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ABSTRACT OF THE DISSERTATION

Essays on Panel Data and System of Equations under Model Uncertainty
by
Ali Mehrabani

Doctor of Philosophy, Graduate Program in Economics
University of California, Riverside, June 2021
Professor Aman Ullah, Chairperson

This dissertation consists of four chapters that study estimation and inference in system
of equations and panel data under model uncertainty. In Chapter 2, I consider model
uncertainty in a panel data model, and introduce a Stein-like shrinkage estimator that is
a weighted average of an unrestricted estimator and a restricted estimator. The restricted
estimator represents a belief about where the parameters of the model are likely to be close.

Chapter 3 considers the estimation uncertainty from choosing different number of lagged
dependent variables as instruments in dynamic panel data models. Generalized method of
moments (GMM), the typical estimation method, can produce efficient estimators when
all lagged dependent variables are used as instruments. However, estimation using all
instruments can cause substantial bias. Conversely, the GMM estimators that use one lag
as instrument are asymptotically unbiased under forward demeaning transformation, but
at the cost of losing efficiency. Therefore, I introduce an averaging estimator which is a
weighted average of the two GMM estimators where the averaging weight is proportional

to a quadratic loss function that minimizes the asymptotic risk.

vi



In Chapter 4, I consider simultaneous equations models, and develop an estimator to deal
with the model uncertainty about the magnitude of endogeneity. Ordinary least squares
(OLS) estimators are the most efficient estimators, however, may suffer from substantial
bias when the degree of endogeneity is substantial. On the contrary, two-stage least squares
(2SLS) and Limited Information Maximum Likelihood (LIML) estimators are consistent but
not as efficient. Therefore, I consider a Stein-like shrinkage estimator which is a weighted
average of the OLS and 2SLS/LIML estimators, where the weight is inversely related to a
Wu-Hausman statistic that measures the magnitude of the endogeneity.

Chapter 5 considers latent group structures to model uncertainty resulting from
unobserved heterogeneity in panel data models. Basically, I consider a panel data model
where the slope parameters are heterogenous across groups but homogenous within a group,
and the group identity is unknown. I provide a framework for estimation and identification

of the latent group structure using a pairwise fusion penalized approach.
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Chapter 1

Introduction

In the theory and practice of econometrics, there are typically a large amount of
uncertainty about model specifications that are unobservable to the practitioners. In
practice, estimation and inference are often conducted under a selected model specification
without considering the model uncertainty. This can lead to many difficulties, including
inconsistent estimation and misleading inference. For example, panel data usually cover
observations from workers, firms, or countries that differ in many dimensions, so an
undeniable feature of the data is its heterogeneity, but much of which is simply unobserved.
Therefore, empirical researchers face a trade-off between using approaches that allow for
model uncertainty (e.g. unobserved heterogeneity), and building restricted specifications
that are adapted to the empirical data at hand. A way to deal with this issue is to build
flexible yet parsimonious approaches that allow for the uncertainty (for example latent group
structures considered in chapter 5). An alternative way is to use model averaging techniques

where a weighted average of the candidate models is considered. In this dissertation, I



investigate and develop methods to deal with different types of uncertainty with the aim of
providing robust and superior estimators.

For example, in chapter 2, I present a Stein-like shrinkage method for estimating
the slope coefficients in heterogeneous panel data models with cross-section dependence,
when the cross-section dimension is fixed while the time dimension is allowed to increase
without bounds. The shrinkage estimator is a weighted average of a feasible generalized
least-squares (FGLS) estimator and a feasible restricted generalized least-squares estimator.
The restricted estimator belongs to a set of restricted parameter space, where the restrictions
represent possible model specifications. The shrinkage weight is inversely proportional to a
Wald statistic that measures the importance of the restrictions. The asymptotic properties
of the shrinkage estimator are given. Further, it is shown that the shrinkage estimator
is robust, and uniformly superior, in terms of asymptotic risks, relative to the FGLS
estimator. Additionally, the shrinkage estimator achieves the lowest possible asymptotic
risk in a high-dimensional large sample framework. A major advantage of this shrinkage
method is that it is generalized to allow for the limitations of the existing model averaging
techniques. For instance, the shrinkage method developed here is generalized to allow for
any patterns of correlations in errors, is not confined to specific restricted estimators, its
superiority conditions hold for any weighted mean squared error where the weight matrix
is symmetric positive definite, and achieves the lowest possible risk bound. The finite
sample performance of the proposed estimation method is evaluated via extensive simulation
studies, that support the theoretical findings. As an empirical illustration, the method is

applied to forecast the output growth rate of 33 advanced and emerging economies in the



global economy using a set of macroeconomic and financial variables by allowing potential
parameter heterogeneity structures in the slope coefficients. This methodology has two
major advantages over the existing studies: it considers the classification uncertainty about
the potential heterogeneity, and allows for general correlation patterns across the errors
in the cross-section equations of output growth. The results indicate that the shrinkage
estimation forecast outperform the fixed effects and individual estimation forecasts.

In chapter 3, I consider dynamic panel data models with fixed effects and multiple
exogenous regressors. The typical estimator in this framework is the Arellano-Bond
generalized method of moments (GMM). One can gain in efficiency of the GMM by
estimating the parameter values using all lagged dependent variables as instruments.
However, estimation based on instrumenting all lagged dependent variables may suffer
from substantial bias. On the other hand, the GMM estimators that use one lag (or
fixed number of lags) as instruments are asymptotically unbiased under forward demeaning
transformation, but not as efficient as the former one. In this chapter, I introduce an
averaging estimator which is a weighted average of the GMM estimator using all lags as
instruments, and the GMM estimator using one lagged dependent variable as instruments
to balance this trade-off between the bias and variance efficiency. The averaging weight is
proportional to a quadratic loss function that minimizes the asymptotic risk. In addition,
the optimality, and the dominance conditions of the averaging estimator are derived.
Furthermore, monte carlo simulations are provided to examine the finite sample performance

of the proposed estimator.



In chapter 4, I consider a simultaneous equations system, and develop an estimator to
deal with a typical model uncertainty that arises due to unknown magnitude of endogeneity.
When the magnitude of endogeneity is weak, one can largely gain in efficiency by
estimating the parameter values using the ordinary least squares (OLS) estimator. However,
the OLS estimator ignores the potential endogeneity and may suffer from substantial
bias. Alternatively the two-stage least squares (2SLS) or Limited Information Maximum
Likelihood (LIML) frameworks can be used, which control the endogeneity and hence ar
consistent, but the consistency comes at the cost of losing efficiency. This shows the typical
bias-variance trade-off that needs to be considered carefully by practitioners in choosing
models. To balance the trade-off, I consider two Stein-like shrinkage estimators which
are weighted averages of the OLS and 2SLS/LIML estimators, and the weight is inversely
related to a Wu-Hausman statistic that measures the magnitude of the endogeneity. I derive
the dominance conditions of the proposed estimators relative to the 2SLS/LIML estimators
for any size of endogeneity, and any weighted mean squared errors. I further investigate
the finite sample performance of the estimation method through Monte Carlo simulations.
The results show that the proposed estimators perform well, and support the theoretical
findings.

Chapter 5 considers a long-existing model uncertainty issue in panel data analysis,
referred by econometricians to as “to pool or not to pool”, on which there is still no
consensus. The issue is on how to model potential parameter heterogeneity across individual
units. To deal with this issue, I model individual heterogeneity via latent group structures

such that the slope parameters are heterogenous across groups but homogenous within



a group, and the group identity is unknown. In particular, this model setup faces
the uncertainty resulting from the unobserved heterogeneity by allowing flexible forms
of heterogeneity while remaining parsimonious. In this chapter, I provide a framework
for estimation and identification of the latent group structure using a pairwise fusion
penalized approach. 1 develop a penalized least squares (PLS) approach for models
with exogenous regressors, and a penalized generalized method of moments (PGMM) for
endogenous or dynamic models. This framework automatically partitions the individuals
into groups. Therefore, it asymptotically identifies the true structure while estimating
the model parameters consistently. Both of the estimators achieve the desirable property of
classification consistency. Further, the PLS estimator achieves the oracle property, while the
oracle property of the PGMM estimator holds under some restrictions. I have developed an
alternating direction method of multipliers algorithm to implement the proposed approach.
The method is further evaluated by monte carlo simulations, and illustrated by two empirical
analysis of unemployment dynamics at the U.S. state level, and forecasting output growth
of 33 countries using macroeconomic and financial variables.

Chapter 6 concludes and some technical results are provided in the appendix.



Chapter 2

Efficient Shrinkage Estimation in

Heterogeneous Panel Data Models

2.1 Introduction

Estimation and forecasting under model uncertainty has been one of the fundamental
issues in econometrics. In recent years, a large body of literature has been concerned
with advancing a number of different approaches to address a variety of model uncertainty
problems. The two most common approaches are model selection and model averaging.
Model selection aims to find, among the set of models under consideration, the best
approximate model for the unknown true data generating process. In this method,
investigators typically first select the best performing model based on diagnostic statistics
(like Wald test, F test, t-ratios, R-squared, information criteria, etc.) and then carry

out inference according to the selected model. This popular approach (also known as



“pre-testing”) is subject to many problems (Magnus (1999), Magnus and Durbin (1999),
Danilov and Magnus (2004a), Danilov and Magnus (2004b)). The most important problem
is that the model selection and estimation are completely separated such that the
uncertainty of the initial model selection step is ignored throughout the parameter
estimation and inference, see for example Magnus (2002) and Leeb and Pdtscher (2003),
Leeb and Pé&tscher (2006), among others, who show the initial model selection step may
have non-negligible effects on the statistical properties of the resulting estimators. Taking
the above problems into consideration, model averaging is introduced as an alternative
to the model selection. In model averaging, the uncertainty is taken into consideration
by averaging (weighted) over the set of candidate models. Model averaging methods are
distinct in two main strands based on whether the estimation of each candidate model
and the choice of the associated weighting scheme are developed along frequentist or
Bayesian paradigms. Shrinkage estimation methods, similar to model averaging, allow
for uncertainty emerging from both model selection and estimation (see Hansen (2014),
Hansen (2016)). In addition, as shown by Hansen (2016), Stein-type shrinkage estimation
methods, unlike recent model averaging techniques (such as focused information criterion of
Claeskens and Hjort (2003), the plug-in estimator of Liu (2015), and the focused moment
selection criterion of DiTraglia (2016)), have the minimax efficiency properties.

This chapter investigates a Stein-like shrinkage estimation method in linear
heterogeneous panel data models to deal with uncertainty issues about the slope parameters.
We allow for cross-section dependence and to estimate the contemporaneous error

covariances freely, it is assumed that the cross-section dimension is small and the time series



dimension is large. The shrinkage estimator shrinks a feasible generalized least-squares
(FGLS) estimator (the standard approach in this setup, see Zellner (1962)) towards a
shrinkage direction, or equivalently a set of parameter restrictions. The restrictions are not
necessarily believed to be true, but instead represent a belief about where the parameters
of the model are likely to be close. Therefore, the proposed estimator is a weighted average
of the FGLS estimator and a feasible restricted generalized least-squares estimator that
belongs to the restricted parameter space. The shrinkage weight is inversely related to a
Wald statistic that measures the weighted distance of the FGLS estimator and the restricted
estimator. The asymptotic properties of our proposed estimator are derived under some
mild conditions. Furthermore, we show the dominance properties of the Stein-like shrinkage
estimator in terms of risk, which ensures that our proposed estimator is robust against
arbitrary deviations from the restrictions. A major advantage of the shrinkage method
introduced in this paper is that, unlike most of the existing model averaging methods, it
allows for heteroskedasticity, and cross-section dependence of errors. These cross-sectional
correlations could be due to omitted common effects, spatial effects, or could arise as a
result of interactions within socioeconomic networks. In addition, the presence of some
forms of cross-sectional correlation of errors in panel data applications in economics is
likely to be the rule rather than the exception. Ignoring the cross-sectional correlations can
have serious consequences such that conventional panel estimators can result in misleading
inference and even inconsistent estimators, depending on the extent of the cross-sectional
dependence, and whether the sources generating the cross-sectional dependence (such

as an unobserved common shock) is correlated with regressors (Phillips and Sul (2003),



Phillips and Sul (2007), Andrews (2005), Sarafidis and Robertson (2009), and see a survey
by Chudick and Pesaran (2015)).

In Monte Carlo simulations, we compare the small sample performance of our shrinkage
estimator with the FGLS estimator and a restricted estimator where the restrictions impose
slope parameter homogeneity across cross-sections. The results show that the shrinkage
estimator generally produces a smaller risk than the restricted estimator, and the FGLS
estimator. As an empirical illustration, we apply our estimator to forecast the output
growth rate of 33 advanced and emerging economies in the global economy using a set
of macroeconomic and financial variables by allowing potential parameter homogeneity
structures in the slope coefficients.

The literature on shrinkage estimation is substantial, which mainly was initiated by a
seminal paper by Stein (1956). In that paper, Stein showed that the maximum likelihood
estimator (MLE) for the mean of a multivariate normal distribution is inadmissible. This
means that it is possible to construct an estimator with a smaller risk than the MLE
for the entire parameter space. James and Stein (1961) exhibited an estimator whose risk
is uniformly smaller than that of the MLE. Paradoxically, the James-Stein estimator is
itself inadmissible and can be dominated by another inadmissible estimate like its positive
part (Baranchick (1964)). Judge and Bock (1978) developed this method for most of
econometric estimators. Maddala et al. (2001) and recently Hansen (2016) use shrinkage
estimation methods to deal with model uncertainty between two candidate models. The
shrinkage estimation method in this chapter is similar to that of Hansen (2016) and

Maddala et al. (2001). The main difference is that the shrinkage weight in Hansen (2016)



is inversely related to a weighted quadratic loss function, hence is subject to rotations
of the coefficient vector, unless investigators are interested in minimizing a mean squared
prediction error. However, the one considered in this paper is proportional to a Wald
statistic which is an excellent choice as it is invariant to these rotations. Also, Hansen (2016)
considers a homoscedastic likelihood framework, but this paper considers linear panel data
models and allows for both heteroscedasticity and cross-section dependence in errors. The
difference between the method used here and the one in Maddala et al. (2001) is that
they use small-disturbance approximations to study the performance of their estimator,
which cannot be applied to a model with unknown error cross-section dependence and
variance-heteroscedasticity considered in this chapter.

Penalized methods are alternatives to shrinkage estimations for dealing with the
uncertainty of covariate selection in regression models, which is arguably the most
pervasive situation in economics. Methods that simultaneously select variables and shrink
coefficients by minimizing some penalized loss functions include, among others, the least
absolute shrinkage and selection operator (LASSO) of Tibshirani (1996), the smoothly
clipped absolute deviation (SCAD) penalty of Fan and Li (2001), and the minimax
concave penalty (MCP) of Zhang (2010). LASSO-type methods have been shown to be
particularly effective in high-dimensional settings with a true small-dimensional structure,
or when the number of predictors exceeds the sample size (see, e.g., Fan and Lv (2010);
Chernozhukov et al. (2015); Belloni et al. (2017)). However, shrinkage methods do not
exploit sparsity, and can work well even when there are many (but less than the sample

size) non-zero parameters.
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This chapter is also related to a long-existing issue in the panel data analysis,
referred by econometricians to as “to pool or not to pool”, on which there is still
no consensus. The issue is on how to model potential parameter heterogeneity
across individual units. On one hand, parameter heterogeneity results in consistent
estimation and violation of this assumption causes misleading estimates, see, for
example, Robertson and Symons (1992), Pesaran and Smith (1995), Su and Chen (2013),
Durlauf et al. (2001), and Browning and Carro (2007). On the other hand, parameter
homogeneity causes higher variance efficiency, but at the cost of estimation bias and
inconsistency of the associated estimators, which is supported by an increasing number
of studies due to a better forecast performance of these estimators, see, for example,
Maddala (1991), Maddala and Hu (1996), Baltagi and Griffin (1984), Baltagi et al. (2000),
and Hoogstrate et al. (2000). This shows the typical bias-variance trade-off that needs
to be considered in choosing parameter specifications. In the literature, there are
several ways to address this parameter heterogeneity such as the random coeflicient
model of Swamy (1970), the pooled mean group estimator of Pesaran et al. (1999), and
various group estimators, see for example Lin and Ng (2012), Sarafidis and Weber (2015),
Bonhomme and Manresa (2015), Su et al. (2016), among others. These estimators are
reasonable choices when investigators are interested in the average effect or know the
true specification of the heterogeneity structure or the number of groups. However,
researchers are often more interested in the individual parameters, and in most cases
the true specification is unknown. As a result, a more useful approach could be model

averaging and shrinkage estimation methods. Maddala et al. (2001) show the superior

11



properties of shrinkage estimators among single-equation estimators and various averaging
estimators in a heterogeneous panel data model under error homoscedasticity framework.
Wang et al. (2019) propose a Mallow pooling averaging estimator for heterogeneous panel
data models and conclude that the pooling estimator is preferred when the panel is
heterogeneous and the signal-to-noise ratio is moderate or large. The Mallow model
averaging estimator, however, is not asymptotically optimal in our framework since the
condition (C.3) of Wang et al. (2019) does not hold here. The condition requires that there
is no model for which the bias is zero, which does not hold in our framework since the FGLS
estimator is unbiased.

This chapter is mainly concerned with point estimation and does not address the
challenging issue of inference with shrinkage estimators. As a preliminary step in this
direction, we study the mean squared errors of various estimators. However, since the
distribution of shrinkage estimators are non-Gaussian, it is still unclear how to use this
knowledge to construct confidence intervals. We leave the full treatment of this nontrivial,
interesting and important issue to a follow-up paper.

The paper is organized as follows. Section 2.2 describes the model and the estimators.
In section 2.3, we study properties of the estimators. In section 2.4, the asymptotic bias,
asymptotic MSE matrix and asymptotic risk of the shrinkage estimator are presented.
Monte Carlo results are given in section 2.5. Results from our empirical example are given
in section 2.6. Conclusions are given in section 2.7. Proofs and detailed calculations are

listed in Appendix B.
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Notation: Throughout the paper we adopt the following notation. For an m X n real
matrix A we write the transpose A’. When A is symmetric, we use gpqz(A) and gmin(A)
to denote the largest and smallest eigenvalues, respectively. I, and 0,x, denote the p x
p identity matrix and p x ¢ matrix of zeros. The operator 2, denotes convergence in

probability, 4 denotes convergence in distribution, and plim denotes probability limit.

2.2 The Model and Notation

Consider the following linear panel data model with heterogeneous slopes
it = TiyBi + wit, i=1,...,N,and t=1,...,T, (2.1)

where y;; is the dependent variable, ;s = (2,1, . . . ,xit’k)’ is a k x 1 vector of the regressors
including the intercept! for unit i, and u; is the unobserved error term, where T is the time
dimension, and N is the cross-section dimension. The heterogeneous regression coefficients
B; is a k x 1 vector of unknown coefficients of interest.

Stacking the observations over N units, can be expressed as

ytr = Xt B+uy, t=1,...,T, (2.2)
where y; = (yit,...,yn7) is a N X 1 vector of observations on the dependent variables
at time ¢, X = diag(x),,...,2%y;) is a N x Nk matrix of observations at time ¢ on the
regressors, u; = (ut,...,uny) is a N X 1 vector of disturbances for ¢t = 1,...,T, and
B=(B1,...,0%) is a Nk x 1 vector of the unknown slope coefficients.

!The first element of z;; can take value one (i, = 1) for all i = 1,...,N, and ¢t = 1,...,T, which

allows for fixed effects. Also, note that we do not assume that z;;s are the same, nor do we assume they are
different across equations. In other words, our model supports complete heterogeneity, partial heterogeneity,
and complete homogeneity of regressors.

13



Alternatively, stacking the observations over ¢, we can express the model in (2.1) as

where y; = (yi1, ..., yir) is a T X 1 vector of observations on the dependent variable, X; =
(i1, .., xir)" is a T X k matrix of observations on the regressors, and u; = (u;1,. .., u;r) is
a T x 1 vector of disturbances for ¢ = 1,..., N. In a matrix form, we can write the model
as

y= X8+ u, (2.4)
where the NT x 1 vector y = (¥4, ...,yy), u= (u),...,uy), and

Xy 0 ... 0
0 X
X =
NT XNk
0O ... 0 Xy

We make the following classical linear system of equations assumptions.
Assumption 2.1 (i) E(uy|X1,...,X71)=0.
(i1) BE(u/)| X 1,..., X 1) = NEN is positive definite, and 71 is finite.
X

Assumption 2.1 (i) requires that the regressors are strictly exogenous and it excludes
regressors like lagged dependent variables. This assumption may be restrictive in many
applications, but this assumption is needed as a technical regularity condition that is

required for proving the asymptotic properties of the estimators when 7" — oo. The second
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condition requires that the disturbances are uncorrelated across the time dimension, but

can be correlated across the cross-sections. In this case E(uu/| X) = Q = ¥ ® I, where

011 012 ... OIN
021 022 ... O2N
Yy =
NxN
ON1 ON2 ... ONN

Therefore, the model of equation (2.1) can also be viewed as a system of seemingly unrelated

regressions.

2.3 Estimation

2.3.1 Unrestricted Estimator

The standard estimator of B in equation (2.4), is the feasible generalized least-squares

(FGLS) estimator of Zellner (1962). This estimator is defined as

T

N -1 A
= g+(ZXftz—1X,t> X5y, (2.5)
t=1

B=XO'X)IXAO

where Q = ¥ ® I, and ¥ is a consistent estimator of ¥. The (1,7)th element of S is Sij
which estimates o0;; using single-equation least-squares estimator of 3;, denoted by ﬁvl =

(X!X;) 1 Xy;, for i = 1,2, ..., N. Hence
sij = (yi = XiBi) (y — X38))/T = w;M;Mju;/T, (2.6)

where M; = It — XZ(X{Xl)ilXZ
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2.3.2 Restricted Estimator

Because of a belief that the true parameter values may be close to a restricted parameter
space ©g = {8 € RV¥ : »(B8) = 0} where »(8) = RB : RV* — R? we want to shrink
B towards the restriction space ©¢y. The purpose of the restrictions can be a specification,
a structural model, a set of exclusion restrictions, parameter symmetry (like pooling), or
any other restrictions that are often tested by means of hypothesis testing to improve the

estimation efficiency.

Remark 2.2 A common restricted parameter space, ©q, of particular interest in this setup
is the homogeneity restriction of slope parameters across cross-sections, known as pooling.

In this case, we would form the restriction as

I. 0 ... 0 —I |A B — BN
0 I ... 0 —I| |pBe P2 — BN
RB = -~ o, 2.7)
0 0 ... Iy —I |BN] |Bav-1)— BN

this specifies a total of d = (N — 1)k restrictions on the Nk x 1 vector of slope parameters.

Remark 2.3 Another restricted parameter space, ©Oqg, which is common in applied
economics will take the form of an exclusion restriction for each cross-section equation.

For example, if we partition

B; = i=1,2,...,N, (2.8)

where B;1, (k—d;) x 1, represents the slopes of the core regressors, and B; 2, d; x 1, includes

the slopes of included auxiliary regressors that are included in the model for robustness but
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may or may not be included in the model. Therefore an exclusion restriction takes the form

Ry O 0 o0 B1 B1,2
0 Ry ... 0 O B2 B2,2
RB = = =0, (2.9)
(0 0 ... 0 Ry| |Bv] |Bna2

where R is a matriz of d x Nk, with R; = (0g,x(k—d,), la;), for i =1,2,...,N, and d =

Zi]\il di.-

The restricted generalized least-squares estimator is obtained as the solution to the

following minimization

Minimize (y —X3)'Q(y —Xp) subject to r(8) =0, (2.10)

s.t. B

and the solution can be formulated as the feasible restricted generalized least-squares

estimator in below

B=B- (X0 "X)'R [R(X’Q_l x) 'R RA. (2.11)

Restrictions are often tested using hypothesis testing. The hypothesis to be tested is
Hy : r(B) = 0 against the alternative, Hy : 7(3) # 0. A conventional test static that has a
limiting chi-squared distribution with d degrees of freedom when the null hypothesis is true

is

F=3R|rx 0" X)*lR’} “RB— (B - B)'X’ffl X (B . B), (2.12)
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which can be recognized as a Wald statistic (Greene (2008)) and measures the weighted

distance between ,3 and 3 2.

2.3.3 Shrinkage Estimator

We use the restrictions and the test statistic to construct a shrinkage estimator, and
show that the proposed estimator improves estimation efficiency and makes an appropriate
trade-off between bias due to possible incorrect restrictions and variance efficiency gains
from imposing the restrictions.

Our proposed shrinkage estimator of 3 is a weighted average of the FGLS estimator and

the restricted estimator

A ~

B,=wpB+(1—-w) s, (2.13)

where the weight takes the form

T

w=(1- W), (2.14)
such that, 7 is a positive shrinkage parameter that controls the degree of shrinkage.
We will defer describing the optimal choice for this parameter in the following sections.
Alternatively, w can be replaced by its positive part, (w); = w1(w > 0), as it can be easily
verified that the risk of the estimator with the positive part is smaller. However, it will
not affect the results in the following sections, so for simplicity we do not impose it at this

stage. Nevertheless, the Monte Carlo results and empirical results are reported using the

positive part weight.

2The last equality in equation (2.12) holds because
. o -1 Al A o o -1
F=p3R [R(X’Q 1X)—IR/] RX Q') (X O X)X QX R [R(X'Q 1X)_1R’] RB.
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The shrinkage estimator defined above, shrinks the FGLS estimator towards the
restricted estimator by the ratio 7/F( 3, ), such that when the difference between these
two estimators is small (the Wald statistic is small, so (1 — w) is large), the shrinkage
estimator gives a large weight to the restricted estimator, as it is the most efficient
estimator. However, when the difference between the two estimators is substantial or
high (F(3, B8) > 7), the bias of the restricted estimator could be more than its variance
efficiency gain, so the shrinkage estimator becomes a weighted average of the restricted and

FGLS estimators, while giving a larger weight to the consistent FGLS estimator.

2.4 Asymptotic Properties of the Shrinkage Estimator

In this section, we discuss the asymptotic properties, the asymptotic bias, MSE matrix
and risk of the shrinkage estimator defined in (2.13) under a general local asymptotic
framework (Assumption 2.5 below), when the time horizon 7' — oo while the cross-section

dimension (V) is fixed. We make the following standard set of regulatory assumptions.

Assumption 2.4 (i) {(X,uy),t = 1,...,T} are independent and identically

distributed.

(ii) E|zypuil® < oo, fori=1,...,N, t =1,....,T, h = 1,...,k, and E(X, 571X ) is

positive definite.

(iii) Elxypl® < oo, fori=1,...,N, t=1,...,T, h=1,...,k, and E(X, X ) is positive

definite.
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(iv) Wr is a Nk x Nk positive definite matriz and tends to finite positive definite matriz

W, asT — oo.

Assumption 2.4 (i)—(éii) require that observations are independent and identically
distributed across the time dimension, and give some standard moment conditions to ensure
the central limit theorem validity. Wr is a weight matrix in the risk of the estimators.

Condition (iv) is automatically satisfied if one sets Wp = Iyy.
Assumption 2.5 We assume that

Bi=pBi+a;, i=1,2,...,N,
and

o =T7%6;, where k>0, and, 6 € R,

where B; is a centering value which belongs to the restricted parameter space g, §; € RF
is a localizing parameter which shows the difference between the unrestricted and restricted
parameter space, and k is the speed by which the localizing parameter converges to zero. In

a matrix form we can write the equations above as

B=Bta=prT s

where o = (ar,ab,....a\x) and & =(8,,685,...,5%).
NEx1 ( 1) %2 ’ N) 1 (17 29 ’ N)

Remark 2.6 When the restricted parameter space exhibits the parameter symmetry
restrictions across the cross-sections (see Remark 2.2), Bi represents a common mean, i.e.

Bi=p fori=1,2,...,N.
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Remark 2.7 For the restricted parameter space in Remark 2.3 that exhibits the exclusion

restriction parameter space, the centering parameter takes the form B; = ( 2’-71, Oilixl)’.

Assumption 2.5 controls the magnitude of the difference between the restricted and
unrestricted parameter space. We need this assumption to ensure that the distance between
these two parameter space diminish as the sample size increases. Because otherwise, the
magnitude of the bias and the risk of the restricted estimator increase with the sample size,
and there is no gain of shrinking the unrestricted estimator toward the restricted parameter
space. We will discuss in detail how different values of k affect the bias and risk of the

shrinkage estimator in Theorem 2.9.

