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ABSTRACT OF THE DISSERTATION

Essays on Panel Data and System of Equations under Model Uncertainty

by

Ali Mehrabani

Doctor of Philosophy, Graduate Program in Economics
University of California, Riverside, June 2021

Professor Aman Ullah, Chairperson

This dissertation consists of four chapters that study estimation and inference in system

of equations and panel data under model uncertainty. In Chapter 2, I consider model

uncertainty in a panel data model, and introduce a Stein-like shrinkage estimator that is

a weighted average of an unrestricted estimator and a restricted estimator. The restricted

estimator represents a belief about where the parameters of the model are likely to be close.

Chapter 3 considers the estimation uncertainty from choosing different number of lagged

dependent variables as instruments in dynamic panel data models. Generalized method of

moments (GMM), the typical estimation method, can produce efficient estimators when

all lagged dependent variables are used as instruments. However, estimation using all

instruments can cause substantial bias. Conversely, the GMM estimators that use one lag

as instrument are asymptotically unbiased under forward demeaning transformation, but

at the cost of losing efficiency. Therefore, I introduce an averaging estimator which is a

weighted average of the two GMM estimators where the averaging weight is proportional

to a quadratic loss function that minimizes the asymptotic risk.
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In Chapter 4, I consider simultaneous equations models, and develop an estimator to deal

with the model uncertainty about the magnitude of endogeneity. Ordinary least squares

(OLS) estimators are the most efficient estimators, however, may suffer from substantial

bias when the degree of endogeneity is substantial. On the contrary, two-stage least squares

(2SLS) and Limited Information Maximum Likelihood (LIML) estimators are consistent but

not as efficient. Therefore, I consider a Stein-like shrinkage estimator which is a weighted

average of the OLS and 2SLS/LIML estimators, where the weight is inversely related to a

Wu-Hausman statistic that measures the magnitude of the endogeneity.

Chapter 5 considers latent group structures to model uncertainty resulting from

unobserved heterogeneity in panel data models. Basically, I consider a panel data model

where the slope parameters are heterogenous across groups but homogenous within a group,

and the group identity is unknown. I provide a framework for estimation and identification

of the latent group structure using a pairwise fusion penalized approach.
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Chapter 1

Introduction

In the theory and practice of econometrics, there are typically a large amount of

uncertainty about model specifications that are unobservable to the practitioners. In

practice, estimation and inference are often conducted under a selected model specification

without considering the model uncertainty. This can lead to many difficulties, including

inconsistent estimation and misleading inference. For example, panel data usually cover

observations from workers, firms, or countries that differ in many dimensions, so an

undeniable feature of the data is its heterogeneity, but much of which is simply unobserved.

Therefore, empirical researchers face a trade-off between using approaches that allow for

model uncertainty (e.g. unobserved heterogeneity), and building restricted specifications

that are adapted to the empirical data at hand. A way to deal with this issue is to build

flexible yet parsimonious approaches that allow for the uncertainty (for example latent group

structures considered in chapter 5). An alternative way is to use model averaging techniques

where a weighted average of the candidate models is considered. In this dissertation, I
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investigate and develop methods to deal with different types of uncertainty with the aim of

providing robust and superior estimators.

For example, in chapter 2, I present a Stein-like shrinkage method for estimating

the slope coefficients in heterogeneous panel data models with cross-section dependence,

when the cross-section dimension is fixed while the time dimension is allowed to increase

without bounds. The shrinkage estimator is a weighted average of a feasible generalized

least-squares (FGLS) estimator and a feasible restricted generalized least-squares estimator.

The restricted estimator belongs to a set of restricted parameter space, where the restrictions

represent possible model specifications. The shrinkage weight is inversely proportional to a

Wald statistic that measures the importance of the restrictions. The asymptotic properties

of the shrinkage estimator are given. Further, it is shown that the shrinkage estimator

is robust, and uniformly superior, in terms of asymptotic risks, relative to the FGLS

estimator. Additionally, the shrinkage estimator achieves the lowest possible asymptotic

risk in a high-dimensional large sample framework. A major advantage of this shrinkage

method is that it is generalized to allow for the limitations of the existing model averaging

techniques. For instance, the shrinkage method developed here is generalized to allow for

any patterns of correlations in errors, is not confined to specific restricted estimators, its

superiority conditions hold for any weighted mean squared error where the weight matrix

is symmetric positive definite, and achieves the lowest possible risk bound. The finite

sample performance of the proposed estimation method is evaluated via extensive simulation

studies, that support the theoretical findings. As an empirical illustration, the method is

applied to forecast the output growth rate of 33 advanced and emerging economies in the
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global economy using a set of macroeconomic and financial variables by allowing potential

parameter heterogeneity structures in the slope coefficients. This methodology has two

major advantages over the existing studies: it considers the classification uncertainty about

the potential heterogeneity, and allows for general correlation patterns across the errors

in the cross-section equations of output growth. The results indicate that the shrinkage

estimation forecast outperform the fixed effects and individual estimation forecasts.

In chapter 3, I consider dynamic panel data models with fixed effects and multiple

exogenous regressors. The typical estimator in this framework is the Arellano-Bond

generalized method of moments (GMM). One can gain in efficiency of the GMM by

estimating the parameter values using all lagged dependent variables as instruments.

However, estimation based on instrumenting all lagged dependent variables may suffer

from substantial bias. On the other hand, the GMM estimators that use one lag (or

fixed number of lags) as instruments are asymptotically unbiased under forward demeaning

transformation, but not as efficient as the former one. In this chapter, I introduce an

averaging estimator which is a weighted average of the GMM estimator using all lags as

instruments, and the GMM estimator using one lagged dependent variable as instruments

to balance this trade-off between the bias and variance efficiency. The averaging weight is

proportional to a quadratic loss function that minimizes the asymptotic risk. In addition,

the optimality, and the dominance conditions of the averaging estimator are derived.

Furthermore, monte carlo simulations are provided to examine the finite sample performance

of the proposed estimator.
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In chapter 4, I consider a simultaneous equations system, and develop an estimator to

deal with a typical model uncertainty that arises due to unknown magnitude of endogeneity.

When the magnitude of endogeneity is weak, one can largely gain in efficiency by

estimating the parameter values using the ordinary least squares (OLS) estimator. However,

the OLS estimator ignores the potential endogeneity and may suffer from substantial

bias. Alternatively the two-stage least squares (2SLS) or Limited Information Maximum

Likelihood (LIML) frameworks can be used, which control the endogeneity and hence ar

consistent, but the consistency comes at the cost of losing efficiency. This shows the typical

bias-variance trade-off that needs to be considered carefully by practitioners in choosing

models. To balance the trade-off, I consider two Stein-like shrinkage estimators which

are weighted averages of the OLS and 2SLS/LIML estimators, and the weight is inversely

related to a Wu-Hausman statistic that measures the magnitude of the endogeneity. I derive

the dominance conditions of the proposed estimators relative to the 2SLS/LIML estimators

for any size of endogeneity, and any weighted mean squared errors. I further investigate

the finite sample performance of the estimation method through Monte Carlo simulations.

The results show that the proposed estimators perform well, and support the theoretical

findings.

Chapter 5 considers a long-existing model uncertainty issue in panel data analysis,

referred by econometricians to as “to pool or not to pool”, on which there is still no

consensus. The issue is on how to model potential parameter heterogeneity across individual

units. To deal with this issue, I model individual heterogeneity via latent group structures

such that the slope parameters are heterogenous across groups but homogenous within

4



a group, and the group identity is unknown. In particular, this model setup faces

the uncertainty resulting from the unobserved heterogeneity by allowing flexible forms

of heterogeneity while remaining parsimonious. In this chapter, I provide a framework

for estimation and identification of the latent group structure using a pairwise fusion

penalized approach. I develop a penalized least squares (PLS) approach for models

with exogenous regressors, and a penalized generalized method of moments (PGMM) for

endogenous or dynamic models. This framework automatically partitions the individuals

into groups. Therefore, it asymptotically identifies the true structure while estimating

the model parameters consistently. Both of the estimators achieve the desirable property of

classification consistency. Further, the PLS estimator achieves the oracle property, while the

oracle property of the PGMM estimator holds under some restrictions. I have developed an

alternating direction method of multipliers algorithm to implement the proposed approach.

The method is further evaluated by monte carlo simulations, and illustrated by two empirical

analysis of unemployment dynamics at the U.S. state level, and forecasting output growth

of 33 countries using macroeconomic and financial variables.

Chapter 6 concludes and some technical results are provided in the appendix.
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Chapter 2

Efficient Shrinkage Estimation in

Heterogeneous Panel Data Models

2.1 Introduction

Estimation and forecasting under model uncertainty has been one of the fundamental

issues in econometrics. In recent years, a large body of literature has been concerned

with advancing a number of different approaches to address a variety of model uncertainty

problems. The two most common approaches are model selection and model averaging.

Model selection aims to find, among the set of models under consideration, the best

approximate model for the unknown true data generating process. In this method,

investigators typically first select the best performing model based on diagnostic statistics

(like Wald test, F test, t-ratios, R-squared, information criteria, etc.) and then carry

out inference according to the selected model. This popular approach (also known as

6



“pre-testing”) is subject to many problems (Magnus (1999), Magnus and Durbin (1999),

Danilov and Magnus (2004a), Danilov and Magnus (2004b)). The most important problem

is that the model selection and estimation are completely separated such that the

uncertainty of the initial model selection step is ignored throughout the parameter

estimation and inference, see for example Magnus (2002) and Leeb and Pötscher (2003),

Leeb and Pötscher (2006), among others, who show the initial model selection step may

have non-negligible effects on the statistical properties of the resulting estimators. Taking

the above problems into consideration, model averaging is introduced as an alternative

to the model selection. In model averaging, the uncertainty is taken into consideration

by averaging (weighted) over the set of candidate models. Model averaging methods are

distinct in two main strands based on whether the estimation of each candidate model

and the choice of the associated weighting scheme are developed along frequentist or

Bayesian paradigms. Shrinkage estimation methods, similar to model averaging, allow

for uncertainty emerging from both model selection and estimation (see Hansen (2014),

Hansen (2016)). In addition, as shown by Hansen (2016), Stein-type shrinkage estimation

methods, unlike recent model averaging techniques (such as focused information criterion of

Claeskens and Hjort (2003), the plug-in estimator of Liu (2015), and the focused moment

selection criterion of DiTraglia (2016)), have the minimax efficiency properties.

This chapter investigates a Stein-like shrinkage estimation method in linear

heterogeneous panel data models to deal with uncertainty issues about the slope parameters.

We allow for cross-section dependence and to estimate the contemporaneous error

covariances freely, it is assumed that the cross-section dimension is small and the time series

7



dimension is large. The shrinkage estimator shrinks a feasible generalized least-squares

(FGLS) estimator (the standard approach in this setup, see Zellner (1962)) towards a

shrinkage direction, or equivalently a set of parameter restrictions. The restrictions are not

necessarily believed to be true, but instead represent a belief about where the parameters

of the model are likely to be close. Therefore, the proposed estimator is a weighted average

of the FGLS estimator and a feasible restricted generalized least-squares estimator that

belongs to the restricted parameter space. The shrinkage weight is inversely related to a

Wald statistic that measures the weighted distance of the FGLS estimator and the restricted

estimator. The asymptotic properties of our proposed estimator are derived under some

mild conditions. Furthermore, we show the dominance properties of the Stein-like shrinkage

estimator in terms of risk, which ensures that our proposed estimator is robust against

arbitrary deviations from the restrictions. A major advantage of the shrinkage method

introduced in this paper is that, unlike most of the existing model averaging methods, it

allows for heteroskedasticity, and cross-section dependence of errors. These cross-sectional

correlations could be due to omitted common effects, spatial effects, or could arise as a

result of interactions within socioeconomic networks. In addition, the presence of some

forms of cross-sectional correlation of errors in panel data applications in economics is

likely to be the rule rather than the exception. Ignoring the cross-sectional correlations can

have serious consequences such that conventional panel estimators can result in misleading

inference and even inconsistent estimators, depending on the extent of the cross-sectional

dependence, and whether the sources generating the cross-sectional dependence (such

as an unobserved common shock) is correlated with regressors (Phillips and Sul (2003),
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Phillips and Sul (2007), Andrews (2005), Sarafidis and Robertson (2009), and see a survey

by Chudick and Pesaran (2015)).

In Monte Carlo simulations, we compare the small sample performance of our shrinkage

estimator with the FGLS estimator and a restricted estimator where the restrictions impose

slope parameter homogeneity across cross-sections. The results show that the shrinkage

estimator generally produces a smaller risk than the restricted estimator, and the FGLS

estimator. As an empirical illustration, we apply our estimator to forecast the output

growth rate of 33 advanced and emerging economies in the global economy using a set

of macroeconomic and financial variables by allowing potential parameter homogeneity

structures in the slope coefficients.

The literature on shrinkage estimation is substantial, which mainly was initiated by a

seminal paper by Stein (1956). In that paper, Stein showed that the maximum likelihood

estimator (MLE) for the mean of a multivariate normal distribution is inadmissible. This

means that it is possible to construct an estimator with a smaller risk than the MLE

for the entire parameter space. James and Stein (1961) exhibited an estimator whose risk

is uniformly smaller than that of the MLE. Paradoxically, the James-Stein estimator is

itself inadmissible and can be dominated by another inadmissible estimate like its positive

part (Baranchick (1964)). Judge and Bock (1978) developed this method for most of

econometric estimators. Maddala et al. (2001) and recently Hansen (2016) use shrinkage

estimation methods to deal with model uncertainty between two candidate models. The

shrinkage estimation method in this chapter is similar to that of Hansen (2016) and

Maddala et al. (2001). The main difference is that the shrinkage weight in Hansen (2016)
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is inversely related to a weighted quadratic loss function, hence is subject to rotations

of the coefficient vector, unless investigators are interested in minimizing a mean squared

prediction error. However, the one considered in this paper is proportional to a Wald

statistic which is an excellent choice as it is invariant to these rotations. Also, Hansen (2016)

considers a homoscedastic likelihood framework, but this paper considers linear panel data

models and allows for both heteroscedasticity and cross-section dependence in errors. The

difference between the method used here and the one in Maddala et al. (2001) is that

they use small-disturbance approximations to study the performance of their estimator,

which cannot be applied to a model with unknown error cross-section dependence and

variance-heteroscedasticity considered in this chapter.

Penalized methods are alternatives to shrinkage estimations for dealing with the

uncertainty of covariate selection in regression models, which is arguably the most

pervasive situation in economics. Methods that simultaneously select variables and shrink

coefficients by minimizing some penalized loss functions include, among others, the least

absolute shrinkage and selection operator (LASSO) of Tibshirani (1996), the smoothly

clipped absolute deviation (SCAD) penalty of Fan and Li (2001), and the minimax

concave penalty (MCP) of Zhang (2010). LASSO-type methods have been shown to be

particularly effective in high-dimensional settings with a true small-dimensional structure,

or when the number of predictors exceeds the sample size (see, e.g., Fan and Lv (2010);

Chernozhukov et al. (2015); Belloni et al. (2017)). However, shrinkage methods do not

exploit sparsity, and can work well even when there are many (but less than the sample

size) non-zero parameters.
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This chapter is also related to a long-existing issue in the panel data analysis,

referred by econometricians to as “to pool or not to pool”, on which there is still

no consensus. The issue is on how to model potential parameter heterogeneity

across individual units. On one hand, parameter heterogeneity results in consistent

estimation and violation of this assumption causes misleading estimates, see, for

example, Robertson and Symons (1992), Pesaran and Smith (1995), Su and Chen (2013),

Durlauf et al. (2001), and Browning and Carro (2007). On the other hand, parameter

homogeneity causes higher variance efficiency, but at the cost of estimation bias and

inconsistency of the associated estimators, which is supported by an increasing number

of studies due to a better forecast performance of these estimators, see, for example,

Maddala (1991), Maddala and Hu (1996), Baltagi and Griffin (1984), Baltagi et al. (2000),

and Hoogstrate et al. (2000). This shows the typical bias-variance trade-off that needs

to be considered in choosing parameter specifications. In the literature, there are

several ways to address this parameter heterogeneity such as the random coefficient

model of Swamy (1970), the pooled mean group estimator of Pesaran et al. (1999), and

various group estimators, see for example Lin and Ng (2012), Sarafidis and Weber (2015),

Bonhomme and Manresa (2015), Su et al. (2016), among others. These estimators are

reasonable choices when investigators are interested in the average effect or know the

true specification of the heterogeneity structure or the number of groups. However,

researchers are often more interested in the individual parameters, and in most cases

the true specification is unknown. As a result, a more useful approach could be model

averaging and shrinkage estimation methods. Maddala et al. (2001) show the superior

11



properties of shrinkage estimators among single-equation estimators and various averaging

estimators in a heterogeneous panel data model under error homoscedasticity framework.

Wang et al. (2019) propose a Mallow pooling averaging estimator for heterogeneous panel

data models and conclude that the pooling estimator is preferred when the panel is

heterogeneous and the signal-to-noise ratio is moderate or large. The Mallow model

averaging estimator, however, is not asymptotically optimal in our framework since the

condition (C.3) of Wang et al. (2019) does not hold here. The condition requires that there

is no model for which the bias is zero, which does not hold in our framework since the FGLS

estimator is unbiased.

This chapter is mainly concerned with point estimation and does not address the

challenging issue of inference with shrinkage estimators. As a preliminary step in this

direction, we study the mean squared errors of various estimators. However, since the

distribution of shrinkage estimators are non-Gaussian, it is still unclear how to use this

knowledge to construct confidence intervals. We leave the full treatment of this nontrivial,

interesting and important issue to a follow-up paper.

The paper is organized as follows. Section 2.2 describes the model and the estimators.

In section 2.3, we study properties of the estimators. In section 2.4, the asymptotic bias,

asymptotic MSE matrix and asymptotic risk of the shrinkage estimator are presented.

Monte Carlo results are given in section 2.5. Results from our empirical example are given

in section 2.6. Conclusions are given in section 2.7. Proofs and detailed calculations are

listed in Appendix B.
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Notation: Throughout the paper we adopt the following notation. For an m × n real

matrix A we write the transpose A′. When A is symmetric, we use %max(A) and %min(A)

to denote the largest and smallest eigenvalues, respectively. Ip and 0p×q denote the p ×

p identity matrix and p × q matrix of zeros. The operator
p−→ denotes convergence in

probability,
d−→ denotes convergence in distribution, and plim denotes probability limit.

2.2 The Model and Notation

Consider the following linear panel data model with heterogeneous slopes

yit = x′itβi + uit, i = 1, . . . , N, and t = 1, . . . , T, (2.1)

where yit is the dependent variable, xit = (xit,1, . . . , xit,k)
′ is a k× 1 vector of the regressors

including the intercept1 for unit i, and uit is the unobserved error term, where T is the time

dimension, and N is the cross-section dimension. The heterogeneous regression coefficients

βi is a k × 1 vector of unknown coefficients of interest.

Stacking the observations over N units, can be expressed as

y.t = X.t β+u.t, t = 1, . . . , T, (2.2)

where y.t = (y1t, . . . , yNT )′ is a N × 1 vector of observations on the dependent variables

at time t, X.t = diag(x′1t, . . . , x
′
Nt) is a N × Nk matrix of observations at time t on the

regressors, u.t = (u1t, . . . , uNT )′ is a N × 1 vector of disturbances for t = 1, . . . , T, and

β = (β′1, . . . , β
′
N )′ is a Nk × 1 vector of the unknown slope coefficients.

1The first element of xit can take value one (xit,1 = 1) for all i = 1, . . . , N, and t = 1, . . . , T, which
allows for fixed effects. Also, note that we do not assume that xits are the same, nor do we assume they are
different across equations. In other words, our model supports complete heterogeneity, partial heterogeneity,
and complete homogeneity of regressors.
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Alternatively, stacking the observations over t, we can express the model in (2.1) as

yi = Xiβi + ui, i = 1, . . . , N, (2.3)

where yi = (yi1, . . . , yiT )′ is a T × 1 vector of observations on the dependent variable, Xi =

(xi1, . . . , xiT )′ is a T ×k matrix of observations on the regressors, and ui = (ui1, . . . , uiT )′ is

a T × 1 vector of disturbances for i = 1, . . . , N . In a matrix form, we can write the model

as

y = Xβ + u, (2.4)

where the NT × 1 vector y = (y′1, . . . , y
′
N )′, u = (u′1, . . . , u

′
N )′, and

X
NT×Nk

=



X1 0 . . . 0

0 X2

...
. . .

. . .

0 . . . 0 XN


We make the following classical linear system of equations assumptions.

Assumption 2.1 (i) E(u.t|X.1, . . . , X.T ) = 0.

(ii) E(u.tu
′
.t|X.1, . . . , X.T ) = Σ

N×N
is positive definite, and Σ−1 is finite.

Assumption 2.1 (i) requires that the regressors are strictly exogenous and it excludes

regressors like lagged dependent variables. This assumption may be restrictive in many

applications, but this assumption is needed as a technical regularity condition that is

required for proving the asymptotic properties of the estimators when T →∞. The second
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condition requires that the disturbances are uncorrelated across the time dimension, but

can be correlated across the cross-sections. In this case E(uu′|X) = Ω = Σ⊗ IT , where

Σ
N×N

=



σ11 σ12 . . . σ1N

σ21 σ22 . . . σ2N

...

σN1 σN2 . . . σNN


.

Therefore, the model of equation (2.1) can also be viewed as a system of seemingly unrelated

regressions.

2.3 Estimation

2.3.1 Unrestricted Estimator

The standard estimator of β in equation (2.4), is the feasible generalized least-squares

(FGLS) estimator of Zellner (1962). This estimator is defined as

β̂ = (X′ Ω̂−1 X)−1 X′ Ω̂−1
y = β+

( T∑
t=1

X ′.tΣ̂
−1X.t

)−1
X ′.tΣ̂

−1u.t, (2.5)

where Ω̂ = Σ̂ ⊗ IT , and Σ̂ is a consistent estimator of Σ. The (i, j)th element of Σ̂ is sij

which estimates σij using single-equation least-squares estimator of βi, denoted by β̆i =

(X ′iXi)
−1X ′iyi, for i = 1, 2, ..., N . Hence

sij = (yi −Xiβ̆i)
′(yj −Xj β̆j)/T = u′iMiMjuj/T, (2.6)

where Mi = IT −Xi(X
′
iXi)

−1Xi.
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2.3.2 Restricted Estimator

Because of a belief that the true parameter values may be close to a restricted parameter

space Θ0 = {β ∈ RNk : r(β) = 0} where r(β) = Rβ : RNk → Rd, we want to shrink

β̂ towards the restriction space Θ0. The purpose of the restrictions can be a specification,

a structural model, a set of exclusion restrictions, parameter symmetry (like pooling), or

any other restrictions that are often tested by means of hypothesis testing to improve the

estimation efficiency.

Remark 2.2 A common restricted parameter space, Θ0, of particular interest in this setup

is the homogeneity restriction of slope parameters across cross-sections, known as pooling.

In this case, we would form the restriction as

Rβ =



Ik 0 . . . 0 −Ik

0 Ik . . . 0 −Ik
...

...
...

0 0 . . . Ik −Ik





β1

β2

...

βN


=



β1 − βN

β2 − βN
...

β(N−1) − βN


= 0, (2.7)

this specifies a total of d = (N − 1)k restrictions on the Nk × 1 vector of slope parameters.

Remark 2.3 Another restricted parameter space, Θ0, which is common in applied

economics will take the form of an exclusion restriction for each cross-section equation.

For example, if we partition

βi =

βi,1
βi,2

 , i = 1, 2, . . . , N, (2.8)

where βi,1, (k−di)×1, represents the slopes of the core regressors, and βi,2, di×1, includes

the slopes of included auxiliary regressors that are included in the model for robustness but
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may or may not be included in the model. Therefore an exclusion restriction takes the form

Rβ =



R1 0 . . . 0 0

0 R2 . . . 0 0

...
...

...

0 0 . . . 0 RN





β1

β2

...

βN


=



β1,2

β2,2

...

βN,2


= 0, (2.9)

where R is a matrix of d × Nk, with Ri = (0di×(k−di), Idi), for i = 1, 2, . . . , N, and d =∑N
i=1 di.

The restricted generalized least-squares estimator is obtained as the solution to the

following minimization

Minimize
s.t. β

(y − Xβ)′Ω(y − Xβ) subject to r(β) = 0, (2.10)

and the solution can be formulated as the feasible restricted generalized least-squares

estimator in below

β̃ = β̂ − (X′ Ω̂−1 X)−1R′
[
R(X′ Ω̂−1 X)−1R′

]−1
Rβ̂. (2.11)

Restrictions are often tested using hypothesis testing. The hypothesis to be tested is

H0 : r(β) = 0 against the alternative, H1 : r(β) 6= 0. A conventional test static that has a

limiting chi-squared distribution with d degrees of freedom when the null hypothesis is true

is

F = β̂′R′
[
R(X′ Ω̂−1 X)−1R′

]−1
Rβ̂ =

(
β̂ − β̃

)′
X′ Ω̂−1 X

(
β̂ − β̃

)
, (2.12)
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which can be recognized as a Wald statistic (Greene (2008)) and measures the weighted

distance between β̂ and β̃ 2.

2.3.3 Shrinkage Estimator

We use the restrictions and the test statistic to construct a shrinkage estimator, and

show that the proposed estimator improves estimation efficiency and makes an appropriate

trade-off between bias due to possible incorrect restrictions and variance efficiency gains

from imposing the restrictions.

Our proposed shrinkage estimator of β is a weighted average of the FGLS estimator and

the restricted estimator

β̂s = ω β̂ + (1− ω) β̃, (2.13)

where the weight takes the form

ω = (1− τ

F ( β̂ , β̃ )
), (2.14)

such that, τ is a positive shrinkage parameter that controls the degree of shrinkage.

We will defer describing the optimal choice for this parameter in the following sections.

Alternatively, ω can be replaced by its positive part, (ω)+ = ω 1(ω ≥ 0), as it can be easily

verified that the risk of the estimator with the positive part is smaller. However, it will

not affect the results in the following sections, so for simplicity we do not impose it at this

stage. Nevertheless, the Monte Carlo results and empirical results are reported using the

positive part weight.

2The last equality in equation (2.12) holds because

F = β̂′R′
[
R(X′ Ω̂

−1
X)−1R′

]−1

R(X′ Ω̂
−1

X)−1(X′ Ω̂
−1

X)(X′ Ω̂
−1

X)−1R′
[
R(X′ Ω̂

−1
X)−1R′

]−1

Rβ̂.
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The shrinkage estimator defined above, shrinks the FGLS estimator towards the

restricted estimator by the ratio τ/F ( β̂ , β̃ ), such that when the difference between these

two estimators is small (the Wald statistic is small, so (1 − ω) is large), the shrinkage

estimator gives a large weight to the restricted estimator, as it is the most efficient

estimator. However, when the difference between the two estimators is substantial or

high (F ( β̂ , β̃ ) > τ), the bias of the restricted estimator could be more than its variance

efficiency gain, so the shrinkage estimator becomes a weighted average of the restricted and

FGLS estimators, while giving a larger weight to the consistent FGLS estimator.

2.4 Asymptotic Properties of the Shrinkage Estimator

In this section, we discuss the asymptotic properties, the asymptotic bias, MSE matrix

and risk of the shrinkage estimator defined in (2.13) under a general local asymptotic

framework (Assumption 2.5 below), when the time horizon T →∞ while the cross-section

dimension (N) is fixed. We make the following standard set of regulatory assumptions.

Assumption 2.4 (i) {(X.t, u.t), t = 1, . . . , T} are independent and identically

distributed.

(ii) E |xit,huit|2 < ∞, for i = 1, . . . , N, t = 1, . . . , T, h = 1, . . . , k, and E(X ′.tΣ
−1X.t) is

positive definite.

(iii) E |xit,h|2 < ∞, for i = 1, . . . , N, t = 1, . . . , T, h = 1, . . . , k, and E(X ′.tX.t) is positive

definite.
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(iv) WT is a Nk ×Nk positive definite matrix and tends to finite positive definite matrix

W , as T →∞.

Assumption 2.4 (i)–(iii) require that observations are independent and identically

distributed across the time dimension, and give some standard moment conditions to ensure

the central limit theorem validity. WT is a weight matrix in the risk of the estimators.

Condition (iv) is automatically satisfied if one sets WT = INk.

Assumption 2.5 We assume that

βi = β̄i + αi, i = 1, 2, . . . , N,

and

αi = T−κδi, where κ > 0 , and, δi ∈ Rk,

where β̄i is a centering value which belongs to the restricted parameter space Θ0, δi ∈ Rk

is a localizing parameter which shows the difference between the unrestricted and restricted

parameter space, and κ is the speed by which the localizing parameter converges to zero. In

a matrix form we can write the equations above as

β = β̄ +α = β̄ + T−κ δ,

where α
Nk×1

= (α′1, α
′
2, . . . , α

′
N )′ and δ

Nk×1
= (δ′1, δ

′
2, . . . , δ

′
N )′.

Remark 2.6 When the restricted parameter space exhibits the parameter symmetry

restrictions across the cross-sections (see Remark 2.2), β̄i represents a common mean, i.e.

β̄i = β̄ for i = 1, 2, . . . , N.
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Remark 2.7 For the restricted parameter space in Remark 2.3 that exhibits the exclusion

restriction parameter space, the centering parameter takes the form β̄i = (β′i,1,0
′
di×1)′.

Assumption 2.5 controls the magnitude of the difference between the restricted and

unrestricted parameter space. We need this assumption to ensure that the distance between

these two parameter space diminish as the sample size increases. Because otherwise, the

magnitude of the bias and the risk of the restricted estimator increase with the sample size,

and there is no gain of shrinking the unrestricted estimator toward the restricted parameter

space. We will discuss in detail how different values of κ affect the bias and risk of the

shrinkage estimator in Theorem 2.9.

Theorem 2.8 Under assumptions 2.1–2.4, the asymptotic distribution of the FGLS

estimator is

√
T (β̂ − β)

d−→ Z ∼ N(0, V ), where V ≡
[
E(X ′.tΣ

−1X.t)
]−1

, (2.15)

and together with assumption 2.5, the asymptotic distribution of the restricted estimator is

√
T (β̃ − β)

d−→ Z − V R′(RV R′)−1R(Z +
√
T α). (2.16)

Further by using the above equations,

F ( β̂ , β̃ )
d−→ (Z +

√
T α)′R′(RV R′)−1R(Z +

√
T α) ≡ ξ(Z) ∼ χ2

d(θ
′Aθ), (2.17)

where 3 θ = V −1/2
√
T α, A = V 1/2R′(RV R′)−1RV 1/2 is an idempotent matrix, and for the

shrinkage weight, we have

(1− τ

F ( β̂ , β̃ )
)
d−→ (1− τ

ξ(Z)
) ≡ ω(Z). (2.18)

3χ2
p(q) represents a chi-squared distribution with p degrees of freedom and a non-centrality parameter q.
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Therefore, the asymptotic distribution of the shrinkage estimator is

√
T (β̂s − β)

d−→ ω(Z)Z + (1− ω(Z))(Z − V R′(RV R′)−1R(Z +
√
T α)) ≡ Zs. (2.19)

Proof: Appendix B, (See page 150).

Theorem 2.8 gives the asymptotic distribution of the shrinkage estimator, which is a

non-linear function of a normal distribution, and will be used to approximate the moments

of the shrinkage estimator. Moreover, since the shrinkage estimator is a non-linear function

of random variables, obtaining its bias, mean squared error matrix (MSEM), and risk is

difficult. Hence, as a useful approximation, we study the truncated moments of the shrinkage

estimator as T →∞. We define, the asymptotic bias of the shrinkage estimator as

ABias (β̂s) = lim
γ→∞

lim
T→∞

E
[
Tn 1

(
|Tn| ≤ γ

)]
= E(Zs),

where Tn =
√
T (β̂s − β). The asymptotic MSEM of the shrinkage estimator is defined as,

AMSEM(β̂s) = lim
γ→∞

lim
T→∞

E
[
Tn T

′
n 1
(
|Tn| ≤ γ

)]
= E(ZsZ

′
s),

and the asymptotic risk of the shrinkage estimator for a weight matrix WT satisfying

Assumption 2.4 (iv), is defined as

ARisk (β̂) = lim
γ→∞

lim
T→∞

E
[
T ′nWTTn 1

(
|Tn| ≤ γ

)]
= E(Z ′sWZs) = tr

(
W E(ZsZ

′
s)
)
.

The last equality in the above equalizations hold, because the truncated moments are

continuous and bounded functions of the shrinkage estimator. Consequently, we can

approximate the truncated moments, as the sample size increases with negligible trimming,

using the asymptotic distribution of the shrinkage estimator 4. Furthermore, WT is a

4This holds because for every bounded continuous real-valued function f, ZT
d−→ Z if and only if

E(f(ZT ))
p−→ E(f(Z)), see theorem 1.8.8 of Lehmann and Casella (1998). In our case, f(Tn) = Tn 1(|Tn| ≤

γ) + γ1(|Tn| > γ) for the asymptotic bias, and is similarly defined for the asymptotic MSE matrix and risk.
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positive definite weight matrix that satisfies condition (iv) in Assumption 2.4. Two arbitrary

choices of WT are INk and T−1(X′ Ω̂X)−1, where the former one in the risk, provides an

unweighted mean squared error (MSE), and the latter gives the mean squared forecast

(prediction) error (MSFE).

