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ABSTRACT

This thesis is based on two main projects completed during my graduate studies. The first

project consists of showing that hybrid inflationary theories are still viable meaning that there is a

parameter space that give us cosmological parameters in agreement with the Planck data.

The second project explore the mixing between gravity wave, electromagnetic waves and axion

waves in a curved space time as a way to potentially detect dark matter.

We revisit two-field hybrid inflation as an effective field theory for low-scale inflation with sub-

Planckian scalar field ranges. We focus on a prototype model by Stewart because it allows for a red

spectral tilt, which still fits the current data. We describe the constraints on this model imposed by

current CMB measurements. We then explore the stability of this model to quantum corrections.

We find that for relevant, marginal, and at least a finite set of irrelevant operators, some additional

mechanism is required to render the model stable to corrections from both quantum field theory

and quantum gravity. We outline a possible mechanism by realizing the scalars as compact axions

dual to massive 4-form field strengths, and outline how natural hybrid inflation may be supported

by strong dynamics in the dual theory.

We describe bosonic (scalar, electromagnetic and gravitational) wave mixing in curved space-

time. Curved spacetime adds a new length scale, the Schwarzschild radius, which significantly

alters the oscillation probabilities in comparison to the standard flat spacetime computations. The

alterations are analogous to the Mikheyev-Smirnov-Wolfenstein (MSW) effect for neutrinos and

are “frozen- in” as the outgoing gravitational and/or electromagnetic wave propagates away from

a compact object. Although we consider the axion and axion-like particles, our computations
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are largely model independent and applicable for generic spin-zero dark matter. We describe the

probabilities for axions and generic bosonic dark matter oscillations. We describe some of the ob-

servational consequences of the mixing including the energy and polarization of the waves exiting

the compact object.
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Glossary

CMB : Cosmic Microwave Background.

DE: Dark Energy.

DM: Dark Matter.

EFT: Effective Field Theory.

EOM : Equations Of Motion.

IR : Infrared.

MSW : Mikheyev-Smirnov-Wolfenstein.

NDA : Naı̈ve dimensional analysis.

QCD : Quantum Chromodynamics.

RGE : Renormalization Group Equation.
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CHAPTER 1

INTRODUCTION

We live in the modern era of cosmology. Thanks to the technology available nowadays, we have

been able to probe the sky from all the way to the early stages of our universe. The discovery of

the Cosmic microwave background (CMB), which is an electromagnetic radiation remnant from an

early time of the universe, discovered in 1965 by American astronomers Arno Penzias and Robert

Wilson and granted them the Nobel prize in 1978, gives us a glimpse of the physics of the very

early universe. The WMAP and Planck satellites, produced maps of the universe at the time of the

CMB ie t “ 380000 years after the Big Bang. Those maps revealed crucial information about the

history of the universe as well as its composition. The current stage of the scientific knowledge

agrees that the universe is made of 68% of Dark Energy (DE), 27% of Dark Matter(DM) and 5% of

baryonic matter. Despite this consensus, the nature of DE and DM is still unknown to the scientific

community.

The CMB maps themselves have puzzled the community for decades. Indeed, those maps indi-

cates that the universe has always been very homogeneous: at the time of the CMB, it appears

that part of the universe that seemingly had never been able to communicate, share some common

information. For example, if one were to warm up a soup in the microwave, one would expect a

non uniform temperature distribution. One can wonder why the CMB temperature appears to be

so uniform, up to ∆T “ ˘0.00335K. One way to answer this cosmological puzzle is to theorize

a very short period of accelerated expansion right after the Big Bang. We call it Inflation.

Inflation last 1032s during which the universe expands as much as it did between the end of in-

flation up to today. Although there are multiple arguments in favor of inflation, the mechanism

1



allowing for a period of accelerated expansion remains unknown.

During my PhD, I worked on a possible explanation for inflation, where the main fuel for this

expansion takes the form of a scalar field called an axion.

Axions are pseudo scalar particle, that could also be used to explain the nature of both DM and

DE.

I have also investigated theories which involve axions as DM candidate, by looking at the mixing

between axion waves, gravitational waves and electromagnetic wave near a Kerr black hole.

In addition to the previous projects, I worked on a model of Dark Energy Quintessence where DE

is described by an axion that mimics the behavior of the dominant component of the universe dur-

ing the different era of our universe and start behaving like DE at late time.

My journey as a theoretical cosmologist has taken me from the very beginning of the universe

to looking at the nature of DE, the dominant component of the late universe.
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CHAPTER 2

INFLATION

2.1 Motivations for Inflationary theories

We live in the golden age of observational cosmology. Telescopes such as COBE (1989-1993)

, WMAP (2001-2010) and more recently, Planck (2009-2013) allowed the scientific community

to probe the early universe. WMAP in particular gave us the first measurement of the Cosmic

microwave background (CMB) and the Planck satellite provided physicists with very precise mea-

surements of cosmological parameters.

The CMB, or Cosmic Microwave Background, is the ”oldest map” of the universe. Having

access to the temperature fluctuations at t “ 380000 years after the Big Bang is a window into the

physics of the very early universe. We found the temperature to be T “ 2.73 ˘ 0.00335K which

indicates that the universe was very homogeneous at that time.

We know that the universe is very old, almost 14 billions years old, the universe is very homo-

geneous, dρ
ρ
„ 10´5, it is almost perfectly flat k

a2H0
ď 10´2, allows for galaxies to form and is void

of problematic cosmological structures such as domain walls or magnetic monopoles.

However, these observations raise a few cosmological questions. We will only present a few of

them: The Horizon problem and the flatness problem, and we will show how a theory of inflation

solves those cosmological problems in the remaining part of this section:
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2.1.1 The Horizon Problem

The CMB tells us that the universe is very homogeneous. Parts of the universe that are far away

from one another exhibit a similar temperature up to ∆T “ 0.00335K (see fig.2.1). This obser-

vation is puzzling as some parts of the universe are causally disconnected and yet still present the

same temperature. It is possible to evaluate the number of causally disconnected regions in the

universe by evaluating the ratio of the particle horizon, Lh, to the apparent horizon, l at the time of

the CMB. We can assume a radiation dominated universe as a first order approximation. In such a

universe, the scale factor scales as follows a “ a0

b

t
t0

and we get :

Lh “ aptq

ż t

0

dt1

apt1q
“ 2t

l “
1

H
“

1

H0

t

t0

(2.1)

The ratio between the particle horizon and the apparent horizon is given by (taken into account

one spatial dimension):
l

Lh
“

1

2tH0

c

t

t0
“
T

T0

„ 103 (2.2)

Hence there are p103q3 “ 109 causally disconnected regions with the same temperature (up to

∆T “ 0.00335K ).

One way to solve the horizon problem is to consider a universe dominated with a fluid with a

constant equation of state w “ P {ρ prior to the original t “ 0s from the original Big Bang model.
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Figure 2.1: Causally disconnected regions in old BIG-BANG models
Here the two red points have always been causally disconnected since their past light cone, here in
orange, never intersect.

The conformal time is defined as:

τ ”

ż

dt

aptq
(2.3)

For a universe dominated by a fluid with state parameter w, we know that the scale factor is

given by :

a “ a0t
2

3pw`1q (2.4)

and we get:

τ “

ż

dt

a0t
2

3pw`1q

“
1

a0

2

3pw ` 1q
a

1`3w
2 (2.5)

Hence, if w ď ´1{3, τ Ñ 8 which allows for any two points to have been causally connected

earlier in time (see fig. 2.2).

We can also rephrase this solution looking at the dynamics of the comoving Hubble sphere,

defined as RH “ paHq´1 where H “ 9a{a, is the Hubble parameter. Indeed, in order to ensure

that points were in causal contact earlier in time, we can theorize a period of increasing comoving

5



Figure 2.2: Causally connected regions in inflation models
Here the two red points have always been causally connected earlier in time

Hubble sphere between the beginning of time until the end of inflation:

d

dt
paHq´1

ă 0 (2.6)

A period of decreasing comoving Hubble sphere is equivalent to having a period of accelerated

expansion:

d

dt
paHq´1

“
d

dt
p 9aq´1

“ ´
:a

p 9aq2
hence

d

dt
paHq´1

ă 0 ùñ :a ą 0

(2.7)

2.1.2 The Flatness Problem

The flatness problem a fine tuning problem. It is the statement that at t “ 1s we observe |1´Ω| ă

10´60, where Ω is the density parameter, defined as follow:

6



Ω “
actual mass density
critical mass density (2.8)

Using the Friedmann equation:

H2
“

ˆ

9a

a

˙2

“
8πG

3
ρ´

kc2

a2
(2.9)

we can express Ω as:

|Ω´ 1| “
k

a2H2
(2.10)

We have shown in the previous section that inflation is a period of accelerated expansion that

solves the horizon problem. In the case of the flatness problem, a decreasing comoving Hubble

sphere, RH “ paHq
´1, would ensure that Ω is close to 1 up to 10´60 at t “ 1s. This statement is

equivalent to a period of accelerated expansion, as shown previously.
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2.2 Slow Roll Inflation

Now that we understand why inflation, a period of accelerated expansion, solves both the horizon

and the flatness problem, we need to develop models that can explain the mechanism that allows

for such an expansion. Because the universe is isotropic, it is natural to consider a scalar field

coupled to gravity as the motor of inflation as follows:

S “
ż

d4x
?
g

ˆ

M2
pl

2
R ´

1

2
pBφq2 ´ V pφq

˙

(2.11)

In order to control the amount of inflation that is needed to solve the previously mentioned

cosmological problems, we need a potential that is flat for sometime. For that purpose, we can

define the following slow roll parameters:

ε ”
m2
pl

16π

ˆ

V 1

V

˙2

η ”
m2
pl

8π

ˆ

V ”

V

˙

(2.12)

Where mpl is the Planck mass and Mpl “ m2
pl{p8πq is the reduced Planck mass.

It should be clear that ε controls the flatness of the potential and η controls how long the poten-

tial stays flat.

More precisely, we have established in the previous section, that for a universe filled with a

fluid with state parameter w, inflation is satisfied for w ă ´1{3 (or w Ñ ´1 is even better).

The density parameter and pressure for a scalar field are defined as follows:

8



ρ “
9φ

2
` V

p “
9φ2

2
´ V (2.13)

Hence the state parameters for a scalar field is given by:

w “
p

ρ
“

9φ
2
´ V

9φ2

2
` V

« ´1`
2

3
ε (2.14)

We can see that given a potential V pφq, we will have the condition for inflation if: |ε| ă 1 and

|η| ă 1. Those are the conditions to realize slow roll inflation.

2.3 A Model of Inflation: Chaotic Inflation

Let us look at a simple model of inflation. The potential is given by:

Vchaoticpφq “
m2

2
φ2 (2.15)

Where φ is the inflaton and m, its mass.

The slow-roll parameters are given by:

εV pφq “ ηV pφq “
´mpl

4π

¯2 1

φ2
(2.16)

Hence in order to satisfy the slow-roll condition i.e εV ăă 1 and ηV ăă 1, we get the following

9



condition on the scalar field:

φ2
ąą

m2
pl

4π
“ 2M2

pl, hence

φ ąą
?

2Mpl

(2.17)

We can see that in order to realize a slow-roll inflation in a chaotic inflation scenario, we need

to ensure that the field φ starts with super Planckian values.

Such a theory will be sensitive to quantum gravity effect and would need some mechanism pro-

tecting it from such effects.
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CHAPTER 3

AXION MONODROMY INFLATION

3.1 Introduction

Inflation is the leading candidate for explaining why the universe is so old, flat and smooth. Explicit

models rely on a local quantum field theory (QFT) of the agent behaving like a transient but long

lived vacuum energy, which forced the universe to rapidly expand early on. In a local Poincare-

invariant QFT, this requires scalar fields with a very flat potential. An immediate question is

whether such models are natural or fine-tuned. Leaving aside the conundrum of initial conditions,

and merely focusing on the naturalness of the parameters of the local QFT, the inflationary epoch

is obviously an arena where the ideology of naturalness may be tested observationally.

The simplest QFT models of inflation involve a single scalar field which needs both a very flat

potential and super-Planckian field variations [1], [2]. These large-field models typically produce

observable primordial gravitational waves. Thus they are increasingly in tension with observa-

tions although they are not yet ruled out. However the super-Planckian field ranges also present a

theoretical challenge, a large number of Planck-suppressed operators must be fine-tuned absent a

mechanism for suppressing them [3]–[19]. Since data is starting to take a bite out of these mod-

els, one may be tempted to avoid the issue of Planck-suppressed operators by studying small-field

models, or by studying even more exotic alternatives where naturalness of the QFT of the inflaton

is altogether abandoned. These latter alternatives are also not safe from the predations of quan-

tum gravity. Therefore we will take a very conservative attitude, ignore exotic inflationary models

altogether, and only consider inflationary small-field QFTs which might be natural. As we will
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find, such small-field models in fact require not so small fields after all, and are still threatened

by Planck-suppressed irrelevant operators1. Some mechanism is still required to ensure that the

quantum gravity corrections are under control.

In this paper we will revisit two-field hybrid inflation models [21]–[23], and explore their sta-

bility to both quantum field theoretic and quantum gravity corrections. The ‘classic’ model of

hybrid inflation [21]–[23] predicts a blue spectrum of CMB perturbations that is now ruled out by

observations [24]. However, this does not shut the door on hybrid inflation. For example, a variant

due to Stewart [25] (see also [26]–[28]) does produce a red spectrum (as we will review), and for

some range of parameters can be made compatible with observations. We will find that additional

quartic terms are induced by radiative corrections, which nevertheless can be kept naturally small.

However – unsurprisingly – the quadratic mass terms suffer from the usual hierarchy problem af-

flicting fundamental scalars, and a mechanism is needed to keep them sufficiently small. Even with

such a mechanism, we will find that the combination of data-based constraints and technical natu-

ralness put the theory into a corner for which the range of the scalar fields are close in magnitude

to the Planck scale. The main constraints are:

• We need to ensure that the inflaton rolls sufficiently slowly over a sub-Planckian range to

generate N -efoldings of inflation.

• The two fields in the hybrid model can be roughly classified as “inflaton” and “waterfall”

fields. The former rolls during inflation leading to a spectral index. The latter is locked by

the large value of the inflaton during inflation, and provides the bulk of the vacuum energy,

and condenses at the end of inflation, ending vacuum dominance and initiating reheating.

We ask that the field displacement of the “waterfall” field is sub-Planckian, while being

high enough to give the right scale of density perturbations when the couplings remain weak
1This has been noted in similar contexts before, such as in [20].
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enough for radiative stability.

The upshot is that two-field hybrid models that fit the data, are technically natural, and protected

from quantum gravity corrections are very nontrivial to realize. In addition to requiring hierarchies

in masses and renormalizable couplings, the nearly-Planckian field ranges mean that there are a

large but finite number of Planck-suppressed irrelevant operators which may spoil slow-roll in-

flation unless there is a mechanism to make their dimensionless coefficients sufficiently small2.

Furthermore, satisfying the demands placed on inflation models with sub-Planckian field ranges

puts additional pressure on the EFT which one uses to describe the dynamics, because the inflaton

– which must be light during inflation – quickly becomes very heavy after inflation ends. This

is merely a matter of continuity: if the field rolls on a flat and short plateau to give 60 efoldings

of inflation, that plateau must be very flat, and the post-plateau minimum very narrow, and hence

with a large curvature. This pushes reheating out of the EFT used to describe inflation: the UV

embedding must be understood.

After exploring these issues, we will argue that an embedding of the Stewart model exists which

can protect the required hierarchies in masses and couplings from both QFT and quantum gravity

corrections. To do this we will use a two-field version of the axion monodromy effective field

theories developed in [7], [8], [12], [14], [16], [17], [19]. In these theories the two fields that drive

inflation and reheating are considered as axion-like pseudoscalars, dual to longitudinal modes of

two massive 4-form field strengths. The scalar mass maps to the gauge field mass [16]; as with

masses for Abelian vector fields, the 4-form mass is stable to quantum corrections. Additional

small hierarchies needed to support inflationary dynamics may then arise from dimensionless cou-

plings in the strong coupling regime. For models which match CMB data one must either tune

the value of the mass or find an additional mechanism, beyond EFT, to explain its smallness from
2In principle, it is possible that the individually dangerous operators may sum up to tamer contributions to the

effective potential, if there are approximate shift symmetries in some regimes of phase space.
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first principles. Either way, the small mass is at least technically natural3. We will also see that

the requirements of naturalness and bounds from data push the dual 4-form theory into the strong

coupling regime. However since the theory has only longitudinal propagating modes, in the in-

flationary regime the theory looks weakly coupled because each explicit power of the inflaton φ

comes with a factor 9µ{M, where M is the cutoff and µ the inflaton mass, thus providing addi-

tional suppression factors that make the theory appear weakly coupled in the axial gauge, and also

tame quantum gravity corrections to the irrelevant operators of the theory.

The current data put additional pressure on this EFT, suggesting that a full theory of hybrid

inflation really requires two different EFTs to consistently describe it, one for the slow roll regime

and another for reheating, when the inflaton becomes very heavy (and presumably other degrees

of freedom become very light). Providing the details of the complete first-principles construction

of such a model is beyond the scope of this work. Here our approach is bottom-up, reverse-

engineering a low energy theory in order to glimpse how it can be derived from a UV-complete

model. Hence we cannot provide a detailed contents of the full spectrum of the theory, which is

necessary to see how various fields transition to below and above the cutoff. Nevertheless, our

analysis indicates that such constructions exist, and serves as a guide for how to search for more

complete models which realize such dynamics.