Theorem 2.8 Under assumptions 2.1-2.4, the asymptotic distribution of the FGLS

estimator is

VI(B—B) % 2~ NO.V), where V= [E(X,57X,) - (2.15)

and together with assumption 2.5, the asymptotic distribution of the restricted estimator is
VT(B-8)% Z-VR(RVR) 'R(Z+ VT a). (2.16)
Further by using the above equations,
F(B,B8)% (Z+VTa)R(RVR)'R(Z+ VT a) = £(Z) ~ x3(6' A6), (2.17)

where® @ = V-Y2/Ta, A= V2R (RVR)"'RV/2 is an idempotent matriz, and for the
shrinkage weight, we have

T d T
O N I

3Xf,(q) represents a chi-squared distribution with p degrees of freedom and a non-centrality parameter gq.

) =w(Z). (2.18)
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Therefore, the asymptotic distribution of the shrinkage estimator is
VT(B,—B) S w(2)Z+ (1 -w(2)(Z - VR(RVR)'R(Z+VT ) = Z,.  (2.19)
Proof: Appendix B, (See page 150).

Theorem 2.8 gives the asymptotic distribution of the shrinkage estimator, which is a
non-linear function of a normal distribution, and will be used to approximate the moments
of the shrinkage estimator. Moreover, since the shrinkage estimator is a non-linear function
of random variables, obtaining its bias, mean squared error matrix (MSEM), and risk is
difficult. Hence, as a useful approximation, we study the truncated moments of the shrinkage

estimator as T — oco. We define, the asymptotic bias of the shrinkage estimator as

ABias (8,) = lim lim E [Tnn(yTn\ < ’y)} — E(Z,),

Y—00 T'— 00

where T}, = VT (,38 — B). The asymptotic MSEM of the shrinkage estimator is defined as,

AMSEM(3,) = lim lim E [TnT,;1L<|Tn| < 7)] — E(Z,7)),

Y—o0 T'— 00
and the asymptotic risk of the shrinkage estimator for a weight matrix Wr satisfying

Assumption 2.4 (iv), is defined as

ARisk (8) = lim lim E [T,;WTTnn(\Tn| < 7)] = E(Z\WZ,) = tr (WE(Zszg)).

Y—o0 T'—00

The last equality in the above equalizations hold, because the truncated moments are
continuous and bounded functions of the shrinkage estimator. Consequently, we can

approximate the truncated moments, as the sample size increases with negligible trimming,

using the asymptotic distribution of the shrinkage estimator #. Furthermore, Wr is a

4This holds because for every bounded continuous real-valued function f, Zr < 7 if and only if
E(f(Zr)) & E(f(Z)), see theorem 1.8.8 of Lehmann and Casella (1998). In our case, f(Tn) = Tn 1(|Tn| <
) +~1(|T%| > 7) for the asymptotic bias, and is similarly defined for the asymptotic MSE matrix and risk.
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positive definite weight matrix that satisfies condition (iv) in Assumption 2.4. Two arbitrary
choices of Wy are Iy, and T-1(X' Q1X)~!, where the former one in the risk, provides an
unweighted mean squared error (MSE), and the latter gives the mean squared forecast

(prediction) error (MSFE).

Theorem 2.9 Under assumptions 2.1-2.5, the asymptotic bias of the shrinkage estimator

18

(2.20)
and the asymptotic MSEM of the shrinkage estimator when d > 2 is
AMSEM (B,) =V + = VR(RVR) 'RV e
di2 1F1(g -1, g—l—l; T1—2ﬁ)\) _21F1(g7 g+1; T1—2n)\)

+7 T VR(RVR)'R§& R(RVR) 'RV TN

T d d 1 d d
T F(f,f 2;T1*2M)—2[— F<f 1,2 2;T1*2M)
ddt+2) " N\g gt dr2 " \gth gt

e g

(2.21)

where A = & R'(RVR)"'R§/2, and 1Fi(.,.;.) denotes the confluent hypergeometric

function °.

5The confluent hypergeometric function is given by

n

1Fi(a,cz) = Z (@)nz

(c)nn!

n=0

where (a), =a(a+1)...(a+n—1), (a)o =1. Also (a)n =I'(a + n)/I'(a) for positive a.
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Proof: Appendiz B,(See page 153).
Corollary 2.10 Under assumptions 2.1-2.5, and d > 2, we have the followings:

(i) If 0 < k < 1/2, the shrinkage estimator is asymptotically unbiased, consistent, and

very close to the FGLS estimator
ABias (8,) = —T~(1-20)/2 %VR’(RVR')*R& [1 + O(T*(“Q"‘))} , (2.22)

and the asymptotic MSEM is

2
AMSEM (B,) =V —T7~0=29 YV R(RVR) 'RV + T~ (129 [L n L]
A AN AL (g 93

VR(RVR)'R68 R(RVR) 'RV + O(T2072%),

(i) Local Asymptotic: If a; = ;T2 i =1,2,...,N, i.e. k= 1/2, then the shrinkage

estimator has an asymptotic bias of order O(T_l/Q), s consistent and we have

ABias (B,) = —~ e *VR/(RVR) 'Ré F ( d , dy 1; )\), (2.24)
d 272
and
AMSEM (B,) =V + = e |-~ F(ii—1 §+1'A>
s/ d d—2"'"\2 g
d d ) . \ T d d
21F1<2,2+1,)\) VR(RVE) RV + 7 | s 1F1<2,2+2,)\>
1 d d 1 d d
=2l A5l g2 ) - gia(g g )
VR (RVR)™'R6& R'(RVR)"'RV.
(2.25)

Proof: Appendix B, (See page 156).
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Remark 2.11 The asymptotic MSEM of the shrinkage estimator in (2.25) can be rewritten

as follows ©

~ B 1 Y d d . 2 / /\—1
AMSEM (B,) =V + g e 1F1(2 1,2+1,A){T 27(d 2)]VR(RVR) RV
PN S 1F1(§ §+2 /\) 724+ 47 \VR'(RVR)'R6 8 R(RVR') 'RV
d(d + 2) 272 7

—47AVR/(RVR) 'RV

(2.26)

In the following corollary, we give our recommended value of 7 that minimizes the risk

of the shrinkage estimator under the local asymptotic condition.

Corollary 2.12 Under assumptions 2.1-2.5, when k = 1/2, tr(C)/0maz(C) > 2, and

0<7<2 [ t1(C)/ 0mas (C) — 2}, then

s e e tr(C) 2
ARisk (,Bs) S ARisk (B) — d|:2T(‘QTnax(C’) —2> — T :| (227)
() d . d D . gd d
|:d_21F1<21a2+1a)\>+d_'_21F1<272+2a)\>:|5

where ARisk (8) = tr(WV), C = AVI2WVI2A, Ay = & V-12CV~128 /2. The above
result shows the superiority of the shrinkage estimator relative to the FGLS estimator. The

optimal shrinkage parameter that minimizes the risk is

Topt = tr(c)/gmam(c) -2 (228)

Proof: Appendix B, (See page 156).

5The result holds by using the following identities
(c—a—1)1Fi(a,c;x) = (c—1)1Fi(a,c— 1;2) —a1Fi(a+ 1, ¢ ),
1Fi(a,¢2) = 1Fi(a+1,¢x) — % 1Fi(a+1,c+ 1;z),

See Lebedev (1972), pp. 271.
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Remark 2.13 As the optimal shrinkage parameter depends on €2, which is unknown, it can

be estimated. That is one can replace Q) by its consistent estimator Q, and use
Fopt = t1(C)/ 0maz(C) — 2. (2.29)
In this case as T' — 00, Topt LN Topts and the results of corollary 2.12 will still hold.

Corollary 2.14 Under assumptions 2.1-2.5, when k = 1/2, d > 2, and 0 < 7 < 2[d — 2],

the MSFE of the shrinkage estimator (W =V 1) is

1
d—2

d d 2 2.30
5—1,5,)\)[27(d—2)—T , (2.30)

MSFE (3,) = MSFE (8) — e 1F1<

where MSFE (B) = Ink. The value of T that minimizes the MSFE of the shrinkage estimator

18
TFopt =d — 2, (2.31)
and the MSFE of the optimal shrinkage estimator is

MSFE (B, ;) = MSFE (8) — ¢ (d—2) 1 Fy (g _1, 4 )\). (2.32)
Proof: Appendiz B,(See page 157).
Corollary 2.15 Under assumptions 2.1-2.5, when k = 1/2, and d > 2, if \ = oo 7 then

ARisk (B,,,) = ARisk (B) + 0(%). (2.33)

Proof: Appendix B, (See page 156).

"Equivalently when § — oo.
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The result in corollary 2.15 suggests that if the bias of the restricted estimator is very large
(the restricted parameter space is too far from the true parameter space), the shrinkage
estimator is asymptotically very close to the FGLS estimator, and achieves the global
minimax efficiency bond of van der Vaart (1998). This condition assures that even for
very large values of § in assumption 2.5, the shrinkage estimator remains asymptotically

consistent and efficient by giving a weight one to the FGLS estimator.

2.4.1 High Dimensional Shrinkage

In this section, we study the performance of our estimator in a high dimensional case
where the number of restrictions increases without bound. The asymptotic properties of
our estimator is given in the following theorem using a sequential approximations by letting

first the sample size, and then the number of restrictions, tent to infinity.

Theorem 2.16 Under assumptions 2.1-2.5, when k = 1/2, if as d — 00, limg_yoo A/d — 0

then
ARisk (£
im w <1-—p, p= lim M, (2.34)
d—oo  ARisk (3) d— oo tr(WV)
where 0 < p < 1. If W = VL, then we have
MSFE (f
im M =1-— lim —. (2.35)
d—oco  MSFE () d—oo NK

Also, in the expressions above the optimal shrinkage estimator can be replaced with any

shrinkage estimator in which the shrinkage parameter, T, satisfies the condition below

lim 1. (2.36)

d— 00 Topt

Proof: Appendiz B,(See page 158).
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The right hand side of equation (2.34) is equal to the local minimax efficiency bound given
in Theorem 5 of Hansen (2016), which specifies that our proposed estimator asymptotically
achieves the local minimax bound, while the FGLS estimator does not. Therefore,
the shrinkage estimator proposed in this paper is locally the most efficient estimator.
Consequently, there is no need to find alternative methods (like model averaging) to balance
between the bias and variance efficiency. A major advantage of our proposed shrinkage
method relative to the Stein-type shrinkage estimator considered in Hansen (2016) is that,
the risk of our estimator does not depend on the bound size of localizing parameters, as a

result the gain of our proposed estimator relative to the FGLS estimator can be quantified.

2.5 Monte Carlo Simulation

The results below are the simulation results of the model of section 2.2, where ;1 =
1 and the remaining regressors are independently generated from the standard normal
distributions. The sample size varies from T € {50,100,200}, N € {3,5}, k € {4,6},
leading to twelve combinations of N, T  and k. wuy is generated as i.i.d N(0,1), while u; =
cup + v, for i = 2,... N, where v; ~ i.i.d N(0,1) and ¢ = 0.25. We consider two DGPs
for generating 3;, the first one is under a complete heterogeneity in coefficients where we

assume that

DGP1: B; =B+ (ixd)/N,i=1,2,...,N,
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with 8 = (1,1,...,1), and the second DGP is under a partial heterogeneity where we

assume that

L4 (i x 8)/N, ifi=1,...,[N/2]
DGP2: /Biluﬂlg = )/Bil = 27 le {37 s 7k}7

1.2, ifi=[N/2]+1,...,N
where [N/2] denotes the nearest integer value that is smaller than N/2, and ¢ takes values
on a 10-point grid on [0, 1].

The results of 1,000 monte carlo simulations are given in Figures 2.1-2.8, where the
vertical axis measure the relative mean squared error (RMSE) of the FGLS estimator, the
restricted estimator, a pre-test estimator, and the optimal shrinkage estimator, to the FGLS
estimator. The horizontal axis measure the degree of heterogeneity (¢) which is set between
zero and one with 0.1 grid value.

The Monte Carlo results support our theoretical findings of the previous section.
The figures show that the RMSE of the shrinkage estimator for the whole parameter
heterogeneity is below that of the FGLS estimator. This shows the superiority of our
proposed shrinkage estimator relative to the FGLS estimator.

The RMSE of the shrinkage estimator in DGP1 of a complete heterogeneous panel data
model, is smaller than that of the restricted estimator except for very small values of
parameter heterogeneity. This is expected because as d takes higher values, the bias of the
restricted estimator increases, which then increases its MSE. Also, when the sample size is
larger, the RMSE of the shrinkage estimator dominates that of the restricted estimator for
most values of §. In DGP2 where the model is characterized by some degrees of homogeneity,

the RMSE of the restricted estimator remains smaller than that of the FGLS estimator for
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even larger values of §. In this case, the FGLS estimator can be inferior to the restricted
estimator even with the presence of weak degrees of heterogeneity. This is because although
the FGLS estimator is unbiased, it is inefficient, especially under small sample sizes, and
high number of regressors. In contrast, the restricted estimator properly makes use of
cross-section variation and thus provides a more accurate results.

In general, we find that the shrinkage estimator performs robustly well in heterogeneous
panel data models with various degrees of heterogeneity. @~ When there is a strong
heterogeneity, the shrinkage estimator prevails. = When there is a relatively weak
heterogeneity, the shrinkage estimator tends to gain more from the efficiency of the restricted
estimator by assigning a larger weight to this estimator, and thus still remains one of the

best choices.

2.6 Application: Forecasting Cross-Country Output Growth

In this section, we present an empirical application that highlights the utility of the
shrinkage estimator in forecasting. In particular, we forecast the output growth rate of 33
advanced and emerging economies in the global economy using a set of macroeconomic and
financial variables by allowing potential parameter heterogeneity structures in the slope
coefficients. This allows us to shrink the slope parameters of the countries with close
response variables which can improve the forecasts. As pointed out by Pesaran et al. (2009)
the unobserved heterogeneity is an important issue that practitioners face when constructing
forecasting models which is still an open discussion. We consider a panel data model with

an uncertainly about the parameter heterogeneity structures which adds to the current and
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ongoing literature of forecasting economic and financial variables across countries including
Dees et al. (2007,a), Dees et al. (2007,b), and Pesaran et al. (2009), among others.

The data set is taken from the Global VAR (GVAR) dataset®. We use quarterly
macroeconomic and financial variables including log real GDP (y;), the rate of inflation
(mit), short-term interest rate (r;), long-term interest rate (Ir;), and log real equity prices
(git) for N = 33 economies from 1979Q2 to 2016Q4.

We are interested in forecasting i quarters ahead rate of log real GDP, with the predictors
in 2zit = (Arip — A, Alryy — Ay, Agiy — Amie) and 2, = (Ayjy, Ary, — Amh, Alry, —
Amh, Agiy — Ar},), where 2 is the country-specific foreign variables. The foreign variables
are constructed using rolling three year moving averages of the annual trade weights which
are computed as shares of exports and imports for each country °.

Therefore, we consider the following equation
ApYit+n =1 + Bgzit + ﬂf/z;‘t +uy, t=1,...,N,andt=1,...,T, (2.37)

where Apy;i4n = Yir+n — yit for the forecast horizon h, and the slope parameters, [},
admit a possible parameter heterogeneity structure, while 7; and (; are heterogenous
across countries. We estimate the slope parameters using the shrinkage estimation method
developed in the previous sections. In our analysis, we consider up to h = 4 (four quarters
ahead) and report results for one quarter ahead (h = 1) and one year ahead (h = 4). The
forecasts are constructed using expanding windows of 15 (T' = 60), 20 (7" = 80), and 25

(T = 100) years time periods for the initial estimation window. When T = 60, this leaves

8The data is available at the GVAR Toolbox webpage https://sites.google.com/site/gvarmodelling/data

9For example the trade weights of year 2016 is based on the average trade flows computed over the three
years 2013-2015. Because the trade flows observations start at 1980, the process of computing time-varying
trade weights was initialized by using the same set of weights for the first four years of the sample period.

31



us with the last Hy = 83 out-of-sample evaluation periods, 1996Q2-2016Q4 for h = 1, and
Hy = 79 out-of-sample evaluation periods, 1997Q2-2016Q4 for h = 4.

We evaluate the forecasting performance of our method, with individual equations
forecasts, and a fixed effect approach using the root mean squared forecast error (RMSFE)

of any given model, which is averaged across the N countries as below

T+H,—1
RMSFE(h,H) = }: }: h=1,4, (2.38)

where é;(h) = ApYitrn — A/h\yi’ﬁh‘t is the h—quarter ahead forecast error, with Apy; 14+n
being the actual value, and A/;E/M +h|¢ the corresponding forecast formed at time ¢. RMSFE
and relative RMSFE statistics for the one-quarter and one-year ahead forecasts of output
growth rate are reported in Table 2.1.

Diebold and Mariano (1995) (DM) test statistics for testing Hy : E (ﬁ:ztm(h)> =0,
where Zitm(h) = €% shrinkage(P) — €3 m(h) is the difference between the h—quarter ahead
squared forecasting errors of our shrinkage method and method m (fixed effect or individual

equations models) for country i. Specifically, by assuming serially uncorrelated h-step-ahead

forecasting errors, we have

Zim(R)
DM; p(h) =/ Hp = ,

i=1,...,N, and h = 1,4, (2.39)

where @, (h) = Hh Zzﬂ?}ﬁ”l Zit,m(h) is the sample mean of &, (h), and

T+Hy,
Gim(h) = H —1 Z (ffit,m(h) - iit,m(h))% (2.40)

To compare the forecasts across the countries, we compute the panel version of the DM
test which is proposed in Pesaran et al. (2009) to statistically test the panel forecasts across

countries against each method for a given forecast horizon. The panel DM (DM) statistic
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under assuming serially and cross-sectionally uncorrelated h-step-ahead forecasting errors

is defined as

DM, = —""/ h=1,4, (2.41)

where Zp(h) = = SN & n(h) and V(g:«m(h)) - ﬁ(% SN lefgm(h)). The panel DM
test results are reported in Table 2.2 for one-quarter and one-year ahead forecasts.

We note that one quarter ahead shrinkage estimation forecasts perform better than the
fixed effects and individual estimators in all cases and the panel DM tests are significant.

For the one-year ahead forecasts our proposed shrinkage estimation forecasts outperforms

the other two methods.

2.7 Conclusion

We introduce a new method of estimation and forecasting in heterogeneous panel data
models under cross section-dependence and heteroscedasticity of the errors to address the
problem of model uncertainty. This method has four main advantages relative to the other
model averaging and shrinkage estimation methods. First, it allows for heteroscedasticity
and cross-section dependence of error terms which is essential in most of the panel data
model applications. Second, the dominance and optimality of the shrinkage estimator
proposed here is not limited to MSFE and holds for any weighted quadratic loss function
where the weight is positive definite and symmetric. Third, the shrinkage weight is
proportional to a Wald statistics that controls for rotations of the coefficient vectors,

hence provides a shrinkage estimator with a uniformly lowest risk. Lastly, the framework
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considered here is not limited to the local misspecification, and the dominance properties
of the shrinkage estimator is given against a set of deviations from the restrictions.
Moreover, this chapter contributes to the long-existing issue in the panel data analysis
referred by econometricians to as “to pool or not to pool”. We compare the performance
of our proposed estimator with the single-equation and pooling estimators, and show the
reliability of the estimation results under our shrinkage estimator. Moreover, we apply
our method to forecast the output growth rate of 33 advanced and emerging economies
in the global economy using a set of macroeconomic and financial variables by allowing
potential parameter heterogeneity structures in the slope coefficients. Our method has two
advantages over the method considered in the literature. First, it allows for correlation
among the error terms across the courtiers. This correlation could be due to omitted
common effects, or could arise as a result of interactions within socioeconomic networks.
Second, as there is a model specification uncertainty issue about the parameter heterogeneity
of the output growth rates, our method, unlike previous studies, considers the uncertainty
of model selection and estimation jointly. Therefore, the results are more robust and reliable

than the single-equation or pooling estimators mostly considered in the literature.
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Figure 2.1: Relative MSE of Unrestricted, Restricted, Pre-test, and Shrinkage Estimators,
for DGP1, N =3, k=4
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Figure 2.2: Relative MSE of Unrestricted, Restricted, Pre-test, and Shrinkage Estimators,
for DGP1, N =3, k=6
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Figure 2.3: Relative MSE of Unrestricted, Restricted, Pre-test, and Shrinkage Estimators,
for DGP1, N =5, k=4
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for DGP2, N =3, k=6
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Figure 2.8: Relative MSE of Unrestricted, Restricted, Pre-test, and Shrinkage Estimators,
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Table 2.1: RMSFE performance of the shrinkage estimation, individual estimators, and
fixed effect methods for one quarter ahead (h = 1) and one year (four quarters, h = 4)
ahead output growth forecasts across 33 countries

T =60 T =80 T =100

Models RMSFE Relative RMSFE Relative RMSFE Relative
(x100) RMSFE (x100) RMSFE (x100) RMSFE

h=1
Shrinkage Est. 1.300 1.000 1.234 1.000 1.250 1.000
Fixed Effects 1.358 1.013 1.245 1.010 1.270 1.012
Individual Est. 1.308 1.001 1.239 1.004 1.255 1.003
h=4
Shrinkage Est. 3.216 1.000 3.080 1.000 3.103 1.000
Fixed Effects 3.312 1.030 3.177 1.031 3.186 1.001
Individual Est. 3.220 1.001 3.083 1.001 3.106 1.027

Note: RMSFE is computed using an expanding forecasting scheme with an initial window

of 60, 80, and 100 observations.

Table 2.2: Panel DM statistics for one quarter ahead (h = 1) and one year (four quarters,
h = 4) ahead shrinkage estimation forecasts of real output growth relative to fixed effects
and individual estimators as benchmarks for the T' = 60, 80 and 100.

Benchmark Models T =60 T =80 T =100

h=1
Fixed Effects —1.350* —1.432%  =2.717"**
Individual Est. —2.463"* —-3.821"*  —1.500*
h=4
Fixed Effects —3.266™*  —2.927**  —1.896™*
Individual Est. —2.251**  —1.843** —1.620*

Note: The results represent a one sided test, thus the 1% (***), 5% (**) and 10% (*) critical
values are -2.326, -1.645, and -1.282, respectively. A positive value of the panel DM statistic

represents evidence against the shrinkage estimation forecasts.
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Chapter 3

Using All Lags or One Lag as
Instruments: an Averaging

Estimator in Dynamic Panel Data

Models

3.1 Introduction

Analysis of linear dynamic panel data models where the time dimension (T') is
not negligible relative to the cross section dimension (N), has recently received large
attentions in applied microeconomics as a result of increasing availability of micro-panels.
Due to the endogeneity problem, the estimation of dynamic panels with individual

effect is carried out predominantly by the Generalized Method of Moments (GMM)
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after first differencing (FD) or forward-demeaning (FOD). Several GMM estimation
methods have been proposed in the literature, including Anderson and Hsiao (1981)
and Anderson and Hsiao (1982), Arellano and Bond (1991), Ahn and Schmidt (1995),
Arellano and Bover (1995), Blundell and Bond (1998), and Hayakawa (2012), among
others. One main reason for the popularity of the GMM estimation approach is that
they may provide asymptotically efficient inference employing a relatively minimal set
of statistical assumptions. However, despite its optimal asymptotic properties, the
performance of GMM estimators can be poor, specially when T is large, due to abundance
of moment conditions.

Because of the over-identification, an important practical issue in such models is how
many moment conditions to use. In practice, as it is shown in the literature (see, e.g.,
Bekker (1994)), numerous instruments can overfit endogenous variables in finite samples,
resulting in a trade-off between bias and efficiency. This has resulted in a substantial
theoretical work on the overfitting bias of the GMM estimators in panel data models.
Alvarez and Arellano (2003) analyze a panel autoregressive model of order one, and show
that although GMM remains consistent for 7/N — ¢, so long as 0 < ¢ < 2, for
¢ > 0 the estimator exhibits a bias in its asymptotic distribution that is of order 1/N.
Bun and Kiviet (2006) show that in comparison with the GMM estimators that employ all
available instruments, reducing the set of instruments by order T decreases the bias by
an order smaller in magnitude by a factor 7. Hsiao and Zhou (2017) show the asymptotic
properties of the GMM estimators that are based on FD or FOD can be different. They

show that when all available instruments are used, the two differencing methods of the GMM
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estimation methods are biased of order \/c as (N, T) — oco. However, if only a fixed number
of instruments are used, the GMM based on FD remains asymptotically biased of order
V¢, while the GMM based on FOD is asymptotically unbiased even ¢ # 0 as (N,T) — oo.
Ziliak (1997) examines the bias/efficiency trade-off issue using bootstrap algorithms in an
empirical application to life cycle labor supply under uncertainty. Ziliak (1997) shows that
the downward bias in GMM becomes larger as the number of moment conditions expands,
where the bias is due to the nonzero correlation between the sample moments used in
estimation and the estimated weight matrix. Windmeijer (2005) in a monte carlo simulation
reported that for the two step FD GMM, using only two lags of the dependent variable as
instruments appeared to decrease the average bias by 40% relative to the estimator that
made use of the full set of instruments, although the standard deviation of the estimator
increased by about 7.5%. Roodman (2009) compared two popular approaches for limiting
the number of instruments: (i) the use of (up to) certain lags instead of all available
lags and (ii) combining instruments into smaller sets. His results show that the bias in
system GMM based on the first approach is similar to the bias when using the full set of
instruments. However, there is clear bias reduction under the second approach. This is
while, Hayakawa (2009) shows that in panels with large unobserved heterogeneity the bias
in FD GMM can actually be larger when using a smaller set of instruments.

This chapter contributes to the GMM literature by introducing the idea of model
averaging and shrinkage estimation in selecting the number of moments. Essentially, we
introduce an averaging estimator which is a weighted average of the GMM estimator using

all available lags, and the GMM estimator using the most recent lag as instruments. The
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weights are similar to a minimum mean squared error estimator weights, which measure
the weighted distance of the two GMM estimators. We derive the first order approximate
bias, mean squared error matrix (MSEM) and risk of the averaging estimator, and show its
robustness and efficiency.

The reminder of this chapter is organized as follows. Section 3.2 describes the model
and the assumptions. In section 3.3, we introduce and study properties of the estimators.
We give the bias, mean squared error matrix, and the risk of the averaging estimator
using asymptotic expansions in section 3.4. Monte Carlo results are given is section 3.5.
Conclusions are given is section 3.6. Proofs and detailed calculations are listed in Appendix
C.

Notations: Let A be a n x n symmetric matrix, tr(A) denotes the trace of matrix A,

Omaz(A) and @min(A) denote the maximum and minimum eigenvalues of matrix A.

3.2 The Model

Consider the following first-order linear dynamic panel data model with multiple

regressors

yitzyyi7t_1+x;t6+uit, 1=1,2,...,N,t=1,2,...,T, (31)

where z;; is a (k — 1) x 1 vector of observations on the regressors, 8 is a (k — 1) x 1
vector of unknown coefficients, and the disturbance term contains two error components, an

unobserved individual specific effect 7;, and a general disturbance term €, i.e. u; = 1;+ €;.
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We assume that the time-variant regressor x;; is correlated with 7;, and is strictly exogenous

with respect to €;, i.e.
E(ziejs) =0, ,j=1,...,N, and t,s=1,...,T. (3.2)

We assume mutual independence of the cross-section units and serial independence of the

disturbances, i.e. fori=1,2,... ., N, t=1,2,...,7T,

i ~ i.i.d.(0,07), (3.3)

€t ~ i.i.d.N(0,02), (3.4)

We assume the two error components are uncorrelated and all N initial observations y;o are

uncorrelated with all disturbances for ¢ > 0, i.e.

E(nlejt) = 07 Vi7j7t> (35)

E(yioejt) = 0, Vi,j,t > 0. (36)

Furthermore, we suppose that the model is dynamically stable, that is we assume that for
the model in equation (3.1), |y| < 1.

As in Kiviet (1995), we decompose y;; and z; into zero mean relevant random
components, denoted by a tilde, and irrelevant random plus deterministic components,
denoted by a bar. These expressions make fully explicit how all observations on y;; and x;
depend on both error components, which then makes it possible to obtain the approximation
results. The relevant random components are those which are related to the individual

effects, n;, and the disturbance terms, ¢;. Hence, in the asymptotic approximations we
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condition on i = yit — Yit, and Ty = Xy — Ty, Vi, t. Therefore, we decompose x;:, for
i=1,....N,t=1,...,T, as
Tit = Tit + Tit, (3.7)
Ty = TN, (3.8)
where E(Z;1;) = 0 and E(Zj€ej5) = 0 for all ¢,j = 1,...,N and ¢,s = 1,...,T, and the
(k—1) x 1 parameter 7 allows for the correlation between the regressors and the individual
effects.
Regarding y;;, for the relevant random component, ¢;;, and the irrelevant component,
yit, fori=1,2,... N, t=1,2,...,T, we have
it = VJip—1 + Ty + i + €, (3.9)
Yit = VYir—1 + Ty B- (3.10)
In order to further decompose the relevant random components of 7;; into the two error

components 7;, and €;;, we need to make an assumption on the accumulated size of the

individual effect in y;9. For simplicity, we assume that
E(gjitmi):am, i:1,2,...,N,t:0,1,...,T, (311)

where o« = (1 + 7/8)/(1 — 7). The above equation implies that the long-run impact of
the individual effect on y;; is already present in y;p, so we have mean-stationarity for y;;.