Theorem 2.9 Under assumptions 2.1–2.5, the asymptotic bias of the shrinkage estimator

is

ABias (β̂s) = −T (1−2κ)/2 τ

d
V R′(RV R′)−1R δ e(−T 1−2κλ)

1F1

( d
2
,
d

2
+ 1; T 1−2κ λ

)
,

(2.20)

and the asymptotic MSEM of the shrinkage estimator when d > 2 is

AMSEM (β̂s) = V +
τ

d
V R′(RV R′)−1RV e(−T 1−2κλ) τ

d− 2
1F1

( d
2
− 1 ,

d

2
+ 1 ; T 1−2κλ

)
− 2 1F1

( d
2
,
d

2
+ 1 ; T 1−2κλ

)
+ τ T 1−2κ V R′(RV R′)−1R δ δ′R′(RV R′)−1RV e(−T 1−2κλ) τ

d(d+ 2)
1F1

( d
2
,
d

2
+ 2 ; T 1−2κλ

)
− 2
[ 1

d+ 2
1F1

( d
2

+ 1 ,
d

2
+ 2 ; T 1−2κλ

)

− 1

d
1F1

(d
2
,
d

2
+ 1 ; T 1−2κλ

)],
(2.21)

where λ = δ′R′(RV R′)−1R δ /2, and 1F1(., .; .) denotes the confluent hypergeometric

function 5.

5The confluent hypergeometric function is given by

1F1(a, c;x) =

∞∑
n=0

(a)nx
n

(c)nn!

where (a)n = a(a+ 1) . . . (a+ n− 1), (a)0 = 1. Also (a)n = Γ(a+ n)/Γ(a) for positive a.
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Proof: Appendix B,(See page 153).

Corollary 2.10 Under assumptions 2.1–2.5, and d > 2, we have the followings:

(i) If 0 < κ < 1/2 , the shrinkage estimator is asymptotically unbiased, consistent, and

very close to the FGLS estimator

ABias (β̂s) = −T−(1−2κ)/2 τ

2λ
V R′(RV R′)−1R δ

[
1 +O(T−(1−2κ))

]
, (2.22)

and the asymptotic MSEM is

AMSEM (β̂s) = V − T−(1−2κ) τ

λ
V R′(RV R′)−1RV + T−(1−2κ)

[ τ2

4λ2
+

τ

λ2

]
V R′(RV R′)−1R δ δ′R′(RV R′)−1RV +O(T−2(1−2κ)),

(2.23)

(ii) Local Asymptotic: If αi = δiT
−1/2, i = 1, 2, . . . , N, i.e. κ = 1/2, then the shrinkage

estimator has an asymptotic bias of order O(T−1/2), is consistent and we have

ABias (β̂s) = −τ
d
e−λ V R′(RV R′)−1R δ 1F1

( d
2
,
d

2
+ 1 ; λ

)
, (2.24)

and

AMSEM (β̂s) = V +
τ

d
e−λ

 τ

d− 2
1F1

( d
2
− 1 ,

d

2
+ 1 ; λ

)

− 2 1F1

( d
2
,
d

2
+ 1 ; λ

)V R′(RV R′)−1RV + eλ τ

 τ

d(d+ 2)
1F1

( d
2
,
d

2
+ 2 ; λ

)

− 2
[ 1

d+ 2
1F1

( d
2

+ 1 ,
d

2
+ 2 ; λ

)
− 1

d
1F1

(d
2
,
d

2
+ 1 ; λ

)]
V R′(RV R′)−1R δ δ′R′(RV R′)−1RV.

(2.25)

Proof: Appendix B,(See page 156).
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Remark 2.11 The asymptotic MSEM of the shrinkage estimator in (2.25) can be rewritten

as follows 6

AMSEM (β̂s) = V +
1

d(d− 2)
e−λ 1F1

( d
2
− 1 ,

d

2
+ 1 ; λ

)[
τ2 − 2τ(d− 2)

]
V R′(RV R′)−1RV

+
1

d(d+ 2)
e−λ 1F1

( d
2
,
d

2
+ 2 ; λ

)(τ2 + 4τ

)
V R′(RV R′)−1R δ δ′R′(RV R′)−1RV

− 4 τ λ V R′(RV R′)−1RV

.
(2.26)

In the following corollary, we give our recommended value of τ that minimizes the risk

of the shrinkage estimator under the local asymptotic condition.

Corollary 2.12 Under assumptions 2.1–2.5, when κ = 1/2, tr(C)/%max(C) > 2, and

0 < τ ≤ 2
[

tr(C)/%max(C)− 2
]
, then

ARisk (β̂s) ≤ ARisk (β̂)− e−λ

d

[
2τ
( tr(C)

%max(C)
− 2
)
− τ2

]
[

tr(C)

d− 2
1F1

( d
2
− 1 ,

d

2
+ 1 ; λ

)
+

2λW
d+ 2

1F1

( d
2
,
d

2
+ 2 ; λ

)]
,

(2.27)

where ARisk (β̂) = tr(W V ), C = AV 1/2WV 1/2A, λW = δ′ V −1/2CV −1/2 δ /2. The above

result shows the superiority of the shrinkage estimator relative to the FGLS estimator. The

optimal shrinkage parameter that minimizes the risk is

τopt = tr(C)/%max(C)− 2. (2.28)

Proof: Appendix B, (See page 156).
6The result holds by using the following identities

(c− a− 1) 1F1(a, c;x) = (c− 1) 1F1(a, c− 1;x)− a 1F1(a+ 1, c;x),

1F1(a, c;x) = 1F1(a+ 1, c;x)− x

c
1F1(a+ 1, c+ 1;x),

See Lebedev (1972), pp. 271.
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Remark 2.13 As the optimal shrinkage parameter depends on Ω, which is unknown, it can

be estimated. That is one can replace Ω by its consistent estimator Ω̂, and use

τ̂opt = tr(Ĉ)/%max(Ĉ)− 2. (2.29)

In this case as T →∞, τ̂opt
p−→ τopt, and the results of corollary 2.12 will still hold.

Corollary 2.14 Under assumptions 2.1–2.5, when κ = 1/2, d > 2, and 0 < τ ≤ 2[d − 2],

the MSFE of the shrinkage estimator (W = V −1) is

MSFE (β̂s) = MSFE (β̂)− e−λ 1

d− 2
1F1

( d
2
− 1 ,

d

2
; λ
)[

2τ(d− 2)− τ2
]
, (2.30)

where MSFE (β̂) = INk. The value of τ that minimizes the MSFE of the shrinkage estimator

is

τF,opt = d− 2, (2.31)

and the MSFE of the optimal shrinkage estimator is

MSFE (β̂s,opt) = MSFE (β̂)− e−λ (d− 2) 1F1

( d
2
− 1 ,

d

2
; λ
)
. (2.32)

Proof: Appendix B,(See page 157).

Corollary 2.15 Under assumptions 2.1–2.5, when κ = 1/2, and d > 2, if λ→∞ 7 then

ARisk (β̂s,opt) = ARisk (β̂) +O(
1

λ
). (2.33)

Proof: Appendix B,(See page 156).

7Equivalently when δ →∞.
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The result in corollary 2.15 suggests that if the bias of the restricted estimator is very large

(the restricted parameter space is too far from the true parameter space), the shrinkage

estimator is asymptotically very close to the FGLS estimator, and achieves the global

minimax efficiency bond of van der Vaart (1998). This condition assures that even for

very large values of δ in assumption 2.5, the shrinkage estimator remains asymptotically

consistent and efficient by giving a weight one to the FGLS estimator.

2.4.1 High Dimensional Shrinkage

In this section, we study the performance of our estimator in a high dimensional case

where the number of restrictions increases without bound. The asymptotic properties of

our estimator is given in the following theorem using a sequential approximations by letting

first the sample size, and then the number of restrictions, tent to infinity.

Theorem 2.16 Under assumptions 2.1–2.5, when κ = 1/2, if as d→∞, limd→∞ λ/d→ 0

then

lim
d→∞

ARisk (β̂s,opt)

ARisk (β̂)
≤ 1− ρ, ρ = lim

d→∞

tr(C)

tr(WV )
, (2.34)

where 0 ≤ ρ ≤ 1. If W = V −1, then we have

lim
d→∞

MSFE (β̂s,opt)

MSFE (β̂)
= 1− lim

d→∞

d

NK
. (2.35)

Also, in the expressions above the optimal shrinkage estimator can be replaced with any

shrinkage estimator in which the shrinkage parameter, τ, satisfies the condition below

lim
d→∞

τ

τopt
→ 1. (2.36)

Proof: Appendix B,(See page 158).
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The right hand side of equation (2.34) is equal to the local minimax efficiency bound given

in Theorem 5 of Hansen (2016), which specifies that our proposed estimator asymptotically

achieves the local minimax bound, while the FGLS estimator does not. Therefore,

the shrinkage estimator proposed in this paper is locally the most efficient estimator.

Consequently, there is no need to find alternative methods (like model averaging) to balance

between the bias and variance efficiency. A major advantage of our proposed shrinkage

method relative to the Stein-type shrinkage estimator considered in Hansen (2016) is that,

the risk of our estimator does not depend on the bound size of localizing parameters, as a

result the gain of our proposed estimator relative to the FGLS estimator can be quantified.

2.5 Monte Carlo Simulation

The results below are the simulation results of the model of section 2.2, where xit,1 =

1 and the remaining regressors are independently generated from the standard normal

distributions. The sample size varies from T ∈ {50, 100, 200}, N ∈ {3, 5}, k ∈ {4, 6},

leading to twelve combinations of N, T and k. u1 is generated as i.i.dN(0, 1), while ui =

cu1 + vi, for i = 2, . . . , N, where vi ∼ i.i.dN(0, 1) and c = 0.25. We consider two DGPs

for generating βi, the first one is under a complete heterogeneity in coefficients where we

assume that

DGP1: βi = β̄ + (i× δ)/N, i = 1, 2, . . . , N,
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with β̄ = (1, 1, . . . , 1)′, and the second DGP is under a partial heterogeneity where we

assume that

DGP2: βi1, βi2 =


1 + (i× δ)/N, if i = 1, . . . , [N/2]

1.2, if i = [N/2] + 1, . . . , N

, βil = 2, l ∈ {3, . . . , k},

where [N/2] denotes the nearest integer value that is smaller than N/2, and δ takes values

on a 10-point grid on [0, 1].

The results of 1, 000 monte carlo simulations are given in Figures 2.1–2.8, where the

vertical axis measure the relative mean squared error (RMSE) of the FGLS estimator, the

restricted estimator, a pre-test estimator, and the optimal shrinkage estimator, to the FGLS

estimator. The horizontal axis measure the degree of heterogeneity (δ) which is set between

zero and one with 0.1 grid value.

The Monte Carlo results support our theoretical findings of the previous section.

The figures show that the RMSE of the shrinkage estimator for the whole parameter

heterogeneity is below that of the FGLS estimator. This shows the superiority of our

proposed shrinkage estimator relative to the FGLS estimator.

The RMSE of the shrinkage estimator in DGP1 of a complete heterogeneous panel data

model, is smaller than that of the restricted estimator except for very small values of

parameter heterogeneity. This is expected because as δ takes higher values, the bias of the

restricted estimator increases, which then increases its MSE. Also, when the sample size is

larger, the RMSE of the shrinkage estimator dominates that of the restricted estimator for

most values of δ. In DGP2 where the model is characterized by some degrees of homogeneity,

the RMSE of the restricted estimator remains smaller than that of the FGLS estimator for
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even larger values of δ. In this case, the FGLS estimator can be inferior to the restricted

estimator even with the presence of weak degrees of heterogeneity. This is because although

the FGLS estimator is unbiased, it is inefficient, especially under small sample sizes, and

high number of regressors. In contrast, the restricted estimator properly makes use of

cross-section variation and thus provides a more accurate results.

In general, we find that the shrinkage estimator performs robustly well in heterogeneous

panel data models with various degrees of heterogeneity. When there is a strong

heterogeneity, the shrinkage estimator prevails. When there is a relatively weak

heterogeneity, the shrinkage estimator tends to gain more from the efficiency of the restricted

estimator by assigning a larger weight to this estimator, and thus still remains one of the

best choices.

2.6 Application: Forecasting Cross-Country Output Growth

In this section, we present an empirical application that highlights the utility of the

shrinkage estimator in forecasting. In particular, we forecast the output growth rate of 33

advanced and emerging economies in the global economy using a set of macroeconomic and

financial variables by allowing potential parameter heterogeneity structures in the slope

coefficients. This allows us to shrink the slope parameters of the countries with close

response variables which can improve the forecasts. As pointed out by Pesaran et al. (2009)

the unobserved heterogeneity is an important issue that practitioners face when constructing

forecasting models which is still an open discussion. We consider a panel data model with

an uncertainly about the parameter heterogeneity structures which adds to the current and
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ongoing literature of forecasting economic and financial variables across countries including

Dees et al. (2007,a), Dees et al. (2007,b), and Pesaran et al. (2009), among others.

The data set is taken from the Global VAR (GVAR) dataset8. We use quarterly

macroeconomic and financial variables including log real GDP (yit), the rate of inflation

(πit), short-term interest rate (rit), long-term interest rate (lrit), and log real equity prices

(qit) for N = 33 economies from 1979Q2 to 2016Q4.

We are interested in forecasting h quarters ahead rate of log real GDP, with the predictors

in zit = (∆ri,t − ∆πit,∆lri,t − ∆πit,∆qi,t − ∆πit) and z∗it = (∆y∗i,t,∆r
∗
i,t − ∆π∗it,∆lr

∗
i,t −

∆π∗it,∆q
∗
i,t−∆π∗it), where z∗it is the country-specific foreign variables. The foreign variables

are constructed using rolling three year moving averages of the annual trade weights which

are computed as shares of exports and imports for each country 9.

Therefore, we consider the following equation

∆hyi,t+h = ηi + β′izit + β∗
′
i z
∗
it + uit, i = 1, . . . , N, and t = 1, . . . , T, (2.37)

where ∆hyi,t+h = yi,t+h − yit for the forecast horizon h, and the slope parameters, β∗i ,

admit a possible parameter heterogeneity structure, while ηi and βi are heterogenous

across countries. We estimate the slope parameters using the shrinkage estimation method

developed in the previous sections. In our analysis, we consider up to h = 4 (four quarters

ahead) and report results for one quarter ahead (h = 1) and one year ahead (h = 4). The

forecasts are constructed using expanding windows of 15 (T = 60), 20 (T = 80), and 25

(T = 100) years time periods for the initial estimation window. When T = 60, this leaves

8The data is available at the GVAR Toolbox webpage https://sites.google.com/site/gvarmodelling/data
9For example the trade weights of year 2016 is based on the average trade flows computed over the three

years 2013–2015. Because the trade flows observations start at 1980, the process of computing time-varying
trade weights was initialized by using the same set of weights for the first four years of the sample period.
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us with the last H1 = 83 out-of-sample evaluation periods, 1996Q2-2016Q4 for h = 1, and

H2 = 79 out-of-sample evaluation periods, 1997Q2-2016Q4 for h = 4.

We evaluate the forecasting performance of our method, with individual equations

forecasts, and a fixed effect approach using the root mean squared forecast error (RMSFE)

of any given model, which is averaged across the N countries as below

RMSFE(h,H) =

√√√√ 1

N

N∑
i=1

1

Hh

T+Hh−1∑
t=T

ê2
it(h), h = 1, 4, (2.38)

where êit(h) = ∆hyi,t+h − ∆̂hyi,t+h|t is the h−quarter ahead forecast error, with ∆hyi,t+h

being the actual value, and ∆̂hyi,t+h|t the corresponding forecast formed at time t. RMSFE

and relative RMSFE statistics for the one-quarter and one-year ahead forecasts of output

growth rate are reported in Table 2.1.

Diebold and Mariano (1995) (DM) test statistics for testing H0 : E
(
x̂it,m(h)

)
= 0,

where x̂it,m(h) = ê2
it,shrinkage(h) − ê2

it,m(h) is the difference between the h−quarter ahead

squared forecasting errors of our shrinkage method and method m (fixed effect or individual

equations models) for country i. Specifically, by assuming serially uncorrelated h-step-ahead

forecasting errors, we have

DMi,m(h) =
√
Hh

¯̂xi,m(h)

σ̂i,m(h)
, i = 1, . . . , N, and h = 1, 4, (2.39)

where ¯̂xi,m(h) = 1
Hh

∑T+Hh
t=T+1 x̂it,m(h) is the sample mean of x̂it,m(h), and

σ̂2
i,m(h) =

1

Hh − 1

T+Hh∑
t=T+1

(
x̂it,m(h)− ¯̂xit,m(h)

)2
. (2.40)

To compare the forecasts across the countries, we compute the panel version of the DM

test which is proposed in Pesaran et al. (2009) to statistically test the panel forecasts across

countries against each method for a given forecast horizon. The panel DM (DM) statistic
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under assuming serially and cross-sectionally uncorrelated h-step-ahead forecasting errors

is defined as

DMm =
x̄m(h)√
V
(
x̄m(h)

) , h = 1, 4, (2.41)

where x̄m(h) = 1
N

∑N
i=1

¯̂xi,m(h) and V
(
x̄m(h)

)
= 1

NT

(
1
N

∑N
i=1 σ̂

2
i,m(h)

)
. The panel DM

test results are reported in Table 2.2 for one-quarter and one-year ahead forecasts.

We note that one quarter ahead shrinkage estimation forecasts perform better than the

fixed effects and individual estimators in all cases and the panel DM tests are significant.

For the one-year ahead forecasts our proposed shrinkage estimation forecasts outperforms

the other two methods.

2.7 Conclusion

We introduce a new method of estimation and forecasting in heterogeneous panel data

models under cross section-dependence and heteroscedasticity of the errors to address the

problem of model uncertainty. This method has four main advantages relative to the other

model averaging and shrinkage estimation methods. First, it allows for heteroscedasticity

and cross-section dependence of error terms which is essential in most of the panel data

model applications. Second, the dominance and optimality of the shrinkage estimator

proposed here is not limited to MSFE and holds for any weighted quadratic loss function

where the weight is positive definite and symmetric. Third, the shrinkage weight is

proportional to a Wald statistics that controls for rotations of the coefficient vectors,

hence provides a shrinkage estimator with a uniformly lowest risk. Lastly, the framework
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considered here is not limited to the local misspecification, and the dominance properties

of the shrinkage estimator is given against a set of deviations from the restrictions.

Moreover, this chapter contributes to the long-existing issue in the panel data analysis

referred by econometricians to as “to pool or not to pool”. We compare the performance

of our proposed estimator with the single-equation and pooling estimators, and show the

reliability of the estimation results under our shrinkage estimator. Moreover, we apply

our method to forecast the output growth rate of 33 advanced and emerging economies

in the global economy using a set of macroeconomic and financial variables by allowing

potential parameter heterogeneity structures in the slope coefficients. Our method has two

advantages over the method considered in the literature. First, it allows for correlation

among the error terms across the courtiers. This correlation could be due to omitted

common effects, or could arise as a result of interactions within socioeconomic networks.

Second, as there is a model specification uncertainty issue about the parameter heterogeneity

of the output growth rates, our method, unlike previous studies, considers the uncertainty

of model selection and estimation jointly. Therefore, the results are more robust and reliable

than the single-equation or pooling estimators mostly considered in the literature.
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T = 50 T = 100 T = 200

Figure 2.1: Relative MSE of Unrestricted, Restricted, Pre-test, and Shrinkage Estimators,
for DGP1, N = 3, k = 4

T = 50 T = 100 T = 200

Figure 2.2: Relative MSE of Unrestricted, Restricted, Pre-test, and Shrinkage Estimators,
for DGP1, N = 3, k = 6

T = 50 T = 100 T = 200

Figure 2.3: Relative MSE of Unrestricted, Restricted, Pre-test, and Shrinkage Estimators,
for DGP1, N = 5, k = 4
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T = 50 T = 100 T = 200

Figure 2.4: Relative MSE of Unrestricted, Restricted, Pre-test, and Shrinkage Estimators,
for DGP1, N = 5, k = 6

T = 50 T = 100 T = 200

Figure 2.5: Relative MSE of Unrestricted, Restricted, Pre-test, and Shrinkage Estimators,
for DGP2, N = 3, k = 4

T = 50 T = 100 T = 200

Figure 2.6: Relative MSE of Unrestricted, Restricted, Pre-test, and Shrinkage Estimators,
for DGP2, N = 3, k = 6
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T = 50 T = 100 T = 200

Figure 2.7: Relative MSE of Unrestricted, Restricted, Pre-test, and Shrinkage Estimators,
for DGP2, N = 5, k = 4

T = 50 T = 100 T = 200

Figure 2.8: Relative MSE of Unrestricted, Restricted, Pre-test, and Shrinkage Estimators,
for DGP2, N = 5, k = 6
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Table 2.1: RMSFE performance of the shrinkage estimation, individual estimators, and
fixed effect methods for one quarter ahead (h = 1) and one year (four quarters, h = 4)
ahead output growth forecasts across 33 countries

T = 60 T = 80 T = 100

Models RMSFE Relative RMSFE Relative RMSFE Relative

(×100) RMSFE (×100) RMSFE (×100) RMSFE

h = 1

Shrinkage Est. 1.300 1.000 1.234 1.000 1.250 1.000

Fixed Effects 1.358 1.013 1.245 1.010 1.270 1.012

Individual Est. 1.308 1.001 1.239 1.004 1.255 1.003

h = 4

Shrinkage Est. 3.216 1.000 3.080 1.000 3.103 1.000

Fixed Effects 3.312 1.030 3.177 1.031 3.186 1.001

Individual Est. 3.220 1.001 3.083 1.001 3.106 1.027

Note: RMSFE is computed using an expanding forecasting scheme with an initial window

of 60, 80, and 100 observations.

Table 2.2: Panel DM statistics for one quarter ahead (h = 1) and one year (four quarters,
h = 4) ahead shrinkage estimation forecasts of real output growth relative to fixed effects
and individual estimators as benchmarks for the T = 60, 80 and 100.

Benchmark Models T = 60 T = 80 T = 100

h = 1

Fixed Effects −1.350∗ −1.432∗ −2.717∗∗∗

Individual Est. −2.463∗∗∗ −3.821∗∗∗ −1.500∗

h = 4

Fixed Effects −3.266∗∗∗ −2.927∗∗∗ −1.896∗∗

Individual Est. −2.251∗∗ −1.843∗∗ −1.620∗

Note: The results represent a one sided test, thus the 1% (∗∗∗), 5% (∗∗) and 10% (∗) critical

values are -2.326, -1.645, and -1.282, respectively. A positive value of the panel DM statistic

represents evidence against the shrinkage estimation forecasts.
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Chapter 3

Using All Lags or One Lag as

Instruments: an Averaging

Estimator in Dynamic Panel Data

Models

3.1 Introduction

Analysis of linear dynamic panel data models where the time dimension (T ) is

not negligible relative to the cross section dimension (N), has recently received large

attentions in applied microeconomics as a result of increasing availability of micro-panels.

Due to the endogeneity problem, the estimation of dynamic panels with individual

effect is carried out predominantly by the Generalized Method of Moments (GMM)
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after first differencing (FD) or forward-demeaning (FOD). Several GMM estimation

methods have been proposed in the literature, including Anderson and Hsiao (1981)

and Anderson and Hsiao (1982), Arellano and Bond (1991), Ahn and Schmidt (1995),

Arellano and Bover (1995), Blundell and Bond (1998), and Hayakawa (2012), among

others. One main reason for the popularity of the GMM estimation approach is that

they may provide asymptotically efficient inference employing a relatively minimal set

of statistical assumptions. However, despite its optimal asymptotic properties, the

performance of GMM estimators can be poor, specially when T is large, due to abundance

of moment conditions.

Because of the over-identification, an important practical issue in such models is how

many moment conditions to use. In practice, as it is shown in the literature (see, e.g.,

Bekker (1994)), numerous instruments can overfit endogenous variables in finite samples,

resulting in a trade-off between bias and efficiency. This has resulted in a substantial

theoretical work on the overfitting bias of the GMM estimators in panel data models.

Alvarez and Arellano (2003) analyze a panel autoregressive model of order one, and show

that although GMM remains consistent for T/N → c, so long as 0 ≤ c ≤ 2, for

c > 0 the estimator exhibits a bias in its asymptotic distribution that is of order 1/N .

Bun and Kiviet (2006) show that in comparison with the GMM estimators that employ all

available instruments, reducing the set of instruments by order T decreases the bias by

an order smaller in magnitude by a factor T . Hsiao and Zhou (2017) show the asymptotic

properties of the GMM estimators that are based on FD or FOD can be different. They

show that when all available instruments are used, the two differencing methods of the GMM
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estimation methods are biased of order
√
c as (N,T )→∞. However, if only a fixed number

of instruments are used, the GMM based on FD remains asymptotically biased of order

√
c, while the GMM based on FOD is asymptotically unbiased even c 6= 0 as (N,T )→∞.

Ziliak (1997) examines the bias/efficiency trade-off issue using bootstrap algorithms in an

empirical application to life cycle labor supply under uncertainty. Ziliak (1997) shows that

the downward bias in GMM becomes larger as the number of moment conditions expands,

where the bias is due to the nonzero correlation between the sample moments used in

estimation and the estimated weight matrix. Windmeijer (2005) in a monte carlo simulation

reported that for the two step FD GMM, using only two lags of the dependent variable as

instruments appeared to decrease the average bias by 40% relative to the estimator that

made use of the full set of instruments, although the standard deviation of the estimator

increased by about 7.5%. Roodman (2009) compared two popular approaches for limiting

the number of instruments: (i) the use of (up to) certain lags instead of all available

lags and (ii) combining instruments into smaller sets. His results show that the bias in

system GMM based on the first approach is similar to the bias when using the full set of

instruments. However, there is clear bias reduction under the second approach. This is

while, Hayakawa (2009) shows that in panels with large unobserved heterogeneity the bias

in FD GMM can actually be larger when using a smaller set of instruments.

This chapter contributes to the GMM literature by introducing the idea of model

averaging and shrinkage estimation in selecting the number of moments. Essentially, we

introduce an averaging estimator which is a weighted average of the GMM estimator using

all available lags, and the GMM estimator using the most recent lag as instruments. The
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weights are similar to a minimum mean squared error estimator weights, which measure

the weighted distance of the two GMM estimators. We derive the first order approximate

bias, mean squared error matrix (MSEM) and risk of the averaging estimator, and show its

robustness and efficiency.

The reminder of this chapter is organized as follows. Section 3.2 describes the model

and the assumptions. In section 3.3, we introduce and study properties of the estimators.

We give the bias, mean squared error matrix, and the risk of the averaging estimator

using asymptotic expansions in section 3.4. Monte Carlo results are given is section 3.5.

Conclusions are given is section 3.6. Proofs and detailed calculations are listed in Appendix

C.

Notations: Let A be a n × n symmetric matrix, tr(A) denotes the trace of matrix A,

%max(A) and %min(A) denote the maximum and minimum eigenvalues of matrix A.

3.2 The Model

Consider the following first-order linear dynamic panel data model with multiple

regressors

yit = γyi,t−1 + x′itβ + uit, i = 1, 2, . . . , N, t = 1, 2, . . . , T, (3.1)

where xit is a (k − 1) × 1 vector of observations on the regressors, β is a (k − 1) × 1

vector of unknown coefficients, and the disturbance term contains two error components, an

unobserved individual specific effect ηi, and a general disturbance term εit, i.e. uit = ηi+εit.
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We assume that the time-variant regressor xit is correlated with ηi, and is strictly exogenous

with respect to εit, i.e.

E(xitεjs) = 0, i, j = 1, . . . , N, and t, s = 1, . . . , T. (3.2)

We assume mutual independence of the cross-section units and serial independence of the

disturbances, i.e. for i = 1, 2, . . . , N, t = 1, 2, . . . , T,

ηi ∼ i.i.d.(0, σ2
η), (3.3)

εit ∼ i.i.d.N(0, σ2
ε ), (3.4)

We assume the two error components are uncorrelated and all N initial observations yi0 are

uncorrelated with all disturbances for t > 0, i.e.

E(ηiεjt) = 0, ∀i, j, t, (3.5)

E(yi0εjt) = 0, ∀i, j, t > 0. (3.6)

Furthermore, we suppose that the model is dynamically stable, that is we assume that for

the model in equation (3.1), |γ| < 1.

As in Kiviet (1995), we decompose yit and xit into zero mean relevant random

components, denoted by a tilde, and irrelevant random plus deterministic components,

denoted by a bar. These expressions make fully explicit how all observations on yit and xit

depend on both error components, which then makes it possible to obtain the approximation

results. The relevant random components are those which are related to the individual

effects, ηi, and the disturbance terms, εit. Hence, in the asymptotic approximations we
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condition on ȳit = yit − ỹit, and x̄it = xit − x̃it,∀i, t. Therefore, we decompose xit, for

i = 1, . . . , N, t = 1, . . . , T, as

xit = x̄it + x̃it, (3.7)

x̃it = πηi, (3.8)

where E(x̄itηj) = 0 and E(x̄itεjs) = 0 for all i, j = 1, . . . , N and t, s = 1, . . . , T, and the

(k− 1)× 1 parameter π allows for the correlation between the regressors and the individual

effects.

Regarding yit, for the relevant random component, ỹit, and the irrelevant component,

ȳit, for i = 1, 2, . . . , N, t = 1, 2, . . . , T, we have

ỹit = γỹi,t−1 + x̃′itβ + ηi + εit, (3.9)

ȳit = γȳi,t−1 + x̄′itβ. (3.10)

In order to further decompose the relevant random components of ỹit into the two error

components ηi, and εit, we need to make an assumption on the accumulated size of the

individual effect in yi0. For simplicity, we assume that

E(ỹit|ηi) = αηi, i = 1, 2, . . . , N, t = 0, 1, . . . , T, (3.11)

where α = (1 + π′β)/(1 − γ). The above equation implies that the long-run impact of

the individual effect on yit is already present in yi0, so we have mean-stationarity for yit.

Further, we assume

ỹi0 = αηi + ωεi0, i = 1, 2, . . . , N, (3.12)

where as Kiviet (1995) we choose ω = 0, because when xit is strongly exogenous, εi0 is an

irrelevant random component and should not be included in ỹi0.
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Stacking observations over time, for i = 1, . . . , N, we get

yi = γyi(−1) +Xiβ + ηiιT + εi, (3.13)

Xi = Xi + X̃i = Xi + ηiιTπ
′, (3.14)

where yi = (yi1, . . . , yi,T )′, yi(−1) = (yi0, . . . , yi,T−1)′, εi = (εi1, . . . , εi,T )′, Xi =

(xi1, . . . , xi,T )′, Xi = (x̄i1, . . . , x̄i,T )′, and ιT = (1, . . . , 1)′, is a T × 1 vector of ones. From

the above it follows that, for i = 1, . . . , N,

ỹi = γỹi(−1) + (π′β + 1)ηiιT + εi = γ(LT ỹi + ỹi0eT,1) + (π′β + 1)ηiιT + εi, (3.15)

where LT is a T × T matrix with ones on the first lower sub-diagonal and zeros elsewhere,

and ei,j is an i× 1 vector of zeros with jth element equal to one. Using equation (3.12), the

relevant random part of yi can be written as

ỹi = αηiιT + ΓT εi, (3.16)

where ΓT = (IT − γLT )−1, and the irrelevant part of yi can be written as

ȳi = ΓTXiβ. (3.17)

Stacking the T observations per individual over all N individuals yields

y = Wδ + u, (3.18)

where δ = (γ, β′)′, y and u are NT × 1, W = (y(−1), X) is NT × k, u = Sη + ε, with

S = IN⊗ιT and η = (η1, . . . , ηN )′. Therefore, the random part of y can be written as

ỹ = αSη + Γε, (3.19)
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where Γ = IN⊗ΓT , and the irrelevant part can be written as

ȳ = ΓXβ. (3.20)

Also, we decompose W in a relevant and irrelevant components as below

W = (ȳ(−1), X) = (LΓXβ,X), (3.21)

W̃ = (ỹ(−1), X̃) = Sηa+ LΓεe′k,1,
(3.22)

where a = (α, π′) is 1× k, and

X̃ = Sηπ′. (3.23)

3.3 Estimation

The assumptions made on the stochastic structure of the model in the previous

section contain a set of linear and non-linear moment conditions for each individual

unit, see Ahn and Schmidt (1995). In this study we will focus on method of moments

implementations using only linear moment conditions and we will not exploit any

moment conditions associated with the homoscedasticity of εit. To eliminate the time

invariant individual effects, we employ the forward demeaning (FOD) transformation

method proposed by Arellano and Bover (1995). We define P = IN⊗PT to be the FOD

transformation, where PT is a (T − 1) × T upper-triangular matrix with rank T − 1 and

PT ιT = 0, which transforms yit as

y∗it = ct

[
yit −

1

(T − t)
(yi,t+1 + · · ·+ yiT )

]
, (3.24)
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with c2
t = (T − t)/(T − t + 1). Since PTP

′
T = IT−1, independence of εit is preserved

in the transformed model which is the advantage of the FOD transformation method.

Premultiplying model in equation (3.18) by P , will result in

Py = PWδ + Pε. (3.25)

For the above model, we consider GMM estimations exploiting m1 = k(T − 1) = O(T )

and m2 = kT (T − 1)/2 = O(T 2) moment conditions for each individual i. These can be

expressed as E(Z ′liPT εi) = 0, for l = 1, 2, where Zli is a (T − 1) ×mj instrument matrix

with variables in levels, defined as

Z2i =



yi0 x′i1 0 0 0 0 0 . . . 0 . . . 0 0 . . . 0

0 0 yi0 yi1 x′i1 x′i2 0 . . . 0 0

0 0 0 0 0 0 . . .
...

...

...
... . . . 0 . . . 0 0 . . . 0

0 0 0 0 0 0 . . . . . . yi0 . . . yi,T−2 x′i1 . . . x′
i,T−1


,

(3.26)

and

Z1i =



yi0 x′i1 0 0 0 . . . 0 0

0 0 yi1 x′i2 0 0

...
... . . .