We close with a summary of what is new in this chapter:

• First, a detailed consideration of matching the Stewart model to the most up-to-date data has

not been done before; nor has the stability of this model to either QFT or quantum gravity

corrections been explored. We do both in §3. While the model fits data well, we will find that

as it stands, it in fact is unnatural: the model suffers from the mass hierarchy problem, since

the dimensional scales in the theory are very sensitive to the UV completion. This requires at
3Lower bounds on the mass of 1-form gauge fields have been conjectured in [29]: we believe inflation is well away

from such bounds.
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least a small Op0.1q hierarchy between mass scales. A protection mechanism is necessary to

stabilize this against quantum corrections and render the theory at least technically natural.

We will also see that the theory has many irrelevant operators which are individually large,

and a dynamical explanation of why they do not spoil inflation is needed.

• Furthermore, we will also see that the theory is additionally strained by the fact that the

post-inflationary mass of the inflaton is near the cutoff of the infationary EFT, meaning that

to reliably describe exit from inflation and reheating, we really should use a different EFT in

that regime.

• Finally, our proposal for realizing the model as the theory of coupled axions dual to 4-form

field strengths is new. This provides a UV completion of the hybrid inflation model which

addresses the hierarchy problem and the subsequent fine tunings, rendering it both natural

and protected from quantum gravity corrections. To do this we take an approach that is dis-

tinct from standard axionic model-building. Typically axions have not been considered for

hybrid models because their nonderivative couplings are constrained by nonrenormalization

theorems, and taken to be simple trigonometric functions. This assumes that the axion po-

tentials are generated by instantons in some sort of dilute gas approximation. However, it has

been known for some time, if underappreciated, that this approximation often fails and axion

potentials can be more complex, looking more like perturbative polynomial interactions, if

we assume that the axion potential is multivalued [30]–[32]. The central lesson of [7], [8],

[12], [14], [16], [17], [19] is that the resulting effective field theories are still constrained by

gauge symmetries, and ‘dimensional transmutation’ between dual pictures allows for small

couplings that are protected from QFT loops and quantum gravity corrections. In §3 we

develop and deepen this story by expanding it to multifield models and explore its strong
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coupling r

3.2 Hybrid Inflation with a Red Spectrum

3.2.1 The Model

The pioneering model of hybrid inflation [21] has the form:

V pφ, σq “
λ

4

´

σ2
´ M̃2

¯2

` µ2φ2
`

1

4
g2σ2φ2 . (3.1)

Here φ is the inflaton. If φ2 ą λM̃2{g, then σ “ 0 is a minimum of the potential for fixed φ,

leading to the effective potential

Veff “ M̃4
` µ2φ2 . (3.2)

During inflation, if the second term dominates, the theory is effectively the standard chaotic infla-

tion, which requires a super-Planckian range for φ and which is ruled out by existing bounds on

gravitational waves. If the M4 term dominates the potential, then

ˆ

δρ

ρ

˙2

“
V 3

24π2M6
plpV

1q2
„

1

φ2
, (3.3)

grows larger as φ decreases, leading to a blue spectral index, which is ruled out by CMB measure-

ments [24]. More precisely the spectral index is

ns “ 1`
2

N
ą 1 , (3.4)

where N is the number of efoldings.
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An alternate model by Stewart [25], [26], defined by

V pφ, σq “
m2

2

´

σ ´
?

2M
¯2

`
g2

4
φ2σ2 , (3.5)

which does not have degenerate post-inflationary minima, and so also no dangers of any stable

defect production after inflation, does have a red spectrum:

ns „ 1´
3

2N
. (3.6)

As we will show in §2.2, this model can be made compatible with current CMB data, while

maintaining sub-Planckian field ranges that are one of the strong motivations for hybrid inflation.

As far as we know, a full discussion of the quantum stability of these models has never been

carried out4. This is one of the main goals of this paper. We thus write a modification of Eq.

(3.5) containing all of the relevant and marginal operators that could be generated by quantum

corrections:

V pφ, σq “
m2

2

´

σ ´
?

2M
¯2

`
λ

4

´

σ2
´ M̃2

¯2

`
µ2

2
φ2
`
g2

4
φ2σ2

`
λ1

4
φ4 . (3.7)

Since the first term breaks the 2 symmetry σ Ñ ´σ one may be tempted to include terms pro-

portional to σφ2 or σ3. However, if we compute quantum corrections to this potential following

[34], linear terms in σ can be absorbed into the source term used to explore the full theory space,

and thus these terms are never generated by loop corrections. In the effective field theory (EFT)

language, the reason is that the parity symmetry is softly broken, only by a relevant operator, and

thus is invisible to the UV effects in the loops.

4We are aware of a somewhat incomplete attempt in [33].

17



In the EFT context, we would naturally expect that all of the dimensionful parameters in this

model should be below the cutoff. However, we will find in the next section that for a realization

of this model via massive 4-forms, this does not have to be the case for M , for which there is

a see-saw formula involving the ratio of the cutoff to a fundamental mass scale. A hint that this

might be the case comes from noting that if σ is a pseudoscalar axion, as it (along with φ) is a dual

of a massive 4-form field strength in the embedding we described below, M is a spurion for the

breaking of CP, and so it might naturally be related to the initial expectation value of one of the

longitudinal modes of massive dual forms; we will see that this is so in §3. There is no a priori

reason that the expectation value of an axion field should be below the cutoff [35]. In principle,

since it is controlled by the initial flux of a 4-form field strength it may even be „Mpl.

The first and fifth terms are absent in [21]; while Ref. [25] ignores the second, third and fifth

terms. To realize the latter model with its red spectrum of fluctuations, we must ensure that the

terms controlled by µ, λ, λ1 are subdominant, so that the Stewart model is a good approximation.

We will argue in §2.3 that the suppression of λ, λ1 can be made technically natural. Finding a

phenomenologically acceptable value of m and suppressing µ enough that the φ2 term is sub-

dominant requires more work, as scalar masses are afflicted by the hierarchy problem. Rendering

these masses even technically natural requires a mechanism, such as axion monodromy, whose

application to hybrid inflation we will describe in §3.

For now and in §2.2, we will take (3.7) as given and explore the predictions of the model in the

limit well described by the Stewart model. As in [21], [25], at sufficiently large φ, the g2φ2σ2 term

renders σ massive and we can integrate it out. At the classical level we simply solve the equation

BV

Bσ
“ m2

´

σ ´
?

2M
¯

` λσ3
´ λM̃2σ `

g2

2
φ2σ “ 0 , (3.8)
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for σ at large φ. We demand that the term λσ3 be subdominant. Ignoring this term, we find that:

σmin “

?
2m2M

m2 ´ λM̃2 `
g2

2
φ2
. (3.9)

It is instructive to neglect the term 9λ, and in this limit plug equation (3.9) back into (3.7). So,

using σmin “
?

2m2M{pm2 `
g2

2
φ2q `Opλq, this yields

Veff pφq » m2M2
g2φ2

2

m2 `
g2

2
φ2
`
µ2

2
φ2
`
λ1

4
φ4
`Opλq . (3.10)

If φ2 " 2m2{g2, then σ » 2
?

2m2M
g2φ2

, and in this limit the potential (3.10) becomes

Vinflation » m2M2

ˆ

1´
2m2

g2φ2

˙

`
µ2

2
φ2
`
λ1

4
φ4
`Opλq , (3.11)

after expanding the fraction in the first term. Clearly, as φ grows the first term becomes flatter. This

is the inflationary plateau. The terms 9µ, λ1 limit it, since they make the potential convex again

as they take over. Essentially, the regime with positive spectral slope is therefore between the two

inflection points of the potential (3.10), when φ is in the regime

c

2

3

m

g
ď φ ď p12q1{4

d

M

gµ
m . (3.12)

The hybrid inflation regime, with sub-Planckian ranges for φ and a red spectrum, will require that

the terms controlled by µ, λ1 also be sufficiently subdominant, during the first 10 efoldings of the

visible epoch of inflation (epochs which leave imprints on the CMB). The precise details depend

on how small µ is. If µ is larger than the critical value µ˚ “
?

12Mm2

gM2
pl

, the upper bound in (3.12)

is sub-Planckian, and so the period of inflation with a red spectrum is generically shorter with all
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other parameters being fixed. If µ is smaller than µ˚, the upper bound is super-Planckian. At any

rate we will insist that the final 50 efoldings must occur over a sub-Planckian range of the inflaton,

while the inflaton lies below the upper bound in (3.12). In other words, if we define the maximum

value of φ at 50 efolds before the end of inflation as αmpl, we require α ă 1. The upper bound in φ

in (3.12) then implies
?

12Mm2α2gM2
plµ. In this way, whichever option, any trans-Planckian field

excursions are observationally irrelevant, offering assurance that our model of nature need not be

too sensitive to the UV. We will however see that this puts stress on naturalness.

We will further require that µ{m ă 1, so that we can consistently integrate out the σ field during

inflation, and ignore its fluctuations. This also ensures that the σ fluctuations during inflation are

suppressed; as a consequence we can ignore isocurvature perturbations, which are anyway strongly

constrained by the data. We will however find that when other bounds are met, µ{m ă 1 is

automatically satisfied.

The limitations of an EFT are set by the cutoff M. While the effective potential (3.7) involves

only renormalizable operators, and so it gives no indication of any intrinsic UV cutoff, we can

place a lower bound on the cutoff of the two-field model by noting that M should be of the order

of the effective mass of σ during inflation. This mass will provide a natural UV cutoff for the

effective theory, Eqs. (3.10) and (3.11) for φ, once we integrate out σ. This potential is obtained

for large φ by integrating the field σ when it is effectively near zero. Taking the second derivative

of (3.8) gives the effective mass of σ in that regime,

m2
σ » m2

`
g2φ2

2
`Opλq . (3.13)

To get an idea about the limit on the inflaton φ range in our EFT we conservatively use the range

„ M of σ as a guideline5. Imposing M ă Mpl, we thus take the cutoff M “
?

4πM˚ to be

5This assumes a lack of hierarchy between σ, φ; in practice we expect φ to have a somewhat larger range, as we
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M „ gM . Here M˚ is the strong coupling scale, used to normalize the EFT operator expansion

in the Naı̈ve Dimensional Analysis (NDA) framework [36], [37], a framework which was deployed

to organize the EFT of large field inflation in [16], [17]. To get a sharper estimate of the cutoff,

we can also produce a lower bound by recalling that in NDA, the overall dimensional scale of the

potential terms in EFT is M4
˚ at strong coupling. This sets an upper bound VM4

˚ on the potential

energy during inflation [16], [17]. From (3.11), we then find M˚

?
mM . Thus the cutoff lies in the

range
?

4πmMM „ gM . (3.14)

For values of these parameters which satisfy constraints we develop below, we find gM ą

?
mM so we take gM as a conservative estimate of M.

Note, however, that as the inflaton φ rolls towards the end of inflation, its effective (tachyonic)

mass on the plateau, |m2
φ| „ 24 m2

M2
˚
m2 ! m2 changes to

m2
φ „ g2M2

„M2 . (3.15)

Thus the EFT of inflation and the stage right after inflation breaks down as the theory proceeds

to reheating at the true vacuum σ “
?

2M . As serious as this is, by itself it is not a fundamental

flaw of the theory. It indicates that as inflation nears the end, the theory is undergoing a phase

transition where the energy density stored in the very flat potential tends to dissipate quickly, and

nonperturbatively, at very short distances. Some new fields, including σ – which was very heavy

during inflation – become light and need to be integrated in. Others, like the inflaton φ, become

heavy. Further, since the φ mass is tachyonic, as its magnitude becomes larger the tachyonic insta-

bility becomes faster near the end of inflation and operates at sub-horizon scales. So the important

are working to flatten its potential.
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lesson from this is a warning: we should not expect to have a single EFT of hybrid inflation, but

instead count on having the late stages of the exit and reheating as separate descriptions from slow

roll inflation.

3.2.2 Matching to Data

We next want to demonstrate that our model (3.10) has the capacity to match existing CMB data,

focusing on:

• The number N of efoldings of inflation, constrained (up to details of reheating, which we do

not model here) by bounds on spatial curvature to be at least on the order of 50´ 60. For the

sake of convenience we take N “ 50.

• The power in scalar density (or CMB temperature) fluctuations at an appropriate pivot point,

set by experiments to be of order δρ
ρ
„ 5ˆ 10´5.

• The tensor-scalar ratio r, with a current upper bound at r ď 0.056 [24]. We will in fact

demand here that the inflaton φ has a sub-Planckian field range over the last N efoldings of

inflation; this ensures that r is well below the above bound [33], [38].

• The scalar spectral index αS , between 0.95 and 0.985, depending on r.

We will do this here under the assumption that the first two terms in (3.11) dominate in our

model. The above constraints can then be phrased in terms of bounds onm,M, g and the maximum

excursion αMpl ” φmax of the scalar field during the visible epoch. We will find that the data

supports a range for these parameters. The further question of whether there is a range for these

parameters and for λ, M̃, µ, λ1 for which the remaining terms in (3.11) are subdominant and the

whole theory is stable under quantum corrections is the central point of the rest of this paper.
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We first impose the constraint that inflation last for a sufficient number of efoldings. Assuming

that the magnitude of the potential energy V is dominated by the first term in (3.11), the number

N of efoldings is given by:

N “ ´
1

M2
pl

ż

V

V 1
dφ »

1

M2
pl

g2

16m2
φ4
max , (3.16)

Using φmax “ αMpl, we find:
m

gMpl

»
α2

4
?
N
. (3.17)

Note that we are interested in α ď 1; thus, m ! gMpl. Since we also wish to impose a sub-

Planckian range of σ, and that range is set by M , this condition is at least compatible with m ă

M „ gM .

Our bound assumed that V is dominated by the constant term „ m2M2 during the first „ 10

efoldings of the visible epoch of inflation (the period which leads to observed CMB fluctua-

tions). We need to check that this is self-consistent. 10 efoldings corresponds to to approximately

φmax

N
∆N „ 2.5

N
φmax which is a small variation, so we need simply check the dominance of the

constant term at φ „ φmax. Under these conditions,

m

gφmax
“

m

αgMpl

»
α

4
?
N
! 1 , (3.18)

so our assumption of the dominance of the constant term in V is self-consistent. Note that in

light of the discussion in the previous section, this demonstrates that for parameters that yield the

requisite number of efoldings, m ! M. Also note that it is straightforward to show that the slow

roll parameters η „M2
plV

2{V , „M2
plpV

1{V q2 are both small given (3.17) together with α ď 1
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We next check the scalar spectral index:

nS “ 1´ 3M2
pl

ˆ

V 1

V

˙2

` 2M2
pl

V 2

V
“ 1´ 24M2

pl

m2

g2φ4

ˆ

2m2

g2φ2
` 1

˙

» 1´
3

2N
. (3.19)

In the last term in the RHS we are assuming that 2m2

g2φ2
! 1: this is the same as the demand that V in

(3.11) is dominated by the leading constant termm2M2. If we takeN between 50 and 60, ns varies

between 0.97 and 0.975. This is within current bounds, particularly for N „ 50. However future

observations might be able to constrain this more strongly, and perhaps even falsify the model. In

any case, as we noted, in the rest of this paper we will take N “ 50 as the pivot point to match the

model to the data.

Thirdly, we impose a constraint on m,M, g, α from the power in scalar fluctuations:

δρ

ρ
“

1

2π

H2

9φ
“

1

2π
?

3M3
pl

V 3{2

V 1
“

g2Mφ3

8π
?

3mM3
pl

, (3.20)

where we assume, following the above discussion, that the first term in (3.11) dominates the mag-

nitude of V . Using Eqs. (3.17) and (3.20), and that δρ{ρ « 5 ˆ 10´5, we find two constraints on

m,M, g, α. We can express any two in terms of the other two. For convenience, we will use these

equations to express m and M in terms of the two remaining parameters g and α, which we will

treat as independent parameters, at N “ 50. We find

m

Mpl

»
α2g

28
,

M

Mpl

»
8 ¨ 10´5

αg
, (3.21)

where we substituted the first equation into (3.20) to obtain the second one. We note that the

parameters g and α cannot be completely arbitrary. In addition to g ă 1 and α ď 1, their choice

must be made to maintain M{MPl ď 1, and ensure that the approximation where we neglected µ
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and λ1-dependent terms is self-consistent, even when we include quantum corrections. We will see

that those requirements yield non-trivial restrictions on g and α.

Finally, the tensor-scalar ratio r is given by:

r “ 6M2
pl

ˆ

V 1

V

˙2

“ 6M2
pl

16m4

g4φ6
“

3m

2gMp

1

N3{2
. (3.22)

Using (3.17), we find

r “
3α2

8N2
» 1.5ˆ 10´4α2 , (3.23)

well below the current bounds, and likely unobservable, given α ă 1. Thus we see that if, e.g, r

were observed, and if nS „ 0.95, our model would be challenged by data.

Using the above constraints, we wish to display more explicitly the region in the space of

parameters m,M, g, α that satisfy them. First, the scale of the potential, and therefore the lower

limit (3.14) on the cutoff M is

V 1{4
»
?
mM »

?
α ˆ 10´3MplM{

?
4π . (3.24)

As we noted above, we will impose the requirement that all the fields remain sub-Planckian, in

addition to the dimensional parameters that appear in the relevant operators of the theory. The field

range for σ is „
?

2M so we demand M ă Mpl as well as α ă 1. This is what helps keep the

tensor power low. Furthermore, in principle this might have helped with keeping quantum gravity

effects under control and allowing inflation and reheating to take place in the same effective field

theory. As have seen and will see, these conditions are sufficient for neither. We have already

argued that reheating takes place through a phase transition during which energies and momenta

of order the cutoff become activated. We will show below that the Stewart model will be at best
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barely sub-Planckian, so that a large number of irrelevant operators must have small coefficients,

even if they appear as Planck-suppressed. Note also that when it is helpful to gain a conceptual

handle on the constraints of our theory, we will impose a field space “democracy” with σ, φM up

to Op1q factors.