Further, we assume
Yio = an; + weo, 1=1,2,...,N, (3.12)

where as Kiviet (1995) we choose w = 0, because when x;; is strongly exogenous, €;o is an

irrelevant random component and should not be included in ;.
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Stacking observations over time, for i = 1,..., N, we get

Yi = VWi(—1) T XiB + nier + €, (3.13)
Xi=Xi+ X = X; + migr’, (3.14)
where y; = (Y, %)y Yi—yy = Wios--svir-1)s & = (€,...,a7), Xi =
(i1, .., xir)y Xi = (T, ..., Zip), and vp = (1,...,1),is a T x 1 vector of ones. From

the above it follows that, for ¢ =1,..., N,

Ji = VPi—1) + ('8 + Ve + € = v(Lrgi + Gioer,) + ('8 + Dmier + e, (3.15)

where Lp is a T x T matrix with ones on the first lower sub-diagonal and zeros elsewhere,
and e; ; is an ¢ x 1 vector of zeros with jth element equal to one. Using equation (3.12), the

relevant random part of y; can be written as
Yi = amier + I're, (3.16)
where I'r = (Ip — ’yLT)_l, and the irrelevant part of y; can be written as
gi =rXip. (3.17)
Stacking the T observations per individual over all N individuals yields
y=Wi+u, (3.18)

where § = (v,4')", y and u are NT x 1, W = (y(_1),X) is NT x k, u = Sn + ¢, with
S = In®ur and n = (n1,...,mn)". Therefore, the random part of y can be written as
g =aSn+Te, (3.19)
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where I' = In®I'7, and the irrelevant part can be written as
y=TX}. (3.20)
Also, we decompose W in a relevant and irrelevant components as below

w

(ﬂ(_l),Y) = (LFYB,Y), (3.21)

W = (§(_1), X) = Sna + LTee}, 1, (3.22)

where a = (a,7’) is 1 X k, and

X = Syr'. (3.23)

3.3 Estimation

The assumptions made on the stochastic structure of the model in the previous
section contain a set of linear and non-linear moment conditions for each individual
unit, see Ahn and Schmidt (1995). In this study we will focus on method of moments
implementations using only linear moment conditions and we will not exploit any
moment conditions associated with the homoscedasticity of ¢;. To eliminate the time
invariant individual effects, we employ the forward demeaning (FOD) transformation
method proposed by Arellano and Bover (1995). We define P = IN®Pr to be the FOD
transformation, where Pr is a (T'— 1) x T upper-triangular matrix with rank 7" — 1 and

Prup = 0, which transforms y;; as

X 1
Yit = Ct|Yit — m(%,tﬂ +ot yiT)], (3.24)
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with ¢ = (I' — t)/(T —t + 1). Since PrP} = Iy_;, independence of €; is preserved
in the transformed model which is the advantage of the FOD transformation method.

Premultiplying model in equation (3.18) by P, will result in
Py = PW§ + Pe. (3.25)

For the above model, we consider GMM estimations exploiting m; = k(T — 1) = O(T)
and mg = kT(T — 1)/2 = O(T?) moment conditions for each individual i. These can be
expressed as E(Z';;Pre;) = 0, for | = 1,2, where Zj; is a (T' — 1) x m; instrument matrix

with variables in levels, defined as

vo 4 0 0 O O O ... O ... 0 o ... 0

0 0 wo vy 2'a 22 0 ... 0 0

0o ... 0 o ... 0
0O o 0O 0 o0 0 ... ... Yo ... YiT—2 Tia ... a:anl
(3.26)
and
yio i1 0 0 0o ... 0 0
0 0 yan a2 0 0
Ziu=| 1 . : - (3.27)
0 0 0 0 .. 0 0
0 0 0 0 ... 0 yr-2 it

Stacking over individuals the moment conditions can be written as

E(ZjPe)=0, 1=1,2, (3.28)
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where Z; = (Z},,...,Z]y) is N(T — 1) x my. Provided P'Z; has full column rank, the

Arellano and Bond (1991) type GMM is to find & that minimizes the quadratic form
1 & 1 & 1 &
(% > Z;Z.Pm)’(m > Zl’iPTel-e;P}Zh)(N > ZiPrei), 1=1,2. (3.29)
i=1 i=1 i=1

3.3.1 GMM Estimator Using All Lags as Instruments

The solution to the minimization in (3.29) when all lags are used as instruments
(instruments matrix Zs), yields to an optimal one-step GMM estimator which can be

formulated as

~ -1 -1

Sanne = (W’P’M2PW) W'P' MyPy = 6 + (W’P’MgPW) W'P'MyPe,  (3.30)
where My = Z5(Z425)~1Z} is an N(T — 1) x N(T — 1) idempotent matrix.

Theorem 3.1 The bias of the GMM estimator using all lags as instruments up to order

O(ﬁ) is
. -~ 1
BZGS((SGMM’Q) = E((SGMMQ — 5) = 052 tT(HQ)QQGkJ = O(N)’ (3.31)

and the MSE matriz of the estimator up to order O(x7) is

MSE (ZS\GMM’Q) = U? t?"(HQ) 2Q26k71€§€’1Q2 + U?QQa (3.32)

where Qo = |W P'MyPW + o2eg€} , tr(Ha)| = O(1/NT), Hy = P'MyPLT, and

tr(Hy) = —Tk/(1 —~) + O(1).

Proof: Appendiz C,(See page 161).
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3.3.2 GMM Estimator Using One Lag as Instruments

When Z;, which includes a subset of Zj, is used in the minimization in (3.29), the

optimal one-step GMM estimator can be formulated as

~ —1 -1
Sanntl = (W/P’MlPW) W'P'MPy =6 + (W’P’M1PW> W'P'MPe,  (3.33)
where My = Z1(Z1Z1)'Z] is an N(T — 1) x N(T — 1) idempotent matrix.

Theorem 3.2 The bias of the GMM estimator using one lag as instruments up to order

O(ﬁ) is
Bias(banrara) = E(dgarari — 6) = 0, (3.34)

and the MSE matriz of the estimator up to order O(x7) is

MSE (daan) = Var(dann) = 02Qu, (3.35)

where Q1 = |W P'M{PW + o2ey 1€, tr(H1)| = O(1/NT), and Hy = P'M,PLT.

Proof: Appendiz C,(See page 162).

3.3.3 Averaging Estimator

To make an appropriate trade-off between bias due to many instruments and variance
efficiency resulting from exploiting all of the moment conditions, we introduce an averaging
estimator which is a weighted average of the GMM estimators introduced in the previous

sections. Our averaging estimator of J is

~ T ~ T  ~
04 = féGMM,Q +(1- f)éGMM,la (3.36)
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where

F = (gGMM,l - gGMM,Z)/(‘?l — ‘?2) - <SGMM,1 - gGMM,2)a (3.37)

and V7 and V, denote the conventional covariance matrix estimators for dgarar,1 and daarar,2,

which are defined as below

N 1 . -1

V= (WP M PW) (3.38)
06,1

~ 1 - -1

Vo= 5 <W P MQPW> ; (3.39)
05,2

where
1 . .
& (Py— PWéamma) (Py — PWognm), [=1,2. (3.40)

STNT-1)—k

In equation (3.36), 7 is a positive parameter which measure the degree of significance. We
will defer describing our recommended optimal choice for this parameter in the following
sections. Since it can be easily verified that the risk of the estimator with positive part
weights is smaller, alternatively, one could replace the weights by their positive part, i.e.
1-7/F)y = (1—-7/F)1((1 —7/F) > 0), where 1(.) denotes an indicator function.
However, it will not affect the derivations of the approximations below, so for simplicity we
do not impose it at this stage. Nevertheless, the Monte Carlo results are reported using the
positive part weight.

Notice that when the difference between the two GMM estimators is small (£ is small),
the bias of the GMM using all lag instruments is relatively small, therefore the averaging
estimator gives a large weight to this estimator, as it is the most efficient estimator. However,

when the difference between the two GMM estimators is substantial or high (F' > 7), the
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bias of the GMM estimator using all lags could be more than its variance efficiency gain,
so the averaging estimator is a weighted average of the two GMM estimators, with more

weight on the GMM estimator using one lag as instrument.

3.4 Finite Sample Approximation
In this section, we obtain the approximation bias, MSE matrix and risk of the averaging
estimator.

Theorem 3.3 The bias of the averaging estimator up to order O(ﬁ) s

|

Bias (SA) = E(ZS\A —0) = U?%G_A/Z tr(Ha)Q2ex,1 1F1< , g +1; /\/2>, (3.41)

and the MSE matrixz of the averaging estimator up to order O(ﬁ), given k > 2 s

MSE (54) = MSE (Sgarara) + % e M2(Vi — Va)

-
k—2

N |
o |

1F1<§—1,§+1;)\/2)—21F1( +1;>\/2)

)

(3.42)

T

_T k
k(k +2) 2

_ k
+ 0‘?7‘ e~ M2 tr(Ho) 2Q2€k71€;€’1Q2 1F1<§, +2; A/Z)

_2[ki2 1F1(§+1,g+2;x/2>—%1F1(§,§+1;A/2>} :

where \ = o tr(H2)2e§€,1Q2(V1 — V2) " 'Qoep 1.

Proof: Appendiz C,(See page 163).
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Remark 3.4 The asymptotic MSEM of the averaging estimator in (3.42) can be rewritten

as follows !

MSE (SA) = MSE (SGMM,l)

B S E k. 2 o (h_ _
Y= ¢ 1F1(2 1,2+1,)\/2)T 2r(k — 2)| (Vi — V&)

(3.43)

1 /2 k k ) 9 4 ) /
+m€ 1Fl(§a 5"‘27/\/2) T +4T O¢ tT(HQ) QQek,lekJQQ

—47’)\(‘/1—‘/2)

In the following corollary we give our recommended value of 7 that minimizes the risk

of the averaging estimator.

Corollary 3.5 When tr(C)/omaz(C) > 2, and 0<7 < Z[tr(C’)/gmax(C) — 2|, then the
risk of the averaging estimator, for a positive definite weight matriz D whose elements are

of order O(1), is

Risk (B\A) < Risk (ZS\GMMJ) — e N2 1 [27-(”’(0)) _ 2) _ 7_2]

k maxC
o Omac (3.44)
tr(C k k 2A\p k k
{k—21F1<2_1’2+1’)‘/2)+k+21F1<2’2+2’)‘/2>]’
where Risk (SGMMJ) = t(DWV), C = (V7 — V2)1/2D(V1 — Vz)l/z, and \p =

ol tT(H2)2€;€71Q2DQ26k71. The above result shows the superiority of the averaging estimator

relative to the GMM estimator using one lag. The optimal T that minimizes the risk is

Topt = t1(C)/0maz(C) — 2. (3.45)

1The result holds by using the following identities

(c—a—-1)1Fi(a,¢x)=(c=1)1Fi(a,c—1;2) —a1Fi(a+ 1,¢x),
1Fi(a,¢;2) = 1Fi(a+1,¢2) — z 1Fi(a+1,¢c+ 1;z),
c

See Lebedev (1972), pp. 271.
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Proof: Appendiz C,(See page 166).

Corollary 3.6 When D = (Vi — Vo)L, k > 2, and 0 < 7 < 2[k — 2], the risk of the

averaging estimator is

Risk (84) = Risk (dcarns1) — e ﬁ [ (g _1, g ; /\/2) [%(k —9)—12].
(3.46)

The value of T that minimizes the risk of the averaging estimator is

Topt = ki — 2, (3.47)
and the risk of the optimal averaging estimator is

Risk (5a.0pt) = Risk (Ganrart) — e 2 (k—2) 1 Fy (g 1, g A/2). (3.48)

Proof: Appendizx C,(See page 167).

Corollary 3.7 When k > 2, if A = oo 2 then

Risk (5a.0p) = Risk (Sannr1) + 0(%). (3.49)

Proof: Appendizx C,(See page 167).

The result in corollary 3.7 suggests that if the bias of the GMM estimator using all lags is
very large, the averaging estimator is approximately very close to the GMM estimator using
one lag as instrument. This condition assures that even for dynamic panels with A close
to one, the averaging estimator remains asymptotically consistent and efficient by giving a

weight one to the GMM estimator using one lag as instrument.

2Equivalently when v — 1.
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3.5 Monte Carlo Simulation

In this section, we investigate the finite sample properties of the averaging estimator of
¢ for dynamic panel data models. Data for the dependent variable y is generated according
to equation (3.1), where the explanatory variables, z; for i = 1,...,N,and t = 1,...,T,

are generated as below

Tit,j = Tit,j + T,

Zitj = PTit—1,5 + it js

for j = 1,...,k, where &;; ~ i.i.d.N(O,ag) independent from e; ~ 4.i.d.N(0,02) with
oc = 1, and these two are independent of n; ~ i.i.d.N (0, 07), also we set [p| < 1 to make Ty
a stationary AR(1) process.

We set v = {0.25,0.75}, and choose 8 = (1 — 7)u, so that the long-run effect of X on y
is equal to a unit vector. Further, we choose p = {0, 0.5}, which yield stationary regressors,
and ™ = {—,0}.

Similar to Bun and Kiviet (2006), we set

o2 = 12 L -y
! (I +y)A+7'6)?

(3.50)

so that the impact of the variances of 7; and €;; on Var(y;) has a ratio of ,uQ, which we
set to be from {0,1}. The parameter ag is determined by controlling the signal-to-noise
ratio () of the model, and we choose ¥ = {3,9}. As it has been shown in Appendix B of

Bun and Kiviet (2006), this requires

1 [19 7 }(1—72)(1—/)2)(1—7/))

2
o = — |9 —
¢ 1—2 1+p

5 . (3.51)
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We choose k = 3, T = 20, and to allow different convergence rates between T and N,
we consider kT'/N = {0.25,0.5,0.75,1}. It should be noted that, kT'/N < 2, so the GMM
estimators are identified.

The results of 1,000 monte carlo simulations are given in Tables 3.1-3.4, where the values
are relative mean squared error (RMSE) of the GMM using one lag estimator, the GMM
using all lags estimator, and the optimal averaging estimator, to the mean squared error of
the GMM using one lag estimator. The tables consist of 32 designs which represent different
specifications.

The Monte Carlo results support our theoretical findings of the previous section. The
table results show that the RMSE of the averaging estimator for the whole parameter
specification is less than that of the GMM using one lag estimator. This shows the
superiority of our proposed estimator relative to the alternative estimators.

In designs where p = 1, v = 0.75, and 7 = 0, it implies a% = 02/7. We see larger
RMSE’s when x;; is smoother. However, as v increases, SGMMJ is more efficient than
3GMM,2 and hence the averaging estimator is dominant which is in agreement with our
theoretical findings. As expected, the RMSE of 5GMM72 increases substantially when the
ratio of KT'/N increases or equivalently when N decreases.

In general, we find that the averaging estimator performs robustly well in dynamic
panel data models with various degrees of specification. When there is a large number

of cross-sections relative to the number of observations, the averaging estimator prevails.

When there is a relatively small difference between these two, the averaging estimator tends
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to gain more from the efficiency of the GMM using all lags estimator by assigning a high

weight to this estimator, and thus still remains one of the best choices.

3.6 Conclusion

We introduce a new method of estimation and forecasting in dynamic panel data models
when both the time dimension and cross-section dimension are large. We apply the idea of
shrinkage estimation to the estimation of dynamic panels with individual effects, a lagged
dependent variable, and multiple exogenous regressors. The proposed (averaging) estimator
balances the trade-off between the bias and variance efficiency of GMM estimators using all
of the moments and GMM estimators using one (a few) moments. The idea of averaging in
dynamic panels opens new exciting research avenues. This idea can be considered in other
setting, including dynamic panels with weak exogenous regressors, models that allow for
cross-section correlation, and spatial panel data models. Last but not least, we have left

the topic of constructing confidence intervals to future research.
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Table 3.1: Relative MSE of GMM estimator using one lag instrument (SGMMJ), GMM

estimator by instrumenting all lags (SGM Mm.2), and the averaging estimator (d4), for T' =
20, v =0.25, m = —u

Design ¢ = &L daMM,1 daMM,2 da
1 vy=025,1=—1, p=0,9=3, u=0
0.25 1.000 1.034 0.998
0.5 1.000 1.067 0.996
0.75 1.000 1.086 0.993
1 1.000 1.111 0.993
2 vy=025, mr=—1, p=0,9=3, u=1
0.25 1.000 0.640 0.899
0.5 1.000 0.657 0.916
0.75 1.000 0.711 0.927
1 1.000 0.713 0.924
3 vy=025, 1= -1, p=0,9=9, u=0
0.25 1.000 0.984 0.995
0.5 1.000 0.984 0.989
0.75 1.000 0.961 0.984
1 1.000 0.985 0.987
4 =025, 1=—1p, p=0,9=9, u=1
0.25 1.000 0.795 0.927
0.5 1.000 0.838 0.940
0.75 1.000 0.823 0.938
1 1.000 0.807 0.934
5 vy=025,17=—1, p=05,9=3, u=0
0.25 1.000 1.018 0.996
0.5 1.000 1.065 0.995
0.75 1.000 1.066 0.991
1 1.000 1.071 0.987
6 vy=025,1=—1, p=05,9=3, u=1
0.25 1.000 0.619 0.888
0.5 1.000 0.652 0.903
0.75 1.000 0.675 0.904
1 1.000 0.692 0.915
7 vy=025,1=—1, p=05,9=9, u=0
0.25 1.000 0.980 0.993
0.5 1.000 0.963 0.988
0.75 1.000 0.980 0.984
1 1.000 0.968 0.980
8 7y=025, 1= —1}, p=05,9=9, u=1
0.25 1.000 0.791 0.920
0.5 1.000 0.829 0.928
0.75 1.000 0.771 0.917
1 1.000 0.802 0.926

57



Table 3.2: Relative MSE of GMM estimator using one lag instrument (SGMMJ), GMM

estimator by instrumenting all lags (SGM Mm.2), and the averaging estimator (d4), for T' =
20, v =0.75, m = —u

Design ¢ = &L daMM,1 daMM,2 da
9 y=075,1m=—13, p=0,9=3, u=0
0.25 1.000 1.160 1.000
0.5 1.000 1.237 1.000
0.75 1.000 1.293 0.998
1 1.000 1.310 0.998
10 vy=07,1=—1, p=0,9=3, u=1
0.25 1.000 0.282 0.952
0.5 1.000 0.367 0.951
0.75 1.000 0.405 0.945
1 1.000 0.448 0.941
11 y=075, 1= —14, p=0,9=9, u=0
0.25 1.000 1.656 1.000
0.5 1.000 2.010 1.000
0.75 1.000 2.241 1.000
1 1.000 2.416 1.000
12 y=075,1=—1, p=0,9=9, u=1
0.25 1.000 0.884 0.968
0.5 1.000 1.037 0.969
0.75 1.000 1.255 0.971
1 1.000 1.316 0.972
13 vy=0.75, 7= =1, p=05,9=3, u=0
0.25 1.000 1.054 0.999
0.5 1.000 1.055 0.997
0.75 1.000 1.081 0.995
1 1.000 1.036 0.992
14 y=0.75,1m=—1, p=05,9=3, u=1
0.25 1.000 0.210 0.948
0.5 1.000 0.242 0.945
0.75 1.000 0.285 0.943
1 1.000 0.283 0.938
15 vy=0.75, 7= —1;, p=05,9=9, u=0
0.25 1.000 1.251 1.000
0.5 1.000 1.386 1.000
0.75 1.000 1.463 0.999
1 1.000 1.551 1.000
16 =075, 1= —1, p=05,9=9, u=1
0.25 1.000 0.437 0.953
0.5 1.000 0.501 0.952
0.75 1.000 0.567 0.947
1 1.000 0.636 0.946
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Table 3.3: Relative MSE of GMM estimator using one lag instrument (SGMMJ), GMM

estimator by instrumenting all lags (SGM Mm.2), and the averaging estimator (d4), for T' =
20, v = 0.25, 7 = 0

Design ¢ = &L daMM,1 daMM,2 da
17 v=025,717=0,p=0,9=3, =0
0.25 1.000 1.023 0.998
0.5 1.000 1.074 0.997
0.75 1.000 1.109 0.995
1 1.000 1.105 0.992
18 v=025,7=0,p=0,9=3, u=1
0.25 1.000 0.956 0.974
0.5 1.000 0.996 0.981
0.75 1.000 1.009 0.974
1 1.000 1.029 0.984
19 vy=025,71=0,p=0,9=9, u=0
0.25 1.000 1.003 0.996
0.5 1.000 1.011 0.995
0.75 1.000 0.995 0.989
1 1.000 0.996 0.988
20 v=025,71=0,p=0,9=9, u=1
0.25 1.000 0.972 0.985
0.5 1.000 0.971 0.982
0.75 1.000 0.971 0.977
1 1.000 0.989 0.977
21 v=0257=0,p=05,9=3,u=0
0.25 1.000 1.023 0.997
0.5 1.000 1.051 0.995
0.75 1.000 1.074 0.991
1 1.000 1.092 0.990
22 v=025,71=0,p=059=3, u=1
0.25 1.000 0.961 0.972
0.5 1.000 0.999 0.974
0.75 1.000 1.011 0.969
1 1.000 1.048 0.980
23 v=025,7=0,p=05,9=9, u=0
0.25 1.000 0.988 0.994
0.5 1.000 0.987 0.990
0.75 1.000 0.982 0.986
1 1.000 0.997 0.980
24 vy=025,71=0,p=05,9=9, u=1
0.25 1.000 0.949 0.977
0.5 1.000 0.960 0.975
0.75 1.000 0.985 0.976
1 1.000 0.937 0.963
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Table 3.4: Relative MSE of GMM estimator using one lag instrument (SGMMJ), GMM

estimator by instrumenting all lags (SGM Mm.2), and the averaging estimator (d4), for T' =
20, v=0.75,7=0

Design ¢ = &L daMM,1 daMM,2 da
25 vy=075,7=0,p=0,9=3, =0
0.25 1.000 1.166 1.000
0.5 1.000 1.226 0.999
0.75 1.000 1.299 0.999
1 1.000 1.332 0.998
26 =07, 71t=0,p=0,9=3, u=1
0.25 1.000 1.096 1.000
0.5 1.000 1.191 0.999
0.75 1.000 1.263 0.998
1 1.000 1.243 0.998
27 =075, 71=0,p=0,9=9, u=0
0.25 1.000 1.654 1.000
0.5 1.000 2.000 1.000
0.75 1.000 2.303 1.000
1 1.000 2.320 1.000
28 y=07,71=0,p=0,9=9, u=1
0.25 1.000 1.414 1.000
0.5 1.000 1.693 1.000
0.75 1.000 1.858 1.000
1 1.000 1.884 1.000
29 vy=0.75,7=0,p=05,9=3,u=0
0.25 1.000 1.045 0.998
0.5 1.000 1.085 0.997
0.75 1.000 1.071 0.995
1 1.000 1.043 0.992
30 vy=075,7=0,p=059=3, u=1
0.25 1.000 1.028 0.994
0.5 1.000 1.029 0.988
0.75 1.000 1.045 0.989
1 1.000 1.008 0.977
31 vy=075,7=0,p=05,9=9, u=0
0.25 1.000 1.235 1.000
0.5 1.000 1.362 0.999
0.75 1.000 1.476 1.000
1 1.000 1.530 1.000
32 vy=075,7t=0,p=059=9, u=1
0.25 1.000 1.167 1.000
0.5 1.000 1.280 0.998
0.75 1.000 1.352 0.999
1 1.000 1.356 1.001
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Chapter 4

A Modified Stein-Like Estimator
for Coeflicients of A
Single-Equation In Simultaneous

Equations

4.1 Introduction

Simultaneous equations models (SEM) which arise from economic theory in terms of
operations of markets and the simultaneous determination of economic variables through
an equilibrium model, are one of the many developments in econometrics. The study
of estimating coefficients of a single equation in a complete system of simultaneous

structural equations has provided many estimation methods, including the ordinary least
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squares (OLS), the two-stage least squares (2SLS) and the limited information maximum
likelihood (LIML) which are the most commonly used ones. Because of the presence of
endogeneity in the model, the OLS estimator is biased and inconsistent, however, the
2SLS and LIML estimators under appropriate general conditions are consistent (see e.g.
Anderson and Rubin (1949)). Since these estimators are available, numerous articles have
focused on the finite-sample properties of these estimators and their modifications.

One direction of modifying these estimators in the hope that the modified estimation
method may improve the existing estimators, have been made by linearly combining these
estimators. Sawa (1973 a) and Sawa (1973 b) proposed a combined estimator, which is a
simple linear combination of the OLS and 2SLS estimators, to eliminate the bias of the 25LS
estimator. The coefficients of this combined estimator depends on the sample size and the
numbers of included and excluded variables from the relevant equation, and the estimator
is unbiased to a certain order. Similarly, Morimune (1978) proposed a set of combined
estimators which are convex linear combinations of the LIML estimator and fixed k—class
estimators of Theil (1961). The aim of this method is eliminating the small-disturbance
asymptotic bias of the LIML estimator to construct improved estimators which are unbiased
to a certain order. Morimune showed the inadmissibility of the LIML estimator in terms
of asymptotic mean squared error, in other words, he showed that the combined estimators
dominate LIML (See also, Morimune and Kunitomo (1980) for the same method in the
problem of functional relationships). A comparison of the above modified estimators has

been given by Anderson et al. (1986).
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Another type of modified estimators considers a nonlinear function of the estimators.
Stein (1956) is the pioneer of this method. Stein showed that the maximum likelihood
estimator (MLE) for the mean of a multivariate normal distribution does not have
the smallest risk, in other words, MLE is inadmissible. Later on this issue,
James and Stein (1961) suggested a biased estimator which dominates the MLE estimator
in the sense that its risk is smaller than that of the former, provided at least three parameters
are to be estimated. In the context of a single equation estimation in a linear simultaneous
equations system, Zellner and Vandaele (1975) considered Stein-type estimators under a
general quadratic loss function and obtained the minimum risk estimator by applying 2SLS
method. However, the resulting estimator is unavailable in applications as it involves certain
unknown parameters. To face this issue, Ullah and Srivastava (1988) present a Stein-type
estimator and analyze its properties and conditions under which the resulting estimator
dominates the 2SLS estimator.

In reduced form estimation, Maasoumi (1978) constructed a modified Stein-like
estimator which is the weighted average of Least Squares (LS) and Three-Stage-Least-Squares
(3SLS) of the reduced form coefficients in a linear simultaneous equations system, in which
the weight depends on the inverse of an over-identification test statistic. Maasoumi shows
that this estimator has a few advantages over the LS and 3SLS estimators as it has finite
moments, thinner tails, and has the edge on the LS estimator as it is asymptotically
equivalent to the 3SLS estimator. Following Maasoumi (1978), in the context of single
equation instrumental variable models, Hansen (2017) constructs a Stein-like estimator

which is a weighted average of the OLS and 2SLS estimators for estimating the structural
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coefficients of the model. The weight is defined similar to Maasoumi (1978), while the
Wu-Hausman (1978) specification test statistic is used. Using asymptotic theory, Hansen
shows that the asymptotic risk of the combined estimator is strictly less than that of 2SLS
estimator when the number of included endogenous variables are more than 2.

For the purpose of comparing the estimators and the modified ones, there are several ways
in the literature. One approach is to derive the exact distributions of the estimators (see
e.g. Anderson and Sawa (1979) and Phillips (1984)). However, the analytical expressions
of the distributions are usually too complicated to permit meaningful general conclusion.
An alternative approach is to approximate each distribution by one or more terms in an
asymptotic expansion of the distribution. One term, most of the time, is not enough as it is
the common term between several estimators, but three terms serve to distinguish between
the estimators (See e.g. Rothenberg (1984)).

The asymptotic expansions have been derived on the basis of limits as an index tends
towards a value. In the large-sample theory, the number of observations increase without
bound. In this context, Nagar (1959) noted that k—class estimators in simultaneous
equations models can be expanded in formal series where the successive terms are increasing
powers of T/2, where T is the number of observation for each dependent variable. Nagar
calculated the moments of the truncated series by keeping the first few terms in the
expansion. These moments can be interpreted as the moments of a statistic which serves to
approximate the estimator, while Sargan (1974) showed that, under some conditions, these
moments can be interpreted as approximations to the actual moments of the estimator.

