole elements are projected onto 

the basis vector for circular polarization, , where  is the vector 

representation of the  point group along the [010] crystal axis of GaAs.


	 Because HSG is done in the linear response regime of the NIR excitation, this 

linear optical dipole response is sufficient to parameterize the creation of electronic states 

in the bulk GaAs. This also allows us to use the Luttinger Hamiltonian to parameterize 

the dynamics of the e-h pairs when they are accelerated by the THz field without the need 

for Coulomb interaction terms. Additionally, we excite states at the  point, so we 

can express the Luttinger Hamiltonian in the block diagonal form. If we use  to 

denote the two 2x2 block diagonal portions, we can write the Luttinger Hamiltonian like 

Eq 1.1


( +3/2⟩, +1/2⟩, −1/2⟩, −3/2⟩)

( S ↑ ⟩, S ↓ ⟩) 𝔻

𝔻 = − d (σ+,0,
σ−

3
,0,0,

σ+

3
,0,σ−)

T

S ↑ ⟩ −3/2⟩ S ↑ ⟩ +1/2⟩

S ↓ ⟩ −1/2⟩ S ↓ ⟩ +3/2⟩ d = ⟨S |ex |X ⟩ S

Td X Td

σ± = ± (X̂ ± i ̂Y)/ 2 Y

Td

kz = 0

s = ±
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	 We can express the population of the different electronic states at a given 

qauismomenta  through a density matrix


 


Where  is the creation operator for a hole state in the  angular 

momentum eigenstate at quasimomenta , and  is the creation operator for the 

electron state in the  band edge state at quasimomenta . In this block diagonal 

form, the dipole matrix can be reduced to





and incorporated as the dipolar source term, along with the expression for the NIR 

electric field,  in the time evolution of the density matrix





	 This equation can be diagonalized and solved for analytically with a SU(2) 

unitary transformation , defined as . This will transform the 

density matrix and Hamiltonian from the circular basis of the electric field to the “hole 

basis”, were the eigenfunctions are the Bloch wavefunctions of the two hole states. This 

newly diagonalized expression takes the from


k(t)

̂ρs,k(t) = ⟨(bs3/2,k(t), b−s1/2,k(t))
T

⊗ a−s,k(t)⟩
bs3/2,k(t) s ⋅ 3/2⟩

k(t) as,k(t)

Ss⟩ k(t)

𝔻s = − d (−σ−s, σs / 3)
T

ENIR = E+σ+ + E−σ−

iℏ
d
dt

̂ρsk(t) = Ĥv,s (k(t)) ̂ρs,k(t) − 𝔻sENIR(t)

Rs R†
s ns ns

−1
τ∙Rs = τz
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(3.3)

(3.4)



 


Where  are the eigenvalues of the block 

diagonal Luttinger Hamiltonian associated with the given hole species. The solution to 

this differential equation is





Where we define the dynamical phase accrued by the e-h pair between time t and t’ as





By expressing the quasimomenta of the electron and hole in terms of the semiclassical 

dynamics under the influence of a THz electric field 





and incorporating this time dependent quasimomentum into the dispersion relation in the 

dynamical phase expression, we have an expression for the time dependent dynamical 

phase of the e-h pair under the influence of the THz electric field, which is then used to 

calculate the evolution of the density matrix of the e-h states in our GaAs sample.


iℏ
d
dt (R†

s ̂ρs,k(t)) =

(
Ec (k(t)) − Ehh (k(t))0

0 Ec (k(t)) − Elh (k(t))) R†
s ̂ρs,k(t)

−R†
s 𝔻sENIR(t)

Ehh(lh) = − ℏ2k2(2m0)−1[γ1 − ( + )2γ2 |ns |]

R†
s ̂ρs,k(t) =

i
ℏ ∫

t

−∞ (exp[i Ahh(t, t′￼)] 0
0 exp[i Alh(t, t′￼)]) R†

s 𝔻sENIR(t)

Aν(t, t′￼) = ∫
t′￼

t
dt′￼′￼[Ec (k(t)) − Eν (k(t)) + i Γd]/ℏ

ETHz(t)

k(t) =
e
ℏ ∫

t

t0

dt′￼ETHz(t′￼)
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	 For the out coupling of light in the form of sideband generation, we use the same 

dipole matrix  we used in the first step, however, this time we use it to convert 

electronic states in bulk GaAs into outgoing light. This is the reverse of how we used this 

object in step one. If we represent the outgoing polarization field as , then using the 

number of electronic states present at a given time and quasimomenta, in the form of 

, we have the expression





Where V is the volume of the sample subject to both NIR creation of excited states and 

THz acceleration. Because HSG is conducted in the frequency domain, the Fourier 

transform of  will provide insight into the polarization field at a given sideband order, 







Here the NIR electric field was simplified to  by the rotating wave 

approximation, where only the  component of the electric field contributes to 

𝔻

P(t)

̂ρs,k(t)

P(t) =
1
V ∑

k(t),s

𝔻†
s ̂ρs,k(t)

P(t)

Pn

Pn = ∑
s=±

ω
2πV ∫

2π/ω

0
P(t)ei(Ω + nω)tdt

= ∑
s=±

iω
2πVℏ ∫

2π/ω

0
ei(Ω + nω)tdt ⋅

∫
t

−∞
𝔻†

s Rs (exp[i Ahh(t, t′￼)]0
0 exp[i Alh(t, t′￼)]) R†

s 𝔻sFNIR(t)e−iΩt′￼

ENIR(t) ≈ FNIRe−iΩt

−Ωt
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quasiparticle excitation. This expression for the polarization field at a given frequency 

can be simplified to





Where  is a propagator, determining the hole-species contribution to the polarization 

field with a frequency , and takes the form





These  can be connected to experimentally measurable value, the Jones Matrix 

elements, , if we express the polarization field in the form of Jones Matrix analysis.





Here the sideband field and the polarization field are in the circular basis ,

 and . Using the differences between the dipole 

moment and the unitary circular basis of the electric field, and the diagonalization 

condition of the unitary rotation operator, we can relate  to the measured Jones Matrix 

elements,








Pn =
1
d2 ∑

s=±
𝔻†

s Rs (ςhh
n 0
0 ςlh

n ) R†
s 𝔻sFNIR

ςν
n

Ω + nω

ςν
n = ∑

s=±

iωd2

2πVℏ ∫
2π/ω

0
ei(Ω + nω)t ∫

t

−∞
dt′￼eiAν(t,t′￼)e−iΩt′￼
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T−+,n T−−,n) (σ+
σ−) FNIR

Pn = (En,+, En,−)T FNIR = (ENIR,+, ENIR,−)T

ςi
n

T++,n = T−−,n =
2
3 (ςhh

n + ςlh
n ) +

nz

3 (ςhh
n − ςlh

n )

T+−,n =
nx + iny

3
(ςhh

n − ςlh
n )

59

(3.11)

(3.12)

(3.13)

(3.14)






As the previous chapter and other publications have established [63, 76], we can 

experimentally reconstruct the Jones Matrix elements. Now, with the reconstructed Bloch 

wave functions, we can also reconstruct .


3.1.2 Bloch Wavefunction Reconstruction Separating HH and LH Contribution


	 Simple algebra is all that stands in the way of transforming the measured Jones 

Matrix elements into the  values. It starts with knowing the normalized form of the 

spinor element , where  is defined in the spinor equation. If the 

normalized values of  are known, we can transform the known Jones Matrix 

expressions into  with the expressions





From this expression, we can conduct analysis on the contributions of different hole 

species to a particular sideband signal.


T+−,n =
nx − iny

3
(ςhh

n − ςlh
n )

ςν
n

ςν
n

n̂S = ns ( |ns |)−1 ns

nx, ny, & nz

ςν
n

ςhh
n =

3
4

T++,n +
2 − nz

3(nx + iny)
T+−,n

ςlh
n =

3
4

T++,n −
2 + nz

3(nx + iny)
T+−,n
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3.2 SEMICLASSICAL PICTURE OF BLOCH WAVE PROPAGATION


The theory above presents a clear, quantum picture for sideband generation, and derives a 

propagator for our Bloch waves, , and develops an experimental method for measuring 

these values. However, there is no straightforward (non-time intensive) way to calculate 

the expected values of these   in their current form. By reducing the possible paths 

which produce a sideband from all possible paths to just those contained in a single cycle 

of the THz field, we greatly simplify our calculation, moving from a quantum path 

interpretation of the sideband generation to a semiclassical picture of the quasiparticle 

acceleration.


3.2.1 Semiclassical Approximation


	 In the single cycle limit, there is only one trajectory which will emit a sideband 

from a given hole species at a given sideband order. First, the limits of the integral for  

in Eq. 3.12 collapse from  to , the creation time of the e-h pair which produces 

the th order sideband, and  to , the annihilation time for the pair. This simplifies the 

expression of  to





For the Fourier expression in the first integral, we use a delta function  to 

collapse the transformation onto the annihilation time, leading to the simplification





ςν
n

ςν
n

dt′￼

−∞ to,n,ν

n t tf,n,ν

ςν
n

ςν
n =

iωd2

2πℏV ∫
2π/ω

0
dtei(nω+Ω)t ⋅ ∫

tf,n,ν

to,n,ν

dt′￼eiAν(tf,n,ν,t′￼)e−iΩt′￼

δ(2π /ω = tf,n,ν)

ςν
n =

iωd2

2πℏV
exp [i (nωtf,n,ν + An,ν + (i Γd + ΔNIR)τn,ν /ℏ)]

61

(3.16)

(3.17)



Here we define  as the time the e-h pair needs to be accelerated to 

produce the nth order sideband,  is the dynamical phase 

accumulated by the e-h pair from the dispersion relation of the crystal, and 

 is the NIR detuning away from the energy gap, , of the crystal. This 

expression greatly simplifies the relationships between the propagator and other 

experimental variables, and provides the opportunity to connect data to parameters of the 

quantum condensed matter system. However, as the next section will detail, this 

expression for  does not produce an analytical solution for an arbitrary HSG 

experiment.


3.2.2 Semiclassical Conundrum


	 Along with making these calculations more computationally intensive,  the lack of 

an analytical solution for the semiclassical  has no explicit dependence on experimental 

parameters. Semiclassically, we can express the quasimomenta of both the electron and 

hole as





Using the creation ( ) and annihilation ( ) condition, and the 

semiclassical expression for our quasiparticle’s position can be written as


τn,ν ≡ tf,n,ν − to,n,ν

An,ν ≡ − ∫
tf,n,ν

to,n,ν

Ee−ν(t)dt /ℏ

ΔNIR ≡ ℏΩ − Eg Eg

ςν
n

ςν
n

ℏ ·k = eFTHz sin(ωt)

k (t) =
eFTHz

ℏω (cos(ωt0) − cos(ωt))

x (to,,n,ν) = 0 x (tf,,n,ν) = 0
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With the conservation of energy condition





And the annihilation condition 





Which leads to the relationship between 





Which is not analytically solvable.


	 In order to gain more insight on the influence of internal and external parameters, 

we will incorporate the linear in time approximation in the next Chapter. While 

seemingly greatly reduced from its original quantum form, the linear in time 

approximation reproduces exact numerical results with great accuracy, as is detailed in 

Figure 3.1. The figure compares these two methods of calculating values for the e and lh 

at three field strengths used in experimentation (70 kV cm-1: Red, 53 kV cm-1: Green, and 

··x =
eFTHz

m
ωt

x (t) =
eFTHz

mω2 (ω(t − to,n,ν)cos(ωto,n,ν) + sin(ωto,n,ν) − sin(ωt))

ℏ2k2(tf,n,ν)(2μν)−1 = nℏω

(cos(ωto,n,ν) − cos(ωtf,,n,ν)) =
nℏω3

e2F2
THz

(x (tf,n,ν) = 0)

0 =
eFTHz

mω2 (ωτ cos(ωto,n,ν) + sin(ωto,n,ν) − sin(ωtf,n,ν))
cos(ωto,n,ν)ωτ = 2 sin(ωτ)cos(ω(tf,n,ν + to,n,ν /2)

ωto,n,ν & ωtf,n,ν

cos(ωtf,n,ν) =
nℏω3

e2F2
THz

+ cos(ωtf,n,ν)
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35 kV cm-1: Blue) for three sideband orders observed in experiment (16th order: left 

column, 24th order, middle column, and 32nd order: right column). The x position of the 

e and hh from the initial exciton center of mass (top row), the quasi momentum of the e-

hh pair (second row), the kinetic energy of the e-hh pair 

(third row), and the dynamical phase of the pair  (fourth row) are all calculated 

for the two  (  (dashed lines) and  (solid curves)). The second 

y-axis of the second row depicts the explicit  used for the calculations of the 

corresponding curves of the same color and pattern.


3.3 EXPERIMENTAL MEASUREMENT OF  VALUES


While this hole species basis of HSG analysis might appear straightforward, there are 

some experimental subtleties which must be observed in order to ensure data from a 

particular experimental run gives the fullest insight. Previously in HSG experiments, 

Jones Matrix elements were measured up to an overall normalization factor. By 

incorporating PMT data into the data processing of HSG experimentation, we can scale 

the overall Jones Matrices at different sideband indices by the conversion efficiency of 

the GaAs crystal and HSG process. These values is related to the quantum mechanisms 

embedded in the magnitudes of . 


3.3.1 PMT/CCD Experiments for Hole Species Projection


	 A subtlety of moving from the Jones matrix element ratios of the previous 

Chapter to the unnormalized Jones matrix elements in Eq. 3.15 is that the measured 

values we want are not longer of order ~1 but rather decreasing with sideband order. The 

Ee−hh(t) = ℏ2k2(t)(2μe−hh)−1

A(to,n,hh, t)

ETHz(t) FTHz sin(ωt) FTHzωt

ETHz(t)
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n
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Figure 3.1 - Comparison of LIT Calculation and Sinusoidal Numerical 
Calculations of Quasiparticle Dynamics

A comparison of various values parameterizing the e-lh pair dynamics calculated using 
the LIT analytical method (solid curves) and numerical solutions for a sinusoidal THz 
field (dashed lines) at the three field strengths used in experimentation (70 kV cm-1: 
Red, 53 kV cm-1: Green, and 35 kV cm-1: Blue). The three columns are for e-lh pairs 
being accelerated to different offset energies (left: 16th order, middle: 24th order, and 
right: 32nd order). The top row is the distance of the e or lh from the initial exciton 
center of mass, the second row is the quasimomenta of the e-lh pair in multiples of the 
lattice constant a = 5.5 Å, with the second y-axis depicting the  used for each 
calculation. The third row is the e-lh pair kinetic energy , 
presented in multiples of the THz photon energy. The fourth row is the dynamical phase 

 in radians.

ETHz(t)
Ee−hh = ℏ2k2(t)(2μe−hh)−1

A(to,n,hh, t)



magnitude of the Jones matrix elements should be close to the measured conversion 

efficiency of the sidebands. Looking at Eq. 3.13, the Jones matrix elements act as the 

conversion efficiency from incoming NIR light to outgoing sideband signal. The 

magnitude of an individual Jones matrix element, and, by extension, the magnitudes of 

the hole species contribution, are related to the measured sideband intensity.


	 Unfortunately, we don’t measure the intensity of the sidebands when we measure 

their polarizations. The CCD is not calibrated to an overall intensity reading, so 

additional measurements are required to obtain the magnitude of the Jones matrix 

elements. We can measure the magnitude of the  component in the PMT by exciting 

the sample with horizontally polarized NIR light and orienting the polarizer after the 

sample to be passing horizontally polarized light. Now the Jones matrix elements are 

measured up to an arbitrary phase, related to the NIR phase. Using the same unitary 

transformation  introduced in the previous Chapter, we are able to transform the 

scaled Cartesian Jones matrix elements into the circular basis. By having overlap with the 

sidebands measured in the CCD and in the PMT, this scaling of the Jones matrix elements 

can be extended to all the sidebands measured by the CCD in pulsed polarimetry. With 

the magnitudes of the Jones matrix elements, knowledge of the Bloch wavefunctions and 

simple algebra are all that is necessary to calculate , as outlined in Eq. 3.15.


3.4 SCIENTIFIC SIGNIFICANCE


Converting our HSG polarimetry data to the hole species basis provides a more intuitive 

probe of the physics underlying our quasiparticle dynamics. Coupled to this simplicity is 

Jxx

U(ϕ)

ςν
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the ability to separate contributions of the two different wavefunctions in our material to 

the overall sideband signal. To our knowledge this is not a capability available to most 

nonlinear optical probes.


	 With this wavefunction specific insight into our sample, there are many 

experiments available which could provide unique insight into the microscopic physics of 

the quasiparticles in bulk GaAs. Below are outlines of some of the experiments enabled 

by the hole basis analysis.


3.4.1 NIR Dependence


	 In Chapter 5, we will investigate the influence of the dynamical gap on our 

sideband signal. This comes from the  term in the semiclassical 

calculation of the sideband polarization. By tuning the experimentally set Ω, we can in 

effect tune the detuning phase of each quasiparticle pair. By connecting the changing 

outgoing sideband polarization to the altered NIR wavelength, we can hone in on a value 

for the dynamical gap, , which, to date, has been difficult to measure in driven systems.