With these in mind, we find that the second equation in (3.21) combined with M{Mpl ă 1

yields a bound

g Á
8 ¨ 10´5

α
. (3.25)

It is worth noting that this bound makes µ{m ă 1 consistent. This is needed for φ to be a good

candidate for the inflaton with the fluctuations of σ suppressed during inflation. In particular if we

impose µ ă µ˚, so that the plateau lasts for at least a Planck scale in range before quantum gravity

cuts it off, then combining µ˚ “
?

12 Mm2

gM2
pl

with the first of Eqs. (3.21) and using inequality (3.25)

gives µ˚ » 3.4ˆ 10´7αMpl, and so, using (3.25),

µ

m
ă 0.1 . (3.26)

Consistency of our EFT also demands that m ! M „ gM (using Eq. (3.14)). Combining

the two Eqs. (3.21) we find m{M “ 500α3g2, and thus m{gM “ 500α3g. We already noted

however that m{gM „ m{M ! 1, and will recheck it in the next section that requiring radiative

stability of the marginal operators in the theory yields an independent bound g ď 1.6ˆ10´3, which

guarantees m{gM ă 1 as well as m !M .

In the end there is a nontrivial subspace of the parameters m,M, g, α satisfying our bounds. In

Fig. 1 we have plotted a region in the space of g, α, which as we noted we treat as independent

parameters. For completeness we have also included the bound g ď 1.6 ˆ 10´3, which we will

derive in the next section. Suppressing corrections to make the theory radiatively stable favors
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weaker couplings, g ă 1. However, as seen from Eq. (3.25), g cannot be arbitrarily small as long

as α ă 1. Decreasing g mandates increasing M and/or α to keep δρ{ρ fixed. Conversely, lowering

α and/orM{Mpl puts pressure on the perturbativity of g. The theory therefore does not really work

at arbitrarily low scales, as is clear from Fig. 1. Nonetheless, there is still a nontrivial window here;

in particular, for e.g. α,M{Mpl „ 0.1, we can have g „ 0.001, and so on.

g

10
α

-2

-1

-5

-4

-3

-1-2-3-4-5log 

10
log 

Figure 3.1: Constraints on the inflation parameters g, α due to data and the naturalness of marginal
operators. The inclined line corresponds to the bound of Eq. (3.25), which follows from M{Mpl ď 1. The
vertical coordinate axis is the bound α ď 1. The horizontal bound comes from g ď 1.6 ˆ 10´3 which
follows from imposing naturalness of quartic operators (see §2.3.2). The green shaded region is the regime
for which the Stewart model is consistent with all of these bounds. Note that this figure ignores the bounds
from naturalness of the mass terms, which are problematic for the Stewart model (3.5). The reason we
are ignoring these bounds is because ultimately they may be addressed by embedding (3.5) in dual form
monodromy, as we will outline in §3

We forewarn the reader that in the plots in Fig. 1 we have ignored the “elephant in the room”

of the Stewart model (3.5): the power law divergent contributions to the relevant operators, specifi-

cally the mass terms. As we will argue, these require additional fine tunings, unless a mechanism is

found which cancels them. Our goal in this paper is to indeed provide an example of such a mech-

anism, an embedding of (3.5) into a theory of dual forms, so that φ, σ are pseudoscalars exhibiting
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axion monodromy. However even after the cancellation, the bounds discussed here remain. In

particular we stress that the EFT of hybrid inflation can be at best barely sub-Planckian in order to

be both technically natural and consistent with data. The specter of quantum gravity still haunts

hybrid inflation.

The reader may be disturbed that M may well be the UV cutoff of many string compactifica-

tions. As we have discussed above and will expand on in more detail in §3, this does not place the

theory outside of the bounds of effective field theory below said cutoff.

3.2.3 Quantum Stability

In this section we discuss the degree to which the Stewart model (3.5) can be rendered technically

natural. The model will pick up corrections that include all of the terms in (3.7). If we take the

Stewart model as the tree-level action, the corrections will be generated through loops by the cou-

pling g2. We will thus assume that the additional relevant and marginal couplings in (3.7) that are

absent from (3.5) will be of the order of these loop corrections. The field theory corrections to

irrelevant terms are also dangerous. For these terms, we will note that quantum gravity is expected

to generate Planck-suppressed operators with order Op1q coefficients in a theory of quantum grav-

ity, and we will find that these dominate the corrections generated by QFT loops. We will then

show that despite the sub-Planckian field ranges of the Stewart model, a large but finite number

of irrelevant operators must have small coefficients in order for the Stewart model to be a good

description of the dynamics, so that an additional mechanism or fine tuning is needed to suppress

irrelevant operators. In §3, we will show that axion monodromy can provide it, as it does for large

field inflation [12].

The relevant terms in the Stewart model comprise the linear term 9m2Mσ, which does not
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get corrected, as we have discussed, and the scalar masses m,µ. As with the Standard Model,

the masses suffer from a potential hierarchy problem. We can realistically expect field-theoretic

corrections to give δm2, δµ2 „
g2

16π2M2 where M is the cutoff, under the generous assumption

that φ, σ couple with strength g to ultraviolet degrees of freedom. This encodes the well-known

ultraviolet sensitivity of the masses. There is also a weaker version of the hierarchy problem, which

is that the loops of the heavy field σ can correct the light mass of φ by large terms.

In general, we can tame these corrections to a certain degree if we assume that a softly broken

shift symmetry holds up to the fundamental scale in the limit g Ñ 0. This of course is technical

naturalness. Current lore is that nonperturbative quantum gravity effects spoil such symmetries.6

An open question is whether these effects include relevant operators. As case studies of related

Euclidean wormhole effects on the Peccei-Quinn symmetry of axion potentials show, the complete

resolution of these questions remains open [39], [40] (see also [41], [42]). All we will do for this

paper is merely parameterize the problem, leaving the issue of the existence of softly broken sym-

metries conceptually unresolved. We will instead argue in §3 that gauge symmetries of the dual

formulation in terms of massive 4-form field strengths may accomplish the same goal.

3.2.3 Scalar Masses

Mass terms for φ, σ at the cutoff M would clearly invalidate our EFT, pushing all dynamics to the

cutoff. Furthermore, if we estimate M „ gM , we have shown that constraints from data imply

that m{M „ 500α3g. If we impose the constraints on g À 10´3 from technical naturalness, and

demand that inflation occur over a sub-Planckian field range, then some mechanism must keep m

well below the cutoff. Furthermore, we must also impose µ ! m. If we require that the second

6Perturbative quantum gravity effects preserve the shift symmetry of scalars: see [2], [12].
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derivative of µ2φ2 be subdominant to the second derivative of the second term in (3.11), then, if

m,µ „M, we find that this condition combined with (3.17) implies that

M "

´ µ

m

¯

ˆ

c

4N

3
Mpl „

´ µ

m

¯

ˆ 8Mpl (3.27)

so that a sub-Planckian field range for σ requires µ ă 0.12m.

Now let us assume for a moment that the mass m is pushed up to m „ gM{4π „ g2M{4π by

UV corrections. Using Eq. (3.17) we find gM{Mpl “ α2π{
?
N . Combining this with the second

equation in (3.21), we can solve for α to find α „ 0.06. Looking at Figure 1, there is still a small

range of g for which this barely sub-Planckian theory is viable, in the far left corner of the shaded

region.

Note that M „ gM is at most a lower bound on the scale of new physics. In practice, new

physics could appear up to the Planck scale, and thus push the technically natural scale for m

farther up still. In this case, the above argument shows that α is pushed up towards 1. As with

the Higgs mass, there is no clear barrier to new physics appearing up to the fundamental Planck

scale, be this the 4d or 10d Planck scale. If M is close to the Planck scale, gM À 1015 GeV

(using the constraints on g we will discuss below), so a higher fundamental scale indicates a more

serious hierarchy problem beyond the existing need for a little hierarchy between µ ,m. This little

hierarchy in itself is still a problem, albeit possibly a weaker one.

In the end, controlling µ ,m in the face of QFT and quantum gravity corrections requires un-

natural fine-tunings or an explicit mechanism. In §3 we discuss one such mechanism, axion mon-

odromy. This promotes the scalar masses to gauge field masses which are much less sensitive to

UV corrections, whether from QFT or quantum gravity [16] (this is not to say that the mass is

completely unconstrained [16], [29].) If the cutoff scale contributions „ gM{4π to the masses
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m,µ are prohibited by a mechanism such as monodromy, the theory could be natural, UV safe and

consistent with the data. We will show explicitly how this happens in hybrid monodromy in §3.

3.2.3 Marginal Couplings

If we begin with the Stewart model (3.5) at tree level, we will induce not just mass terms but

marginal quartic couplings 1
4
λσ4 and 1

4
λ1φ4. The induced couplings λ, λ1 will be of order g4 (times

some factors we will discuss momentarily). If we write down our EFT with couplings of this order

from the outset, these couplings are technically natural. If we choose g sufficiently small, we will

see that these couplings will remain subdominant and (3.5) is a good approximation to a model

that is stable to quantum corrections in the regime that generates phenomenologically acceptable

epochs of inflation and reheating. Thus, the marginal couplings by themselves are under control,

in principle - if we were to ignore the relevant operators, the marginal couplings could be natural.

We estimate the size of the quantum corrections following the discussion of [34]. The quantum

corrections to the quartic terms will include the term

Lradiative Q
g4

64π2
ln

ˆ

g2φ2

M̃2

˙

φ4 . (3.28)

This set of terms arises from summing together the 1-PI irreducible diagrams renormalizing φ4

terms due to the virtual σ modes. Here M̃ is the subtraction scale, which is in principle arbitrary.

For example, it can be taken to be the mass scale of the σ field during inflation, which is integrated

out to generate the effective φ theory; or it might be the cutoff of the 2-field hybrid model (since,

practically, we do not expect that they are far apart).

The log will give the largest contribution if the argument is small. This means, we will get the
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strongest correction to the scalar field potential for the smallest values of φ, σ during inflation –

i.e., near the exit. Since we already noted that the EFT during inflation will fail at the exit, needing

a different EFT to describe reheating, we will here only require these corrections to remain under

control during the early stages of inflation. To illustrate this quantitatively, let us take g of order

10´3 and α „ 0.1, with the cutoff M „ 10´2Mpl. In this case the log is of order unity; the loop

factor 64π2 in the numerator gives a suppression factor of order 10´3, so this gives a correction to

φ4, σ4 of order 10´3g4. Note that these values of g, α are within the allowed region in Fig. 1.

The strongest constraint on the φ4 term is that its second derivative be subleading compared to

the second derivative of the first two terms in (3.11). As we discussed previously, this means that

the inflection point induced by the quartic corrections to (3.11) is far enough to allow the plateau

to yield „ 50 efolds of inflation. In our numerical example, lnpg2φ2{M̃2q „ 1, and we find that

this condition combined with Eqs. (3.17) gives

g À 1.6ˆ 10´3 . (3.29)

This is the bound we incorporated preemptively in Fig. 1. We see that this leaves a small region

of parameter space that is consistent with both naturalness of the quartic couplings, and with sub-

Planckian expectation values for φ, σ. As noted, these scalars cannot be hugely sub-Planckian:

in this range one or both are within an order of magnitude of Mpl. Allowing for both scalars to

have smaller ranges would require larger values of g. In turn this would require either finely tuned

small quartic couplings for φ or some additional mechanism to suppress the self-coupling at all

orders in the loop expansion. We of course assume that the theory is natural here, without large

cancellations between regularized and bare terms in the loop expansion.

Note that in [12], we have discussed a very similar-looking problem with single field inflation,
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namely radiative corrections to the inflaton potential V . The point there was that the QFT cor-

rections to V pφq are automatically natural since they are of the form F pηqV , where F pηq is an

analytic function of η „ M2
Pl

V
B2
φV at η “ 0, with Op1q expansion parameters. Thus during infla-

tion, if the potential V is chosen to be flat, η ! 1 and loop corrections will remain small. In this

model the new issue arises from the presence of the new field σ, and its new couplings to φ. The

Stewart model requires the biquadratic potential φ2σ2 to dominate the φ2, σ4 terms. The bound

(3.29) ensures precisely that.

Yet as we just stressed in the previous subsection, without some additional mechanism(s) to

suppress the masses, and preserve a small hierarchy between them, it is not even possible to keep

the field ranges below the Planck scale without fine tuning. And even if we tune the field range for

M , we still need α ă 0.12, which in turn implies g „ 10´3, as designated in Figure 1. This shows

just how fine tuned the theory must be – baring hierarchy protection mechanisms. One might hope

that selecting a special scale in the log in Eq. (3.28), which makes the log very small might help

[33], however this would only make sense if the UV corrections are tamed. Thus our discussion

showcases just how desperately the model needs a mechanism in the UV to protect it from large

quantum corrections to the masses.

3.2.3 Irrelevant Couplings

Finally, let us consider the irrelevant operators. In addition to being a potential problem in QFT,

these are also a portal for the effects of quantum gravity to come in. Let us first note that the latter

are far more dangerous. Basic dimensional considerations indicate that integrating out σ during
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inflation will give corrections of the form7

δLp „
g4`2pφ4`2p

M2p
(3.30)

Taking the lower bound M „ gM and applying the second equation in (3.21), we find

δLp „ g4

ˆ

gα

8ˆ 10´5

˙2p
φ4`2p

M2p
pl

(3.31)

For g „ 10´3, α „ 0.1, and noting that we are ignoring phase space and symmetry factors,

this is generally smaller by a factor of g4 as compared to Planck-suppressed operators with Op1q

coefficients. We will therefore focus on the latter but note that in general QFT contributions will

also need to be suppressed.

Estimates such as the one above can be overly pessimistic. We know that in QFT, a series

of operators which individually look dangerous, can sum up in the effective action such that the

relevant effective potential remains flat. Essentially this can happen when the loop expansion is an

alternating series, with operators of the form φp`4 having signs p´1qp. As a result the sum total

of all the operators which should be included in the EFT is merely a log correction to the leading

term, as discussed in the previous section (see [12]). Thus the irrelevant operators then need not

be a show-stopper, and indeed flattened potentials such as those discussed in [11], [17] depend on

them.

However in the presence of the extra field σ, and with quantum gravity corrections having no

known pattern, we will be maximally conservative, and instead outline the conditions which guar-

antee that operators irrelevant in the RG sense are also irrelevant in the sense of not contributing

7Aside from the overall prefactor„ 1{16π2 this term displays correct normalizations as per NDA. We will however
ignore these factors in this section, since our main purpose here is to outline the issue. Such additional numerical
factors may in fact be helpful.
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during inflation. To this end, we will focus on the potentially the worst-behaved terms which are

higher powers of the lighter field φ, normalized for convenience by the Planck scale Mpl. This

is merely a matter of choice; a different normalization would yield apparently different numerical

statements, but the contents would be exactly the same. So consider a coupling of the form

δV “
δp

pp` 4q!

φp`4

Mp
pl

. (3.32)

If such corrections are too large, they behave as the inflaton mass term, shortening the width of the

hybrid plateau of (3.10). More specifically, the magnitude as well as derivatives of such operators

during inflation need to be smaller than the value and derivatives respectively of the tree-level

potential in Eq. (3.11). Focusing on the second derivative, we find that

δp ! pp` 2q!α´p ˆ 1.2ˆ 10´13 . (3.33)

Thus for α „ 0.1 we still need a mechanism which suppresses a finite set of irrelevant operators.

This mechanism must suppress both QFT and quantum gravity corrections. To this end, a sub-

Planckian axion, with or without monodromy, should be effective. We stress – as we noted above

– that if there are cancellations between adjacent irrelevant operators in the EFT expansion of

the effective potential, as in the case of large field models or Coleman-Weinberg theories where

irrelevant operators comprise an alternating series, that could help too. Our analysis of individual

operators nevertheless shows that this may be easier to realize with sub-Planckian field ranges and

parameters. As we have stressed all along, a mechanism which subverts the UV sensitivity of the

masses is beneficial, since it will also help with the irrelevant operators.

The upshot is that even though our model has sub-Planckian field ranges, the irrelevant opera-

tors are not automatically guaranteed to be parametrically suppressed relative to the Planck scale.
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The Planck-suppressed irrelevant operators of sufficiently low dimension might in fact interfere

with slow-roll inflation unless their dimensionless couplings are kept sufficiently small.

3.3 A Pseudoscalar Realization and its 4-Form Dual

Small field hybrid models of inflation, as exemplified by the Stewart model, face two serious issues:

• The scalar masses are UV sensitive within the confines of QFT;

• There are Planck-suppressed irrelevant operators which require very small dimensionless

coefficients.

As we will review and develop here, both of these problems may be addressed by considering φ, σ

as pseudoscalar axions dual to massive 4-form field strengths [16]. The masses µ,m are dual to

the gauge theory masses, which are not UV sensitive; while corrections to the scalar potential are

suppressed by additional powers of the ratio of the masses to the cutoff,m{M, µ{M. These effects

follow from the gauge symmetries of the model. In the duality frame described by the 4-form field

strengths, these are a pair of nonlinearly realized Up1q gauge symmetries, with Stückelberg fields

restoring the gauge symmetry of the mass term. In the dual scalar theory the gauge group is discrete

Z ˆ Z, with each factor acting on a scalar and on a discrete variable. These discrete variables are

dual to 4-form flux, labelling distinct branches of a multivalued potential [8], [12], [16], and act as

a sort of discrete Stückelberg field.