In the small-disturbance theory, initiated by Kadane (1971), it is suggested that it might
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be more natural to consider a sequence indexed by the error variance. In this analysis,
the reduced-form error-covariance matrix is written as o2, and while the sample size, and
the matrix ) are held fixed, o approaches zero. The large-sample and small-disturbance
theories can be related by the effect of them on the non-centrality parameter, which goes to
infinity in both cases while in the small-disturbance theory, the sample size stays constant,
however in the large-sample theory, the sample size and the non-centrality parameter both
go to infinity at the same speed (Anderson (1977)).

In this chapter, we propose two Stein-like estimators for coefficients of a single equation
in a complete system of simultaneous equations. The estimators are weighted averages of
the OLS and 2SLS (or LIML) estimators where the weights are inspired by the weights
in Hansen (2017). We study the bias and mean squared error (MSE) of the estimator
using small-disturbance theory of Kadane (1971) and show the conditions under which the
Stein-like estimators dominate the 2SLS and LIML estimators.

There are two related papers in the literature that similar to this chapter consider
combining the 2SLS and OLS estimators. The first one is Sawa (1973 a) which gives fixed
weights to the OLS and 2SLS estimators in order to create an unbiased estimator. The
wights are wsors = —(K — N —1)/(T — K) and wgasrs = (I’ — N — 1)/(T — K) where
N and K are the number of equations and the number of excluded regressor, respectively.
Sawa shows that the combined estimator is dominated by the 2SLS estimator in terms of
having smaller MSE when the condition (7T'— K —2)(K — N —7) < 12 holds. Under the local
endogeneity assumption considered in this chapter, it is easy to show that Sawa’s combined

estimator is always dominated by the 2SLS estimator. Hence, the MSE of the combined
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estimator proposed by Sawa (1973 a) is strictly greater than the Stein-like estimator in
this chapter. The other related paper in the literature is Hansen (2017) which considers a
similar Stein-like estimator in IV regression models and derives the conditions for dominance
of the Stein-like estimator over the 2SLS estimator by minimizing the truncated asymptotic
weighted risk of the Stein-like estimator using asymptotic distributions of the estimators.
There are several limitations in Hansen (2017) which are not the case in this chapter. First,
the method considered in this studies the approximate moments, and distribution, however
the analysis in Hansen’s paper is dealing with asymptotically minimizing a truncated risk.
Second, Hansen (2017) minimizes a weighted risk where the weight matrix is set equal to
the inverse of the difference of the asymptotic variances of the 2SLS and OLS estimators
which might not be practical in most of the empirical applications. However, we derive
the MSE matrix which allows for deriving a weighted risk with any positive definite weight
matrix. Third, Hansen (2017) only considers shrinking the 2SLS toward the OLS estimator,
while, we consider two Stein-like estimators one shrinks 2SLS and the other shrinks the
LIML estimator. This is important as under weak instruments scenario the 2SLS estimator
is biased in the direction of the OLS estimator, while the LIML estimator needs weaker
conditions for the consistency.

Morimune (1978) similar to this chapter considers combining the LIML with the OLS
estimator. Morimune (1978) uses fixed weights with the purpose of removing the higher
order bias of the LIML estimator and shows that while Sawa (1973 a)’s combined estimator
is dominated by the 2SLS estimator, combining the LIML estimator with the OLS estimator

dominates the LIML estimator when K — N > 0 and T' > K + 2. Although, the main goal
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of Morimune (1978) is different from this chapter, but comparing the MSEs of the two
estimators under the local endogeneity assumption shows that the Stein-like estimator in
this chapter significantly performs better than that of Morimune (1978)’s estimator when
the sample size is large enough !.

The rest of this chapter is organized as follows. Section 4.2 describes the model and the
estimators. In sections 4.3 and 4.4, we give the estimators and their approximations using
Small-Disturbance theory. The approximate distributions, bias, and mean squared errors
of the estimators are given in section 4.5. Monte-Carlo results and Conclusions are given

in sections 4.6 and 4.7. Proofs and detailed calculations are listed in Appendix D.

4.2 The Model

Consider the following complete simultaneous equations model

Yruv41) Biveyx(v+1) + Xox kT x(v41) = 0Urs(n+41), (4.1)

where in the system above, there are N 4+ 1 equations and N 4 1 endogenous variables,
denoted by Y = (y1,%2, ..., Yn+1))- There are K exogenous variables, X = (x1,T2,...,TK).
B is a nonsingular matrix of parameters with first column (—1, 8’)’, where 8 is a N x 1 vector
of unknown coefficients of interest in the first equation. Finally, U = (uy,us,... , U N+1))
are the structural disturbances. The subscript ¢ is used to index observations, t =1,...,T,

and o is a (small) positive number.

'For example when T > 2(K + 2)
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The first equation of the above system, by assuming for simplicity that it includes no

exogenous variables, may be written as

Y1 =Yap +ou, (4.2)

where y; is the first column of Y, and Y2 = (y2, ..., yv+1)) is T x N, that contains the rest

of the columns of Y and is the included endogenous variables.

Assumption 4.1 The rows of U are independently normally distributed with mean zero and

variance-covariance matrix X, that is for allt andt' in {1,...,T} andi and j € {1,...,N},
E(un) = 0,
0ij ift =t

Cov(ujs, ujp) =

0  otherwise (t #t'),

and 011 = 1, or in matriz form

E(U)= 0
Tx(N+1)
1 012 e TL(N+1)
1 021 022 ce O2(N+1)
— ]:E / — Z e = .
T (o) (N+1)x(N+1) [Ul JNH]
[F(N+D1 O(N+1)2 -+ T(N+1)(N+1) |

We assume that B is nonsingular, hence the reduced form of the structural equation

(4.1) may be written as

Y = -XI'B'+oUB ' =XII+0V, (4.3)
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where II = —I'B~! and V = UB™! and HKX(N—i-l) = [71'1 I |, and VTX(N+1) =

Kx1 KxN

(% V2 .
Tx1l TxN

Further, if we partition B~ as

-1 |- .
B~ = |:B(N+1)><1 Bnt1yxn |-

the reduced form system of equations above can be written in partition as below

ylz—XF,8+UU,B:XW1+UU1, (4-4)
and
Yo = —XTB+0cUB=XIlh +oVo =W + oVh, (4.5)

where we define W = XTIs.

Assumption 4.2 Identification: Rank(Ily) = N.

Assumption 4.2 is the rank condition which ensures the identification of the system.

The reduced form error is also normally distributed with

E(V) =0,
1 1 / , Wil w12
—E(V'V)=-E(B'U'UB ) =B"'vB'= Q = | XL DN
T T (N+1)x(N+1)
wa1 (oo
Nx1 NxN

Following Nagar (1959), we define N\II’T = Vj — quj, where the normally distributed
X
matrix ¥ consists of residuals from the population regression of V5 on uq. Hence ¥ and wuq

are uncorrelated by construction. Further,

~ Cov(Va,u1)  E(Vju)
qul Var(uy) T

= B/U]J (46)
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and define

N01N=qq’,
8 / (4.7)
(V¥ L
¢, =Y _ pyp g,
NXN T

so that it can be shown that Q99 = C; + Cs.

4.3 Estimators

We consider three members of the k—class estimator of 3, which are the OLS, 2SLS, and
LIML estimators, and respectively correspond to k equal to zero, one, and \ where A is the
smallest root of the determinantal equation |Y'Y — kY'MxY | = 0, where Mx = Iy — Px
is the projection onto the space orthogonal to the columns of X, with Py = X (X'X)~1X"
and I7 is the identity matrix. Moreover, we consider two types of Stein-like estimators
which are a weighted average of the 2SLS and the OLS estimators, and a weighted average

of the LIML estimator and the OLS estimator.

4.3.1 k—Class Estimators
The k—class estimator is defined as
B(k) = (YJHLY:) 'Yy Hpyy = B+ o (Y4 HYs) 'Yy Hyuq, (4.8)

where Hy, = It — kMx.

4.3.2 Stein-Like Estimator

Following Maasoumi (1978) and Hansen (2017), we define the Stein-like estimators as the

weighted average of a first-order consistent k—class estimator (we consider 2SLS estimator
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with £ = 1 and LIML with £ = \) with the OLS estimator (k = 0), where the weights
similar to Hansen (2017) are inversely related to the Wu-Hausman (1978) misspecification

test statistic. Hence, the Stein-like estimators are defined as
B = wrB(0) + (1 —wy)B(k), for k=1, (4.9)

where wy, = 7/Fwp, T is a positive characterizing scalar which will be determined later,

and Fj, g is the Wu-Hausman statistic test, defined as

Fown = (B(’f) - B(O))/Rk (B(k) - 5(0)), (4.10)
and Ry is
Re = 0 (VH ) — (Vi¥e) ) . (4.11)

4.4 Small-Disturbance Asymptotic Expansions

We use Kadane (1971) small-disturbance method to derive the asymptotic expansions
of the estimators. Then, we report the bias and mean squared error matrix (MSEM) of the

estimators up to orders o2 and o, respectively.
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4.4.1 k—class Estimators
Employing equation (4.5) in equation (4.8), we have

Bk) — B (W + JVQ)/Hk <W + UVQ)] - (W + JVQ)/Hkoul

—1
W' H W + oW’ HyVa + o VA H W + 02‘/2/HkV2> (aW’Hkul v 02V2’Hku1>

[
(
(IN + oQW! HyVa + 0QVLHW + aQQVQ’HkVQ) 0 (oW’Hkul n JZVQ’Hkm)
(

—1
In + QS + aZQ\/ng\/Q) Q(aW’ul + 021/2’Hku1),

(4.12)

where Qnxy = (W'W)~1 and S = VJW+W'V3, and the use has been made of W' Hj, = W'.
Using the standard geometric expansion for the inverse of a matrix?, the above equation

may be written as

Bk) — B = oQW'uy + J2Q(V5Hku1 - SQW’m)
(4.13)
+ 03Q(SQSQW’u1 VI HWVaQWuy — SQVQ’Hku1> + O, (c%).

Theorem 4.3 Under assumptions 4.1 and 4.2, the bias of the k—class estimators up to

order o2, is

E(B(k) - B) = 0*Qq(Li — 1),  for fized k, (4.14)

E(B()\) —B) = —02Qq, for LIML estimator, (4.15)

and the mean squared error matriz up to order o* is

E(B(k) — B)(B(k) — B) = 02Q + 0*{(3 — 2Ly,)tr(C1Q)Q + tr(QC2)Q )

+ QC1Q((Li — 2)* + 2+ 253) + QCoQ(2 + s, — L) },

I+A) P =T—A+ A - A3 4.
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E(B(\) — B)(B(A) — B) = 0?Q + o* {3tr(C1Q)Q + tr(QC2)Q

(L +2)(T — K + Ly — 2)
T—-K-2 ]}’

(4.17)

+6QC1Q + QC2Q|
where L, = (1 — k)T + kK — N and s = k(k — 1)(T — K).

Proof: See Kadane (1971).

4.4.2 Stein-Like Estimator

In what follows from this section, we analyze the bias and MSE of the proposed Stein-like
estimators. We start by expanding Ry defined in equation (4.11).

Using equation (4.13), we have

(YJHYs) ! = (IN —0QS — *QVyHV, + 0*QSQS + 0> QSQVy HV; + 03QV2’HV2QS) Q + Oy(c),

(13Y2) ™" = (In = 0QS — 0*QV3V2 + 0°QSQS + 7*QSQVEVa + 7*QV32Q5) Q + Oy,

Hence the difference of the expressions above may be written as

(VFHY2) ™ = (V§Y2) ™ = 0%k [QUIMxV2Q — 0QSQVEMxVaQ — oQVIMxVaQSQ| + Op(o*).

(4.18)
Further, by using equation (4.18) in equation (4.11),

-1
Ry = o2 (Vg HY2) ™ = (v372) ™)

1 —1
= 2Q 7! [Iv = o(VIMx V) SQVIMX Vo — 0QS + Op(0%)| (ViMx V) Q!
| SR P -1 / -1 / ~1 2\ -1
=20 [(VQMXVQ) + o (Vi MxVa)"L8Q + 0QS(ViMxVa) ™! + 0,(c?)| Q1.

(4.19)
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In addition from equation (4.13), we have

B(0) — Bk) = ko? [QUiMxuy — oQVMxVaQW'uy — 0QSQViMxm] + Oyf0%). (4.20)
Employing equations (4.19) and (4.20) in equation (4.10),
Fk,WH =k |:UI1M)(V2(VQ,M)(VQ)_1V2/MXul — 20"LL/1M)(V2QW/U1 + Op(02):| . (4'21)

Therefore, we have the following expression

o 1 (1 n 20ul Mx VaQW'uy
Fown  kuy MxVa(VoMxVa) =1V Mxu uy Mx Vo (Vi Mx Vo) Vi Mxus

+ Op(O'Q)).

(4.22)

Using equations (4.13), and (4.22) in equation (4.9), we can write the Stein-like

estimators as

T

Bek =B = (B(k) = B) +

e (GOREORI GRS
— cQW'uy + UQQ(VQ'Hkul - SQW’ul) n U3Q(SQSQW’u1 VIHWVQW'uy — SQ‘/Q'Hkul)
, 1
TO
u/lMXvQ(VZ/MXvQ)_lvz/qul

20
+ u’lMXVg(VQ’MXVQ)—lVQ’MXul

+

(QVIMxu1 — QUIMXVAQW 1 — 0QSQVE Mxus

UllMXVQQW'mQVz/MXUl} +O0p(0).
(4.23)
The above equation has the product of normally distributed and correlated terms in the
denominator, which make the moments calculations complicated. So, we make the following
local endogeneity assumption, and then revise the asymptotic expansion of the Stein-Like
estimator. We derive the bias and MSE of the estimator under this assumption in the next

section.

Assumption 4.4 Local Endogeneity: ¢ = Cov(Va,u1)/T = 0§, where Syx1 € RY 3.

3Note that the local Endogeneity assumption here is similar to the local asymptotic considered in
Hansen (2017), when o is replaced by 1/v/T
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Using Assumption 4.4, in equation (4.22), it is equal to the following expression

1 1 1

Fown k uMx U (V' Mx0)~ 10 Mxu,
20 (

W My U (W Mx W)W My

[1 + 20U My U (W' Mx ¥) 15

n u, Mx WQW'uy — u’lMX\II(\II’MX\II)_léu’lMXul)] +0,(0?).

(4.24)

Using equation (4.24) in the Stein-like estimator expression (equation (4.9)), we have

T

Bes = 8= (B(k) = B) + 7——((B(0) = B) = (B(k) — 8)) = oQW"ws + 0*Q(¥' Hyes = Su QW)

Fowh

+0%Q [qu’lHkul — (quiW + Wu1¢)QW'uy + Sy QSeQW'uy — W Hy WQW'uy — S\I,Q\Il;Hkul}

’7'0'2

+ u/lMx‘I/(\I//MX\I/)_l\I//Aqul

[(1 n QUUQMXfo(\I/'MX\I/)*la) QU Mxu1 + 0Qqu, Myus

20

_ \IIIM \II / _ \Il/M
CQUMA QW i = oQSwQU My o G L 0 T Ay

(u’lMxlllQW’ul

_ u'lMX\Il(lIl']V[X\II)’l(Su'lqul)Q\II’MXul + O, (ch).

(4.25)

We first derive the approximate distribution of the Stein-like estimator under Assumption

4.4 in the next section, then we give the bias and MSEM of the estimator.

4.5 The Approximate Distribution Functions of The

Estimators

In this section, the approximate density functions of the estimators are derived for the

statistics

(Be—B), for k=1, (4.26)

Q|+

ér =
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and

(Beg — B),  for k=1, (4.27)

. 1
€ek = —

o
as o goes to zero, where é for the 2SLS, and LIML are denoted by é;, é) and for the

Stein-like estimators it is denoted by é.r, k=1,

Theorem 4.5 Under assumptions 4.1-4.4, the asymptotic expansion of the density

function of é1, and éy as o goes to zero is given by

2
fass(6) = 0 (€) [1 +o2E(N+1+Li-€Q7%) + & {Ll tr(C2Q)

(4.28)
- 5/025(1\7 +2+ L - E/Qflf)} +0(0?),
2 _
Fenn(€) = 6(¢) [1 ros(V+1-6071) + G | - TN 0Go)
(4.29)
(N2 N 5/@‘15)] +0(°),

where & is an N x 1 vector and ¢g(§) is the multivariate normal density function with mean

0 and covariance matriz Q.

Proof: See Anderson et al. (1986).

Theorem 4.6 Under assumptions 4.1-4.4, the asymptotic expansion of the density

functions of éey, for k =1,\, as o goes to zero are
Fer(6) = Foses(€) + 0Q(O)%T |and'e + L [£Cot — 1(C2Q)] (ras — 200 ) | +0(%),
(4.30)
Fer(©) = furnin(©) + ()0’ | 10’6 + 1 [€Co6 — (@) (s — 201 ) | + 0%,
(4.31)
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where o = %, oo = %, a3 =as+ec¢ andc € <7(T72N)oz2, O).

Proof: Appendizx D,(See page 168).

In the next theorem, the first and the second moments of the Stein-like estimators based

on the approximate expansions of their distribution are given.

Theorem 4.7 Under assumptions 4.1-4.4, the approximate bias of the Stein-like estimator

qu for k=1, as o goes to zero is given by
.. 1 4 2 4.32
ABias(Bor) = E (= (B = B)) = 0+ 0(c?), (4.32)
and the approrimate MSEM is

M%H&QZE(%mﬂ—mmm—m)=AM%$un+mﬁnw—%ﬂQ@Q+0w%

(4.33)

AMSE(B.,) = E <$(Bc,)\ —B)(Ber — ﬁ)/) < AMSE(B(N)) + 0* [7'042 - 20&1} QCLQ + O(a?),

(4.34)

where from Theorem 4.5 (or equation (4.28)), it can be derived that

AMSE(B(1) = E (5(B1) = B)B0) — 6)) = Q + 0> 1QE2Q +0°Q0xQ(2 — L) +0(%).

(4.35)

AMSE(BO) = E (25 (30) — B)(Br — 6Y) (4.36)

=Q + 0 tr(QC)Q + 2QCHQ +0(c?).

(Li+2)(T — N —2)
T-K-2

Proof: Appendix D,(See page 171).
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Corollary 4.8 Under assumptions 4.1—4.4, we have
AMSE(B.1) — AMSE((1)) = 702QC5Q [m2 - 2a1} +0(0®), (4.37)
AMSE(B.,) — AMSE(B(\)) < 102QC5Q [7’042 - 2a1] +0(c%), (4.38)
where the right-hand side of the above equations are negative when N > 2 and
0<7<2(N-2).

Therefore, the Stein-like estimators dominate the 2SLS, and LIML estimators in terms of
their MSEs when the number of endogenous variables is more than 2. The optimal value of

the shrinkage parameter that minimizes the MSE of the Stein-like estimator is
Topt = N — 2.

As a comparison of the probability of concentration around the true [, we compute

PAIQ ™ 2eonll < 2) = PUQ el <2 = [+ [ (£ua®) = () e, (4.3
lQ=1/2¢lI<=
where ||¢]| = max{|{1],...,|{n]}. Using Theorem 4.5 and Theorem 4.6 the next theorem
follows.

Theorem 4.9 Under assumptions 4.1—4.4,
PlQ72ecall < 2) = P(IIQ7'2e1|| < 2) = 0%[®(2) — B(—2)]V26(2) tr(QCh)d + O(®),
(4.40)

P(IQ™ecull < 2) = PUIQT2e| < 2) 2 0%[®(2) — @(=2)1V26(2) tr(QC2)d + O(c?),

(4.41)
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where ¢(z) = ¢(2)/[®(z) — B(—2)], d = 7(201 — Ta), and B(.) and ¢(.) are, respectively,
the standard normal distribution and density functions.

Proof: Appendix D,(See page 172).
Corollary 4.10 Using theorem 4.9 , and provided 0 < 7 < 2(N —2), and N > 2, we have
P(|QY2ecill < 2) > P(IQ™ 21| < 2) + O(6®), Kk =1,), (4.42)

and the optimal value of T that maximizes the concentration probability of the Stein-like

estimator is

Topt:N_z-

4.6 Monte-Carlo Simulation

Our simulation experiment uses a design similar to that used by Hansen (2017), where

T € {100,200}, N € {3,5,8}. The observations are generated by the process

1 = Yo+ ou,

Yo = X1y + V3,
where w1 has a standard normal distribution, V5 and X have a multivariate normal
distribution with mean zero, and variance-covariance matrix Iy, and I, respectively. We
set the correlation between u; and the rows of V5 equal to p/ V/N, where p takes values on a
40-point grid on [0,0.975]. We set 3 to zero, IIy = cI,y,, where ¢ = \/m, hence R?

is the reduced form population R? for each endogenous variable. This is important because
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R? measures the strength of the instrument. We consider two cases for the reduced form
population R?, which are {0.4,0.8}.

The results of 1,000 monte carlo simulations are given in Figures 4.1-4.6, where the
vertical axis measure the relative mean squared error of OLS, 2SLS/LIML, and Stein-like
estimators which is the mean squared errors of these estimators divided by the mean squared
error of 2SLS/LIML estimator, and the horizontal axis measures the degree of endogeneity
(p)-

The monte carlo results support our theoretical findings of the previous sections. They
show that the relative mean squared errors of the Stein-like estimators for the whole
parameter space is below that of the 2SLS/LIML estimator. Further, the relative mean
squared errors of the Stein-like estimators are smaller than that of OLS estimator except
for very small size of endogeneity.

We note that when R? is relatively small (weak instruments) the OLS estimator performs
better than the 2SLS/LIML estimator up to mild degrees of endogeneity. This is because
the 2SLS/LIML estimator has high dispersion, so that the OLS estimator has smaller mean
squared error. In this case, the Stein-like estimator tends to gain from the efficiency of the
OLS estimator by assigning a larger weight to this estimator, and prevails. However, when
R? is relatively large the 2SLS/LIML estimator performs better that the OLS estimator
except for very small size of endogeneity, and the Stein-like estimator by giving more weight
to the 2SLS/LIML estimator dominates the OLS estimator. Moreover, when the number
of endogenous variables increases the OLS estimator gains from a higher efficiency and its

mean squared error remains less than the 2SLS/LIML estimator even when the degree of
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endogeneity is moderate. Similarly, the Stein-like estimator gains from the efficiency of the
OLS estimator. We also report the results of the pre-test estimator which tests the null of
endogeneity and assigns weight zero or one to the OLS or 2SLS/LIML estimator based on
the test results under 5% critical value. The mean squared error of the pre-test estimator
is small when the degree of endogeneity is small, but is very high for moderate degrees of
endogeneity.

In general, we find that the Stein-like estimators perform robustly well in simultaneous
equation models with various degrees of endogeneity. When there is a strong degree of
endogeneity or the sample size is large, the Stein-like estimators prevails. When there is a
relatively weak degree of endogeneity or weak instruments, the Stein-like estimators tend
to gain more from the efficiency of the OLS estimator by assigning a larger weight to this

estimator, and thus still remains one of the best choices.

4.7 Conclusion

In this chapter, we introduce two Stein-like estimators for estimating the structural
parameters of a Simultaneous Equations Model. The estimators are weighed averages
of the 2SLS/LIML and the OLS estimators where the weight is inversely related to a
Wu-Hausman test statistic. The approximate distribution, bias, and MSEM of the Stein-like
estimators using Small-Disturbance approximations of Kadane (1971) are derived. The
proposed method has several advantages relative to the existing methods. First, it allows
us to study the performance of the weighted averages of any k-class estimators with the

OLS estimator. This is important because under weak instruments the 2SLS estimator is
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biased towards the OLS estimator, and an alternative consistent estimator is required to
allow balancing between the bias and variance efficiency of the OLS estimator. Second,
the dominance and optimality of the Stein-like estimators proposed here are not limited
to a specific MSE and hold for any weighted quadratic loss function where the weight is
positive definite and symmetric. Lastly, the framework considered here allows for studying
the higher order terms, which is critical here because k-class estimators tend to have higher

order bias.

82



w
g
w o
- 24
o
T
3
o
%]
c
T
i}
=
2 v |
= (=}
o
[}
o
— OLS
— - 28LS
Stein
2 4 ===+ pre-test
T T T T T T
0.0 02 04 0.6 08 10
Degree of endogeneity (p)
2
R°=04
|
g
w c g
T < —_— e
o
©
3
o
(%]
[ =4
©
QO
=
2 v |
£~} o
©
©
[i4
— OLs
— = LIML
Stein
24 === pre-test
T T T T T T
0.0 02 04 06 0.8 1.0

Degree of endogeneity (p)

R>=04

Relative Mean Squared Error

Relative Mean Squared Error

05 10 15

00

15

10

00

02

T T T T
04 06 08 10

Degree of endogeneity (p)

R>=0.38

00

02

T T T T
04 06 08 10

Degree of endogeneity (p)

R?=0.8

Figure 4.1: Relative mean squared error of OLS, 2SLS, LIML, Stein estimators, and pre-test,
for T'= 100, N = 3. The top two figures represent the Stein with 2SLS and OLS, and the
bottom ones represent the Stein with OLS and LIML. Note: the pre-test estimator uses the
Wu-Hausman test static under 5% critical value to choose between the estimators.

83



w |
g
LI)] o
T~ 7 — e
o
]
3
o
7]
[ =
o
L]
=
2w
3 °
@
14
— OLs
—= 28LS
Stein
2 ---- pre-test
T T T T T T
0.0 0.2 0.4 06 0.8 10
Degree of endogeneity (p)
R*=04
v
&
Lﬁ [=]
° = —t———
o .
© 'y
3
o
»n
c
o
@
=
2 v |
'4; (=]
o
4
— OLs
— = LIML
Stein
e | =--- pre-test
T T T T T T
0.0 02 04 0.6 08 10
Degree of endogeneity (p)
R*=04
Figure 4.2:

Relative Mean Squared Error

Relative Mean Squared Error

05 1.0 15

00

15

1.0

0.0
I

00

02

T T
04 06

Degree of endogeneity (p)
R*=038

00

bottom ones represent the Stein with OLS and LIML.

84

02

T T
04 086

Degree of endogeneity (p)

R?>=0.8

08

Relative mean squared error of OLS, 2SLS, LIML, Stein estimators, and pre-test,
for T'= 100, N = 5. The top two figures represent the Stein with 2SLS and OLS, and the



w | w |
g g
T 2 T 2
o 7 o T
o o
3 3
o o
0] %]
[ = [ =
o o
'} I}
= =
g w g e
= o = o
o o
@ [}
14 ['4
— OLs
—= 28LS
Stein
2 4 -~ pre-test 2
T T T T T T T T T T T T
0.0 02 04 086 08 10 0.0 02 0.4 0.6 08 10
Degree of endogeneity (p) Degree of endogeneity (p)
2 2
R°=04 R°=0.8
| w |
& §
w [=] w o
T <= - 2
o o
© 5]
3 3
o o
%] %]
c c
@ @
o @
= =
2 v | 2 v
= (=] = o
o o
© ]
4 o
— OLs
— = LIML
Stein
S =--- pre-test 2
T T T T T T T T T T T T
0.0 02 0.4 06 08 1.0 0.0 02 04 06 08 10
Degree of endogeneity (p) Degree of endogeneity (p)
2 2
R =04 R*=0.8
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Figure 4.4: Relative mean squared error of OLS, 2SLS, LIML, Stein estimators, and pre-test,
for T'= 200, N = 3. The top two figures represent the Stein with 2SLS and OLS, and the
bottom ones represent the Stein with OLS and LIML.
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Figure 4.5: Relative mean squared error of OLS, 2SLS, LIML, Stein estimators, and pre-test,
for T'= 200, N = 5. The top two figures represent the Stein with 2SLS and OLS, and the
bottom ones represent the Stein with OLS and LIML.
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Chapter 5

Estimation and Identification of
Latent Group Structures in Panel

Data

5.1 Introduction

Panel data offer great opportunities in empirical research. Nevertheless, in practice, they
typically involve aggregate data from various units (such as workers, firms, countries) that
are different in some unobservable aspects to researchers. Accordingly, the researchers face
a trade-off between using flexible methods to model the unobservable heterogeneity, and
using pooled models that avoid the heterogeneity by assuming to some extent homogeneous
coefficients for all individual units. To overcome this challenge, recently, latent group

structures in panel data literature have received considerable attention. The most important
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advantage of the latent group structure is that unlike completely heterogenous or fully
homogenous models, it allows panel units to be classified into groups, where the individuals
within a group share the same slope parameters, while heterogeneity exists across the groups.
This chapter inspired by the literature introduces a simple and fast method to jointly identify
and estimate latent group structures in panel data models when the number of groups and
the individuals’ group identities are both unknown.