3.4.2 Wavefunction Specific Picture of Measured Sideband Signal


	 By attributing characteristics of a sideband photon to either the hh or lh 

wavefunction, we can use our signal to examine individual characteristics of either 

wavefunction. An example of this would be dephasing between the crystal lattice and the 

quasiparticles. Joe Costello conducted temperature dependent probes of the sideband 

signal. As he increased the temperature for a given acquisition, he found the polarization 

of the sidebands remained similar, but the overall intensities of the sideband photons 

decreased. He connected this increase in intensity to a temperature dependent model of 

ΔNIR = ℏΩ − Eg

Eg
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dephasing, and, using the hole basis analysis, was able to report individual values for the 

hh and lh dephasing strengths.


	 We can also expand on the dynamical gap analysis to play with the nuance 

induced by incorporating a peak-splitting term between the hh and lh states. In the 

absence of strain, the hh and lh states should be degenerate at the band gap. The e-hh and 

e-lh pairs created with the same NIR photon energy should be seeing the same dynamical 

gap between the conduction and valence band. When strain is present on the GaAs 

sample, as is most certainly the case for our sample, there is a lifting of the degeneracy 

between the hh and lh states. In this instance, the e-hh and e-lh pairs would see different 

dynamical gaps, and the wavefunctions would carry these different detuning phases. Our 

hole state basis provides insight into these small differences in phase, which can impact 

our observed sideband signal.


3.4.3 Angle Dependence


	 The orientation of the THz electric field will tune the direction of the crystal 

lattice traversed by the quasiparticles. By propagating along different directions, the 

quasiparticles are seeing different dispersion relations, determined by the Luttinger 

Hamiltonian. Parameterized by the reduced mass of the e-h pair








This effective mass parameter affects the ponderomotive energy  of each e-h pair, 

which, as indicated in the equations above, alters the outgoing sideband signal.


μlh(θ ) = m0 (m−1
c + 2γ1 + γ2 |n(θ ) |)−1

μhh(θ ) = m0 (m−1
c + 2γ1 − γ2 |n(θ ) |)−1

Up,ν
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	 Given our newfound sensitivity to the separate contributions of hh and lh species, 

we have access to the different reduced masses of the e-h pairs. This, in turn, offers 

access to disaggregate contributions from all three Luttinger parameters in the reduced 

mass terms of both e-h pairs. With a clear probe at the influence of the Luttinger 

parameters, we present in Chapter 6 our method to reconstruct the effective Hamiltonian 

of a quantum condensed matter system. 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Chapter 4 — Interference of 
Bloch Waves

In 1899, Thomas Young demonstrated the wave-like nature of light by interfering two 

waves which entered from two different slits. The altering intensities of light appearing 

on a screen upstream was an example of interference between the two waves of light 

propagating from the two different slits. This double slit experiment was later replicated 

by another type of wave, a matter wave, with free electrons serving as the host for the 

matter waves [78, 79].


	 Waves are a physical phenomenon well described by complex numbers, meaning 

both real and imaginary numbers are used to describe their motion through space and 

time. This complex nature makes them difficult to measure, as imaginary numbers are 
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normally precluded from experimental measurement. What physicists normally measure 

is a projection of a two dimensional phenomena on the real and imaginary axis plane onto 

just the real axis. Physicists are constantly chasing the shadows of the imaginary 

phenomena.


	 Interference between two waves provides a measurable insight into differences 

between the complex propagation of two or more wavefronts. Specifically, if the two 

waves have different phases, the two will interfere and create an overall destruction in the 

total amplitude of the system. Like Thomas Young, physicists have utilized this 

phenomena to characterize the wave-like nature of systems. 


	 Albert. A. Michelson invented a particular interferometer which still bears name 

in an attempt to disprove the hypothesis of the stationary luminiferous ether [80]. In a 

Michelson interferometer, incoming light is diverted into one of two arms via a 

beamsplitter. In both arms the lightwaves make a round trip in the arm, and are then 

coupled out by the same beamsplitter. Differences in phases accumulated by the 

lightwaves in either arm manifest in the form of interference detected after the out-

coupling. As arm-lengths change, the interference pattern may also change. This 

measured relationship to interference and arm-length is called an interferogram.


	 The interferometry of light waves is still utilized, and is most famously being 

deployed by the Laser Interferometer Gravitational Observatory (LIGO) to detect 

gravity’s influence on light traversing two 4 kilometer long arms [81]. Quantum 

Mechanics tells us light is not the only wavelike object in the universe, and in fact matter 

itself is wavelike at the proper energy and length scales. There is an expanding literature 
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of an array of optical experiments resolving the interference of different matter waves [2, 

4, 82, 83]. Even with this wide-ranging fascination in matter wave interference, there has 

been a noted deficiency in interferometry experiments of coherently driven Bloch waves 

in solids. This is in part because these Bloch waves dephase on the order of picoseconds, 

even in ultra-pure conventional semiconductors like bulk GaAs. Such fast timescales 

place a constraint on the types of experiments which will yield a resolvable 

interferometry signal from Bloch waves in solids, and have stunted experimental efforts.


	 In Chapter 1, I outlined the current state of the art experimental sensitivities for 

HHG, which is an ultrafast experiment operating on the timescales requisite for 

coherently driven Bloch waves in solids. Here it is worth emphasizing that an inherent 

feature of HHG makes it difficult to act as interferometer of a few excited states. Because 

of the high field strengths necessary for HHG experiments, many different excited states 

are created in the solid under experiment. In the interferometry picture, where each of 

these different states acts as a different arm of a Michelson interferometer, the excitation 

mechanism of HHG is equivalent to building an interferometer with many, many arms 

[28, 84]. The resulting HHG signal may contain interference information of the multiple 

wave fronts [20], but it is difficult to connect a given signal to a particular characteristic 

of the Bloch waves. 


	 In addition, in HHG both the intraband and interband polarizations are driven by 

the excitation pulse and contribute to the harmonics [27, 85-87]. For some systems of 

interest, these intraband currents have been attributed to an observed energy shift in the 
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harmonics, a so called “non-integer” harmonic [88]. All of these contributions complicate 

the microscopic picture of the signatures of interferometry observable in an HHG signal.


4.1 HSG POLARIZATION ACTING AS AN INTERFEROGRAM FOR 
MATTER WAVES


From the beginning, interferometry of matter waves has been an exciting avenue of 

experimentation because of the insight it provides into the nature of the constituent 

wavefunctions. If the mechanism of interferometry is so complicated, as it is in HHG, the 

resulting signal provides diminishingly little insight into the matter waves which are 

interfering. As you will read in this section, HSG polarimetry serves as a platform for 

interferometry of Bloch waves. Furthermore, the mechanism is so straightforward that it 

can be well described with an analytical, classical model of the quasiparticle dynamics. 

Such success with an analytical model is an incredible boon for experiment, as future 

experiments could be developed which can directly measure HSG polarization’s response 

to material parameters, especially those of interest in the broader community. 


	 Depicted in Figure 4.1 is our microscopic picture of sideband generation, which 

should be familiar from Chapter 2, and our Michelson interferometer picture of sideband 

generation and polarization. A key difference between Fig 4.1 (A) and Chapter 2 is the 

inclusion of Roman numerals, which correspond with the numerals in Figure 4.1 (B) 

depicting the key steps for the Michelson interferometer picture of HSG. In Figure 4.1, 

both cartoons depict (i) the incident NIR pulse (ii) being split by the GaAs sample (the 

beam splitter in our interferometer) (iii) into one of two hole states (the arms of our 

interferometer). The arms of the interferometer are different lengths due to the different 
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dispersion relations of the hh and lh bands, which require different acceleration times by 

the THz field to achieve the same offset energy and thus emit a sideband of the same 

order. The different dispersion relations also act like media with different indices of 
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Figure 4.1 - the Microscopic Dispersion Picture and the Michelson Interferometry 
Picture of Sideband Generation and Polarization. 

A) The microscopic picture of HSG, with the Energy versus quasi momentum 
relationship for the conduction electron (blue), hh band (dark green), and lh (light 
green) of bulk GaAs. The only feature not to scale is the gap between the valence and 
conduction band. The Roman numerals correspond with key steps in the Michelson 
interferometry picture also denoted with Roman numerals. B) A cartoon of the 
Michelson interferometry description of HSG polarization. An incoming NIR pulse (i) is 
split into the two arms of the interferometer by the GaAs lattice (ii), corresponding to 
the two types of e-h pairs. The arms of the interferometer have different lengths, 
corresponding to the different dispersion relations the pairs have traverse in order to 
emit a sideband of the same order. Because the two e-h pairs have different dispersion 
relations and effective masses, the arms in this picture are filled with  media with 
different indices of refraction. After the e-h pairs traverse their respective arms, 
equivalent to their acceleration by the THz field, the GaAs couples out the pairs (iv) as 
either RHCP or LCHP light in the form of the SB electric field (v), whose polarimetry is 
then measured by our Stokes polarimeter. This, conducted for many sideband orders 
leads to our measured interferogram.



refraction in the different arms (denoted by ). After the two matter waves finish their 

acceleration process, (iv) they annihilate and are out -coupled by the GaAs crystal (v) in 

the form of light, or high order sidebands. This outgoing sideband electric field is 

measured by our Stokes polarimetry apparatus, which registers the changing sideband 

polarization as a function of sideband order. We call this signal an interferogram because 

increasing the observed sideband order is equivalent to sending quasiparticles farther and 

farther in real and inverse space, or lengthening the arms of the interferometer.


4.1.1 Jones Matrix


	 We can use our Jones Matrix formalism developed in Chapter 2 in order to 

develop an expectation for how the sideband polarization signal will change as a function 

of sideband order n and other experimental parameters by incorporating an analytical 

version of the  values I developed in Chapter 3. First, we are going to rephrase the 

expressions for the NIR and sideband electric fields, in order to express them in terms of 

variables which are intuitive to HSG’s optical selection rules.


	 As detailed in Chapter 2, the annihilation of the e-h pair will emit a photon with 

either RHCP or LHCP. For each hole state, the Bloch wavefunction will be in a 

superposition of angular momenta eigenstates, , one of which will 

emit a RHCP photon and one which will emit a LHCP photon. With this insight, the 

circular basis will inform us of the dynamics of Bloch wavefunctions in a basis which is 

synonymous with the distribution of angular momenta eigenstates of the wavefunctions. 

In the circular basis, we can express the normalized sideband electric field as


μν

ςν
n

±3/2⟩ & ∓1/2⟩

75






Here  and  are quantifying the normalized amount of light in the RHCP and 

LHCP basis, respectfully, with the condition  for all sideband orders n. 

By focusing on the normalized electric field, our signal will focus on changes in 

polarization on the order of unity with respect to sideband order as opposed to the 

logarithmic falloff of electric field strength observed in GaAs high order sidebands. In 

this expression,  is the relative phase difference between the LHCP 

and RHCP components of the sideband field. The individual phases of these components 

are defined with respect to the RHCP component of the NIR excitation, which, given the 

gauge freedom, is chosen to be set to zero.


	 We can reconstruct the sideband electric field in the circular basis using the 

Stokes parameters measured from the Stokes polarimetry process detailed in Chapter 2 

using the expressions





Here  is the THz-to[110] crystal axis orientation, and


 


Ê(n)⟩ ≡ E(n) ⋅ ∥E(n)∥−1 = r (n) R⟩ + l(n)eiϕ(n) L⟩

r (n) l(n)

r2(n) + l2(n) = 1

ϕ(n) ≡ ϕl(n) − ϕr(n)

r2(n) =
1 + S̃3(n)

2

l2(n) =
1 − S̃3(n)

2

ϕ(n) = arctan ( S̃2(n)
S̃1(n) ) − 2θ − π /2

θ

S̃i(n) ≡ Si(n)/ S2
1 (n) + S2

2 (n) + S2
3 (n)

76

(4.1)

(4.2)

(4.3)



which allows for the normalization of  such that they are independent of the 

sideband intensity. Figure 4.2 depicts the measured Stokes parameter for a given 

polarimetry run, and the calculated  for an experimental run.


	 With this expression of the sideband electric field, and an equivalent expression 

for the NIR excitation, we can rewrite our Jones Calculus expression 





l(n) & r (n)

r2(n), l2(n), & ϕ(n)

(r (n)eiϕr(n)

l(n)eiϕl(n) ) = (
T++,n T+−,n

T−+,n T−−,n) (
rNIR

lNIReiϕNIR)
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Figure 4.2 - Stokes Parameters and Reconstructed Sideband Electric Field. 

Top Frame: An example of the measured Stokes parameters of the sideband spectra. 
Stokes parameters are located directly underneath the corresponding sideband peak. 
Bottom Frame: The Stokes parameters is the representation of the sideband electric field 
in the circular basis, . Using Eq. 4.2, the measured Stokes 
parameters calculate the values for  displayed.

Ên = l(n)eiϕ(n) L⟩ + r (n) R⟩
r (n), l(n), & ϕ(n)

(4.4)



For this work, we will only be calculating the Jones matrix elements using the methods 

outlined in Chapter 3, as opposed to Chapter 2, where the reconstruction of the Jones 

matrix elements and their ratios was the key experimental accomplishment. By measuring 

the values on the left side of the equation, and having experimentally set 

, we have to develop a good model for , robust to various 

experimental conditions, which calculates the  that predicts an outgoing sideband 

electric field which is in good quantitative agreement with experiment.


4.1.2 Bloch Wavefunction Dynamics Modeling the Phase of Sideband 
Polarization


	 If we go back to Eq 3.1, we can see how the values we predict for  can calculate 

 and thus  from a particular NIR polarization. However, the form of  in Eq. 

3.12 is not analytically calculable. HSG polarimetry would ideally experimentally probe 

the sideband polarization’s dependence on material parameters. Fortunately, 

approximations can be made to simplify Eq. 3.12.


4.1.3 LIT Approximation


	 In the semiclassical approximation of , we argued most of the e-h pairs which 

contribute to a sideband signal are accelerated by less than one cycle of the THz field. 

Assuming this is the case, we can look at the form   during the 

window of time these e-h pairs are accelerated by the THz field. Numerical solutions 

provided by the annihilation conditions in Eq. 3.19 show the e-h pairs are accelerated for 

~200 fs by the THz field before annihilating and emitting a sideband. Importantly, this 

rNIR, lNIR, & ϕNIR ςν
n

Tij,n

ςi
n

Tij,n Ê(n)⟩ ςν
n

ςν
n

ETHz(t) = FTHz sin(ωt)
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time window is located around the node of . With this narrow time domain around 

the node of the field, we can approximate the THz field as linear in time (LIT), or 

.


	 With the LIT approximation, we can express the position of the electron or hole 

and the quasi momentum as





And simplify the annihilation conditions in Chapter 1 to a form which is analytically 

solvable for a specific set of experimental conditions. First the position condition for 

annihilation





And then the energy conservation expression





ETHz(t)

ETHz(t) ≈ FTHzωt

x (t) =
eFTHz

mω2 ((ωt)3 /3 − (ωto,n,ν)2ωt + 2/3(ωto,n,ν)3)

k (t) =
eFTHz
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x (tf,n,ν) = 0

ωt3
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(tf,n,ν /to,n,i)
3
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tf,n,ν = − 2to,n,ν
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2μν
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e2F2
THz
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2
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3
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2
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8nℏω3μν
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2
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This also provides us with the expression for the unitless acceleration time 





The expression in the parenthesis can be simplified to be in terms of the ponderomotive 

energy and the THz photon energy , 





Which provides insight into what experimental parameters will alter the acceleration and 

annihilation time to produce a sideband of a particular order. With this analytical 

expression for the acceleration time, we can also derive an analytical expression for the 

dynamical phase





Which we can then use to write  completely in terms of experimental and material 

parameters





Given all these approximations, it is reasonable to question how accurate the resulting 

model of the quasiparticle dynamics actually is when compared to the quantum theory. 

The first proof will come from comparing the values calculated by the LIT approximation 

analytically and the values calculated using numerics with a sinusoidal THz field. Figure 

3.1 compares these two methods of calculating values for the e and hh.


ωτnν = − 3ωto,n,ν = 3 ( 8nℏω3μν

e2F2
THz )

1/4

EγTHz ≡ ℏω

ωτn,ν = 3(2nEγTHz /Up,ν)1/4

Anν = − ∫
tf,n,ν

to,n,ν

e2F2
THz

8ℏω2μν
((ωt)2 − (ωto,n,ν))2 dt =

2
15

nωτnν

ςi
n

ςν
n =

iωd2

2πVℏ
exp [i 3 ( 8

15
n + (i Γd + ΔNIR)(ℏω)−1)(2nEγTHz /Up,ν)1/4]
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	 Qualitatively and quantitatively, the values calculated analytically from the LIT 

approximation and the values calculated numerically from the sinusoidal field nearly 

match, as demonstrated above. Figure 4.3 shows values calculated using both the LIT 

approximation (dashed lines) and the sinusoidal field (solid lines) for the e-hh (left 

column) and e-lh pairs (right column) which produce the 24th order sideband when 

driven by the three THz field strengths used in experiment (70 kV/cm (blue), 52.5 kV/cm 

(green), and 35 kV/cm (red)). The slight differences are exacerbated at higher sideband 

orders and lower field strengths, most visible in Figure 4.3 with the red curves having 

greater differences than the green and blue curves. As the creation and recombination 

times get farther away from the node of the THz field, the LIT approximation becomes 

less effective, which is the case for the increasing acceleration times required for higher 

orders and lower .


	 With this analytical model replicating values calculated by a more exact model of 

the quasiparticle dynamics, we move to our next proof point in the LIT approximation: 

using the values of  predicted by Eq. 4.11 to accurately predict the outgoing sideband 

polarization observed in experiment. 