The symmetries are obscured on the scalar side by their nonlinear realization combined with

gauge fixing, which follows from picking a specific branch where the scalar longitudinal modes of

the massive 4-form field strengths reside. Nevertheless the gauge redundancies remain operational

in the full phase space of the theory, ensuring technical naturalness and protecting the scalar dy-

namics from the perils of quantum gravity. In the end, our goal here is to rewrite the Stewart model
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as an example of a simple gauge fixed EFT of massive 4-forms, and demonstrate how the ills of

the scalar theory may be healed by gauge symmetries.

We find that for scalar theories satisfying the constraints outlined in §2.2, with sub-Planckian

field ranges, the dual theory appears to be very strongly coupled: dimensionless coefficients of

the leading irrelevant operators, written as powers of the field strength, are pushed to be large.

The duality map yields an NDA-like presentation of the pseudoscalar action in terms of which

the functions defining the potential appear to have large coefficients in a Taylor series expansion.

These apparent large couplings are the price we pay for our mechanism for controlling m,µ, while

maintaining sub-Planckian field ranges in the face of constraints given by the data.

However, these coefficients may not be the proper measure of couplings, governing the scat-

tering amplitudes of asymptotic states. Absent mass terms, the 4-forms are non-propagating; with

masses, the propagating modes are the longitudinal ones, which come multiplied by powers of the

gauge field mass. Thus, the physical asymptotic states have couplings that are suppressed by ratios

like µ{M,m{M. Wavefunction renormalizations (aka “seizing” [43]) can push down the effective

coupling further. The irrelevant operators induced by the leading “large” coupling are natural in

the naı̈ve sense – that is, they have order OpÀ 1q dimensionless coefficients.

A complete exploration of naturalness and NDA for massive p-form gauge fields has not been

carried out and we will not do so here. A UV completion of our 4-form theory, would be an impor-

tant way to explore the range of validity of our EFT. We will outline the issues that we encounter

and point the way to possible resolutions.
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3.3.1 A word on the Duality

The formalism of axion monodromy as a theory of inflation has been studied extensively. The pos-

sible UV completion as a string theory and apparent simplicity of the effective field theory makes

this theory an attractive candidate to explain the dynamics of inflation. In this note, we highlight

the mechanism that allow for a duality between a theory of a massive three form with a shift sym-

metry and a theory of a massive scalar field exhibiting a shift symmetry.

We start by considering the Lagrangian of a massless pseudo scalar field with a shift symmetry:

L “ f 2
pBµφq

2 (3.34)

We want to create a mass gap while maintaining the shift symmetry and with- out introducing any

additional degrees of freedom.

In this note we show that a theory of a massive three form with a shift symmetry is dual to a theory

of a massive scalar field with a shift symmetry. The number of degrees of freedom is equal to one

in both theories.

Let us start by considering a dynamical two-form Bµν . (In this dual picture, the pseudo scalar φ is

replaced by a two-form Bµν ). The Lagrangian for B is:

L “ hµνλh
µνλ (3.35)

where hµνλ “ BrµBνλs This theory exhibits a global shift symmetry:

Bµν Ñ Bµν ` Ωµν (3.36)
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Now we want to promote that global shift symmetry to a gauge symmetry and create a mass

gap for B without introducing additional degrees of freedom:

First let us review the dynamics of a theory of a four-form. The Lagrangian for such a theory

is:

L “ FµνλρF
µνλρ (3.37)

where

Fµνρ “ BrµAνλρs (3.38)

F is a totally antisymmetric tensor in 4 dimensions. Hence it is totally determined :

Fµνλρ “ qpxaqεµνλρ (3.39)

The equation of motion for F is:

B
µFµνλρ “ 0 ùñ qpxaq “ cst (3.40)

This is a theory of constant with one propagating degree of freedom. Now, let us consider the

following Lagrangian, where Aµνλ couples to the external conserved current Jµνλ:

L “ FµνλρF
µνλρ

` AµνλJ
µνλ (3.41)

This Lagrangian is invariant under the gauge transformation:

Aµνρ Ñ Aµνρ ` drµΩνρs (3.42)
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It is worth noting that A contains no propagating degrees of freedom because of the gauge freedom.

By coupling the three-form A to the two-form B we effectively gauge the shift symmetry:

L “ ´ 1

48
F 2
µνλρ `

m2

12
pAµνλ ´ hµνλq

2 (3.43)

We have successfully created a mass gap for B while maintaining the shift symmetry and

without introducing any additional degree of freedom.

We now wish to promote hµλρ as a fundamental three-form by imposing the Bianchi identity:

εµνλρBrµhνλρs “ 0 (3.44)

The Lagrangian for our theory becomes:

L “ ´ 1

48
F 2
µνλρ `

m2

12
pAµνλ´µνλq

2
`
m

6
φεµνλρBµhνλρ (3.45)

where the pseudo scalar φ appears as a Lagrange multiplier.

In the next part of that note, we wish to show how this theory is dual to a theory of a massive scalar

field with a shift symmetry.

First, let us integrate out h :

L “ ´ 1

48
F 2
µνλρ `

1

2
pBφq2 `

m

24
φεµνλρFµνλρ (3.46)

We then enforce Fµνλρ “ 4BrµAνλρs by introducing the Lagrange multiplier Q:

L “ ´ 1

48
F 2
µνλρ `

1

2
pBρq2 `

mφ`Q

24
εµνλρFµνλρ ´

Q

6
εµνλρB

µAνλρ (3.47)
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The equation of motion for F give us:

Fµνλρ “ pmφ`Qqεµνλρ (3.48)

We can integrate out F and we get:

L “ 1

2
pBφq2 ´

1

2
pmφ`Qq2 `

1

6
εµνλρpB

µQqAνλρ (3.49)

This is a theory of a massive scalar field with a shift symmetry:

φÑ φ` φ0

QÑ Q´
φ0

µ

(3.50)

3.3.2 Single Field Monodromy Inflation

Before we dive into the details of two fields hybrid inflationary theory, let’s first look into the

dynamics of a single field monodromy theory. We start with the following Lagrangian:

S “ ´ 1

48

ż

FµνρλF
µνρλ (3.51)

where F is Fµνρλ “ BrµAνρλs.

Because F is totally anti-symmetric, F can only be the levi-civita tensor:

Fµνρλ “ qpxaqεµνρλ (3.52)

The equation of motion gives us:
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DµFµνρλ “ 0 ùñ qpxaq “ cst (3.53)

We can see that a theory of a dynamical four form is nothing but a theory of a constant.

Now, let us couple this four form to a dynamical scalar field φ as follows:

S “
ż

d4x
?
g

ˆ

M2
p

2
R ´

1

2
p∇φq2 ´ 1

48
F 2
µνλσ `

µφ

24

εµνλσ
?
g
Fµνλσ ` ...

˙

(3.54)

This Lagrangian exhibits a shift symmetry, which is desired in order to control the flatness of

the potential in the case of inflationary theories:

φÑ φ` c

LÑ L` cµεµνρλFµνρλ{24

(3.55)

Although the Lagrangian is shifted by cµεµνρλFµνρλ{24, this term is a total derivative and will

be absorbed by the boundary conditions.

Next, we can look at the tree level corrections to the propagator and we can see explicitly that

this theory is equivalent to a theory of a propagating massive scalar field φ:

1

p2
`

1

p2
µ2 1

p2
`

1

p2
µ2 1

p2
µ2 1

p2
` ... “

1

p2 ´ µ2
(3.56)

More generally, we can show that a theory of a dynamical four-form coupled to a scalar field

exhibiting a shift symmetry is dual to a theory of a dynamical massive scalar field also exhibiting

a shift symmetry (see section 3.4).
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L “ ´ 1

48
F 2
µνλσ `

m2

12
pAµνλ ´ hµνλq

2
`
m

6
φεµνλρBµhνλρ (3.57)

L “ 1

2
pBφq2 ´

1

2
pmφ`Qq2 `

1

6
εµνλσpB

µQqAνλσ (3.58)

In models of inflation, although we want to control the flatness of the potential by having a shift

symmetry, we also want to break that shift symmetry, as inflation eventually has to come to an end.

The shift symmetry is broken by choosing a value for the mass of our scalar field. In other words,

we choose a path and we realize a monodromy (from the greek mono:single , dromy:path ).

3.3.3 Dual of a Two Field Hybrid Model

We now turn to illustrating how to embed the family of two interacting scalar field theories that

can support hybrid inflation, and contain the Stewart model as a limit into a dual theory of two

interacting 4-form field strengths. In this case, in addition to the complications arising due to

nonlinear terms, the model also includes a term linear in σ. In principle, we could try to just shift

the field until the linear term is absorbed away. However, σ „ 0 gives the “instantaneous” vacuum

(in the Born-Oppenheimer sense) in the σ sector at the beginning of inflation. As we noted above,

in our version of hybrid inflation, the inflaton (φ) mass goes up to the cutoff at the end of inflation;

while the σ mass drops below the cutoff as φ Ñ 0, as seen in Eq. (3.13). Since we regard the

pseudoscalar-4-form duality as an IR duality, with field and operator dimensions computed from

the IR fixed point, we must carefully specify the EFT and thus the scalar field value about which

we perform the dualization.

In this section we will compute the dual form theory following these steps:

• We will establish the dual correspondence of the canonical variables on the two sides, using
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NDA-normalized variables; in order to connect σ and φ with their dual forms, we invoke the

sector of the theory just at the end of inflation, but before σ relaxes to the true vacuum; here

both scalars are light.

• We will show that the scalar kinetic terms dualize to mass terms for the dual forms.

• We will then identify the NDA-normalized non-linear couplings.

• We will establish the mapping between the operators on the two dual sides in the weak

coupling; we will identify the lower bound on the cutoff of the theory in terms of the di-

mensional parameters in the EFT. By weak coupling we mean that dimensionless couplings

for operators normalized by the cutoff are small, and the theory is in some sense close to

Gaussian.

We are limiting this section to weak coupling for illustrative purposes. In §3.3 we will find that

the bounds from naturalness and from observations, which we explored on the scalar side, appear

to imply that the dual form theory must be in strong coupling during inflation. We will discuss the

possible implications of this observation there. The main result here will be a somewhat telegraphic

walk through the duality transformation, skipping some of the explicit steps above; the reader can

however readily fill in the missing steps of the complete analysis.

Let us begin by establishing the canonical transformation between the scalar and 4-form pic-

tures, setting up the ‘dictionary’ for transitioning from one side to the other. To simplify our

formulae, we will use the dimensionless zero-form duals of the 4-forms:

F “ ´
1

4!M2
˚

εµνλσF
µνλσ , G “ ´

1

4!M2
˚

εµνλσG
µνλσ , (3.59)

Here F “ dA, G “ dB locally; globally, the values A,B in different charts of the cover of
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spacetime may be related by 2-form gauge transformations A Ñ A ´ dΛA, B Ñ B ´ dΛB in the

overlap between the charts.

The scale M˚ in (3.59), included for dimensional reasons here, is the strong coupling of the

scalar EFT (3.7), as per NDA. We will link it to the theory’s dimensional parameters below. Note

that since we are interested in dualizing a model of hybrid inflation for which higher-derivative

terms do not contribute to the dynamics, we restrict our attention to only the terms which are

quadratic in derivatives. Note that we will ignore terms of higher than quadratic order in φ, σ. In

standard slow roll inflation, these terms are kept small by the dynamics [17]. As in that work there

could be other regimes of the theory in which higher-derivative terms could also assist a slow-roll

phase of the theory. A hybrid model with these higher-derivative terms activated would be an

interesting topic for future work.

We expect that the dual scalar theory in general takes the form

L “ 1

2
Zp µφ

M2
˚

,
mσ

M2
˚

qpBφq2 `
1

2
Ẑp µφ

M2
˚

,
mσ

M2
˚

qpBσq2 ´M4
˚ Vp

µφ

M2
˚

,
mσ

M2
˚

q . (3.60)

As in the single-field case, we introduce the axions ϕ and χ, which are related to the hybrid inflation

scalars φ and σ via:

µφ “ µϕ`Q , mσ “ mχ` P . (3.61)

This is to say that the discrete gauge symmetry Z ˆ Z shifts Q,ϕ and P, χ so that φ, σ remain

unchanged. The compact scalars ϕ, χ are the duals to the longitudinal modes of the full massive

form system: more precisely dϕ, dχ are dual to the 3-form Stückelberg field strengths. They can

be absorbed into the local fluctuations of the massive 3-form potential via gauge fixing.

The functional form (3.60), in which non-derivative couplings of φ, σ come multiplied by fac-

tors of µ,m, and normalized by M˚, is based on our experience with the single-field case. In
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the weak coupling limit we study here, this form is justified in that it produces a natural theory of

4-forms, in the sense of NDA. It should be possible to justify this combination of mass parameters

and scalar field values entirely within the scalar frame by utilizing discrete gauge invariances of

the model, with the explicit discrete Stückelberg fields P,Q, but we leave this for future work.

To formally dualize the scalar theory, we have found it useful to employ the dimensionless

variables

Φ “
µϕ`Q

M2
˚

, X “
mχ` P

M2
˚

, (3.62)

and then rewrite the potential in (3.60) in terms of them. We call these “NDA-normalized vari-

ables” as the potential V and the kinetic functions Z , Ẑ , can be written in terms of them. Further-

more, imagine for the moment that we can approximate Z, Ẑ » 1. Adding and subtracting the

Lagrange multiplier terms ΦF` XG, the “chimera” Lagrangian that ensues is

L “ 1

2
pBϕq2`

1

2
pBχq2`

µϕ

4!
εµνλσF

µνλσ
`
mχ

4!
εµνλσG

µνλσ
´M4

˚

´

VpΦ,X q´Φ F´X G
¯

, (3.63)

which, after integrating the scalar-4-form bilinears by parts, becomes

L “ 1

2
pBϕq2 `

1

2
pBχq2 ´

µ

3!
εµνλσ BµϕA

νλσ
`
m

3!
εµνλσ BµχB

νλσ
´M4

˚

´

VpΦ,X q ´ Φ F´ X G
¯

.

(3.64)

The first four terms dualize to mass terms for A, B: we can complete the squares for the scalar

derivatives and integrate them out, with the remaining terms being precisely µ2A2 and m2B2. This

part is straightforward because this contribution to the Lagrangian is bilinear at weak coupling.

What remains is to dualize the effective potential, and replace the variables Φ and X with F and

G defined in (3.59). We can treat the last four terms in (3.64) independently from the rest because

Φ, are combinations of the discrete Stückelberg fields Q,P , and so can be varied independently
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of ϕ, σ. The 4-form dual of the final term in brackets in (3.64) is the Legendre transform of the

effective potential. In practice, we integrate out the fields Φ,X to replace them with F, G, which

means inverting [44], [45]

F “ BΦV , G “ BXV , (3.65)

and substituting Φ “ ΦpF, Gq, X “ X pF, Gq into K “ Φ F ` X G ´ VpΦ,X q. In doing this, we

bear in mind that during inflation the scalar σ is much heavier than φ – in fact it may be heavier

than the cutoff M „ gM . Since it is changing very slowly, with initial value σ » 0, the field σ

remains displaced from its true minimum at
?

2M for a period after inflation ends, when σ is much

lighter than during inflation. Thus we can pick the transient value of σ » 0 as a “pivot” to dualize

the scalar theory at it. This means that we should dualize σ around zero during inflation and right

after inflation, and around
?

2M at the very late stages after inflation when much of reheating takes

place, when σ oscillates around the true minimum. The region near σ “
?

2M , about which the

theory reheats, and the “plateau” at σ „ 0 describing inflation and its end prior to reheating, are

different phases; they are best treated as distinct EFTs as we already explained in §2. In the latter,

σ remains heavier than φ. This is true even for small φ when we choose m " µ, as we do if we

wish φ to be the inflaton. Near σ “
?

2M , φ becomes the heavy field with a mass at or near the

cutoff. These phases must in general be connected inside a UV completion.

We compute the duality transformation for the case that V is has the functional form (3.7): in

terms of Φ, X , this is:

V “ 1

2
Φ2
`

1

2

`

X ´ γ
˘2
`
ḡ2

4
Φ2X 2

`
λ̄

4

´

X 2
´ δ2

¯2

`
λ̄1

4
Φ4
` . . . , (3.66)
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where the rescaled couplings are:

γ “
?

2
mM

M2
˚

, δ “
mM̃

M2
˚

, λ̄ “ λ
`M˚

m

˘4
, ḡ2

“ g2
`M2

˚

mµ

˘2
, λ̄1 “ λ1

`M˚

µ

˘4
. (3.67)

These are the couplings that appear in the 4-form dual; we have not written out the operators that

would be irrelevant in the scalar frame. We expect that a proper formulation of NDA for this theory

will involve potentials and coefficients of pφq2, pσq2 that are functions of Φ, X , ḡ2{16π2, λ{16π2,

λ1{16π2. The appearance of couplings with factors of 1{16π2 generally arises in effective actions

due to phase space factors in loop integrals [37].

In this section, to provide an explicit example, we will work in the approximation λ̄, δ, λ̄1 !2 1,

and drop terms proportional to ,1 , δ. This limit is consistent with the functional form of the Stewart

model. Note that this “weak coupling” assumption is stronger than the assumption that λ, δ, λ1 !

g21; as we will see when we impose consistency with the constraints of §2, data pushes ḡ2 to be

large. Yet it can remain the domain of strong coupling below the cutoff of the NDA-normalized

action. We will retain only the lowest order irrelevant operators on the dual form side, as they are

duals of the marginal operators on the scalar side. We will neglect writing out explicitly the higher

dimension irrelevant operators here; we will however need to discuss them in §3.3, when we go to

comparatively large φ in order to describe the epoch of inflation that imprints on the CMB.