A common approach to model heterogeneity in econometric analysis is to assume
complete slope heterogeneity. This assumption avoids misspecification, but does
not gain from working with panel data, and could result in imprecise estimates
even if the time dimension is long (see, Baltagi and Griffin (1997)).  Nonetheless,
conventional panel data models often avoid the heterogeneity and assume the regression
parameters are the same across individuals, and unobserved heterogeneity is modeled
through individual-specific effects (fixed effect and random effect models).  This
assumption exploits cross-section averaging and causes higher efficiency, but at the
cost of estimation bias and inconsistency, which is supported by an increasing
number of studies due to a better forecast performance of the associated estimators
(see for example, Baltagiet al. (1989), Maddala (1991), Maddala and Hu (1996),
Baltagi and Griffin (1997), and Hoogstrate et al. (2000)). In spite of a better forecast
performance, it is often difficult to justify the slope homogeneity assumption in the
empirical work, as pointed out by Hsiao and Tahmiscioglu (1997), Phillips and Sul (2007),
Browning and Carro (2007), and Su and Chen (2013). This discussion motivated much

of the recent research on the latent group structures in panel data analysis including
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Sun (2005), Lin and Ng (2012), Deb and Trivedi (2013), Bonhomme and Manresa (2015),
Sarafidis and Weber (2015), Ando and Bai (2016), Bester and Hansen (2016),
Su et al. (2016), Lu and Su (2017), Su and Ju (2018), Wang et al. (2018), Su et al. (2019),
Gu and Volgushev (2019), Liu et al. (2020), and Wang and Su (2020), among others.
Moreover, the group structure has sound foundations in game theory or macroeconomic
models where multiplicity of Nash equilibria is expected (Hahn and Moon (2010)). The
latent group structure models partition individuals in different groups and allow the within
group individuals share common coefficients, while the groups are assumed to have slope
heterogeneity. Since the group membership and the number of groups are unknown in these
models, the determination of the true number of groups and each individual’s group identity
are the key questions. Several approaches have been proposed to address these questions.
Sun (2005), Kasahara and Shimotsu (2009), and Browning and Carro (2007) consider finite
mixture models. Su et al. (2016) develop a new variant of the Lasso (least absolute
shrinkage and selection operator) procedure, called classifier-Lasso (C-Lasso), to achieve
classification in panel structure models where the penalty takes an additive-multiplicative
form. The C-Lasso method of Su et al. (2016) has been extended to allow for two-way
component errors, interactive fixed effects, non-stationary regressors, and semi-parametric
specification, respectively, in Lu and Su (2017), Su and Ju (2018), Huang et al. (2020),
and Su et al. (2019). Lin and Ng (2012) and Sarafidis and Weber (2015) extend the
K-means algorithm to the panel regression framework with latent group structures,
but the asymptotic properties of the estimators and the procedures are not provided.

Bonhomme and Manresa (2015) and Ando and Bai (2016) modify the K-means algorithm
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to estimate the time-varying grouped patterns of heterogeneity and unobserved group
interactive fixed effects, respectively. Wang et al. (2018) extend the CARDS (clustering
algorithm in regression via data-driven segmentation) method of Ke et al. (2015) to
panel structure models where the latent group structures exist in vectors of slope
parameters.  Recently, Liu et al. (2020) extend the modified K-means algorithm of
Bonhomme and Manresa (2015) to estimate and identify the latent group structures in
panel data. Wang and Su (2020) extend the sequential binary segmentation algorithm of
Bai (1997) for break detection from the time series setup to the panel data framework to
identify the latent group structures.

While these methods make important contributions by empirically estimating the group
identities, they face the following limitations. First, to implement them, one often needs to
determine the number of groups first. Consequently, the estimation error often accumulates
across the two steps and leads to suboptimal performance. Second, C-Lasso procedure of
Su et al. (2016) is not a convex problem!, requires the number of groups to be fixed, and
may leave some individuals unclassified. Third, K-means algorithm has been shown to
be NP-hard, can get trapped in suboptimal local minima, and is sensitive to the choice
of initial estimators. Fourth, the CARDS method of Wang et al. (2018) relies on the
specification of at least three tuning parameters, thus the consistency results are sensitive
to the choice of the tuning parameters. Fifth, Wang and Su (2020) and Wang et al. (2018)
rely on ordered segmentations to identifying the latent group structure and construct the
Lasso-type penalties, respectively, which are sensitive to the choice of initial estimators, and

often it may be difficult to construct one. The objective of this chapter is to provide a new

'However, the numerical solution can be transformed into a sequence of convex problems.
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framework free of the above limitations to jointly estimate and identify the latent group
structures without a priori knowledge of classification or a natural basis for separating slope
coefficients into groups.

Inspired by the adaptive group fused Lasso of Qian and Su (2016), and the pairwise
fusion concave penalty of Ma and Huang (2017), we propose a penalized procedure with
a pairwise fusion penalty to automatically estimate and identify homogenous groups
where both the number of groups and the individual group identities are unknown.
Our method and mainly our model is different from theirs in several important aspects.
Qian and Su (2016) consider estimation and inference of common structural breaks in panel
data models using an adaptive group fused Lasso. Their method cannot be used to classify
individuals into different groups because there is no natural ordering across individuals,
also a different algorithm to locate common individuals is required. Ma and Huang (2017)
consider the problem of identifying subgroups among observations, using a concave pairwise
fusion penalty. Clearly, their model is different from the model considered here to estimate
and identify the latent group structures. Besides, the penalty term in Ma and Huang (2017)
is imposed through concave penalties such as the SCAD (smoothly clipped absolute
deviations penalty) of Fan and Li (2001) and the MCP (minimax concave penalty) of
Zhang (2010), but our penalty is imposed through an adaptive group fused Lasso. The other
main difference of our penalty from theirs lies in two aspects: 1) we impose the penalty
on slope vector differences, whereas their method applies the penalty on the intercepts, 2)
we assign different weights {w;;}, based on preliminary estimates of the slope parameters

to penalize different coefficient differences, however these weights are not feasible in their
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study. Since our proposed framework utilizes a pairwise adaptive group fused Lasso penalty,
we denote our estimation procedure as PAGFL. To implement our method, we derive an
ADMM (alternating direction method of multipliers) algorithm (Boyd et al. (2011)), and
show the convergence properties of our ADMM algorithm.

We develop two classes of estimators for panel structure models to estimate the slope
parameters: penalized least squares (PLS) and penalized generalized method of moments
(PGMM). The PLS can be applied to static or dynamic panel models without endogenous
regressors, while the PGMM is suitable for panel models with endogeneity or dynamic
structures. We show that the PLS method is an oracle procedure (using the language of
Fan and Li (2001)), in the sense that the PLS estimator classifies the right individuals in
the right groups (classification consistency), and asymptotically is equivalent to the oracle
estimator. The oracle estimator is obtained from least squares regression by assuming
that the true group structure is known. Similarly, our PGMM estimator satisfies the
classification consistency, but its oracle property does not hold generally. Our asymptotic
results hold under (N,T) — oo jointly, but T can pass to infinity at a slower rate,
where T is the time series dimension, and N is the cross-section dimension. Moreover,
our proposed method, compared to the existing methods in the literature, has several
advantages in the following characteristics. First, the major contribution of our method is
that it asymptotically identifies the true structure while estimating the model parameters
consistently without relying on correct initial estimates of the number of groups. This
implies that our estimation and classification consistency results hold without relying on

correct estimation of the number of groups. It is of crucial importance, as in most empirical
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research the number of groups is often unknown to practitioners. Second, unlike the
K-means algorithm and C-Lasso method, our proposed approach allows the number of
groups and the number of individuals within each group to be either divergent or fixed.
This makes our method applicable to a large body of applications. Third, unlike K-means
algorithm and C-Lasso method, our method admits a simple and fast iterative algorithm
that is guaranteed to converge to the unique global minimizer. Therefore, the computation
burden of our approach is not as much as the K-means algorithm and the C-Lasso. Fourth,
unlike the CARDS method, our approach only requires a tuning parameter and does not
rely on the ordered segmentations. Fifth, our method continues to perform well even if the
number of groups is allowed to increase with the number of cross-sections, V.

The reminder of this chapter is organized as follows. Section 5.2 describes our fixed effect
panel model, PLS and PGMM estimation methods depending on whether the regressors are
endogenous. Sections 5.3 and 5.4 analyze the asymptotic properties of PLS and PGMM
estimators, respectively. Section 5.5 presents the computation and algorithm. Monte Carlo
results are given is section 5.6. In Section 5.7, we apply the estimators to a simple model
of inter-temporal dynamics of the unemployment rate in the U.S. states, and to forecasting
quarterly output growth rates across 33 countries using macro and financial variables.
Conclusions and final remarks are given is section 5.8. Proofs and detailed calculations
are listed in Appendices E-G.

A brief word on notation: For an m x n real matrix A, we write the transpose A’, the
Frobenius norm ||A|| = (tr(4AA’))'/2. When A is symmetric, we use fimaez(A) and fimin(A) to

denote the largest and smallest eigenvalues, respectively. I, and 0,x1 denote p x p identity
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matrix and p X 1 vector of zeros. 1(.) denotes the indicator function and “p.d.” abbreviates
“positive definite”. The operators £>, 2>, and plim denote respectively, convergence in
probability, convergence in distribution, and probability limit. We use (N,T) — oo to

signify that N and T pass jointly to infinity.

5.2 Model and Penalized Estimation

In this section, we consider a linear panel structure model with unknown group
membership.
5.2.1 The Model

Consider the following linear panel data model
yir = B i +mi +uig,  i=1,...,N, t=1,...,T, (5.1)

where y;; is the dependent variable, x;; is a p x 1 vector of regressors explaining y;;, 7; is the
individual fixed effect that may be correlated with the regressors, u;; is the idiosyncratic
error term with zero mean, 71" is the number of observations, and N is the number of
individual units. We assume that 5? is a p x 1 vector of slope parameters that admits a

possible grouping structure of the form

), ifieGY

By = : (52)

0 e 0
ks 1€ Gy,

96



where of # af for any I,k = 1,..., Ko, and | # k, and G = {G?,Gg,...,G%O} forms a
partition of {1,2,..., N}. Let Ny be the number of individual units in GY, and the pKy x 1

matrix of a, and the pN x 1 matrix 3 be defined as

o= (a,0h,...,0h,) and B = (B, 5, ...,8y), (5.3)

where a” and 8° denote the true values of a and 3. In practice, the number of groups, Ko,
is unknown. However, it is usually reasonable to assume that Kj is smaller than N. Our
goal is to estimate the regression coefficient o and identify the latent group structure.

We consider two cases about the exogeneity or endogeneity of the regressors:
(a) E(xisuy) =0, forall 1 <s <t <T;
(b) E(xipui) #0, fort=1,...,T.

The first case occurs when the regressors are weakly exogenous and allows for lagged values
of y; to be included in x;, so that least squares criteria are appropriate. The second
case happens when the regressors contain either lagged dependent variables or endogenous
regressors that are correlated with the error term. In this case, we assume there exists a
q X 1 vector of instruments z;; with ¢ > p.

Since the individual effects, 7;, are not of main interest, in case (a), we concentrate them

out and obtain the following equation

Jiw = BY @iy + @y, i=1,...,N, t=1,...,T, (5.4)
where, e.g., & = xj—T Z;le x;¢. In case (b), to eliminate the effect of y; in the estimation
procedure, we consider the first-differenced equation

Ayip = B Az + Ay, (5.5)
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where, e.g., Ayit = yit — yit—1 fori =1,...,N,and t = 1,...,T, by assuming that we have

observations on ;0 and x;.

5.2.2 Penalized Least Squares (PLS) Estimation

To estimate the model in (5.4) under case (a), we propose minimizing the following

objective function

N T
Quar(B M) = 72 3 S @ — B + 20 33 161 51, (5.6)

z:l t=1 1<Z<j<N

where A\; > 0 is a tuning parameter, and w;; is a data-driven weight defined by
Wij = ||BZ_IBJH_H> for Z?] = 17"'an (57)

B; and Bj are preliminary estimates of 3; and (;, respectively, and & is a user-specified
positive constant that usually takes value 2 in the literature of adaptive Lasso.

To obtain the adaptive weights {w;; : i,j € {1,...,N}}, we propose to obtain the
preliminary estimate 3 by minimizing the first term in equation (5.6) which results in the

ordinary least squares. Thus for the i-th element of B, we have

T T
Bi = ( Z ﬂ?iti“gt) B Z TitYit.- (5.8)
t=1 t=1
The objective function in (5.6) is related to the literature on adaptive Lasso (Zou (2006)),
group Lasso (Yuan and Lin (2006)), fused Lasso (Tibshirani et al. (2005)) and group fused
Lasso (Qian and Su (2016)). Qian and Su (2016) determine the unknown number of
structural breaks which is different from the purpose of this chapter. The other listed
papers above aim at determining the nonzero coefficients from the zero ones, and are not

applicable here because our aim is to determine the unknown group structure.
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It is worth emphasizing that minimization of (5.6) is a convex optimization problem,
and thus it does not suffer from the multiple local minima issue, and its global minimizer
can be efficiently solved. The penalty shrinks some of the pairs 3; — §; to zero, so that
we can partition the slope parameters into groups. In practice, let A1 be the value of the
tuning parameter that we select based on a variant of the Bayesian information criterion
(BIC), further let {d1,...,daz} be the distinct values of the PLS estimator B =pB0) =
arg min Q1 n7(8, 5\1), then {@1, o ,GK} forms a partition of {1,2,..., N}, where Gy = {i:

Bi=dp1<i<N}1<k<K.

5.2.3 Penalized GMM (PGMM) Estimation

In case (b), we propose to estimate 3 by minimizing the following objective function

N T

Qant (B X2) = [% > zi(Ayir — @Aﬂ%)} IWi,NT [% > zu(Ayi — BiAzy)
=1 = =1 (5.9)
A
+ % D> willBi = Bl
1<i<j<N

where Ao > 0 is a tuning parameter, W; y7 is a ¢ X ¢ p.d. matrix, and ;; is a data-driven

weight defined by
Wiy = ||Bi — Byl 7", fori,j=1,...,N, (5.10)

B; and 53 are preliminary estimates of 3; and 3;, respectively, and & is a user-specified

positive constant that usually takes value 2 in the literature.
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To obtain the adaptive weights {w;; : i,j € {1,...,N}}, we propose to obtain the
preliminary estimate 3 by minimizing the first term in equation (5.9). Thus, for the i-th

element of 3, we have

) L I | 1T L I
B; = [(T Z AiBz‘t%) Wi NT (f Z Zz‘tAw;t)] (f Z A:mz{t) Wi NT (f Z Zz‘tAyz‘t> .
=1 =1 =1 =1

(5.11)

The first term in the definition of the objective function in (5.9) is different from the
usual GMM objective function in the panel setting where only one weight matrix is needed
and the double summation Ef\il Zthl occurs twice, one before the weight and the other
after the weight matrix. The reason is that because the true group membership of individual
units is unknown, we cannot apply the usual GMM objective function here.

It is worth emphasizing that minimization of (5.9) is also a convex optimization problem,
hence it does not suffer from the multiple local minima issue, and its global minimizer can
be efficiently solved. The penalty shrinks some of the pairs 3; — 3; to zero, so that we
can partition the slope parameters into groups. In practice, let X2 be the value of the
tanning parameter that we select based on a variant of BIC, further let {&i,...,az} be
the distinct values of the penalized generalized method of moments (PGMM) estimator
B = B(X2) = argmin Q2.n7(B, A2), then {él, .. 7(;}?} forms a partition of {1,2,..., N},

where Gy ={i : i =y, 1 <i< N}, 1<k <K.

5.3 Asymptotic properties of the PLS estimators

In this section, we address the asymptotic properties of the PLS estimator and the

associated post-Lasso estimator.
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5.3.1 Assumptions

Let szj = % Z;‘le Z; @), and sz = % Zthl Ty}, , and define Jy, =
min; <jg <o |0 — af|| which denotes the minimum degree of heterogeneity in the slope
coefficients between groups.

To study the asymptotic properties of the PLS estimator, denoted by B, we make the
following assumptions.

Assumption 5.1 (i) S Fitiy = Op(1) for eachi=1,...,N.

(i1) Q”m £> Qizz > 0 for each i = 1,...,N. There exists a positive constant czz such
that im(y 7)—00 MiN <i<n ,umm(Qz‘,Mc) > Ciz-
(iii) % Yoy [|Qizall* = Op(T 7).
(vi) Ni,/N — 1, € [0,1) for each k =1,...,Ky as N — 0.
Assumption 5.2 (i) T2, — ¢y € (0,00] as (N,T) — oc.
(ii) plz’m(NyT)HooNTlﬁ)\lJ;lfn =c € [0,00).

(i6) plim(n 7)o NkT D2 /N = o0.

Assumption 5.3 (i) For each k = 1,...,Kq, ®) = ﬁ Zieeg Zthl Ty, L O >0

as (N, T) — oc.

.. JO D
(ii) For each k =1,..., Ko, ﬁZieGg ZZ;I Tyt — By — N(0,V%) as (N, T) —

oo, where By N7 = ﬁ ZieGg Zthl E(Zut4) is either zero or of order O(y/Ny/T)

depending on whether x;; s strictly exogenous.
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Assumption 5.1(i) will be mostly satisfied in large dimensional panel data models with
weakly exogenous regressors and can be replaced with sufficient or primitive conditions on
the process {(z;, ui),t > 1} that ensure the central limit theory. Note that this assumption
allows both conditional heteroscedasticity and serial correlation in {u;,t > 1}. Also,
Assumption 5.1(iii) can be easily verified from this assumption. The first part of Assumption
5.1(ii) is standard in the literature, but the second one imposes restriction on the moments
of x;4, the dependence structure on the regressors processes, and the relative rates at which
N and T pass to infinity. Su et al. (2016) give details on sufficient and primitive conditions
that ensure this assumption. Assumption 5.1(iv) implies that as N — oo, the number of
individuals within each group can be either asymptotically non-negligible or tend to infinity
but at a rate slower than N. Assumption 5.2 mainly specifies conditions on Jyin, A1, N,
and T. We use the probability limit in 5.2(ii)-(iii) because we allow A\; to be data-driven and
hence random. We assume the minimum degree of heterogeneity size, Jp,in, to shrink to zero
as T — 0o, but at a rate slower than 7-1/2. We make Assumption 5.3 to provide conditions
to ensure the asymptotic normality of the Lasso estimators, but it can be replaced with

various commonly primitive conditions.

5.3.2 Consistency

The following theorem establishes the consistency of BZ fori=1,...,N.
Theorem 5.4 Suppose that Assumption 5.1 holds. Then fori=1,..., N,
(i) Bi = B = Op(T/?),

(ii) &SN (18 — B2 = Op(T ).
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Proof: Appendiz E, (See page 174).

Theorem 5.4 (i) and (ii), respectively, establish the pointwise and mean square
convergence rates of ;. Given the PLS estimate, B, we can obtain the estimated groups
by classifying individuals with the same coefficient estimate, Bi, into the same group.
Let G’k, k=1,... ,K denote the K estimated groups. Let ap, k = 1,... ,K denote the

group-specific estimated slope coefficients. Then by definition:
Gr={iel,....N:Bi=dy}, fork=1,..., K. (5.12)
The following theorem establishes the classification consistency.
Theorem 5.5 Suppose that Assumptions 5.1 and 5.2 hold. Then
P<||Bi —Bill =0 for alli&j € G, k € {1,...,K0}) 51, as T — oo
Proof: Appendixz E, (See page 175).

Theorem 5.5 says that with probability approaching one all the zero vectors in {||5; —
Bjll;1 < 4,5 < N} must be estimated as exactly zero by the PLS method so that the
estimated number of groups cannot be large than Ky when T is sufficiently large. These
results together with the consistency results in Theorem 5.4 imply that the PAGFL has
the ability to identify the true group structure with the correct number of individual units
within each group consistently when the minimum group size Jy;, does not shrink to zero

too fast.

Corollary 5.6 Suppose that Assumptions 5.1 and 5.2 hold with c; = oo in assumption

5.2(i). Then
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7’) th—wo P(K = Ko) = 1,
Proof: Appendiz E, (See page 177).

The above corollary implies that, as long as the minimum degree of heterogeneity, Jin,

remains fixed or shrinks to zero at a rate slower than 7712 as T — oo, we can determine

the correct number of groups.

5.3.3 Limiting Distribution and The Oracle Property of PLS

In this section we study the asymptotic distribution of the PLS and post-Lasso
estimators.

Note that if each individual’s group membership is known, the oracle estimator
is the within group estimator of «f which can be formulated as @, =
(EieGg Zthl fitﬁ,g) - Zz’eGg Zthl ZiTit- Also, note that under assumption 5.3,
VNAT (g — 00) — &7 "By vr 2> N(0, 8, 0,071,

The following theorem reports the limiting distribution of the PAGFL estimator, &g,

which is derived from the PLS estimates of fi after the classification.

Theorem 5.7 Suppose that Assumptions 5.1-5.3 hold with c; = oo in assumption 5.2(i).

Then, conditional on K = Koy,
/ A 0 -1 D -1 -1 _
Nk (Oék—()ék)—q)k BkJ\[T——)N(O,Cbk \qu)k ), fO?“k?—l,...,Ko.

Proof: Appendiz E, (See page 177).
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Theorem 5.7 indicates that the PLS estimator of &y achieves the same limiting distribution
as the oracle within group estimator, therefore we say that the PLS estimator has the
asymptotic oracle property.

Given the fact that we estimate the group structure, we can define the post-Lasso
estimator of &, as

T . T
ag, = < Z Zfit5§t> Z Zifitﬂz’t- (5.13)

ie@k t=1 ’iEGk t=1
The following theorem reports the asymptotic distribution of d@k’
Theorem 5.8 Suppose that Assumptions 5.1-5.3 hold with c; = oo in assumption 5.2(i).

Then, conditional on K= Koy,
VNI (ég, — of) — O ' Byvr = N(0,0 0,01 1), fork=1,..., Ko,
Proof: Appendiz E, (See page 178).

The above theorem holds using the classification consistency results in Theorem 5.5,
and says that the post-Lasso estimator has the asymptotic oracle property. Although, the
Lasso and post-Lasso estimators are asymptotically equivalent, it is well known that the
post-Lasso estimator typically performs better than the Lasso estimator in terms of faster
rates of convergency (see Belloni and Chernozhukov (2013)), thus it is recommended for
practical use. Moreover, By, y7 is not equal to zero in case of dynamic panel data models,
in fact it is well known in the literature that the fixed effect estimator has asymptotically
bias of order O(1/T). This suggests that in dynamic panel models By y7 = O(y/Ni/T)
and bias correction is required, unless the rate at which T goes to infinity is faster than

that of Nj. There are various methods proposed in the literature to estimate the bias term
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such as Kiviet (1995), Hahn and Kuersteiner (2002), Phillips and Sul (2007), Lee (2012),
Gourieroux et al. (2010) and Han et al. (2014), among others, and we refer the readers to

these papers.

5.4 Asymptotic properties of the PGMM estimators

In this section we address the asymptotic properties of the PGMM estimator and the

associated post-Lasso estimator.

5.4.1 Assumptions

Let Qi nc = + Zthl 2t ATy, Qiany = + ZL 2t AYit, Qi zne = 7 ZL E(zAzl,), and
Qionyg = = 31— E(zaAyir). Let & = (Ayir, (Aza)', 2, p(&ity Bi) = zie(Ays—BiAzir), and
pir(B) = 2 X0y [ (€ B) — Ep(&a, )] Also, for each group k = 1,..., Ko, let W)
bea d x d pd. matrix, QW np = (whr Tieay Limy zu(Azi) ).

To study the asymptotic properties of the PGMM estimator, denoted by ,@, we make

the following assumptions.
Assumption 5.9 (i) E(p(&1,8Y)) =0, for eachi=1,...,N andt=1,...,T.

(ii) supg, i (B) = Op(1), and 5 320, pir (Bl = Op(1), for any B; and i =

1 N.

g ey

(i) Qi,zAx £> Qi,zAx > 0, for each i =1,...,N. There exists a positive constant [%9) such

that Ty 7y —e0 MM <i< N fmin(Q) 7, Qi z02) = C5-
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(i) There exist non-random matrices Wy such that maxi<i<n ||W; N7 — Wil| = 0p(1), and

lim inf(N,T)—mo minlSiSN ,umm(Wz) =cw > 0.

(v) Ni/N — 1, €[0,1), for each k=1,..., Ky as N — oc.
Assumption 5.10 (i) T2 J,m — ¢y € (0,00] as (N,T) — oc.

(i1) plim(Nj)ﬁooNTl/z)\lJ_“ =ce€[0,00).

i) plim(n 1)— oo NeTETD/2 00 /N = 0.
(N,T)

Assumption 5.11 (i) For each k = 1,...,Kq, @ = N%,Ziecg ||Q1»72Ax — Qi,zAm”Q =

op(1), and W; N7 LW, >0 forie€ Gg.

(ii) For each k = 1,...,Kq, A, = N%g ZZEG% Q;ZAIWZ',NTQZ',ZAI — Ak >0 as (N,T) —
Q.
~ D
(ZZZ) For each k =1,..., Ky, ﬁ ZiEGg Q;,zAle}NT Zle Zit A — Bk,NT — N(O, Ck)
as (N, T) — oc.

Assumption 5.12 (i) For each k =1,..., Ky, WJ(\?% Zw® >0 as (N,T) = .

(it) QikA)a:,NT 2z QikA)x which has rank p.
D
(it) 78 Siecy S ziAug = N(0, V).

Assumption 5.9 (i) specifies moment conditions to identify 7. 5.9 (ii) is needed as we
do not specify the data structure. 5.9 (iii) together with 5.9 (i) provide a rank condition for
the identification. 5.12 is a standard assumption in GMM estimation literature. The rest

of the assumptions parallel Assumptions 5.1-5.3.
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5.4.2 Consistency

The following theorem establishes the consistency of the PGMM estimator, 3; for i =

1 N.

Theorem 5.13 Suppose that Assumption 5.9 holds. Then
(i) B; — BY = Op(T’1/2) fori=1,...,N,
(i) % S, 1B = BY? = Op(T 7).

Proof: Appendizx F, (See page 180).

Theorem 5.13 (i) and (ii), respectively, establish the pointwise and mean square
convergence rates of {BZ :4=1,...,N}. Given the PGMM estimates, B3, we can obtain
the estimated groups by classifying individuals with the same coefficient estimate f; into
the same group. Let Gk, k=1,..., K denote the K estimated groups. Let ag, k=1,... K

denote the group-specific estimated slope coefficients. Then, by definition:
Gr={iel,....N:Bi=ay}, fork=1,...,K. (5.14)
The following theorem establishes the classification consistency.
Theorem 5.14 Suppose Assumptions 5.9 and 5.10 hold. Then
P<HBZ — B4l =0 foralli&j € Gy, k € {1,...,K0}> —1, as T — .
Proof: Appendiz F, (See page 181).

Theorem 5.14 says that with probability approaching one all the zero vectors in {||3; —

Bjll;1 < 4,7 < N} must be estimated as exactly zero by the PGMM method so that the
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estimated number of groups cannot be different from Ky when T is sufficiently large. These
results together with the consistency results in Theorem 5.13 imply that the PAGFL has
the ability to identify the true group structure with the correct number of individual units
within each group consistently when the minimum degree of heterogeneity, Jy.n, does not

shrink to zero too fast.

Corollary 5.15 Suppose that Assumptions 5.9 and 5.10 hold with ¢y = oo in Assumption

5.10(i). Then
(i) th—>oo P(R = Ko) = 1’
Proof: Appendiz F, (See page 183).

The above corollary implies that, as long as J,,;, remains fixed or shrinks to zero at a rate

1/2

slower than T~/% as T' — oo, we can determine the correct number of groups.

5.4.3 Limiting Distribution of PGMM

In this section we study the asymptotic distribution of the PGMM and post-Lasso
estimators.
Note that if each individual’s group membership is known, the oracle estimator is the

solution to a usual GMM objective function which can be formulated as below

-1
4 k)’ k k k) k k
ap = [QiA)x,NTWJ(V%Q,(zA)x,NT] Q’(ZA)vaTW](\f%Q,(zA)y7NT7 (5.15)

k k
where Q,(ZA)I,NT = <ﬁ Zz'ecg E?:l Zit(A:fit)/)’ QiA)y,NT = (ﬁ Ziecg ZtT=1 Zit(A%t))

and W](\f:)p is a ¢ X ¢ symmetric p.d. matrix for each £ = 1,..., Ky. Apparently, the
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PGMM estimator does not have the same asymptotic distribution under general conditions.
However, under the further assumptions that for each i € Gg, WinNT = W](f%, QWAI =
Q SAzNT and By y7 = 0 the PGMM estimator will have the oracle property.