4.2 FIELD DEPENDENT PROBE OF SB POLARIZATION


Looking at the expression for  in Eq. 4 11, we can see an  dependence embedded in 

the expression of the ponderomotive energy.  Therefore, all other experimental conditions 

being held constant, tuning the  used to accelerate the quasiparticles should produce 

sidebands of the same order with different polarizations. Looking at the fourth row of 

FTHz

ςi
n

ςi
n FTHz

FTHz
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Figure 4.3 - Comparison Between LIT and Sine Wave Calculation.

Values calculated from LIT (dashed line) and numerical solutions of a sinusoidal (solid 
line) THz field for E-H pairs which produce a 32nd order sideband. The different field 
strengths used in experiment, 70 kV/cm (blue), 52.5 kV/cm (green), and 35 kV/cm 
(red), are all displayed. The left column holds the values for the E-HH pairs, and the 
right holds the values for the E-LH pairs. The top row holds the calculated x-position 
for the holes (dark colors) and electrons (light colors). The second row hold the 
calculated wave vectors for the electrons (downward parabolas, associated with the left 
y-axis, a = 5.56 Å) and the THz fields (lines, associated with the right y-axis). The third 
row holds the calculated E-H pair kinetic energy. The bottom row holds the calculated 
absolute values of the E-H pair dynamical phase. 



Figure 4.3, this knob of  can be viewed as producing sidebands with quasiparticles 

having different . This provides us a convenient and easily manipulable experimental 

probe to test this theory of sideband polarization as an interferogram between two Bloch 

waves. If the LIT approximation validly describes the Bloch wave dynamics in bulk 

GaAs, then it should also model the change in sideband polarization as a function of 

.


4.2.1 Observed and Predicted Polarizations


We can break up the expression for  into two parts: one which is oscillating, and one 

which is exponentially decaying, which we can express as


 


Here 





This expression indicates there is one part of the oscillating term which goes as  and 

is dependent on the quasiparticle dynamical phase and the Fourier transform, and another 

which goes as  and is dependent on the NIR detuning. Also, there an exponential 

damping to the oscillations which is dependent on the dephasing value, and operates as 

the fringe contrast on our interferogram signal.


	 Using this form of  in the expression for the Jones matrix elements in Eq. 3.14, 

we can predict the polarization of the sideband field parameterized by . 

These predictions and experimental results are displayed in Figure 4.4, ( : top row, 

FTHz

An,i

FTHz

ςi
n

ςν
n ∝ eiΘν(n)e−Γd τn,νℏ−1

Θν(n) ≡ nωtf,n,ν + An,ν + ΔNIRτn,νℏ−1

= (8n /15 + ΔNIR /ℏω) 3(2nEγTHz /Up,ν)1/4

n5/4

n1/4

ςν
n

l2(n) & ϕ(n)

l2(n)

83

(4.12)

(4.13)



: bottom row) using four different NIR polarizations (RHCP: first column, LHCP: 

second column, Diagonal: third column, and Antidiagonal: fourth column) and three 

different field strengths (70 kV cm-1: Red, 53 kV cm-1: Green, and 35 kV cm-1: Blue). 

There are a few characteristics of this plot of experimental data (scatter plots connected 

with spline curves) and theoretical curves (dashed-dot curves, with bands indicating 5% 

error in THz field strength) worth examining in detail:


The expected dependence on NIR polarization - Such a result is expected, 

given the HSG literature, and is more a confirmation of the use of Jones matrices 

to map different NIR polarizations into outgoing sideband polarization states.


ϕ(n)
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Figure 4.4 - Experimental Measurements and LIT Predictions of  With Unique 
NIR Polarization and Varying Thz Field Strength

Measurements of Bloch-wave interferograms present in the sideband electric field 

 observed with four different NIR polarizations 
(RHCP: first column, LHCP: second column, Diagonal: third column, and Antidiagonal: 
fourth column) and three different THz field strengths (70 kV cm-1: Red, 53 kV cm-1: 
Green, and 35 kV cm-1: Blue). The polarization is parameterized by  (top row) & 

 (bottom row). The dashed-dot lines overlayed in the same color are the theoretical 
predictions of polarization stemming from the LIT version of . The bands are from a 
5% error in THz field strength. In the calculations for these curves  and 

.

Ê(n)

Ê(n) = r (n) R⟩ + l(n)eiϕ(n) L⟩

l2(n)
ϕ(n)
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The changing polarization as a function of sideband order n - In all 24 

experimental curves presented in Figure 4.4, none are constant with sideband 

order. This is a departure from the results in Chapter 2, where the polarization 

measurements where measuring a value which was constant with sideband order. 

In Chapter 2, this value was connected to an individual Bloch wavefunction, 

which in our system is constant in |k|, analogous to being constant with sideband 

offset energy, or order n. For the experiments in this Chapter, we are observing 

something about the Bloch wavefunctions which changes with |k|, and we 

hypothesize it the increasing difference in dynamical phase which leads to this 

change in sideband polarization as a function of n.


The dependence on  - In all eight panels, tuning the  used to accelerate 

the quasiparticles leads to different observed sideband polarizations. Qualitatively, 

Eq. 4.11 predicts the dynamics of the Bloch waves to be inversely proportional to 

. The lower the field strength, the greater the variation in phase of the Bloch 

waves as a function of sideband order. This is visible in Figure 4.4, where, for all 

eight panels of experimental data, the lower field strength data sets all oscillate 

more rapidly as a function of sideband order.


The fringe contrast for the RHCP and LCHP NIR data sets - The fringe 

contrast features for our interferometry signal are most apparent for the 35 kV 

cm-1 dataset in the RHCP and LHCP data sets, where the  data do not 

oscillate between 0 and 1, but rather dampen to some intermediate value. This 

FTHz FTHz

FTHz

l2(n)
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behavior is dependent of the values of dephasing in the exponential dampening 

term on Eq. 4.12.


Qualitatively, the theoretical predictions from the LIT approximation demonstrate the 

same behavior. Quantitatively. The dashed dot curves in Figure 4.4 demonstrate good 

overlap with the experimental data. It should be noted for the 24 curves calculated, there 

is only one free parameter toggled: the dephasing rate. For all the theoretical curves 

plotted, the values of  and  were used in calculations of .


	 Along with overlapping experimental data and theoretical curves, the LIT 

approximation provides one more insight which can demonstrate the validity or lack 

thereof for the model. At first glance, the datasets taken with the same NIR polarization 

but different field strengths look like they could overlap if the x-axes of the different sets 

were scaled by a particular factor. The LIT approximation provides this factor.


4.2.2 LIT Scaling Law for Field


Looking at Eq. 4.12 and 4.13, the phases of the Bloch waves evolve with terms 

dependent on  and . The former is the expression related to the 

Fourier transform and dynamical phase, which is the focus of this Chapter. The later is 

related to the contributions from , and will be further investigated in the next 

chapter.


	 By scaling the x-axes of the datasets by a multiple of the relative field strength 

factor predicted by the LIT approximation, , where , the 

x-axes of the scaled datasets will represent a constant dynamical phase for a given 

Γd = 4.7ℏω ΔNIR = 0 ςν
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polarization state. If the dynamical phase difference between Bloch waves is what leads 

to a change in polarization, and the LIT has an accurate prediction of the changing 

sideband polarization, the datasets should overlap. Figure 4.5 presents the scaled datasets, 

and the overlap of datasets in each panel indicates the accuracy of the LIT approximation 

and the Michelson interferometry description of changing sideband polarization.


	 With a straightforward, analytical model of the Bloch wavefunction dynamics, we 

accurately modeled the qualitative and quantitative behavior of the sideband polarization 

as a function of sideband order and THz field. The agreement is only the beginning of the 

success of this paradigm, as these promising experimental results open up a wide array of 

related microscopic physics in solids which can be probed using this method. The 
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Figure 4.5 - Scaled Experimental Measurements of  Using Dynamical Phase 
Field Dependent Scaling Law Predicted by Lit Approximation

Measurements of   presented in Figure 4.3. The 
sideband orders (x-axis of Figure 4.3) of datasets taken at different field strengths are 
sca l ed by a mul t ip l e o f t he r e l a t ive f i e ld s t r eng th f ac to r  
( ). The LIT approximation predicts this will lead to an x-axes 
equivalent to a constant dynamical phase for all datasets, and the Michelson 
interferometry picture of HSG would predict this scaling would cause the different 
datasets to overlap in each panel.

Ê(n)

Ê(n) = r (n) R⟩ + l(n)eiϕ(n) L⟩

n ⋅ λ−2/5

λ ≡ (FTHz /70kV ⋅ cm−1)



analytical form of our description allows for straightforward mechanisms to measure the 

influence of and extract from experiment key material parameters of interest. 


4.3 MORE KNOBS TO TUNE


Looking at Eq. 4.11,  are dependent on more than just . We could even argue the 

other dependencies are more interesting, as they are inherent to the sample. Whereas 

 is an external influence of the quasiparticle trajectories, material parameters like the 

dynamical gap, crystal lattice dephasing, and the effective Hamiltonian parameters also 

affect the trajectories. Given the success of the analytical LIT approximation of sideband 

polarization, we now have a mechanism to observe the influence of material parameters 

on the interference of Bloch waves and extract their values. Below, I will sketch a few of 

the most promising at-hand interferometry experiments which could extract relevant 

effective Hamiltonian parameters. The first, the quasiparticle to crystal lattice dephasing, 

has been studied extensively by my two colleagues, Joe Costello and Qile Wu. The 

second and third, the dynamical gap and Luttinger parameters, respectively, will form the 

remainder of this thesis. 


4.3.1 Dephasing Constant


The dephasing contribution to sideband signal, as depicted in Eq. 4.11, occupies a unique 

position in the exponential term. Specifically, it is the only factor we have contributing to 

the attenuation of the sideband signal. Because this chapter dealt entirely with the 

normalized electric field, this behavior of the dephasing did not manifest in the 

experimental data in this chapter. However, other HSG works have looked into various 

ςν
n FTHz
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expressions of quasiparticle dephasing, and demonstrated ways to extract these values 

experimentally.


	 Recent HSG experiments have used the LIT expression for  to investigate the 

temperature dependent behavior of dephasing, , by isolating contributions of the 

HH and LH as a function of temperature.


	 Theoretical explorations of the quasiparticle dynamics resulting in HSG have 

incorporated higher order contributions from the THz field, complex recombination 

dynamics, and quasi momentum dependent dephasing. 


4.3.2 NIR Dynamical Gap


For the purposes of this chapter,  was assumed to be constant, and for all intents and 

purposes was a constant frequency offset in experimentation. By changing the frequency 

of the NIR field, , the NIR detuning now becomes an independent experimental 

variable, .


	 By running the same field dependent scans at multiple NIR excitation frequencies, 

the HSG polarimetry data becomes a two dimensional dataset which can be used to 

determine the dephasing constant and the dynamical gap. Assuming the dephasing is not 

quasimomenta dependent, a single value for the dephasing should describe the 

quasiparticle dynamics for these data sets. The only value which would tune the output 

sideband polarization as a function of NIR frequency is . The analytical nature of 

Eq. 4.11 provides a direct measurement of this dynamical gap from experimental data.
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4.3.3 Luttinger Parameters


As Eq. 4.8 demonstrates, the values of these dynamical processes are all dependent on the 

ponderomotive energy of the quasiparticles in the THz field, which in turn is dependent 

on the effective mass of the e-h pair. This effective mass is determined by the specific 

dispersion relation of the electron and hole, defined along the crystal direction traversed 

by the quasiparticles. In a system with broken rotational symmetry like that of bulk 

GaAs, sending the e-h pair along different crystal directions should alter the outgoing 

sideband polarization due to a changing dispersion relation. This the Luttinger 

Hamiltonian, this change in dispersion relation and effective mass are quantified by the 

three Luttinger parameters.


	 The next layer of Bloch wavefunction interferometry would incorporate 

experiments conducted at different THz-to-crystal axis orientations. Coupled with 

information about the dephasing and dynamical gap already determined in the previous 

two experiments, the effective mass is the unknown parameter altering sideband 

polarizations. Using the expression for the effective mass in the Luttinger Hamiltonian in 

Eq. 1.6, one can reconstruct the scalar Luttinger parameters of bulk GaAs. 

90



Chapter 5 — Dynamical Gap 
Measurement

Concurrent with measurements done in the previous chapter, we were observing the 

dependence of our HSG signal on NIR wavelength. Figure 5.1 displays data taken during 

our experiments detailed in Chapter 2 and [63]. Redoing our polarimetry experiments 

with slightly altered NIR excitation conditions lead to measurably different sideband 

signal. This sensitivity to NIR excitation wavelength is expected in the LIT 

approximation of the propagator ,  displayed in Eq. 4.13, and provides a probe of the 

dynamical gap.


	 Such a parameter is difficult to measure, as common measurements of the gap, 

like absorbance, are obscured by excitonic effects (see Figure 5.2). Furthermore, these 
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experiments are normally conducted on equilibrium systems [47, 48, 50, 51]. By 

comparing experimental results to those predicted by the LIT approximation of the 

propagators, we present a preliminary measurement of the dynamical gap for bulk GaAs. 

Additionally, we get better agreement between datasets taken at different datasets and 

historical values of the band gap bulk GaAs [44, 45] when an energy splitting parameter, 
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Figure 5.1 - Varying Sideband Conversion Efficiency With Different NIR 
Excitation Wavelength

Sideband strength (conversion efficiency) normalized to the laser line. This data was 
taken on the bulk GaAs sample used for Bloch wave reconstruction in Chapter 2, taken 
at  degrees and 65 K. The below gap excitation (blue line,  nm) and 
above gap excitation (green line,  nm) are determined with respect to the 
exciton peak in the absorbance spectra (inset).

θ = 90 λNIR = 823
λNIR = 821



 = 1.5 meV, is incorporated into the LIT calculation. Sensitivities to the dynamical gap, 

and differences in the energy gap of different quasiparticle species, makes future NIR 

dependent HSG polarimetry a potential non-destructive probe of quantum materials 

theorized to be a part of Majorana Zero Mode (MZM) systems. In bulk GaAs, 

preliminary analysis has used HSG polarimetry data to reconstruct a dynamical gap of  

= 1.508 eV, with a peak splitting parameter of  = 1.5 meV.


5.1 QUASIPARTICLE PAIRS OF VARIOUS ENERGIES AND 
PHASES


	 Experiments detailed in this Chapter were conducted on two samples of bulk 

GaAs. Figure 5.2 shows the absorbance spectra of the two samples, indicative of the 

energy gaps for the hh and lh states in both samples. By tuning the output frequency from 

the M2 NIR laser cavity, we can tune the excitation energy of the quasiparticle pairs. This 

excitation dependent detuning





Is the term present in the expression for  in Eq. 4.11. In this expression,  is what we 

call the dynamical gap.


	 Like tuning the field strength in the previous Chapter, tuning the NIR excitation 

should tune the output polarization of the sideband electric field. Furthermore, with 

enough probes at different NIR wavelengths, quantitative analysis reveals a measurement 

of the dynamical gap term , the one constant for all of the excitations. Most enticingly, 
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introducing a term which splits the energy scale of the hh and lh states, , we can write 

the detuning term





With this extra expression, we get quantitatively better agreement between our 

experimental data and the calculated sideband polarization.


	 As the previous Chapter discussed, the LIT approximation anticipates a scaling 

relation among data taken at different , contingent on the sideband polarization 

evolving like dynamical phase and annihilation times, following a  relation. In the 

full expression for , the  term also is multiplied by a ratio of , this one 

being . With this in mind, HSG polarimetry data taken under conditions where 

 should show qualitatively well overlapped scaling in a reconfigured state 

similar to Figure 4.5 For those excitons excited far from the gap,  is tuned decidedly 

away from zero; more interesting physics ensue. In this regard, scaling polarimetry data 

as  should produce less of an overlap, given the inclusion of a  term.


5.1.1 Two Samples With Different Local Physics


	 In this chapter, we present data taken with two unique samples, produced from 

different fabrication runs. As the absorbance data in Figure 5.2 demonstrates, these two 

samples have measurably different local physics, as indicated by the exciton peaks. Data 

presented in the rest of this chapter will affirm this conclusion from the absorbance 

spectra, and demonstrate the sensitivity of HSG to the microscopic physics of a particular 

sample. Sample 1, which was the sample used for data in Chapter 4, underwent NIR 
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dependent polarimetry for seven wavelengths selected near the exciton peaks in the 

absorbance spectrum, denoted by the dashed lines. Sample 2 was fabricated for later 

experiments, and underwent more finely swept NIR excitations at two different crystal 

angles.


5.1.2 Absorbance To Determine Relevant Energy Scales


	 Strain is known to distort the band structure of bulk GaAs. The level of strain is 

specific to the van-der-Waal bonding process used to make our samples, which will vary 

from fabrication to fabrication. As a result, the two samples have noticeably different 

energy scales. These differences can be measured through absorbance measurements, 

such as the ones displayed in Figure 5.1. Through these measurements, we can determine 

the relevant NIR wavelength energies, based on where we see the exciton peaks. 


	 The observed exciton peaks, which are close to the known 0 Kelvin gap of GaAs 

(1.519 eV) served as the center wavelength for these NIR probes. Redshifted excitation 

wavelengths are considered “below the gap”, and blue-shifted excitation wavelengths are 

considered “above the gap”. This terminology was adopted before Dynamical gap 

analysis, and preliminary data analysis indicates the gap is actually significantly lower in 

energy than the exciton peaks of the absorbance spectra would suggest, if there is no 

inclusion of a gap splitting term .