To solve Eqs. (3.65), we solve the nonlinear equations one at a time, and perform the expansion

of the algebraic inversions of (3.65) in Taylor series in the couplings (3.67). This means, formally,

that we take the “instantaneous vacuum” to be controlled by the root of the nonlinear equations

(which, to any finite order in couplings, are polynomials), dominated by the linear terms. The solu-

tions remain perturbative in the coupling constants, and thus consistent with the EFT description.
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Using (3.66) in (3.65), inverting, and expanding in the couplings, we find:

Φ “ F
´

1´
ḡ2

2
X 2

¯

`Opλ̄, λ̄1, ḡ4
q

X “

´

G` γ
¯´

1´
ḡ2

2
Φ2

¯

`Opλ̄, λ̄1, ḡ4
q . (3.68)

Since we want solutions which are perturbative in the coupling, we can use each of these equations

to Op1q to replace the terms to Opḡ2q in the other, and find the correct answer to the order ḡ2.

Thus, the inversion formulas are

Φ “ F
´

1´
ḡ2

2

`

G` γ
˘2
¯

`Opλ̄, λ̄1, ḡ4
q ,

X “

´

G` γ
¯´

1´
ḡ2

2
F2
¯

`Opλ̄, λ̄1, ḡ4
q .

Substituting these into K “ Φ F` X G´ VpΦ,X q and using (3.66) finally yields

K “
1

2
F2
`

1

2

´

G` γ
¯2

´
1

2
γ2
´
ḡ2

4
F2
´

G` γ
¯2

`Opλ̄, λ̄1, ḡ4
q . (3.69)

Using (3.59), the total Lagrangian in the dual variables and at weak coupling is therefore

L “M4
˚

!1

2
F2
`

1

2

´

G`γ
¯2

´
1

2
γ2
´
ḡ2

4
F2
´

G`γ
¯2)

`
µ2

12
A2
νλσ`

m2

12
B2
νλσ`Opλ̄, λ̄1, ḡ4

q . (3.70)

where again F “ dA, and G “ dB, and F, G are defined in terms of F,G in Eqs. (3.59).

Note that from the first of Eqs. (3.69), the vacuum of the theory X “ 0 maps to G ` γ “

0 ` Opḡ2q. This means that G does not correctly describe the fluctuations of the dual form sector

B,G around this vacuum. Instead the correct canonical variable to use is

G “ G` γ . (3.71)
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This constant shift of the magnetic dual of the 4-form field strength implies a shift of the electric

4-form Gµνλσ “M2
˚ εµνλσ G by

Gµνλσ “ Gµνλσ ` γM2
˚ εµνλσ , (3.72)

or in the form notation, G “ G` γM2
˚ Ω4, where Ω4 is the space-time volume 4-form. If we write

G “ dB, then the 3-form potentials are are related by

Bµνλ “ Bµνλ ` hµνλ (3.73)

Here h is defined locally, by integrating

dh “ γM2
˚ Ω4 . (3.74)

to yield

h “ γM2
˚ tΩ3 , (3.75)

where Ω3 is the volume form of the constant comoving time hypersurfaces.

With all of this, the renormalizable and leading irrelevant terms in the dual theory at weak

coupling around the transient vacuum σ » 0 are:

L “ ´ 1

2 ¨ 4!
F 2
µνλσ ´

1

2 ¨ 4!
G2
µνλσ ´

1

2
γ2M4

˚ ´
ḡ2

4 ¨ p4!q2M4
˚

F 2
µνλσG2

µνλσ

`
µ2

12
A2
νλσ `

m2

12

´

Bµνλ ´ hµνλ
¯2

`Opλ̄, λ̄1, ḡ4
q .

This is the dual form EFT of the Stewart model limit (3.5) of hybrid inflation in the regime σ » 0

and gφ ă m (in the case that λ, λ
1
! ḡ2 ! 1). This region of field space, which is reached right
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after inflation ends, is readily accessible to simple analytical tools to construct the dual. Note that

this regime can be readily extrapolated down to φ “ 0 as long as σ » 0. However the extrapolation

down to σ “
?

2M requires a different EFT, because at σ “
?

2M the φ field gets Higgsed by

the σ vev, having the mass µ2
eff » g2M2 „ M2 (3.15). Next we wish to discuss the limit of the

theory that extends beyond this regime and supports inflation – which requires gφ " m. As we

have stated, and will see in detail shortly, that forces us to go beyond weak coupling and the action

(3.76).

Note, that the situation here is analogous to what we encountered in the single field case. The

scalar and massive 4-form duals are related simply in the weak coupling limit, with the scalar

being the light and weakly coupled longitudinal mode of the massive 4-form field strength. Yet to

produce inflation that fits the data the theory must be pushed into the strong coupling, beyond the

simple perturbative picture, where the connection between the scalar and the form fields becomes

very nonlinear. Nevertheless, we take the attitude that the existence of the dual form picture suffices

for our purpose since it is a ‘home’ for the gauge symmetries that protect the scalar mass. Once

that is in force, to study inflation one can work on the scalar side alone, and evolve the theory to

strong coupling.

Before continuing with the foray into the inflationary regime, let us clarify the role of the γ-

dependent terms in Eq. (3.76). These are the positive vacuum energy 1
2
γ2M4

˚, and the 3-form h

inside the mass term for B. The former is the initial value of the vacuum energy driving inflation.

In the dual scalar picture, this comes from the σ mass term near σ “ 0, and assumes that any

additional contribution to the vacuum energy is negligible during inflation. The additional cosmo-

logical contributions which we neglected here would be the vacuum energy in the true vacuum,

and neglecting them corresponds to choosing the vacuum energy in the true vacuum to be very

small. This is just the cosmological constant problem, which is notoriously difficult to address in
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any EFT. This appearance of the vacuum energy as a constant in our EFT points to the fact that

this appears to be fine tuned. This fine tuning could be addressed via saltatory variation of the cos-

mological constant by nucleation of membranes charged under the 4-forms, following [46]–[48];

regions with a different initial vacuum energy but the same couplings otherwise will either inflate

forever, or collapse too soon.

Absent the mass term here, the only way to relax the initial vacuum energy towards zero is

via membrane nucleation. In our theory, the mass term allows this vacuum energy to also be re-

laxed by the slow rolling of the longitudinal mode of the massive form. Here the 3-form h in the

mass term ensures that the pivot point G,B “ 0 correctly describes the onset of inflation in terms

of variables with canonical kinetic terms. It appears as a source term in the equation of motion

d˚G`m2B “ m2h, driving the longitudinal mode to evolve so that the vacuum energy is lowered.

3.3.4 Scales and Couplings for Hybrid Monodromy EFT

We now turn to considering pseudoscalar axions in the parameter regime controlled by the dual

requirements that the theory have sub-Planckian field ranges and be consistent with current data.

Our aim is to write an effective action which respects NDA normalizations, in which we are assured

that the mass parameters µ,m are UV-insensitive, and the irrelevant operators are suppressed.

The first thing we might try is to perform the duality map outlined in the previous section. The

masses µ,m map to 4-form masses which we know are UV-insensitive; while past experience in

the more extreme case of large-field inflation is that the irrelevant operators do not spoil slow-roll

inflation [8], [12], [14], [16], [17]. From the discussion above, one would expect that a natural

effective action of 4-forms following [37] would be a function of F {M2
˚, G{M2

˚, m, µ, ḡ2{16π2,

λ{16π2, λ
1
{16π2, with the factors of 1{16π2 arising from loop factors.
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As we noted, however, and in full analogy with the single large field theories, in the parameter

regime of the Stewart model pointed to by the data, the duality map is no longer controlled by the

leading linear map F „ µφ, G „ mσ. We can see from Eq. (3.68) that this would require Φ ă
?

2;

we will see that this does not hold during the epoch of inflation that imprints on the observed CMB.

Inspired by the map at weak coupling, however, we could hope that there is an effective action

in the scalar frame which satisfies some version of NDA. At weak coupling, the duality map

indicates that µ,m are not renormalized (though we currently lack an argument directly in the

scalar frame). It is then natural to suppose that the effective action would be a function of M˚, Φ,

X , ḡ2{16π2, λ{16π2, λ
1
{16π2 with Op1q coefficients, as the weak-coupling duality points in this

direction.

However, we will see that in the regime allowed by the data, g2{16π2 is large, and when the

field ranges are lowered by an order of magnitude below the Planck scale and more, perturbativity

of the theory appears to be in jeopardy. A concern is that the effective action is strongly coupled

and out of control. On the other hand, we will see that with αOpÀ 1q we can still meet the data

and suppress irrelevant operators enough while keeping g2{16π2 barely within the range of EFT.

One possible take from this is that identifying g2 defined in Eq. (3.67) as the coupling may be

overly naı̈ve. On the scalar side, Φ, X are of course not canonically normalized, and moving to

canonical variables demonstrates that the natural couplings are g2, λ, λ1. On the 4-form side, at

weak coupling, the massive 4-forms F only propagate in the presence of a mass term for the gauge

fields: the two-point functions x˚F ˚F y9µ, x˚G˚Gy9m up to contact terms, so that even g2

16π2 Á 1

can induce Op1q values of λ, λ
1
via quantum corrections. The large effective g2, which is required

by combining naturalness and data, can come about as a result of nontrivial nonlinear mixings of

various irrelevant operators on backgrounds with large form fluxes, that simulate the inflationary

vacuum energy. In other words, the scale of the biquadratic operator „ g2φ2σ2 on the scalar side
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is not set by a single large irrelevant operator in the dual theory but is a combination of many

irrelevant operators of dimension higher than eight, which add together enhancing the effective

coupling. In the end, it is an open question how to implement naturalness and NDA for massive

4-forms or their duals8. We leave this for future work.

In the remainder of this section we develop the above points in detail, and highlight possible

paths towards ensuring hybrid inflation makes sense both phenomenologically and as a natural

QFT safe from quantum gravity.

3.3.4 Identification of NDA Parameters

We open with identifying the range of parameters M˚, g2, λ, λ
1

in the potential (3.66). We dub

this the NDA potential for the scalar fields. We will conjecture that the discrete gauge symmetries

together with dimensional analysis demand that φ, σ appear in the form Φ, X . We would further

demand that the couplings of the theory are consistent with the values induced by quantum cor-

rections; that is, that the model is self-consistently technically natural, or even simply natural. At

present we do not know how this would work in practice, just as we do not completely understand

NDA for massive 4-forms. Should the duality hold, there are nonrenormalization theorems in the

scalar theory that we have not derived that will constrain the effective action. A simple guess,

by rough analogy with [37], would be that if all couplings were Op16π2q, our theory would be

technically natural if the effective potential could be writen as V pΦ,X q with Op1q couplings; if

g2{16π2 ! 1, our theory could be natural for λ{16π2, λ
1
{16π2 to be small; and for g2{16π2 " 1,

the theory is strongly coupled and completely out of control.

Before turning to the couplings, our first question is the choice of the cutoff scale M and the

8And for that matter, NDA for massive vector fields.
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strong coupling scale M˚ “M{
?

4π. In a top-down theory these would of course be fundamental

quantities. Here we are taking a bottom-up approach, asking what values of the cutoff give an

action such that the dual form theory takes an NDA-like form. We thus identify M4
˚ as the scale of

the energy density over which the effective potential varies, and in particular the scale that drives

inflation:

M2
˚ Á

?
2mM . (3.76)

The scale of the energy density driving inflation is thus V „ m2M2M4
˚{2 “ M4{32π2. Given

the subtleties we are about to discuss in identifying expansion coefficients in NDA for this theory,

there may be some wiggle room here. We will simply adopt our straightforward definition of M˚

and see where it gets us. Note that this definition of M˚ guarantees that the field range of X

between the end of inflation and reheating is Op1q.

Next, we wish to bound g2. Equation (3.16), giving the number of efolds of inflation in terms

of the field displacement φ, gives (after a few lines of algebra):

N “ α2π2 ḡ2

16π2
Φ2 . (3.77)

Demanding now that α ă 1 and N Á 50 immediately shows that to have inflation we must start

with g2Φ2 which is initially at least as big as

ḡ2Φ2
Á

16N

α2
Á 800 . (3.78)

If this were the only constraint, we could support sufficient inflation in a regime where the

coupling ḡ2{16π2 is small. At weak coupling, Φ „ 4π is a unitarity bound. This maps to the

statement F {M2
˚ ă 4π, F {M2 ă 1. If this bound on Φ extends past the regime that the duality
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map can be constructed perturbatively in powers of the fields, we can ask when the unitarity limit

saturates the inequality in Eq. (3.78). This occurs when g2 ě 5, or g2{16π2 Á 0.032. Taking

g2{16π2 to be the right parameter for an NDA analysis of the scalar action, the effective action

should still be under perturbative control even if the tree-level coupling looks strong. A further

constraint on g comes from imposing the observed scalar power which combine with the number

of efolds leads to Eq. (3.21). We begin with

g2

16π2
“

g2

16π2

ˆ

mµ

M2
˚

˙2

, (3.79)

and employ our bound (3.76). Furthermore, we will assume a hierarchy µ “ m; “ 1{8 corre-

sponds to the bound from M being sub-Planckian. Finally, using Eq. (3.76), and then Eq. (3.21)

to write m{M in terms of α, g we find: The resulting lower bound on g2 is:

g2

16π2
Á

6ˆ 10´8

2α6g2
. (3.80)

If we were to set ε “ 1{8, as required for M ă Mpl, and choose g „ 1.6 ˆ 10´3, the maximum

value allowed for the Stewart model to be technically natural, then g2{16π2 À 1 would require

α ą 1. This can be satisfied with a just barely super-Planckian field displacement. The coupling

becomes strong rather quickly if we lower α while fixing g2, ε. There is thus a tension between

keeping the scalar theory technically natural and sub-Planckian, and our criterion that the NDA

couplings be OpÀ 1q.
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If we further input the technically natural scalings λ, λ1 „ g4, we find

λ̄ „ g4

ˆ

M˚

m

˙4

„ g4

ˆ

µ

M4
˚

˙

,

λ̄1 „ g4

ˆ

M˚

µ

˙4

„ g4

ˆ

m

M˚

˙4

. (3.81)

Thus g2 Á 1 is still consistent with OpÀ 1q couplings λ, λ
1
. If µ „ 0.3gM˚, then λ

1
{16π2 „ Op1q.

For m “ 8µ „ 2gM˚, λ „ 2ˆ 10´4.

We have computed these values of λ, λ
1
from technically natural values of the couplings in the

scalar theory, as discussed in §2. In terms of our NDA variables they indicate that a consistent

application of the principles behind NDA – that couplings are of the same order as their quantum

corrections – allows for some complicated structure of the action in the variables Φ,X . This should

not be surprising as these variables are not canonically normalized, and their correlation functions

will scale as positive powers of m,µ relative to those for φ, σ. But it is these variables which

naturally map to the dual 4-forms.

Finally, we can ask what happens if operators such as Φ4`k appear in the action with Op1q

coefficients. From the discussion above, this could be overly pessimistic from the point of view

of technical naturalness, but it is expected that a UV completion that includes quantum gravity

will enhance irrelevant operators from their technically natural values. We are assuming that said

completion will still give couplings that are functions of µφ, mσ weighted by powers of M˚ or

Mpl. Let us consider the former scale, to be maximally conservative within our set of conjectures.

Then we find

δLp „
cp

pp` 4q!

µ4`pφ4`p

4`2p
˚

. (3.82)
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Comparing this to Eq. (3.32), we find

δp „ cp
Mp

pl µ
p`4

2p`4
˚

. (3.83)

If we saturate our bound Eq. (3.76), let µ “ m, and impose the constraints Eq. (3.21), we find:

δp „

ˆ

αg

1.1ˆ 10´4

˙pˆ
α3g22

3.1ˆ 10´3

˙2

cp . (3.84)

This is consistent with Eq. (3.33) if

ˆ

α2g

1.1ˆ 10´4

˙pˆ
α3g22

3.1ˆ 10´3

˙2

cp ! pp` 2q! ˆ 1.2ˆ 10´13 . (3.85)

If we adopt g „ 1.6ˆ 10´3 and take ε » 0.1, this bound translates into

`

1.45ˆ α2
˘p
α6 cp ! pp` 2q! ˆ 2ˆ 10´3 , (3.86)

and is readily achieved for all p ě 1 even when cp „ 1 as long as α ď 0.7. In this regime, using

Eq. (3.80), g2{16π2 » 1.5{α6, we find that for α » 0.7 the coupling becomes g2{16π2 » Op10q.

This demonstrates that there is some wiggle room with the numbers, where we can either adjust

the cutoff M down by a factor of a few, or take a slightly larger dimensionless coefficient of the

biquadratic operator to reduce the effective coupling g while maintaining control over irrelevant

operators. So for our theory to hang together, all we need is to keep cp „ 1 even though g2{16π2

is large, consistent with some notion of naturalness. From our discussion above, meeting this re-

quirement does not seem out of reach. However we see rather dramatically how naturalness and

data press the theory against Planck scale.
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3.3.4 Comments on the Dual Massive 4-Form Theory

Our conjectures for writing an action for φ, σ consistent with NDA and the discrete gauge sym-

metries was inspired by the 4-form dual, in a regime for which the duality transformation can be

computed and simply understood. However, the regime of the Stewart model supporting inflation

consistent with data and sub-Planckian scalar fields is well out of this regime. We can see from the

transformation (3.68) that our iterative procedure for constructing the duality map begins to break

down when Φ ą
?

2. Indeed, (3.78) shows that 50 efolds before the end of inflation – the epoch

during which inflaton fluctuations imprint on the CMB – we are well out of this range for α ď 20.

This value of α would defeat the original purpose of hybrid inflation, and we will set it aside.