...

0 0 0 0 . . . 0 0

0 0 0 0 . . . 0 yi,T−2 x′i,T−1


. (3.27)

Stacking over individuals the moment conditions can be written as

E(Z ′lPε) = 0, l = 1, 2, (3.28)

47



where Zl = (Z ′l1, . . . , Z
′
lN )′ is N(T − 1) × ml. Provided P ′Zl has full column rank, the

Arellano and Bond (1991) type GMM is to find δ̂ that minimizes the quadratic form

(
1

N

N∑
i=1

Z ′liPT εi)
′(

1

N2

N∑
i=1

Z ′liPT εiε
′
iP
′
TZli)(

1

N

N∑
i=1

Z ′liPT εi), l = 1, 2. (3.29)

3.3.1 GMM Estimator Using All Lags as Instruments

The solution to the minimization in (3.29) when all lags are used as instruments

(instruments matrix Z2), yields to an optimal one-step GMM estimator which can be

formulated as

δ̂GMM,2 =
(
W ′P ′M2PW

)−1
W ′P ′M2Py = δ +

(
W ′P ′M2PW

)−1
W ′P ′M2Pε, (3.30)

where M2 = Z2(Z ′2Z2)−1Z ′2 is an N(T − 1)×N(T − 1) idempotent matrix.

Theorem 3.1 The bias of the GMM estimator using all lags as instruments up to order

O( 1√
NT

) is

Bias(δ̂GMM,2) = E(δ̂GMM,2 − δ) = σ2
ε tr(H2)Q2ek,1 = O(

1

N
), (3.31)

and the MSE matrix of the estimator up to order O( 1
NT ) is

MSE (δ̂GMM,2) = σ4
ε tr(H2) 2Q2ek,1e

′
k,1Q2 + σ2

εQ2, (3.32)

where Q2 =
[
W
′
P ′M2PW + σ2

ε ek,1e
′
k,1 tr(H2)

]−1
= O(1/NT ), H2 = P ′M2PLΓ, and

tr(H2) = −Tk/(1− γ) +O(1).

Proof: Appendix C,(See page 161).
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3.3.2 GMM Estimator Using One Lag as Instruments

When Z1, which includes a subset of Z2, is used in the minimization in (3.29), the

optimal one-step GMM estimator can be formulated as

δ̂GMM,1 =
(
W ′P ′M1PW

)−1
W ′P ′M1Py = δ +

(
W ′P ′M1PW

)−1
W ′P ′M1Pε, (3.33)

where M1 = Z1(Z ′1Z1)−1Z ′1 is an N(T − 1)×N(T − 1) idempotent matrix.

Theorem 3.2 The bias of the GMM estimator using one lag as instruments up to order

O( 1√
NT

) is

Bias(δ̂GMM,1) = E(δ̂GMM,1 − δ) = 0, (3.34)

and the MSE matrix of the estimator up to order O( 1
NT ) is

MSE (δ̂GMM,1) = V ar(δ̂GMM,1) = σ2
εQ1, (3.35)

where Q1 =
[
W
′
P ′M1PW + σ2

ε ek,1e
′
k,1 tr(H1)

]−1
= O(1/NT ), and H1 = P ′M1PLΓ.

Proof: Appendix C,(See page 162).

3.3.3 Averaging Estimator

To make an appropriate trade-off between bias due to many instruments and variance

efficiency resulting from exploiting all of the moment conditions, we introduce an averaging

estimator which is a weighted average of the GMM estimators introduced in the previous

sections. Our averaging estimator of δ is

δ̂A =
τ

F
δ̂GMM,2 + (1− τ

F
)δ̂GMM,1, (3.36)
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where

F =
(
δ̂GMM,1 − δ̂GMM,2

)′(
V̂1 − V̂2

)−1(
δ̂GMM,1 − δ̂GMM,2

)
, (3.37)

and V̂1 and V̂2 denote the conventional covariance matrix estimators for δ̂GMM,1 and δ̂GMM,2,

which are defined as below

V̂1 =
1

σ̂2
ε,1

(
W ′P ′M1PW

)−1
(3.38)

V̂2 =
1

σ̂2
ε,2

(
W ′P ′M2PW

)−1
, (3.39)

where

σ̂2
ε,l =

1

N(T − 1)− k
(Py − PWδ̂GMM,1)′(Py − PWδ̂GMM,l), l = 1, 2. (3.40)

In equation (3.36), τ is a positive parameter which measure the degree of significance. We

will defer describing our recommended optimal choice for this parameter in the following

sections. Since it can be easily verified that the risk of the estimator with positive part

weights is smaller, alternatively, one could replace the weights by their positive part, i.e.

(1 − τ/F )+ = (1 − τ/F )1((1 − τ/F ) ≥ 0), where 1(.) denotes an indicator function.

However, it will not affect the derivations of the approximations below, so for simplicity we

do not impose it at this stage. Nevertheless, the Monte Carlo results are reported using the

positive part weight.

Notice that when the difference between the two GMM estimators is small (F is small),

the bias of the GMM using all lag instruments is relatively small, therefore the averaging

estimator gives a large weight to this estimator, as it is the most efficient estimator. However,

when the difference between the two GMM estimators is substantial or high (F > τ), the
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bias of the GMM estimator using all lags could be more than its variance efficiency gain,

so the averaging estimator is a weighted average of the two GMM estimators, with more

weight on the GMM estimator using one lag as instrument.

3.4 Finite Sample Approximation

In this section, we obtain the approximation bias, MSE matrix and risk of the averaging

estimator.

Theorem 3.3 The bias of the averaging estimator up to order O( 1√
NT

) is

Bias (δ̂A) = E(δ̂A − δ) = σ2
ε

τ

k
e−λ/2 tr(H2)Q2ek,1 1F1

( k
2
,
k

2
+ 1; λ/2

)
, (3.41)

and the MSE matrix of the averaging estimator up to order O( 1
NT ), given k > 2 is

MSE (δ̂A) = MSE (δ̂GMM,1) +
τ

k
e−λ/2(V1 − V2) τ

k − 2
1F1

( k
2
− 1 ,

k

2
+ 1 ; λ/2

)
− 2 1F1

( k
2
,
k

2
+ 1 ; λ/2

)
+ σ4

ε τ e
−λ/2 tr(H2) 2Q2ek,1e

′
k,1Q2

 τ

k(k + 2)
1F1

( k
2
,
k

2
+ 2 ; λ/2

)

− 2
[ 1

k + 2
1F1

( k
2

+ 1 ,
k

2
+ 2 ; λ/2

)
− 1

k
1F1

(k
2
,
k

2
+ 1 ; λ/2

)],

(3.42)

where λ = σ4
ε tr(H2)2e′k,1Q2(V1 − V2)−1Q2ek,1.

Proof: Appendix C,(See page 163).
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Remark 3.4 The asymptotic MSEM of the averaging estimator in (3.42) can be rewritten

as follows 1

MSE (δ̂A) = MSE (δ̂GMM,1)

+
1

k(k − 2)
e−λ/2 1F1

( k
2
− 1 ,

k

2
+ 1 ; λ/2

)[
τ2 − 2τ(k − 2)

]
(V1 − V2)

+
1

k(k + 2)
e−λ/2 1F1

( k
2
,
k

2
+ 2 ; λ/2

)(τ2 + 4τ

)
σ4
ε tr(H2) 2Q2ek,1e

′
k,1Q2

− 4 τ λ (V1 − V2)

.

(3.43)

In the following corollary we give our recommended value of τ that minimizes the risk

of the averaging estimator.

Corollary 3.5 When tr(C)/%max(C) > 2, and 0 < τ ≤ 2
[

tr(C)/%max(C)− 2
]
, then the

risk of the averaging estimator, for a positive definite weight matrix D whose elements are

of order O(1), is

Risk (δ̂A) ≤ Risk (δ̂GMM,1)− e−λ/2 1

k

[
2τ
( tr(C)

%max(C)
− 2
)
− τ2

]
[

tr(C)

k − 2
1F1

( k
2
− 1 ,

k

2
+ 1 ; λ/2

)
+

2λD
k + 2

1F1

( k
2
,
k

2
+ 2 ; λ/2

)]
,

(3.44)

where Risk (δ̂GMM,1) = tr(DV1), C = (V1 − V2)1/2D(V1 − V2)1/2, and λD =

σ4
ε tr(H2)2e′k,1Q2DQ2ek,1. The above result shows the superiority of the averaging estimator

relative to the GMM estimator using one lag. The optimal τ that minimizes the risk is

τopt = tr(C)/%max(C)− 2. (3.45)

1The result holds by using the following identities

(c− a− 1) 1F1(a, c;x) = (c− 1) 1F1(a, c− 1;x)− a 1F1(a+ 1, c;x),

1F1(a, c;x) = 1F1(a+ 1, c;x)− x

c
1F1(a+ 1, c+ 1;x),

See Lebedev (1972), pp. 271.
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Proof: Appendix C,(See page 166).

Corollary 3.6 When D = (V1 − V2)−1, k > 2, and 0 < τ ≤ 2[k − 2], the risk of the

averaging estimator is

Risk (δ̂A) = Risk (δ̂GMM,1)− e−λ/2 1

k − 2
1F1

( k
2
− 1 ,

k

2
; λ/2

)[
2τ(k − 2)− τ2

]
.

(3.46)

The value of τ that minimizes the risk of the averaging estimator is

τopt = k − 2, (3.47)

and the risk of the optimal averaging estimator is

Risk (δ̂A,opt) = Risk (δ̂GMM,1)− e−λ/2 (k − 2) 1F1

( k
2
− 1 ,

k

2
; λ/2

)
. (3.48)

Proof: Appendix C,(See page 167).

Corollary 3.7 When k > 2, if λ→∞ 2 then

Risk (δ̂A,opt) = Risk (δ̂GMM,1) +O(
1

λ
). (3.49)

Proof: Appendix C,(See page 167).

The result in corollary 3.7 suggests that if the bias of the GMM estimator using all lags is

very large, the averaging estimator is approximately very close to the GMM estimator using

one lag as instrument. This condition assures that even for dynamic panels with λ close

to one, the averaging estimator remains asymptotically consistent and efficient by giving a

weight one to the GMM estimator using one lag as instrument.

2Equivalently when γ → 1.
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3.5 Monte Carlo Simulation

In this section, we investigate the finite sample properties of the averaging estimator of

δ for dynamic panel data models. Data for the dependent variable y is generated according

to equation (3.1), where the explanatory variables, xit for i = 1, . . . , N, and t = 1, . . . , T,

are generated as below

xit,j = x̄it,j + πηi,

x̄it,j = ρx̄i,t−1,j + ξit,j ,

for j = 1, . . . , k, where ξit,j ∼ i.i.d.N(0, σ2
ξ ) independent from εit ∼ i.i.d.N(0, σ2

ε ) with

σε = 1, and these two are independent of ηi ∼ i.i.d.N(0, σ2
η), also we set |ρ| < 1 to make x̄it

a stationary AR(1) process.

We set γ = {0.25, 0.75}, and choose β = (1− γ)ιk, so that the long-run effect of X on y

is equal to a unit vector. Further, we choose ρ = {0, 0.5}, which yield stationary regressors,

and π = {−ιk,0}.

Similar to Bun and Kiviet (2006), we set

σ2
η = µ2 1− γ

(1 + γ)(1 + π′β)2
, (3.50)

so that the impact of the variances of ηi and εit on V ar(yit) has a ratio of µ2, which we

set to be from {0, 1}. The parameter σ2
ξ is determined by controlling the signal-to-noise

ratio (ϑ) of the model, and we choose ϑ = {3, 9}. As it has been shown in Appendix B of

Bun and Kiviet (2006), this requires

σ2
ξ =

1

β′β

[
ϑ− γ2

1− γ2

](1− γ2)(1− ρ2)(1− γρ)

1 + γρ
. (3.51)
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We choose k = 3, T = 20, and to allow different convergence rates between T and N ,

we consider kT/N = {0.25, 0.5, 0.75, 1}. It should be noted that, kT/N ≤ 2, so the GMM

estimators are identified.

The results of 1, 000 monte carlo simulations are given in Tables 3.1–3.4, where the values

are relative mean squared error (RMSE) of the GMM using one lag estimator, the GMM

using all lags estimator, and the optimal averaging estimator, to the mean squared error of

the GMM using one lag estimator. The tables consist of 32 designs which represent different

specifications.

The Monte Carlo results support our theoretical findings of the previous section. The

table results show that the RMSE of the averaging estimator for the whole parameter

specification is less than that of the GMM using one lag estimator. This shows the

superiority of our proposed estimator relative to the alternative estimators.

In designs where µ = 1, γ = 0.75, and π = 0, it implies σ2
η = σ2

ε /7. We see larger

RMSE’s when xit is smoother. However, as γ increases, δ̂GMM,1 is more efficient than

δ̂GMM,2 and hence the averaging estimator is dominant which is in agreement with our

theoretical findings. As expected, the RMSE of δ̂GMM,2 increases substantially when the

ratio of kT/N increases or equivalently when N decreases.

In general, we find that the averaging estimator performs robustly well in dynamic

panel data models with various degrees of specification. When there is a large number

of cross-sections relative to the number of observations, the averaging estimator prevails.

When there is a relatively small difference between these two, the averaging estimator tends
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to gain more from the efficiency of the GMM using all lags estimator by assigning a high

weight to this estimator, and thus still remains one of the best choices.

3.6 Conclusion

We introduce a new method of estimation and forecasting in dynamic panel data models

when both the time dimension and cross-section dimension are large. We apply the idea of

shrinkage estimation to the estimation of dynamic panels with individual effects, a lagged

dependent variable, and multiple exogenous regressors. The proposed (averaging) estimator

balances the trade-off between the bias and variance efficiency of GMM estimators using all

of the moments and GMM estimators using one (a few) moments. The idea of averaging in

dynamic panels opens new exciting research avenues. This idea can be considered in other

setting, including dynamic panels with weak exogenous regressors, models that allow for

cross-section correlation, and spatial panel data models. Last but not least, we have left

the topic of constructing confidence intervals to future research.
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Table 3.1: Relative MSE of GMM estimator using one lag instrument (δ̂GMM,1), GMM

estimator by instrumenting all lags (δ̂GMM,2), and the averaging estimator (δ̂A), for T =
20, γ = 0.25, π = −ιk
Design c = kT

N δ̂GMM,1 δ̂GMM,2 δ̂A
1 γ = 0.25, π = −ιk, ρ = 0, ϑ = 3, µ = 0

0.25 1.000 1.034 0.998
0.5 1.000 1.067 0.996
0.75 1.000 1.086 0.993
1 1.000 1.111 0.993

2 γ = 0.25, π = −ιk, ρ = 0, ϑ = 3, µ = 1

0.25 1.000 0.640 0.899
0.5 1.000 0.657 0.916
0.75 1.000 0.711 0.927
1 1.000 0.713 0.924

3 γ = 0.25, π = −ιk, ρ = 0, ϑ = 9, µ = 0

0.25 1.000 0.984 0.995
0.5 1.000 0.984 0.989
0.75 1.000 0.961 0.984
1 1.000 0.985 0.987

4 γ = 0.25, π = −ιk, ρ = 0, ϑ = 9, µ = 1

0.25 1.000 0.795 0.927
0.5 1.000 0.838 0.940
0.75 1.000 0.823 0.938
1 1.000 0.807 0.934

5 γ = 0.25, π = −ιk, ρ = 0.5, ϑ = 3, µ = 0

0.25 1.000 1.018 0.996
0.5 1.000 1.065 0.995
0.75 1.000 1.066 0.991
1 1.000 1.071 0.987

6 γ = 0.25, π = −ιk, ρ = 0.5, ϑ = 3, µ = 1

0.25 1.000 0.619 0.888
0.5 1.000 0.652 0.903
0.75 1.000 0.675 0.904
1 1.000 0.692 0.915

7 γ = 0.25, π = −ιk, ρ = 0.5, ϑ = 9, µ = 0

0.25 1.000 0.980 0.993
0.5 1.000 0.963 0.988
0.75 1.000 0.980 0.984
1 1.000 0.968 0.980

8 γ = 0.25, π = −ιk, ρ = 0.5, ϑ = 9, µ = 1

0.25 1.000 0.791 0.920
0.5 1.000 0.829 0.928
0.75 1.000 0.771 0.917
1 1.000 0.802 0.926
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Table 3.2: Relative MSE of GMM estimator using one lag instrument (δ̂GMM,1), GMM

estimator by instrumenting all lags (δ̂GMM,2), and the averaging estimator (δ̂A), for T =
20, γ = 0.75, π = −ιk
Design c = kT

N δ̂GMM,1 δ̂GMM,2 δ̂A
9 γ = 0.75, π = −ιk, ρ = 0, ϑ = 3, µ = 0

0.25 1.000 1.160 1.000
0.5 1.000 1.237 1.000
0.75 1.000 1.293 0.998
1 1.000 1.310 0.998

10 γ = 0.75, π = −ιk, ρ = 0, ϑ = 3, µ = 1

0.25 1.000 0.282 0.952
0.5 1.000 0.367 0.951
0.75 1.000 0.405 0.945
1 1.000 0.448 0.941

11 γ = 0.75, π = −ιk, ρ = 0, ϑ = 9, µ = 0

0.25 1.000 1.656 1.000
0.5 1.000 2.010 1.000
0.75 1.000 2.241 1.000
1 1.000 2.416 1.000

12 γ = 0.75, π = −ιk, ρ = 0, ϑ = 9, µ = 1

0.25 1.000 0.884 0.968
0.5 1.000 1.037 0.969
0.75 1.000 1.255 0.971
1 1.000 1.316 0.972

13 γ = 0.75, π = −ιk, ρ = 0.5, ϑ = 3, µ = 0

0.25 1.000 1.054 0.999
0.5 1.000 1.055 0.997
0.75 1.000 1.081 0.995
1 1.000 1.036 0.992

14 γ = 0.75, π = −ιk, ρ = 0.5, ϑ = 3, µ = 1

0.25 1.000 0.210 0.948
0.5 1.000 0.242 0.945
0.75 1.000 0.285 0.943
1 1.000 0.283 0.938

15 γ = 0.75, π = −ιk, ρ = 0.5, ϑ = 9, µ = 0

0.25 1.000 1.251 1.000
0.5 1.000 1.386 1.000
0.75 1.000 1.463 0.999
1 1.000 1.551 1.000

16 γ = 0.75, π = −ιk, ρ = 0.5, ϑ = 9, µ = 1

0.25 1.000 0.437 0.953
0.5 1.000 0.501 0.952
0.75 1.000 0.567 0.947
1 1.000 0.636 0.946
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Table 3.3: Relative MSE of GMM estimator using one lag instrument (δ̂GMM,1), GMM

estimator by instrumenting all lags (δ̂GMM,2), and the averaging estimator (δ̂A), for T =
20, γ = 0.25, π = 0

Design c = kT
N δ̂GMM,1 δ̂GMM,2 δ̂A

17 γ = 0.25, π = 0, ρ = 0, ϑ = 3, µ = 0

0.25 1.000 1.023 0.998
0.5 1.000 1.074 0.997
0.75 1.000 1.109 0.995
1 1.000 1.105 0.992

18 γ = 0.25, π = 0, ρ = 0, ϑ = 3, µ = 1

0.25 1.000 0.956 0.974
0.5 1.000 0.996 0.981
0.75 1.000 1.009 0.974
1 1.000 1.029 0.984

19 γ = 0.25, π = 0, ρ = 0, ϑ = 9, µ = 0

0.25 1.000 1.003 0.996
0.5 1.000 1.011 0.995
0.75 1.000 0.995 0.989
1 1.000 0.996 0.988

20 γ = 0.25, π = 0, ρ = 0, ϑ = 9, µ = 1

0.25 1.000 0.972 0.985
0.5 1.000 0.971 0.982
0.75 1.000 0.971 0.977
1 1.000 0.989 0.977

21 γ = 0.25, π = 0, ρ = 0.5, ϑ = 3, µ = 0

0.25 1.000 1.023 0.997
0.5 1.000 1.051 0.995
0.75 1.000 1.074 0.991
1 1.000 1.092 0.990

22 γ = 0.25, π = 0, ρ = 0.5, ϑ = 3, µ = 1

0.25 1.000 0.961 0.972
0.5 1.000 0.999 0.974
0.75 1.000 1.011 0.969
1 1.000 1.048 0.980

23 γ = 0.25, π = 0, ρ = 0.5, ϑ = 9, µ = 0

0.25 1.000 0.988 0.994
0.5 1.000 0.987 0.990
0.75 1.000 0.982 0.986
1 1.000 0.997 0.980

24 γ = 0.25, π = 0, ρ = 0.5, ϑ = 9, µ = 1

0.25 1.000 0.949 0.977
0.5 1.000 0.960 0.975
0.75 1.000 0.985 0.976
1 1.000 0.937 0.963
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Table 3.4: Relative MSE of GMM estimator using one lag instrument (δ̂GMM,1), GMM

estimator by instrumenting all lags (δ̂GMM,2), and the averaging estimator (δ̂A), for T =
20, γ = 0.75, π = 0

Design c = kT
N δ̂GMM,1 δ̂GMM,2 δ̂A

25 γ = 0.75, π = 0, ρ = 0, ϑ = 3, µ = 0

0.25 1.000 1.166 1.000
0.5 1.000 1.226 0.999
0.75 1.000 1.299 0.999
1 1.000 1.332 0.998

26 γ = 0.75, π = 0, ρ = 0, ϑ = 3, µ = 1

0.25 1.000 1.096 1.000
0.5 1.000 1.191 0.999
0.75 1.000 1.263 0.998
1 1.000 1.243 0.998

27 γ = 0.75, π = 0, ρ = 0, ϑ = 9, µ = 0

0.25 1.000 1.654 1.000
0.5 1.000 2.000 1.000
0.75 1.000 2.303 1.000
1 1.000 2.320 1.000

28 γ = 0.75, π = 0, ρ = 0, ϑ = 9, µ = 1

0.25 1.000 1.414 1.000
0.5 1.000 1.693 1.000
0.75 1.000 1.858 1.000
1 1.000 1.884 1.000

29 γ = 0.75, π = 0, ρ = 0.5, ϑ = 3, µ = 0

0.25 1.000 1.045 0.998
0.5 1.000 1.085 0.997
0.75 1.000 1.071 0.995
1 1.000 1.043 0.992

30 γ = 0.75, π = 0, ρ = 0.5, ϑ = 3, µ = 1

0.25 1.000 1.028 0.994
0.5 1.000 1.029 0.988
0.75 1.000 1.045 0.989
1 1.000 1.008 0.977

31 γ = 0.75, π = 0, ρ = 0.5, ϑ = 9, µ = 0

0.25 1.000 1.235 1.000
0.5 1.000 1.362 0.999
0.75 1.000 1.476 1.000
1 1.000 1.530 1.000

32 γ = 0.75, π = 0, ρ = 0.5, ϑ = 9, µ = 1

0.25 1.000 1.167 1.000
0.5 1.000 1.280 0.998
0.75 1.000 1.352 0.999
1 1.000 1.356 1.001
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Chapter 4

A Modified Stein-Like Estimator

for Coefficients of A

Single-Equation In Simultaneous

Equations

4.1 Introduction

Simultaneous equations models (SEM) which arise from economic theory in terms of

operations of markets and the simultaneous determination of economic variables through

an equilibrium model, are one of the many developments in econometrics. The study

of estimating coefficients of a single equation in a complete system of simultaneous

structural equations has provided many estimation methods, including the ordinary least
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squares (OLS), the two-stage least squares (2SLS) and the limited information maximum

likelihood (LIML) which are the most commonly used ones. Because of the presence of

endogeneity in the model, the OLS estimator is biased and inconsistent, however, the

2SLS and LIML estimators under appropriate general conditions are consistent (see e.g.

Anderson and Rubin (1949)). Since these estimators are available, numerous articles have

focused on the finite-sample properties of these estimators and their modifications.

One direction of modifying these estimators in the hope that the modified estimation

method may improve the existing estimators, have been made by linearly combining these

estimators. Sawa (1973 a) and Sawa (1973 b) proposed a combined estimator, which is a

simple linear combination of the OLS and 2SLS estimators, to eliminate the bias of the 2SLS

estimator. The coefficients of this combined estimator depends on the sample size and the

numbers of included and excluded variables from the relevant equation, and the estimator

is unbiased to a certain order. Similarly, Morimune (1978) proposed a set of combined

estimators which are convex linear combinations of the LIML estimator and fixed k−class

estimators of Theil (1961). The aim of this method is eliminating the small-disturbance

asymptotic bias of the LIML estimator to construct improved estimators which are unbiased

to a certain order. Morimune showed the inadmissibility of the LIML estimator in terms

of asymptotic mean squared error, in other words, he showed that the combined estimators

dominate LIML (See also, Morimune and Kunitomo (1980) for the same method in the

problem of functional relationships). A comparison of the above modified estimators has

been given by Anderson et al. (1986).
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Another type of modified estimators considers a nonlinear function of the estimators.

Stein (1956) is the pioneer of this method. Stein showed that the maximum likelihood

estimator (MLE) for the mean of a multivariate normal distribution does not have

the smallest risk, in other words, MLE is inadmissible. Later on this issue,

James and Stein (1961) suggested a biased estimator which dominates the MLE estimator

in the sense that its risk is smaller than that of the former, provided at least three parameters

are to be estimated. In the context of a single equation estimation in a linear simultaneous

equations system, Zellner and Vandaele (1975) considered Stein-type estimators under a

general quadratic loss function and obtained the minimum risk estimator by applying 2SLS

method. However, the resulting estimator is unavailable in applications as it involves certain

unknown parameters. To face this issue, Ullah and Srivastava (1988) present a Stein-type

estimator and analyze its properties and conditions under which the resulting estimator

dominates the 2SLS estimator.

In reduced form estimation, Maasoumi (1978) constructed a modified Stein-like

estimator which is the weighted average of Least Squares (LS) and Three-Stage-Least-Squares

(3SLS) of the reduced form coefficients in a linear simultaneous equations system, in which

the weight depends on the inverse of an over-identification test statistic. Maasoumi shows

that this estimator has a few advantages over the LS and 3SLS estimators as it has finite

moments, thinner tails, and has the edge on the LS estimator as it is asymptotically

equivalent to the 3SLS estimator. Following Maasoumi (1978), in the context of single

equation instrumental variable models, Hansen (2017) constructs a Stein-like estimator

which is a weighted average of the OLS and 2SLS estimators for estimating the structural
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coefficients of the model. The weight is defined similar to Maasoumi (1978), while the

Wu-Hausman (1978) specification test statistic is used. Using asymptotic theory, Hansen

shows that the asymptotic risk of the combined estimator is strictly less than that of 2SLS

estimator when the number of included endogenous variables are more than 2.

For the purpose of comparing the estimators and the modified ones, there are several ways

in the literature. One approach is to derive the exact distributions of the estimators (see

e.g. Anderson and Sawa (1979) and Phillips (1984)). However, the analytical expressions

of the distributions are usually too complicated to permit meaningful general conclusion.

An alternative approach is to approximate each distribution by one or more terms in an

asymptotic expansion of the distribution. One term, most of the time, is not enough as it is

the common term between several estimators, but three terms serve to distinguish between

the estimators (See e.g. Rothenberg (1984)).

The asymptotic expansions have been derived on the basis of limits as an index tends

towards a value. In the large-sample theory, the number of observations increase without

bound. In this context, Nagar (1959) noted that k−class estimators in simultaneous

equations models can be expanded in formal series where the successive terms are increasing

powers of T 1/2, where T is the number of observation for each dependent variable. Nagar

calculated the moments of the truncated series by keeping the first few terms in the

expansion. These moments can be interpreted as the moments of a statistic which serves to

approximate the estimator, while Sargan (1974) showed that, under some conditions, these

moments can be interpreted as approximations to the actual moments of the estimator.

In the small-disturbance theory, initiated by Kadane (1971), it is suggested that it might
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be more natural to consider a sequence indexed by the error variance. In this analysis,

the reduced-form error-covariance matrix is written as σΩ, and while the sample size, and

the matrix Ω are held fixed, σ approaches zero. The large-sample and small-disturbance

theories can be related by the effect of them on the non-centrality parameter, which goes to

infinity in both cases while in the small-disturbance theory, the sample size stays constant,

however in the large-sample theory, the sample size and the non-centrality parameter both

go to infinity at the same speed (Anderson (1977)).

In this chapter, we propose two Stein-like estimators for coefficients of a single equation

in a complete system of simultaneous equations. The estimators are weighted averages of

the OLS and 2SLS (or LIML) estimators where the weights are inspired by the weights

in Hansen (2017). We study the bias and mean squared error (MSE) of the estimator

using small-disturbance theory of Kadane (1971) and show the conditions under which the

Stein-like estimators dominate the 2SLS and LIML estimators.

There are two related papers in the literature that similar to this chapter consider

combining the 2SLS and OLS estimators. The first one is Sawa (1973 a) which gives fixed

weights to the OLS and 2SLS estimators in order to create an unbiased estimator. The

wights are wS,OLS = −(K −N − 1)/(T −K) and wS,2SLS = (T −N − 1)/(T −K) where

N and K are the number of equations and the number of excluded regressor, respectively.

Sawa shows that the combined estimator is dominated by the 2SLS estimator in terms of

having smaller MSE when the condition (T−K−2)(K−N−7) ≤ 12 holds. Under the local

endogeneity assumption considered in this chapter, it is easy to show that Sawa’s combined

estimator is always dominated by the 2SLS estimator. Hence, the MSE of the combined
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estimator proposed by Sawa (1973 a) is strictly greater than the Stein-like estimator in

this chapter. The other related paper in the literature is Hansen (2017) which considers a

similar Stein-like estimator in IV regression models and derives the conditions for dominance

of the Stein-like estimator over the 2SLS estimator by minimizing the truncated asymptotic

weighted risk of the Stein-like estimator using asymptotic distributions of the estimators.

There are several limitations in Hansen (2017) which are not the case in this chapter. First,

the method considered in this studies the approximate moments, and distribution, however

the analysis in Hansen’s paper is dealing with asymptotically minimizing a truncated risk.

Second, Hansen (2017) minimizes a weighted risk where the weight matrix is set equal to

the inverse of the difference of the asymptotic variances of the 2SLS and OLS estimators

which might not be practical in most of the empirical applications. However, we derive

the MSE matrix which allows for deriving a weighted risk with any positive definite weight

matrix. Third, Hansen (2017) only considers shrinking the 2SLS toward the OLS estimator,

while, we consider two Stein-like estimators one shrinks 2SLS and the other shrinks the

LIML estimator. This is important as under weak instruments scenario the 2SLS estimator

is biased in the direction of the OLS estimator, while the LIML estimator needs weaker

conditions for the consistency.

Morimune (1978) similar to this chapter considers combining the LIML with the OLS

estimator. Morimune (1978) uses fixed weights with the purpose of removing the higher

order bias of the LIML estimator and shows that while Sawa (1973 a)’s combined estimator

is dominated by the 2SLS estimator, combining the LIML estimator with the OLS estimator

dominates the LIML estimator when K −N > 0 and T > K + 2. Although, the main goal
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of Morimune (1978) is different from this chapter, but comparing the MSEs of the two

estimators under the local endogeneity assumption shows that the Stein-like estimator in

this chapter significantly performs better than that of Morimune (1978)’s estimator when

the sample size is large enough 1.

The rest of this chapter is organized as follows. Section 4.2 describes the model and the

estimators. In sections 4.3 and 4.4, we give the estimators and their approximations using

Small-Disturbance theory. The approximate distributions, bias, and mean squared errors

of the estimators are given in section 4.5. Monte-Carlo results and Conclusions are given

in sections 4.6 and 4.7. Proofs and detailed calculations are listed in Appendix D.

4.2 The Model

Consider the following complete simultaneous equations model

YT×(N+1)B(N+1)×(N+1) +XT×KΓK×(N+1) = σUT×(N+1), (4.1)

where in the system above, there are N + 1 equations and N + 1 endogenous variables,

denoted by Y = (y1, y2, . . . , y(N+1)). There are K exogenous variables, X = (x1, x2, . . . , xK).

B is a nonsingular matrix of parameters with first column (−1, β′)′, where β is a N×1 vector

of unknown coefficients of interest in the first equation. Finally, U = (u1, u2, . . . , u(N+1))

are the structural disturbances. The subscript t is used to index observations, t = 1, . . . , T,

and σ is a (small) positive number.

1For example when T ≥ 2(K + 2)
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The first equation of the above system, by assuming for simplicity that it includes no

exogenous variables, may be written as

y1 = Y2β + σu1, (4.2)

where y1 is the first column of Y , and Y2 = (y2, . . . , y(N+1)) is T ×N , that contains the rest

of the columns of Y and is the included endogenous variables.

Assumption 4.1 The rows of U are independently normally distributed with mean zero and

variance-covariance matrix Σ, that is for all t and t′ in {1, . . . , T} and i and j ∈ {1, . . . , N},

E(uit) = 0,

Cov(uit, ujt′) =


σij if t = t′

0 otherwise (t 6= t′),

and σ11 = 1, or in matrix form

E(U) = 0
T×(N+1)

,

1

T
E(U ′U) = Σ

(N+1)×(N+1)
=



1 σ12 . . . σ1(N+1)

σ21 σ22 . . . σ2(N+1)

...

σ(N+1)1 σ(N+1)2 . . . σ(N+1)(N+1)


≡
[
σ1 . . . σN+1

]
.

We assume that B is nonsingular, hence the reduced form of the structural equation

(4.1) may be written as

Y = −XΓB−1 + σUB−1 ≡ XΠ + σV, (4.3)
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where Π = −ΓB−1 and V = UB−1 and ΠK×(N+1) =

[
π1
K×1

Π2
K×N

]
, and VT×(N+1) =[

v1
T×1

V2
T×N

]
.