The following theorem reports the limiting distribution of the PAGFL estimator, &y,

which is derived from the PGMM estimates, EI, after the classification.

Theorem 5.16 Suppose Assumptions 5.9-5.11 hold with c; = oo in assumption 5.10(i).

Then, conditional on K= Ko,
VNRT (G — o) — A Byt = N(0, A CrALY), fork=1,..., Ko.
Proof: Appendix F, (See page 183).

Given the fact that we estimate the grouping structure, we can define the post-Lasso

estimator of &y, as
LSy (k) Ak
aGk (QZAZ QzAw) QiA):DW](\H)“QiA)w (516)

~ ,i' -~ .
where Q,(ZA)x = NikZZeGk Qz 2Az and Qsz = N%czz‘eék Qi :ny- The following theorem

reports the asymptotic distribution of dék'

Theorem 5.17 Suppose Assumptions 5.9-5.12 hold with c¢; = oo in assumption 5.10().

Then, conditional on K = Ky,
VNiT(ag, —af) 2> N(0,), fork=1,..., Ko,

’ —1 ’ -
where Qk = [Q,(zkA)xW(k)QgCA):p Q,(zkA)xW( )V W QzAx QzAz k)QzAm :

Proof: Appendiz F, (See page 184).
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The above theorem says that the post-Lasso GMM estimator g, asymptotically has the
same limiting distribution as the infeasible estimator &y, which further indicates that the

post-lasso GMM estimator has the oracle property.

5.5 Computation and Algorithm

The objective functions in (5.6) and (5.9) are not separable in f3;, which makes it difficult
to compute the estimates directly. Thus, we define a new set of parameters é;; = 3; — 3;
and reparameterize the criterion functions separately for PLS and PGMM and describe the

implementation below.

5.5.1 PLS Computation

Reparametrizing the objective function in (5.6), is equivalent to the constraint

optimization problem below

N T
min $1(8,8) = £ 373G — AE)” + M 303 w6

i=1 t=1 1<i<j<N

subject to 3; — 8 — ;5 =

where & = {0;;,7 < j}'. By the augmented Lagrangian method, the estimates of the

parameters can be obtained by minimizing

9
Ll(/8767’/) Sl 67 ZZ 7,] 51]) + 5 ZZ Hﬂl _/83 - 57,3”27

1<i<j<N 1<i<j<N

where v = {v;,i < j}' are lagrange multipliers and ¥ is the penalty parameter. Therefore,

we can obtain the estimates of (3, d,v) through iterations by the ADMM.
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The minimizer of L(8,d,v) with respect to d;;, for given (8,v), has a closed form
solution and is unique. In practice, for given (3, v), the minimization problem with respect

to 0;5 is equivalent to the following minimization

%)
min o DD G = Gl A A D) D byl

1<i<j<N 1<i<j<N

where (;; = B; — B + 19*1%-]-. Thus, the closed form solution is

dij = ST(Gij, M/9), (5.17)

where ST (a,b) = (1—-b/|lal|)+ a is the groupwise soft thresholds rule, and (¢)+ = 1(¢ > 0)c.

Implementation

In this part, we describe the computational algorithm for minimizing the objective
function in (5.6) using the ADMM. The iteration process consists of updating (3,4 and
v iteratively. For a given (§,v), we obtain the updates of 3 by setting the derivative

0L1(3,6,v)/08 to zero, where
L T —1,,12

and C is a constant independent of 8, ¥ = (¥1,...,9x)"s ¥ = (Ui1,...,¥r)" for each
i=1,...,N, X = diag(X1,...,Xn), X; = (&i1,...,%7) for each i = 1,..., N. Besides,
A =V ®I, where V = {(e; —¢;),1 < i < j < N} and e; is an N x 1 vector whose
ith element is one and the remaining ones are zero. We track the progress of the ADMM

based on the primal residual at step m, (™ = AB(™) — §(™) and stop the algorithm when

|7™)|| < €. The algorithm can be summarized in below:

PLS Algorithm:
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1. Initialization: Find initial estimates of ,Bi(o) by minimizing the first term of (5.6) for

all i =1,..., N. Let the initial values of (©) = 0, and (52(](.)) = 6-(0) — B](.O).

2. Tterations: At iteration m > 1, for given 6(™~1) and v(m—1),
(a) update 3™ which is the minimizer of L, (8,3, (™)) as below
gim) — [X’X + MA] - [X’@ LN (5<m—1> - ﬁ_lu(m_1)>] :
(b) update the value of §;; at the (m)th iteration by (5.17), after replacing
Gij = ﬁl(m) _ 5](771) + 19—1%(;71—1);
(c) update the value v;; by

Vi(jm) = Vi(;n_l) + b"(ﬂi(m) — 5J(m) - 58-71))3

(d) terminate the algorithm if the stopping rule ||7("™)|| < € is met at step m. Then,
(B §(m) p (™)) are the PAGFL estimates (B, 5, v).

Proposition 5.18 The primal residual r™ = AB™) — §™) and the dual residual s™) =
IA(B™ — Bm=1)) of the ADMM satisfy the following conditions:

i) limy, o0 ||7™|2 = 0,

i) 1imy, o0 |82 = 0.

Proof: Appendiz G, (See page 185).

Proposition 5.18 shows that both the primal and dual feasibility are achieved by the

algorithm. Further, as the objective function in (5.6) is convex, therefore the algorithm

converges to an optimal point.
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5.5.2 PGMM Computation

Similarly, by reparametrizing the objective function in (5.9), the minimization is

equivalent to the constraint optimization problem below

d T
min SQ(ﬁa Z [% ZZzt Ay — ﬁ AV } i,NT [ = Z zZt Ayit — /BZ{A:E“)
= t=1 p
+ ZZ W;j]|0i5]|, subject to B; — B; — dij =0,
1<i<j<N

where 6 = {0;;,i < j}'. By the augmented Lagrangian method, the estimates of the

parameters can be obtained by minimizing

Ly(B,8,v) = S2(B,8) + > > vy 8ij) + 5 ZZH@ Bj — 35117,

1<i<j<N 1<7,<]<N

where v = {V/ Vijr 0 < J } are lagrange multipliers and ¢ is the penalty parameter. Therefore,
we can obtain the estimates of (3, d,v) through iterations by the ADMM.

The minimizer of Ly(3,d,r) with respect to d;;, for given (8,v), has a closed form
solution and is unique. In practice, for given (3, v), the minimizer problem with respect to
0i; is equivalent to the following minimization

9
5 SO G = il A D> > g1,

1<i<j<N 1<i<j<N

where (;; = B; — 5 + ﬁ_luij. Thus, the closed form solution is
3ij = ST (Gijy A /9). (5.18)

Implementation

Now, we describe the computational algorithm for minimizing the objective function in

(5.9) using the ADMM. The iteration process consists of updating 3, and v iteratively.
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For a given (4, r), we obtain the updates of 3 by setting the derivative 0L2(3,d,v)/08 to

zero, where
1
Ly(B,6,v) = §(Ay ~AXB)YZWZ(Ay — AXB) + gHAﬁ -0+ 19_11/||2 +C,

where C is a constant independent of 3, Ay = (Ay), ..., Ayy), Ayi = (Ayi, ..., Ayir),
Z = diag(Zy,....2ZN), Z; = (zi1,---,2i7), AX = diag(AXq,...,AXy), AX; =
(Azjr,...,Azyp) for each ¢ = 1,...,N, and W = diag(Wi nT,..., Wn nT). Similarly,
we track the progress of the ADMM based on the primal residual at step m, rlm) —
AB™ — §(™) and stop the algorithm when ||7(™)| < e. The algorithm can be summarized

in below:

PGMM Algorithm:

1. Initialization: Find initial estimates of Bi(o) by minimizing the first term of (5.9) for

all i = 1,..., N. Let the initial values of v(® =0, and 51(](-)) = BZ-(O) — B](-O).

(m—1) (m—1)

2. Iterations: At iteration m > 1, for given & and v ,
(a) update B8 which is the minimizer of Lo(3, 8™, (™)) as below
8™ — [AX'ZWZAX + f}A’A} - [AX’Z’WZAy LN (5<m—1> - 19—11/(’”—1))} ,
(b) update the value of §;; at the (m)th iteration by (5.18), after replacing
G = B = B oY

(c) update the value v;; by

) m) g gm) _ glm) _ stm)y

i i [ 7 1]
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(d) terminate the algorithm if the stopping rule ||7(™)|| < € is met at step m. Then,

(B §(m) (M) are the PAGFL estimates (3,8, ).

Proposition 5.19 The primal residual 7™ = AB™ — §(™) and the dual residual s =

IA(BHY) — BM)) of the ADMM satisfy the following conditions:
i) limp, 00 |72 =0,
i) limy, o0 |82 = 0.

Proof: Appendix G, (See page 187).

Proposition 5.19 shows that both the primal and dual feasibility are achieved by the
algorithm. Further, as the objective function in (5.9) is convex, therefore the algorithm

converges to an optimal point.

5.6 Monte Carlo Simulation

In this section, we investigate the finite sample properties of the PAGFL and associated
post-Lasso estimators. We consider two similar data generating processes (DGP) to
Su et al. (2016) that cover static and dynamic panels. The fixed effects and the idiosyncratic
errors follow the standard normal distribution and are mutually independent across ¢ and
t for both DGPs. The observations in each DGP are drawn from three groups with the
proportion N1/N = 0.4, No/N = 0.3 and N3/N = 0.3. We consider all combinations of

(N,T) with N = (100, 200) and T = (40, 80).
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1. DGP 1 (Static panel with two exogenous regressors): The regressors
(@it1,zit2) are generated as xj1 = 0.21; + e;11 and zi0 = 0.21; + e;r2 where e
and e;; 2 are both i.5.d N(0,1) and mutually independent. y;; is then generated from

the panel structure model (5.1). The true coefficients are

04) (1) (16
(o, 03, 08) = : : : (5.19)

1.6 1 0.4

2. DGP 2 (Dynamic Panel AR(1) with two exogenous regressors): The model

is generated from the following equation
L — B9, 0. 0. ) 0 )
Yit = /Bilyz,t—l + /Binzt,l + 6i3xzt,2 + 772(1 - /811) + U, (520)

where the exogenous regressors x;; 1 and x;; 2 follow the standard normal distributions,
mutually independent, and are independent of the error term. To make each
individual’s time series strictly stationary with mean 7;, the initial values take the

form y;0 = ngfﬁz‘t,l + 5?3%’1&,2 + m; + uin. The true coefficients are

0.8 0.6 0.4
(af,a9,08) = |oal.| 1| [16] | (5.21)
0.4 1 1.6
We use the modified BIC (Wang et al. (2009)) for high-dimensional data settings to select

the tanning parameters, A\; and A2, by minimizing

log(NT) , -

BIC(\) = Qint(BN)) + Cnr == (PK (y), for j = 1,2, (5:22)

with respect to Aj, where Cn7 is a positive number that can depend on the number

of observations. Wang et al. (2009) used Cnr = log(log(d)) where d is the number of
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predictors in their simulations and diverges with the sample size. Our findings indicate that
this specific choice of Cnr is too small for the latent group specification. We experimented
different alternatives, and found that Cyp = 0.05v/NT, works fairly well. Further, we use
a fixed value for ¢ in the ADMM algorithm.

As the goal of this chapter is to consistently identify the group memberships, and
estimate the regression coefficients and the number of groups, we report and compare
the finite sample performance of our proposed estimation methods with the C-Lasso of

Su et al. (2016) by considering the following three criteria:

(i) Estimation Consistency: We report the Root Mean Squared Errors (RMSE) which is

defined as

N
1 .
MSE =, | — E . — B9)12. 2

(ii) Consistency of K : We report the selection consistency as the empirical percentage
of selecting the true number of groups. For example in our simulation designs we

measure the percentage of the number of time K=K%=3.

(iii) Classification Consistency: We measure the percentage of correct classification of the
group membership of individuals, by calculating Z,fil 1(g; = g?), where g? denotes

the true group membership of individual ¢, and §; denotes the estimated one.

The simulation results of DGPs 1-2 for 200 monte carlo simulations are presented in

Table 5.1-5.3. The summary of the simulation results is as below.
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1. Table 5.1 provides the RMSE of the proposed PAGFL?, and compare it with C-Lasso
of Su et al. (2016). We observe that the RMSE of all of the estimators decreases as
the sample size increases while at the same time the RMSE our estimator is slightly

smaller than the others.

2. Table 5.2 summarizes the empirical probability that a particular group size from 1
to 5 is selected using our approach. From Table 5.2, we can observe that in both
designs, the PAGFL performance is fairly well and when the sample size is large

enough PAGFL always chooses the correct the number of groups.

3. Table 5.3 reports the classification consistency. As expected, when the sample size
is large enough and the difference between the slope parameters across the groups is

relatively large, classification of PAGFL is accurate.

4. Finally, the PAGFL unlike C-Lasso does not rely on a prior specification of the group

numbers, and at the same time performs comparably better than the other methods.

In conclusion, we can claim that the simulation results confirm our theoretical findings of

the previous sections regarding estimation and identification of latent structure.

5.7 Illustrations

We now illustrate the PAGFL estimation and identification in two empirical applications.

The PLS estimator for DGP2 is bias-corrected by using the Split-panel jackknife method of
Dhaene and Jochmans (2015).
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5.7.1 Unemployment Dynamics at the U.S. State Level

In this application, we apply the PAGFL estimation and identification procedures to a
model of unemployment dynamics at the U.S. state level. Bun and Carree (2005) studied
this subject using a dynamic panel data model that relates each of the states’ current
unemployment rate (Uy;) to the unemployment rate and economic growth rate (Gy) in the
previous year. In addition to capture state specific effects, their model includes both state

individual intercepts n;, and time effect 6;. Their model can be written as below

Uit = YUit—1 + BGi—1 +n; + 0 + €, (5.24)

or equivalently

Uit —Uip—1= (v = 1)(Uit—1 — i) + B(Git—1 — 6) + 04 + €4, (5.25)

where (1 —v)a; — 85 = n;. The model in (5.25) shows that changes in unemployment rate
are determined by two observable components: first, the adjustment of the unemployment
rate toward a “natural” or “equilibrium” rate of unemployment, «;, which is allowed to
vary across states, second, the deviation of the economic growth rate around a constant
equilibrium. In addition, in the model above, 1 — v denotes the speed of adjustment of the
unemployment rate toward the “natural” or “equilibrium” rate, further it is expected to
have 8 < 0 because a state that has relatively high economic growth is more likely to have
reduced unemployment rates compared with states in which the economy is growing more
slowly.

The model above imposes the assumption of heterogeneous “intercepts” and

homogeneous “slope coefficients” across states, and as pointed out by Campello et al. (2019),
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estimation methods of such models can result in severely biased parameters and incorrect
inferences. To avoid this issue, alternatively, we consider the following latent group structure

model

Uit = 79, Uit—1 + By, Git—1 + ni + €t (5.26)

where g; denotes group membership of state i. The model above equivalently can be written

as

Uit = Uip—1 = (7g; — 1) (Ui =1 — i) + By, (Git—1 — 0g,) + €t (5.27)

The data for the unemployment rate are taken from the U.S. Bureau of Labor Statistics
for the 19762019 period, and the data for the state gross product are per capita personal
income (thousands of dollars) which are obtained from the U.S. Bureau of Economic
Analysis deflated by annual implicit price deflator. The economic growth rate is taken
to be the relative growth of the state product. Therefore, in our application N = 51, all
U.S. states and Washington, DC, and T' = 43 because year 1976 is taken as the starting
observation.

The PAGFL divides the states in three groups, where the group memberships are
presented in Figure 5.1. Table 5.4 reports the estimated coefficient estimates based on full
sample and three groups with their corresponding standard deviations. All the estimated
coefficients of v are highly significant among the four models under 1% level. The value
of v in full sample and group 1 are almost the same and equal to 0.8, which implies an
adjustment rate of around 20% per year. The adjustment rate in group 3 is smaller around

14% and that of group 2 is faster around 28%. The value of the full sample estimate of /3
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equals -0.261, whereas the value of the estimate in group 1 and group 2 are —0.716, and
—0.567 and all are significant under 1% level. This implies a somewhat stronger effect of

economic growth on the change in unemployment than other states in group 3.

5.7.2 Forecasting Output Growth of 33 Countries

In this section, we present an empirical application that highlights the utility of
PAGFL in forecasting. In particular, we forecast the output growth rate of a large
number of countries in the global economy using a set of macroeconomic and financial
variables by allowing latent group structures in the slope coefficients. This allows us to
aggregate the countries with close response variables which can improve the forecasts. As
pointed out by Pesaran et al. (2009) this is an important issue that practitioners face when
constructing forecasting models which is still an open discussion. We consider a panel data
model with latent group structures which adds to the current and ongoing literature of
forecasting economic and financial variables across countries including Dees et al. (2007,a),
Dees et al. (2007,b), and Pesaran et al. (2009), among others.

The data set is taken from the Global VAR (GVAR) dataset®. We use quarterly
macroeconomic and financial variables including log real GDP (y;;), the rate of inflation
(mit), short-term interest rate (r;), long-term interest rate (Ir;), and log real equity prices
(git) for N = 33 economies from 1979Q2 to 2016Q4.

We are interested in forecasting h quarters ahead rate of log real GDP, with the predictors
in ziy = (Aysp—1, Ari—Amyg, Alry — Ary, Agiy— Amy) and 25, = (Athv Ar;t—Aﬂ';‘t, Alr;t—

Ar},, Agf, — Ar},), where 2}, is the country-specific foreign variables. The foreign variables

3The data is available at the GVAR Toolbox webpage: https://sites.google.com/site/gvarmodelling/data.
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are constructed using rolling three year moving averages of the annual trade weights which
are computed as shares of exports and imports for each country *.

Therefore, we consider the following equation
AnYigrh = Mg+ Bipzie +uie, i=1,...,N, andt =1,...,T, (5.28)

where Apyiiin = Yir+n — Yir for the forecast horizon h, xy = (2i, %)) and the slope
parameters, [3; , admit a possible grouping structure of the form (5.2). We estimate and
identify the slope parameters and the underlying group structure using the PAGFL method
developed in the previous sections. In our analysis, we consider up to h = 4 (four quarters
ahead) and report results for one quarter ahead (h = 1) and one year ahead (h = 4). The
forecasts are constructed using both rolling windows and expanding windows of 15 years
time periods, or T' = 60 for the rolling window, which leaves us with the last H; = 83
out-of-sample evaluation periods, 1996Q2-2016Q4 for h = 1, and Hy = 79 out-of-sample
evaluation periods, 1997Q2-2016Q4 for h = 4.

In addition, to allow for possible structural breaks, following the suggestion of
Pesaran and Timmermann (2007) and Pesaran and Pick (2011), we repeat the above
forecasting process by changing the estimation window. Specifically, the start date of
the estimation sample is moved forward by one quarter till the observations left for the
estimation is at least twice the number of regressors, and the process of out-of-sample
forecasting is repeated as before. This estimation process is repeated for each of the three
models. Thus, for each model, and for each out-of-sample forecast date, there are T —2p+1

windows yielding a total of T'— 2p 4+ 1 forecasts to be averaged. We denote the average

“For example the trade weights of year 2016 is based on the average trade flows computed over the three
years 2013—2015. Because the trade flows observations start at 1980, the process of computing time-varying
trade weights was initialized by using the same set of weights for the first four years of the sample period.
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forecast from a particular model estimated over different estimation windows by “Average
Windows”.

We evaluate the forecasting performance of our method, with individual equations
forecasts, and a fixed effect approach using the root mean squared forecast error (RMSFE)

of any given model, which is averaged across the N countries as below

1 N 1 T+Hp,—1
RMSFE(h,H) = NZE > é(h), h=14, (5.29)
=1 t=T

where é;(h) = ApYitrn — A/h\yi’ﬁh‘t is the h—quarter ahead forecast error, with Apy; 14+n
being the actual value, and A/;E/M +h|¢ the corresponding forecast formed at time ¢. RMSFE
and relative RMSFE statistics for the one-quarter and one-year ahead forecasts of output
growth rate are reported in Table 5.5 and Table 5.6.

Diebold and Mariano (1995) (DM) test statistics for testing Hy : E <2it7m(h)> = 0,
where Z; m(h) = ézzt,PAGFL(h) - é?tym(h) is the difference between the h—quarter ahead
squared forecasting errors of our PAGFL method and method m (fixed effect or individual
equations models) for country i. Specifically, by assuming serially uncorrelated h-step-ahead

forecasting errors, we have

7z' m h
DM pm(h) = /Hy, j Ehg i=1,...,N, and h = 1,4, (5.30)
where 2; . (h) = Hih tT;Tff:”l Zit m(h) is the sample mean of Z; ,,,(h), and
1 T+Hy, 2
52 — 5. _ 3.
Ui,m(h) - Hh -1 Z <Zzt,m<h) Zzt,m<h)> . (5.31)
t=T+1

To compare the forecasts across the countries, we compute the panel version of the DM
test which is proposed in Pesaran et al. (2009) to statistically test the panel forecasts across

countries against each method for a given forecast horizon. The panel DM (DM) statistic

124



under assuming serially and cross-sectionally uncorrelated h-step-ahead forecasting errors

is defined as

DM, = —" " h=1,4, (5.32)

where Zn(h) = =N 5 (k) and v(zm(h)) - ﬁ(% sV &gm(h)). The panel DM
test results are reported in Table 5.7 and Table 5.8 for one-quarter and one-year ahead
forecasts.

We note that one quarter ahead PAGFL forecasts perform better than the fixed effects
and individual estimators in all cases and the panel DM tests are significant. For the
one-year ahead forecasts, under expanding windows, PAGFL outperforms the other two
methods, however, under the rolling windows, the difference between PAGFL method and
individual estimators is very small but both perform better than fixed effects. It is worth
mentioning that we examined whether there exist obvious structural breaks by employing
the recently developed break detection method by Baltagi et al. (2016) that allows for
heterogeneous slope coefficients. Although, it did not detect any structural breaks, the

performances of the forecasts under average windows are better than using the full sample.

5.8 Conclusion

The present chapter suggests a simple and computationally efficient way to jointly
estimate and identify latent group structures in panel data, by developing pairwise fusion
penalized least squares (PLS) and GMM (PGMM) methods. We develop theoretical results

on consistent group structure estimation and discuss the asymptotic properties of the
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estimators. The PLS estimator asymptotically achieves the oracle property, but the PGMM
oracle property is confined to some restrictive assumptions. Monte Carlo simulations are
conducted to examine the finite sample properties of the proposed method which show
that the approach has good finite-sample performance. Our first empirical application on
the unemployment dynamics in the U.S. state level finds strong evidence that the slope
coefficients are heterogenous and can be conveniently classified into three distinct groups.
In addition, our second application in forecasting output growth of 33 countries using
macroeconomic and financial variables shows that our PAGFL framework outperforms other
candidate methods.

There are several directions that we plan to explore in the future. First, our model
is focused on linear panels, and it can be extended to include both linear and nonlinear
models. Second, our method can be extended to non-stationary panels where panel unit
and cointegrating relationships may possess latent group structures. Third, it may be
appealing to consider a model with interactive fixed effects. Lastly, our approach can be
applied to extend the panel data quantile regression of Gu and Volgushev (2019) to allow

for latent group structure in the slope coeflicients.
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Table 5.1: RMSE of DGP1 and DGP2

N T PAGFL Post-Lasso ~ C-Lasso Oracle
DGP 1 100 40 0.086 0.083 0.091 0.040
100 80 0.027 0.026 0.028 0.026
200 40 0.064 0.061 0.088 0.026
200 80 0.024 0.021 0.023 0.020
DGP 2 100 40 0.043 0.041 0.051 0.032
100 80 0.018 0.015 0.029 0.010
200 40 0.031 0.030 0.036 0.021
200 80 0.014 0.014 0.022 0.010

Table 5.2: Frequency of Selecting K =1,...,5 Groups when Ky =3

DGP 1 DGP 2
N T 1 2 3 4 >5 1 2 3 4 >5
100 40 O 0 0.995 0.005 0 0 0 0.998 0.002 0
100 80 O 0 1 0 0 0 0 1 0 0
200 40 O 0 1 0 0 0 0 1 0 0
200 80 O 0 1 0 0 0 0 1 0 0
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Table 5.3: Percentage of Correct Classification

DGP 1 DGP 2
N T PAGFL C-Lasso PAGFL C-Lasso
100 40 0.991 0.870 0.997 0.921
100 80 1.000 0.995 1.000 0.997
200 40 0.987 0.975 0.990 0.988
200 80 1.000 1.000 1.000 1.000

Table 5.4: Estimation results of the Unemployment-Growth Model

PAGFL
Full Sample Group 1 Group 2 Group 3
0 0.800*** 0.796*** 0.720%** 0.852***
(0.020) (0.032) (0.030) (0.035)
B —0.261*** —0.716"** —0.567"** 0.028*
(0.011) (0.018) (0.017) (0.019)

Note: *** 1% significant, * 10% significant.
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Table 5.5: RMSFE performance of the PAGFL, individual estimators, and fixed effect
methods for one quarter ahead output growth forecasts across 33 countries over the period
1969Q2-2016Q4)

Full Sample Average Windows
Models RMSFE Relative RMSFE Relative
(x100) RMSFE (x100) RMSFE
Rolling Window
PAGFL 0.856 0.947 0.839 0.932
Fixed Effects 0.871 0.964 0.852 0.946
Individual Est. 0.904 1.000 0.900 1.000
Expanding Window
PAGFL 0.870 0.947 0.863 0.945
Fixed Effects 0.888 0.967 0.879 0.963
Individual Est. 0.919 1.000 0.913 1.000

Note: RMSFE is computed using both a rolling and an expanding forecasting scheme with
an initial window of 60 observations. To consider potential structural breaks, we average the
forecasts across different estimation windows, the results are presented under the “Average

Windows” columns.
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W Group 1
N Group 2
B Group 3

Figure 5.1: Group Membership of States
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Table 5.6: RMSFE performance of the PAGFL, individual estimators, and fixed effect
methods for one year (four quarters) ahead output growth forecasts across 33 countries
over the period 1997Q2-2016Q4)

Full Sample Average Windows
Models RMSFE Relative RMSFE Relative
(x100) RMSFE (x100) RMSFE
Rolling Window
PAGFL 1.987 1.019 1.702 1.016
Fixed Effects 2.107 1.081 1.928 1.151
Individual Est. 1.950 1.000 1.675 1.000
Expanding Window
PAGFL 2.105 0.997 2.030 0.998
Fixed Effects 2.203 1.044 2.167 1.065
Individual Est. 2.110 1.000 2.034 1.000

Note: RMSFE is computed using both a rolling and an expanding forecasting scheme with
an initial window of 60 observations. To consider potential structural breaks, we average the
forecasts across different estimation windows, the results are presented under the “Average

Windows” columns.

Table 5.7: Panel DM statistics for one quarter ahead PAGFL forecasts of real output
growth over the period 1969Q2-2016Q4 relative to fixed effects and individual estimators
as benchmarks.

Benchmark Models Full Sample Average Windows
Rolling Window
Fixed Effects —4.337*** —3.339***
Individual Est. —1.974** —2.229**
Expanding Window
Fixed Effects —5.861*** —5.389"**
Individual Est. —2.356* —2.019**

Note: The results represent a one sided test, thus the 1% (***) and 5% (**) critical values
are -2.326 and -1.645, respectively. A positive value of the panel DM statistic represents

evidence against the PAGFL forecasts.
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Table 5.8: Panel DM statistics for one year (four quarters) ahead PAGFL forecasts of
real output growth over the period 1997Q2-2016Q4 relative to fixed effects and individual
estimators as benchmarks.