Thus, we do not have complete control of the 4-form dual when the parameters of the Stewart

model are consistent with the data and when the field values are in the range which is relevant for

the CMB. Nevertheless the scalar theory exists in this regime, and maps to the dual 4-form theory

cleanly in the small field limit where we understand the duality. Thus, we could follow the theory

in either frame as we increase the couplings and field values. The small field regime attained as

inflation ends then serves as the anchor for this ‘theory flow’: as long as we are sufficiently close

to φ, σ „ 0, then Φ will become arbitrarily small and the duality transformation is under control.

In this regime we can derive insights into the pseudoscalar dual. Let us then discuss aspects of the

duality map in this regime.

When the duality pertains, the effective action

L “ ´ 1

2 ¨ 4!
F 2
µνλσ ´

1

2 ¨ 4!
G2
µνλσ ´

1

2
γ2M4

˚ ´
c1

4 ¨ p4!q2M4
˚

F 2
µνλσG2

µνλσ

`
c2

p4!q2M4
˚

´

F 2
µνλσ

¯2

`
c3

p4!q2M4
˚

´

G2
µνλσ

¯2

`
µ2

12
A2
νλσ `

m2

12

´

Bµνλ ´ hµνλ
¯2

` . . . .
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where we have included all dimension-8 operators consistent with the symmetries, should capture

the pseudoscalar dynamics well. In this action, c1 „ g2; c2 „ λ, c3 „ λ
1
. The results which we find

in this regime will be corrected at larger coupling and larger field values, but as long as the theory

remains below the unitarity bound and the fluctuating light longitudinal modes have couplings

suppressed by µ{M,m{M, the qualitative insights gained by this analysis may continue to the

phenomenologically relevant case of large gΦ.

First, the parameters µ,m are UV-insensitive and are at most logarithmically divergent. This

follows from the arguments given in [16] for the single field case. We suspect that we can run

this argument directly in the pseudoscalar dual, using the nonlinearly realized ˆ discrete gauge

symmetry. Realizing this would give further support for maintaining this feature of the theory in

the large gΦ regime.

Secondly, we can treatM as a derived quantity. Recall this appears as a source term for σ in the

dual theory, and sets the field range in σ between inflation and the end of reheating. Once we fix

the cutoff M, then if the bound (3.76), is saturated,M “M2
˚{
?

2m is given by a see-saw formula.

In particular it is a derived quantity. In weak coupling, (3.76) can be translated into a bound on

the maximal 4-form flux above which our EFT (3.76) breaks down. Since M2 „ 4π Gmax „

4πNmax e, then Eq. (3.76) implies:

M
M2

?
2m

„ Nmax
e

?
2m

„ Nmax
f
?

2
, (3.87)

where e is the fundamental charge of membranes charged under G and f “ e{m is the period of the

dual axion σ. The upshot is that as a derived quantity, the scaleM can exceed the cutoff M without

violating naturalness. Note here that Nmaxf represents the field range of σ during inflation; we are

simply saying that field ranges need not be bounded by the cutoff, a fact we already understand for
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axions without monodromy (see for example [35]).

Finally, while it is tempting to identify c1 „ g2 as a coupling in terms of which we would write

an effective action following the rules of NDA, the actual story is more complex. The essential

point is that F,G only propagate because of the gauge field mass. Their two-point functions scale

as µ2,m2 respectively. This can be seen directly by consistency with the duality transformations

F „ µφ, G „ mσ. Alternatively, we can simply compute the propagator for F,G. Given the

propagator presented in [16] for a massive 3-form potential

xAµνλppqAµ1ν1λ1p´pqy “ εµνλρεµ1ν1λ1ρ1

˜

ξ
2
ηρρ

1

p2 ´
ξµ2

2

`

`

1´ ξ
2

˘

pρpρ
1

pp2 ´ µ2qpp2 ´
ξµ2

2
q

¸

, (3.88)

where ξ is a gauge-fixing parameter, the propagator for F is

x
˚F ppq˚F p´pqy “ C

ˆ

1`
µ2

p2 ´ µ2

˙

, (3.89)

where C is a dimensionless constant comprised of symmetry factors. The first term in paren-

theses is a contact term; removing this by taking appropriate account of operator mixing, we find

˚F behaves µ times a scalar, consistent with the duality. Because propagators scale with the 4-

form masses, calculations that are perturbative in ck will come with additional powers of m{M˚,

µ{M˚. For example, let us ask whether c1 " c3 is consistent with quantum corrections. The F

propagators yield

c3 „
4

ˆ

µ

M˚

˙4

„

ˆ

gM˚

m

˙4

. (3.90)

In this regime the scaling should come as no surprise – when G „ mσ, this is compatible with

the technically natural value λ „ g4. Our conclusion is that in a proper treatment of the effective

action for 4-forms, extending the principles of Naı̈ve Dimensional Analysis, c1 „ g2 will appear
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in combination with powers of µ,m so that the natural coupling is some ĝ2 ! g2; and that a large

value of is still compatible with a sensible effective action for which cką1 can be OpÀ 1q.

Can we extend this observation to higher-dimension irrelevant operators in this regime? Con-

sider the operators

δLk “ ck
F 2k

M4k´4
˚

, (3.91)

which are the most important for the dynamics in a phase G „ mσ „ 0, F ‰ 0. At weak

coupling, these terms are dual to a series of operators with leading terms (3.32), with p “ 2k ´ 4.

These operators will be generated after integrating out the heavy σ field, or on the dual side, from

considering diagrams with G internal lines9. The simplest diagram generating (3.91) involves k

vertex insertions 9ḡ2F 2G2{M4
˚ in a G loop. This gives δLk » ḡ2k F 2k

M4k
˚

xpG2qky, so that after the

loop integral we find, using xpG2qky »M4
˚pm{Mq2k (note the cutoff in the numerator as opposed

to the strong coupling scale),

δLk »M4
˚ḡ

2k F
2k

M4k
˚

´ m2

4πM˚
2

¯k

»M4
˚

´ ḡ2m2

4πM2
˚

¯k F 2k

M4k
˚

»M4
˚

´g2M2
˚

4πµ2

¯k F 2k

M4k
˚

. (3.92)

The last equality looks dangerous due to the to appearance of the small mass µ is the denominator.

First, we note that that the limit µÑ 0 is not a problem since F „ µφ{M2
˚ so µ precisely cancels if

we move back to the pseudoscalar frame. Furthermore, if 4πµ2 Á g2M2
˚, it appears that ck „ Op1q

is consistent even as g is increased.

More precisely, if we substitute µ „ m{8 the overall dimensionless factor multiplying the

NDA-normalized part of the operator δLk becomes, using Eq. (3.76), and substituting (3.21) for

M{m,

ck „
´1.6ˆ gM˚

m

¯2k´

2.54ˆ
g2
?

2M

m

¯k

»

´0.2

α

¯3k

. (3.93)

9Which contribute to the virtual momentum transfer due to the propagating longitudinal mode.
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Remarkably this shows that the irrelevant operator contributions generated by integrating out σ

remain safely small for even sub-Planckian field displacements α Á 0.2, which as we noted we

need to enforce to suppress their corrections to the inflationary plateau of (3.10). Further note that

for k “ 2, the loop-induced term is c2F
4{M4

˚, i.e. just the radiative correction to λ̄1. We therefore

find that δλ̄1 „ p0.2{αq6, which, again, is under control unless α is too small.10 If this holds, then

the resulting dual operators are precisely of the form (3.82), with coefficients cp „ 1, and these are

subleading during inflation for α À 0.5. Data pushes the theory towards the dangerous Planckian

region, but there is still a consistent sub-Planckian regime in which the irrelevant operators are

under control.

A rigorous understanding of the 4-form theory in the inflating regime is a matter of future work.

Here we simply note that it is plausible to have a well-defined theory with irrelevant operators

built from powers of F, G, µA, and mpB ´ hq having OpÀ 1q dimensionless parameters when

normalized via M˚, even when the leading coefficient c1 „ g2 " 1. In this case we would need

to show in this theory that the phenomenologically relevant phase of inflation would occur for

F ăM2 “ 4πM2
˚, where we expect our effective theory to be well-defined.

To conclude this section, we have seen that the theory (3.87) and its special limit (3.76) whose

strong coupling limit can realize hybrid inflation11 are theories of two massive Up1q gauge theories

of 4-form field strengths in the unitary gauge, with 4-form kinetic mixings mediated by irrelevant

operators. The mixing coefficients are controlled by natural parameters of Op1q. In this form

the theory is strongly coupled but natural: the unbroken gauge symmetries of (3.87) will protect

the selection of the masses and couplings in (3.87) from UV effects in QFT. However, since the

10Here of course we are looking near φ “ 0 where the duality makes sense; α has meaning in the dual pseudoscalar
theory as the range of φ in field space covered by the last 50 efolds of inflation, a range over which the duality map
becomes complicated.

11Again, such a theory can generate inflation if for a given cutoff M˚ the masses obey µ ! m ! M˚ and one of
the form field strengths develops an initial CP-breaking flux on the background, controlled by Mcr „M2

˚{m.
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scales are all sub-Planckian, and the symmetries are gauged, the theory will be safe from quantum

gravity corrections as well. The mass terms cannot receive large UV corrections since they are

also couplings of the longitudinal modes, and are protected by gauge redundancies. We cannot

predict what the values of these masses are from within the EFT itself. But once chosen, the gauge

symmetries of the theory protect them from QFT and quantum gravity corrections, as in [16], [17].

Furthermore, while the masses are small relative to the cutoff, they will not be too small; they can

be a few (ă 10) orders of magnitude below the Planck scale. Thus the theory should be able to pass

the bounds which one might find using arguments based on the weak gravity conjecture, and from

other technical lamppost-based bounds coming from recent developments in string phenomenol-

ogy.

3.3.5 Discussion

We have outlined how hybrid inflation might be made UV complete via dualizing it to a theory of

two massive 4-form field strengths/3-form potentials. This UV completion contains gauge symme-

tries which explain the suppression of potentially dangerous operators which can adversely affect

inflation [16], [17]. In a top-down approach to deriving hybrid inflation, this procedure would be

reversed.

Indeed, imagine that in some UV-complete theory such as string theory, some of the higher

rank forms yield massive 4-forms after compactification, with masses which are much smaller

than the UV cutoff of the EFT of the 4-form systems. We believe that such constructions would

be conceptually similar to the previous approaches [6], [9], [11], [49]–[54] where the main focus

was on realizing the conditions for single large field inflation. In the present case they should

involve multiple massive 4-forms below the cutoff. The EFTs of interest arise after integrating out
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the stabilized heavier fields, the KK states and the heavy string modes. The cutoff M demarcates

this EFT from the full theory with those additional degrees of freedom, and could be viewed

as scale where ignoring the lightest of the modes, which were integrated out to define the low

energy EFT, would start yielding problems with unitarity. The irrelevant operators in (3.87) arise

as the corrections generated by the virtual heavy modes as well as loops of the virtual light modes

kept in the EFT. In the minimal case, these are the longitudinal modes of the massive 4-forms

and the matter degrees of freedom, that the longitudinal modes decay into at the end of inflation.

Perhaps the simplest manner in which these models can be realized is to imagine a theory with

coupled p-forms, which includes higher-derivative corrections suppressed by a cutoff, and where

after dimensional reduction the emergent 4-forms mix with pseudoscalar axions. These can be set

to become longitudinal modes by a gauge fixing; after dualization, the higher-derivative operators

are the potential for the longitudinal mode.

The longitudinal modes remain light because the 4-form/3-form potential gauge symmetries:

continuous compact Up1q and the discrete shift, A Ñ A ` da, B Ñ B ` db. These ensure

that the dangerous corrections to the mass terms are absent. This extends to the quantum gravity

corrections as well, which cannot break gauge symmetries. So as long as the operators in (3.87) are

below the cutoff M, the theory has a weak coupling expansion where a minor tuning of parameters

realizes the regime which supports hybrid inflation.

This is manifest once one reverses the steps which led from (3.5) to (3.87). Indeed, inverting the

steps in §3.2 will map the mass terms and irrelevant operators in (3.87) precisely on the potential

(3.5). The mass terms are naturally small by gauge symmetry, whereas the marginal operator

couplings in (3.5) are rendered small because they are controlled by the ratio of masses and the

cutoff, and mA,B ! M. Finally, the scale M in (3.5) appears to be larger than the cutoff because

it is see-sawed by the mass: M „ M2{m as we discussed above. This can explain the origin of
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the Stewart limit of hybrid inflation naturally.

In this paper we have focused on realizing a model of hybrid inflation in the Stewart limit, con-

trolled by only relevant and marginal operators. Our observation that the 4-form theory needs to

be strongly coupled suggests that we consider models in which other higher-dimension operators

play a significant role. In particular, it is possible that phenomenologically interesting and natural

low-scale hybrid models could be realized with flattened potentials, following [6], [9], [11], [17].

It would be interesting to explore such more general models of hybrid inflation.

3.4 Summary

Many inflationary models have been severely constrained by the observations in the past decade or

so. Specifically the improving bounds on the spectral index and on the tensor-scalar ratio have put

pressure on the large field inflation models, which are arguably the simplest candidates for natural

EFTs of inflation. These models are quite predictive as well, because they must occur at high

scales to yield viable inflationary evolution, where their structure becomes sensitive to quantum

gravity corrections. Thus the tightening constraints on large field models might be taken to imply

that the prospects of learning something about quantum gravity from inflation have diminished.

Moreover, by placing increasingly tighter constraints on large field models, observations might

appear to favor more exotic, unnatural, proposals for inflation, or even more radical approaches to

early universe cosmology.

Our results here suggest that these allusions are not a foregone conclusion yet. The pressures

from observational bounds are significantly relieved by reducing the scale of inflation. This can be

done in multifield inflation models, and it occurs in hybrid inflation with two non-degenerate fields,

when the post-inflationary vacuum manifold is not degenerate. In this case, the tensor-scalar ratio
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is almost unobservably small, and the spectrum of perturbations is safely red, with the spectral

index nS between 0.97 and 0.975, which is still in agreement with the bounds. Further, the EFT

of this variant of hybrid inflation is technically natural, and if it is realized as a dual for a theory

with two massive 4-forms, which might be realized as an IR limit of string compactifications, it

may also be protected from quantum gravity corrections although it involves almost Planckian

field displacements. The UV safety of the theory is not a generic feature of all hybrid inflation

proposals, as we have seen in detail. Yet it may arise in some constructions such as those which we

outline here. However, remarkably, even in these cases the natural EFTs are still close to Planck

scale. This, in our view, is quite interesting, since it keeps the possibility open that inflation, while

being a viable EFT, might still be sensitive to some subleading corrections from quantum gravity,

which while small might compete with the UV field theory effects.
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CHAPTER 4

BOSONIC MIXING IN CURVED SPACE

In Collaboration with Professor Devin Walker (Dartmouth College), Nizar Ezroura (Michigan

State University) and Bradley Shapiro (Dartmouth College) , we looked at the mixing between

axions, as Dark Matter (DM) candidate, photons and gravitons in curved spacetime. We studied

the mixing between those waves in the vicinity of a Kerr black hole. Our goal is to evaluate the

conversion probability between these three types of waves. This would allow for a possible multi-

messenger indirect detection of axions or generic Bosonic DM.

The mixing between gravitational waves and electromagnetic waves in the presence of a cos-

mological magnetic field in flat space has been studied by Dolgov and Ejlli [55]. In 1988, Raffelt

and Stodolsky [56], and later in 2017, Masaki, Aoki and Soda [57] discussed the mixing and

probability conversion between axion waves and electromagnetic waves in flat spacetime using a

Chern-Simons term to model the coupling between axions and photons: aFµνF µν .

However the mixing between an axion waves and a gravitational waves has yet never been studied.

The main reason being that the effects are negligible in flat spacetime.

In this work, we describe bosonic (scalar, electromagnetic and gravitational) wave mixing in curved

spacetime. Curved spacetime adds a new length scale, the Schwarzschild radius, which signifi-

cantly alters the oscillation probabilities in comparison to the standard flat spacetime computations.

The alterations are analogous to the Mikheyev-Smirnov-Wolfenstein (MSW) effect for neutrinos

and are “frozen-in” as the outgoing gravitational and/or electromagnetic wave propagates away

from a compact object. Although we consider the axion and axion-like particles, our computations
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are largely model independent and applicable for generic spin-zero dark matter. We describe the

probabilities for axions and generic bosonic dark matter oscillations.

In some future work, we wish to describe some of the observational consequences of the mixing

including the energy and polarization of the waves exiting the compact object.

In the next section, we present a preliminary version of the work that has been done so far.

4.1 Introduction

In flat space and in the presence of a static external electromagnetic field, axion waves can mix

with electromagnetic and gravitational waves [56]. The gravitational wave mixing is not often

considered because of Planck mass suppression in the mixing terms. However in the immediate

environs of compact objects gravity is strong and gravitational wave mixing is necessary. In this

work, we describe the mixing of axion waves with electromagnetic and gravitational waves in

curved spacetime. The presence of non-trivial gravitational fields has observational consequences

that are distinct from the well-known flat spacetime signatures.

4.1.1 Bosonic Mixing in Curved Spacetime

In order to compute the mixing, we use effective field theory techniques. These techniques are im-

plicit for the standard flat space computation. The flat space computation requires a static external

electromagnetic field that varies on very large length scales. This is in contrast to the important

short wavelength, oscillating degrees of freedom of the electromagnetic and axion waves. Thus the

calculation separates the important short degrees of freedom from the longer wavelength physics.
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In this work, we consider a similar separation of length scales while also including gravitational

waves.