5.2 ANALYSIS OF THE DYNAMICAL GAP


	 Sideband polarizations from both samples demonstrate sensitivity to the energy of 

the NIR excitation, with steps on the order of 0.5 nm (~1 meV) producing significantly 
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different polarization states. Sensitivity to quasiparticle energies at this scale is necessary 
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Figure 5.2 - Absorbance Measurements on Samples Used for NIR Dependent hSG 
Polarimetry

Absorbance data for Sample 1 (above) and Sample 2 (below). The experiments were 
conducted at the same temperature as HSG polarimetry experiments (35 K for Sample 
1, 25 K for Sample 2). The colored dashed lines correspond to the colored curves in 
Figures 5.3 and 5.4, for HSG polarimetry data taken at different wavelengths.



to characterize future quantum devices, and is greater than the expected thermal 

broadening of ~2 meV from fluctuations at 25 Kelvin. 


	 Quantitatively robust calculations are still being undertaken, however, preliminary 

analysis reveals a dynamical gap of approximately 1.501 eV (825.6 nm) when no peak 

splitting parameter is included, which is red-shifted significantly from literature values 

[44].  When a splitting value  meV is included in the LIT calculation of , the 

analysis produces a dynamical gap of 1.508 eV (822nm), which is much closer to the 

literature value of 1.51 eV. This analysis, conducted on Sample 1, is robust to the 

individual wavelengths probed in experimentation.


5.2.1 Polarimetry With Different NIR Wavelengths


	 The effects of the dynamical gap on the sample can be seen through two plots. 

One is by looking at the behavior of the sideband polarization as a function of sideband 

order, with the different NIR excitation wavelengths being plotted as separate curves on 

the same plot as is Figure 5.3 for Sample 1, and Figure 5.4 for Sample 2. Visually, the 

sideband polarizations change as the NIR excitation is tuned from shorter (cool colored 

curves) to longer (warm colored curves) wavelengths. Across two samples, two THz 

orientations, and four NIR excitation polarizations, all observed sideband polarization 

demonstrate a dependence on the wavelength of the NIR pulse.


	 Figure 5.3 displays data from sideband polarimetry experiments on Sample 1, 

with the top row displaying the observed  of the normalized sideband electric field, 

, and the bottom row displaying the phase delay between the LHCP and RHCP 

components, . Each column is a different NIR excitation polarization (LHCP, first; 
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RHCP, second; Diagonal, third; Antidiagonal, fourth, upper inset). For all the data 

displayed, the [110] crystal axis was at an 88 degree angle with respect to the THz 

electric field, the sample was held at 35 K, and  = 70 kV/cm.


	 Figure 5.4 displays similar data, taken on Sample 2. Here the four columns 

display four different polarimetry experiments. The first and third are data taken with a 

diagonally polarized NIR excitation pulse, and the second and fourth are data taken with 

an anti diagonally polarized NIR excitation. The first two columns are taken with A THz-

to-[110] crystal axis orientation of 45 degrees, and the latter two are taken with a relative 

orientation of 90 degrees. In all data displayed for Sample 2, the sample was at 25 K for 

HSG experimentation, and  = 70 kV/cm.
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Figure 5.3 - Measurements of  as a Function of Sideband Energy (Sample 1), 
With Varying NIR Polarization and Wavelength

Measurements of   as a function of sideband order, parameterized with  (top 
row) and (bottom row), from HSG experiments on Sample 1. Each column is a 
different NIR polarizations (RHCP: first column, LHCP: second column, Diagonal: 
third column, and Antidiagonal: fourth column, upper insets). The cool to warm color 
scale  of the curves indicate shorter to longer wavelengths of NIR excitation. The 
specific wavelengths are defined in the legend and correspond to the absorbance 
spectrum in Figure 5.2 A.
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	 Plotting the sideband polarization as a function of the NIR wavelength provides 

more insight into the behavior of the experimental data. Figure 5.5 shows the 

experimental data from Figure 5.3, where the  &  of the sideband fields 

observed in Sample 1 are replotted as a function of NIR excitation wavelength. Here the 

curves are the polarization states of the different sideband photons, moving from the 

lower order sidebands (cooler colors) to the higher order sidebands (warmer colors). The 

four columns correspond to different sideband polarization states, matching the format of 

Figure 5.3. Figure 5.6 follows the same convention, recasting the data of Figure 5.4.
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Figure 5.4 - Measurements of  in as a Function of Sideband energySample 2, 
With Varying NIR Polarization and Wavelength, at Different Crystal Angles

Measurements of   as a function of sideband order, parameterized with  (top 
row) and (bottom row), from HSG experiments on Sample 2. Each column is a 
different NIR polarizations (Diagonal: first column, Antidiagonal: second column, 
Diagonal: third column, and Antidiagonal: fourth column, upper insets). The cool to 
warm color scale  of the curves indicate shorter to longer wavelengths of NIR 
excitation. The first two columns are data taken with the [110] crystal axis oriented 45 
degrees with respect to the THz (inset, lower second column), and the latter two 
columns taken with the [110] crystal axis oriented at 90 degrees (inset, lower third 
column). The specific wavelengths are defined in the legend and correspond to the 
absorbance spectrum in Figure 5.2 B.
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	 There exists more nuanced quantitative behavior is visible in the curves of Figure 

5.5 and 5.6. The diagonal and antidiagonal curves for  in Figure 5.4 demonstrate 

what appears to be a monotonic dependence on NIR wavelength. However, when looking 

at the behavior of other , it does not appear “monotonic” the best descriptor. The 

behavior of  in Figure 5.5 appears to be periodic with sideband order. Future 

experiments could prioritize probing the behavior of sideband polarization with a large 

NIR bandwidth, as this large scale wavelength dependence could provide greater insight 

to the values of the quasiparticle dephasing and band gap energy. Caution is warranted, as 

the classical picture used for the LIT is useful for NIR energies close to the gap, where 

, providing us the diagonalized Luttinger Hamiltonian in Eq. 1.6, and reducing 
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Figure 5.5 - Measurements of  as a Function of NIR Wavelength (Sample 1), 
With Varying NIR Polarization and Wavelength

Measurements of   as a function of NIR excitation wavelength, parameterized with 

 (top row) and (bottom row), from HSG experiments on Sample 1. Each 
column is a different NIR polarizations (RHCP: first column, LHCP: second column, 
Diagonal: third column, and Antidiagonal: fourth column, upper insets). The cool to 
warm color scale  of the curves indicate shorter to longer wavelengths of NIR 
excitation. The specific wavelengths are defined in the legend and correspond to the 
absorbance spectrum in Figure 5.2 A.
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Coulomb interaction between the quasiparticles. With the breakdown of this 

interpretation, experimental data will be more difficult to discern with analytical models, 

such as the LIT approximation.


5.2.2 Power Dependence of NIR Polarimetry


	 Like experiments done in the previous chapter, the measured sideband 

polarimetry signal should have both a NIR wavelength dependence and  dependence. 

Figure 5.8 displays  as a function of sideband order, and Figure 5.8 displays  as 

a function of NIR wavelength. In both, each column contains data taken with different 
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Figure 5.6 - Measurements of  in as a Function of NIR Wavelength (Sample 
2), With Varying NIR Polarization and Wavelength, at Different Crystal Angles

Measurements of   as a function of NIR excitation wavelength, parameterized with 

 (top row) and (bottom row), from HSG experiments on Sample 2. Each 
column is a different NIR polarizations (Diagonal: first column, Antidiagonal: second 
column, Diagonal: third column, and Antidiagonal: fourth column, upper insets). The 
cool to warm color scale  of the curves indicate shorter to longer wavelengths of NIR 
excitation. The first two columns are data taken with the [110] crystal axis oriented 45 
degrees with respect to the THz (inset, lower second column), and the latter two 
columns taken with the [110] crystal axis oriented at 90 degrees (inset, lower third 
column). The specific wavelengths are defined in the legend and correspond to the 
absorbance spectrum in Figure 5.2 B.
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, (70 kV/cm, left; 52.5 kV/cm, middle, 35 kV/cm, right). Figure 5.7 displays data 

from Sample 1 with LHCP NIR excitations, and Figure 5.8 displays data from Diagonal 

NIR excitations.


	 Because quasiparticle dephasing and their initial detuning are both present in the 

expression for  in Eq. 5.2, experiments in which both are separately probed are 

necessary to determine either value. If we assume the gap value is a constant, 

independent of THz field [35, 36, 89], and the quasiparticle dephasing is independent of 

quasiparticle momentum [29], then experiments like those presented in Figures 5.7 and 

5.8 serve as fully sufficient dataset to reconstruct both parameters. Qualitatively, the data 
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Figure 5.7 - Experimental Measurements of  With Varying NIR Wavelength, 
With Different .

Measurements of   as a function of sideband order, parameterized with  (top 
row) and (bottom row), from HSG experiments on Sample 1 using LHCP NIR 
pulses (cartoon in upper left inset) of varying wavelengths, with the cool to warm color 
scale indicating shorter to longer wavelengths. The specific wavelengths are defined in 
the legend and correspond to the absorbance spectrum in Figure 5.1 A. Each column are 
data taken with different  (70 kV cm-1: left, 52.5 kV cm-1: middle, and 35 kV cm-1: 
right).
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in Figures 5.7 and 8 demonstrate the expected behavior from the LIT model. Therefore, a 

cost function analysis comparing experimental sideband polarizations and those 

anticipated from the LIT model can be employed to determine the approximate 

dynamical gap and dephasing of our system.


5.2.3 Cost Function Analysis of LIT Model and Data


	 With datasets taken at different THz field strengths and NIR wavelengths, we can 

set up a cost function to be minimized. For a given dynamical gap value, , and 

dephasing parameter, , there are predicted sideband polarization states, parameterized 

by  and . The robustness of the LIT approximation is tested by 
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Figure 5.8 - Experimental Measurements of  as a Function of NIR 
Wavelength, With Different .

Measurements of   as a function of NIR excitation wavelength, parameterized with 

 (top row) and (bottom row), from HSG experiments on Sample 1 using 
Antidiagonal NIR pulses (cartoon in upper left inset) of varying wavelengths. The cool 
to warm color scale follows from lower to higher order sidebands, defined in the 
legend. Each column are data taken with different  (70 kV cm-1: left, 52.5 kV cm-1: 
middle, and 35 kV cm-1: right).
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experimental data with different quasiparticle acceleration times, , and different 

quasiparticle detuning, . The former is toggled by the  (see Eq. 4.13) and the 

latter is tuned by the NIR energy  (see Eq. 5.2). For the sideband polarizations 

predicted theory, the material parameters used for these calculations should be the same, 

taking for granted the assumptions listed in the previous section are valid for the 

quasiparticle energies observed experimentally. As a result, one value of the dynamical 

gap and quasiparticle dephasing should provide the greatest agreement. Comparing data 

taken at this variety of conditions leads to the cost function





When summing up this cost function across data from the 819.5, 820.2, 820.6, and 822 

nm data sets from Sample 1, at all three field strengths probed, we get a cost function 

whose dependence on  and  is polluted in Figure 5.9. Here the variable plotted in the 

contour map is the  calculated at each coordinate on the x-y plane, normalized to the 

number of data points used at each coordinate. The color bar denotes the relative values 

of the .


	 From this cost function analysis we see a clear minimum at  and a 

dynamical gap of  eV.  A plot of the calculated cost function is displayed in 
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Figure 5.9. While this dephasing value appears reasonable, and is comparable to the value 

used in the previous chapter which provided best agreement for the 820.6 nm data set. 

However, the dynamical gap value which produces a minima in all of these calculations 

is ~10 meV away from the quoted gap of GaAs at 0 K [44, 45]. At the time of writing, we 

are still in the early stages of understanding the implications of these results, and what 

this implies about the dynamical gap value we believe we are probing. In addition, 

without the incorporation of the peak splitting parameter, the shorter wavelength data sets 
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Figure 5.9 - Cost Function Analysis of LIT Calculated  Using Different 
Dephasing and Detuning Values

The difference between calculated and experimental values of , parameterized by 
the cost function , displayed as a contour plot. The height of the contour at a 
given position is the calculated  for those related coordinates. The value of a 
given  is related by the color bar on the right.

Ê(n)
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not included in the cost analysis are not well behaved with respect to the longer 

wavelength data. Figure 5.10 shows the cost function analysis for the 815 data set, which 

has an additional ~10 meV redshift from the calculated dynamical gap. At this early state 

of analysis, there is no clear reason as to why data taken below 819.5 nm diverges from 

the data taken above this threshold.


	 Finally, the incorporation of a peak splitting parameter  provides a lower cost 

function, better agreement among all the data sets, and a more realistic value for the 
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Figure 5.10 - Cost Function Analysis of LIT Calculated ; Divergence at 
Shorter Wavelengths

The difference between calculated and experimental values of , parameterized by 
the cost function , displayed as a contour plot. Here the data is from the 815 
nm excitation wavelength on Sample 1. Notice the higher overall cost and the 10 meV 
redshift from the minima from the longer wavelength data sets.
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dynamical gap. As will be elaborated in a following section, this makes analysis of the 

detuning term more difficult, but also is an argument for how sensitive HSG is on the 

effective Hamiltonian of a system. With a peak splitting term of 1.5 meV, on the order of 

the observed exciton peak splitting in Figure 5.2, we observe a cost function minimum 

with  and . This dynamical gap value is close to the expected gap 

of bulk GaAs at 25 K, and is close to the exciton peak line in the absorbance spectrum in 

the upper panel of Figure 5.2.
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Figure 5.11 - Cost Function Analysis of LIT Calculated ; Incorporating Peak 
Splitting Parameter

The difference between calculated and experimental values of , parameterized by 
the cost function , displayed as a contour plot. Here the data is from all seven 
NIR excitation wavelengths and three  from Sample 1. For the LIT approximation, 
a peak splitting parameter of  meV was used.
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	 Figure 5.11 shows the cost analysis, incorporating all seven NIR wavelength 

datasets. Incorporating a 1.5 meV peak splitting parameter into the LIT calculation, the 

cost analysis yields a minimum at the values  and  eV, in much 

better agreement with the longer wavelength data set cost analysis. All indications are a 

continuation of this line of inquiry will also yield a value for , incorporating the 

parameter as a third variable to minimize the cost function.


5.2.4 Differences Between the Two Samples


	 Looking at Figures 5.3 and 5.4, we can see differences between the changes in 

sideband polarization as a function of Ω between the two samples. Looking at the effects 

of dephasing and effective mass on the outgoing sideband polarization, it would appear 

the two samples have observably different dephasing rates. In part, this could be due to 

the different temperatures at which experiments were conducted for Samples 1 and 2. 

However, there could also be observably more quasiparticle dephasing in one crystal 

compared to the other. If this can be quantitatively measured and verified, then in the 

future these NIR and  sweeps of sideband polarimetry scans could, among other 

outcomes, nondestructively determine the amount of quasiparticle dephasing in a bulk 

semiconductor. In quantum materials proposed to be a part of the next generation of 

quantum hardware, such a method would be valuable in determining the coherence and 

longevity of qubits. 
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5.3 USE FOR QUANTUM MATERIALS


In the field of topological condensed matter, key Hamiltonian parameters like the 

dynamical gap are relevant for defining phase spaces [90]. Recent works have theorized 

methods to leverage these non-trivial topologies as sources of incorruptible quantum 

information for long lived quantum computing bits, or qubits [90]. For the constituent 

components of a topological quantum computer to operate optimally, the system must be 

precisely tuned to the topological phase, which requires knowledge of the Hamiltonian 

parameters which determine the phase [91, 92]. To date, there is no non-destructive, 

phase sensitive characterization technique for these materials, making the fabrication of a 

reliable topological quantum computer exceedingly difficult.


5.3.1 Spin-Orbit-Coupled Semiconductors Used in MZM Systems


	 HSG polarimetry holds promise for resolving the spin orbit coupling (SOC) 

induced splitting of bands associated with different p-orbitals in semiconducting systems. 

Semiconducting systems with large SOC in the highest energy valance bands have 

become materials of great interest in the materials science community [90, 93, 94]. When 

hybridized with a low temperature superconductor, the overall system is theorized to host 

Majorana fermions, incorruptible sources of quantum information with tunable phases 

[90, 95].  Among other proposed quantum bits, or q-bits, Majorana fermions are one of 

the few topologically protected q-bits [90]. While other qubits have already been built 

[96], and deployed in quantum computers [97], Majorana fermions and their zero-bias 

modes (MZM) have not been observed and reported by scientists.
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	 The novel materials used as the high SOC semiconductor in these heterostructures 

are major bottlenecks in the process of building a reliable MZM system. Specifically, 

most of the materials used are relatively new to the field of material science, and their 

SOC parameters are not well known. The environment which tunes our heterostructure 

into a MZM is highly calibrated, determined by the energy scale of the SOC. We believe 

HSG could serve as a non-destructive, bulk sensitive method to measure the SOC 

parameter in semiconductors.


	 The importance of the peak splitting parameter to model the quasiparticle 

dynamics provides great promise for future experimentation of more novel quantum 

materials. The Luttinger Hamiltonian already incorporates SOC in its perturbative form, 

however, a degeneracy exists for the two highest energy valence bands. Non-trivial strain 

removes this degeneracy, creating a difference in quasiparticle energy and thus detuning 

parameter. For bulk GaAs with a small strain, this difference in small. Therefore, the 

sensitivity bodes well for using NIR dependent HSG on high-SOC semiconductors 

theorized to be a part of MZM die.