Benchmark Models Full Sample Average Windows
Rolling Window
Fixed Effects —2.759*** —4.421*
Individual Est. 3.167 2.678
Expanding Window
Fixed Effects —3.260*** —3.072***
Individual Est. —0.835 —0.531

Note: The results represent a one sided test, thus the 1% (***) and 5% (**) critical values
are -2.326 and -1.645, respectively. A positive value of the panel DM statistic represents

evidence against the PAGFL forecasts.
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Chapter 6

Conclusions

This dissertation contributes to the estimation and inference of panel data and system of
equations under model uncertainty. Several types of model uncertainty is considered which
consist of : (1) uncertainty about a set of restrictions on the slope parameters in panel
data or seemingly unrelated regressions, (2) uncertainty from choosing different number of
lagged dependent variables as instruments in dynamic panel data models, (3) uncertainty
about the magnitude of endogeneity in simultaneous equations models or instrumental
variable regressions, (4) uncertainty resulting from unobserved heterogeneity in panel data
models. The asymptotic properties of the proposed estimators of slope parameters are
established. For each model, various Monte Carlo experiments are done to show the
good finite sample performance of the proposed estimators. In empirical applications,
the methods are employed to show how the methods perform in dealing with economic

applications.
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In the future research, there are several directions that I plan to explore my research to
investigate empirical economic problems. First, I plan to extend the method developed in
chapter 5 to other econometric models such as non-stationary panels, panel models with
latent structures in both slope parameters and interactive fixed effects, and panel threshold
models. Second, I plan to extend the shrinkage and model averaging methods devolved in
the other chapters to multi-period forecasting of vector auto-regressions, panel data models

with multi-factor error structures, and spatial models.
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Appendix A

The lemmas in Appendix A are used without special comments in the proofs of theorems

in the next appendices.

Lemma A.1 Let By and By be arbitrary T x T matrices. Let the T x 1 random vector €

be such that e ~ N(0,02Ir), then the following results hold:
E%B@w&ﬂ:mﬁm&ﬂmm+wwwg+m&&p
E [66/3166,} =gt [ tr(B1)Ir + By + Bﬂ;
E(e€ Ae€ Bee') = o° Htr(Bl) tr(By) + tr(B1Ba) + tr(B1BY)| I
+ tr(B1)Ba + tr(B1) B} + tr(Bg) By + tr(B2) B}

+ B1By + BBy + B1B) + BB, + BoBy + ByBy + BB} + BYB |,

Proof: see Ullah (2004).

144



Lemma A.2 Let A be a square constant matriz, and ¥ is T x N where its rows are

independently normally distributes as N(0,C3). Then,
i) E(U'AV) = tr(A)Cy
it) E(VAY') = tr(CoB)Ir
iii) E(VAW) = A'Coy
Proof: See Kadane (1971), Lemmas B1-B3. [

Lemma A.3 Let the J x 1 wvector v is distributed normally with mean vector 6 and
covariance matriz 1y, and A is any J x J idempotent matriz. Also assume ¢(.) is a Borel

measurable function. Then

E [o(v' Av)v| = B [6(:2o(6/46/2))| 40 + E [6(x2(0'40/2)) | (1, - A)o.

where r = rank(A) = tr(A).

Proof: Let P be an orthogonal matrix such that

d 0 ... 0
0 do I, O
PAP =D = = . d; € {0,1}.
: 0 0y
0 ... 0 dy

Define the J x 1 wvector w = (wi,...,wy) = Pv, which has a N(P,1;) distribution.

Therefore
E [¢(V’Ay)y} —E [qs(w'Dw)P’w] — P'E [qs(w'Dw)w]
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Note that

E {qb(w/Dw)w} = [E [E[gf) (dlw% + ZJ:djW?>W1Wj, j# 1]]7

=2

J=1

/
J—-1
.. ,E |:E[¢(djw3 + Z djw?)wJ]wj, j 7é J]:|] .
We now derive the expectation of the ith elements of the above equation,

E[awﬁhﬁw}p%E{E[¢Q@@«mm%ﬁ>+§:w%%)ij#iﬂ
i

PIOE [002,5(0'40/2))], if d; =1

POE [6((0'A40/2)],  ifdi=0

where the first equality holds by Lemma 1 of Appendixz B.1 Judge and Bock (1978). Hence,

E |:¢(V/AV)I/} =P'E {(ﬁ(w/Dw)w}
— P'DPOE [6(x22(0/A0/2))| + P'(I - D)PYUE [6(x2(0'40/2))]

= ABE [(x25(646/2))] + (1~ MOE [6(3(0'46/2)],

which completes the proof. |

Lemma A.4 Let the J x 1 wvector v is distributed normally with mean vector 6 and
covariance matriz 1y, and A is any J x J idempotent matriz. Also assume ¢(.) is a Borel

measurable function. Then
E |o(v Av)u/| = E [6(:22(0/46/2))| A+ E [6(x2(0'40/2))] (1, - A)
+E [¢(X2+4(9'A9 /2))} AOY'A +E [qs(xz(e’Aa/z))} (L, - A) 06’ (IJ - A)
+E [gb(xf (04D /2))} (ae'A + AGY — 2A90’A) :
where 1 = rank(A) = tr(A).
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Proof: Let P be an orthogonal matriz such that

d 0 ... 0
0 do I, O
PAP' =D = = . d;y € {0,1}.
: 0 0y
0 ... 0 dy

Define the J x 1 vector w = (wi,...,wy) = Pv, which has a N(P,1;) distribution.

Therefore

E |:¢(V’AV)I/V/} =E [gi)(w/Dw)P’ww/P] =P'E [gb(w/Dw)ww/} P.

We first determine the diagonal and off-diagonal elements of E[¢(w' Dw)ww']. The diagonal

elements are of the form

E[qﬁ(gdjw?)w?}zﬂi [(dw DI wj,wézu

J#i

=& | & [o(dnd(r0r /2 + o M”é]]

J#i

+(P;9)2E[ [ (1x5 0)2/2) +> w )I%J# H

J#i

B[00 2(0'A8/2)] + (PO B[, 4(0'48/2)|, if d; =1

E[6(G(0'46/2)] + (PO El60E0'A0/2)|,  ifdi=0
where the second equality holds by Lemma 1 of Appendix B.1 Judge and Bock (1978).
Hence, the matriz form of the diagonal elements can be written as
DE [6(x2,2(6'46/2))| +E [6(x?,.4(6' A6/2)) | diag(D P66’ P'D)
+ (I = D)E |[9((0'A0/2))| +E [6(Z (0 40/2))|diag((1, — D)POg'P'(I; — D)).
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For any 1 # j, the off-diagonal element is as follows

J
E [¢< ; dsz)wiwj:| =FE |w;E {gﬁ (diw? + Z dkw]%)wﬂwk, k # zu

ki

=K ij{eE[gé(dzx;g(( )*/2) +de“’k)|‘”’“’k7é H
ki

=E |w;P6E [¢(dix§<<afe>2/2>+djw?+ > dsz)|x§<<a'e>2/2>,wk,k¢z&y}
k#i&;j

= P0PjoE [o(d4n3(PIOP/2) + 3PP ) + Y dis)]
k#i&j

Elo(xr(6/A8/2))], if di = d; = 1

= PiOP;0{ Bp(v,42(0'A0/2))], ifd; =1 and d; =0

Elp(xr(0°A40/2))],  ifdi=d; =0
where the second equality holds by lemma 2 of Appendiz B.1 Judge and Bock (1978). Hence,

the off-diagonal matriz can be written as
E [gz)(xz (0740 /2))} (DP88'P'D — diag(DP¢' P' D))
+E [6(:2(0'40/2))| (L — D)P09'P'(1, — D) — diag((I; — D)PO§'P'(1; — D)))
+E [¢(X,%+2(0’A9/2))} (PO§'P' — DPOY'P'D — (I; — D)P8O'P' (I, — D)).

Therefore, combining the diagonal and off-diagonal components, completes the proof. |

Lemma A.5 Let x%()\) denote a non-central chi-square random variable with noncentrally

parameter \ and o degree of freedom. Also let o denote a positive integer such that o > 2p.

Then
9 -], \I(§-p) « o
E[(Xa(”) ]—”‘f (5 g
Proof: See Ullah (197}). [
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Lemma A.6 If x is bounded and suppose a,c — oo such that lim, o0 (C_Ca)x =0. Then

i
L

(c —a)j(—=z)

CRI

1Fi(a;¢2) = eXp(w)[

<.
Il
o

Proof: See Slater (1960), pp. 12, 65-66.

Lemma A.7 Let My and Ms be two T x T idempotent matrices where M1 Mo = 0, and the

T x 1 vector u~ N(0,Ir). Then

u'Myuw N\ tr(My) + 2 tr(My)
E (“ (u’Mgu)2u) = (i) = 2) (V) =) " T i) (tr(ady) — 2) 2
tT(Ml)

(tr(Ms) — 2)(tr(Ms) — 4)’ (I — My — My)

when tr(Ma) > 4.
Proof: Since M1 and My commute, let the orthogonal matrix T simultaneously

diagonalize them such that

00 0 0 0

'MiT=1| 09 o ol =D andU'MT = |y In, 0| = D1,

0 00 0 0 O

where Ny = tr(My) and Ny = tr(Ms). Further, define v = Tu, and v = (V},vh,14) be

partitioned conformably with D1 and Ds. Then

/M /
E<uuu’> ) <I/%>F,
(u/ Mau)? (Vhva)v

[

D D
Lt 2t N, = 2)(Ny — )

Ny — 2)(N; — 4) No(Ns — 2) (Ir = Dy — Do) |,

where the use has been made of Lemma A.1, Lemma A.3-A.5.
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Appendix B

Proof of Theorem 2.8 :

First, we show that the single equation least-squares estimators are consistent, so that
S is a consistent estimator of .

v

Let us denote the vector of the single equation least-squares estimators as B =

(B4,..., %), hence
VIB-8) - (3 X)L Y (B.1)
— p— _— ) .t o . .t' '
TtZl ' \/thl ¢

Under Assumption 2.4 (i) and (i3), by weak law of large numbers (WLLN), we have
+ ST XX B E(X',X ), and by Slutsky’s theorem and the second part of Assumption
2.4 (ii1), ( ST XX )7 = [B(X,X¢)]™" = 0p(1). Moreover, under Assumption 2.4 (4)
and (i7), % ST X'y = Op(1). Therefore, we have 8 — B = 0,(1). Consequently, it is
easy to show that S = % Zthl U4u', = X +0p(1), and by Slutsky’s theorem and Assumption

2.1 (ii), we have 1 — 1 = o,(1).
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Now, we show that the FGLS estimator and the infeasible GLS estimators are

asymptotically equivalent, i.e. VT (8 — Bgrg) = 0p(1), where the infeasible GLS estimator

takes the form

S

'ﬂ

T

- 1 _ 1

Bars — B = (fZX./tZ "X ) ZX DT (B.2)
t=1 t=1

Note that,

= \/T(BGLS — B) + 0p(1)Op(1) + Op(1)0p(1) + 0p(1)0p(1)

(B.3)
where the last equality holds because by WLLN
1~ e 1 « 1~ o, /e
T Y XETIX, = 7 S XISTIX, 7 > X, (2—1 -%- ) ZX’ XX+ 0,(1),
=1 t=1 t=1
(B.4)
and
1 e 1 & 1 &
—= Y XSy ==Y X% utJr—ZX’ - THup=—=Y XZ s+ 0p(1)
T~ T~ ( ) VT &
(B.5)
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Now, we derive the asymptotic distribution of the infeasible GLS estimator. But, first we
note that by Assumption 2.4 (i)~ (iéi) and WLLN — SLXSIX B EXSTIX,) =

V~1, and by Slutsky’s theorem (ﬁ Zthl X'371X )7 =V = 0,(1). hence

T T
R 1 1
VT — ) =(= X2 lx )1 N x' vy
(Bars — B) (T; it t) \/T; it t
1 T 1 T 1 T
=V— X'+ (=) X' x)t-v—) X' 2y
VRN e [ XV 3
T
1
- V—\/T D XLE uy + 0p(1).

o~
Il

1
(B.6)

Further, under assumptions 2.1 and 2.4 and by the central limit theorem, we have
VT(Bars — B) 4 N(0,V). Consequently by the asymptotic equivalence of the FGLS and
infeasible GLS estimators, equation (2.15) follows and vT'(3 — B8) 4 N(0,V).
Similarly, for the restricted estimator, we have
VT(B~B) = VT(B~B) - VR(RVR)'RIVT(B - 8) + VT B| + 0,(1)
=VT(3-B) - VR (RVR)'R[VT(B - 8) + VTal +o,(1) (B.7)
4 Z-VR(RVR)'R(Z+ VT a),
where Z ~ N(0,V), and the second equality holds by Assumption 2.5. Moreover, from the

above equation we have

VT(B-B8)% VR (RVR) 'R(Z + VT o), (B.8)
thus

F(B,B)=T(B BV B~ B)+0op(1) % (Z+VTa)R(RVR) 'R(Z+ VT a),
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(B.9)

which implies (2.17). The results of (2.18) and (2.19) follow by applying the continuous

mapping theorem to the above results, and we omit their derivations to save space.

Proof of Theorem 2.9 :

Let ¢ = 6" A0 /2, and we note that since A is idempotent, rank(A) = tr(A) = d. Recall

from equation (2.19) the asymptotic distribution of the shrinkage estimator is
VT(B, - B) % Ze=w(2)Z + (1 —w(Z))(Z - VR (RVE) 'R(Z + VT o)),

hence, the asymptotic bias of \/T(Bs —pB) is

A~

ABias (8,) = E(Z,) = E(Z) - TVR(RVR')"'RE (m>

£(2)
VT T

d d
_ —¢ / n—1 a a .
¢ ‘VR(RVR)'Ra 1F1(2,2+1,C>

— TVR/(RVR) 'RVY*(I; — A)OE {(X?I(H’AQ/Q))”}

T d d
- —\/;T e SVR(RVR) 'Ra 1 Fy (5, S+ g), (B.10)

where the last equality holds because by using Lemma A.3 and Lemma A.5

M _11/2 -1/2 Z+VTe =V/? -
E ( £(2) ) =VE {V (Z+ VT a)R(RVR)'R(Z + \/TOO] O <”'A”)
1 . (9 dd , _
—ve[ja0 e G G g i+ £ og0an) - e
- ‘/dTVR’(RVR’)—lRa ¢ 1F1(g, g F150) + E [(G0'40/2)) 7 [V (1a - A) 6,
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(B.11)
where v = V12(Z + VT ) ~ N(0, I,).

Now we derive the expression for the asymptotic MSEM of the shrinkage estimator.

AMSEM (8,) = E(Z,Z)) = E [fh 1, —ﬁ’2+ﬁ3], (B.12)

where

M =27,

g _ T / n—1 o7
Iy = 5(Z)VR (RVR)'R(Z + VT a)Z',
3 = 527(22) VR'(RVR)'R(Z+VT a)(Z +VT a)R(RVR)'RV.

Now, in the following, we derive the expectations of II;, Il5, and II3,

E(IL) =E(ZZ) =V, (B.13)

=7VR'(RVR)"'RV'/?E [V1/2(Z +VT a)(Z + \/Ta)’vl/zvl/z]
§(2)

—7VR(RVR')'RV'/*E {V””(Z z(\ga)ﬁa’}

- ﬂ/R(RVR’)—lR[Vl/2 E [(Z//Al/)_lul/l} V2 _yl2g [(V/AV)_lu} \/To/}

r
= LVR(RVR)"'Re=¢ |V1/24V1/2 LG =
2 r(4

1) lFl(;l’g+ 1;C)

=+ [l

['(4+1) d d
1/2 1/2 2/(p! —1 1/2 / 1/2 2 .
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F VYA - A)00/(I— AV E [(Xg(e'Ae/Q))—l]

INE
+ VY200 A+A060 —2400 A)V'/? % 1F1(5l, —+ 1;g)
g +1)

RGN 1F1(5l, d. 1;g) —VY2(I-A4)0VT o' E [(xﬁ(ﬁlfw/?))ﬂ

—~V2A0VT o
“ r¢+1) 22

1 d d
— R (5, S+ 4) VR/(RVR')"‘RV +Te VR (RVR) 'Raa’ R(RVR) 'RV

[11F1((2i+1,;i+2;§>—;1F1(;7;+1;C)], (B.14)

where the use has been made of Lemma A.3-Lemma A.5, and finally, provided d > 2

(Z+ VT a)(Z+ VT )
§(2)

E(II3) = VR (RVR)'RE [ ]R’(RVR’)lRV

=72VR'(RVR)"'RV'/?E |:(V/AV)_2VV/:| VY2R'(RVR)"*RV

INCD d d
VA2 22 LR (21 S,
11’ (3 15+ 1)

1
=7* ¢ “VR(RVR)'R
2

L(g)

V- VY2AVY2) B | (x3(0'A0/2)) 72| + V2406 AV/?
+( ) E (0 46/2))] + e

1F1 (g, g + 2;C>

L VY- A)00/(I— AV E [(Xg(e'Ae/z))—ﬂ

FVV200 A+ A00 —2400 AV GG —1) lFl(g 14y 1-g) R(RVR)™'RV
4 +1) 2 27
1 d d
_ 2 _—¢ / N—1 - e .
e gy VR (RVER) RV1F1(2 1,2+1,<)
2L PVR(RVR) 'Raa R(RVR) 'RV .F (il 5l+2-<) (B.15)
d(d+2) g TN '

where the use has been made of Lemma A.4 and Lemma A.5.
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Using the results in equations (B.13)—(B.15), the MSEM of the shrinkage estimator is

obtained.
|
Proof of Corollary 2.10 and 2.15 :
The results hold by noting that if x > 0 and a, ¢ > 0, then as z — oo,
L(c)  (c—a),(1-a),
1Fi(a,c;x) = e® gz (") I Lo+ O(|z|7P)|.
I'(a) ; 4!
7=0
See Lebedev (1972), pp. 271.
|
Proof of Corollary 2.12 :
We first note that we have
'BY/2y1/2B BV1/2y1l/2p

< Omax(VY2BVWV BV/?),

where B = R'(RVR')"!'R, and BVB = B. !

!The inequality holds by noting that for any symmetric n x n matrix Q, we have

0'Q0
< max 3
gg < omas(Q)

see Abadir and Magnus (2005)-Pages 181-182.
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From Remark 2.11, we have

ARisk (3,) = ARisk (3) + e dgl(f;) P (g —1, g +1; A) [72 —2r(d - 2)]

e d(?ig) 1&(%, g+2; )\) [#—%(“&?A —2)}

(B.17)

< ARisk (3) + e —2(©) 1F1(§ 1,8, )\) [72 —zf(d—2)]

d(d —2) 2 2
(s ) [P (G )

where the inequality holds by (B.16). Moreover, since d > tr(C)/0maz(C), the result in

(2.27) follows straightforwardly.

Proof of Corollary 2.14 :

Using equation (2.25), and the following identities (see Lebedev (1972), pp. 271)

(c—a—1)1Fi(a,c;x) = (c—1)1Fi(a,c — 1;2) —a1Fi(a+ 1, ¢ 2),

1F1(CZ,C;33) = 1F1(CZ+1,C;$) - lel(a—i_l)C—i_l;w))
C

c—a

a
1Fi(a,c;z) = 1F1(a,c+1;x)+E1F1(a+1,c+ 1;2),

when W = V!, we have

1
d—2

Risk (8,) = tr(W V) + e

/\) [A—WTQ - 2T(tr(WVBV) - QATWH

— €

(s o) (- S ]

= tr(Iyg) + e 1 1F1(§71, g; )\)[7‘2*27((1*2)}7
(B.18)
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where the last equality holds because the third term on the right hand side of the first

equality is zero, tr(BV) = d, and \yy = . |

Proof of Theorem 2.16 :

Using the results of Corollary 2.12 and Lemma A.6, and noting that 7/d — 1 as d — oo,

we have

ARisk (B, 1) < (W' V)~ 7o[1 + O( )] (B.19)

s,opt)

and by dividing both sides by the asymptotic risk of the FGLS estimator, we have

ARisk (3,)
im ————=>%
d—oo ARisk (B)

<10 o= fm O

N d‘—>oo tr(WV) (B:20)
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Appendix C

Lemma C.1 Let M; = Z(Z]2,)7'Z], for | = 1,2 be an N(T — 1) x N(T — 1) idempotent
matriz where Zy = (Z], ..., Z]y)" is N(T —1) x my, with mi = k(T — 1) and mg = kT(T —
1)/2. Also define H = P'M;PLT, where P = IN®QPr, Pr is a (T —1) x T upper-triangular

matriz with rank T — 1 and PrPy = Ir_y, PpPr = Ry = Iy — %LTL/T. We have

k 1197 ey
—E -2 =1,

—fETHo1),  ifl=2

i) tr(HE) = O(1), 1=1,2;

NT
1—~2

iii)  tr(H H;) = + O(N), [=1,2.

Proof: Let B be an N(T — 1) x N(T — 1) orthogonal (B'B = Iy(p_1y) permutation

matriz, which changes the order of the rows of Z; such that T — 1 sub-matrices of N
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rows are put together, instead of T — 1 rows for the separate individuals. That is,

BZ, = dz’ag[Zl"l, .. '7Zl/,T—1}7 where Zy; is N x myy with my = kt'=! for | =1,2. Hence
BM,B" = dwg[Zz 1(Z)1211)” Zia,.. -,Zl,T—l(Z{7T_1ZZ,T—1)7IZZ,T—1]'

Therefore, we have

T T
tr(H;) = tr(P'"B'BM;BB'PLI") = Z (M) tr(ppi LeTr) = tr(LeT'0 Y myspip})
t=1 t=1
)
_ k 117 Y N
ktr(LelrRy) = — 15 [1 B s ] —ifl =1,

kYo tr(LeTrJsReJ)) = k Yooy tr(LTsRy) = =g T+ O(1), if 1 =2,

where Jg = (0,12)" is a T x s selection matriz, and p; is the tth row of Pr. This completes

the proof of (i), for (ii) we have

tr(H?) = tr(P'MPLTP'M;PLT) < )\

s ax(My) tr(P"PLTP'PLT) = tr(RLTRLT)
= tr(LTRLT) + O(1) =0+ O(1),
where R = INQRy, and Apaz (M) denotes the mazimum eigenvalue of M, which is equal
to one, as it is an idempotent matriz. Also, the last equality holds because, the diagonal
elements of L' are all zero.
For (iii), note that we have
tr(H H;) = tr(L'T"P'"MyPP'M;PLT) = tr(IT'"L' P’ My PLT) < A\pas(M;) tr(T'L'RLT)

NT
1—12

= N tr(RpLyDrLTy) = N[ (T — )+ o) =
t=1

+O(N).
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Proof of Theorem 3.1 :
—1
Let Dy = [W’P/MQPW} , then

Q;' =E(D;)) =E (W’P’MgPW) + ena€l 02 tr(HyHy) = O(NT), (C.1)

hence we have

Dy = {le + (D3 - Q21>] = Q> []k + (D3 - Q21)Qz] =Qx+ op(ﬁ).

(C.2)
therefore, equation (3.30) can be written as

=~ 1
5GMM,2 —0= QQW,P,MQPE + Op(\/ﬁ). (C?))

The bias of the estimator up to order O( \/lefT) is then

E@crs — 0) = Qo E(W' P MyPe) = Qu E(W'P' My Pe) + Qaey 1 E( Hae)
(C.4)

= 02Qaep 1 tr(Ha) = Op(ﬁ)a

where the last equality holds by using the results in Lemma C.1.

The MSEM of the estimator up to order O(x5) is
MSE (d¢arara) = E [(ZS\GMMQ — 8)Banarz — 5)']
— _ /
— ,E [[W’P,MQPE v ekJe/ng] [W’P’MQPE n ekJe'HQe} ]QQ (C.5)

= 07 Qaep16), Q2 tr(HyHa) + 02Q,
where the use has been made of Lemma A.3, and note that tr(H,Hy) = O(NT), in light of

Lemma C.1.
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Proof of Theorem 3.2 :
—1
Let D) = [W’P/Mlpw} , then

Q' =EDY) =E (W’P’MlPW) + e i€y 02 te(HLH)) = O(NT), (C.6)

hence we have

1 -1
o= [t (o -ait)] =i (07t -ar)a] =@ ratgp)

(C.7)
therefore, equation (3.33) can be written as

Saania — 6 = QuW'P' M, Pe + o,( ) (C.8)

1
VNT

The bias of the estimator up to order O( \/]1\[7) is then

E(0cr1 — 0) = Qi E(W'P' M, Pe) = Q, E(W'P' M, Pe) + Qrey,1 E(¢' Hye)
(C.9)
1

=02Quex 1 tr(Hy) =0+ O(ﬁ)v

because by using Lemma C.1, tr(H;) = O(1) and the MSEM of the estimator up to order
O(sr) i
MSE (3¢arari) = E [(gGMM,l — 8)(Banary — 5)']

_ _ !
—O,F HW’P’MlPe n eme’Hle] [W’P’MlPe + ekJe'Hle} ]Ql (C.10)

1

= 02Quep ey Q1 tr(H Hy) + 02Q1 = O(ﬁ),

where the last equality holds by using Lemma C.1, and Lemma A.3.
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Proof of Theorem 3.3 :

Using equations (C.3) and (C.8), we have

SGMM,Q -0 Are 1 1
R = + Op(ﬁ) =(+ Op(ﬁ)a
damm,a — 9 Age

(C.11)

where A; = QW'P'M;P, [ =1,2. Because € has a normal distribution, then ¢ ~ N (b, V)

where

02Qey 1 tr(Hp) Vo Va
b = V — ,

0 Vo V1

where V7 and V5 represent the variances of SGM m,1 and ;5\(; MM,2- Also, define v =V

N(8, L), where § = V1/20,

Note that, it is easily verified that

R 1
Vi=02Q +0p(ﬁ)7

hence we have

(i = Vo)™ = (Vi = Vo) [ I + op(%) .

Therefore, F' can be written as
F =G V1= W) 'GC +oy(1),

where G = (— I, Iok).

Using the above results, the averaging estimator can be written as

T 1

54— 6=Gal — C,ACGHOP(W),
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(C.12)

(C.13)

(C.14)



where A = V/2G"(Vy — Vo) 'GV'/? is an idempotent matrix, and Gy = (0, I,).

Therefore, the approximate bias of the average estimator up to order Op(\/%) is

E [(SA - 5)} — GoE(C) — TGVY2E (,,/ZV> - —% e N2GQVY2 Ry (g g 1 )\/2>,

(C.15)

the equality above holds by using Lemma A.4 and Lemma A.5, and \ = 6’ A6.

Now we derive the expression for the asymptotic MSE of the averaging estimator.

E (SA_a)@_ay] :E[ﬁl—ﬁg—ﬁ'2+1:[3 : (C.16)
where

I} = G2’ G,

_ T

My = ———GV'/2u/VI2GY,

s = T’ Qv 2, v
3 = (V’AV)2 vv .

Now, in the following, we derive the expectations of IT; — II3,

E(Il;) = GV Gy = W1, (C.17)
1) — a2 (22 v
E(IL) = rGVY2E (V, A,,>V G
k
_ T2 172 g11/2 I'(3) kk
SGe [V AV FECh 1F1(2,2+1,>\/2>

+ (V= VAV B[ (G0 46/2)) 7]

T4 +1) k k
V2400 AVY2 22— L B2 41, - +2;0/2
+ V200 AV 2)11(2+,2+,A/)
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+ VY2 (L — A)66 (I — A)VY/2 E[(x(6'46/2)) 7]

INES! kE k
1/2/pp! ;o / 1/2 2 o . /
+ V200" A+ AG8 — 2400 AV 3 1F1<2, 5+ 1,)\/2)}6‘2

SR
_l’_

N L /
—roe 1F1(2,2+1,/\/2>GVG

1 k k 1 k k
—X/2 1/2pp/v/1/2 1 v v . - o .
+Te GV =00'vV-/-G [k+21F1(2+1,2+27A/2) k1F1<2,2+1,>\/2>],

(C.18)
where the fourth equality holds by using Lemma A.3-Lemma A.5.

/
E(Il;) = T2GV1/2E[ — }Vl/zG’

V' Av

r(k—1) k k
1/2 1/2 2 oo - .
V1i2Av O 1F1( Lg+ 1,)\/2>

1
— 2 = —)\/QG
T e k 2

(V= VI2AV2) B[ (G0 40/2)) 7]

r') k k

F+2)1F1<2,2+2;)\/2)

V2 A0 AV
4T

e

+ VY2 (I — )00 (T — AV E (G (0 40/2))7

=

NG
+ VY2000 A+ AGY — 2400’ AV r()

= 1F1(ﬁ Ry 1;/\/2> el

2 2

—
[NSIESIIN

1
k(k — 2)

B ko k
— 722 GVG’1F1(§—1,§+1;)\/2)

1 kok
4 r2e N2 e GV200'V 2G| Fy (5, S+ /\/2>, (C.19)

where the third equality holds by using Lemma A.4 and Lemma A.5.
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Using the results in equations (C.17)—(C.19), the MSE of the shrinkage estimator is

obtained.
[ |
Proof of Corollary 3.5 :
Note that we have
A 0'V12G'DGV/%9
. V2DV — Vo) V/2) <« 2P
Qmm((V1 V2) (Vi—=V2) ) =X OVIRG(V, — Vo) IGV120
(C.20)

< omar (Vi = V2) 2D (Vi = V2)12),
where 9maz and omin denote the maximum and minimum eigenvalues. !