Further, if we partition B−1 as

B−1 =

[
β̇(N+1)×1 Ḃ(N+1)×N

]
,

the reduced form system of equations above can be written in partition as below

y1 = −XΓβ̇ + σUβ̇ = Xπ1 + σv1, (4.4)

and

Y2 = −XΓḂ + σUḂ = XΠ2 + σV2 ≡W + σV2, (4.5)

where we define W = XΠ2.

Assumption 4.2 Identification: Rank(Π2) = N.

Assumption 4.2 is the rank condition which ensures the identification of the system.

The reduced form error is also normally distributed with

E(V ) = 0,

1

T
E(V ′V ) =

1

T
E(B

′−1U ′UB−1) = B
′−1ΣB−1 = Ω

(N+1)×(N+1)
≡


$11
1×1

$12
1×N

$21
N×1

Ω22
N×N

 .
Following Nagar (1959), we define Ψ′

N×T
= V ′2 − qu′1, where the normally distributed

matrix Ψ consists of residuals from the population regression of V2 on u1. Hence Ψ and u1

are uncorrelated by construction. Further,

q
N×1

=
Cov(V2, u1)

V ar(u1)
=

E(V ′2u1)

T
= Ḃ′σ1, (4.6)
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and define

C1
N×N

= qq′,

C2
N×N

=
E(Ψ′Ψ)

T
= Ḃ′ΣḂ − qq′,

(4.7)

so that it can be shown that Ω22 = C1 + C2.

4.3 Estimators

We consider three members of the k−class estimator of β, which are the OLS, 2SLS, and

LIML estimators, and respectively correspond to k equal to zero, one, and λ where λ is the

smallest root of the determinantal equation |Y ′Y − kY ′MXY | = 0, where MX = IT − PX

is the projection onto the space orthogonal to the columns of X, with PX = X(X ′X)−1X ′,

and IT is the identity matrix. Moreover, we consider two types of Stein-like estimators

which are a weighted average of the 2SLS and the OLS estimators, and a weighted average

of the LIML estimator and the OLS estimator.

4.3.1 k−Class Estimators

The k−class estimator is defined as

β̂(k) = (Y ′2HkY2)−1Y ′2Hky1 = β + σ(Y ′2HkY2)−1Y ′2Hku1, (4.8)

where Hk = IT − kMX .

4.3.2 Stein-Like Estimator

Following Maasoumi (1978) and Hansen (2017), we define the Stein-like estimators as the

weighted average of a first-order consistent k−class estimator (we consider 2SLS estimator
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with k = 1 and LIML with k = λ) with the OLS estimator (k = 0), where the weights

similar to Hansen (2017) are inversely related to the Wu-Hausman (1978) misspecification

test statistic. Hence, the Stein-like estimators are defined as

β̂c,k = ωkβ̂(0) + (1− ωk)β̂(k), for k = 1, λ (4.9)

where ωk = τ/Fk,WH , τ is a positive characterizing scalar which will be determined later,

and Fk,WH is the Wu-Hausman statistic test, defined as

Fk,WH =
(
β̂(k)− β̂(0)

)′
Rk
(
β̂(k)− β̂(0)

)
, (4.10)

and Rk is

Rk = σ2
(

(Y ′2HkY2)−1 − (Y ′2Y2)−1
)−1

. (4.11)

4.4 Small-Disturbance Asymptotic Expansions

We use Kadane (1971) small-disturbance method to derive the asymptotic expansions

of the estimators. Then, we report the bias and mean squared error matrix (MSEM) of the

estimators up to orders σ2 and σ4, respectively.
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4.4.1 k−class Estimators

Employing equation (4.5) in equation (4.8), we have

β̂(k)− β =
[(
W + σV2

)′
Hk

(
W + σV2

)]−1(
W + σV2

)′
Hkσu1

=
(
W ′HkW + σW ′HkV2 + σV ′2HkW + σ2V ′2HkV2

)−1(
σW ′Hku1 + σ2V ′2Hku1

)
=
(
IN + σQW ′HkV2 + σQV ′2HkW + σ2QV ′2HkV2

)−1
Q
(
σW ′Hku1 + σ2V ′2Hku1

)
=
(
IN + σQS + σ2QV ′2HkV2

)−1
Q
(
σW ′u1 + σ2V ′2Hku1

)
,

(4.12)

whereQN×N = (W ′W )−1, and S = V ′2W+W ′V2, and the use has been made ofW ′Hk = W ′.

Using the standard geometric expansion for the inverse of a matrix2, the above equation

may be written as

β̂(k)− β = σQW ′u1 + σ2Q
(
V ′2Hku1 − SQW ′u1

)
+ σ3Q

(
SQSQW ′u1 − V ′2HkV2QW

′u1 − SQV ′2Hku1

)
+Op(σ

4).

(4.13)

Theorem 4.3 Under assumptions 4.1 and 4.2, the bias of the k−class estimators up to

order σ2, is

E(β̂(k)− β) = σ2Qq(Lk − 1), for fixed k, (4.14)

E(β̂(λ)− β) = −σ2Qq, for LIML estimator, (4.15)

and the mean squared error matrix up to order σ4 is

E(β̂(k)− β)(β̂(k)− β)′ = σ2Q+ σ4
{

(3− 2Lk)tr(C1Q)Q+ tr(QC2)Q

+QC1Q((Lk − 2)2 + 2 + 2sk) +QC2Q(2 + sk − Lk)
}
,

(4.16)

2(I +A)−1 = I −A+A2 −A3 + . . .
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E(β̂(λ)− β)(β̂(λ)− β)′ = σ2Q+ σ4
{

3tr(C1Q)Q+ tr(QC2)Q

+ 6QC1Q+QC2Q[
(L1 + 2)(T −K + L1 − 2)

T −K − 2
]
}
,

(4.17)

where Lk = (1− k)T + kK −N and sk = k(k − 1)(T −K).

Proof: See Kadane (1971).

4.4.2 Stein-Like Estimator

In what follows from this section, we analyze the bias and MSE of the proposed Stein-like

estimators. We start by expanding Rk defined in equation (4.11).

Using equation (4.13), we have

(Y ′2HY2)−1 =
(
IN − σQS − σ2QV ′2HV2 + σ2QSQS + σ3QSQV ′2HV2 + σ3QV ′2HV2QS

)
Q+Op(σ

4),

(Y ′2Y2)−1 =
(
IN − σQS − σ2QV ′2V2 + σ2QSQS + σ3QSQV ′2V2 + σ3QV ′2V2QS

)
Q+Op(σ

4).

Hence the difference of the expressions above may be written as

(Y ′2HY2)−1 − (Y ′2Y2)−1 = σ2k
[
QV ′2MXV2Q− σQSQV ′2MXV2Q− σQV ′2MXV2QSQ

]
+Op(σ

4).

(4.18)

Further, by using equation (4.18) in equation (4.11),

Rk = σ2
(

(Y ′2HY2)−1 − (Y ′2Y2)−1
)−1

=
1

k
Q−1

[
IN − σ(V ′2MXV2)−1SQV ′2MXV2 − σQS +Op(σ

2)
]−1

(V ′2MXV2)−1Q−1

=
1

k
Q−1

[
(V ′2MXV2)−1 + σ(V ′2MXV2)−1SQ+ σQS(V ′2MXV2)−1 +Op(σ

2)
]
Q−1.

(4.19)
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In addition from equation (4.13), we have

β̂(0)− β̂(k) = kσ2
[
QV ′2MXu1 − σQV ′2MXV2QW

′u1 − σQSQV ′2MXu1

]
+Op(σ

4). (4.20)

Employing equations (4.19) and (4.20) in equation (4.10),

Fk,WH = k
[
u′1MXV2(V ′2MXV2)−1V ′2MXu1 − 2σu′1MXV2QW

′u1 +Op(σ
2)
]
. (4.21)

Therefore, we have the following expression

1

Fk,WH
=

1

ku′1MXV2(V ′2MXV2)−1V ′2MXu1

(
1 +

2σu′1MXV2QW
′u1

u′1MXV2(V ′2MXV2)−1V ′2MXu1
+Op(σ

2)
)
.

(4.22)

Using equations (4.13), and (4.22) in equation (4.9), we can write the Stein-like

estimators as

β̂c,k − β = (β̂(k)− β) +
τ

Fk,WH

(
(β̂(0)− β)− (β̂(k)− β)

)
= σQW ′u1 + σ2Q

(
V ′2Hku1 − SQW ′u1

)
+ σ3Q

(
SQSQW ′u1 − V ′2HkV2QW

′u1 − SQV ′2Hku1

)
+ τσ2 1

u′1MXV2(V ′2MXV2)−1V ′2MXu1

[
QV ′2MXu1 − σQV ′2MXV2QW

′u1 − σQSQV ′2MXu1

+
2σ

u′1MXV2(V ′2MXV2)−1V ′2MXu1
u′1MXV2QW

′u1QV
′

2MXu1

]
+Op(σ

4).

(4.23)

The above equation has the product of normally distributed and correlated terms in the

denominator, which make the moments calculations complicated. So, we make the following

local endogeneity assumption, and then revise the asymptotic expansion of the Stein-Like

estimator. We derive the bias and MSE of the estimator under this assumption in the next

section.

Assumption 4.4 Local Endogeneity: q = Cov(V2, u1)/T = σδ, where δN×1 ∈ RN 3.

3Note that the local Endogeneity assumption here is similar to the local asymptotic considered in
Hansen (2017), when σ is replaced by 1/

√
T
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Using Assumption 4.4, in equation (4.22), it is equal to the following expression

1

Fk,WH
=

1

k

1

u′1MXΨ(Ψ′MXΨ)−1Ψ′MXu1

[
1 + 2σu′1MXΨ(Ψ′MXΨ)−1δ

+
2σ

u′1MXΨ(Ψ′MXΨ)−1Ψ′MXu1

(
u′1MXΨQW ′u1 − u′1MXΨ(Ψ′MXΨ)−1δu′1MXu1

)]
+Op(σ

2).

(4.24)

Using equation (4.24) in the Stein-like estimator expression (equation (4.9)), we have

β̂c,k − β = (β̂(k)− β) +
τ

Fk,WH

(
(β̂(0)− β)− (β̂(k)− β)

)
= σQW ′u1 + σ2Q(Ψ′Hku1 − SΨQW

′u1)

+ σ3Q
[
qu′1Hku1 − (qu′1W +W ′u1q

′)QW ′u1 + SΨQSΨQW
′u1 −Ψ′HkΨQW

′u1 − SΨQΨ′2Hku1

]
+

τσ2

u′1MXΨ(Ψ′MXΨ)−1Ψ′MXu1

(1 + 2σu′1MXΨ(Ψ′MXΨ)−1δ
)
QΨ′MXu1 + σQqu′1Mxu1

− σQΨ′MXΨQW ′u1 − σQSΨQΨ′MXu1 +
2σ

u′1MXΨ(Ψ′MXΨ)−1Ψ′MXu1

(
u′1MXΨQW ′u1

− u′1MXΨ(Ψ′MXΨ)−1δu′1MXu1

)
QΨ′MXu1

+Op(σ
4).

(4.25)

We first derive the approximate distribution of the Stein-like estimator under Assumption

4.4 in the next section, then we give the bias and MSEM of the estimator.

4.5 The Approximate Distribution Functions of The

Estimators

In this section, the approximate density functions of the estimators are derived for the

statistics

êk =
1

σ
(β̂k − β), for k = 1, λ, (4.26)
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and

êc,k =
1

σ
(β̂c,k − β), for k = 1, λ, (4.27)

as σ goes to zero, where ê for the 2SLS, and LIML are denoted by ê1, êλ and for the

Stein-like estimators it is denoted by êc,k, k = 1, λ.

Theorem 4.5 Under assumptions 4.1–4.4, the asymptotic expansion of the density

function of ê1, and êλ as σ goes to zero is given by

f2SLS(ξ) = φQ(ξ)

1 + σ2δ′ξ
(
N + 1 + L1 − ξ′Q−1ξ

)
+
σ2

2

[
L1 tr(C2Q)

− ξ′C2ξ
(
N + 2 + L1 − ξ′Q−1ξ

)]+O(σ3),

(4.28)

fLIML(ξ) = φQ(ξ)

1 + σ2δ′ξ
(
N + 1− ξ′Q−1ξ

)
+
σ2

2

[
− L1(T −N)

T −K − 2
tr(C2Q)

− ξ′C2ξ
(
N + 2− L1(T +N)

T −K − 2
− ξ′Q−1ξ

)]+O(σ3),

(4.29)

where ξ is an N×1 vector and φQ(ξ) is the multivariate normal density function with mean

0 and covariance matrix Q.

Proof: See Anderson et al. (1986).

Theorem 4.6 Under assumptions 4.1–4.4, the asymptotic expansion of the density

functions of êc,k for k = 1, λ, as σ goes to zero are

fc,1(ξ) = f2SLS(ξ) + φQ(ξ)σ2τ

α1δ
′ξ +

1

2

[
ξ′C2ξ − tr(C2Q)

](
τα2 − 2α1

)+O(σ3),

(4.30)

fc,λ(ξ) = fLIML(ξ) + φQ(ξ)σ2τ

α1δ
′ξ +

1

2

[
ξ′C2ξ − tr(C2Q)

](
τα3 − 2α1

)+O(σ3),

(4.31)
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where α1 = (T−K)
N , α2 = (T−K)

N(N−2) , α3 = α2 + c, and c ∈
(
− (T − 2N)α2, 0

)
.

Proof: Appendix D,(See page 168).

In the next theorem, the first and the second moments of the Stein-like estimators based

on the approximate expansions of their distribution are given.

Theorem 4.7 Under assumptions 4.1–4.4, the approximate bias of the Stein-like estimator

β̂c,k for k = 1, λ as σ goes to zero is given by

ABias(β̂c,k) = E
( 1

σ
(β̂c,k − β)

)
= 0 +O(σ2), (4.32)

and the approximate MSEM is

AMSE(β̂c,1) = E
( 1

σ2
(β̂c,1 − β)(β̂c,1 − β)′

)
= AMSE(β̂(1)) + τσ2

[
τα2 − 2α1

]
QC2Q+O(σ3),

(4.33)

AMSE(β̂c,λ) = E
( 1

σ2
(β̂c,λ − β)(β̂c,λ − β)′

)
≤ AMSE(β̂(λ)) + τσ2

[
τα2 − 2α1

]
QC2Q+O(σ3),

(4.34)

where from Theorem 4.5 (or equation (4.28)), it can be derived that

AMSE(β̂(1)) = E
( 1

σ2
(β̂(1)− β)(β̂(1)− β)′

)
= Q+ σ2 tr(QC2)Q+ σ2QC2Q

(
2− L1

)
+O(σ3).

(4.35)

AMSE(β̂(λ)) = E
( 1

σ2
(β̂(λ)− β)(β̂λ − β)′

)
= Q+ σ2 tr(QC2)Q+ σ2QC2Q

(L1 + 2)(T −N − 2)

T −K − 2
+O(σ3).

(4.36)

Proof: Appendix D,(See page 171).
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Corollary 4.8 Under assumptions 4.1–4.4, we have

AMSE(β̂c,1)−AMSE(β̂(1)) = τσ2QC2Q
[
τα2 − 2α1

]
+O(σ3), (4.37)

AMSE(β̂c,λ)−AMSE(β̂(λ)) ≤ τσ2QC2Q
[
τα2 − 2α1

]
+O(σ3), (4.38)

where the right-hand side of the above equations are negative when N > 2 and

0 < τ < 2(N − 2).

Therefore, the Stein-like estimators dominate the 2SLS, and LIML estimators in terms of

their MSEs when the number of endogenous variables is more than 2. The optimal value of

the shrinkage parameter that minimizes the MSE of the Stein-like estimator is

τopt = N − 2.

As a comparison of the probability of concentration around the true β, we compute

P (||Q−1/2êc,k|| < z)− P (||Q−1/2êk|| < z) =

∫
· · ·
∫

||Q−1/2ξ||<z

(fc,k(ξ)− fk(ξ)) dξ, (4.39)

where ||ξ|| = max{|ξ1|, . . . , |ξN |}. Using Theorem 4.5 and Theorem 4.6 the next theorem

follows.

Theorem 4.9 Under assumptions 4.1–4.4,

P (||Q−1/2êc,1|| < z)− P (||Q−1/2ê1|| < z) = σ2[Φ(z)− Φ(−z)]Nzφ̃(z) tr(QC2)d+O(σ3),

(4.40)

P (||Q−1/2êc,λ|| < z)− P (||Q−1/2êλ|| < z) ≥ σ2[Φ(z)− Φ(−z)]Nzφ̃(z) tr(QC2)d+O(σ3),

(4.41)
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where φ̃(z) = φ(z)/[Φ(z) − Φ(−z)], d = τ(2α1 − τα2), and Φ(.) and φ(.) are, respectively,

the standard normal distribution and density functions.

Proof: Appendix D,(See page 172).

Corollary 4.10 Using theorem 4.9 , and provided 0 < τ < 2(N − 2), and N > 2, we have

P (||Q−1/2êc,k|| < z) ≥ P (||Q−1/2êk|| < z) +O(σ3), k = 1, λ, (4.42)

and the optimal value of τ that maximizes the concentration probability of the Stein-like

estimator is

τopt = N − 2.

4.6 Monte-Carlo Simulation

Our simulation experiment uses a design similar to that used by Hansen (2017), where

T ∈ {100, 200}, N ∈ {3, 5, 8}. The observations are generated by the process

y1 = Y2β + σu1,

Y2 = XΠ2 + V2,

where u1 has a standard normal distribution, V2 and X have a multivariate normal

distribution with mean zero, and variance-covariance matrix IN , and IK , respectively. We

set the correlation between u1 and the rows of V2 equal to ρ/
√
N, where ρ takes values on a

40-point grid on [0, 0.975]. We set β to zero, Π2 = cIm, where c =
√
R2/(1−R2), hence R2

is the reduced form population R2 for each endogenous variable. This is important because
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R2 measures the strength of the instrument. We consider two cases for the reduced form

population R2, which are {0.4, 0.8}.

The results of 1, 000 monte carlo simulations are given in Figures 4.1-4.6, where the

vertical axis measure the relative mean squared error of OLS, 2SLS/LIML, and Stein-like

estimators which is the mean squared errors of these estimators divided by the mean squared

error of 2SLS/LIML estimator, and the horizontal axis measures the degree of endogeneity

(ρ).

The monte carlo results support our theoretical findings of the previous sections. They

show that the relative mean squared errors of the Stein-like estimators for the whole

parameter space is below that of the 2SLS/LIML estimator. Further, the relative mean

squared errors of the Stein-like estimators are smaller than that of OLS estimator except

for very small size of endogeneity.

We note that when R2 is relatively small (weak instruments) the OLS estimator performs

better than the 2SLS/LIML estimator up to mild degrees of endogeneity. This is because

the 2SLS/LIML estimator has high dispersion, so that the OLS estimator has smaller mean

squared error. In this case, the Stein-like estimator tends to gain from the efficiency of the

OLS estimator by assigning a larger weight to this estimator, and prevails. However, when

R2 is relatively large the 2SLS/LIML estimator performs better that the OLS estimator

except for very small size of endogeneity, and the Stein-like estimator by giving more weight

to the 2SLS/LIML estimator dominates the OLS estimator. Moreover, when the number

of endogenous variables increases the OLS estimator gains from a higher efficiency and its

mean squared error remains less than the 2SLS/LIML estimator even when the degree of
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endogeneity is moderate. Similarly, the Stein-like estimator gains from the efficiency of the

OLS estimator. We also report the results of the pre-test estimator which tests the null of

endogeneity and assigns weight zero or one to the OLS or 2SLS/LIML estimator based on

the test results under 5% critical value. The mean squared error of the pre-test estimator

is small when the degree of endogeneity is small, but is very high for moderate degrees of

endogeneity.

In general, we find that the Stein-like estimators perform robustly well in simultaneous

equation models with various degrees of endogeneity. When there is a strong degree of

endogeneity or the sample size is large, the Stein-like estimators prevails. When there is a

relatively weak degree of endogeneity or weak instruments, the Stein-like estimators tend

to gain more from the efficiency of the OLS estimator by assigning a larger weight to this

estimator, and thus still remains one of the best choices.

4.7 Conclusion

In this chapter, we introduce two Stein-like estimators for estimating the structural

parameters of a Simultaneous Equations Model. The estimators are weighed averages

of the 2SLS/LIML and the OLS estimators where the weight is inversely related to a

Wu-Hausman test statistic. The approximate distribution, bias, and MSEM of the Stein-like

estimators using Small-Disturbance approximations of Kadane (1971) are derived. The

proposed method has several advantages relative to the existing methods. First, it allows

us to study the performance of the weighted averages of any k-class estimators with the

OLS estimator. This is important because under weak instruments the 2SLS estimator is
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biased towards the OLS estimator, and an alternative consistent estimator is required to

allow balancing between the bias and variance efficiency of the OLS estimator. Second,

the dominance and optimality of the Stein-like estimators proposed here are not limited

to a specific MSE and hold for any weighted quadratic loss function where the weight is

positive definite and symmetric. Lastly, the framework considered here allows for studying

the higher order terms, which is critical here because k-class estimators tend to have higher

order bias.
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R2 = 0.4 R2 = 0.8

R2 = 0.4 R2 = 0.8

Figure 4.1: Relative mean squared error of OLS, 2SLS, LIML, Stein estimators, and pre-test,
for T = 100, N = 3. The top two figures represent the Stein with 2SLS and OLS, and the
bottom ones represent the Stein with OLS and LIML. Note: the pre-test estimator uses the
Wu-Hausman test static under 5% critical value to choose between the estimators.
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R2 = 0.4 R2 = 0.8

R2 = 0.4 R2 = 0.8

Figure 4.2: Relative mean squared error of OLS, 2SLS, LIML, Stein estimators, and pre-test,
for T = 100, N = 5. The top two figures represent the Stein with 2SLS and OLS, and the
bottom ones represent the Stein with OLS and LIML.
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R2 = 0.4 R2 = 0.8

R2 = 0.4 R2 = 0.8

Figure 4.3: Relative mean squared error of OLS, 2SLS, LIML, Stein estimators, and pre-test,
for T = 100, N = 8. The top two figures represent the Stein with 2SLS and OLS, and the
bottom ones represent the Stein with OLS and LIML.
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R2 = 0.4 R2 = 0.8

R2 = 0.4 R2 = 0.8

Figure 4.4: Relative mean squared error of OLS, 2SLS, LIML, Stein estimators, and pre-test,
for T = 200, N = 3. The top two figures represent the Stein with 2SLS and OLS, and the
bottom ones represent the Stein with OLS and LIML.
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R2 = 0.4 R2 = 0.8

R2 = 0.4 R2 = 0.8

Figure 4.5: Relative mean squared error of OLS, 2SLS, LIML, Stein estimators, and pre-test,
for T = 200, N = 5. The top two figures represent the Stein with 2SLS and OLS, and the
bottom ones represent the Stein with OLS and LIML.
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R2 = 0.4 R2 = 0.8

R2 = 0.4 R2 = 0.8

Figure 4.6: Relative mean squared error of OLS, 2SLS, LIML, Stein estimators, and pre-test,
for T = 200, N = 8. The top two figures represent the Stein with 2SLS and OLS, and the
bottom ones represent the Stein with OLS and LIML.
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Chapter 5

Estimation and Identification of

Latent Group Structures in Panel

Data

5.1 Introduction

Panel data offer great opportunities in empirical research. Nevertheless, in practice, they

typically involve aggregate data from various units (such as workers, firms, countries) that

are different in some unobservable aspects to researchers. Accordingly, the researchers face

a trade-off between using flexible methods to model the unobservable heterogeneity, and

using pooled models that avoid the heterogeneity by assuming to some extent homogeneous

coefficients for all individual units. To overcome this challenge, recently, latent group

structures in panel data literature have received considerable attention. The most important
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advantage of the latent group structure is that unlike completely heterogenous or fully

homogenous models, it allows panel units to be classified into groups, where the individuals

within a group share the same slope parameters, while heterogeneity exists across the groups.

This chapter inspired by the literature introduces a simple and fast method to jointly identify

and estimate latent group structures in panel data models when the number of groups and

the individuals’ group identities are both unknown.

A common approach to model heterogeneity in econometric analysis is to assume

complete slope heterogeneity. This assumption avoids misspecification, but does

not gain from working with panel data, and could result in imprecise estimates

even if the time dimension is long (see, Baltagi and Griffin (1997)). Nonetheless,

conventional panel data models often avoid the heterogeneity and assume the regression

parameters are the same across individuals, and unobserved heterogeneity is modeled

through individual-specific effects (fixed effect and random effect models). This

assumption exploits cross-section averaging and causes higher efficiency, but at the

cost of estimation bias and inconsistency, which is supported by an increasing

number of studies due to a better forecast performance of the associated estimators

(see for example, Baltagi et al. (1989), Maddala (1991), Maddala and Hu (1996),

Baltagi and Griffin (1997), and Hoogstrate et al. (2000)). In spite of a better forecast

performance, it is often difficult to justify the slope homogeneity assumption in the

empirical work, as pointed out by Hsiao and Tahmiscioglu (1997), Phillips and Sul (2007),

Browning and Carro (2007), and Su and Chen (2013). This discussion motivated much

of the recent research on the latent group structures in panel data analysis including
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Sun (2005), Lin and Ng (2012), Deb and Trivedi (2013), Bonhomme and Manresa (2015),

Sarafidis and Weber (2015), Ando and Bai (2016), Bester and Hansen (2016),

Su et al. (2016), Lu and Su (2017), Su and Ju (2018), Wang et al. (2018), Su et al. (2019),

Gu and Volgushev (2019), Liu et al. (2020), and Wang and Su (2020), among others.

Moreover, the group structure has sound foundations in game theory or macroeconomic

models where multiplicity of Nash equilibria is expected (Hahn and Moon (2010)). The

latent group structure models partition individuals in different groups and allow the within

group individuals share common coefficients, while the groups are assumed to have slope

heterogeneity. Since the group membership and the number of groups are unknown in these

models, the determination of the true number of groups and each individual’s group identity

are the key questions. Several approaches have been proposed to address these questions.

Sun (2005), Kasahara and Shimotsu (2009), and Browning and Carro (2007) consider finite

mixture models. Su et al. (2016) develop a new variant of the Lasso (least absolute

shrinkage and selection operator) procedure, called classifier-Lasso (C-Lasso), to achieve

classification in panel structure models where the penalty takes an additive-multiplicative

form. The C-Lasso method of Su et al. (2016) has been extended to allow for two-way

component errors, interactive fixed effects, non-stationary regressors, and semi-parametric

specification, respectively, in Lu and Su (2017), Su and Ju (2018), Huang et al. (2020),

and Su et al. (2019). Lin and Ng (2012) and Sarafidis and Weber (2015) extend the

K-means algorithm to the panel regression framework with latent group structures,

but the asymptotic properties of the estimators and the procedures are not provided.

Bonhomme and Manresa (2015) and Ando and Bai (2016) modify the K-means algorithm
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to estimate the time-varying grouped patterns of heterogeneity and unobserved group

interactive fixed effects, respectively. Wang et al. (2018) extend the CARDS (clustering

algorithm in regression via data-driven segmentation) method of Ke et al. (2015) to

panel structure models where the latent group structures exist in vectors of slope

parameters. Recently, Liu et al. (2020) extend the modified K-means algorithm of

Bonhomme and Manresa (2015) to estimate and identify the latent group structures in

panel data. Wang and Su (2020) extend the sequential binary segmentation algorithm of

Bai (1997) for break detection from the time series setup to the panel data framework to

identify the latent group structures.

While these methods make important contributions by empirically estimating the group

identities, they face the following limitations. First, to implement them, one often needs to

determine the number of groups first. Consequently, the estimation error often accumulates

across the two steps and leads to suboptimal performance. Second, C-Lasso procedure of

Su et al. (2016) is not a convex problem1, requires the number of groups to be fixed, and

may leave some individuals unclassified. Third, K-means algorithm has been shown to

be NP-hard, can get trapped in suboptimal local minima, and is sensitive to the choice

of initial estimators. Fourth, the CARDS method of Wang et al. (2018) relies on the

specification of at least three tuning parameters, thus the consistency results are sensitive

to the choice of the tuning parameters. Fifth, Wang and Su (2020) and Wang et al. (2018)

rely on ordered segmentations to identifying the latent group structure and construct the

Lasso-type penalties, respectively, which are sensitive to the choice of initial estimators, and

often it may be difficult to construct one. The objective of this chapter is to provide a new

1However, the numerical solution can be transformed into a sequence of convex problems.
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framework free of the above limitations to jointly estimate and identify the latent group

structures without a priori knowledge of classification or a natural basis for separating slope

coefficients into groups.

Inspired by the adaptive group fused Lasso of Qian and Su (2016), and the pairwise

fusion concave penalty of Ma and Huang (2017), we propose a penalized procedure with

a pairwise fusion penalty to automatically estimate and identify homogenous groups

where both the number of groups and the individual group identities are unknown.

Our method and mainly our model is different from theirs in several important aspects.

Qian and Su (2016) consider estimation and inference of common structural breaks in panel

data models using an adaptive group fused Lasso. Their method cannot be used to classify

individuals into different groups because there is no natural ordering across individuals,

also a different algorithm to locate common individuals is required. Ma and Huang (2017)

consider the problem of identifying subgroups among observations, using a concave pairwise

fusion penalty. Clearly, their model is different from the model considered here to estimate

and identify the latent group structures. Besides, the penalty term in Ma and Huang (2017)

is imposed through concave penalties such as the SCAD (smoothly clipped absolute

deviations penalty) of Fan and Li (2001) and the MCP (minimax concave penalty) of

Zhang (2010), but our penalty is imposed through an adaptive group fused Lasso. The other

main difference of our penalty from theirs lies in two aspects: 1) we impose the penalty

on slope vector differences, whereas their method applies the penalty on the intercepts, 2)

we assign different weights {ẇij}, based on preliminary estimates of the slope parameters

to penalize different coefficient differences, however these weights are not feasible in their
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study. Since our proposed framework utilizes a pairwise adaptive group fused Lasso penalty,

we denote our estimation procedure as PAGFL. To implement our method, we derive an

ADMM (alternating direction method of multipliers) algorithm (Boyd et al. (2011)), and

show the convergence properties of our ADMM algorithm.

We develop two classes of estimators for panel structure models to estimate the slope

parameters: penalized least squares (PLS) and penalized generalized method of moments

(PGMM). The PLS can be applied to static or dynamic panel models without endogenous

regressors, while the PGMM is suitable for panel models with endogeneity or dynamic

structures. We show that the PLS method is an oracle procedure (using the language of

Fan and Li (2001)), in the sense that the PLS estimator classifies the right individuals in

the right groups (classification consistency), and asymptotically is equivalent to the oracle

estimator. The oracle estimator is obtained from least squares regression by assuming

that the true group structure is known. Similarly, our PGMM estimator satisfies the

classification consistency, but its oracle property does not hold generally. Our asymptotic

results hold under (N,T ) → ∞ jointly, but T can pass to infinity at a slower rate,

where T is the time series dimension, and N is the cross-section dimension. Moreover,

our proposed method, compared to the existing methods in the literature, has several

advantages in the following characteristics. First, the major contribution of our method is

that it asymptotically identifies the true structure while estimating the model parameters

consistently without relying on correct initial estimates of the number of groups. This

implies that our estimation and classification consistency results hold without relying on

correct estimation of the number of groups. It is of crucial importance, as in most empirical
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research the number of groups is often unknown to practitioners. Second, unlike the

K-means algorithm and C-Lasso method, our proposed approach allows the number of

groups and the number of individuals within each group to be either divergent or fixed.

This makes our method applicable to a large body of applications. Third, unlike K-means

algorithm and C-Lasso method, our method admits a simple and fast iterative algorithm

that is guaranteed to converge to the unique global minimizer. Therefore, the computation

burden of our approach is not as much as the K-means algorithm and the C-Lasso. Fourth,

unlike the CARDS method, our approach only requires a tuning parameter and does not

rely on the ordered segmentations. Fifth, our method continues to perform well even if the

number of groups is allowed to increase with the number of cross-sections, N .

The reminder of this chapter is organized as follows. Section 5.2 describes our fixed effect

panel model, PLS and PGMM estimation methods depending on whether the regressors are

endogenous. Sections 5.3 and 5.4 analyze the asymptotic properties of PLS and PGMM

estimators, respectively. Section 5.5 presents the computation and algorithm. Monte Carlo

results are given is section 5.6. In Section 5.7, we apply the estimators to a simple model

of inter-temporal dynamics of the unemployment rate in the U.S. states, and to forecasting

quarterly output growth rates across 33 countries using macro and financial variables.

Conclusions and final remarks are given is section 5.8. Proofs and detailed calculations

are listed in Appendices E–G.

A brief word on notation: For an m×n real matrix A, we write the transpose A′, the

Frobenius norm ‖A‖ = (tr(AA′))1/2. When A is symmetric, we use µmax(A) and µmin(A) to

denote the largest and smallest eigenvalues, respectively. Ip and 0p×1 denote p× p identity
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matrix and p× 1 vector of zeros. 1(.) denotes the indicator function and “p.d.” abbreviates

“positive definite”. The operators
p−→, D−→, and plim denote respectively, convergence in

probability, convergence in distribution, and probability limit. We use (N,T ) → ∞ to

signify that N and T pass jointly to infinity.

5.2 Model and Penalized Estimation

In this section, we consider a linear panel structure model with unknown group

membership.