5.3.2 NIR Tuning Hole Basis Analysis


	 Given the sub-meV sensitivity of HSG between the quasiparticle initial energy 

and the outgoing sideband polarization, it might seem reasonable to expect behaviors like 

the hole species population, parameterized by  to also show sensitivities to the NIR 

excitation energy. If the absorbance plots from  our samples is any indicator of the NIR 

wavelength dependence of hh and lh populations, one would expect a narrowly defined 

excitation near the band gap to produce significantly more of one hole state over the 
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Figure 5.12 - Hole Propagator Magnitude Dependence on NIR.

The reconstructed  as a function of NIR wavelength for Sample 2 at  
degrees. Each colored band being different SB orders, indicated in the legend and 
following the color scheme of Figure 5.5.
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other.


	 Data presented in this chapter demonstrates a lack of an overpopulation of one 

hole species through a selective excitation process. When the two hole states are 

adiabatically driven by the THz field, there is a theorized process of an absorbance 

spectra flattening in energy space, related to a phenomena called dynamical Fano 

resonance [98, 99].  This would not be the first demonstration of the large Terahertz field 

distorting the band structure of semiconducting systems [69, 100]. Future experiments 

have been proposed to observe or negate such a flattening of the optical response of our 

semiconductor. Should there be such a flattened response, this could perhaps explain the 

lack of an overpopulated band with the correct NIR resonant excitation, and the 

appearance of some blue and redshifted values for our fit sideband polarization signals.


	 Such a behavior appears to exists in our experimental data. Figure 5.12 displays 

the observed  as a function of NIR wavelength, corresponding to data taken from the 

polarimetry scans from Figure 5.4. There is no clear wavelength in which one state is 

significantly more populated than the other. From everything we are seeing, something 

more than absorbance is occurring in our system.


	 Previous works have put forward the idea of strong electric fields adiabatically 

stabilizing excitonic wavefunctions [99]. Under such conditions, the density of states for 

the quasiparticles will spread out, akin to the absorbance lines in the material broadening. 

Such a phenomena is called Dynamical Fano Resonance [98]. While preliminary efforts 

have been proposed to observe such a phenomenon, to the best of our knowledge, no 

group, including our own, has observed such a phenomena in bulk GaAs. However, 

|ςν
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behavior like that of the in Figure 5.12 provides further evidence such a phenomena 

exists.


5.3.3 Peak Splitting Parameter


	 Along with the increased quantitative agreement between experiment and theory, 

our data also demonstrates a qualitative behavior related to a non-zero value of the peak 

splitting. Figure 5.13 shows data taken at different field strengths, scaled with the 

 dependence predicted by the LIT approximation. If , this scaling 

relationship should work in the limit of the approximation. However, if , there is 

an additional  term present in expressions in Eq. 4.13. If , then tuning the 

NIR to the dynamical gap will make   for both hole species, and  should 

generate the best overlap between data sets taken at different field strengths. If  , 

then no NIR wavelength will result in zero detuning for both e-h species, as the splitting 

parameter creates a different dynamical gap for the two.


	 Figure 5.13 appears to demonstrate conditions where , as none of the NIR 

wavelengths used in experiment have field dependent data sets which collapse well with 

 scaling predicted by the LIT approximation. Each column is a data set taken at a 

different NIR wavelength, with the different colored curves representing data taken with 

different  (  = 70 kV/cm, green;  = 52.5 kV/cm, blue,  = 35 kV/cm, 

red). The top row displays the measured  values of the sideband electric field, and 

the bottom row displays . All the data were taken with Diagonally polarized NIR 

excitation pulses. No data set seems to demonstrate a clear overlap, despite the wide 

range of wavelengths tuned. In addition, there is no monotonic behavior which would 
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indicate a direction to tune the NIR excitation which would eventually result in a 

 condition. This qualitative analysis agrees with the preliminary quantitative 

analysis, detailed in section 5.3.3.


	 While this lack of overlap for all probed datasets makes the determination of  

more difficult, this result is an encouraging reminder of the sensitivities of HSG 

polarimetry to perturbations from the Luttinger Hamiltonian on the meV scale. Future 

HSG experiments conducted on high SOC semiconductors will benefit from such precise 

measurements of the difference in dynamical gap between quasiparticles. For such 

materials, proposed to be a part of topological quantum computers [91, 92, 101], such 

precision will allow for the proper tuning of the Fermi energy into the topological phase 

of the heterostructure.


ΔNIR ≠ 0

ΔNIR
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Chapter 6 — HaRφως: 
Hamiltonian Reconstruction 
through the Polarimetry of High 
Order Sidebands

By connecting a seemingly immeasurable quantum phase to a clearly measurable optical 

phase, there were many new avenues of experimentation. Reconstructing the effective 

Hamiltonians of quasiparticles was one of the more exciting and extensive novel lines of 

inquiry. The operators governing the behavior of our quasiparticles contain both real and 

imaginary components, making their measurement fundamentally impossible in most 

experiments sensitive to quantum mechanics. But they also govern the trajectories our 

quasiparticles take when being accelerated by the THz and the phases they accumulate 
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along the way. Developing a model of the Hamiltonian’s influence on sideband 

polarization was an involved process. Developing an analytical model of this influence 

with experimentally extractable values of the effective Hamiltonian parameters would 

prove much more difficult than initially expected.


	 The one set of material parameters we have taken for granted in our analysis, so 

far, are the Luttinger parameters of bulk GaAs. For a well characterized material so 

thoroughly integrated in modern technology, this is not too dangerous of an assumption. 

One of the main goals of this experiment was not to discover some radically different 

values for the Luttinger parameters, but rather confirm the existing values using a new 

method which could be expanded to almost any system with a band gap. By 

demonstrating the reliability of the result on a reliable material, we hoped to extend the 

method to more exotic systems theorized to form the next generation of quantum 

electronics. 


	 With that being said, there can be improvements in the current values. Most of the 

literature quotes the values of the Luttinger Hamiltonian without error bar [45], and rely 

of goodness-of-fit calculations to cyclotron resonance, where there are more variables 

than functions to fit. Surely the field of materials characterization should do better for the 

next generation of devices requiring a deeper understanding of the quantum nature of the 

quasiparticles present in the system at hand.


6.1 REDUCED MASS AS PROBE FOR LUTTINGER PARAMETERS


Going back to the expression for  in its most general form, conveyed in Eq. 3.12, 
ςν
n
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Even in this most general expression, we can argue there is a dependence on the angle 

between the THz electric field and the [110] crystal direction, labeled θ. Because this 

expression for the propagator, and all subsequent simplifications, is dependent on the 

dynamical phase of the quasiparticles, there is a dependence on the reduced mass of the 

quasiparticle pair. Going back to the initial expression for the dynamical phase





There is a clear dependence on the direction in k-space taken by the quasiparticles in the 

energy terms included in this expression.


	 Using the expressions for the dispersion relations of the conduction, heavy hole, 

and light hole band in bulk GaAs, this dynamical phase term can be put in terms of the 

reduced mass of the quasiparticle pair





This reduced mass parameter, µ, is dependent on the specific path taken by the 

quasiparticle pairs, and the effective Hamiltonian which determines the dispersion 

relation near the band edge.


6.1.1 the Luttinger Parameters


	 In order to express the dispersion relations from the integral in Eq. 6.2 to the free-

particle form in Eq. 6.3, the reduced mass term takes the form


ςν
n = ∑

s=±

iωd2

2πVℏ ∫
2π/ω

0
ei(Ω + nω)t ∫

t

−∞
dt′￼eiAν(t,t′￼)e−iΩt′￼

Aν(t, t′￼) = ∫
t′￼

t
dt′￼′￼[Ec (k(t)) − Eν (k(t)) + i Γd]/ℏ

Aν(t, t′￼) = ∫
t′￼

t
dt′￼′￼[ℏ2k2(t)(2μ)−1 + i Γd]/ℏ
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for the e-hh pair, where  is the free electron mass,  is the conduction band effective 

mass for bulk GaAs, 0.067  [44],  are two of the Luttinger parameters, and  

is the spinor-like component used to express the block diagonal,  = 0 Luttinger 

Hamiltonian, taking the form





With this form of , we can say the reduced mass, and, as a result, the propagator  

are all dependent on the THz-to-crystal angle θ, and the three values of the Luttinger 

parameters. 


6.1.2 Propagators Differing With Hole Species


	 Looking at the form of the propagator we used in Chapter 4





there are a few variables which bring about differences in the relative phases and 

magnitudes of the hh and lh propagators. In the last chapter, we saw NIR dependent data 

which indicated the existence of splitting between the band edges of the hh and lh states. 

This would result in different detuning values for each hole species, , which 

manifests as different phases for the two propagators and contributes to the interference 

phenomena reported throughout this thesis. In addition to the splitting parameter, the 

ponderomotive energy factor in Eq. 6.6, 


μhh(θ ) = m0 (m−1
c + 2γ1 − γ2 |n(θ ) |)−1

m0 mc

m0 γ1 & γ2 n(θ )

kz

n(θ ) = [ 3
2

sin(2θ ),
3γ3

2γ2
cos(2θ ), −

1
2 ]

n(θ ) ςν
n

ςν
n =

iωd2

2πVℏ
exp [i 3 ( 8

15
n + (i Γd + ΔNIR)(ℏω)−1)(2nEγTHz /Up,ν)1/4]

ΔNIR,ν
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will be different because the reduced masses for the e-hh and e-lh pairs take the form








The addition versus the subtraction of the  term between the two hole species is 

enough for a lifting of a degeneracy of the hh and lh eigenstates away from the Γ point of 

the Brillouin zone, and enough for the observed Bloch-wave interferometry reported in 

Chapter 4. 


	 In that chapter we tuned the ponderomotive energy of our quasiparticles, and thus 

the relative phase between the propagators, by tuning the  value. Figure 4.4 

demonstrates this toggling of field strength alters the sideband polarization, or 

interference signal. In this chapter, we modify the phases between the  by modifying 

the reduced mass term in the ponderomotive energy expression, which is accomplished 

by turning the direction in the Brillouin zone traversed by the quasiparticles, 

parameterized by θ.


6.1.3 Probing the Contribution of Luttinger Parameters To Sideband Signal


	 Given the dependence of  on θ, and how the Luttinger parameters modulate this 

change through the reduced mass term, HSG polarimetry at different crystal angles serves 

as a probe to the effective Hamiltonian parameters of the quasiparticles. This change as a 

function of angle should mirror the symmetry of the GaAs crystal, which, along with the 

Upν =
e2F2

THz

4ω2μν

μhh(θ ) = m0 (m−1
c + 2γ1 − γ2 |n(θ ) |)−1

μlh(θ ) = m0 (m−1
c + 2γ1 + γ2 |n(θ ) |)−1

γ2 |n(θ ) |

FTHz

ςν
n

ςν
n
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Luttinger Hamiltonian, has  symmetry. Observing this symmetry and connecting the 

dependence of  to θ by the LIT model or some higher order expression for the 

propagator provides the opportunity for an isotropic, all optical probe of the effective 

Hamiltonian partakers of the quasiparticles driven far from equilibrium.


6.2 ANGLE DEPENDENT HSG POLARIMETRY


Polarimetry experiments which tune the crystal angle is difficult in the currently existing 

electro-optical setup. To acquire HSG polarimetry data at different crystal orientations, 

the sample has to be warmed up and macroscopically rotated, brought back to vacuum, 

and cooled to the same operating temperature. This takes on the order of ~5 hours, 

making each unique set of angular data a time consuming matter. All of this is to 

highlight the difficulty of running a controlled experiment, where the only difference run-

to-run is the THz-to-crystal orientation. Even the data presented in Chapter 2 and [63] 

were not as longitudinal as the experiments of this chapter, as for that chapter each 

experimental run could be treated as an independent dataset. For the line of analysis 

proposed in this chapter to be effective, experiments need to be consistent among all data 

sets acquired.


	 In Eq. 6.4, the  Luttinger parameter has no angular dependence. Therefore, this 

variable cannot be reconstructed through angle modulation alone. Instead, the behavior of 

 as a function of sideband order must be used. Looking back at Chapter 4, we see the 

dephasing rate also plays an important role in the sideband polarization, and thus our 

measured  as a function of sideband order. As a result, in addition to angular dependent 

C4

ςν
n

γ1

ςν
n

ςν
n
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HSG polarimetry, some  dependent measurements were conducted to determine the 

role of dephasing in our signal. 


	 Comparing a ratio of the two propagators will divide away the pre-factors in Eq. 

6.1, which are the same for both the hh and lh. Because the dynamical phase and thus the 

Luttinger parameter contribution is in the complex exponential of the propagator, looking 

at the argument of the ratio will provide the most insight into the dependence on 

.


6.2.1 Angle Dependent Data With Broken C4 Symmetry


	 Figure 6.1 displays experimental data taken at 13 different θ, displayed as discrete 

dots on the x-axis, using polarimetry data from the 10th (red) to 32nd (purple) order 

sideband. The values of  are reconstructed using data from four polarimetry 

scans at each angle, and measurements of the  parameter using the PMT 

calibration measurement detailed in section 3.2. The bands connecting the discrete 

datasets are B-Splines. 


	 To begin, these data clearly vary with θ. For a given sideband order presented in 

Figure 6.1, there is a variance of 30 degrees between datasets taken at different angles. 

However, the data demonstrate a broken  symmetry. If there were such a symmetry in 

the , then data sets close to  would be equivalent. This is not 

the case, and instead the data demonstrates the  of the THz field. Such symmetry 

breaking in the GaAs crystal probably occurred through anisotropic strain from the vdW 

bonding process. If this were the case, perturbed Hamiltonians incorporating these 

FTHz

γ1, γ2, & γ3

Arg(ςhh
n /ςlh
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n ) θ[110] = ± 45o
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distortions to the GaAs crystal and band structure are required in order to bring about 

better agreement between experiment an theory.


	 Figure 6.2 displays the magnitude of the ratio of these two propagators, 

, which gives information about the relative population differences at 

different sideband orders and trajectories along the crystal axes. The plotting conventions 

are the same as in Figure 6.2. A value of one indicates an equal population of hh and lh 

species producing a sideband of order n, a value greater than one indicates more hh than 

(ςhh
n /ςlh

n )
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bands connecting the data are B-Splines.
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lh pairs, and a value less than one indicates more lh than hh pairs. Due the difference in 

reduced mass of the e-hh and e-lh pairs, there should be more e-lh pairs at higher 

sideband orders. The acceleration time by the THz field,  from Eq. 4.9, will be shorter 

for the e-lh pairs, meaning processes like dephasing will have less of an effect on these 

states. This would be analogous to the value of  going from 1 to 0 as a 

τn,ν
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function of sideband order, which is demonstrated for all angles probed in experiment. 

Also, because we are looking at the magnitude and not the angle between these two 

complex values, we should expect a phase shift between the the  and 

 data set. In Figure 6.2 the  data  (especially the lower order 

sidebands) oscillating with  symmetry with respect to the GaAs crystal axis, like the 

data in Figure 6.1, but with a 45 degree phase shift, which is the expected shift.


	 While both of these data sets demonstrate a dependence on crystal angle, they 

demonstrate a reduced symmetry ( ) when compared to the GaAs crystal ( ).


6.2.2 THz Field Measurements of Quasimomentum Dependent Dephasing


	 In an effort to make sense of the change in sideband polarization as a function of 

sideband index, we developed a method to compare HSG polarimetry data taken at two 

or more field strengths to build an effective model of the dephasing of the quasiparticles. 

By applying this method to each order, we are in effect reconstructing a quasi momentum 

dependent model for the dephasing.


	 First, a third order approximation of the THz field was developed to produce a 

form of the semiclassical version of ,  dependent on a value for the reduced mass and 

dephasing rate, taking the form
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Here the quantum correction 





Where the coefficients





The coefficient to the LIT approximation expression





	 The third order expansion term  is even more involved. Because the 

derivation and use of these coefficients are not germaine to the scope of this thesis, they 

will not be presented. A more involved derivation and discussion is already present in the 

literature [29]. The inclusion of lower order coefficients is included to demonstrate the 

dependence on dephasing and the reduced mass of the quasiparticle pair.


	 Τo obtain the deposing rate of the sample as a function of µ, data displayed in 

Figure 6.3 uses magnitudes of individual hole species propagators, normalized to the 10th 

order sideband to divide away pre-factors. These normalized propagators are denoted 

q0(Γd) = (an(Γd) − cn(Γd)5(an(Γd) + cn(Γd))2 /24 − (aN(Γd) − cN(Γd))7 /216

an(Γd) = − 181/4
i Γd /(ℏω) − 2 n + i Γd /(ℏω)

3 − i Γd /(ℏω) + n + i Γd /(ℏω)

an(Γd) − cn(Γd) = 181/4 − i Γd /(ℏω) + n + i Γd /(ℏω)

an(Γd) + cn(Γd) = 181/4
i Γd /(ℏω) + n + i Γd /(ℏω)

3 − i Γd /(ℏω) + n + i Γd /(ℏω)

q1/4,n(ΓD)

= nan(ΓD) + i
Γd

ℏω
(an(Γd) − cn(Γd)) − (an(Γd) − cn(Γd))5 /360

−(an(Γd) − cn(Γd))3(an(Γd) + an(Γd))2 /24

q3/4,n(Γd)
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. An analytical calculation can be used to calculate the dephasing value [29] from 

the ratio of two of these propagators taken at different field strengths. A subtlety of using 

the hole species specific propagators is the ability to reconstruct a hole-species specific 

value for dephasing, . The calculated values of  with this quasi 

momentum dependent dephasing are plotted as the green curves in Figure 6.3. The great 

overlap between experiment and theory could be indicative of an over-fit. 
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	 Figure 6.4 displays  values taken at one crystal angle (θ = 50 

degrees) and two THz field strengths (  kV/cm: dark,  kV/cm: light). 