From Remark 3.4, we have

Risk (34) = Risk (Sgarar) + e 2 ]m Ry (g —1,5+1; )\/2) [72 — ok — 2)]
+eM?2 k(?fm 1F1(§, §+2; A2) [72 - 27<tr(§)A - 2)}
< Risk (Sgarart) + e 2 le(C)z) P (g 1, g +1; )\/2) [72 o7k — 2)]
o o))

(C.21)

where the inequality holds by (C.20). Moreover, since k > tr(C)/0maz(C), the result in

(3.44) follows straightforwardly.

!The inequality holds by noting that for any symmetric n X n matrix B, we have

0'B6
szn(B) S 0’6 S QmaI(B)7

see Abadir and Magnus (2005)-Pages 181-182.
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Proof of Corollary 3.6 :

Using equation (3.42), and the following identities (see Lebedev (1972), pp. 271)
(c—a—1)1Fi(a,c;x) = (c—1)1Fi(a,c— 1;2) —a1Fi(a+ 1, ¢ 2),
1F1(CZ,C;33) = 1F1(CZ+1,C;$) - %lFl(a—i_ 17C+ 1,$),

cC—a
1F1(G,C;x) =

1Fi(a,c+ 1) + % 1Fi(a+1,c+ 1;2),
when D = (V4 — V)71, we have
Risk (34) = Risk (dgarar1)

te2 ﬁ 1}1(% 1, g; >\/2) [ATDT? . 27'<tr(D(V1 W) - 2%’3)}

o (e feon) (- SR g

1
k—2

1F1(ﬁ LY >\/2> [72 —or(k — 2)}, (C.22)

= Risk (SGMM,l) + e N2 5 5

where the last equality holds because the third term on the right hand side of the first

equality is zero, tr(D(Vy — V2)) =k, and Ap = \.

[
Proof of Corollary 3.7:
The results hold by noting that if x > 0 and a, ¢ > 0, then as z — oo,
T p=l N 1—a): .
1Fi(a,c;x) = (c) e® g (ca) (e a)].( %); 7+ O0(|z|7P)].
'(a) , J!
7=0
See Lebedev (1972), pp. 271.
|
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Appendix D

Theorem 4.6 : From equation (4.25), we have

1 A
g(ﬁc,k -B) = eg)) + a(el(:) + e&”) + o? (eg) + ef)) + 0(c®), (D.1)
) (0

where e;”, i =0,1,2 are terms with order o' of %(B(k) —p)and e.’, i=0,1,2 are the

other terms with order ¢ which are defined below

61(60) = QW,UJ,
et = QuUHur — Suel),
e;(f) = Q\I"H/g)m + Q(SullH/gO)ul - Q(ouyW + Wlul‘;,)el(?)

+QSyQSyel” — QUHwel” — QSy QU Huy,

O JS——t 1Y
€ U,1P\I'/UJ1 Q zUL,
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el?) = #\wl [Qéu'lqul + 20} MU (W' M, 0) L 6QW Myuy
1

— QU M, Ve — QSyQV Mu,

2
u) Pyuy

[u’lMIwe,gO)Q\IJ’Mzul - u’lMx\IJ(\IJ’Mx\IJ)_15u’1qu1Q\1ﬂqu1}] :

where Py = M, (WM, ¥)"'W'M,, and if k is fixed Hy = H” = P,, so H") = 0, and
if kK = ), since A is random, we have ngo) = Ip — \gM,, and H,gl) = —A\1 M,, because by

Kadane (1970)

5= u) My uy + o (W WQVy Mxuy)(uy Myui) — () WQVy Myyuq ) (u) Mxuq)
u1Mxu (uy Mxuq)?

+ Op(az)
=X +oM+ Op(O'Q)
where the definition of \;,7 = 0,1 should be apparent.
We derive the approximate expansions of the density function of é.; by inverting its

characteristic function up to order o2. Using (D.1) the characteristic function of é.j can be

expressed as

Copn(0) = Cr(0) + @0 E(eMN |e\”) exp(i0'el”))) + 0 E(i6 E(e() |e\”) exp(it'el”)))

0% o (1) (1)) Oy T 2 (1) (1) (0) o (0)
+?E(z O E(eses’ ey )0 exp(ife, ))+7E(z 0 E(e, e, ey )0 exp(ife;”))

o 20 B o) [o© /o0 3
+ ?E(z 0 E(ey etl) le, )0 exp(ife;”)) + O(c”),

(D.2)

where 6 is a N x 1 vector, Ck(0) is the characteristic function of the k-class estimator, and

E(.|e,(€0)) denotes the conditional expectation given eéo) . The conditional expectations given

the first-order term eg)) are calculated below.
E(eM]el”) = 0, (D.3)
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as it is the product of odd numbers of normal distribution.

T-K
£ 1) = T 05— gonel?). (D.4)
2
W) 1,0y _ T (T~ K) D.5
]E(ec €e ’€k ) N(N _ 2) QCQQv ( )
, , if k=1
E(eMel [el”) = (D.6)

cQCoQ, if k= A,

where ¢ € ( — (T —2N)(T — K)/N(N — 2),0).
Now, we invert the terms of the characteristic function of the Stein-like estimator in

(D.2) term by term. The inverse transformation of the first term in (D.2) is

FHOKO)] = fi(©), (D.7)

where fogrs(€) is the approximate distribution of the k-class estimators given in Theorem

4.5. The inverse transformation of the rest of the terms in (D.2) are given below !.

F1(i6) E(E(eV |e”) exp(if'el))] = —fg{wegwe?) = &)¢a(6)} =0, (D.8)

F(0) E(EeP el exp(ib'el’))] = —fg,{m?)\e;“) = O)¢o(6)}
(D.9)
= 760(€) [a10'€ + a1 | 1(QCs) — €Ce |,

!Note that, for any polynomial g(.),

5 [h(—i6) E(g(z) exp(i6))] ::h(g%>g<5>¢g<fx

where h(.) is any polynomial, and 8/9¢" = (8/9¢1, ..., 0/ OEN).

170



where oy = (T'— K)/N, and

§ 0 BBl e ) exp(if'el”))] = ag,{w el = €)60(9) 52

— 20 5’025—tr(6202)]¢@(§)

where ag = (T'— K)/N(N —2). Furthermore, the inverse transformation of the last term is

/ 0 0
5O EE (el |e)0 exp(i'e}))] = 5o {EeVe el = )sa()} 5

0, ifk=1 (D.11)
e [g/cgg —te(QCy)|, itk = A
Summation of the terms in equations (D.8)—(D.11) will provide the results in the theorem.

Theorem 4.7 :

Using (4.30), the approximate bias of the Stein-like estimator up to order of interest is

equal to

(B(k) = 8)) +O(0®) =0, (D.12)

Q|+

B (5 - ) = K

where the last equality holds by Theorem 4.3. The approximate MSEM of the Stein-like

estimator up to the order of interest is
E 1 - R , 1,4 A / 2 It
(55 e = e = 8) =E (55(6(1) = )31 - B)) + ro*an [ e¢'5eale)as
+ 7% [ras = 201 [ (g€Cage’ ~ r(@Cu6¢ ) 00(e)a

=& (5 (B01) ~ A(BQ) - BY) + 702 [ras — 201 @00,
(D.13)
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similarly,

E (%(Bm ~8)(Ber—8)') <E (%(B()\) = B)BO) = B ) +70%|raz — 201|QCHQ.
(D.14)
m
Theorem 4.9 :
To derive
[ [ Gart) - @) e

lQ=1/2¢|I<=

we take the integral of each term of the difference of the approximate distributions below.

/ - / 01 8'QY2¢ 1 (C)d¢ = 0, (D.15)
[I¢lI<=

T T N
/- . /2 [7‘0@ - 2a1} tr(QCs)ér(¢)d¢ = 3 [7‘0@ - 2a1} tr(QCs) [@(z) - @(—2)] , (D.16)

lI<ll<=

/ . / g [m@ - zal] QY2002 r(C)de

lI<ll<=

- N-1 N
=5 [Tag - 2041} tr(QC’Q){ —2z2¢(2) [Cb(z) — @(—z)} + [@(z) - @(—z)} },
(D.17)
where the last equality holds by using
/ 22 p(x)de = —224(2) + B(2) — B(—2).
|z|<z
The results follow by adding the right-hand side of equations (D.15)—(D.17).
|
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Appendix E

Lemma E.1 Suppose that assumptions 5.1(1)-(ii) hold. Then,
VT (Bi = B7) = Op(1), (E.1)

for each i =1,...,N. Equivalently, 3; — BY = %f[;i = Op(T_l/Q). Therefore, for any i and

jim{l,...,N},
s Rl = ol = 0p(TYR), ifikj € GY
187 = B3Il + = llvi — 0jll — e, ifi € GR&jeGY,

for any k, 1 €{1,...,Ko} andl # k, and ¢ > 0.
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Proof of Theorem 5.4 :

i) Let Qunti(B:) = =371 — Baw)? and Qinti(B, M) = Qunri(Bi) +

2’\—1{, éV:l w;j||Bi — Bjl|. Define b; = 8; — B and bi = B — Y. We have
1 o 1 o i i
Qunri(Bi) — Quri(BY) = = Y (it — Vi) — T > ad = bjQiaxbi — 2iQi za.

r t=1 t=1

(E.3)

Given the fact that QLNTJ(B?;,M) — QinTi(BY, M) <0, for any k € {1,..., Ko}, and
any i € Gg, we have
0> QunTi(Bis M) — Quari(BY, M)

N
e e Al o
= b;Qizzbi — 2b;Qi za + N > i 16 =55l = 187 — 5?”]

j—l

> b;inibz — 20 )i 70— wa

113 = B = (B — 8]

> b;Qizzbi — 20,Qi za — ﬁ Z’wij 16 = B+ 1185 — 5?”]
j=1
where the second and third inequalities hold by the triangle inequality. Note that by Lemma

E.1, max;cqo jego wij = O b(J5 ). Averaging the above term over all of the individuals,

and employing assumptions 5.1(i)-(ii), we have

X X N \ N N R A
B Qiashi) 2 Z(b’Qmu)—ﬁzzwﬁ[l\ﬁi—ﬁg\l+|lﬁj—ﬁ§)ll}

1 N
025> (Me
N~ i=1 i=1 j=1
1 & 1 &
> = b, Ai:iiAz) -2 (7 Aiiﬁ) - i bi
N;(@Q, b N; b; Qi Alzeéﬁ%ow ZII |
1 K ) A
> = > | TlbilPess — 27110l [ Quaall — Op(VIM T Wbl
i=1

(E.5)
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Under assumption 5.2(ii), N \/T)qJT;fn = O,(1), thus the above equation implies that
VT|bi| = O,(1), because otherwise, the above term cannot be negative. Therefore,

Bi —5? :Op(T_1/2) fori=1,...,N.

ii) Let 8 = B° +T /24, where the p x N matrix ¢ = (¢4, ..., Yy). Similar to part (i),

we have

0> T[Q1,NT(B7 M) — Qinr(8Y, /\1)}

L v VT & . N
> — Qi it — 2-— 'O 25 — VT ma " i
2y L ViQuasti = 25 ;m@, ™ »;W [
> N N (E.6)
1 2 1 21121 T . ,11/2
> Tz AT ! - AT ; _— o~ o~
> csavryy 3 WP =25 X lP] [ 0 0l
el N 511/2
—20,(VNTJ, %) [NZW%‘” ] 7
=1

By assumption 5.1(ii), czz n7 is bounded below by czz > 0, by assumption 5.1(iii)
%Zi\il |Qizall> = Op(1), and by assumption 5.2(ii), VNTAJ, 5 = o,(1). Thus, if
+ SN l[wil|? = L, for sufficiently large values of L, the first term dominates the second
term in (E.6). In other words, for sufficiently large L, 0 < T [QLNT(,S, A1) — Q1T (B°% M),
and Q1,n7(8°, A1) cannot be minimized. Therefore, we must have + SN B2 = 0,(T Y.

Proof of Theorem 5.5 :

Take k € {1,...,Ky}. By the consistency results in theorem 5.4, we have Bl — Bj LN

BY — B9 # 0 forall i € GY and j ¢ GY. Thus, [|3; — f; # 0 for all i € G, and j ¢ GY.
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By contrary, suppose that there exist i € GY such that HéwH = |8 — BJH # 0, for
any j € Gg. There exists r € {1,...,p} such that for the rth element of éij, we have
|«§ij,r| = max{|éij7l| :1=1...,p}. Without lose of generality assume that » = p, then it can
be easily verified that |éljp|/||éw|| > 1//p. Then, the first order condition (FOC) of the

objective function in 5.4 with respect to the pth element of ;, denoted by ; ,, is

T
-2 B B B
0= ﬁ intvp(yit @tﬂz sz]eu,p
t=1
_9 T
= ﬁ Z Tit plit + Z J’xzt ? ij€ij,p
t=1 t=1
T T ~
5 \/TAl Y T, S
= — Z it pUit + Z tpxlt ﬁo) N Z W5 L N Wij JP
VT = = pe e ] o Nl

= Bil + Eiz + Big + Bi4.
(E.7)

where e;; = (B — BJ)/H@ - BjH if ||8; — BJH # 0, and |le;|| < 1 otherwise. By

assumption 5.1(i), Bj; = O,(1), by theorem 5.4 and assumption 5.1(ii) By = O,(1).

By Assumption 5.2(ii), theorem 5.4, and given maX;eqo jeqo Wij = O o ( |Bu| <

Tomin);
NVTX maxieq jeco Wij 2 jeco = Op(NVTAJ5) = Op(1). In view of the fact that
for i&j € GY, i = Op(T~%/2), 2,/p|Bis| > VT > jecy Wij = Op(mpVTAIT™?), which is
explosive in probability under assumption 5.2(iii). Consequently, |By3| > |Bi1 + Bia + Bl
such that (E.7) cannot hold for sufficiently large (N,T). Thus, we conclude that with
probability approaching one, éij for all i&j € GY must be in a position where HéwH is not

differentiable and ﬁ)\lwijezj = Op(1) in order for the FOC to hold. Furthermore, this

implies that for all i&j € GV, P(||0;]| = 0) — 1 as (N,T) — oo
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Proof of Corollary 5.6 :

For any I&k € {1,..., Ko}, where | # k, and any i&j € {1,...,N}, we consider two
cases: (i) i&j € GY, and (ii) i € GY and j € G?. In case (i), theorem 5.5 implies that
asymptotically ||BZ—BJ|| =0, thus K < K. Under case (ii), we want to show that \|BZ—B]|| #
0. Note that for any such i and j, ||3) — B;)H > Jmin- Now, suppose by controversy that
there exist i € GY and j € GY that || Bi — Bl = 0, besides by the consistency results in
Theorem 5.4, we have 3; — 3; = 80 — B9 + 0,(T~%/2), hence |9 — B = O(T~/?). But,

this contradicts assumption 5.2(i) that TY2 ] in — 00 as Hﬂ? — B?H > Jmin

Proof of Theorem 5.7 :

Following Su et al. (2016) and Bertsekas (1995) Appendix B.5, we study the oracle
property by utilizing conditions from sub-differential calculus. From the FOC of the
objective function in (5.4) with respect to (; evaluated at Bi, for each ¢ € {1,...,N},

we have

2 & A
- ~ ~ )~ 1 N
0= e ;xit(yit — ﬁ;x,t) + N jz_;’wijeij, (E.8)

where é;; = ”gi:gj” if [|8; — Bl # 0 and ||é;;]| < 1 otherwise, and let &; = 0.
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Let ¢ € Gk, for a k € {1,...,K}. Note that by definition Bj = @4 for any j € Gy.

Summing the FOC over the individual units in Gy, we have

T
- %2 Z ijt yztfﬁfﬂzt Jr* Z waem

ieGy, t=1 zEGk j=1
, - \ (E.9)
- L ot~ 1 .
=T Z Zl'it(yit — Qi) + N Z Z Wij€ij.
ieék t=1 iGGk j%ék
For the second term on the right hand side of the above equation, we have
\F/\1
NkT Z Z wijés] < Z Z |wijéis|| < VNpTA1  max
N+/N i€Gr.j¢Gr
lGGk j¢G, lGGk j¢G,
(E.10)
which is of order Op(v/NpTA1J,.5 ) = 0p(1), under assumption 5.2(ii).
Thus, it follows that
T
~ ~ ~/ ~ ~
Q= (NkT Z Z$Zt$zt) NkT Z ZitYit- (E.11)
’LEGk t=1 ZEGk t=1

By corollary 5.6, with probability approaching one &y = @, and the limiting distribution

follows.
|
Proof of Theorem 5.8 :
By corollary 5.6, it follows that d@k =y, and the limiting distribution follows.
|
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Appendix F

Let us define some notations which will be used in the proof of the results
below.  Define Vixr(5s) = [+ Sy p(é 60)] Wivr [+ S0 pléa, 5], and Vi(3:) =
[ S B0t )] W [ ST B0l )] and tet Rir(3)| 4 S0 [ol6i )
B )] W[4 5 (6650 — ECot6: )]

Lemma F.1 Suppose that assumptions 5.9(i)-(ii) hold. Then,
VT(B; — B7) = Op(1), (F.1)

for each i =1,...,N. Equivalently, B; — BY = ﬁvz = Op(Tfl/Q). Therefore, for any i and

jim{l,...,N},
L gellB = vl = 0p(T7), it € G

187 = B3Il + = llos — 05l — & ifi € GR&j e G,

for any k,1€{1,...,Ko} andl # k, and ¢ > 0.
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Lemma F.2 Suppose that assumptions 5.9(iv) holds. Then, for all B; € B; with probability

approaching one,
1- _

Q[g‘/i(/ﬁi) - R@T(ﬁi)} < Vint(B:i) < ¢2Vi(Bi) + 2R v(Bs) |, (F.3)
where ¢ and ¢ are some generic positive constants that do not depend on i with 0 <c <1<
c < o0.

Proof: See Su et al. (2016). [

Proof of Theorem 5.13 :

(i) Note that Qg}NT,i(B,)\g) — QLNT’Z'(,BO,)\Q) < 0, we find an lower bound for this

difference term. Assume individual ¢ € Gg for any £ = 1,..., Kg, then we have

0> Qanti(B,N2) — Qanti(B8°, A2)

=V; NT(ﬁz) zNT(BO + — sz] |:”Bz /BJH - ||/30 60||:| (F4)
1o = = A 35
> e[ 5Vi(B) — Fur| — 2R+ % 3 i [I18: — Byl - 189 — 89|
J¢Gr

where the first inequality holds by Lemma B.1 of Su et al. (2016). By averaging the

above term over all of the individuals, and employing assumptions 5.9(i)-(ii), we have

N
02 53 [5H(A) - Ria) —2chROT+ Z > s [18: = Byl = 187 = 31
= =1 =1 j¢ay,
Z - Z 18 = B11* - Z [CRZ',T + 25R8 } - )\N 1<H§za§1vw” Z 18; — B2
i=1

(F.5)
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N
1 ~ ~
> LS eer eI~ 8012  ear (B) — 2e0(5°)
=1
— 20,(NVT X J 5T 1B — B2l

where the use has been made of

7(3) — 0y/ _ g0 3. — 392
121;%)](\] V;(B) = 12123‘;5\[(6 /8 ) Qz zAa:WQz zAac(ﬁ /67,) > C1,NT 1212355\[ HBZ 62 H s

and ¢ N7 = minj<;<y umm(Q; ZAgCWiQi,zA:p) > cweg > 0. The result above implies
that /T 8; — BY]| = O,(1), because otherwise, the above term cannot be negative.

Therefore, 3; — BY = Op(T_I/Q) fori=1,...,N.

(ii) From the last line in (F.5), let ¢* = O,(1), then we have

N N N
QQl,NTZ 5 012 1 Z_ 5 2 _Z_ 0
N — Hﬂ’b 57, H — QNT ‘ psz(IB> + NTC . pZ,T(ﬁ )

=1 =1 (FG)
1 K, 1
+ 2¢* E i — ;|| = Op(=),
N\/T g ”ﬁl Bz H p(T)
which proves the result.
|

Proof of Theorem 5.14 :

Take k € {1,...,Ky}. By the consistency results in theorem 5.13, we have B; — ﬁNj LN
BY—BY £ 0 for all i € GY and j ¢ GY. Thus, ||5; — B;]| # 0 for all i € GY and j ¢ GY.
By contrary, suppose that there exist i € G such that ||0;;]| = ||3; — ;]| # 0, for

any j € Gg. There exists r € {1,...,p} such that for the rth element of éij, we have

181



10ij.r] = max{|0;;;| : 1 = 1...,p}. Without lose of generality assume that r = p, then it can
be easily verified that |0;;,[/0:;] > 1/y/p. Then, the first order condition (FOC) of the
objective function in (5.4) with respect to the pth element of f;, denoted by f; , is

T N
-2 - = MVT .
0= 7Q;,zAa:,pW’i7NT ; Zit(Ayi — B;Awit) + N 221 Wij€ij,p
g j:

VT

= —2Q; A WiNT—= \F Z ZitAuig + 2Q) o np ,WiNTQi20VT(Bi — Bj)
=1 (F.7)

VT A . 0y VT . Oijp
Wyij—="— + Wij—=—
Z 11651 N Z 7116451

_l_

JjeG? J¢GY
= —Bj1 + Bjs + Bis + Bia.
where e;; = (B — 8;)/I1Bi — Bl if |18; — Bj|| # 0, and |e;j|| < 1 otherwise. By
assumption 5.9(i), Biy = Op(1), by Theorem 5.13 and assumption 5.9(ii) Bjz = O,(1).
By Assumption 5.10(ii), Theorem 5.13, and given max;cqo jeqo Wij = O (5, |Bia| <
NVT X, MaX;eq0 jeco Wij ZMG% = Op(NVTX2J 5 ) = O,(1). In view of the fact that for
i&j € GY, wij = Op(T™%/?), 2,/p|Bis| > VT > jecy Wij = Op(eVTAT*/?), which is
explosive in probability under assumption 5.10(iii). Consequently, ]323\ > ’Bil —|—Bi2 + Bi4|,
such that (F.7) cannot hold for sufficiently large (N,T). Thus, we conclude that with
probability approaching one, éij for all i&j € G% must be in a position where ||0~UH is

not differentiable and /T Aoijei; = Op(1) in order for the FOC to hold. Furthermore, this

implies that for all i&j € GY, P(||0;] = 0) — 1 as (N, T) — oc.

182



Proof of Corollary 5.15 :

For any I&k € {1,..., Ko}, where | # k, and any i&j € {1,...,N}, we consider two
cases: (i) i&j € GY, and (ii) i € GY and j € GY. In case (i), Theorem 5.14 implies
that asymptotically ||3; — B]|| = 0, thus K < K. Under case (ii), we want to show that
||/3’Z—BJ|| # 0. Note that for any such ¢ and j, ||510—B;)|| > Jmin- Now, suppose by controversy
that there exist i € G and j € GY that || B; — BJH = 0, besides by the consistency results in
Theorem 5.4, we have §; — 3; = 87 — B9 + 0,(T~%/?), hence |9 — B = O(T71/?). But,

this contradicts assumption 5.10(i) that TY2 ] i — 00 as Hﬂ? - B?H > Jmin

Proof of Theorem 5.16 :

Similar to the proof of Theorem 5.7, we study the oracle property by utilizing conditions
from sub-differential calculus. From the FOC of the objective function in (5.9) with respect

to B; evaluated at f3;, we have

T N
1 . ~ A2 I
= —2Q} . A WiNT 5 NT Z Zit(Ayir — BiAzi) + N Zwijeij> (F.8)
t=1 j=1
where €;; = ”gf_gj” if |3 — Bl # 0, é&; = 0, and [|&;;]| < 1 otherwise.
i=Bj
Averaging the above equation over the individuals in Gy, for any k € {1,..., Ko}, we

have

Z Qz N ,NT Z Zzt Ayzt /8 szt) 2NN 61]

ZEGk ieGy, I=1 (F.9)
Z Qz A WiNT Z Zit(Ayie — B Azy) + 2NN Z Z W;j€ij,

zeGk i€Gy, j¢ Gy,
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together with the definition of ay, it follows that

ap = ( Z Qz zAz Vi NTQZ zAac) N T Z Qz 20z Vi NTZZztAuzt

ZeGk ZEGk (F 10)
( Z QZ zAx VY NTQz zAx) 2NN e’L]
zeGk i€Gy, j¢ Gy,
Note that
\F)\Q
NkT Z Z leGZJH Z Z waez]H
zeGk j¢Gy lGGk fl:2en (F.11)
<V NiTXy max W = op(1),
i€GL,jEGr

thus, we have

VN (@ — af) = ( Y QienaWintQs zAx) \/— > Qlns ZNTZZztAUzt + 0p(1).

zeGO ieGY

(F.12)
Besides, by assumptions 5.9(iv) and 5.11(i)-(ii), we have

N Z Qz ,ZAT 7 NTQZ zAx — N Z QrL ZAxW Qz zAx + Op( ) = Ak; + Op(l)-
K ’LEGO ’LEGO

Employing the result above and assumption 5.11(iii), the limiting distribution follows from

the slutsky theorem.

Proof of Theorem 5.17 :

By corollary 5.15, it follows that /N, T (&g, — V) = VN T (a4, — o) + 0p(1), and the

limiting distribution follows from assumption 5.12.
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Appendix G

Proof of Corollary 5.18 :

Following the analysis in Ma and Huang (2017), we prove the proposition.

(i) Note that from B+1 definition, for any & we have

Ll(,@(m+1),5(m+1),u(m)) < Ll(ﬁ(m+1),5,u(m)). (Gl)
Also, we have
- A
L (3m+1) gm+1) |, (m)y < inf 7 X2 2L R
(O S  <  |19 - XOI g Dl o

= inf Ll(,B(mH),é,u(m)) = f(mH), say.
AB(m+1) _§=0
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For any integer n, by the definition v(™+7=1) = p(m) 4 g S - L(AgIm+i) _ §m+i)),

Thus,

Ll(B(m+n)7 5(m+n) V(m+n_1)) _ H@ o Xﬁ(m—i—n)H2 + V(m+n_1)’(AB(m+n) - 5m+n)

)

29 m-n m-n )\ mTn
+ S ABOH — g2 4 T8y iyl |

1<j

= (1§ — XA 4 (A — g

n—1
+ 0 Z(Aﬂ(m—H) _ d(m—l—z))/(AB(m-i-n) _ 6(m+n))

=1
19 m-Tn m-n >\ m-Tn
+ S IAB0H — g2 4 S8y iyl |
1<J

(G.3)

Given Lq(8,9d,v) is differentiable with respect to 3 and convex with respect to 4,
therefore the sequence (8™, (™), (™)) has a limiting point by Tseng (2001). Let us

denote this point by (3*,d*,v*), so for any n > 0, we have

* : m+n . ~ v 2% A .
f = lim f( +n) _ 11}%:0 Hy_Xﬁ H2—|—]\;Zwij||5ij”:|, (G4)

m—00 AB*
B 1<j
also we have

. m+n m+n m+n— ~ Y Q% A
lim_ Ly (B0, 804 ) = g X2 LS |

m—00 -
1<J
1
+ lim (A8 = 8%) + (n = 3)IAB" — &

m—r0o0

< f
(G.5)

The above result implies that ||7(™ |2 = ||[AB* — §*|?> = 0.
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(ii) By the definition, we have

8L1(ﬂ(m+1), &), ,,(m—l))
= 98

2X/X5(m+1) _ 2)2/@ + Aly(m) + A/’ﬂ(AB(m+1) o 5(m+1))

(G.6)
= QX/Xﬁ(erl) _ 25{/@ Y [V(m) n ﬁ(AIB(m+1) _ 5(m+1))
= QX/XB(WH-I) _ QX/,Q + A/V(m—l-l) + 19A/((5(m+1) B 6(m))’
which implies that
g(m+1) _ 19A/(5(m+1) _ 5(m)) _ 25(’5(,8(””1) _ 25(’;1} 4 A/U(m+1)] (G.7)

Also, by part (i), we have ||AB* — 6*||> = 0, hence as m tends to infinity, from (G.6)

we have
(m+1) §(m) ,,(m) -
0= lim OL\(B O V™) i 2X'X 3D —oX'y + Ayt
m—00 19J6] m—00

—2X'Xp3* - 2X'y + A'v*.
(G.8)

Employing the results in equations (G.7)~(G.8), we have lim,, oo |[|s/ 1|2 = 0.

Proof of Corollary 5.19 :

The proof follows from that of proposition 5.19, and we omit it.
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