5.2.1 The Model

Consider the following linear panel data model

yit = β0′
i xit + ηi + uit, i = 1, . . . , N, t = 1, . . . , T, (5.1)

where yit is the dependent variable, xit is a p×1 vector of regressors explaining yit, ηi is the

individual fixed effect that may be correlated with the regressors, uit is the idiosyncratic

error term with zero mean, T is the number of observations, and N is the number of

individual units. We assume that β0
i is a p × 1 vector of slope parameters that admits a

possible grouping structure of the form

β0
i =



α0
1, if i ∈ G0

1

...
...

α0
K0
, if i ∈ G0

K0
,

(5.2)
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where α0
l 6= α0

k for any l, k = 1, . . . ,K0, and l 6= k, and G = {G0
1, G

0
2, . . . , G

0
K0
} forms a

partition of {1, 2, . . . , N}. Let Nk be the number of individual units in G0
k, and the pK0× 1

matrix of α, and the pN × 1 matrix β be defined as

α = (α′1, α
′
2, . . . , α

′
K0

)′ and β = (β′1, β
′
2, . . . , β

′
N )′, (5.3)

where α0 and β0 denote the true values of α and β. In practice, the number of groups, K0,

is unknown. However, it is usually reasonable to assume that K0 is smaller than N . Our

goal is to estimate the regression coefficient α0 and identify the latent group structure.

We consider two cases about the exogeneity or endogeneity of the regressors:

(a) E (xisuit) = 0, for all 1 ≤ s ≤ t ≤ T ;

(b) E (xituit) 6= 0, for t = 1, . . . , T.

The first case occurs when the regressors are weakly exogenous and allows for lagged values

of yit to be included in xit, so that least squares criteria are appropriate. The second

case happens when the regressors contain either lagged dependent variables or endogenous

regressors that are correlated with the error term. In this case, we assume there exists a

q × 1 vector of instruments zit with q ≥ p.

Since the individual effects, ηi, are not of main interest, in case (a), we concentrate them

out and obtain the following equation

ỹit = β0′
i x̃it + ũit, i = 1, . . . , N, t = 1, . . . , T, (5.4)

where, e.g., x̃it = xit−T−1
∑T

t=1 xit. In case (b), to eliminate the effect of µi in the estimation

procedure, we consider the first-differenced equation

∆yit = β0′
i ∆xit + ∆uit, (5.5)
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where, e.g., ∆yit = yit − yi,t−1 for i = 1, . . . , N , and t = 1, ..., T, by assuming that we have

observations on yi0 and xi0.

5.2.2 Penalized Least Squares (PLS) Estimation

To estimate the model in (5.4) under case (a), we propose minimizing the following

objective function

Q1,NT (β, λ1) =
1

T

N∑
i=1

T∑
t=1

(ỹit − β′ix̃it)2 +
λ1

N

∑∑
1≤i<j≤N

ẇij‖βi − βj‖, (5.6)

where λ1 ≥ 0 is a tuning parameter, and ẇij is a data-driven weight defined by

ẇij = ‖β̇i − β̇j‖−κ, for i, j = 1, . . . , N, (5.7)

β̇i and β̇j are preliminary estimates of βi and βj , respectively, and κ is a user-specified

positive constant that usually takes value 2 in the literature of adaptive Lasso.

To obtain the adaptive weights {ẇij : i, j ∈ {1, . . . , N}}, we propose to obtain the

preliminary estimate β̇ by minimizing the first term in equation (5.6) which results in the

ordinary least squares. Thus for the i-th element of β̇, we have

β̇i =
( T∑
t=1

x̃itx̃
′
it

)−1
T∑
t=1

x̃itỹit. (5.8)

The objective function in (5.6) is related to the literature on adaptive Lasso (Zou (2006)),

group Lasso (Yuan and Lin (2006)), fused Lasso (Tibshirani et al. (2005)) and group fused

Lasso (Qian and Su (2016)). Qian and Su (2016) determine the unknown number of

structural breaks which is different from the purpose of this chapter. The other listed

papers above aim at determining the nonzero coefficients from the zero ones, and are not

applicable here because our aim is to determine the unknown group structure.
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It is worth emphasizing that minimization of (5.6) is a convex optimization problem,

and thus it does not suffer from the multiple local minima issue, and its global minimizer

can be efficiently solved. The penalty shrinks some of the pairs βi − βj to zero, so that

we can partition the slope parameters into groups. In practice, let λ̂1 be the value of the

tuning parameter that we select based on a variant of the Bayesian information criterion

(BIC), further let {α̂1, . . . , α̂K̂} be the distinct values of the PLS estimator β̂ ≡ β̂(λ̂1) =

arg minQ1,NT (β, λ̂1), then {Ĝ1, . . . , ĜK̂} forms a partition of {1, 2, . . . , N}, where Ĝk = {i :

β̂i = α̂k, 1 ≤ i ≤ N}, 1 ≤ k ≤ K̂.

5.2.3 Penalized GMM (PGMM) Estimation

In case (b), we propose to estimate β by minimizing the following objective function

Q2,NT (β, λ2) =

N∑
i=1

[ 1

T

T∑
t=1

zit(∆yit − β′i∆xit)
]′
Wi,NT

[ 1

T

T∑
t=1

zit(∆yit − β′i∆xit)
]

+
λ2

N

∑∑
1≤i<j≤N

ẅij‖βi − βj‖,
(5.9)

where λ2 ≥ 0 is a tuning parameter, Wi,NT is a q × q p.d. matrix, and ẅij is a data-driven

weight defined by

ẅij = ‖β̈i − β̈j‖−κ, for i, j = 1, . . . , N, (5.10)

β̈i and β̈j are preliminary estimates of βi and βj , respectively, and κ is a user-specified

positive constant that usually takes value 2 in the literature.
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To obtain the adaptive weights {ẅij : i, j ∈ {1, . . . , N}}, we propose to obtain the

preliminary estimate β̈ by minimizing the first term in equation (5.9). Thus, for the i-th

element of β̈, we have

β̈i =

[( 1

T

T∑
t=1

∆xitz
′
it

)
Wi,NT

( 1

T

T∑
t=1

zit∆x
′
it

)]−1( 1

T

T∑
t=1

∆xitz
′
it

)
Wi,NT

( 1

T

T∑
t=1

zit∆yit

)
.

(5.11)

The first term in the definition of the objective function in (5.9) is different from the

usual GMM objective function in the panel setting where only one weight matrix is needed

and the double summation
∑N

i=1

∑T
t=1 occurs twice, one before the weight and the other

after the weight matrix. The reason is that because the true group membership of individual

units is unknown, we cannot apply the usual GMM objective function here.

It is worth emphasizing that minimization of (5.9) is also a convex optimization problem,

hence it does not suffer from the multiple local minima issue, and its global minimizer can

be efficiently solved. The penalty shrinks some of the pairs βi − βj to zero, so that we

can partition the slope parameters into groups. In practice, let λ̃2 be the value of the

tanning parameter that we select based on a variant of BIC, further let {α̃1, . . . , α̃K̃} be

the distinct values of the penalized generalized method of moments (PGMM) estimator

β̃ ≡ β̃(λ̃2) = arg minQ2,NT (β, λ̃2), then {G̃1, . . . , G̃K̃} forms a partition of {1, 2, . . . , N},

where G̃k = {i : β̃i = α̃k, 1 ≤ i ≤ N}, 1 ≤ k ≤ K̃.

5.3 Asymptotic properties of the PLS estimators

In this section, we address the asymptotic properties of the PLS estimator and the

associated post-Lasso estimator.
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5.3.1 Assumptions

Let Q̂i,x̃x̃ = 1
T

∑T
t=1 x̃itx̃

′
it and Q̂i,x̃ũ = 1

T

∑T
t=1 x̃itũ

′
it , and define Jmin =

min1≤l&k≤K0 ‖α0
l − α0

k‖ which denotes the minimum degree of heterogeneity in the slope

coefficients between groups.

To study the asymptotic properties of the PLS estimator, denoted by β̂, we make the

following assumptions.

Assumption 5.1 (i) 1√
T

∑T
t=1 x̃itũit = Op(1) for each i = 1, . . . , N.

(ii) Q̂i,x̃x̃
P−→ Qi,x̃x̃ > 0 for each i = 1, . . . , N. There exists a positive constant

¯
cx̃x̃ such

that lim(N,T )→∞min1≤i≤N µmin(Q̂i,x̃x̃) ≥
¯
cx̃x̃.

(iii) 1
N

∑N
i=1 ‖Q̂i,x̃ũ‖2 = Op(T

−1).

(vi) Nk/N → τk ∈ [0, 1) for each k = 1, . . . ,K0 as N →∞.

Assumption 5.2 (i) T 1/2Jmin → cJ ∈ (0,∞] as (N,T )→∞.

(ii) plim(N,T )→∞NT
1/2λ1J

−κ
min = c ∈ [0,∞).

(iii) plim(N,T )→∞NkT
(κ+1)/2λ1/N =∞.

Assumption 5.3 (i) For each k = 1, . . . ,K0, Φ̄k ≡ 1
NkT

∑
i∈G0

k

∑T
t=1 x̃itx̃

′
it

P−→ Φk > 0

as (N,T )→∞.

(ii) For each k = 1, . . . ,K0,
1√
NkT

∑
i∈G0

k

∑T
t=1 x̃itũit − Bk,NT

D−→ N(0,Ψk) as (N,T ) →

∞, where Bk,NT = 1√
NkT

∑
i∈G0

k

∑T
t=1 E(x̃itũit) is either zero or of order O(

√
Nk/T )

depending on whether xit is strictly exogenous.
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Assumption 5.1(i) will be mostly satisfied in large dimensional panel data models with

weakly exogenous regressors and can be replaced with sufficient or primitive conditions on

the process {(xit, uit), t ≥ 1} that ensure the central limit theory. Note that this assumption

allows both conditional heteroscedasticity and serial correlation in {uit, t ≥ 1}. Also,

Assumption 5.1(iii) can be easily verified from this assumption. The first part of Assumption

5.1(ii) is standard in the literature, but the second one imposes restriction on the moments

of xit, the dependence structure on the regressors processes, and the relative rates at which

N and T pass to infinity. Su et al. (2016) give details on sufficient and primitive conditions

that ensure this assumption. Assumption 5.1(iv) implies that as N → ∞, the number of

individuals within each group can be either asymptotically non-negligible or tend to infinity

but at a rate slower than N . Assumption 5.2 mainly specifies conditions on Jmin, λ1, N,

and T. We use the probability limit in 5.2(ii)-(iii) because we allow λ1 to be data-driven and

hence random. We assume the minimum degree of heterogeneity size, Jmin, to shrink to zero

as T →∞, but at a rate slower than T−1/2. We make Assumption 5.3 to provide conditions

to ensure the asymptotic normality of the Lasso estimators, but it can be replaced with

various commonly primitive conditions.

5.3.2 Consistency

The following theorem establishes the consistency of β̂i for i = 1, . . . , N.

Theorem 5.4 Suppose that Assumption 5.1 holds. Then for i = 1, . . . , N,

(i) β̂i − β0
i = Op(T

−1/2),

(ii) 1
N

∑N
i=1 ‖β̂i − β0

i ‖2 = Op(T
−1).
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Proof: Appendix E, (See page 174).

Theorem 5.4 (i) and (ii), respectively, establish the pointwise and mean square

convergence rates of β̂i. Given the PLS estimate, β̂, we can obtain the estimated groups

by classifying individuals with the same coefficient estimate, β̂i, into the same group.

Let Ĝk, k = 1, . . . , K̂ denote the K̂ estimated groups. Let α̂k, k = 1, . . . , K̂ denote the

group-specific estimated slope coefficients. Then by definition:

Ĝk = {i ∈ 1, . . . , N : β̂i = α̂k}, for k = 1, . . . , K̂. (5.12)

The following theorem establishes the classification consistency.

Theorem 5.5 Suppose that Assumptions 5.1 and 5.2 hold. Then

P
(
‖β̂i − β̂j‖ = 0 for all i& j ∈ G0

k, k ∈ {1, . . . ,K0}
)
→ 1, as T →∞.

Proof: Appendix E, (See page 175).

Theorem 5.5 says that with probability approaching one all the zero vectors in {‖βi −

βj‖, 1 ≤ i, j ≤ N} must be estimated as exactly zero by the PLS method so that the

estimated number of groups cannot be large than K0 when T is sufficiently large. These

results together with the consistency results in Theorem 5.4 imply that the PAGFL has

the ability to identify the true group structure with the correct number of individual units

within each group consistently when the minimum group size Jmin does not shrink to zero

too fast.

Corollary 5.6 Suppose that Assumptions 5.1 and 5.2 hold with cJ = ∞ in assumption

5.2(i). Then
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i) limN→∞ P (K̂ = K0) = 1,

ii) limN→∞ P (Ĝ1 = G0
1, . . . , ĜK = G0

K) = 1.

Proof: Appendix E, (See page 177).

The above corollary implies that, as long as the minimum degree of heterogeneity, Jmin,

remains fixed or shrinks to zero at a rate slower than T−1/2 as T → ∞, we can determine

the correct number of groups.

5.3.3 Limiting Distribution and The Oracle Property of PLS

In this section we study the asymptotic distribution of the PLS and post-Lasso

estimators.

Note that if each individual’s group membership is known, the oracle estimator

is the within group estimator of α0
k which can be formulated as ᾱk =(∑

i∈G0
k

∑T
t=1 x̃itx̃

′
it

)−1∑
i∈G0

k

∑T
t=1 x̃itỹit. Also, note that under assumption 5.3,

√
NkT (ᾱk − α0

k)− Φ̄−1
k Bk,NT

D−→ N(0,Φ−1
k ΨkΦ

−1
k ).

The following theorem reports the limiting distribution of the PAGFL estimator, α̂k,

which is derived from the PLS estimates of β̂ after the classification.

Theorem 5.7 Suppose that Assumptions 5.1–5.3 hold with cJ = ∞ in assumption 5.2(i).

Then, conditional on K̂ = K0,

√
NkT (α̂k − α0

k)− Φ̄−1
k Bk,NT

D−→ N(0,Φ−1
k ΨkΦ

−1
k ), for k = 1, . . . ,K0.

Proof: Appendix E, (See page 177).
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Theorem 5.7 indicates that the PLS estimator of α̂k achieves the same limiting distribution

as the oracle within group estimator, therefore we say that the PLS estimator has the

asymptotic oracle property.

Given the fact that we estimate the group structure, we can define the post-Lasso

estimator of α̂k as

α̂Ĝk =
( ∑
i∈Ĝk

T∑
t=1

x̃itx̃
′
it

)−1 ∑
i∈Ĝk

T∑
t=1

x̃itỹit. (5.13)

The following theorem reports the asymptotic distribution of α̂Ĝk .

Theorem 5.8 Suppose that Assumptions 5.1–5.3 hold with cJ = ∞ in assumption 5.2(i).

Then, conditional on K̂ = K0,

√
NkT (α̂Ĝk − α

0
k)− Φ̄−1

k Bk,NT
D−→ N(0,Φ−1

k ΨkΦ
−1
k ), for k = 1, . . . ,K0.

Proof: Appendix E, (See page 178).

The above theorem holds using the classification consistency results in Theorem 5.5,

and says that the post-Lasso estimator has the asymptotic oracle property. Although, the

Lasso and post-Lasso estimators are asymptotically equivalent, it is well known that the

post-Lasso estimator typically performs better than the Lasso estimator in terms of faster

rates of convergency (see Belloni and Chernozhukov (2013)), thus it is recommended for

practical use. Moreover, Bk,NT is not equal to zero in case of dynamic panel data models,

in fact it is well known in the literature that the fixed effect estimator has asymptotically

bias of order O(1/T ). This suggests that in dynamic panel models Bk,NT = O(
√
Nk/T )

and bias correction is required, unless the rate at which T goes to infinity is faster than

that of Nk. There are various methods proposed in the literature to estimate the bias term
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such as Kiviet (1995), Hahn and Kuersteiner (2002), Phillips and Sul (2007), Lee (2012),

Gourieroux et al. (2010) and Han et al. (2014), among others, and we refer the readers to

these papers.

5.4 Asymptotic properties of the PGMM estimators

In this section we address the asymptotic properties of the PGMM estimator and the

associated post-Lasso estimator.

5.4.1 Assumptions

Let Q̃i,z∆x = 1
T

∑T
t=1 zit∆x

′
it, Q̃i,z∆y = 1

T

∑T
t=1 zit∆yit, Q̄i,z∆x = 1

T

∑T
t=1 E(zit∆x

′
it), and

Q̄i,z∆y = 1
T

∑T
t=1 E(zit∆yit). Let ξit = (∆yit, (∆xit)

′, z′it)
′, ρ(ξit, βi) = zit(∆yit−β′i∆xit), and

ρ̄i,T (βi) = 1√
T

∑T
t=1

[
ρ(ξit, βi)− E(ρ(ξit, βi))

]
. Also, for each group k = 1, . . . ,K0, let W

(k)
NT

be a d× d p.d. matrix, Q
(k)
z∆x,NT =

(
1

NkT

∑
i∈G0

k

∑T
t=1 zit(∆xit)

′
)
.

To study the asymptotic properties of the PGMM estimator, denoted by β̃, we make

the following assumptions.

Assumption 5.9 (i) E(ρ(ξit, β
0
i )) = 0, for each i = 1, . . . , N and t = 1, . . . , T.

(ii) supβi ‖ρ̄i,T (βi)‖ = Op(1), and 1
N

∑N
i=1 ‖ρ̄i,T (βi)‖2 = Op(1), for any βi and i =

1, . . . , N.

(iii) Q̃i,z∆x
P−→ Q̄i,z∆x > 0, for each i = 1, . . . , N. There exists a positive constant

¯
cQ̄ such

that lim(N,T )→∞min1≤i≤N µmin(Q̄′i,z∆xQ̄i,z∆x) =
¯
cQ̄.
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(iv) There exist non-random matrices Wi such that max1≤i≤N ‖Wi,NT −Wi‖ = op(1), and

lim inf(N,T )→∞min1≤i≤N µmin(Wi) =
¯
cW > 0.

(v) Nk/N → τk ∈ [0, 1), for each k = 1, . . . ,K0 as N →∞.

Assumption 5.10 (i) T 1/2Jmin → cJ ∈ (0,∞] as (N,T )→∞.

(ii) plim(N,T )→∞NT
1/2λ1J

−κ
min = c ∈ [0,∞).

(iii) plim(N,T )→∞NkT
(κ+1)/2λ2/N =∞.

Assumption 5.11 (i) For each k = 1, . . . ,K0, Φ̄k ≡ 1
Nk

∑
i∈G0

k
‖Q̃i,z∆x − Q̄i,z∆x‖2 =

op(1), and Wi,NT
p−→Wi > 0 for i ∈ G0

k.

(ii) For each k = 1, . . . ,K0, Āk ≡ 1
Nk

∑
i∈G0

k
Q̄′i,z∆xWi,NT Q̄i,z∆x → Ak > 0 as (N,T ) →

∞.

(iii) For each k = 1, . . . ,K0,
1√
NkT

∑
i∈G0

k
Q̃′i,z∆xWi,NT

∑T
t=1 zit∆uit − Bk,NT

D−→ N(0, Ck)

as (N,T )→∞.

Assumption 5.12 (i) For each k = 1, . . . ,K0, W
(k)
NT

p−→W (k) > 0 as (N,T )→∞.

(ii) Q
(k)
z∆x,NT

p−→ Q
(k)
z∆x which has rank p.

(iii) 1√
NkT

∑
i∈G0

k

∑T
t=1 zit∆uit

D−→ N(0, Vk).

Assumption 5.9 (i) specifies moment conditions to identify β0
i . 5.9 (ii) is needed as we

do not specify the data structure. 5.9 (iii) together with 5.9 (i) provide a rank condition for

the identification. 5.12 is a standard assumption in GMM estimation literature. The rest

of the assumptions parallel Assumptions 5.1–5.3.
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5.4.2 Consistency

The following theorem establishes the consistency of the PGMM estimator, β̃i for i =

1, . . . , N.

Theorem 5.13 Suppose that Assumption 5.9 holds. Then

(i) β̃i − β0
i = Op(T

−1/2) for i = 1, . . . , N,

(ii) 1
N

∑N
i=1 ‖β̃i − β0

i ‖2 = Op(T
−1).

Proof: Appendix F, (See page 180).

Theorem 5.13 (i) and (ii), respectively, establish the pointwise and mean square

convergence rates of {β̃i : i = 1, . . . , N}. Given the PGMM estimates, β̃, we can obtain

the estimated groups by classifying individuals with the same coefficient estimate β̃i into

the same group. Let Ĝk, k = 1, . . . , K̃ denote the K̃ estimated groups. Let α̃k, k = 1, . . . , K̃

denote the group-specific estimated slope coefficients. Then, by definition:

G̃k = {i ∈ 1, . . . , N : β̃i = α̃k}, for k = 1, . . . , K̃. (5.14)

The following theorem establishes the classification consistency.

Theorem 5.14 Suppose Assumptions 5.9 and 5.10 hold. Then

P
(
‖β̃i − β̃j‖ = 0 for all i& j ∈ G0

k, k ∈ {1, . . . ,K0}
)
→ 1, as T →∞.

Proof: Appendix F, (See page 181).

Theorem 5.14 says that with probability approaching one all the zero vectors in {‖βi −

βj‖, 1 ≤ i, j ≤ N} must be estimated as exactly zero by the PGMM method so that the
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estimated number of groups cannot be different from K0 when T is sufficiently large. These

results together with the consistency results in Theorem 5.13 imply that the PAGFL has

the ability to identify the true group structure with the correct number of individual units

within each group consistently when the minimum degree of heterogeneity, Jmin, does not

shrink to zero too fast.

Corollary 5.15 Suppose that Assumptions 5.9 and 5.10 hold with cJ =∞ in Assumption

5.10(i). Then

(i) limN→∞ P (K̃ = K0) = 1,

(ii) limN→∞ P (G̃1 = G0
1, . . . , G̃K = G0

K) = 1.

Proof: Appendix F, (See page 183).

The above corollary implies that, as long as Jmin remains fixed or shrinks to zero at a rate

slower than T−1/2 as T →∞, we can determine the correct number of groups.

5.4.3 Limiting Distribution of PGMM

In this section we study the asymptotic distribution of the PGMM and post-Lasso

estimators.

Note that if each individual’s group membership is known, the oracle estimator is the

solution to a usual GMM objective function which can be formulated as below

ᾰk =

[
Q

(k)′

z∆x,NTW
(k)
NTQ

(k)
z∆x,NT

]−1

Q
(k)′

z∆x,NTW
(k)
NTQ

(k)
z∆y,NT , (5.15)

where Q
(k)
z∆x,NT =

(
1

NkT

∑
i∈G0

k

∑T
t=1 zit(∆xit)

′
)
, Q

(k)
z∆y,NT =

(
1

NkT

∑
i∈G0

k

∑T
t=1 zit(∆yit)

)
and W

(k)
NT is a q × q symmetric p.d. matrix for each k = 1, . . . ,K0. Apparently, the
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PGMM estimator does not have the same asymptotic distribution under general conditions.

However, under the further assumptions that for each i ∈ G0
k, Wi,NT = W

(k)
NT , Q̄i,z∆x =

Q
(k)
z∆x,NT , and Bk,NT = 0 the PGMM estimator will have the oracle property.

The following theorem reports the limiting distribution of the PAGFL estimator, α̃k,

which is derived from the PGMM estimates, β̃, after the classification.

Theorem 5.16 Suppose Assumptions 5.9–5.11 hold with cJ = ∞ in assumption 5.10(i).

Then, conditional on K̃ = K0,

√
NkT (α̃k − α0

k)− Ā−1
k Bk,NT

D−→ N(0, A−1
k CkA

−1
k ), for k = 1, . . . ,K0.

Proof: Appendix F, (See page 183).

Given the fact that we estimate the grouping structure, we can define the post-Lasso

estimator of α̃k as

α̃G̃k =
(
Q̃

(k)′

z∆xW
(k)
NT Q̃

(k)
z∆x

)−1
Q̃

(k)′

z∆xW
(k)
NT Q̃

(k)
z∆y, (5.16)

where Q̃
(k)
z∆x = 1

Nk

∑
i∈G̃k Q̃i,z∆x and Q̃

(k)
z∆y = 1

Nk

∑
i∈G̃k Q̃i,z∆y. The following theorem

reports the asymptotic distribution of α̃G̃k .

Theorem 5.17 Suppose Assumptions 5.9–5.12 hold with cJ = ∞ in assumption 5.10(i).

Then, conditional on K̃ = K0,

√
NkT (α̃G̃k − α

0
k)

D−→ N(0,Ωk), for k = 1, . . . ,K0,

where Ωk =
[
Q

(k)′

z∆xW
(k)Q

(k)
z∆x

]−1
Q

(k)′

z∆xW
(k)VkW

(k)Q
(k)
z∆x

[
Q

(k)′

z∆xW
(k)Q

(k)
z∆x

]−1
.

Proof: Appendix F, (See page 184).
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The above theorem says that the post-Lasso GMM estimator α̃G̃k asymptotically has the

same limiting distribution as the infeasible estimator ᾰk, which further indicates that the

post-lasso GMM estimator has the oracle property.

5.5 Computation and Algorithm

The objective functions in (5.6) and (5.9) are not separable in βi, which makes it difficult

to compute the estimates directly. Thus, we define a new set of parameters δij = βi − βj

and reparameterize the criterion functions separately for PLS and PGMM and describe the

implementation below.

5.5.1 PLS Computation

Reparametrizing the objective function in (5.6), is equivalent to the constraint

optimization problem below

minS1(β, δ) =
1

2

N∑
i=1

T∑
t=1

(ỹit − β′ix̃it)2 + λ1

∑∑
1≤i<j≤N

ẇij‖δij‖,

subject to βi − βj − δij = 0,

where δ = {δij , i < j}′. By the augmented Lagrangian method, the estimates of the

parameters can be obtained by minimizing

L1(β, δ,ν) = S1(β, δ) +
∑∑

1≤i<j≤N
ν ′ij(βi − βj − δij) +

ϑ

2

∑∑
1≤i<j≤N

‖βi − βj − δij‖2,

where ν = {ν ′ij , i < j}′ are lagrange multipliers and ϑ is the penalty parameter. Therefore,

we can obtain the estimates of (β, δ,ν) through iterations by the ADMM.
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The minimizer of L1(β, δ,ν) with respect to δij , for given (β,ν), has a closed form

solution and is unique. In practice, for given (β,ν), the minimization problem with respect

to δij is equivalent to the following minimization

min
ϑ

2

∑∑
1≤i<j≤N

‖ζij − δij‖2 + λ1

∑∑
1≤i<j≤N

ẇij‖δij‖,

where ζij = βi − βj + ϑ−1νij . Thus, the closed form solution is

δ̂ij = ST (ζij , λ1/ϑ), (5.17)

where ST (a, b) = (1−b/‖a‖)+ a is the groupwise soft thresholds rule, and (c)+ = 1(c > 0)c.

Implementation

In this part, we describe the computational algorithm for minimizing the objective

function in (5.6) using the ADMM. The iteration process consists of updating β, δ and

ν iteratively. For a given (δ,ν), we obtain the updates of β by setting the derivative

∂L1(β, δ,ν)/∂β to zero, where

L1(β, δ,ν) =
1

2
‖ỹ − X̃β‖2 +

ϑ

2
‖Λβ − δ + ϑ−1ν‖2 + C,

and C is a constant independent of β, ỹ = (ỹ′1, . . . , ỹ
′
N )′, ỹi = (ỹi1, . . . , ỹiT )′ for each

i = 1, . . . , N, X̃ = diag(X̃1, . . . , X̃N ), X̃i = (x̃i1, . . . , x̃iT )′ for each i = 1, . . . , N. Besides,

Λ = ∇ ⊗ Ip, where ∇ = {(ei − ej), 1 ≤ i < j ≤ N}′ and ei is an N × 1 vector whose

ith element is one and the remaining ones are zero. We track the progress of the ADMM

based on the primal residual at step m, r(m) = Λβ(m)− δ(m), and stop the algorithm when

‖r(m)‖ < ε. The algorithm can be summarized in below:

PLS Algorithm:

112



1. Initialization: Find initial estimates of β
(0)
i by minimizing the first term of (5.6) for

all i = 1, . . . , N. Let the initial values of ν(0) = 0, and δ
(0)
ij = β

(0)
i − β

(0)
j .

2. Iterations: At iteration m ≥ 1, for given δ(m−1) and ν(m−1),

(a) update β(m) which is the minimizer of L1(β, δ(m),ν(m)) as below

β(m) =
[
X̃ ′X̃ + ϑΛ′Λ

]−1[
X̃ ′ỹ + ϑΛ′

(
δ(m−1) − ϑ−1ν(m−1)

)]
;

(b) update the value of δij at the (m)th iteration by (5.17), after replacing

ζij = β
(m)
i − β(m)

j + ϑ−1ν
(m−1)
ij ;

(c) update the value νij by

ν
(m)
ij = ν

(m−1)
ij + ϑ(β

(m)
i − β(m)

j − δ(m)
ij );

(d) terminate the algorithm if the stopping rule ‖r(m)‖ < ε is met at step m. Then,

(β(m), δ(m),ν(m)) are the PAGFL estimates (β̂, δ̂, ν̂).

Proposition 5.18 The primal residual r(m) = Λβ(m) − δ(m) and the dual residual s(m) =

ϑΛ(β(m) − β(m−1)) of the ADMM satisfy the following conditions:

i) limm→∞ ‖r(m)‖2 = 0,

ii) limm→∞ ‖s(m)‖2 = 0.

Proof: Appendix G, (See page 185).

Proposition 5.18 shows that both the primal and dual feasibility are achieved by the

algorithm. Further, as the objective function in (5.6) is convex, therefore the algorithm

converges to an optimal point.
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5.5.2 PGMM Computation

Similarly, by reparametrizing the objective function in (5.9), the minimization is

equivalent to the constraint optimization problem below

minS2(β, δ) =
1

2

N∑
i=1

[ 1

T

T∑
t=1

zit(∆yit − β′i∆xit)
]′
Wi,NT

[ 1

T

T∑
t=1

zit(∆yit − β′i∆xit)
]

+ λ2

∑∑
1≤i<j≤N

ẅij‖δij‖, subject to βi − βj − δij = 0,

where δ = {δij , i < j}′. By the augmented Lagrangian method, the estimates of the

parameters can be obtained by minimizing

L2(β, δ,ν) = S2(β, δ) +
∑∑

1≤i<j≤N
ν ′ij(βi − βj − δij) +

ϑ

2

∑∑
1≤i<j≤N

‖βi − βj − δij‖2,

where ν = {ν ′ij , i < j}′ are lagrange multipliers and ϑ is the penalty parameter. Therefore,

we can obtain the estimates of (β, δ,ν) through iterations by the ADMM.

The minimizer of L2(β, δ,ν) with respect to δij , for given (β,ν), has a closed form

solution and is unique. In practice, for given (β,ν), the minimizer problem with respect to

δij is equivalent to the following minimization

ϑ

2

∑∑
1≤i<j≤N

‖ζij − δij‖2 + λ1

∑∑
1≤i<j≤N

ẅij‖δij‖,

where ζij = βi − βj + ϑ−1νij . Thus, the closed form solution is

δ̃ij = ST (ζij , λ1/ϑ). (5.18)

Implementation

Now, we describe the computational algorithm for minimizing the objective function in

(5.9) using the ADMM. The iteration process consists of updating β, δ and ν iteratively.
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For a given (δ,ν), we obtain the updates of β by setting the derivative ∂L2(β, δ,ν)/∂β to

zero, where

L2(β, δ,ν) =
1

2
(∆y −∆Xβ)′Z ′WZ(∆y −∆Xβ) +

ϑ

2
‖Λβ − δ + ϑ−1ν‖2 + C,

where C is a constant independent of β, ∆y = (∆y′1, . . . ,∆y
′
N )′, ∆yi = (∆yi1, . . . ,∆yiT )′,

Z = diag(Z1, . . . , ZN ), Zi = (zi1, . . . , ziT )′, ∆X = diag(∆X1, . . . ,∆XN ), ∆Xi =

(∆xi1, . . . ,∆xiT )′ for each i = 1, . . . , N, and W = diag(W1,NT , . . . ,WN,NT ). Similarly,

we track the progress of the ADMM based on the primal residual at step m, r(m) =

Λβ(m) − δ(m), and stop the algorithm when ‖r(m)‖ < ε. The algorithm can be summarized

in below:

PGMM Algorithm:

1. Initialization: Find initial estimates of β
(0)
i by minimizing the first term of (5.9) for

all i = 1, . . . , N. Let the initial values of ν(0) = 0, and δ
(0)
ij = β

(0)
i − β

(0)
j .

2. Iterations: At iteration m ≥ 1, for given δ(m−1) and ν(m−1),

(a) update β(m) which is the minimizer of L2(β, δ(m),ν(m)) as below

β(m) =
[
∆X ′Z ′WZ∆X+ϑΛ′Λ

]−1[
∆X ′Z ′WZ∆y+ϑΛ′

(
δ(m−1)−ϑ−1ν(m−1)

)]
;

(b) update the value of δij at the (m)th iteration by (5.18), after replacing

ζij = β
(m)
i − β(m)

j + ϑ−1ν
(m−1)
ij ;

(c) update the value νij by

ν
(m)
ij = ν

(m−1)
ij + ϑ(β

(m)
i − β(m)

j − δ(m)
ij );
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(d) terminate the algorithm if the stopping rule ‖r(m)‖ < ε is met at step m. Then,

(β(m), δ(m),ν(m)) are the PAGFL estimates (β̃, δ̃, ν̃).

Proposition 5.19 The primal residual r(m) = Λβ(m) − δ(m) and the dual residual s(m) =

ϑΛ(β(m+1) − β(m)) of the ADMM satisfy the following conditions:

i) limm→∞ ‖r(m)‖2 = 0,

ii) limm→∞ ‖s(m)‖2 = 0.