Using a cost function analysis, 


 


a value of  at each sideband order was determined to create the best agreement 

between the predicted values using equation 6.1 and the experimental data. The 
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calculated value with the best agreement, using the selected value of , are displayed 

as the green curves. Beyond the ability for theory to well-reproduce the behavior of 

 at different field strengths, the experimental data also demonstrate the 

qualitative behavior expected by theory. The value of  should decrease with 

increasing field strength, in the same way the value of  and  should more 

rapidly with sideband order at lower field strengths. The argument for greater differences 

between the phases of the propagators with longer acceleration times due to a lower 

power THz field is the same. From this field dependent analysis, we were able to 

reconstruct a model of the dephasing which was k dependent, and specific to each hole 

species. Figure 6.5 displays such a reconstruction.


6.2.3 Angle Dependence of Sideband Polarization


	 Even with the success of this third order approximation of the semiclassical 

propagator reproducing the  and , and reconstructing an 

effective model for , there was no convincing reconstruction of the Luttinger 

parameters using this model. Some of these complications can be circumvented by 

introducing a simpler description of  through the LIT approximation. Going back to the 

discussions of Chapters 3 and 4, the LIT approximation has an analytical model for the 

behavior of ,  and  as a function of THz-to-crystal orientation. In order to 

apply the LIT, the data should show sideband polarization changing as a function of this 

crystal angle. 


Γd,ν

Arg(ςhh
n /ςlh

n )

Arg(ςhh
n /ςlh

n )

l2(n) ϕ(n)

Arg(ςhh
n /ςlh

n ) | ς̃ν
n |F1

/ | ς̃ν
n |F2

Γdν(k)

ςν
n

ςν
n l2(n) ϕ(n)

129



	 Figure 6.6 displays  and  observed at different crystal angles From the 

data, we can see there is a clear dependence on outgoing sideband polarization and the 

crystal angle, in accordance with the LIT model of the propagator and subsequent Jones 

matrix elements. The different colored curves are data at different θ, moving from θ = 

-135 degrees (red) to θ = 45 degrees (dark blue), defined in the legend and depicted in the 

upper inset. The upper row displays the observed  at these different crystal 

orientations, all of which vary with sideband order, just like the data presented in 

l2(n) ϕ(n)

l2(n)
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6.4.
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Chapters 4 and 5.  The rate at which  changes as a function of sideband order varies 

with crystal angle. This is equivalent to the difference in the reduced mass terms between 

the e-hh and e-lh pairs changing with crystal angle, as outlined in Eq. 6.4. 


	 Figure 6.7 has a clearer depiction of the dependence of THz-to-crystal axis 

orientation dependence, with the x-axis in this plot being the crystal angle where the 

dataset was acquired. Here the different colored bands are the different sideband orders, 

from 10th (red) to the 34th order (purple). The different rows are data taken with different 

NIR polarizations (first from top: antidiagonal, second: diagonal, third: horizontal, fourth: 

vertical). There is a clear variance of the  at different crystal angles, closely 

following the periodicity of the  data in Figure 6.1, especially the diagonal 

and antidiagonal data. For reasons unknown at the moment, the horizontal and vertical 

NIR excitations have a period and phase more closely resembling the   data in 

Figure 6.2. 


	 This preliminary recasting of the data into the  holds the promise of 

connecting a phenomena well described by the LIT approximation, the changing 

sideband polarization as a function of sideband order, to it’s dependence on crystal 

orientation. With an analytical model more straightforward to evaluate, future analysis 

could yield the Luttinger parameters.


l2(n)
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Arg(ςhh

n /ςlh
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6.3 APPLICATIONS TO FUTURE MATERIALS


Beyond bulk GaAs, there are plenty of materials on which HaRφως can be conducted. As 

Chapter 1 outlined in section 1.2.1, any gapped system is a potential system to host HSG, 

so long as the criteria outlined in that section are met. Other groups have conducted HSG 

experiments on quantum materials [39-41, 102, 103] and incorporated Stokes polarimetry 
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Figure 6.6 - Sideband Electric Field, Measured at Different Lattice Orientations 
With Respect to the THz Field

Observed , parameterized by  and , The different colored curves are 

data from HSG experiments conducted at different THz-to-crystal axis orientations, 
depicted in the cartoon in the upper right square, defined in the legend. The upper row 
is the observed , and the lower row is the . The left column is data from HSG 
experiments with an antidiagonally polarized NIR excitation, and the right column is 
data from diagonally polarized NIR excitations. 

Ê(n)⟩ l2(n) ϕ(n)

l2(n) ϕ(n)
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Figure 6.7 - Sideband  as a Function of Crystal Axis Orientations With 
Respect to the THz Field

Observed  at the different THz-to-crystal axis orientations probed in HSG 
experiments, depicted in the cartoon in the second panel from the top. Each colored 
band is a different sideband order, from the 10th (red) to the 34th (purple) order, 
defined in the legend in the top panel. Each panel is data taken with different NIR 
polarizations (first from top: antidiagonal, second: diagonal, third: horizontal, fourth: 
vertical).

l2(n)
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on ultrafast THz experiments [88]. Incorporating HSG polarimetry experiments into 

ultrafast non-equilibrium experiments has the potential to reveal more about the 

microscopic physics of these quantum materials, down to the single-particle 

wavefunction level. The main bottleneck remains the theory, especially for materials 

more exotic than GaAs. However, as this thesis has demonstrated, there are many knobs 

to tune in HSG polarimetry in order to determine properties of the effective Hamiltonian 

governing quasiparticle dynamics in quantum condensed matter. Well controlled 

experiments which carefully probe the dependence on different Hamiltonian parameters 

through the adjustment of experimental conditions. Experiments testing the dependence 

on THz field strength, NIR excitation wavelength, the lattice temperature, and the 

quasiparticle trajectories through the Brillouin zone have yielded information about the 

Luttinger Hamiltonian in bulk GaAs and are posed to yield information about future 

quantum materials
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Chapter 7 — Future Non-
Equilibrium THz Polarimetry  
Experiments

Given the successes of HSG polarimetry reconstructing different components of the 

effective Hamiltonian of bulk GaAs, the question becomes to what other systems can this 

methodology be extended? Bulk GaAs is a workhorse of the modern electronics 

community [45] and is relatively well characterized, making it a great testbed for 

developing the method of HSG polarimetry. However, to increase the usefulness of the 

technique, more novel materials also need to be characterized. Also, some systems 

provide avenues of exploration unavailable in a topologically trivial system like 

unstrained bulk GaAs. In this chapter, I will detail what other systems could be feasibly 

probed by HSG polarimetry, and what unique questions could be answered in the process.
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	 I hope this chapter provides context for the reader of what possibilities lie ahead 

for HSG experimentation, and inspiration for future graduate students seeking new 

research directions.


7.1 NIRED HSG ON MZM CANDIDATE MATERIALS


As the previous Chapter demonstrated, HSG polarimetry measurements are sensitive to 

the NIR excitation wavelength. The analytical model of quasiparticle propagators in bulk 

GaAs could be applied to related III-V materials of interest like InSb [91, 101]. The use  

of NIR excitation dependent (NIRED) measurements of sideband polarizations to 

reconstruct the dynamical gap of high SOC semiconductors, a material parameter of great 

importance for a key component of a topological quantum computer [90-94, 101, 

104-106].


7.1.1 Knowledge (of the) Gap


	 In order to induce a topological state in a hybridized MZM system, the free 

energy of the quasiparticles needs to be tuned to a level predetermined by the effective 

Hamiltonian [92]. The Zeeman term, modulated by the Rashba SOC parameter in the 

semiconductor, coupled with the superconducting gap term, will determine the size of the 

topological gap [96, 107, 108]. Experimentally, the size of this gap needs to be known to 

determine the phase space of in-plane electric fields, set by a potential, and the out-of-

plane magnetic field which have a topological gap. With this knowledge, a gate electrode 

can tune the Fermi surface to this gapped regime.
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	 Previous works have speculated the value of the SOC parameters at their own 

peril, leading to untrustworthy results. For such highly calibrated systems, probing and 

accounting for disorder is also important [108], something transport measurements are 

not always equipped to measure. We know HSG is sensitive to disorder, and can probe 

the bulk-microscopic physics of a sample at the scale of the NIR beam spot. This 

sensitivity, coupled with the ability to resolve the dynamical gap of driven quasiparticles, 

makes HSG a powerful non-destructive probe of semiconductors theorized to be a part of 

MZM die.


7.1.2 Extrapolate NIRED Success on GaAs to More Novel Materials


	 HSG polarimetry is sensitive to the  expression in the dephasing, and is able to 

reconstruct properties of the Luttinger Hamiltonian, which is inherently a SOC effective 

Hamiltonian [45, 56, 58, 62]. By performing NIRED HSG on high-SOC semiconductors, 

we can measure the dynamical gap of the different valence bands, and with that the spin-

orbit coupling parameters of the Hamiltonian. Such a result would be a major 

contribution to the material science community, providing an experimentally measured 

value for candidate materials for a topological quantum computer [91, 96, 101]. As a 

method, NIRED HSG will provide in situ characterization for materials incorporated into 

these systems, providing the precision required for fault-tolerant quantum computing.


7.2 MEASUREMENT OF TOPOLOGICAL HETEROSTRUCTURES


	 As bulk sensitive optical probes, HSG and HHG allow for a non-destructive 

measurement of behavior imbedded inside a heterostructure. One example of interest is a 

δν
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topological superconducting state (TSC) at the interface of a topological insulator (TI) 

and superconductor (SC). Previous HHG  polarimetry experiments have demonstrated 

sensitivity to topology, with a distinct shift in the harmonic frequency as a result of 

varying the carrier envelope phase (CEP) of the driving THz field [88]. This unique 

behavior, called non-integer HHG, with the top panel depicting the shift if harmonic 

frequency as a function of peak hight, and the bottom panel displaying the shift in 

frequency between the even and odd order harmonics. The top curve consists of 

experimental data, and the bottom curve is a calculation from the non-equilibrium 

semiconductor Bloch equations (SBEs). HSG experiments would resolve a microscopic 

picture of the quasiparticles and the effective Hamiltonian parameters of topological 

systems.


7.2.1 the Other Phase: Topological Phase


	 For adiabatically driven quasiparticles driven around regions of the Brillouin zone 

with non-trivial topologies, the wavefunction develops a path dependent phase, separate 

from the dynamical phase, called the geometric phase [109-111]. Along with the 

dynamical phase, of which HSG has demonstrated it’s sensitivities [63, 112], sideband 

polarimetry should also be sensitive to the geometric phase.


7.2.2 Nontrivial Topologies at the Interface


	 Nonlinear harmonic experiments have already been conducted on the TI portion 

( ) of a TSC candidate [113], and polarimetry experiments of higher order 

harmonics will be a key building block to reconstructing the topological phases of 

carriers in  and those of other topological systems.	 


Bi2Se3

Bi2Se3
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	 Applying polarimetry experiments to engineered systems with theorized TSC will 

provide opportunities to (1) simultaneously characterize the topological nature of the 

observed superconductivity phenomena through unique photon phases and (2) 

characterize the microscopic phenomena which manifest the topological phase. The first 

will be evident in the non-integer nature of the HHG spectra [88], and the second through 

observed polarimetry measurements connected to SBEs and the system’s effective 

Hamiltonian. Understanding the underlying mechanisms of TSC through HHG 

polarimetry will allow for greater engineering of systems in future device design, which 

would allow for greater control over parameters like qubit coherence and fidelity. All of 

these developments are of great interest to the quantum computing and material science 

community.


7.3 LOW GAP HSG


Whereas the last section detailed the contributions of HHG polarimetry to topological 

materials, previous and proposed, there is a clear gap in the possibilities of HSG 

experiments on topological systems. For one, most of these systems of interest either 

have no gap, or a gap on the THz energy scale. The two existing HSG apparatus both are 

configured with optical excitation pulses, meaning the photons provide too much energy, 

exciting the quasiparticles out of the topologically non-trivial region.


7.3.1 Probing Systems With Low to no Band Gap


	 The gapless nature of Weyl and Dirac fermions [114, 115], both or which are 

theorized to have non-trivial topological phases [105, 116-118] requires a retooling of 
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current HSG experimentation and a shift away from HHG experimentation of these 

systems in the broader condensed matter community. The latter motivates the former, and 

the latter is  necessary due to insufficiencies in HHG experimentation. Given the high 

field strengths used for HHG experimentation, optical experiments are not able to 

disaggregate the contributions of quasiparticles occupying many levels of excited states 

in the system. The monochromatic nature of HHG means both interband and intraband 

currents contribute to the final polarization signal [29]. A two frequency experiment, like 

HSG, will be able to isolate the intraband dynamics of quasiparticles and resolve 

topological phases of the wavefunction. 


	 In HSG experimentation, the THz path defines the trajectories taken by the 

quasiparticle through the Brillouin zone. In this way, our non-equilibrium drive can trace 

out different paths, of which the topological phase is dependent. In this way, HSG 

polarimetry would offer a richer exploration of the topological regions of interest when 

compared to linear optical experiments or transport measurements, which normally only 

probe averages of topological values over fractions or the entirety of the Brillouin zone 

[119, 120].


	 In any experimental method which has never been attempted, there are plenty of 

non-obvious situations for pitfalls. A known limiting factor of quasiparticle collisions in 

topological systems is the anomalous velocity from the geometric phase [121]. Acting 

like a magnetic field, the Berry curvature at the regions of non-trivial topology will push 

the quasiparticles of different effective masses in a way where annihilation is not 

guaranteed. Therefore, another external magnetic field would probably be required to 

140



counteract the anomalous velocities and insure the quasiparticles collide. Knowledge of 

the driving field’s polarization, subsequent quasiparticle trajectories, and the magnetic 

field required to balance the effects of Berry curvature should reveal information about 

the topological phases and effective masses of the quasiparticles in our system.  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Appendices

In the spirit of the Sherwin group, here is my attempt at a robust addendum to the thesis, 

geared mostly towards future HSG students hoping to repeat the success and avoid the 

failures of the past. As such I will detail three key pieces of experimental information, 

one comical aside, and one more in depth derivation of the theory imbedded in this work.


A. 1 - EXPERIMENTAL SETUP


Nothing of note was added to the optical experimental setup during my PhD. As such, I 

will only detail how we pulse NIR light on our sample, and not get into many of the 

details, as these are well covered in the theses of Darren Valovcin and Hunter Banks [52, 

122]. The diagram of the optical table from [52] is reproduced in Figure A.1.1 as a visual 
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aid. Then, I will detail a few optical components which should be tuned to maximize the 

160

Figure A.1.1 - NIR and THz Optical Table (Reproduced From the Thesis of Daren 
Valovcin)

A depiction of the components used to co-linearly and simultaneously couple NIR and 
THz radiation into the sample cryostat and detect the NIR sidebands. The narrow, red 
beam path are the NIR laser and subsequent sidebands. The wide, green path is the THz 
field. Components which are detachable and semi-permanent are numbered 1 through 
6. This diagram is further detailed in [52]. 



detected sideband signal in HSG experimentation.


A.1.1 NIR Pulse on Sample


	 The FEL outputs at a 1.07 Hz repetition rate, so the quasi continuous-wavefront 

(cw), 40 ns output is incredibly low duty cycle (~ ). To ensure the NIR is only on 

the sample when the THz field is also on, we incorporate an Acusto-Optical Modulator 

(AOM) into our NIR beam path. Given the narrow time domain of the NIR “on time”, 

and the long repetition rate, this is more effective than using a pulsed NIR source. 


	 The NIR radiation is generated by coupling a 7W, 532 nm, cw Sprout YAG pump 

laser into a Ti:Sapphire (Ti:Sapph) cavity. The M2 SolTiS cavity, modulated by 

piezoelectric actuators, offers a cw output of NIR radiation with a tunable wavelength. 

This wavelength is monitored by a wavemeter, which is continuously displaying the 

measured wavelength, allowing the user to adjust the Ti:Sapph cavity to the proper 

wavelength at all times. Afterwards, the NIR laser line is sent into the AOM.


	 The AOM is modulated with a radio frequency pulse, which is turn triggered by a 

TTL pulse output by a signal generator, which is triggered by the FEL pulse. The TTL 

pulse is tuned in the time domain to have the NIR on the sample when the THz is present 

on the sample, determined by a time-resolved measurement of the sideband intensity on 

the Photomultiplier tube (PMT). The NIR is coupled into the AOM such that the 1st order 

deflected beam is at its maximum possible power. This 1st order beam is present during 

modulation and absent when not modulated by the TTL.


10−5 %
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	 The first order beam is then reflected into the rest of the NIR setup, eventually 

reaching the sample in the cryostat. From here, optics on the table are used to couple NIR 

sidebands into the PMT and CCD detection mechanisms.


A.1.2 ITO Slide


	 The THz and NIR beam paths are able to propagate co-linearly onto the sample 

through the use of an Indium-Tin-Oxide (ITO) slide, which is reflective to THz but 

transmissive to NIR radiation. In order for sidebands to be generated, the NIR and THz 

radiation need to be coincident on the same part of the sample. To insure this is the case, 

the ITO slide is tuned like a mirror, the difficulty being the light which is being reflected 

is not visible and only on for 40 ns. Other signals must be used to tune the THz alignment 

onto the sample.