For a patch of local spacetime near compact objects, we require the frequency of the cohered

electromagnetic, gravitational and axion waves (λ̄) to be large compared to the characteristic length

scale of the background curvature (λ). It is therefore essential to explicitly average of the back-

ground curved spacetime at large distance scales in order to get a proper understanding of their

effects on high-frequency waves. Any averaging scheme will lead to corrections to the non-linear

Einstein equations at larger length scales. The averaged quantities are analogous to static external

electromagnetic field in the flat spacetime computation. To be able to consider longer wavelength

mixing, we can theoretically employ techniques analogous to renormalization group averaging

(analogous IR RGE averaging). Some of the averaging schemes include Isaacson [58] which is

based on Brill and Hartle [59]. Noonan [60] generalizes Isaacson in order to define a consistent

gravitational energy-momentum pseudotensor in the presence of matter. Other efforts include Fu-

tamase [61], who performed spatial averaging in 3 ` 1 splitting of spacetime, Boersma [62], who

constructed gauge-invariant averaging in perturbation theory as well as Kasai [63] and Zalaletdi-

nov [64].

To summarize in general throughout this work, we use concepts from effective field theory

in order to separate out the important from the unimportant, non-linear physics. At the length

scales of interest and up to an error in the coupling, we mix the axion, electromagnetic and grav-

itational waves in order to place the equations of motions into their mass eigenstate form. The

new, diagonalized equations of motion now do not have explicit interaction terms. Thus, the mass

eigenstates carry information about the probability of conversion of an axion, electromagnetic and

gravitational wave into an axion, electromagnetic and gravitational wave. We can now use tetrad

vectors to take the equations of motion and propagate them through all of spacetime. The exter-
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nal electromagnetic field slowly and numerically varies as the tetrad vectors propagate the patch

through all of spacetime. In order to in compute superradiance effects, we can construct and sepa-

rate Newman-Penrose scalars into the master equations.

4.1.2 Review of Gravitational Wave Effective Theory

In this section, we review much of what is in [65], [66]. To understand gravity waves in curved

spacetime, we employ standard effective field theory techniques to separate the wavelength of

the metric perturbation from the background [65]–[67]. We review these techniques to establish

notation and the mixing equations in the next section. We consider a locally flat patch of spacetime

over which an external electromagnetic field is homogeneous and static. Importantly this locally

flat patch of spacetime can be relatively close to compact objects. The need for a locally flat patch

important for a variety of reasons: (1) To understand the axion, electromagnetic and gravitational

wave oscillations, we must provide an orientation of the static, background electromagnetic field

in relation to the freely falling body (the cohered mixed state). (2) The locally flat patch allows for

an inertial frame to be constructed that allows for the mixing as well as providing the formalism to

understand curvature corrections for the freely falling particle. To compute the mixing equations

in the patch, we first consider the metric perturbation hab,

gab “ gab ` ε hab `
1

2
ε2 hac h

c
b `Opε3q (4.1)

gab “ gab ´ ε hab `
1

2
ε2 hac h b

c `Opε3q, (4.2)

where gabgbc “ δac , ε is parametrized as ε „ Op{Lq, “ λ{2π is the reduced gravitational perturba-

tion wavelength and L is the characteristic scale of variation of gab, the background metric [67].
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We justify the parametrization of ε below. Often the ε2 term is notated by jab [65]. It is clear, in or-

der to give a proper perturbative expansion, equation (4.1) requires! L which separates the length

scales of the gravitational wave perturbation and the background metric. This separation of scales

ultimately allows for a proper definition of a gravitational wave 1. In addition to this expansion,

we also note the expansions

?
´g “

a

´g `
ε

2

a

´g h`
ε2

8

a

´g h2
` . . . (4.3)

1
?
´g

“
1

?
´g

´
ε

2
?
´g

h`
ε2

8
?
´g

h2
` . . . (4.4)

1To be sure our analysis applies to as many physical situations as possible, we also consider the parameterization
ε „ fb{f in parallel, where f is frequency of the gravitational wave perturbations and fb is the maximal frequency of
the background metric [66]. A priori fb is not correlated with Lb. Moreover, often gravitational waves background
are static. Thus, it may be possible to search for a wider variety of graviton-axion-electromagnetic waves. Ultimately,
we will also consider graviton-axion-electromagnetic waves from a variety of astrophysical sources, including super-
massive black holes, which will provide a variety of probes of the parameter space despite the ! Lb requirement.
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which will be useful later. The expanded connection and Riemann tensor are now

Γabc “ Γ
a

bc `
ε

2
gam

ˆ

∇c hmb `∇b hmc ´∇m hbc

˙

(4.5)

`
ε2

4

ˆ

gam
´

∇c phmq h
q
bq `∇b phmq h

q
cq (4.6)

´∇m phbq h
q
cq

¯

´ 2ham
´

∇c hmb `∇b hmc ´∇m hbc

¯

˙

`Opε3q

Ra
bcd “ R

a

bcd `
ε

2

ˆ

gam
`

∇c∇d hmb `∇c∇b hmd ´∇c∇m hbd
˘

(4.7)

´ gam
`

∇d∇c hmb `∇d∇b hmc ´∇d∇m hbc
˘

˙

(4.8)

`
ε2

4

ˆ

gam
`

∇c∇d phmr h
r
bq `∇c∇b phmr h

r
dq ´∇c∇m phbr h

r
dq
˘

´ (4.9)

2∇c

`

ham
`

∇d hmb `∇b hmd ´∇m hbd
˘˘

´ gam
`

∇d∇c phmg h
g
bq `∇d∇b phmg h

g
cq ´∇d∇m phbg h

g
cq
˘

´ (4.10)

2∇d

`

ham
`

∇c hmb `∇b hmc ´∇m hbc
˘˘

` geq gam
`

∇e hmc `∇c hme ´∇m hce
˘`

∇d hqb `∇b hqd ´∇q hbd
˘

´ gem gaq
`

∇e hqd `∇d hqe ´∇q hde
˘`

∇c hmb `∇b hmc ´∇m hbc
˘

˙

where R bd “ Ra
bcd and gbdR bd is the Ricci tensor and Ricci scalar, respectively.
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4.1.3 Covariant Equations of Motion

The lagrangian in curved spacetime is

L “
?
´g

˜

1

2κ
R ´

1

4
gab gcd Fac Fbd ´

1

2

`

gab Baφ Bbφ`m
2φ2

˘

`
λ̃

8
?
´g

εabcd φFab Fcd

¸

(4.11)

`

?
´g

90m4
e

ˆ

e2

4π

˙2
˜

`

gab gcd Fac Fbd
˘2
`

7

4

ˆ

1

2
?
´g

εabcd Fab Fcd

˙2
¸

` . . .

where κ “ 1{m2
pl, mpl “ mpl{

?
8π, Fµν is the electromagnetic field strength tensor, φ is the axion,

λ̃ is the axion-photon coupling and ma is the axion mass. We also used ε̃abcd “
a

|g| εabcd and

ε̃abcd “ sgnpgq εabcd{
a

|g| where εabcd is`1 for an even perturbation of 0123 . . . and´1 for an odd

perturbation. We also define F̃ ab “ εabcd Fcd{p2
a

|g|q. Throughout we use natural units 2. There

is a minus sign in front of the Bµφ Bµφ term, because we are working in a p´ ` ``q signature.

The terms on the second line is the lowest order, one-loop, correction from the Euler-Heisenberg

Langrangian.

4.1.4 Effective Equations of Motion

The action is

S “

ż

d4xL “
ż

d4x
?
´g

ˆ

1

2κ
R ´

1

4
gab gcd Fac Fbd ´

1

2

`

gab Baφ Bbφ`m
2φ2

˘

(4.12)

`
λ̃

8
?
´g

εabcd φFab Fcd (4.13)

`
1

90m4
e

ˆ

e2

4π

˙2
˜

`

gab gcd Fac Fbd
˘2
`

7

4

ˆ

1

2
?
´g

εabcd Fab Fcd

˙2
¸

` . . .

˙

2See the definitions in, e.g., https://www.seas.upenn.edu/˜amyers/NaturalUnits.pdf.
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Here we define

S1 “
1

2κ

ż

d4x
?
´g R “

1

2κ

ż

d4x
?
´g gbdRa

bad (4.14)

S2 “ ´
1

4

ż

d4x
?
´g gab gcd Fac Fbd (4.15)

S3 “ ´
1

2

ż

d4x
?
´g

`

gab Baφ Bbφ`m
2φ2

˘

(4.16)

S4 “
λ̃

8

ż

d4x εabcd φFab Fcd (4.17)

S5 “
1

90m4
e

ˆ

e2

4π

˙2 ż

d4x
?
´g

˜

`

gab gcd Fac Fbd
˘2
`

7

4

ˆ

1

2
?
´g

εabcd Fab Fcd

˙2
¸

(4.18)

To evaluate these actions, we use the expansions from equations (4.1), (4.2), (4.3), (4.4) and (4.8).

4.1.4 Gravitational Perturbation Expansion

We can do the gravitational perturbative expansion for each term in the action. We define

hab “ hab ´ gab h{2 (4.19)

and therefore h “ ´h and substitute both into the action. Applying the gauge fixing terms,

∇ah
ab
“ 0 h “ 0 (4.20)

and using the following equations from the appendix,
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∇a∇d hmb “ ∇d∇a hmb ´R
r

mad hrb ´R
s

bad hsm ,

R “ gbdRbd “ R ` ε
2

ˆ

gbd
`

∇a∇b h
a
d `∇a∇d h

a
b

˘

´ gbd∇d∇b h´ g
bd lhbd

˙

` ε2

4

´

gbd∇b hce∇d h
ce ` 2hce

`

gbd∇b∇d hce ` g
bd∇c∇e hbd ´ g

bd∇d∇e hcb ´ g
bd∇b∇e hcd

˘

`2 gbd geg gch∇g hdh
`

∇e hcb ´∇c heb
˘

´gbd
`

∇e h
ce ´ 1

2
gce∇e h

˘ `

∇d hcb `∇b hcd ´∇c hbd
˘

¯

`Opε3q .

We can now write out the gauge-fixed action. Dropping the bars off the h’s, we have now

S1 “
1

2κ

ż

d4x
a

´g

ˆ

R `
ε2

2

`

hbm h d
mRbd ` h

bd h a
s R

s
bad

˘

´
ε2

4
hbd lhbd

˙

(4.21)

S2 “ ´
1

4

ż

d4x
a

´g

ˆ

gab gcdFac Fbd ´ 2 ε hcd T em
cd ` ε

2 hab hcdFac Fbd

˙

(4.22)

S3 “ ´
1

2

ż

d4x
a

´g

ˆ

gab Baφ Bbφ`m
2φ2

` ε hcd T scalar
cd `

ε2

2
haf h b

f Baφ Bbφ

˙

(4.23)

S5 “
1

90m4
e

ˆ

e2

4π

˙2 ż

d4x

˜

a

´g

ˆ

`

gab gcd Fac Fbd
˘2
`

7

4

ˆ

1

2
?
´g

εabcd Fab Fcd

˙2 ˙

(4.24)

´ 4 ε
a

´g hmn gab gef ggh Feg Ffh Fam Fbn

¸

.

where the energy-momentum tensors are

T em
cd “ gab Fac Fbd ´

1

4
gcd g

ab gef Fae Fbf (4.25)

T scalar
cd “ gcd

ˆ

1

2
gab Baφ Bbφ`

1

2
m2φ2

˙

´ Bcφ Bdφ (4.26)

Here we have used the results of the expanded the Ricci scalar in the appendix. Equations (4.21), (4.22)
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and (4.24) match Dolgov and Ejilli equation 5 and 6 when the Minkowski limit is taken.

We express the actions into multiple forms that facilitate integration by parts. Specifically, the

gravitational action is given by

S1 “
ε2

4κ

ż

d4x
a

´g hde

ˆ

´
1

2
lhde ´

´

gqw R
d

qwa h
ae
´ gcdR

e

rca h
ar
¯

˙

`
1

2κ

ż

d4x
a

´g R .

(4.27)

The parts of the electromagnetic action are

S2 “
ş

d4x
?
´g Af

ˆ

1
2
gab gcf p∇b Facq ´

1
2
ε
`

gcd gfe gab ´ gcd gbe gaf
˘

∇bphde Facq

` 1
4
ε2 gcd∇b

`

gfe hab hde Fac ´ g
be haf hde Fac

˘

˙

S4 “
ş

d4x
?
´g λ̃

8
?
´g
εabcd φFab Fcd

=
ş

d4x
?
´g λ̃

4
?
´g
εabedAe∇d pφFab q

S5 “
ş

d4x
?
´g 1

90m4
e

´

e2

4π

¯2

˜

ˆ

`

gab gcd Fac Fbd
˘2
` 7

4

´

1
2
?
´g

εabcd Fab Fcd

¯2
˙

´ ε hde

ˆ

4 gmd gne gab gkf ggh Fkg Ffh Fam Fbn

˙

¸

“
ş

d4x
?
´g 1

90m4
e

´

e2

4π

¯2

Ae

˜

´2∇g

`

gab gcd ggf geh Fac Fbd Ffh
˘

´ 7
16 g

εebcd εafgh∇b pFcd Faf Fghq ´ 8 ε∇g

ˆ

gcd gab gef ggh hmn Ffh Fam Fbn

˙

¸

“
ş

d4x
?
´g 1

45m4
e

´

e2

4π

¯2

Ae∇g

˜

´F 2 F ge ´ 7
4
rF eg p rFaf F

af q

77



´ 4 ε gcd gab gef ggh hmn Ffh Fam Fbn

¸

which includes the Euler-Heisenberg corrections.

A reminder: The energy-momentum tensors are in equations (4.25) and (4.26). The scalar dark

matter action is

S3 “ ´
1

2

ż

d4x
a

´g

ˆ

gab Baφ Bbφ`m
2φ2

` hde

ˆ

ε gcd gje T scalar
cj `

ε2

2
gad gfe h b

f pBaφ Bbφq

˙˙

(4.28)

S3 “

ż

d4x
a

´g φ

ˆ

1

2
gab∇a∇b φ´

1

2
m2φ´

1

2
ε

ˆ

´
1

2
gab gcd∇a

`

hcd∇b φ
˘

`
1

2
m2hφ´∇c∇d φ

˙

´
ε2

4
∇a

`

haf h b
f Bb φ

˘

˙

, (4.29)

We can double check our results in the the Minkowski limit. Consider the gravitational wave

equation of motion from the action

S “

ż

d4x
a

´g hde

ˆ

´
1

2

ε2

4κ
lhde ´

ε2

4κ

´

gqw R
d

qwa h
ae
´ gcdR

e

rca h
ar
¯

(4.30)

´
1

4
p´2 ε gcd gfe T em

cf q ´
1

4
ε2 hab gcd gfe Fac Fbf

˙

which yields

1

2
lhde `

´

gqw R
d

qwa h
ae
´ gcdR

e

rca h
ar
¯

´
2κ

ε
gcd gfe T em

cf ` κh
ab gcd gfe Fac Fbf “ 0 (4.31)

To match Dolgov and Ejlli, note we substitute κ Ñ κ2{2 and ε Ñ κ. Note Dolgov and Ejlli
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equation 7 leaves off the proper normalization of the kinetic term. The last term of the above

equation is left off in Dolgov and Ejlli because it is higher order. The background Riemann tensors

are zero in the Minkowski limit. As for the electromagnetic equation of motion from the action we

have

S “
1

2

ż

d4x
a

´g Af

˜

gag gcf p∇g Facq ´ ε
`

gcd gfe gab ´ gcd gbe gaf
˘

∇bphde Facq (4.32)

`
1

2
ε2 gcd∇b

`

gfe hab hde Fac ´ g
be haf hde Fac

˘

`
λ̃

2
?
´g

εabfd∇d pφFab q

´
2

45m4
e

ˆ

e2

4π

˙2

∇g

`

F 2 F gf
˘

´
7

2

1

45m4
e

ˆ

e2

4π

˙2

∇g

´

rF fg
rFah F

ah
¯

´
8

45m4
e

ˆ

e2

4π

˙2

ε gcd gab gfk ggh∇g ph
mn Fkh Fam Fbnq

¸

.