Proof: Appendix G, (See page 187).

Proposition 5.19 shows that both the primal and dual feasibility are achieved by the

algorithm. Further, as the objective function in (5.9) is convex, therefore the algorithm

converges to an optimal point.

5.6 Monte Carlo Simulation

In this section, we investigate the finite sample properties of the PAGFL and associated

post-Lasso estimators. We consider two similar data generating processes (DGP) to

Su et al. (2016) that cover static and dynamic panels. The fixed effects and the idiosyncratic

errors follow the standard normal distribution and are mutually independent across i and

t for both DGPs. The observations in each DGP are drawn from three groups with the

proportion N1/N = 0.4, N2/N = 0.3 and N3/N = 0.3. We consider all combinations of

(N,T ) with N = (100, 200) and T = (40, 80).
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1. DGP 1 (Static panel with two exogenous regressors): The regressors

(xit,1, xit,2)′ are generated as xit,1 = 0.2ηi + eit,1 and xit,2 = 0.2ηi + eit,2 where eit,1

and eit,2 are both i.i.dN(0, 1) and mutually independent. yit is then generated from

the panel structure model (5.1). The true coefficients are

(α0
1, α

0
2, α

0
3) =


0.4

1.6

 ,

1

1

 ,

1.6

0.4


. (5.19)

2. DGP 2 (Dynamic Panel AR(1) with two exogenous regressors): The model

is generated from the following equation

yit = β0
i1yi,t−1 + β0

i2xit,1 + β0
i3xit,2 + ηi(1− β0

i1) + uit, (5.20)

where the exogenous regressors xit,1 and xit,2 follow the standard normal distributions,

mutually independent, and are independent of the error term. To make each

individual’s time series strictly stationary with mean ηi, the initial values take the

form yi0 = β0
i2xit,1 + β0

i3xit,2 + ηi + ui0. The true coefficients are

(α0
1, α

0
2, α

0
3) =




0.8

0.4

0.4

 ,


0.6

1

1

 ,


0.4

1.6

1.6


. (5.21)

We use the modified BIC (Wang et al. (2009)) for high-dimensional data settings to select

the tanning parameters, λ1 and λ2, by minimizing

BIC(λj) = Qj,NT (β̂(λj)) + CNT
log(NT )

NT
(pK̂(λj)), for j = 1, 2, (5.22)

with respect to λj , where CNT is a positive number that can depend on the number

of observations. Wang et al. (2009) used CNT = log(log(d)) where d is the number of
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predictors in their simulations and diverges with the sample size. Our findings indicate that

this specific choice of CNT is too small for the latent group specification. We experimented

different alternatives, and found that CNT = 0.05
√
NT, works fairly well. Further, we use

a fixed value for ϑ in the ADMM algorithm.

As the goal of this chapter is to consistently identify the group memberships, and

estimate the regression coefficients and the number of groups, we report and compare

the finite sample performance of our proposed estimation methods with the C-Lasso of

Su et al. (2016) by considering the following three criteria:

(i) Estimation Consistency: We report the Root Mean Squared Errors (RMSE) which is

defined as

RMSE =

√√√√ 1

N

N∑
i=1

‖β̂i − β0
i ‖2. (5.23)

(ii) Consistency of K̂ : We report the selection consistency as the empirical percentage

of selecting the true number of groups. For example in our simulation designs we

measure the percentage of the number of time K̂ = K0 = 3.

(iii) Classification Consistency: We measure the percentage of correct classification of the

group membership of individuals, by calculating
∑N

i=1 1(ĝi = g0
i ), where g0

i denotes

the true group membership of individual i, and ĝi denotes the estimated one.

The simulation results of DGPs 1–2 for 200 monte carlo simulations are presented in

Table 5.1–5.3. The summary of the simulation results is as below.
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1. Table 5.1 provides the RMSE of the proposed PAGFL2, and compare it with C-Lasso

of Su et al. (2016). We observe that the RMSE of all of the estimators decreases as

the sample size increases while at the same time the RMSE our estimator is slightly

smaller than the others.

2. Table 5.2 summarizes the empirical probability that a particular group size from 1

to 5 is selected using our approach. From Table 5.2, we can observe that in both

designs, the PAGFL performance is fairly well and when the sample size is large

enough PAGFL always chooses the correct the number of groups.

3. Table 5.3 reports the classification consistency. As expected, when the sample size

is large enough and the difference between the slope parameters across the groups is

relatively large, classification of PAGFL is accurate.

4. Finally, the PAGFL unlike C-Lasso does not rely on a prior specification of the group

numbers, and at the same time performs comparably better than the other methods.

In conclusion, we can claim that the simulation results confirm our theoretical findings of

the previous sections regarding estimation and identification of latent structure.

5.7 Illustrations

We now illustrate the PAGFL estimation and identification in two empirical applications.

2The PLS estimator for DGP2 is bias-corrected by using the Split-panel jackknife method of
Dhaene and Jochmans (2015).
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5.7.1 Unemployment Dynamics at the U.S. State Level

In this application, we apply the PAGFL estimation and identification procedures to a

model of unemployment dynamics at the U.S. state level. Bun and Carree (2005) studied

this subject using a dynamic panel data model that relates each of the states’ current

unemployment rate (Uit) to the unemployment rate and economic growth rate (Git) in the

previous year. In addition to capture state specific effects, their model includes both state

individual intercepts ηi, and time effect θt. Their model can be written as below

Uit = γUi,t−1 + βGi,t−1 + ηi + θt + εit, (5.24)

or equivalently

Uit − Ui,t−1 = (γ − 1)(Ui,t−1 − αi) + β(Gi,t−1 − δ) + θt + εit, (5.25)

where (1− γ)αi − βδ = ηi. The model in (5.25) shows that changes in unemployment rate

are determined by two observable components: first, the adjustment of the unemployment

rate toward a “natural” or “equilibrium” rate of unemployment, αi, which is allowed to

vary across states, second, the deviation of the economic growth rate around a constant

equilibrium. In addition, in the model above, 1− γ denotes the speed of adjustment of the

unemployment rate toward the “natural” or “equilibrium” rate, further it is expected to

have β < 0 because a state that has relatively high economic growth is more likely to have

reduced unemployment rates compared with states in which the economy is growing more

slowly.

The model above imposes the assumption of heterogeneous “intercepts” and

homogeneous “slope coefficients” across states, and as pointed out by Campello et al. (2019),
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estimation methods of such models can result in severely biased parameters and incorrect

inferences. To avoid this issue, alternatively, we consider the following latent group structure

model

Uit = γgiUi,t−1 + βgiGi,t−1 + ηi + εit, (5.26)

where gi denotes group membership of state i. The model above equivalently can be written

as

Uit − Ui,t−1 = (γgi − 1)(Ui,t−1 − αi) + βgi(Gi,t−1 − δgi) + εit. (5.27)

The data for the unemployment rate are taken from the U.S. Bureau of Labor Statistics

for the 1976–2019 period, and the data for the state gross product are per capita personal

income (thousands of dollars) which are obtained from the U.S. Bureau of Economic

Analysis deflated by annual implicit price deflator. The economic growth rate is taken

to be the relative growth of the state product. Therefore, in our application N = 51, all

U.S. states and Washington, DC, and T = 43 because year 1976 is taken as the starting

observation.

The PAGFL divides the states in three groups, where the group memberships are

presented in Figure 5.1. Table 5.4 reports the estimated coefficient estimates based on full

sample and three groups with their corresponding standard deviations. All the estimated

coefficients of γ are highly significant among the four models under 1% level. The value

of γ in full sample and group 1 are almost the same and equal to 0.8, which implies an

adjustment rate of around 20% per year. The adjustment rate in group 3 is smaller around

14% and that of group 2 is faster around 28%. The value of the full sample estimate of β
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equals -0.261, whereas the value of the estimate in group 1 and group 2 are −0.716, and

−0.567 and all are significant under 1% level. This implies a somewhat stronger effect of

economic growth on the change in unemployment than other states in group 3.

5.7.2 Forecasting Output Growth of 33 Countries

In this section, we present an empirical application that highlights the utility of

PAGFL in forecasting. In particular, we forecast the output growth rate of a large

number of countries in the global economy using a set of macroeconomic and financial

variables by allowing latent group structures in the slope coefficients. This allows us to

aggregate the countries with close response variables which can improve the forecasts. As

pointed out by Pesaran et al. (2009) this is an important issue that practitioners face when

constructing forecasting models which is still an open discussion. We consider a panel data

model with latent group structures which adds to the current and ongoing literature of

forecasting economic and financial variables across countries including Dees et al. (2007,a),

Dees et al. (2007,b), and Pesaran et al. (2009), among others.

The data set is taken from the Global VAR (GVAR) dataset3. We use quarterly

macroeconomic and financial variables including log real GDP (yit), the rate of inflation

(πit), short-term interest rate (rit), long-term interest rate (lrit), and log real equity prices

(qit) for N = 33 economies from 1979Q2 to 2016Q4.

We are interested in forecasting h quarters ahead rate of log real GDP, with the predictors

in zit = (∆yi,t−1,∆ri,t−∆πit,∆lri,t−∆rit,∆qi,t−∆πit) and z∗it = (∆y∗i,t,∆r
∗
i,t−∆π∗it,∆lr

∗
i,t−

∆r∗it,∆q
∗
i,t −∆π∗it), where z∗it is the country-specific foreign variables. The foreign variables

3The data is available at the GVAR Toolbox webpage: https://sites.google.com/site/gvarmodelling/data.
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are constructed using rolling three year moving averages of the annual trade weights which

are computed as shares of exports and imports for each country 4.

Therefore, we consider the following equation

∆hyi,t+h = ηi,h + β′i,hxit + uit, i = 1, . . . , N, and t = 1, . . . , T, (5.28)

where ∆hyi,t+h = yi,t+h − yit for the forecast horizon h, xit = (zit, z
∗
it) and the slope

parameters, βi,h, admit a possible grouping structure of the form (5.2). We estimate and

identify the slope parameters and the underlying group structure using the PAGFL method

developed in the previous sections. In our analysis, we consider up to h = 4 (four quarters

ahead) and report results for one quarter ahead (h = 1) and one year ahead (h = 4). The

forecasts are constructed using both rolling windows and expanding windows of 15 years

time periods, or T = 60 for the rolling window, which leaves us with the last H1 = 83

out-of-sample evaluation periods, 1996Q2-2016Q4 for h = 1, and H2 = 79 out-of-sample

evaluation periods, 1997Q2-2016Q4 for h = 4.

In addition, to allow for possible structural breaks, following the suggestion of

Pesaran and Timmermann (2007) and Pesaran and Pick (2011), we repeat the above

forecasting process by changing the estimation window. Specifically, the start date of

the estimation sample is moved forward by one quarter till the observations left for the

estimation is at least twice the number of regressors, and the process of out-of-sample

forecasting is repeated as before. This estimation process is repeated for each of the three

models. Thus, for each model, and for each out-of-sample forecast date, there are T −2p+1

windows yielding a total of T − 2p + 1 forecasts to be averaged. We denote the average

4For example the trade weights of year 2016 is based on the average trade flows computed over the three
years 2013–2015. Because the trade flows observations start at 1980, the process of computing time-varying
trade weights was initialized by using the same set of weights for the first four years of the sample period.
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forecast from a particular model estimated over different estimation windows by “Average

Windows”.

We evaluate the forecasting performance of our method, with individual equations

forecasts, and a fixed effect approach using the root mean squared forecast error (RMSFE)

of any given model, which is averaged across the N countries as below

RMSFE(h,H) =

√√√√ 1

N

N∑
i=1

1

Hh

T+Hh−1∑
t=T

ê2
it(h), h = 1, 4, (5.29)

where êit(h) = ∆hyi,t+h − ∆̂hyi,t+h|t is the h−quarter ahead forecast error, with ∆hyi,t+h

being the actual value, and ∆̂hyi,t+h|t the corresponding forecast formed at time t. RMSFE

and relative RMSFE statistics for the one-quarter and one-year ahead forecasts of output

growth rate are reported in Table 5.5 and Table 5.6.

Diebold and Mariano (1995) (DM) test statistics for testing H0 : E
(
ẑit,m(h)

)
= 0,

where ẑit,m(h) = ê2
it,PAGFL(h) − ê2

it,m(h) is the difference between the h−quarter ahead

squared forecasting errors of our PAGFL method and method m (fixed effect or individual

equations models) for country i. Specifically, by assuming serially uncorrelated h-step-ahead

forecasting errors, we have

DMi,m(h) =
√
Hh

¯̂zi,m(h)

σ̂i,m(h)
, i = 1, . . . , N, and h = 1, 4, (5.30)

where ¯̂zi,m(h) = 1
Hh

∑T+Hh
t=T+1 ẑit,m(h) is the sample mean of ẑit,m(h), and

σ̂2
i,m(h) =

1

Hh − 1

T+Hh∑
t=T+1

(
ẑit,m(h)− ¯̂zit,m(h)

)2
. (5.31)

To compare the forecasts across the countries, we compute the panel version of the DM

test which is proposed in Pesaran et al. (2009) to statistically test the panel forecasts across

countries against each method for a given forecast horizon. The panel DM (DM) statistic
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under assuming serially and cross-sectionally uncorrelated h-step-ahead forecasting errors

is defined as

DMm =
z̄m(h)√
V
(
z̄m(h)

) , h = 1, 4, (5.32)

where z̄m(h) = 1
N

∑N
i=1

¯̂zi,m(h) and V
(
z̄m(h)

)
= 1

NT

(
1
N

∑N
i=1 σ̂

2
i,m(h)

)
. The panel DM

test results are reported in Table 5.7 and Table 5.8 for one-quarter and one-year ahead

forecasts.

We note that one quarter ahead PAGFL forecasts perform better than the fixed effects

and individual estimators in all cases and the panel DM tests are significant. For the

one-year ahead forecasts, under expanding windows, PAGFL outperforms the other two

methods, however, under the rolling windows, the difference between PAGFL method and

individual estimators is very small but both perform better than fixed effects. It is worth

mentioning that we examined whether there exist obvious structural breaks by employing

the recently developed break detection method by Baltagi et al. (2016) that allows for

heterogeneous slope coefficients. Although, it did not detect any structural breaks, the

performances of the forecasts under average windows are better than using the full sample.

5.8 Conclusion

The present chapter suggests a simple and computationally efficient way to jointly

estimate and identify latent group structures in panel data, by developing pairwise fusion

penalized least squares (PLS) and GMM (PGMM) methods. We develop theoretical results

on consistent group structure estimation and discuss the asymptotic properties of the
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estimators. The PLS estimator asymptotically achieves the oracle property, but the PGMM

oracle property is confined to some restrictive assumptions. Monte Carlo simulations are

conducted to examine the finite sample properties of the proposed method which show

that the approach has good finite-sample performance. Our first empirical application on

the unemployment dynamics in the U.S. state level finds strong evidence that the slope

coefficients are heterogenous and can be conveniently classified into three distinct groups.

In addition, our second application in forecasting output growth of 33 countries using

macroeconomic and financial variables shows that our PAGFL framework outperforms other

candidate methods.

There are several directions that we plan to explore in the future. First, our model

is focused on linear panels, and it can be extended to include both linear and nonlinear

models. Second, our method can be extended to non-stationary panels where panel unit

and cointegrating relationships may possess latent group structures. Third, it may be

appealing to consider a model with interactive fixed effects. Lastly, our approach can be

applied to extend the panel data quantile regression of Gu and Volgushev (2019) to allow

for latent group structure in the slope coefficients.
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Table 5.1: RMSE of DGP1 and DGP2

N T PAGFL Post-Lasso C-Lasso Oracle

DGP 1 100 40 0.086 0.083 0.091 0.040

100 80 0.027 0.026 0.028 0.026

200 40 0.064 0.061 0.088 0.026

200 80 0.024 0.021 0.023 0.020

DGP 2 100 40 0.043 0.041 0.051 0.032

100 80 0.018 0.015 0.029 0.010

200 40 0.031 0.030 0.036 0.021

200 80 0.014 0.014 0.022 0.010

Table 5.2: Frequency of Selecting K = 1, . . . , 5 Groups when K0 = 3

DGP 1 DGP 2

N T 1 2 3 4 ≥ 5 1 2 3 4 ≥ 5

100 40 0 0 0.995 0.005 0 0 0 0.998 0.002 0

100 80 0 0 1 0 0 0 0 1 0 0

200 40 0 0 1 0 0 0 0 1 0 0

200 80 0 0 1 0 0 0 0 1 0 0
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Table 5.3: Percentage of Correct Classification

DGP 1 DGP 2

N T PAGFL C-Lasso PAGFL C-Lasso

100 40 0.991 0.870 0.997 0.921

100 80 1.000 0.995 1.000 0.997

200 40 0.987 0.975 0.990 0.988

200 80 1.000 1.000 1.000 1.000

Table 5.4: Estimation results of the Unemployment-Growth Model

PAGFL

Full Sample Group 1 Group 2 Group 3

γ̂ 0.800∗∗∗ 0.796∗∗∗ 0.720∗∗∗ 0.852∗∗∗

(0.020) (0.032) (0.030) (0.035)

β̂ −0.261∗∗∗ −0.716∗∗∗ −0.567∗∗∗ 0.028∗

(0.011) (0.018) (0.017) (0.019)

Note: ∗∗∗ 1% significant, ∗ 10% significant.
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Table 5.5: RMSFE performance of the PAGFL, individual estimators, and fixed effect
methods for one quarter ahead output growth forecasts across 33 countries over the period
1969Q2-2016Q4)

Full Sample Average Windows

Models RMSFE Relative RMSFE Relative

(×100) RMSFE (×100) RMSFE

Rolling Window

PAGFL 0.856 0.947 0.839 0.932

Fixed Effects 0.871 0.964 0.852 0.946

Individual Est. 0.904 1.000 0.900 1.000

Expanding Window

PAGFL 0.870 0.947 0.863 0.945

Fixed Effects 0.888 0.967 0.879 0.963

Individual Est. 0.919 1.000 0.913 1.000

Note: RMSFE is computed using both a rolling and an expanding forecasting scheme with

an initial window of 60 observations. To consider potential structural breaks, we average the

forecasts across different estimation windows, the results are presented under the “Average

Windows” columns.
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Figure 5.1: Group Membership of States
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Table 5.6: RMSFE performance of the PAGFL, individual estimators, and fixed effect
methods for one year (four quarters) ahead output growth forecasts across 33 countries
over the period 1997Q2-2016Q4)

Full Sample Average Windows

Models RMSFE Relative RMSFE Relative

(×100) RMSFE (×100) RMSFE

Rolling Window

PAGFL 1.987 1.019 1.702 1.016

Fixed Effects 2.107 1.081 1.928 1.151

Individual Est. 1.950 1.000 1.675 1.000

Expanding Window

PAGFL 2.105 0.997 2.030 0.998

Fixed Effects 2.203 1.044 2.167 1.065

Individual Est. 2.110 1.000 2.034 1.000

Note: RMSFE is computed using both a rolling and an expanding forecasting scheme with

an initial window of 60 observations. To consider potential structural breaks, we average the

forecasts across different estimation windows, the results are presented under the “Average

Windows” columns.

Table 5.7: Panel DM statistics for one quarter ahead PAGFL forecasts of real output
growth over the period 1969Q2-2016Q4 relative to fixed effects and individual estimators
as benchmarks.

Benchmark Models Full Sample Average Windows

Rolling Window

Fixed Effects −4.337∗∗∗ −3.339∗∗∗

Individual Est. −1.974∗∗ −2.229∗∗

Expanding Window

Fixed Effects −5.861∗∗∗ −5.389∗∗∗

Individual Est. −2.356∗∗∗ −2.019∗∗

Note: The results represent a one sided test, thus the 1% (∗∗∗) and 5% (∗∗) critical values

are -2.326 and -1.645, respectively. A positive value of the panel DM statistic represents

evidence against the PAGFL forecasts.
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Table 5.8: Panel DM statistics for one year (four quarters) ahead PAGFL forecasts of
real output growth over the period 1997Q2-2016Q4 relative to fixed effects and individual
estimators as benchmarks.

Benchmark Models Full Sample Average Windows

Rolling Window

Fixed Effects −2.759∗∗∗ −4.421∗∗∗

Individual Est. 3.167 2.678

Expanding Window

Fixed Effects −3.260∗∗∗ −3.072∗∗∗

Individual Est. −0.835 −0.531

Note: The results represent a one sided test, thus the 1% (∗∗∗) and 5% (∗∗) critical values

are -2.326 and -1.645, respectively. A positive value of the panel DM statistic represents

evidence against the PAGFL forecasts.
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Chapter 6

Conclusions

This dissertation contributes to the estimation and inference of panel data and system of

equations under model uncertainty. Several types of model uncertainty is considered which

consist of : (1) uncertainty about a set of restrictions on the slope parameters in panel

data or seemingly unrelated regressions, (2) uncertainty from choosing different number of

lagged dependent variables as instruments in dynamic panel data models, (3) uncertainty

about the magnitude of endogeneity in simultaneous equations models or instrumental

variable regressions, (4) uncertainty resulting from unobserved heterogeneity in panel data

models. The asymptotic properties of the proposed estimators of slope parameters are

established. For each model, various Monte Carlo experiments are done to show the

good finite sample performance of the proposed estimators. In empirical applications,

the methods are employed to show how the methods perform in dealing with economic

applications.
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In the future research, there are several directions that I plan to explore my research to

investigate empirical economic problems. First, I plan to extend the method developed in

chapter 5 to other econometric models such as non-stationary panels, panel models with

latent structures in both slope parameters and interactive fixed effects, and panel threshold

models. Second, I plan to extend the shrinkage and model averaging methods devolved in

the other chapters to multi-period forecasting of vector auto-regressions, panel data models

with multi-factor error structures, and spatial models.
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A

Appendix A

The lemmas in Appendix A are used without special comments in the proofs of theorems

in the next appendices.

Lemma A.1 Let B1 and B2 be arbitrary T × T matrices. Let the T × 1 random vector ε

be such that ε ∼ N(0, σ2IT ), then the following results hold:

E
[
(ε′B1ε)(ε

′B2ε)
]

= σ4
[

tr(B1) tr(B2) + tr(B1B2) + tr(B1B
′
2)
]
;

E
[
εε′B1εε

′
]

= σ4
[

tr(B1)IT +B1 +B′1

]
;

E(εε′Aεε′Bεε′) = σ6

[[
tr(B1) tr(B2) + tr(B1B2) + tr(B1B

′
2)
]
IT

+ tr(B1)B2 + tr(B1)B′2 + tr(B2)B1 + tr(B2)B′1

+B1B2 +B′1B2 +B1B
′
2 +B′1B

′
2 +B2B1 +B′2B1 +B2B

′
1 +B′2B

′
1

]
,

Proof: see Ullah (2004).

�
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Lemma A.2 Let A be a square constant matrix, and Ψ is T × N where its rows are

independently normally distributes as N(0, C2). Then,

i) E(Ψ′AΨ) = tr(A)C2

ii) E(ΨAΨ′) = tr(C2B)IT

iii) E(ΨAΨ) = A′C2

Proof: See Kadane (1971), Lemmas B1-B3. �

Lemma A.3 Let the J × 1 vector ν is distributed normally with mean vector θ and

covariance matrix IJ , and A is any J × J idempotent matrix. Also assume φ(.) is a Borel

measurable function. Then

E
[
φ(ν ′Aν)ν

]
= E

[
φ(χ2

r+2(θ′Aθ/2))
]
Aθ + E

[
φ(χ2

r(θ
′Aθ/2))

](
IJ −A

)
θ,

where r = rank(A) = tr(A).

Proof: Let P be an orthogonal matrix such that

PAP ′ = D =



d1 0 . . . 0

0 d2

...

0 . . . 0 dJ


=

Ir 0

0 0J−r

 ; di ∈ {0, 1}.

Define the J × 1 vector ω = (ω1, . . . , ωJ)′ = Pν, which has a N(Pθ, IJ) distribution.

Therefore

E
[
φ(ν ′Aν)ν

]
= E

[
φ(ω′Dω)P ′ω

]
= P ′ E

[
φ(ω′Dω)ω

]
.

145



Note that

E
[
φ(ω′Dω)ω

]
=

E
[
E[φ
(
d1ω

2
1 +

J∑
j=2

djω
2
j

)
ω1|ωj , j 6= 1]

]
,

. . . ,E
[
E[φ
(
dJω

2
J +

J−1∑
j=1

djω
2
j

)
ωJ |ωj , j 6= J ]

]′.
We now derive the expectation of the ith elements of the above equation,

E
[
φ(ω′Dω)ωi

]
= p′iθE

E
[
φ
(
diχ

2
3((p′iθ)

2/2) +
∑
j 6=i

ω2
jdj

)
|ωj , j 6= i

]

=


p′iθE

[
φ(χ2

r+2(θ′Aθ/2))
]
, if di = 1

p′iθE
[
φ(χ2

r(θ
′Aθ/2))

]
, if di = 0

where the first equality holds by Lemma 1 of Appendix B.1 Judge and Bock (1978). Hence,

E
[
φ(ν ′Aν)ν

]
= P ′ E

[
φ(ω′Dω)ω

]
= P ′DPθE

[
φ(χ2

r+2(θ′Aθ/2))
]

+ P ′(I −D)PθE
[
φ(χ2

r(θ
′Aθ/2))

]
= AθE

[
φ(χ2

r+2(θ′Aθ/2))
]

+ (I −A)θE
[
φ(χ2

r(θ
′Aθ/2))

]
,

which completes the proof. �

Lemma A.4 Let the J × 1 vector ν is distributed normally with mean vector θ and

covariance matrix IJ , and A is any J × J idempotent matrix. Also assume φ(.) is a Borel

measurable function. Then

E
[
φ(ν ′Aν)νν ′

]
= E

[
φ(χ2

r+2(θ′Aθ/2))
]
A+ E

[
φ(χ2

r(θ
′Aθ/2))

](
IJ −A

)
+ E

[
φ(χ2

r+4(θ′Aθ/2))
]
Aθθ′A+ E

[
φ(χ2

r(θ
′Aθ/2))

](
IJ −A

)
θθ′
(
IJ −A

)
+ E

[
φ(χ2

r+2(θ′Aθ/2))
](
θθ′A+Aθθ′ − 2Aθθ′A

)
,

where r = rank(A) = tr(A).
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Proof: Let P be an orthogonal matrix such that

PAP ′ = D =



d1 0 . . . 0

0 d2

...

0 . . . 0 dJ


=

Ir 0

0 0J−r

 ; di ∈ {0, 1}.

Define the J × 1 vector ω = (ω1, . . . , ωJ)′ = Pν, which has a N(Pθ, IJ) distribution.

Therefore

E
[
φ(ν ′Aν)νν ′

]
= E

[
φ(ω′Dω)P ′ωω′P

]
= P ′ E

[
φ(ω′Dω)ωω′

]
P.

We first determine the diagonal and off-diagonal elements of E[φ(ω′Dω)ωω′]. The diagonal

elements are of the form

E
[
φ
( J∑
j=1

djω
2
j

)
ω2
i

]
= E

E
[
φ
(
diω

2
i +

∑
j 6=i

ω2
j

)
ω2
i |ω2

j , j 6= i

]
= E

E
[
φ
(
diχ

2
3((P ′iθ)

2/2) +
∑
j 6=i

ω2
j

)
|ω2
j , j 6= i

]
+ (P ′iθ)

2 E

E
[
φ
(
diχ

2
5((P ′iθ)

2/2) +
∑
j 6=i

ω2
j

)
|ω2
j , j 6= i

]

=


E
[
φ(χ2

r+2(θ′Aθ/2)] + (P ′iθ)
2 E[φ(χ2

r+4(θ′Aθ/2)
]
, if di = 1

E
[
φ(χ2

r(θ
′Aθ/2)] + (P ′iθ)

2 E[φ(χ2
r(θ
′Aθ/2)

]
, if di = 0

where the second equality holds by Lemma 1 of Appendix B.1 Judge and Bock (1978).

Hence, the matrix form of the diagonal elements can be written as

DE
[
φ(χ2

r+2(θ′Aθ/2))
]

+ E
[
φ(χ2

r+4(θ′Aθ/2))
]
diag(DPθθ′P ′D)

+ (IJ −D)E
[
φ(χ2

r(θ
′Aθ/2))

]
+ E

[
φ(χ2

r(θ
′Aθ/2))

]
diag((IJ −D)Pθθ′P ′(IJ −D)).
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For any i 6= j, the off-diagonal element is as follows

E
[
φ
( J∑
k=1

dkω
2
k

)
ωiωj

]
= E

ωj E [φ(diω2
i +

∑
k 6=i

dkω
2
k

)
ωi|ωk, k 6= i

]
= E

ωjP ′iθE [φ(diχ2
3((P ′iθ)

2/2) +
∑
k 6=i

dkω
2
k

)
|ωk, k 6= i

]
= E

ωjP ′iθi E [φ(diχ2
3((P ′iθ)

2/2) + djω
2
j +

∑
k 6=i&j

dkω
2
k

)
|χ2

3((P ′iθ)
2/2), ωk, k 6= i&j

]
= P ′iθP

′
jθE

[
φ
(
diχ

2
3((P ′iθ)

2/2) + djχ
2
3((P ′jθ)

2/2) +
∑
k 6=i&j

dkω
2
k

)]

= P ′iθP
′
jθ



E[φ(χr+4(θ′Aθ/2))], if di = dj = 1

E[φ(χr+2(θ′Aθ/2))], if di = 1 and dj = 0

E[φ(χr(θ
′Aθ/2))], if di = dj = 0

where the second equality holds by lemma 2 of Appendix B.1 Judge and Bock (1978). Hence,

the off-diagonal matrix can be written as

E
[
φ(χ2

r+4(θ′Aθ/2))
]
(DPθθ′P ′D − diag(DPθθ′P ′D))

+ E
[
φ(χ2

r(θ
′Aθ/2))

]
((IJ −D)Pθθ′P ′(IJ −D)− diag((IJ −D)Pθθ′P ′(IJ −D)))

+ E
[
φ(χ2

r+2(θ′Aθ/2))
]
(Pθθ′P ′ −DPθθ′P ′D − (IJ −D)Pθθ′P ′(IJ −D)).

Therefore, combining the diagonal and off-diagonal components, completes the proof. �

Lemma A.5 Let χ2
α(λ) denote a non-central chi-square random variable with noncentrally

parameter λ and α degree of freedom. Also let α denote a positive integer such that α > 2p.

Then

E
[(
χ2
α(λ)

)−p]
= 2−p e−λ

Γ(α2 − p)
Γ(α2 )

1F1

( α
2
− p , α

2
; λ
)
.

Proof: See Ullah (1974). �
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Lemma A.6 If x is bounded and suppose a, c→∞ such that lima,c→∞
(c−a)x

c = 0. Then

1F1(a; c;x) = exp(x)
[ p−1∑
j=0

(c− a)j(−x)j

(c)jj!
+O(|c|−p)

]
.

Proof: See Slater (1960), pp. 12, 65-66.

�

Lemma A.7 Let M1 and M2 be two T ×T idempotent matrices where M1M2 = 0, and the

T × 1 vector u ∼ N(0, IT ). Then

E
(
u
u′M1u

(u′M2u)2
u′
)

=
tr(M1) + 2

(tr(M2)− 2)(tr(M2)− 4)
M1 +

tr(M1)

tr(M2)(tr(M2)− 2)
M2

+
tr(M1)

(tr(M2)− 2)(tr(M2)− 4)
, (IT −M1 −M2)

when tr(M2) > 4.

Proof: Since M1 and M2 commute, let the orthogonal matrix Γ simultaneously

diagonalize them such that

Γ′M1Γ =


IN1 0 0

0 0 0

0 0 0

 = D1, and Γ′M2Γ =


0 0 0

0 IN2 0

0 0 0

 = D1,

where N1 = tr(M1) and N2 = tr(M2). Further, define ν = Γu, and ν = (ν ′1, ν
′
2, ν
′
3)′ be

partitioned conformably with D1 and D2. Then

E
(
u
u′M1u

(u′M2u)2
u′
)

= ΓE
(
ν

ν ′1ν1

(ν ′2ν2)ν

)
Γ′

= Γ

[
N1 + 2

(N2 − 2)(N2 − 4)
D1 +

N1

N2(N2 − 2)
D2 +

N1

(N2 − 2)(N2 − 4)
(IT −D1 −D2)

]
Γ′,

where the use has been made of Lemma A.1, Lemma A.3–A.5.

�
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B

Appendix B

Proof of Theorem 2.8 :

First, we show that the single equation least-squares estimators are consistent, so that

Σ̂ is a consistent estimator of Σ.