	 If the ITO slide is gravely misaligned, to the point where the NIR and THz are no 

longer coincident on one another, detectors which are sensitive to FIR radiation can be 

used. We often employ a pyrocam, which can detect both NIR and pulsed THz radiation. 

By triggering the camera with the FEL trigger pulse, the pyrocam can image the THz 

beam spot after the ITO slide. By greatly attenuating the NIR laser line, the NIR can also 

be imaged on the pyrocam without damage to the instrument. In this way, the ITO slide 

can be turned until it is confirmed the THz and NIR are coincident on the sample.


	 When the ITO slide is well enough aligned as to have the THz and NIR lasers 

produce sidebands, HSG optical detection can be used as a feedback mechanism. 

Historically, the measured intensity of the 2nd and 4th order sideband on the PMT were 

used to fine-tune the ITO slide position. By tuning the tip and tilt of the slide to the 
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positions which produces the largest signal for these two low order sidebands, the ITO is 

said to be optimally aligned for experimentation.


	 Recently, I have incorporated a more finely-tuned method for peaking up the ITO 

alignment, which incorporates the intensities of higher order sidebands on the CCD. By 

coupling the sideband photons into the CCD and binning pixels using best practices, a 

single-shot (1 second) acquisition can be used to better align the ITO slide. By making 

smaller adjustments to the tip and tilt knobs on the slide’s mount, and using the measured 

intensity of the sideband photons as a feedback mechanism, the THz can be more 

optimally aligned onto the sample. Shot to shot power fluctuations of the FEL THz output 

should be taken into consideration when tuning the ITO slide, and many single-shot 

acquisitions should be observed before the altered ITO position is determined to be better 

or worse. After this fine-tuned adjustment maximizes the intensity of high-order 

sidebands, the ITO slide can be said to be maximally aligned.


A.1.3 Snap-out NIR Mirror


	 When setting the polarization of the NIR laser on the sample using the PAX 

polarimeter, a mirror is snapped out of a magnetic mount. This is the mirror is labeled #2 

in Figure A.1.1. This mirror is not known to repeatedly snap back precisely, which why it 

is standard practice to peak up the alignment each time it is snapped in and out.


	 If the mirror snaps back into its mount and appears to be grossly misaligned, iris 

apertures downstream on the beam path can be used to coarsely align the optic. For finer 

adjustments, single-shot sideband intensities work best. Because the goal is returning the 

NIR beam path to its initial alignment, binning should not change in this process. 

163



Additionally, it is mostly the x-position of the NIR and HSG beam path which is altered. 

Detecting sidebands in the continuous acquisition mode, carefully tune the x-adjustment 

knob on the mirror mount until the highest intensity of the sideband photons on the CCD 

are observed.


A.1.4 - Rotating Wiregrid Polarizer


	 Over the course of time when we collected the data for the experiments discussed 

in Chapters 4 through 6, I noticed the motor which rotated the wire grid polarizer would 

sometimes slip. This means the position reading read out on the GUI did not correspond 

to the actual orientation of the wire grids. Since this is now a known issue, I would 

recommend the occasional calibration of the wire grids. This is possible in the Instrument 

Launcher program on the lab PC. The wire grid is rotated from 0 to 90 degrees while the 

FEL power is measured after the polarizers using the TK meter. The trigonometric 

function which determines the attenuation of the FEL THz intensity with respect to the 

polarizer orientation is fit to the measured data. This allows for the zero offset between 

the motor portion and the true zero position of the polarizer orientation to be determined.
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A.2 - CIRCULAR SAMPLE FABRICATION


With the need for samples with a more uniform strain profile, the development of a 

circular sample fabrication became an important part of the experimental process. Below 

is a detailed account of such a fabrication.


A.2.1 - Sample Growth


The 500 nm GaAs epilayer used in all the experimentation detailed in this thesis was 

grown via molecular beam epitaxy at Princeton University. To create a uniform, 

unbuckled epilayer, a 100 nm lattice-match layer was grown on top of the initial 500 µm 

GaAs substrate wafer, followed by a 300 nm thick  (AlGaAs) etch-stop 

layer. This etch stop layer will allow for preferential chemistries in the sample fabrication 

processes, allowing for clearly defined stoping points at different layers of the sample for 

different etchants. After the etch stop layer, the 500 nm epilayer was grown. 


A.2.2 - Sapphire Substrate Preparation


C-axis grown sapphire is a wide band gap material transparent to NIR and THz 

frequencies, with comparable thermal expansion coefficients to that of bulk GaAs. This 

makes is a preferable mechanical support for the GaAs epilayer. In addition, a well grown 

indium tin oxide (ITO) layer will be reflective to THz frequencies and transparent to the 

NIR frequencies of sidebands. Overall, this allows for a field enhancement of 50% for 

standing wave frequencies of the ITO/sapphire system. Vector Network Analyzer (VNA) 

measurements allow for the measurement of these standing waves in the THz domain, 

allowing for the proper selection of THz frequency out of the FEL.


Al0.72Ga0.28As
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	 Prior to deposition, the 488 µm thick sapphire wafer was cleaned using a Turgetol 

soap solution, followed by the standard Acetone/IPA/DI water solvent clean process. A 

subsequent descum process with an O2 purge and 200 W UV lamp removed any 

inorganic matter from the wafer. The wafer was placed in a electron-beam deposition 

chamber, where a high surface quality, 250 nm thick ITO layer was deposited. By 

toggling the fluence of the electron beam, the deposition rate was calibrated to the lowest 

possible value, enabling a good bond between the initial ITO/sapphire interface and 

increasing the ITO surface quality. A silicon wafer was also in the deposition chamber. 

Using the Filmetrics proprietary thin film interference experiment, the thickness of the 

ITO film was determined to be 250 nm. After the deposition, the sheet resistance of the 

ITO film was measured using the four point probe in the nano fabrication facility. For the 

sapphire wafer used in experiment, the sheet resistance was 12 Ω per square. 


	 Due to the impedance differences between the sapphire/ITO/vacuum interfaces, 

there are significant Fabry-Pérot oscillations in the NIR range. To create a buffer between 

the low impedance ITO film and the ambient impedance of the vacuum, a  anti-

reflection coating was grown on top of the ITO using electron beam deposition. The 

deposited  had a thickness of 150 nm, again measured on a reference silicon wafer 

using the Filmetrics tool. With both films deposited on the sapphire wafer, the substrate 

was diced into 10 mm X 7 mm rectangles for individual sample fabrication using the 

dicing saw at the UCSB nano fabrication facility.


SiO2

SiO2
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A.2.3 - Circular Mesa Etch


The GaAs wafer was cleaved into subsamples close to 10 mm x 10 mm in size. The flat 

edge referencing the [100] crystal axes was continued onto these subsamples by marking 

the back end of the subsample with an X|, with the flat line in the direction of the flat 

edge. This orientation was noted throughout the sample fabrication process, as it provides 

the THz-to-crystal axis orientation for HSG experimentation.


A properly sized and marked subsample was then prepared for the circular mesa etch, 

first by solvent cleaning the side of the wafer with the GaAs epilayer. Differential 

microscope images were taken to insure to organic or inorganic matter was present after 

the solvent clean/descum. 


	 Negative photoresist was spin-coated onto the epilayer side of the subsample. 

Using a 7 mm inner-diameter washer as a mask, the photoresist was flood exposed with 

UV light, with the inner-diameter defining the future mesa structure of the epilayer. The 

exposed resist was then heated for an additional minute, and again flood exposed 

(without the washer). The photoresist was developed, leaving behind a circular mesa 

pattern.


	 The subsample was then dipped into a  (1:1:1) solution for 45 

seconds. This etch works fast. In the 45 seconds the sample is submerged in the solution, 

the etchants work through all 500 nm of the epilayer, the AlGaAs etch stop layer, the 

lattice match layer, and some of the GaAs substrate. Using confocal microscopy 

measurements, the height of the mesa was measured to consistently be 6.5 - 7 µm.  An 

image of this mesa etched sample is depicted in Fig A.2.1. Because the final sample 

H3PO4 /H2O2 /H2O
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thickness is completely determined by the epilayer, the only important feature of the 

mesa is the height being greater than 0.5 µm. The fast etch rate preferentially along the 

[100] direction minimizes the undercutting of the photoresist, leading to a well defined 

circular pattern after the photoresist is removed by solvents.


A.2.4 - Epilayer Back Etch


With a well defined circular mesa, the back end of the wafer was removed  from a 

modified process detailed in other theses and papers [63, 76, 123-126]. Apiezon Wax W 

(colloquially called Black Wax) was applied to the epilayer mesa to protect the layer 
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Figure A.2.1 - Circular Mesa Etch Epilayer

The sample and Epi-layer after the circular mesa etch process. The 7mm diameter mesa 
in the center has a height of ~ 7 µm. Taken with the Differential contrast microscope in 
the UCSB nano fab.



while the GaAs substrate and AlGaAs layers were removed via chemical etching. The 

sample and black wax were mechanically supported and handled using a combination of 

a plastic dipper stick, a plastic vacuum O-ring component, and maximum tackiness Gel-

Pak slips. Most of the GaAs substrate was removed by dipping the sample in the etchant 

solution  (10:1) for 50 minutes. After the faster etchant, the more dilute 

 (30:1) solution was used to etch away the remaining GaAs substrate. The 

more dilute solution preferentially etches the GaAs substrate compared to the AlGaAs 

etch stop layer. 


	 After about 50 minutes to one hour in the slower etchant, an interference pattern 

is present on the sample, which is a Newton ring effect between the thin AlGaAs/GaAs 

epilayer interface. When the entire sample takes on this appearance, the sample is done 

with the slower etchant and ready for the removal of the etch stop layer using 49% HF. 

After a total of one minute submerged in the HF, only the 500 nm GaAs epilayer should 

remain, and the sample is ready for a van-der-Waals (VDW) bond.


A.2.5 - Van-Der-Waals Bond


In parallel with the GaAs epilayer preparation, the diced sapphire substrate was solvent 

cleaned and descumed for the VDW bonding process. The sapphire was on top of a 

Berkshire fiberless tip to maintain cleanliness throughout the cleaning process. After the 

sapphire was cleaned and the GaAs sample completely backside etched, the two were 

gently pushed into contact, beginning the VDW bond process. The sample was left 

overnight in a vented fume hood to minimize particle contamination and allow the bond 

more time to form.


H2O2 / NH4OH

H2O2 / NH4OH
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Figure A.2.2 - Final Sample After VdW Bond

The epi-layer bonded to the sapphire substrate. The ITO orientation is indicated by the 
markings on the bottom left. For scale, the width of the sapphire is 7mm and the height 
is 15 mm. This was the sample used for data in Chapter 2.



	 After the overnight bond, the Black Wax is relaxed by heating it up to a 

temperature close to, but below it’s melting point, allowing the whole epilayer to bond 

with the sapphire. When the sample has cooled down to room temperature, the Black 

Wax is removed using chloroform. The sample was gently scrubbed clean using solvents 

and  descummed before being brought out of the nano fabrication facility. Figure A.2.2 

shows an example of final sample.


O2
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A.3. -  THE FEL SAGA


In the summer of 2019, major repairs were required to get the FEL lasing again. Along 

with scheduled maintenance to components in the accelerator tank, attempts were made 

to repair the folding mirror for the cavity dump mode of the FEL. This mirror folds in and 

out of the THz beam path. When it is out of the way, it allows for the THz to couple out 

of the beam line through a mirror with a hole in a center of it. This is called the “hole 

coupler” mode, which produces low power, long duration (~µs) THz pulses. 


	 When the mirror is in the path of THz propagation, it forms a node in a “J”-

looking cavity. This cavity reflects the THz radiation generated by the FEL back and forth 

until the THz is dumped out by the triggering of a Silicon mirror by a flash of green laser 

light. In the “cavity dump” mode, the FEL produces high power, 40 ns pulses of cw THz 

radiation, a truly unique source of light. In order for the FEL to laze in this mode, the 

folding mirror needs to be well positioned in order to reflect THz light in the cavity.


	 Through decades of use, and, in my mind, the incorporation of overpowered 

nematic actuators, the folding mirror was taken off it’s axis of rotation, meaning the FEL 

would not laze in the cavity dump mode. Aligning a THz optics component is never easy. 

The problem gets more difficult when the THz is only on when a source of radiation is 

active, as is the FEL accelerator. The problem becomes near impossible when the 

component which needs adjusting is located in high vacuum, sandwiched between two 

parts of a THz waveguide which are welded together. Fortunately for the powers that be 

at the ITST, getting this component to work was essential to taking data which was 

essential to my nascent scientific career, so we found a solution.
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A.3.1 - I Forgive You FEL


	 Shortly after the resolution of the FEL saga, we were hit with the COVID 19 

pandemic. Rattled by the sudden shut down of New York City in the early stages of the 

virus, a New York Times writer wrote a love letter to the City [127], a plea for the  return 

of the bustling metropolis he had taken for granted for too long. Inspired by his work, I 

composed something similar for the FEL, as it laying dormant for months gave me a 

newfound appreciation for the machine. Before going into the details of the repair, here is 

my poem:


I forgive you, FEL.


I forgive you your groan when we first turn on the Pels,


Your dying breaths after a long day.


Like a racehorse many years past its prime


I forgive you your temperamental fits and starts.


I forgive you your day-to-day inconsistencies.


All is forgiven if you will only return:


The pump that has broken in the OTS,


The blown-out capacitors and resistors,


Jerry’s slap box, with it’s connections dangling in free space,


The tank filled with SF6


The hum of pumps and chain in the vault,
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A hum I thought would never cease,


Until it did.


I forgive you. I forgive you now and forever.


How could I ever begrudge your homemade style,


Your rag-tag manner,


Your ad-hoc solutions,


Your perfect imperfections and your comical flaws,


When I known all along your great strength was your unconventionality?


A mirror of the scientists and engineers who have lovingly assembled and disassembled 

you throughout the years.


Only come back and all is pardoned:


The clutter of room B,


The damp air in the OTS,


The South West GVM we can’t access without climbing on pipes,


The 500 mW green alignment laser which is always on,


The folding mirror which, like the rest of you, is good enough to work,


But broken enough to drive us crazy.


I forgive you the Lab View program,


The planned obsolescence of National Instruments components,
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And Field Point requiring us to run Windows XP,


The fact we can’t load a new file without restarting the computer.


I forgive you Steering Coil S57, which is wired in reverse of all the other coils,


The filament, which turns up to 11.


The filament, which is probably dying because we turn it up to 11.


I forgive you the broken dipole power supply,


The helical undulatory which is always a few months away from lasing


The arc, which stops my hear


I forgive you the way you persuade scientists starting an experiment at 5pm is OK 

behavior


Please, do not be proud.


I know, we curved you with irresponsible abandon.


Please forgive us, as I forgive you.


We took you too much for granted.


Yes, forgive us for not giving daily praise for the miracle of the FEL.


I know I did not thank you enough for the light you produce


And the science you enable


I don’t treat you as the marvel you are,


How there is nothing else in the world lie you
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How we can see Sidebands


Frankly, too many sidebands,


Because of all you can do.


I did not thank you enough for the way you make me feel,


When I walk in the vault and think this is lab,


Allowing us to do science no one else can do.


Being a young scientist, I was in an hurry.


I was forgetful.


You get that.


Please forgive me.


Please forgive us all.


I’ll throw in Brad’s eraser shavings.


Forgive you for every one of Brad’s eraser shavings on the collaboration table.


And his unfinished coffee.


Just come back, just return, please. I know we can make a deal.


A.3.2 - Aligning the Folding Mirror


	 Like any other laser, the onset of lasing will occur when the gain in the cavity is 

greater than the losses [cite Eberly]. For the FEL, the optical gain is determined by the 

ability for the free electron beam to generate THz radiation, and for optical elements in 

the cavity to reflect THz radiation such that collective, coherent modes of radiation 
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dominate, producing laser-like THz output. The loss is determined by the amount of  

radiation coupled out of the cavity on a relative time-scale.


	 When you have one of three optical elements misaligned, rather grossly, you will 

not have any gain to brag about. Put plainly, your cavity will not lase. No THz for you. 

When Joe and I first encountered these problems, Darren was incredulous, thinking 

certainly the new graduate students had forgotten to do some obvious thing, preventing 

lasing in the cavity. While Joe and I were certainly green FEL tuners, his blame quickly 

redirected when he moved the folding mirror in and out of the cavity dump mode and felt 

the mirror drag against the wave guide.


	 After much consternation and dismissal, we all eventually determined the cavity 

mirror was misaligned, grossly, and serious repairs were in order to allow this high power 

mode of FEL operation to lase again. Highly-engineered operations with the goal of re-

adjusting the folding mirror into place produced little improvement. Witnessing the 

despair and fatigue brought on by the faulty folding mirror, our long-in-the-teeth FEL 

virtuoso Dave one day became determined to put us out of our misery. Walking over to 

the folding mirror, with a (albeit poorly aligned) alignment laser Dave ball parked by eye 

where the laser should be, based on his know how. From there, we were able to get the 

FEL to lase.


A.3.3 - Lasing At 240 GHz


	 With the cavity dump mirror properly placed, we had enough gain in our cavity to 

tune the FEL at a lower energy mode. For reasons beyond the scope of this thesis, the 

millimeter FEL (MM FEL) has the highest gain when generating THz in the 240 GHz 
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range. Therefore, getting the 240 GHz (or 8 , read wavenumber) mode operating 

was the easiest and first priority. Additionally, the silicon slab in the THz beam path is 

known to deflect the beam, reducing the gain in the cavity by misaligning the cavity 

mirrors. To counteract that deflection, we removed the Si slab from the cavity arm, 

meaning we had no method of out coupling the THz. Instead, we would rely on the 

characteristic bump in the electron beam recirculation signal.