Let us denote the vector of the single equation least-squares estimators as β̆ =

(β̆′1, . . . , β̆
′
N )′, hence

√
T (β̆ − β) = (

1

T

T∑
t=1

X ′.tX.t)
−1 1√

T

T∑
t=1

X ′.tu.t. (B.1)

Under Assumption 2.4 (i) and (iii), by weak law of large numbers (WLLN), we have

1
T

∑T
t=1X

′
.tX.t

p−→ E(X ′.tX.t), and by Slutsky’s theorem and the second part of Assumption

2.4 (iii), ( 1
T

∑T
t=1X

′
.tX.t)

−1 − [E(X ′.tX.t)]
−1 = op(1). Moreover, under Assumption 2.4 (i)

and (ii), 1√
T

∑T
t=1X

′
.tu.t = Op(1). Therefore, we have β̆ − β = op(1). Consequently, it is

easy to show that Σ̂ = 1
T

∑T
t=1 û.tû

′
.t = Σ+op(1), and by Slutsky’s theorem and Assumption

2.1 (ii), we have Σ̂−1 − Σ−1 = op(1).
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Now, we show that the FGLS estimator and the infeasible GLS estimators are

asymptotically equivalent, i.e.
√
T (β̂ − β̂GLS) = op(1), where the infeasible GLS estimator

takes the form

β̂GLS − β = (
1

T

T∑
t=1

X ′.tΣ
−1X.t)

−1 1√
T

T∑
t=1

X ′.tΣ
−1u.t. (B.2)

Note that,

√
T (β̂ − β) =

√
T (β̂GLS − β)

+

(
1

T

T∑
t=1

X ′.tΣ̂
−1X.t)

−1 − (
1

T

T∑
t=1

X ′.tΣ
−1X.t)

−1

 1√
T

T∑
t=1

X ′.tΣ
−1u.t

+ (
1

T

T∑
t=1

X ′.tΣ
−1X.t)

−1

 1√
T

T∑
t=1

X ′.tΣ̂
−1u.t −

1√
T

T∑
t=1

X ′.tΣ
−1u.t


+

(
1

T

T∑
t=1

X ′.tΣ̂
−1X.t)

−1 − (
1

T

T∑
t=1

X ′.tΣ
−1X.t)

−1

 1√
T

T∑
t=1

X ′.tΣ̂
−1u.t −

1√
T

T∑
t=1

X ′.tΣ
−1u.t


=
√
T (β̂GLS − β) + op(1)Op(1) +Op(1)op(1) + op(1)op(1)

(B.3)

where the last equality holds because by WLLN

1

T

T∑
t=1

X ′.tΣ̂
−1X.t =

1

T

T∑
t=1

X ′.tΣ
−1X.t +

1

T

T∑
t=1

X ′.t

(
Σ̂−1 − Σ−1

)
X.t =

1

T

T∑
t=1

X ′.tΣ
−1X.t + op(1),

(B.4)

and

1√
T

T∑
t=1

X ′.tΣ̂
−1u.t =

1√
T

T∑
t=1

X ′.tΣ
−1u.t +

1√
T

T∑
t=1

X ′.t

(
Σ̂−1 − Σ−1

)
u.t =

1√
T

T∑
t=1

X ′.tΣ
−1u.t + op(1).

(B.5)

151



Now, we derive the asymptotic distribution of the infeasible GLS estimator. But, first we

note that by Assumption 2.4 (i)– (iii) and WLLN 1√
T

∑T
t=1X

′
.tΣ
−1X.t

p−→ E(X ′.tΣ
−1X.t) ≡

V −1, and by Slutsky’s theorem ( 1√
T

∑T
t=1X

′
.tΣ
−1X.t)

−1 − V = op(1). hence

√
T (β̂GLS − β) = (

1

T

T∑
t=1

X ′.tΣ
−1X.t)

−1 1√
T

T∑
t=1

X ′.tΣ
−1u.t

= V
1√
T

T∑
t=1

X ′.tΣ
−1u.t +

[
(

1

T

T∑
t=1

X ′.tΣ
−1X.t)

−1 − V
] 1√

T

T∑
t=1

X ′.tΣ
−1u.t

= V
1√
T

T∑
t=1

X ′.tΣ
−1u.t + op(1).

(B.6)

Further, under assumptions 2.1 and 2.4 and by the central limit theorem, we have

√
T (β̂GLS − β)

d−→ N(0, V ). Consequently by the asymptotic equivalence of the FGLS and

infeasible GLS estimators, equation (2.15) follows and
√
T (β̂ − β)

d−→ N(0, V ).

Similarly, for the restricted estimator, we have

√
T (β̃ − β) =

√
T (β̂ − β)− V R′(RV R′)−1R

[√
T (β̂ − β) +

√
T β

]
+ op(1)

=
√
T (β̂ − β)− V R′(RV R′)−1R

[√
T (β̂ − β) +

√
Tα
]

+ op(1)

d−→ Z − V R′(RV R′)−1R(Z +
√
T α),

(B.7)

where Z ∼ N(0, V ), and the second equality holds by Assumption 2.5. Moreover, from the

above equation we have

√
T (β̂ − β̃)

d−→ V R′(RV R′)−1R(Z +
√
T α), (B.8)

thus

F ( β̂ , β̃ ) = T (β̂ − β̃)V −1(β̂ − β̃) + op(1)
d−→ (Z +

√
T α)′R′(RV R′)−1R(Z +

√
T α),
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(B.9)

which implies (2.17). The results of (2.18) and (2.19) follow by applying the continuous

mapping theorem to the above results, and we omit their derivations to save space.

�

Proof of Theorem 2.9 :

Let ζ = θ′Aθ /2, and we note that since A is idempotent, rank(A) = tr(A) = d. Recall

from equation (2.19) the asymptotic distribution of the shrinkage estimator is

√
T (β̂s − β)

d−→ Zs = ω(Z)Z + (1− ω(Z))(Z − V R′(RV R′)−1R(Z +
√
T α)),

hence, the asymptotic bias of
√
T (β̂s − β) is

ABias (β̂s) = E(Zs) = E(Z)− τV R′(RV R′)−1RE
(Z +

√
T α

ξ(Z)

)

= −
√
T τ

d
e−ζ V R′(RV R′)−1Rα 1F1

(d
2
,
d

2
+ 1; ζ

)

− τV R′(RV R′)−1RV 1/2(Id −A)θE
[
(χ2
d(θ
′Aθ/2))−1

]

= −
√
T τ

d
e−ζ V R′(RV R′)−1Rα 1F1

(d
2
,
d

2
+ 1; ζ

)
, (B.10)

where the last equality holds because by using Lemma A.3 and Lemma A.5

E
(Z +

√
T α

ξ(Z)

)
= V 1/2 E

[
V −1/2 Z +

√
T α

(Z +
√
T α)′R′(RV R′)−1R(Z +

√
T α)

]
= V 1/2 E

( ν

ν ′Aν

)

= V 1/2

[
1

2
Aθ e−ζ

Γ(d2)

Γ(d2 + 1)
1F1(

d

2
,
d

2
+ 1; ζ) + E

[
(χ2
d(θ
′Aθ/2))−1

]
(Id −A)θ

]

=

√
T

d
V R′(RV R′)−1Rα e−ζ 1F1(

d

2
,
d

2
+ 1; ζ) + E

[
(χ2
d(θ
′Aθ/2))−1

]
V 1/2(Id −A)θ,
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(B.11)

where ν = V −1/2(Z +
√
T α) ∼ N(θ, Ik).

Now we derive the expression for the asymptotic MSEM of the shrinkage estimator.

AMSEM (β̂s) = E(ZsZ
′
s) = E

[
Π̄1− Π̄2− Π̄

′
2 + Π̄3

]
, (B.12)

where

Π̄1 = ZZ ′,

Π̄2 =
τ

ξ(Z)
V R′(RV R′)−1R(Z +

√
T α)Z ′,

Π̄3 =
τ2

ξ2(Z)
V R′(RV R′)−1R(Z +

√
T α)(Z +

√
T α)′R′(RV R′)−1RV.

Now, in the following, we derive the expectations of Π̄1, Π̄2, and Π̄3,

E(Π̄1) = E(ZZ ′) = V, (B.13)

E(Π̄2) = τV R′(RV R′)−1RE
( (Z +

√
T α)Z ′

ξ(Z)

)

= τV R′(RV R′)−1RV 1/2 E
[
V −1/2(Z +

√
T α)(Z +

√
T α)′V −1/2V 1/2

ξ(Z)

]

− τV R′(RV R′)−1RV 1/2 E
[
V −1/2(Z +

√
T α)

√
T α′

ξ(Z)

]

= τV R(RV R′)−1R

[
V 1/2 E

[
(ν′Aν)−1νν′

]
V 1/2 − V 1/2 E

[
(ν′Aν)−1ν

]√
T α′

]

=
τ

2
V R′(RV R′)−1Re−ζ

[
V 1/2AV 1/2 Γ(d2 )

Γ(d2 + 1)
1F1

(d
2
,
d

2
+ 1; ζ

)

+ (V − V 1/2AV 1/2) E
[
(χ2
d(θ
′Aθ/2))−1

]
+ V 1/2Aθ θ′AV 1/2 Γ(d2 + 1)

Γ(d2 + 2)
1F1

(d
2

+ 1,
d

2
+ 2; ζ

)
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+ V 1/2(I −A)θ θ′(I −A)V 1/2 E
[
(χ2
d(θ
′Aθ/2))−1

]

+ V 1/2(θ θ′A+Aθ θ′−2Aθ θ′A)V 1/2 Γ(d2 )

Γ(d2 + 1)
1F1

(d
2
,
d

2
+ 1; ζ

)

− V 1/2Aθ
√
T α′

Γ(d2 )

Γ(d2 + 1)
1F1

(d
2
,
d

2
+ 1; ζ

)
− V 1/2(I −A)θ

√
T α′ E

[
(χ2
d(θ
′Aθ/2))−1

]]

= τ
1

d
e−ζ 1F1

(d
2
,
d

2
+ 1; ζ

)
V R′(RV R′)−1RV + τT e−ζ V R′(RV R′)−1Rαα′R′(RV R′)−1RV

[
1

d+ 2
1F1

(d
2

+ 1,
d

2
+ 2; ζ

)
− 1

d
1F1

(d
2
,
d

2
+ 1; ζ

)]
, (B.14)

where the use has been made of Lemma A.3–Lemma A.5, and finally, provided d > 2

E(Π̄3) = τ2V R′(RV R′)−1RE
[

(Z +
√
T α)(Z +

√
T α)′

ξ2(Z)

]
R′(RV R′)−1RV

= τ2V R′(RV R′)−1RV 1/2 E
[
(ν′Aν)−2νν′

]
V 1/2R′(RV R′)−1RV

= τ2
1

4
e−ζ V R′(RV R′)−1R

V 1/2AV 1/2 Γ(d2 − 1)

Γ(d2 + 1)
1F1

(d
2
− 1,

d

2
+ 1; ζ

)

+ (V − V 1/2AV 1/2) E
[
(χ2
d(θ
′Aθ/2))−2

]
+ V 1/2Aθ θ′AV 1/2 Γ(d2 )

Γ(d2 + 2)
1F1

(d
2
,
d

2
+ 2; ζ

)

+ V 1/2(I −A)θ θ′(I −A)V 1/2 E
[
(χ2
d(θ
′Aθ/2))−2

]

+ V 1/2(θ θ′A+Aθ θ′−2Aθ θ′A)V 1/2 Γ(d2 − 1)

Γ(d2 + 1)
1F1

(d
2
− 1,

d

2
+ 1; ζ

)R′(RV R′)−1RV
= τ2 e−ζ

1

d(d− 2)
V R′(RV R′)−1RV 1F1

(d
2
− 1,

d

2
+ 1; ζ

)

+ τ2 e−ζ
1

d(d+ 2)
T V R′(RV R′)−1Rαα′R′(RV R′)−1RV 1F1

(d
2
,
d

2
+ 2; ζ

)
, (B.15)

where the use has been made of Lemma A.4 and Lemma A.5.
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Using the results in equations (B.13)–(B.15), the MSEM of the shrinkage estimator is

obtained.

�

Proof of Corollary 2.10 and 2.15 :

The results hold by noting that if x > 0 and a, c > 0, then as x→∞,

1F1(a, c;x) =
Γ(c)

Γ(a)
ex x−(c−a)

[ p−1∑
j=0

(c− a)j(1− a)j
j!

x−j +O(|x|−p)
]
.

See Lebedev (1972), pp. 271.

�

Proof of Corollary 2.12 :

We first note that we have

%min(V 1/2BVWV BV 1/2) ≤ λW
λ

=
δ′BV 1/2V 1/2BVWV BV 1/2V 1/2B δ

δ′BV 1/2V 1/2B δ

≤ %max(V 1/2BVWV BV 1/2),

(B.16)

where B = R′(RV R′)−1R, and BV B = B. 1

1The inequality holds by noting that for any symmetric n× n matrix Q, we have

%min(Q) ≤ θ′Qθ

θ′θ
≤ %max(Q),

see Abadir and Magnus (2005)-Pages 181-182.
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From Remark 2.11, we have

ARisk (β̂s) = ARisk (β̂) + e−λ
tr(C)

d(d− 2)
1F1

( d
2
− 1 ,

d

2
+ 1 ; λ

)[
τ2 − 2τ(d− 2)

]
+ e−λ

2λW
d(d+ 2)

1F1

( d
2
,
d

2
+ 2 ; λ

)[
τ2 − 2τ

(tr(C)λ

λW
− 2
)]

≤ ARisk (β̂) + e−λ
tr(C)

d(d− 2)
1F1

( d
2
− 1 ,

d

2
+ 1 ; λ

)[
τ2 − 2τ(d− 2)

]
+ e−λ

2λW
d(d+ 2)

1F1

( d
2
,
d

2
+ 2 ; λ

)[
τ2 − 2τ

( tr(C)

%max(C)
− 2
)]
,

(B.17)

where the inequality holds by (B.16). Moreover, since d ≥ tr(C)/%max(C), the result in

(2.27) follows straightforwardly.

�

Proof of Corollary 2.14 :

Using equation (2.25), and the following identities (see Lebedev (1972), pp. 271)

(c− a− 1) 1F1(a, c;x) = (c− 1) 1F1(a, c− 1;x)− a 1F1(a+ 1, c;x),

1F1(a, c;x) = 1F1(a+ 1, c;x)− x

c
1F1(a+ 1, c+ 1;x),

1F1(a, c;x) =
c− a
c

1F1(a, c+ 1;x) +
a

c
1F1(a+ 1, c+ 1;x),

when W = V −1, we have

Risk (β̂s) = tr(W V ) + e−λ
1

d− 2
1F1

( d
2
− 1 ,

d

2
; λ
)[λW

λ
τ2 − 2τ

(
tr(WVBV )− 2

λW
λ

)]

− e−λ 1

d− 2
1F1

( d
2
− 1 ,

d

2
+ 1 ; λ

)(λW
λ
− tr(WVBV )

d

)[
τ2 + 4τ

]

= tr(INk) + e−λ
1

d− 2
1F1

( d
2
− 1 ,

d

2
; λ
)[
τ2 − 2τ(d− 2)

]
,

(B.18)
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where the last equality holds because the third term on the right hand side of the first

equality is zero, tr(BV ) = d, and λW = λ. �

Proof of Theorem 2.16 :

Using the results of Corollary 2.12 and Lemma A.6, and noting that τ/d→ 1 as d→∞,

we have

ARisk (β̂s,opt) ≤ tr(W V )− τopt[1 +O(
1

d
)] (B.19)

and by dividing both sides by the asymptotic risk of the FGLS estimator, we have

lim
d→∞

ARisk (β̂s)

ARisk (β̂)
≤ 1− ρ[1 +O(

1

d
)], ρ = lim

d→∞

tr(C)

tr(WV )
. (B.20)

�
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C

Appendix C

Lemma C.1 Let Ml = Zl(Z
′
lZl)

−1Z ′l , for l = 1, 2 be an N(T − 1)×N(T − 1) idempotent

matrix where Zl = (Z ′l1, . . . , Z
′
lN )′ is N(T − 1)×ml, with m1 = k(T − 1) and m2 = kT (T −

1)/2. Also define Hl = P ′MlPLΓ, where P = IN⊗PT , PT is a (T − 1)×T upper-triangular

matrix with rank T − 1 and PTP
′
T = IT−1, P

′
TPT = RT = IT − 1

T ιT ι
′
T . We have

i) tr(Hl) =



− k
1−γ

[
1− 1

T
1−γT
1−γ

]
, if l = 1,

− k
1−γT +O(1), if l = 2;

ii) tr(H2
l ) = O(1), l = 1, 2;

iii) tr(H ′lHl) =
NT

1− γ2
+O(N), l = 1, 2.

Proof: Let B be an N(T − 1) × N(T − 1) orthogonal (B′B = IN(T−1)) permutation

matrix, which changes the order of the rows of Zl such that T − 1 sub-matrices of N
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rows are put together, instead of T − 1 rows for the separate individuals. That is,

BZl = diag
[
Z ′l,1, . . . , Z

′
l,T−1

]
, where Zl,t is N ×ml,t with m1,t = ktl−1 for l = 1, 2. Hence

BMlB
′ = diag

[
Zl,1(Z ′l,1Zl,1)−1Zl,1, . . . , Zl,T−1(Z ′l,T−1Zl,T−1)−1Zl,T−1

]
.

Therefore, we have

tr(Hl) = tr(P ′B′BMlBB
′PLΓ) =

T∑
t=1

tr(M∗l,t) tr(ptp
′
tLTΓT ) = tr(LTΓT

T∑
t=1

ml,tptp
′
t)

=



k tr(LTΓTRT ) = − k
1−γ

[
1− 1

T
1−γT
1−γ

]
, = if l = 1,

k
∑T

s=2 tr(LTΓTJsRsJ
′
s) = k

∑T
s=2 tr(LsΓsRs) = − k

1−γT +O(1), if l = 2,

where Js = (0, I2)′ is a T × s selection matrix, and p′t is the tth row of PT . This completes

the proof of (i), for (ii) we have

tr(H2
l ) = tr(P ′MlPLΓP ′MlPLΓ) ≤ λ2

max(Ml) tr(P ′PLΓP ′PLΓ) = tr(RLΓRLΓ)

= tr(LΓRLΓ) +O(1) = 0 +O(1),

where R = IN⊗RT , and λmax(Ml) denotes the maximum eigenvalue of Ml, which is equal

to one, as it is an idempotent matrix. Also, the last equality holds because, the diagonal

elements of LΓ are all zero.

For (iii), note that we have

tr(H ′lHl) = tr(L′Γ′P ′MlPP
′MlPLΓ) = tr(Γ′L′P ′MlPLΓ) ≤ λmax(Ml) tr(Γ′L′RLΓ)

= N tr(RTLTΓTLTΓT ) = N
[ T−1∑
t=1

(T − i)(γ2)t−1 +O(1)
]

=
NT

1− γ2
+O(N).

�
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Proof of Theorem 3.1 :

Let D2 =
[
W ′P ′M2PW

]−1
, then

Q−1
2 ≡ E(D−1

2 ) = E
(
W̄ ′P ′M2PW̄

)
+ ek,1e

′
k,1σ

2
ε tr(H ′2H2) = O(NT ), (C.1)

hence we have

D2 =

[
Q−1

2 +
(
D−1

2 −Q
−1
2

)]−1

= Q2

[
Ik +

(
D−1

2 −Q
−1
2

)
Q2

]−1

= Q2 + op(
1

NT
).

(C.2)

therefore, equation (3.30) can be written as

δ̂GMM,2 − δ = Q2W
′P ′M2Pε+ op(

1√
NT

). (C.3)

The bias of the estimator up to order O( 1√
NT

) is then

E(δ̂GMM,2 − δ) = Q2 E(W ′P ′M2Pε) = Q2 E(W̄ ′P ′M2Pε) +Q2ek,1 E(ε′H2ε)

= σ2
εQ2ek,1 tr(H2) = Op(

1

N
),

(C.4)

where the last equality holds by using the results in Lemma C.1.

The MSEM of the estimator up to order O( 1
NT ) is

MSE (δ̂GMM,2) = E
[
(δ̂GMM,2 − δ)(δ̂GMM,2 − δ)′

]
= Q2 E

[[
W̄ ′P ′M2Pε+ ek,1ε

′H2ε
][
W̄ ′P ′M2Pε+ ek,1ε

′H2ε
]′]
Q2

= σ4
εQ2ek,1e

′
k,1Q2 tr(H ′2H2) + σ2

εQ2,

(C.5)

where the use has been made of Lemma A.3, and note that tr(H ′2H2) = O(NT ), in light of

Lemma C.1.

�
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Proof of Theorem 3.2 :

Let D1 =
[
W ′P ′M1PW

]−1
, then

Q−1
1 ≡ E(D−1

1 ) = E
(
W̄ ′P ′M1PW̄

)
+ ek,1e

′
k,1σ

2
ε tr(H ′1H1) = O(NT ), (C.6)

hence we have

D1 =

[
Q−1

1 +
(
D−1

1 −Q
−1
1

)]−1

= Q1

[
Ik +

(
D−1

1 −Q
−1
1

)
Q1

]−1

= Q1 + op(
1

NT
).

(C.7)

therefore, equation (3.33) can be written as

δ̂GMM,1 − δ = Q1W
′P ′M1Pε+ op(

1√
NT

) (C.8)

The bias of the estimator up to order O( 1√
NT

) is then

E(δ̂GMM,1 − δ) = Q1 E(W ′P ′M1Pε) = Q1 E(W̄ ′P ′M1Pε) +Q1ek,1 E(ε′H1ε)

= σ2
εQ1ek,1 tr(H1) = 0 +O(

1

NT
),

(C.9)

because by using Lemma C.1, tr(H1) = O(1) and the MSEM of the estimator up to order

O( 1
NT ) is

MSE (δ̂GMM,1) = E
[
(δ̂GMM,1 − δ)(δ̂GMM,1 − δ)′

]
= Q1 E

[[
W̄ ′P ′M1Pε+ ek,1ε

′H1ε
][
W̄ ′P ′M1Pε+ ek,1ε

′H1ε
]′]
Q1

= σ4
εQ1ek,1e

′
k,1Q1 tr(H ′1H1) + σ2

εQ1 = O(
1

NT
),

(C.10)

where the last equality holds by using Lemma C.1, and Lemma A.3.

�
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Proof of Theorem 3.3 :

Using equations (C.3) and (C.8), we haveδ̂GMM,2 − δ

δ̂GMM,1 − δ

 =

A1ε

A2ε

+ op(
1√
NT

) ≡ ζ + op(
1√
NT

), (C.11)

where Al = QlW
′P ′MlP, l = 1, 2. Because ε has a normal distribution, then ζ ∼ N(b, V )

where

b =

σ2
εQ2ek,1 tr(H2)

0

 V =

V2 V2

V2 V1

 ,

where V1 and V2 represent the variances of δ̂GMM,1 and δ̂GMM,2. Also, define ν = V −1/2ζ ∼

N(θ, I2k), where θ = V 1/2b.

Note that, it is easily verified that

V̂l = σ2
εQl + op(

1

NT
), (C.12)

hence we have

(V̂1 − V̂2)−1 = (V1 − V2)
[
Ik + op(

1

NT
)
]
. (C.13)

Therefore, F can be written as

F = ζ ′G′(V1 − V2)−1Gζ + op(1), (C.14)

where G = (−I2k, I2k).

Using the above results, the averaging estimator can be written as

δ̂A − δ = G2ζ −
τ

ζ ′Aζ
Gζ + op(

1

NT
),
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where A = V 1/2G′(V1 − V2)−1GV 1/2 is an idempotent matrix, and G2 = (0, Ik).

Therefore, the approximate bias of the average estimator up to order Op(
1√
NT

) is

E
[
(δ̂A − δ)

]
= G2 E(ζ)− τGV 1/2 E

( ν

ν ′Aν

)
= −τ

k
e−λ/2GV 1/2

1F1

(k
2
,
k

2
+ 1;λ/2

)
,

(C.15)

the equality above holds by using Lemma A.4 and Lemma A.5, and λ = θ′Aθ.

Now we derive the expression for the asymptotic MSE of the averaging estimator.

E
[
(δ̂A − δ)(δ̂A − δ)′

]
= E

[
Π̄1− Π̄2− Π̄

′
2 + Π̄3

]
, (C.16)

where

Π̄1 = G2ζζ
′G′2,

Π̄2 =
τ

ν ′Aν
GV 1/2νν ′V 1/2G′2,

Π̄3 =
τ2

(ν ′Aν)2
GV 1/2νν ′V 1/2G′.

Now, in the following, we derive the expectations of Π̄1− Π̄3,

E(Π̄1) = G2V G
′
2 = V1, (C.17)

E(Π̄2) = τGV 1/2 E
( νν ′

ν ′Aν

)
V 1/2G′2

=
τ

2
Ge−λ/2

[
V 1/2AV 1/2 Γ(k2 )

Γ(k2 + 1)
1F1

(k
2
,
k

2
+ 1;λ/2

)

+ (V − V 1/2AV 1/2) E
[
(χ2
k(θ
′Aθ/2))−1

]

+ V 1/2Aθθ′AV 1/2 Γ(k2 + 1)

Γ(k2 + 2)
1F1

(k
2

+ 1,
k

2
+ 2;λ/2

)
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+ V 1/2(I2k −A)θθ′(I2k −A)V 1/2 E
[
(χ2
k(θ
′Aθ/2))−1

]

+ V 1/2(θθ′A+Aθθ′ − 2Aθθ′A)V 1/2 Γ(k2 )

Γ(k2 + 1)
1F1

(k
2
,
k

2
+ 1;λ/2

)]
G′2

= τ
1

k
e−λ/2 1F1

(k
2
,
k

2
+ 1;λ/2

)
GV G′

+ τ e−λ/2GV 1/2θθ′V 1/2G′
[

1

k + 2
1F1

(k
2

+ 1,
k

2
+ 2;λ/2

)
− 1

k
1F1

(k
2
,
k

2
+ 1;λ/2

)]
,

(C.18)

where the fourth equality holds by using Lemma A.3–Lemma A.5.

E(Π̄3) = τ2GV 1/2 E
[
νν ′

ν ′Aν

]
V 1/2G′

= τ2 1

4
e−λ/2G

V 1/2AV 1/2 Γ(k2 − 1)

Γ(k2 + 1)
1F1

(k
2
− 1,

k

2
+ 1;λ/2

)

+ (V − V 1/2AV 1/2) E
[
(χ2
k(θ
′Aθ/2))−2

]

+ V 1/2Aθθ′AV 1/2 1

4

Γ(k2 )

Γ(k2 + 2)
1F1

(k
2
,
k

2
+ 2;λ/2

)

+ V 1/2(I2k −A)θθ′(I2k −A)V 1/2 E
[
(χ2
k(θ
′Aθ/2))−2

+ V 1/2(θθ′A+Aθθ′ − 2Aθθ′A)V 1/2 Γ(k2 − 1)

Γ(k2 + 1)
1F1

(k
2
− 1,

k

2
+ 1;λ/2

)G′

= τ2 e−λ/2
1

k(k − 2)
GV G′ 1F1

(k
2
− 1,

k

2
+ 1;λ/2

)

+ τ2 e−λ/2
1

k(k + 2)
T GV 1/2θθ′V 1/2G′ 1F1

(k
2
,
k

2
+ 2;λ/2

)
, (C.19)

where the third equality holds by using Lemma A.4 and Lemma A.5.
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Using the results in equations (C.17)–(C.19), the MSE of the shrinkage estimator is

obtained.

�

Proof of Corollary 3.5 :

Note that we have

%min

(
(V1 − V2)1/2D(V1 − V2)1/2

)
≤ λD

λ
=

θ′V 1/2G′DGV 1/2θ

θ′V 1/2G′(V1 − V2)−1GV 1/2θ

≤ %max
(

(V1 − V2)1/2D(V1 − V2)1/2
)
,

(C.20)

where %max and %min denote the maximum and minimum eigenvalues. 1

From Remark 3.4, we have

Risk (δ̂A) = Risk (δ̂GMM,1) + e−λ/2
tr(C)

k(k − 2)
1F1

( k
2
− 1 ,

k

2
+ 1 ; λ/2

)[
τ2 − 2τ(k − 2)

]
+ e−λ/2

2λD
k(k + 2)

1F1

( k
2
,
k

2
+ 2 ; λ/2

)[
τ2 − 2τ

(tr(C)λ

λD
− 2
)]

≤ Risk (δ̂GMM,1) + e−λ/2
tr(C)

d(d− 2)
1F1

( k
2
− 1 ,

k

2
+ 1 ; λ/2

)[
τ2 − 2τ(k − 2)

]
+ e−λ/2

2λD
k(k + 2)

1F1

( k
2
,
k

2
+ 2 ; λ/2

)[
τ2 − 2τ

( tr(C)

%max(C)
− 2
)]
,

(C.21)

where the inequality holds by (C.20). Moreover, since k ≥ tr(C)/%max(C), the result in

(3.44) follows straightforwardly.

�
1The inequality holds by noting that for any symmetric n× n matrix B, we have

%min(B) ≤ θ′Bθ

θ′θ
≤ %max(B),

see Abadir and Magnus (2005)-Pages 181-182.
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Proof of Corollary 3.6 :

Using equation (3.42), and the following identities (see Lebedev (1972), pp. 271)

(c− a− 1) 1F1(a, c;x) = (c− 1) 1F1(a, c− 1;x)− a 1F1(a+ 1, c;x),

1F1(a, c;x) = 1F1(a+ 1, c;x)− x

c
1F1(a+ 1, c+ 1;x),

1F1(a, c;x) =
c− a
c

1F1(a, c+ 1;x) +
a

c
1F1(a+ 1, c+ 1;x),

when D = (V1 − V2)−1, we have

Risk (δ̂A) = Risk (δ̂GMM,1)

+ e−λ/2
1

k − 2
1F1

( k
2
− 1 ,

k

2
; λ/2

)[λD
λ
τ2 − 2τ

(
tr(D(V1 − V2))− 2

λD
λ

)]

− e−λ/2 1

k − 2
1F1

( k
2
− 1 ,

k

2
+ 1 ; λ/2

)(λD
λ
− tr(D(V1 − V2))

k

)[
τ2 + 4τ

]

= Risk (δ̂GMM,1) + e−λ/2
1

k − 2
1F1

( k
2
− 1 ,

k

2
; λ/2

)[
τ2 − 2τ(k − 2)

]
, (C.22)

where the last equality holds because the third term on the right hand side of the first

equality is zero, tr(D(V1 − V2)) = k, and λD = λ.

�

Proof of Corollary 3.7:

The results hold by noting that if x > 0 and a, c > 0, then as x→∞,

1F1(a, c;x) =
Γ(c)

Γ(a)
ex x−(c−a)

[ p−1∑
j=0

(c− a)j(1− a)j
j!

x−j +O(|x|−p)
]
.

See Lebedev (1972), pp. 271.

�
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D

Appendix D

Theorem 4.6 : From equation (4.25), we have

1

σ
(β̂c,k − β) = e

(0)
k + σ

(
e

(1)
k + e(1)

c

)
+ σ2

(
e

(2)
k + e(2)

c

)
+O(σ3), (D.1)

where e
(i)
k , i = 0, 1, 2 are terms with order σi of 1

σ (β̂(k)− β) and e
(i)
c , i = 0, 1, 2 are the

other terms with order σi which are defined below

e
(0)
k = QW ′u1,

e
(1)
k = Q(ΨH

(0)
k u1 − SΨe

(0)
k ),

e
(2)
k = QΨ′H

(1)
k u1 +Qδu′1H

(0)
k u1 −Q(δu′1W +W ′u1δ

′)e
(0)
k

+QSΨQSΨe
(0)
k −QΨ′H

(0)
k Ψe

(0)
k −QSΨQΨ′H

(0)
k u1,

e(1)
c =

τ

u′1PΨu1
QΨ′Mxu1,
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e(2)
c =

τ

u′1PΨu1

[
Qδu′1Mxu1 + 2u′1MxΨ(Ψ′MxΨ)−1δQΨ′Mxu1

−QΨ′MxΨe
(0)
k −QSΨQΨ′Mxu1

+
2

u′1PΨu1

[
u′1MxΨe

(0)
k QΨ′Mxu1 − u′1MxΨ(Ψ′MxΨ)−1δu′1Mxu1QΨ′Mxu1

]]
,

where PΨ = MxΨ(Ψ′MxΨ)−1Ψ′Mx, and if k is fixed Hk = H
(0)
k = Px, so H

(1)
k = 0, and

if k = λ, since λ is random, we have H
(0)
k = IT − λ0Mx, and H

(1)
k = −λ1Mx, because by

Kadane (1970)

λ =
u′1MWu1

u′1MXu1
+ 2σ

(u′1WQV ′2MXu1)(u′1MWu1)− (u′1WQV ′2MWu1)(u′1MXu1)

(u′1MXu1)2
+Op(σ

2)

≡ λ0 + σλ1 +Op(σ
2)

where the definition of λi, i = 0, 1 should be apparent.

We derive the approximate expansions of the density function of êc,k by inverting its

characteristic function up to order σ2. Using (D.1) the characteristic function of êc,k can be

expressed as

Cc,k(θ) = Ck(θ) + σ E(iθ′ E(e(1)
c |e

(0)
k ) exp(iθ′e

(0)
k )) + σ2 E(iθ′ E(e(2)

c |e
(0)
k ) exp(iθ′e

(0)
k ))

+
σ2

2
E(i2θ′ E(e(1)

c e(1)′
c |e

(0)
k )θ exp(iθ′e

(0)
k )) +

σ2

2
E(i2θ′ E(e(1)

c e
(1)′

k |e
(0)
k )θ exp(iθ′e

(0)
k ))

+
σ2

2
E(i2θ′ E(e

(1)
k e(1)′

c |e
(0)
k )θ exp(iθ′e

(0)
k )) +O(σ3),

(D.2)

where θ is a N × 1 vector, Ck(θ) is the characteristic function of the k-class estimator, and

E(.|e(0)
k ) denotes the conditional expectation given e

(0)
k . The conditional expectations given

the first-order term e
(0)
k are calculated below.

E(e(1)
c |e

(0)
k ) = 0, (D.3)
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as it is the product of odd numbers of normal distribution.

E(e(2)
c |e

(0)
k ) =

τ(T −K)

N

[
Qδ −QC2e

(0)
k

]
, (D.4)

E(e(1)
c e(1)′

c |e
(0)
k ) = =

τ2(T −K)

N(N − 2)
QC2Q, (D.5)

E(e(1)
c e

(1)′

k |e
(0)
k ) =


0, if k = 1

cQC2Q, if k = λ,

(D.6)

where c ∈
(
− (T − 2N)(T −K)/N(N − 2), 0

)
.