	 After approximately one week of tuning, we were able to get the FEL to lase at 

240 GHz with no Si inserted. This process involved fine tuning the FEL beam to 

maximize recirculation. Given the lower beam energy, Coulomb interaction between 

different free electrons spreads out the beam compared to higher frequency operation. 

This makes running longer e-beam pulses more difficult at 240 GHz, which is normally 

not necessary, given the high gain of the cavity at this wavenumber. However, when 

cavity components need to be tuned in order to induce lasing, this becomes a necessary 

but difficult process.


	 With the cavity lasing at 8 , we had the gross alignment of the folding mirror 

and two end mirrors basically fixed. By making fine adjustments, and determining if such 

adjustments pushed up the lasing time, we could fine tune the mirror positions. However, 

the Si slab produces and observable deflection to the THz beam path, so fine adjustments 

are negated and thus not necessary at this point in the process. By reintroducing the Si 

slab into the cavity, we were preparing the cavity dump mode of the FEL to couple out 

THz again.


cm−1

cm−1
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	 Introducing the slab initially destroyed the lasing process in the cavity. The pulse 

width was increased again, and we worked through different components to regain lasing. 

By adjusting through the parameter space in the following order, we were able maximize 

the gain of the cavity at 8 :


Coarse adjustment of cavity end-mirrors — Due to the deflection induced but 

the Si slab, the end mirrors needed to be coarsely adjusted in order to regain 

lasing. After each coarse adjustment, we let multiple e-beam pulses run through 

the FEL to make sure poor pulses were not interfering with our cavity tuning. 


The position of the end mirrors are measured through two trim-pots, which 

measures the rotation of knobs determining the x and y deflection of the 

component. During the process of tuning, we realized the voltage reported on the 

NI interface was not the correct value. Instead of relying on this measurement, 

best practice is using a multimeter to measure the voltage from ground to the 

tuning potential of each trim-pot, which has been determined to be repeatable. As 

a failsafe, a caliper can also be used to measure the mechanical deflection, set by 

the two knobs. At the end of the day of FEL operation, if lasing was induced, 

these values should be recorded, along with the frequency of operation. The next 

time the FEL is run at that frequency, the user should insure the cavity end-

mirrors are at these positions before starting FEL tuning.


Fine adjustment of end mirrors and folding mirror — After coarse 

adjustments induce lasing at the earliest possible time, finer adjustments of both 

the cavity end mirrors and the folding mirror can be made to have the largest gain, 

cm−1
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measured by the time of lasing onset. The folding mirror has been adjusted in the 

past through a DC voltage applied to an actuator attached to the mirror, with an 

RV rearview camera used to view the tuning in real time. The position of the 

folding mirror is read out by a micrometer, displayed in Figure A.3.1. Given the 

delicate alignment of this component, such precision is required to not damage 

component and preserve all the alignments done to date.


Adjustment of the free-electron beam path — As always, tuning the alignment 

and focus of the free-electrons into the FEL cavity can increase the gain. With the 

more coarse adjustments having established lasing in the cavity, it is worthwhile 

to occasionally revisit the beam tuning and insure the gain is maximized.


Adjustment of the Si position — The silicon angle can fine-tune the alignment 

of the THz in the cavity, and will determine the power coupled out when the 

cavity is dumped. When all of the other components are properly tuned, this angle 

should be adjusted, using LabVIEW, to maximize the parameters stated above.


By working through this parameter space, we were able to get the FEL to operating in the 

Cavity Dump mode at 8 . With this in order, tuning at higher frequencies was the 

next goal.


A.3.4 - Lasing At 450 GHz


	 The THz field generated by the FEL at higher energies of operation are more 

narrow in profile, for reasons beyond this thesis. This narrower profile requires finer 

tuning in order to induce lasing for the higher frequency modes of operation. Normally, 

cm−1
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this includes running the FEL at longer e-beam pulses and tuning the parameter space 

outlined in the previous section. 


	 At the current mode of operation, it would appear the e-beam needs to be slightly 

misaligned going into the undulator in order to induce lasing. When tuning the beam 

through the beam line initially, at e-beam pulse widths of ~2 µsec, e-beam recirculation 

can be tuned to greater than 95%, which is historically a good value, and more than 

sufficient for long-term operation. However, as the pulse width is increased beyond the 
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Figure A.3.1 - Micrometer and Actuator Manipulating Folding Mirror Position

The actuator at the bottom of this image can flip the folding mirror in and out of 
position to switch between hole-coupling and cavity dump mode. The black cylinder is 
a voltage controlled screw which can finely adjust the folding mirror position, which is 
read out by the micrometer at the top of the image. 



times where lasing is expected to occur (8 - 10 µsec) there is no characteristic bump in 

the recirculation curve on the CP measurement. In order to induce lasing, the e-beam 

needs to be deflected from the optimal alignment, which we historically do by adjusting 

the y-deflection on one of first three steering coils with one large click in the negative 

direction. Only one (sometimes two) should be necessary to induce lasing. If more are 

required, there may be other cavity parameters which are not optimized, or further 

downstream e-beam alignment is compromised.


A.3.5 - Failed Attempt at 540 GHz


	 Operating at a frequency with lower gain in the MM FEL like 540 GHz required 

some creativity. Even at normal operation, this mode could be difficult to maintain given 

the large electrostatic potential of the accelerator (4.6 MV) and long e-beam widths 

required for lasing (~6 µsec). With the misaligned folding mirror, this frequency proved 

extra difficult. When pulse widths on the order of 20 µsec did not induce lasing, Gerry 

recommended using a higher beam current, as this would also correspond to higher gain 

in the cavity. In the same way we think of the current in a wire being proportional to the 

electron density in a conductor, so too the beam current in the FEL is related to the 

number of free electrons in the pulse. Through modulating mechanisms in the accelerator 

beyond the scope of this thesis, the LabVIEW program can tune the beam current for a 

given FEL pulse.


	 With a larger beam current, the electrostatics in the accelerator become more 

unreliable. With more electrons in a pulse, the beam is inherently larger due to Coulomb 
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repulsion of the electrons. These two factors make tuning at a higher beam current more 

difficult; you don’t get the extra gain for free. 


	 After one day tuning at 1.5 Amps of beam current, we sent through a 1.5 cycle e-

beam pulse with the best circulation we could achieve. The FEL arced in a way we’ve 

never heard, putting the fear of God in all involved. We shut down the FEL, never to try 

the high current mode of operation again.


A.3.6 - Maximizing Output THz Power Into Lab Rooms.


	 Even with the FEL lasing in the cavity dump mode, we were still not receiving 

maximum power in the lab rooms. Working backwards, we intuited this is because the 

misaligned folding mirror was sending the THz through a new beam path once it was 

coupled out of the cavity. Fortunately, there is an elliptical mirror after the switched Si 

which can adjust the beam path. Unfortunately, the mirror is located in the vault, meaning 

coarse, discrete adjustments are all that is possible. We did notice rotations no larger than 

a quarter to a half of a rotation of the knobs produced measurable increases or decreases 

in power detected in the user labs. With an hour of tuning these optical elements, we were 

able to introduce THz fields into the lab space which were on par with historical values at 

the respective modes of operation. 


A.3.7 - Switching Between Modes of Operation


	 As mentioned before, the LavVIEW program has a faulty readout voltage of 

potentiometers controlling the motion of various elements in the cavity. Given the low 

gain of the cavity at its current mode of operation, confirming these elements are in the 

right position manually before switching over to a new frequency of operation is 
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essential. At the very least, it confirms the cavity is set in a position which is historically 

lasing, and is not the cause of any issues experienced.


	 It is worth mentioning that the EPR experiment which often runs the 8  

mode has a different desired FEL THz output, compared to the HSG experiment which 

often runs the 15   mode. As a result, switching between frequencies of operation 

often involves a significant repositioning of the Si. 

cm−1

cm−1

184



A.4 - MAKING A GOOD CUP OF COFFEE IN LAB


For reasons beyond my understanding, making a decent cup of coffee escapes the 

capabilities of some of my lovely lab mates. For future generations of ITST scientists, I 

am leaving behind a few straightforward rules which will produce a good cup of coffee in 

a typical Mr.-Coffee-style maker.


It starts with the beans — The ceiling on your cup of coffee is normally set by 

the quality of beans you use to make your cup. Making a pot with Albertson’s 

store brand is never going to be as good as one made with locally roasted beans.


Measure out the beans — Even though it takes only 20 seconds, and we are 

experimental physicists governed by empirical measurements, the act of 

measuring out the proper volume of beans is too much for some of my colleagues. 

I shouldn’t be too critical, as any coffee snob would tell you weight is a better 

determinant of the right amount of grounds for a pot of coffee. I default to volume 

as there is no conveniently accessible scale in lab with the proper tolerance for 

grams of coffee beans.


Fully ground the beans — Again, even though it only takes 20 -30 seconds, have 

the electrical grinder fully ground all of the beans. When a physicists, or engineer, 

does not take the time to ensure all the beans are ground, the coffee comes out 

significantly weaker as the exposed surface area for caffeine extraction is greatly 

reduced. You will know when all the beans are ground by a change in pitch of the 

mechanical whirling sounds of the grinder. For those keeping score at home, the 
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extra 40-60 seconds taken by the coffee maker greatly enhances the experiences 

of the whole lab group, setting the tone for the morning and the day to come.


8 oz. to 10 oz. Ratio — For every 8 fluidic ounces of water, include 10 fluidic 

ounces of unground beans. This should provide a strong but balanced coffee, if 

this and the previous steps are followed.


Best of luck. 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A.5 DERIVATION OF SIDEBAND POLARIZATION FROM HOLE-
SPECIES BASIS


In this section, starting from the LIT expression for , the expected Jones matrix 

elements and sideband polarization are calculated. Given the analytical nature of the LIT 

approximation, this provides lines of inquiry for dependence on experimental and 

material parameters.


A.5.1 Hole Basis Propagator as an Oscillating Wave


By expressing the propagator  as a complex exponential, the interference between the 

hh and lh states becomes more clear, and there are less variables to carry around in each 

expression, simplifying expressions. Starting with Eq. 4.12 and 13


 


Here 





A.5.2 LIT Approximated Jones Matrix Elements


We can express the expected Jones Matrix elements in the circular basis, following Eq. 

3.14
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From this, we can look at the Jones matrix expression, using the circular basis we utilized 

in Chapter 4, to express the expected  in terms of these LIT 

approximated propagators. Starting with Eq 4.4 





We can express the two circular components of the sideband electric field as
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A.5.3 Expected Sideband Polarization States


With these expressions, we can derive the expressions for 
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From this representation, and Eqs. A.1,6, and 8, we can calculate the expected 

polarization states often sidebands. As an exercise, we can work through the algebra to an 

explicit expression for the right handed polarization for the sideband field, to learn more 

about why the sideband polarization changes in terms of the phase of the quasiparticle 

propagator. 





Which can be represented as





Where





r2(n) = |r (n)eiϕr(n) |2

l2(n) = | l(n)eiϕl(n) |2
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2
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Allowing us to express the polarization as





Which can be expressed as 

r2(n) ∝ a2
r + b2

r + c2
r + d2

r + 2(arbr + crdr)cos (Θhh(n) − Θlh(n))
+2(ardr − brcr)sin (Θhh(n) − Θlh(n))
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There are two limits where this expression is greatly simplified. The first is not possible 

given the physics of quasiparticles in bulk GaAs, , but in the limit of 

, we can learn more about the structure of this equation, which takes the form





	 In this reduced, the influence of the sine and cosine terms is more evident, with 

the first two terms acting like cosine waves which oscillate as a function of the difference 

between the propagator phases, . Also visible are the contributions from the 

composition of the NIR electric field, through the incorporation of the  

terms. Finally, the influence of the composition of the Bloch waves, which are described 

by the propagator, are present with the  terms.


	 A more physical simplification is setting either  or  to zero, which can 

occur in experiment by exciting the sample with either RHCP or LHCP polarization. If 

we set  to zero, the polarization takes the form


τn,hh = τn,lh

τn,lh ≈ τn,hh

r2(n) ∝
1
9

e−2Γd τℏ−1 ⋅

[(8 + 2n2
z ) + (8 − 2n2

z ) cos (Θhh(n) − Θhh(n))] r2
NIR

+[3 (n2
x + n 2

y ) (1 − cos (Θhh(n) − Θhh(n)))] l2
NIR

+[4 3 ((1 − nz)ny sin ϕNIR + (1 + nz)nx cos ϕNIR) ⋅

(cos (Θhh(n) − Θhh(n)) + sin (Θhh(n) − Θhh(n)))] rNIRlNIR

Θν(n)

lNIR, rNIR, & ϕNIR

ni

rNIR lNIR

lNIR
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From this, we can see how the difference in acceleration time of the two quasiparticles, 

manifest in the damped exponential term, coupled with the difference in phase of the two 

quasiparticles, contained in the cosine term, lead to a change in sideband polarization as a 

function of sideband order. This matches the behavior observed in experiment when we 

excite with fully RHCP light.


	 The calculation of the left handed component of the sideband field is similar, and 

left as an exercise to the reader. With a calculation of the form of the left handed 

component, using the condition  can be used to convert the expressions 

in equations A.13-16 from proportionalities to equivalencies. If we express the 

acceleration times in the exponential terms as , , 

, and use the relation , we can simplify the expression for 

 to.


r2(n) ∝
1
9 (e−2Γd τn,hhℏ−1 (4 + 4nz + n2

z ) + e−2Γd τn,lhℏ−1 (4 − 4nz + n2
z )+

e−Γd(τn,hh+τn,lh)ℏ−1 (4 − n2
z ) cos (Θhh(n) − Θlh(n)))

l2(n) + r2(n) = 1

τhh + τlh = τn 2τhh = τn + τΔ

2τlh = τn − τΔ r2
NIR + l2

NIR = 1

r2(n) + l2(n)
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	 Here the  term is used as a normalization constant such that . 

Using hyperbolic sines and cosines for the  exponentials, and the relation 

, Equation A.17 simplifies to





r2(n) + l2(n) =
β2

9
e−Γd τn /ℏ[e−Γd τΔ/ℏ ((2 + nz)2 + 3(n2

x + n 2
y ) + . . .

4 3(2 + nz)(nx cos ϕNIR − ny sin ϕNIR)rNIRlNIR) + . . .

eΓd τΔ/ℏ ((2 − nz)2 + 3(n2
x + n 2

y ) + . . .

4 3(2 − nz)(nx cos ϕNIR − ny sin ϕNIR)rNIRlNIR) + . . .

(4 3(1 + nz)(nx cos ϕNIR − ny sin ϕNIR)rNIRlNIR + . . .

4 − n2
z + 3(n2

x + n 2
y )) cos (Θhh(n) − Θlh(n)) + . . .

4 3(1 − nz)(nx cos ϕNIR − ny sin ϕNIR)sin (Θhh(n) − Θlh(n))]

β r2(n) + l2(n) = 1

τΔ

n2
z + n 2

y + n2
x = 1

r2(n) + l2(n) =
β2

9
e−Γd τn /ℏ[cosh(ΓdτΔ /ℏ)(7 − 2n2

z + 8 3(nx cos ϕNIR − ny sin ϕNIR)rNIRlNIR) + . . .

sinh(ΓdτΔ /ℏ)(4nz(1 + 3)(nx cos ϕNIR − ny sin ϕNIR)rNIRlNIR) + . . .

(4 3(1 + nz)(nx cos ϕNIR − ny sin ϕNIR)rNIRlNIR + . . .

7 − 4n2
z +) cos (Θhh(n) − Θlh(n)) + . . .

4 3(1 − nz)(nx cos ϕNIR − ny sin ϕNIR)sin (Θhh(n) − Θlh(n))]
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	 Again, this general case is more complicated than specific instances, such as  

or , in which case





Which results in





From these calculations, we can see how we get the specific form of the sideband 

polarization field from the quasiparticle propagator, arriving at a specific analytical 

expression dependent on experimental and material parameters, present in the 

 terms. 


	 The calculation of the phase of the electric field is beyond the current scope of 

this thesis, and the topic of future works. In addition, the calculation of derivatives of 

these expressions will be useful for future analysis, where the dependence on other 

parameters like the NIR wavelength or the THz to crystal axis orientation could be used 

to fit material parameters of the quasiparticle-crystal system. As data from Chapter’s 4 

through 6 demonstrate, this observed sideband polarization changes with different 

material and experimental parameters, can can be connected to how  changes with 

different parameters through derivates. In this way we can fully leverage the analytical 

nature of our model for sideband polarization and quasiparticle propagation.

rNIR

lNIR = 0

β−2 = 9e−Γd τn /ℏ [2 cosh(ΓdτΔ)(7 − 2nz) + (7 − 4n2
z cos (Θhh(n) − Θlh(n))]

r2(n) =

[2 cosh(ΓdτΔ /ℏ)(4 + n+2
z ) + 8nz sinh(ΓdτΔ /ℏ) + (4 − n2

z )cos (Θhh(n) − Θlh(n))] ⋅

[2 cosh(ΓdτΔ /ℏ)(7 − 2n2
z ) + (7 − 4n2

z )cos (Θhh(n) − Θlh(n))]
−1

ni, τnν, & Θν(n)

Θν(n)
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