Now, we invert the terms of the characteristic function of the Stein-like estimator in

(D.2) term by term. The inverse transformation of the first term in (D.2) is

F−1[Ck(θ)] = fk(ξ), (D.7)

where f2SLS(ξ) is the approximate distribution of the k-class estimators given in Theorem

4.5. The inverse transformation of the rest of the terms in (D.2) are given below 1.

F−1[(iθ)′ E(E(e(1)
c |e

(0)
k ) exp(iθ′e

(0)
k ))] = − ∂

∂ξ′
{E(e(1)

c |e
(0)
k = ξ)φQ(ξ)} = 0, (D.8)

F−1[(iθ)′ E(E(e(2)
c |e

(0)
k ) exp(iθ′e

(0)
k ))] = − ∂

∂ξ′
{E(e(2)

c |e
(0)
k = ξ)φQ(ξ)}

= τφQ(ξ)

α1δ
′ξ + α1

[
tr(QC2)− ξ′C2ξ

], (D.9)

1Note that, for any polynomial g(.),

F−1[h(−iθ)E(g(x) exp(iθ′x))] = h(
∂

∂ξ
)g(ξ)φQ(ξ),

where h(.) is any polynomial, and ∂/∂ξ′ = (∂/∂ξ1, ..., ∂/∂ξN ).
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where α1 = (T −K)/N, and

F−1[i2θ′ E(E(e(1)
c e(1)′

c |e
(0)
k )θ exp(iθ′e

(0)
k ))] =

∂

∂ξ′
{E(e(1)

c e(1)′
c |e

(0)
k = ξ)φQ(ξ)} ∂

∂ξ

= τ2α2

[
ξ′C2ξ − tr(QC2)

]
φQ(ξ)

(D.10)

where α2 = (T −K)/N(N − 2). Furthermore, the inverse transformation of the last term is

F−1[i2θ′ E(E(e(1)
c e

(1)′

k |e
(0)
k )θ exp(iθ′e

(0)
k ))] =

∂

∂ξ′
{E(e(1)

c e
(1)′

k |e
(0)
k = ξ)φQ(ξ)} ∂

∂ξ

=


0, if k = 1

τc
[
ξ′C2ξ − tr(QC2)

]
, if k = λ.

(D.11)

Summation of the terms in equations (D.8)–(D.11) will provide the results in the theorem.

�

Theorem 4.7 :

Using (4.30), the approximate bias of the Stein-like estimator up to order of interest is

equal to

E(
1

σ
(β̂c,k − β)) = E(

1

σ
(β̂(k)− β)) +O(σ2) = 0, (D.12)

where the last equality holds by Theorem 4.3. The approximate MSEM of the Stein-like

estimator up to the order of interest is

E
( 1

σ2
(β̂c,1 − β)(β̂c,1 − β)′

)
= E

( 1

σ2
(β̂(1)− β)(β̂(1)− β)′

)
+ τσ2α1

∫
ξξ′δ′ξφQ(ξ)dξ

+
1

2
τσ2

[
τα2 − 2α1

] ∫ (
ξξ′C2ξξ

′ − tr(QC2)ξξ′
)
φQ(ξ)dξ

= E
( 1

σ2
(β̂(1)− β)(β̂(1)− β)′

)
+ τσ2

[
τα2 − 2α1

]
QC2Q,

(D.13)
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similarly,

E
( 1

σ2
(β̂c,λ − β)(β̂c,λ − β)′

)
≤ E

( 1

σ2
(β̂(λ)− β)(β̂(λ)− β)′

)
+ τσ2

[
τα2 − 2α1

]
QC2Q.

(D.14)

�

Theorem 4.9 :

To derive∫
· · ·
∫

||Q−1/2ξ||<z

(fc,k(ξ)− fk(Q1/2ξ)) dξ,

we take the integral of each term of the difference of the approximate distributions below.∫
· · ·
∫

||ζ||<z

τα1δ
′Q1/2ζφI(ζ)dζ = 0, (D.15)

∫
· · ·
∫

||ζ||<z

τ

2

[
τα2− 2α1

]
tr(QC2)φI(ζ)dζ =

τ

2

[
τα2− 2α1

]
tr(QC2)

[
Φ(z)−Φ(−z)

]N
, (D.16)

∫
· · ·
∫

||ζ||<z

τ

2

[
τα2 − 2α1

]
ζ ′Q1/2C2Q

1/2ζφI(ζ)dζ

=
τ

2

[
τα2 − 2α1

]
tr(QC2)

{
− 2zφ(z)

[
Φ(z)− Φ(−z)

]N−1
+
[
Φ(z)− Φ(−z)

]N}
,

(D.17)

where the last equality holds by using∫
|x|<z

x2φ(x)dx = −2zφ(z) + Φ(z)− Φ(−z).

The results follow by adding the right-hand side of equations (D.15)–(D.17).

�
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E

Appendix E

Lemma E.1 Suppose that assumptions 5.1(i)-(ii) hold. Then,

√
T (β̇i − β0

i ) = Op(1), (E.1)

for each i = 1, . . . , N. Equivalently, β̇i − β0
i = 1√

T
υ̇i = Op(T

−1/2). Therefore, for any i and

j in {1, . . . , N},

ẇ
− 1
κ

ij =


1√
T
‖υ̇i − υ̇j‖ = Op(T

−1/2), if i&j ∈ G0
k

‖β0
i − β0

j ‖+ 1√
T
‖υ̇i − υ̇j‖ − c, if i ∈ G0

k & j ∈ G0
l ,

(E.2)

for any k, l ∈ {1, . . . ,K0} and l 6= k, and c ≥ 0.

�
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Proof of Theorem 5.4 :

i) Let Q1,NT,i(βi) = 1
T

∑T
t=1(ỹit − β′ix̃it)

2 and Q1,NT,i(β, λ1) = Q1,NT,i(βi) +

λ1
2N

∑N
j=1 ẇij‖βi − βj‖. Define bi = βi − β0

i and b̂i = β̂i − β0
i . We have

Q1,NT,i(βi)−Q1,NT,i(β
0
i ) =

1

T

T∑
t=1

(ũit − b′ix̃it)2 − 1

T

T∑
t=1

ũ2
it = b′iQ̂i,x̃x̃bi − 2b′iQ̂i,x̃ũ.

(E.3)

Given the fact that Q1,NT,i(β̂i, λ1) − Q1,NT,i(β
0
i , λ1) ≤ 0, for any k ∈ {1, . . . ,K0}, and

any i ∈ G0
k, we have

0 ≥ Q1,NT,i(β̂i, λ1)−Q1,NT,i(β
0
i , λ1)

= b̂′iQ̂i,x̃x̃b̂i − 2b̂′iQ̂i,x̃ũ +
λ1

2N

N∑
j=1

ẇij

[
‖β̂i − β̂j‖ − ‖β0

i − β0
j ‖
]

≥ b̂′iQ̂i,x̃x̃b̂i − 2b̂′iQ̂i,x̃ũ −
λ1

2N

N∑
j=1

ẇij

[
‖(β̂i − β0

i )− (β̂j − β0
j )‖
]

≥ b̂′iQ̂i,x̃x̃b̂i − 2b̂′iQ̂i,x̃ũ −
λ1

2N

N∑
j=1

ẇij

[
‖β̂i − β0

i ‖+ ‖β̂j − β0
j ‖
]

(E.4)

where the second and third inequalities hold by the triangle inequality. Note that by Lemma

E.1, maxi∈G0
k,j /∈G

0
k
ẇij = Op(J

−κ
min). Averaging the above term over all of the individuals,

and employing assumptions 5.1(i)-(ii), we have

0 ≥ 1

N

N∑
i=1

(
b̂′iQ̂i,x̃x̃b̂i

)
− 2

1

N

N∑
i=1

(
b̂′iQ̂i,x̃ũ

)
− λ1

2N

N∑
i=1

N∑
j=1

ẇij

[
‖β̂i − β0

i ‖+ ‖β̂j − β0
j ‖
]

≥ 1

N

N∑
i=1

(
b̂′iQ̂i,x̃x̃b̂i

)
− 2

1

N

N∑
i=1

(
b̂′iQ̂i,x̃ũ

)
− λ1( max

i∈G0
k,j /∈G

0
k

ẇij)

N∑
i=1

‖b̂i‖

≥ 1

NT

N∑
i=1

[
T‖b̂i‖2

¯
cx̃x̃ − 2T‖b̂i‖‖Q̂i,x̃ũ‖ −Op(

√
Tλ1J

−κ
min)
√
T‖b̂i‖

]
.

(E.5)
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Under assumption 5.2(ii), N
√
Tλ1J

−κ
min = Op(1), thus the above equation implies that

√
T‖b̂i‖ = Op(1), because otherwise, the above term cannot be negative. Therefore,

β̂i − β0
i = Op(T

−1/2) for i = 1, . . . , N.

ii) Let β̂ = β0 +T−1/2ψ, where the p×N matrix ψ = (ψ′1, . . . , ψ
′
N )′. Similar to part (i),

we have

0 ≥ T
[
Q1,NT (β̂, λ1)−Q1,NT (β0, λ1)

]
≥ 1

N

N∑
i=1

ψ′iQ̂i,x̃x̃ψi − 2

√
T

N

N∑
i=1

ψ′iQ̂i,x̃ũ −
√
Tλ1( max

i∈G0
k,j∈G

0
l ,l 6=k

ẇij)

N∑
i=1

‖ψi‖

≥
¯
cx̃x̃,NT

1

N

N∑
i=1

‖ψi‖2 − 2
[ 1

N

N∑
i=1

‖ψi‖2
]1/2[ T

N

N∑
i=1

‖Q̂i,x̃ũ‖2
]1/2

− 2Op(
√
NTλ1J

−κ
min)

[ 1

N

N∑
i=1

‖ψi‖2
]1/2

,

(E.6)

By assumption 5.1(ii),
¯
cx̃x̃,NT is bounded below by

¯
cx̃x̃ > 0, by assumption 5.1(iii)

T
N

∑N
i=1 ‖Q̂i,x̃ũ‖2 = Op(1), and by assumption 5.2(ii),

√
NTλ1J

−κ
min = op(1). Thus, if

1
N

∑N
i=1 ‖ψi‖2 = L, for sufficiently large values of L, the first term dominates the second

term in (E.6). In other words, for sufficiently large L, 0 ≤ T
[
Q1,NT (β̂, λ1)−Q1,NT (β0, λ1)

]
,

and Q1,NT (β0, λ1) cannot be minimized. Therefore, we must have 1
N

∑N
i=1 ‖b̂i‖2 = Op(T

−1).

�

Proof of Theorem 5.5 :

Take k ∈ {1, . . . ,K0}. By the consistency results in theorem 5.4, we have β̂i − β̂j
p−→

β0
i − β0

j 6= 0 for all i ∈ G0
k and j /∈ G0

k. Thus, ‖β̂i − β̂j‖ 6= 0 for all i ∈ G0
k and j /∈ G0

k.
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By contrary, suppose that there exist i ∈ G0
k such that ‖θ̂ij‖ ≡ ‖β̂i − β̂j‖ 6= 0, for

any j ∈ G0
k. There exists r ∈ {1, . . . , p} such that for the rth element of θ̂ij , we have

|θ̂ij,r| = max{|θ̂ij,l| : l = 1 . . . , p}. Without lose of generality assume that r = p, then it can

be easily verified that |θ̂ij,p|/‖θ̂ij‖ ≥ 1/
√
p. Then, the first order condition (FOC) of the

objective function in 5.4 with respect to the pth element of βi, denoted by βi,p is

0 =
−2√
T

T∑
t=1

x̃it,p(ỹit − x̃′itβ̂i) +
λ1

√
T

N

N∑
j=1

ẇijeij,p

=
−2√
T

T∑
t=1

x̃it,pũit +
2√
T

T∑
t=1

x̃it,px̃
′
it(β̂i − β0

i ) +
λ1

√
T

N

N∑
j=1

ẇijeij,p

=
−2√
T

T∑
t=1

x̃it,pũit +
1

T

T∑
t=1

x̃it,px̃
′
it

√
T (β̂i − β0

i ) +

√
Tλ1

N

∑
j∈G0

k

ẇij
θ̂ij,p

‖θ̂ij‖
+

√
Tλ1

N

∑
j /∈G0

k

ẇij
θ̂ij,p

‖θ̂ij‖

≡ B̂i1 + B̂i2 + B̂i3 + B̂i4.

(E.7)

where eij = (β̂i − β̂j)/‖β̂i − β̂j‖ if ‖β̂i − β̂j‖ 6= 0, and ‖eij‖ ≤ 1 otherwise. By

assumption 5.1(i), B̂i1 = Op(1), by theorem 5.4 and assumption 5.1(ii) B̂i2 = Op(1).

By Assumption 5.2(ii), theorem 5.4, and given maxi∈G0
k,j /∈G

0
k
ẇij = Op(J

−κ
min), |B̂i4| ≤

N
√
Tλ1 maxi∈G0

k,j /∈G
0
k
ẇij
∑

j /∈G0
k

= Op(N
√
Tλ1J

−κ
min) = Op(1). In view of the fact that

for i&j ∈ G0
k, ẇij = Op(T

−κ/2), 2
√
p|B̂i3| ≥

√
Tλ1

∑
j∈G0

k
ẇij = Op(τk

√
Tλ1T

κ/2), which is

explosive in probability under assumption 5.2(iii). Consequently, |B̂i3| � |B̂i1 + B̂i2 + B̂i4|,

such that (E.7) cannot hold for sufficiently large (N,T ). Thus, we conclude that with

probability approaching one, θ̂ij for all i&j ∈ G0
k must be in a position where ‖θ̂ij‖ is not

differentiable and
√
Tλ1ẇijeij = Op(1) in order for the FOC to hold. Furthermore, this

implies that for all i&j ∈ G0
k, P (‖θ̂ij‖ = 0)→ 1 as (N,T )→∞.

�
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Proof of Corollary 5.6 :

For any l&k ∈ {1, . . . ,K0}, where l 6= k, and any i&j ∈ {1, . . . , N}, we consider two

cases: (i) i&j ∈ G0
k, and (ii) i ∈ G0

k and j ∈ G0
l . In case (i), theorem 5.5 implies that

asymptotically ‖β̂i−β̂j‖ = 0, thus K̂ ≤ K. Under case (ii), we want to show that ‖β̂i−β̂j‖ 6=

0. Note that for any such i and j, ‖β0
i − β0

j ‖ ≥ Jmin. Now, suppose by controversy that

there exist i ∈ G0
k and j ∈ G0

l that ‖β̂i − β̂j‖ = 0, besides by the consistency results in

Theorem 5.4, we have β̂i − β̂j = β0
i − β0

j +Op(T
−1/2), hence ‖β0

i − β0
j ‖ = Op(T

−1/2). But,

this contradicts assumption 5.2(i) that T 1/2Jmin →∞ as ‖β0
i − β0

j ‖ ≥ Jmin

�

Proof of Theorem 5.7 :

Following Su et al. (2016) and Bertsekas (1995) Appendix B.5, we study the oracle

property by utilizing conditions from sub-differential calculus. From the FOC of the

objective function in (5.4) with respect to βi evaluated at β̂i, for each i ∈ {1, . . . , N},

we have

0 =
−2

T

T∑
t=1

x̃it(ỹit − β̂′ix̃it) +
λ1

N

N∑
j=1

ẇij êij , (E.8)

where êij =
β̂i−β̂j
‖β̂i−β̂j‖

if ‖β̂i − β̂j‖ 6= 0 and ‖êij‖ ≤ 1 otherwise, and let êii = 0.
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Let i ∈ Ĝk, for a k ∈ {1, . . . , K̂}. Note that by definition β̂j = α̂k for any j ∈ Ĝk.

Summing the FOC over the individual units in Ĝk, we have

0 =
−2

T

∑
i∈Ĝk

T∑
t=1

x̃it(ỹit − β̂′ix̃it) +
λ1

N

∑
i∈Ĝk

N∑
j=1

ẇij êij

=
−2

T

∑
i∈Ĝk

T∑
t=1

x̃it(ỹit − α̂′kx̃it) +
λ1

N

∑
i∈Ĝk

∑
j /∈Ĝk

ẇij êij .

(E.9)

For the second term on the right hand side of the above equation, we have

√
NkT‖

λ1

NNk

∑
i∈Ĝk

∑
j /∈Ĝk

ẇij êij‖ ≤
√
Tλ1

N
√
Nk

∑
i∈Ĝk

∑
j /∈Ĝk

‖ẇij êij‖ ≤
√
NkTλ1 max

i∈Ĝk,j /∈Ĝk
ẇij ,

(E.10)

which is of order Op(
√
NkTλ1J

−κ
min) = op(1), under assumption 5.2(ii).

Thus, it follows that

α̂k =
( 1

NkT

∑
i∈Ĝk

T∑
t=1

x̃itx̃
′
it

)−1 1

NkT

∑
i∈Ĝk

T∑
t=1

x̃itỹit. (E.11)

By corollary 5.6, with probability approaching one α̂k = ᾱk, and the limiting distribution

follows.

�

Proof of Theorem 5.8 :

By corollary 5.6, it follows that α̂Ĝk = ᾱk, and the limiting distribution follows.

�
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F

Appendix F

Let us define some notations which will be used in the proof of the results

below. Define Vi,NT (βi) =
[

1
T

∑T
t=1 ρ(ξit, βi)

]′
Wi,NT

[
1
T

∑T
t=1 ρ(ξit, βi)

]
, and V̄i(βi) =[

1
T

∑T
t=1 E(ρ(ξit, βi))

]′
Wi,NT

[
1
T

∑T
t=1 E(ρ(ξit, βi))

]
, and let Ri,T (βi)

[
1
T

∑T
t=1

[
ρ(ξi, βi) −

E(ρ(ξi, βi))
]]′
Wi,N

[
1
T

∑T
t=1

[
ρ(ξi, βi)− E(ρ(ξi, βi))

]]
.

Lemma F.1 Suppose that assumptions 5.9(i)-(ii) hold. Then,

√
T (β̈i − β0

i ) = Op(1), (F.1)

for each i = 1, . . . , N. Equivalently, β̈i − β0
i = 1√

T
ϋi = Op(T

−1/2). Therefore, for any i and

j in {1, . . . , N},

ẅ
− 1
κ

ij =


1√
T
‖ϋi − ϋj‖ = Op(T

−1/2), if i&j ∈ G0
k

‖β0
i − β0

j ‖+ 1√
T
‖ϋi − ϋj‖ − c̈, if i ∈ G0

k & j ∈ G0
l ,

(F.2)

for any k, l ∈ {1, . . . ,K0} and l 6= k, and c̈ ≥ 0.

�
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Lemma F.2 Suppose that assumptions 5.9(iv) holds. Then, for all βi ∈ Bi with probability

approaching one,

¯
c
[1

2
V̄i(βi)−Ri,T (βi)

]
≤ Vi,NT (βi) ≤ c̄[2V̄i(βi) + 2Ri,T (βi)

]
, (F.3)

where
¯
c and c̄ are some generic positive constants that do not depend on i with 0 <

¯
c < 1 <

c̄ <∞.

Proof: See Su et al. (2016). �

Proof of Theorem 5.13 :

(i) Note that Q2,NT,i(β̃, λ2) − Q1,NT,i(β
0, λ2) ≤ 0, we find an lower bound for this

difference term. Assume individual i ∈ G0
k for any k = 1, . . . ,K0, then we have

0 ≥ Q2,NT,i(β̃, λ2)−Q2,NT,i(β
0, λ2)

= Vi,NT (β̃i)− Vi,NT (β0
i ) +

λ2

2N

N∑
j=1

ẅij

[
‖β̃i − β̃j‖ − ‖β0

i − β0
j ‖
]

≥
¯
c
[1

2
V̄i(β̃i)− R̃i,T

]
− 2c̄R0

i,T +
λ2

2N

∑
j /∈G̃k

ẅij

[
‖β̃i − β̃j‖ − ‖β0

i − β0
j ‖
]

(F.4)

where the first inequality holds by Lemma B.1 of Su et al. (2016). By averaging the

above term over all of the individuals, and employing assumptions 5.9(i)-(ii), we have

0 ≥ ¯
c

N

N∑
i=1

[1

2
V̄i(β̃i)− R̃i,T

]
− 2c̄

N∑
i=1

c̄R0
i,T +

λ2

2N

N∑
i=1

∑
j /∈G̃k

ẅij

[
‖β̃i − β̃j‖ − ‖β0

i − β0
j ‖
]

≥ ¯
c
¯
c1,NT

N

N∑
i=1

‖β̃i − β0
i ‖2 −

1

N

N∑
i=1

[̄
cR̃i,T + 2c̄R0

i,T

]
− λ2

N
max

1≤i&j≤N
ẅij

N∑
i=1

‖β̃i − β0
i ‖

(F.5)
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≥ 1

NT

N∑
i=1

[̄
c
¯
c1,NTT‖β̃i − β0

i ‖2 −¯
cρ̄i,T (β̃)− 2c̄ρ̄i,T (β0)

− 2Op(N
√
Tλ2J

−κ
min)
√
T‖β̃i − β0

i ‖
]
,

where the use has been made of

max
1≤i≤N

V̄i(β̃) = max
1≤i≤N

(β̃i − β0
i )′Q̄′i,z∆xWiQ̄i,z∆x(β̃i − β0

i ) ≥
¯
c1,NT max

1≤i≤N
‖β̃i − β0

i ‖2,

and
¯
c1,NT = min1≤i≤N µmin(Q̄′i,z∆xWiQ̄i,z∆x) ≥

¯
cW

¯
cQ̄ > 0. The result above implies

that
√
T‖β̃i − β0

i ‖ = Op(1), because otherwise, the above term cannot be negative.

Therefore, β̃i − β0
i = Op(T

−1/2) for i = 1, . . . , N.

(ii) From the last line in (F.5), let c∗ = Op(1), then we have

¯
c
¯
c1,NT

N

N∑
i=1

‖β̃i − β0
i ‖2 ≤ ¯

c
1

NT

N∑
i=1

ρ̄i,T (β̃) +
2

NT
c̄
N∑
i=1

ρ̄i,T (β0)

+ 2c∗
1

N
√
T

N∑
i=1

‖β̃i − β0
i ‖ = Op(

1

T
),

(F.6)

which proves the result.

�

Proof of Theorem 5.14 :

Take k ∈ {1, . . . ,K0}. By the consistency results in theorem 5.13, we have β̃i − β̃j
p−→

β0
i − β0

j 6= 0 for all i ∈ G0
k and j /∈ G0

k. Thus, ‖β̃i − β̃j‖ 6= 0 for all i ∈ G0
k and j /∈ G0

k.

By contrary, suppose that there exist i ∈ G0
k such that ‖θ̃ij‖ ≡ ‖β̃i − β̃j‖ 6= 0, for

any j ∈ G0
k. There exists r ∈ {1, . . . , p} such that for the rth element of θ̃ij , we have
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|θ̃ij,r| = max{|θ̃ij,l| : l = 1 . . . , p}. Without lose of generality assume that r = p, then it can

be easily verified that |θ̃ij,p|/‖θ̃ij‖ ≥ 1/
√
p. Then, the first order condition (FOC) of the

objective function in (5.4) with respect to the pth element of βi, denoted by βi,p is

0 =
−2√
T
Q̃′i,z∆x,pWi,NT

T∑
t=1

z̃it(∆yit − β̃′i∆xit) +
λ2

√
T

N

N∑
j=1

ẅijeij,p

= −2Q̃′i,z∆xWi,NT
1√
T

T∑
t=1

z̃it∆uit + 2Q̃′i,z∆x,pWi,NT Q̃i,z∆x
√
T (β̃i − β̃j)

+

√
Tλ2

N

∑
j∈G0

k

ẅij
θ̃ij,p

‖θ̃ij‖
+

√
Tλ2

N

∑
j /∈G0

k

ẅij
θ̃ij,p

‖θ̃ij‖

≡ −B̃i1 + B̃i2 + B̃i3 + B̃i4.

(F.7)

where eij = (β̃i − β̃j)/‖β̃i − β̃j‖ if ‖β̃i − β̃j‖ 6= 0, and ‖eij‖ ≤ 1 otherwise. By

assumption 5.9(i), B̃i1 = Op(1), by Theorem 5.13 and assumption 5.9(ii) B̃i2 = Op(1).

By Assumption 5.10(ii), Theorem 5.13, and given maxi∈G0
k,j /∈G

0
k
ẇij = Op(J

−κ
min), |B̃i4| ≤

N
√
Tλ2 maxi∈G0

k,j /∈G
0
k
ẅij
∑

j /∈G0
k

= Op(N
√
Tλ2J

−κ
min) = Op(1). In view of the fact that for

i&j ∈ G0
k, ẅij = Op(T

−κ/2), 2
√
p|B̃i3| ≥

√
Tλ2

∑
j∈G0

k
ẅij = Op(τk

√
Tλ2T

κ/2), which is

explosive in probability under assumption 5.10(iii). Consequently, |B̃i3| � |B̃i1 +B̃i2 +B̃i4|,

such that (F.7) cannot hold for sufficiently large (N,T ). Thus, we conclude that with

probability approaching one, θ̃ij for all i&j ∈ G0
k must be in a position where ‖θ̃ij‖ is

not differentiable and
√
Tλ2ẅijeij = Op(1) in order for the FOC to hold. Furthermore, this

implies that for all i&j ∈ G0
k, P (‖θ̃ij‖ = 0)→ 1 as (N,T )→∞.

�
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Proof of Corollary 5.15 :

For any l&k ∈ {1, . . . ,K0}, where l 6= k, and any i&j ∈ {1, . . . , N}, we consider two

cases: (i) i&j ∈ G0
k, and (ii) i ∈ G0

k and j ∈ G0
l . In case (i), Theorem 5.14 implies

that asymptotically ‖β̃i − β̃j‖ = 0, thus K̃ ≤ K. Under case (ii), we want to show that

‖β̃i−β̃j‖ 6= 0. Note that for any such i and j, ‖β0
i −β0

j ‖ ≥ Jmin. Now, suppose by controversy

that there exist i ∈ G0
k and j ∈ G0

l that ‖β̃i− β̃j‖ = 0, besides by the consistency results in

Theorem 5.4, we have β̃i − β̃j = β0
i − β0

j +Op(T
−1/2), hence ‖β0

i − β0
j ‖ = Op(T

−1/2). But,

this contradicts assumption 5.10(i) that T 1/2Jmin →∞ as ‖β0
i − β0

j ‖ ≥ Jmin

�

Proof of Theorem 5.16 :

Similar to the proof of Theorem 5.7, we study the oracle property by utilizing conditions

from sub-differential calculus. From the FOC of the objective function in (5.9) with respect

to βi evaluated at β̃i, we have

0 = −2Q̃′i,z∆xWi,NT
1

NT

T∑
t=1

z̃it(∆yit − β̃′i∆xit) +
λ2

2N

N∑
j=1

ẅij ẽij , (F.8)

where ẽij =
β̃i−β̃j
‖β̃i−β̃j‖

if ‖β̃i − β̃j‖ 6= 0, ẽii = 0, and ‖ẽij‖ ≤ 1 otherwise.

Averaging the above equation over the individuals in G̃k, for any k ∈ {1, . . . ,K0}, we

have

0 =
−2

NkT

∑
i∈G̃k

Q̃′i,z∆xWi,NT

T∑
t=1

z̃it(∆yit − β̃′i∆xit) +
λ2

2NNk

∑
i∈G̃k

N∑
j=1

ẅij ẽij

=
−2

NkT

∑
i∈G̃k

Q̃′i,z∆xWi,NT

T∑
t=1

z̃it(∆yit − β̃′i∆xit) +
λ2

2NNk

∑
i∈G̃k

∑
j /∈G̃k

ẅij ẽij ,

(F.9)
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together with the definition of α̃k, it follows that

α̃k =
( 1

Nk

∑
i∈G̃k

Q̃′i,z∆xWi,NT Q̃i,z∆x

)−1 1

NkT

∑
i∈G̃k

Q̃′i,z∆xWi,NT

T∑
t=1

z̃it∆uit

+
( 1

Nk

∑
i∈G̃k

Q̃′i,z∆xWi,NT Q̃i,z∆x

)−1 λ2

2NNk

∑
i∈G̃k

∑
j /∈G̃k

ẅij ẽij .

(F.10)

Note that√
NkT‖

λ2

NNk

∑
i∈G̃k

∑
j /∈G̃k

ẅij ẽij‖ ≤
√
Tλ2

N
√
Nk

∑
i∈G̃k

∑
j /∈G̃k

‖ẅij ẽij‖

≤
√
NkTλ2 max

i∈G̃k,j /∈G̃k
ẅij = op(1),

(F.11)

thus, we have

√
NkT (α̃k − α0

k) =
( 1

Nk

∑
i∈G0

k

Q̃′i,z∆xWi,NT Q̃i,z∆x

)−1 1√
NkT

∑
i∈G0

k

Q̃′i,z∆xWi,NT

T∑
t=1

z̃it∆uit + op(1).

(F.12)

Besides, by assumptions 5.9(iv) and 5.11(i)-(ii), we have

1

Nk

∑
i∈G0

k

Q̃′i,z∆xWi,NT Q̃i,z∆x =
1

Nk

∑
i∈G0

k

Q̄′i,z∆xWiQ̄i,z∆x + op(1) = Ak + op(1).

Employing the result above and assumption 5.11(iii), the limiting distribution follows from

the slutsky theorem.

�

Proof of Theorem 5.17 :

By corollary 5.15, it follows that
√
NkT (α̃G̃k − α

0
k) =

√
NkT (ᾰk − α0

k) + op(1), and the

limiting distribution follows from assumption 5.12.

�
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G

Appendix G

Proof of Corollary 5.18 :

Following the analysis in Ma and Huang (2017), we prove the proposition.

(i) Note that from β(m+1) definition, for any δ we have

L1(β(m+1), δ(m+1),ν(m)) ≤ L1(β(m+1), δ,ν(m)). (G.1)

Also, we have

L1(β(m+1), δ(m+1),ν(m)) ≤ inf
Aβ(m+1)−δ=0

[
‖ỹ − X̃β‖2 +

λ1

N

∑
i<j

ẇij‖δij‖
]

= inf
Aβ(m+1)−δ=0

L1(β(m+1), δ,ν(m)) ≡ f (m+1), say.

(G.2)
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For any integer n, by the definition ν(m+n−1) = ν(m) + ϑ
∑n−1

i=1 (Aβ(m+i) − δ(m+i)).

Thus,

L1(β(m+n), δ(m+n),ν(m+n−1)) = ‖ỹ − X̃β(m+n)‖2 + ν(m+n−1)′(Λβ(m+n) − δm+n)

+
ϑ

2
‖Λβ(m+n) − δm+n‖2 +

λ1

N

∑
i<j

ẇij‖δ(m+n)
ij ‖

= ‖ỹ − X̃β(m+n)‖2 + ν(m)′(Λβ(m+n) − δm+n)

+ ϑ

n−1∑
i=1

(Λβ(m+i) − δ(m+i))′(Λβ(m+n) − δ(m+n))

+
ϑ

2
‖Λβ(m+n) − δm+n‖2 +

λ1

N

∑
i<j

ẇij‖δ(m+n)
ij ‖

≤ f (m+n).

(G.3)

Given L1(β, δ,ν) is differentiable with respect to β and convex with respect to δ,

therefore the sequence (β(m), δ(m),ν(m)) has a limiting point by Tseng (2001). Let us

denote this point by (β∗, δ∗,ν∗), so for any n ≥ 0, we have

f∗ = lim
m→∞

f (m+n) = inf
Λβ∗−δ=0

[
‖ỹ − X̃β∗‖2 +

λ1

N

∑
i<j

ẇij‖δij‖
]
, (G.4)

also we have

lim
m→∞

L1(β(m+n), δ(m+n),ν(m+n−1)) = ‖ỹ − X̃β∗‖2 +
λ1

N

∑
i<j

ẇij‖δ∗ij‖

+ lim
m→∞

ν(m)′(Λβ∗ − δ∗) + (n− 1

2
)ϑ‖Λβ∗ − δ∗‖2

≤ f∗.

(G.5)

The above result implies that ‖r(m)‖2 = ‖Λβ∗ − δ∗‖2 = 0.
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(ii) By the definition, we have

0 =
∂L1(β(m+1), δ(m),ν(m−1))

∂β

= 2X̃ ′X̃β(m+1) − 2X̃ ′ỹ + Λ′ν(m) + Λ′ϑ(Λβ(m+1) − δ(m+1))

= 2X̃ ′X̃β(m+1) − 2X̃ ′ỹ + Λ′
[
ν(m) + ϑ(Λβ(m+1) − δ(m+1))

]
= 2X̃ ′X̃β(m+1) − 2X̃ ′ỹ + Λ′ν(m+1) + ϑΛ′(δ(m+1) − δ(m)),

(G.6)

which implies that

s(m+1) = ϑΛ′(δ(m+1) − δ(m)) = −
[
2X̃ ′X̃β(m+1) − 2X̃ ′ỹ + Λ′ν(m+1)

]
. (G.7)

Also, by part (i), we have ‖Λβ∗ − δ∗‖2 = 0, hence as m tends to infinity, from (G.6)

we have

0 = lim
m→∞

∂L1(β(m+1), δ(m),ν(m))

∂β
= lim

m→∞

[
2X̃ ′X̃β(m+1) − 2X ′y + Λ′ν(m+1)

]
= 2X̃ ′X̃β∗ − 2X̃ ′ỹ + Λ′ν∗.

(G.8)

Employing the results in equations (G.7)–(G.8), we have limm→∞ ‖s(m+1)‖2 = 0.

�

Proof of Corollary 5.19 :

The proof follows from that of proposition 5.19, and we omit it.

�
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