The equation of motion is

∇g

˜

F gf
´

1

90m4
e

ˆ

e2

4π

˙2
´

4F 2 F gf
´ 7 rF fg

rFah F
ah
¯

¸

(4.33)

“ ε∇b

`

hcf F b
c ´ h

cb F f
c

˘

´
λ̃

2
?
´g

εabfd∇d pφFab q (4.34)

`
8 ε

45m4
e

ˆ

e2

4π

˙2

∇g

`

gcd hmn F fg Fam F
a
n

˘

´
1

2
ε2 gcd∇b

`

gfe hab hde Fac ´ g
be hafhde Fac

˘

This pretty much matches Dolgov and Ejlli.
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4.1.4 Electromagnetic and Scalar Perturbation Expansions from the Action

Equations (4.1) and (4.2) separates the long and short wavelength gravitational waves. We can do

the same for the electromagnetic and dark matter waves. We can make the following expansions

Fab “ F ab ` αF
p1q
ab ` . . . φ “ φ` β φp1q ` . . . (4.35)

For notational convenience, we may define F p1qab “ fab and φp1q “ θ. The expanded energy-

momentum tensors are

T em
cd “ T

em

cd ` αT
em p1q
cd ` α2 T

em p2q
cd ` . . . (4.36)

“

ˆ

gabF acF bd ´
1

4
gcd g

ab gef F aeF bf

˙

` α
´

gab
´

F acF
p1q
bd ` F

p1q
ac F bd

¯

(4.37)

´
1

4
gcd g

ab gef
´

F aeF
p1q
bf ` F

p1q
ae F bf

¯

` α2

ˆ

gabF p1qac F
p1q
bd ´

1

4
gcd g

ab gef F p1qae F
p1q
bf

˙

T scalar
cd “ T

scalar

cd ` β T
scalar p1q
cd ` β2 T

scalar p2q
cd ` . . . (4.38)

“ gcd

ˆ

1

2
gab Baφ Bbφ`

1

2
m2φ

2
˙

´ Bcφ Bdφ

` β
`

gcd
`

gab Baφ Bbφ
p1q
`m2 φφp1q

˘

´ Bc φ Bdφ
p1q
´ Bd φ Bcφ

p1q
˘

` β2

ˆ

gcd

ˆ

1

2
gab Baφ

p1q
Bbφ

p1q
`

1

2
m2 φp1q 2

˙

´ Bdφ
p1q
Bcφ

p1q

˙

The relevant expanded actions, up to second order in the perturbative parameters, are now
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S2 “
1

4

ż

d4x
a

´g
´

gabgcd
`

F ac ` αF
p1q
ac

˘

´

F bd ` αF
p1q
bd

¯

(4.39)

` hde

´

´2εgcdgfe
´

T
em

cf `
emp1q
cf `α2T

emp2q
cf

¯

` ε2habgcdgfe
´

F ac ` αF
p1q
ac

´

F bf ` αF
p1q
bf

¯¯¯

(4.40)

“ ´
1

4

ż

d4x
a

´g
´

A
p1q
d

`

´4αgabgcd
`

∇bF ac

˘

´ 2α2gabgcd
`

∇bF
p1q
ac

˘

(4.41)

` 4α
`

gcggdegmd ´ gcggnegmd
˘

∇n

`

hgeFmc

˘

` gabgcdF acF bd (4.42)

` hde
`

´2εgcdgfeT
em

cf ` ε
2gcdgfehabF acF bf

˘

(4.43)

We assume the background is constant on the length scales of interest, i.e. the covariant derivatives

of background fields is zero. We can apply the gauge fixing condition

∇aA
p1q a

“ 0 (4.44)
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The action now becomes

S2 “ ´
1

4

ż

d4x
a

´g

ˆ

A
p1q
d

`

´2α2 gab gcd
`

∇b F
p1q
ac

˘

(4.45)

` 4α ε
`

gcg gde gmn ´ gcg gne gmd
˘

∇n

`

hgeFmc

˘

(4.46)

` gab gcdF acF bd ´ 2 ε gcd gfe T
em

cf hde ` ε
2 gcd gfe F ac F bf h

ab hde

˙

“ ´
1

4

ż

d4x
a

´g

ˆ

A
p1q
d

´

´2α2 gab gcd
`

∇b∇aA
p1q
c ´∇b∇cA

p1q
a

˘

(4.47)

` 4α ε
`

gcg gde gmn ´ gcg gne gmd
˘

∇n

`

hgeFmc

˘

¯

` gab gcdF acF bd ´ 2 ε gcd gfe T
em

cf hde ` ε
2 gcd gfe F ac F bf h

ab hde

˙

where we applied the gravitational gauge fixing conditions. The equation (4.46) is consistent with

equation (4.1.4.1). We can also use

∇b∇cAa “ ∇c∇bAa ´R
r

abcAr (4.48)

and write

S2 “ ´
1

4

ż

d4x
a

´g

ˆ

´2α2A
p1q
d

`

gcd
`

lAp1qc ` g
abR

r

abcA
p1q
r

˘

(4.49)

´
2 ε

α

`

gcg gde gmn ´ gcg gne gmd
˘

∇n

`

hgeFmc

˘

` gab gcdF acF bd ` hde
`

´2 ε gcd gfe T
em

cf ` ε
2 gcd gfe F ac F bf h

ab
˘

˙
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We also have the following Euler-Heisenberg action to second order in the perturbative parameters

S5 “

ż

d4x
a

´g
1

90m4
e

ˆ

e2

4π

˙2
˜

´

F
2
` 2αFF p1q ` α2 F p1qF p1q

¯

ˆ

´

F
2
` 2αF F p1q ` α2 F p1qF p1q

¯

(4.50)

`
7

4

ˆ

´

F rF ` α
´

F rF p1q ` F p1qrF
¯

` α2F p1q rF p1q
¯

ˆ

´

F F̃ ` α
´

F rF p1q ` F p1qrF
¯

` α2 F p1q rF p1q
¯

˙

´ 4 ε hde

´

F
2
F

d

a F
ae
` α

´

F
2
F

d

a F
p1q ae

` F
2
F p1q da F

ae
` 2F F p1qF

d

a F
ae
¯¯

¸

“

ż

d4x
a

´g
1

90m4
e

ˆ

e2

4π

˙2
˜

F
4
`

7

4
pF rF qpF F̃ q ´ 4 ε hde F

2
F

d

a F
ae

(4.51)

` α

ˆ

8F
2
F
cd∇c `

14
?
´g

pF rF q εabcd F ab∇c

˙

A
p1q
d

` α2

ˆ

4F
2
F p1q cd∇cA

p1q
d ` 8F

gh
F
cd
F
p1q
gh∇cA

p1q
d `

7
?
´g

pF rF q εabcd F
p1q
ab ∇cA

p1q
d (4.52)

`
14
?
´g

F rF p1q εabcd F ab∇cA
p1q
d

˙

´ 4α ε
´

F
2
h d
g F

ag∇a ´ F
2
h a
g F

dg∇a ` F
2
hde F

ae∇a ´ F
2
hae F

de∇a (4.53)

` 4hgeF
g

a F
ae
F
db∇b

¯

A
p1q
d

¸

After integration by parts and assuming the background quantities are static,

+ α2

ˆ

´4F
2 ∇c F

p1q cd ´ 8F
gh
F
cd∇c F

p1q
gh ´

7?
´g
pF rF q εabcd∇cF

p1q
ab

´ 14?
´g
pF

ef ∇c
rF
p1q
ef q ε

abcd F ab

˙

A
p1q
d
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´ 4α ε
´

´F
2
F
ag∇a h

d
g ` F

2
F
dg∇a h

a
g ´ F

2
F
ae∇a h

d
e ` F

2
F
de∇a h

a
e

´ 4F
g

a F
ae
F
db∇b hge

¯

A
p1q
d

¸

“
ş

d4x
?
´g 1

90m4
e

´

e2

4π

¯2

˜

F
4
` 7

4
pF rF qpF F̃ q ´ 4 ε hde F

2
F

d

a F
ae

` α2

ˆ

´8F
gh
F
cd∇c F

p1q
gh ´

7?
´g
pF rF q εabcd∇cF

p1q
ab ´

14?
´g
pF

ef ∇c
rF
p1q
ef q ε

abcd F ab

˙

A
p1q
d

` 4α ε
´

2F
2
F
ag∇a h

d
g ` 4F

g

a F
ae
F
db∇b hge

¯

A
p1q
d

¸
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As for the scalar action, we can expand to find

S3 “ ´
1

2

ż

d4x
a

´g

ˆ

gab BaφBbφ` 2β gab BaφBbφ
p1q
` β2 gab Baφ

p1q
Bbφ

p1q (4.54)

`m2 φ
2
` 2m2 β φφp1q (4.55)

` β2m2 φp1q
2

` ε gcd gje hde

´

T
scalar

cj ` β T
p1q scalar
cj ` β2 T

p2q scalar
cj

¯

`
ε2

2
gad gfe hde h

b
f

`

Baφ Bbφ
˘

˙

“ ´
1

2

ż

d4x
a

´g

ˆ

gab BaφBbφ`m
2 φ

2
` ε hde T

de

scalar ` 2β gab BaφBbφ
p1q

` β2 gab Baφ
p1q
Bbφ

p1q (4.56)

` 2m2 β φφp1q ` β2m2 φp1q
2

` β ε hde g
de
`

gab Baφ Bbφ
p1q
`m2 φφp1q

˘

(4.57)

´ 2 β ε hcj Bc φ Bjφ
p1q
`
ε2

2
hae h

eb
Baφ Bbφ

˙

“ ´
1

2

ż

d4x
a

´g

ˆ

gab Baφ Bbφ`m
2 φ

2
` φp1q

´

´2 β lφ` 2m2 β φ

´ β2 lφp1q ` β2m2 φp1q (4.58)

` 2 β ε hcj pBjBc φq ` ε hde T
de

scalar `
ε2

2
hae h

eb
Baφ Bbφ

¯

˙
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which is truncated at the perturbative parameter squared. As for the axion-photon coupling

S4 “

ż

d4x
a

´g
λ̃

8
?
´g

εabcd
`

φ` β φp1q
˘

´

F ab ` αF
p1q
ab

¯´

F cd ` αF
p1q
cd

¯

(4.59)

“

ż

d4x
a

´g
λ̃

8
?
´g

εabcd
`

φ` β φp1q
˘

´

F cd F ab ` 2αF
p1q
ab F cd ` α

2 F
p1q
ab F

p1q
cd

¯

(4.60)

S4 “

ż

d4x
a

´g
λ̃

8
?
´g

εabcd
´

F cd F ab φ` 2αF
p1q
ab F cd φ` α

2 F
p1q
ab F

p1q
cd φ (4.61)

` φp1q
´

β F cd F ab ` 2αβ F
p1q
ab F cd

¯¯

(4.62)

S4 “

ż

d4x
a

´g
λ̃

8
?
´g

εabcd
´

F cd F ab φ´ A
p1q
b ∇a

´

4αF cd φ` 2α2 F
p1q
cd φ

` 4αβ φp1qF cd ` β φ
p1q F cd F ab

¯

4.1.5 High-Frequency Expanded Equations of Motion

The action with the gravitational perturbation factored out is

S “

ż

d4x
a

´g hde

ˆ

´
1

2

ˆ

ε2

4κ

˙

lhde ´

ˆ

ε2

4κ

˙

´

gqw R
d

qwa h
ae
´ gcdR

e

rca h
ar
¯

(4.63)

`
1

2
ε gcd gfe T em

cf ´
1

4
ε2 hab gcd gfe F ac F bf ´

ε

2
gcd gje T scalar

cj

´
ε2

4
gad gfe h b

f pBaφ Bbφq ´
2 ε

45m4
e

ˆ

e2

4π

˙2

F 2 F d
a F ae

˙

The resulting gravitational equations of motion are

1

2
lhde `

´

gqw R
d

qwa h
ae
´ gcdR

e

rca h
ar
¯

´
2κ

ε
gcd gfe T em

cf ` κh
ab gcd gfe Fac Fbf

`
2κ

ε
gcd gje T scalar

cj ` κ gad gfe h b
f pBaφ Bbφq `

8κ

45m4
e

ˆ

e2

4π

˙2 ˆ
1

ε

˙

F 2 F d
a F ae

“ 0
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where

T em
cd “ gab Fac Fbd ´

1

4
gcd g

ab gef Fae Fbf (4.64)

T scalar
cd “ gcd

ˆ

1

2
gab Baφ Bbφ`

1

2
m2φ2

˙

´ Bcφ Bdφ (4.65)

The action with the electromagnetic perturbation factored out is

S2 “ ´
1

4

ż

d4x
a

´g

ˆ

´2α2A
p1q
d

`

gcd
`

lAp1qc ` g
abR

r

abcA
p1q
r

˘

(4.66)

´
2 ε

α

`

gcg gde gmn ´ gcg gne gmd
˘

∇n

`

hgeFmc

˘

` gab gcdF acF bd ` hde
`

´2 ε gcd gfe T
em

cf ` ε
2 gcd gfe F ac F bf h

ab
˘

˙

S “

ż

d4x
a

´g

ˆ

A
p1q
d

ˆ

α2

2
gcd

`

lAp1qc ` g
abR

r

abcA
p1q
r

˘

(4.67)

´
α2

2

2 ε

α

`

gcg gde gmn ´ gcg gne gmd
˘

∇n

`

hgeFmc

˘

(4.68)

1

2
gab gcd∇aFbd ` ε

ˆ

gab∇a

`

hcd Fbd
˘

´
1

4
gmn g

ab gcf ∇a ph
mn Fbf q

˙

`
1

2
ε2 ∇a

`

hab hcd Fbd
˘

(4.69)

`
λ̃

4
?
´g

εabcd∇d pφFabq `
1

90m4
e

ˆ

e2

4π

˙2
˜

´2∇g

`

gab gcd ggf geh Fac Fbd Ffh
˘

(4.70)

´
7

2 g
εebcd εafgh∇b pFcd Faf Fghq ´ 8 ε∇g

ˆ

gcd gab gef ggh hmn Ffh Fam Fbn

˙

¸

“ 0
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The equation of motion is

gcd
`

lAp1qc ` g
abR

r

abcA
p1q
r

˘

´
2 ε

α

`

gcg gde gmn ´ gcg gne gmd
˘

∇n

`

hgeFmc

˘

“ 0 (4.71)

The scalar equations of motion are

1

2
gab∇a∇b φ´

1

2
m2φ´

1

2
ε

ˆ

´
1

2
gab gcd∇a

`

hcd∇b φ
˘

`
1

2
m2hφ´∇c∇d φ

˙

´
ε2

4
∇a

`

haf h b
f Bb φ

˘

`
λ̃

8
?
´g

εabcd Fab Fcd “ 0
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4.1.5 Electromagnetic and Scalar Perturbation Expansions

Equations (4.1) and (4.2) separates the long and short wavelength gravitational waves. We can do

the same for the electromagnetic and dark matter waves. We can make the following expansions

Fab “ F ab ` αF
p1q
ab ` . . . φ “ φ` β φp1q ` . . . (4.72)

For notational convenience, we may define F p1qab “ fab and φp1q “ θ. The expanded energy-

momentum tensors are

T em
cd “ T

em

cd ` αT
em p1q
cd ` α2 T

em p2q
cd ` . . . (4.73)

“

ˆ

gabF acF bd ´
1

4
gcd g

ab gef F aeF bf

˙

` α
´

gab
´

F acF
p1q
bd ` F

p1q
ac F bd

¯

(4.74)

´
1

4
gcd g

ab gef
´

F aeF
p1q
bf ` F

p1q
ae F bf

¯

` α2

ˆ

gabF p1qac F
p1q
bd ´

1

4
gcd g

ab gef F p1qae F
p1q
bf

˙

T scalar
cd “ T

scalar

cd ` β T
scalar p1q
cd ` β2 T

scalar p2q
cd ` . . . (4.75)

“ gcd

ˆ

1

2
gab Baφ Bbφ`

1

2
m2φ2

˙

´ Bcφ Bdφ (4.76)
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S2 “ ´
1

4

ż

d4x
a

´g

ˆ

gab gcd F ac F bd ` 2α gab gcd F ac F
p1q
bd ` α

2 gab gcd F p1qac F
p1q
bd (4.77)

´ 2 ε hcd T em
cd ` ε

2 hab hcd
´

F ac F bd ` 2αF ac F
p1q
bd ` α

2 F p1qac F
p1q
bd

¯

˙

S3 “ ´
1

2

ż

d4x
a

´g

ˆ

gab Baφ Bbφ`m
2φ2

` ε hcd T scalar
cd `

ε2

2
haf h b

f pBaφ Bbφq

˙

(4.78)

S4 “
λ̃

8

ż

d4x εabcd φFab Fcd (4.79)

S5 “
1

90m4
e

ˆ

e2

4π

˙2 ż

d4x
a

´g

˜

ˆ

`

gab gcd Fac Fbd
˘2
`

7

4

ˆ

1
?
´g

εabcd Fab Fcd

˙2 ˙

(4.80)

` ε

ˆ

´4hmn gab gef ggh Feg Ffh Fam Fbn

˙

¸
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4.1.6 Expanded Lagrangian

The first term in the lagrangian, equation (4.11), can be expanded as

1

2κ
p
?
´g Rq “

1

2κ

´

a

´g `
ε

2

a

´g gcd hcd ` . . .
¯

ˆ

˜

R `
ε

2

´

gbd∇a∇tb h
a
du ´ g

bd∇d∇b h´ g
bd lhbd

¯

(4.81)

`
ε2

4

´

gbd∇b hce∇d h
ce
` 2 gbd hce

`

∇b∇d hce `∇c∇e hbd ´∇d∇e hcb ´∇b∇e hcd
˘

(4.82)

` 2 gbd geggch∇g hdh
`

∇e hcb ´∇c heb
˘

´ gbd
`

∇e h
ce (4.83)

´
1

2
gce∇e h

˘ `

∇d hcb `∇b hcd ´∇c hbd
˘

¯

¸

“
1

2κ

a

´g

˜

R `
ε

2
gbd

´

∇a∇tb h
a
du ´∇d∇b h´lhbd

¯

(4.84)

`
ε2

4

´

2hce
´

lhce `∇c∇e h´∇d∇e h
d
c ´∇b∇e h

b
c

¯

` gbd∇b hce∇d h
ce

` 2 gbd geggch∇g hdh
`

∇e hcb ´∇c heb
˘

´ gbd
`

∇e h
ce (4.85)

´
1

2
gce∇e h

˘ `

∇d hcb `∇b hcd ´∇c hbd
˘

¯

¸

`
ε

4κ

a

´g glm hlm

´

R `
ε

2
gbd

`

∇a∇tb h
a
du ´∇d∇b h´ lhbd

˘

¯
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1

2κ
p
?
´g Rq “

1

2κ

a

´g

˜

R `
ε

2
gbd

´

∇a∇tb h
a
du ´∇d∇b h´lhbd

¯

(4.86)

`
ε2

4

´

2hce
´

lhce `∇c∇e h´∇d∇e h
d
c ´∇b∇e h

b
c

¯

` gbd∇b hce∇d h
ce
` 2 geg∇g h

bc∇e hcb

`
1

2
∇e h∇d h

ed
`

1

2
∇e h∇b h

eb
´∇e h

ce∇c h

´ 2∇g h
bc∇c h

g
b ´∇e h

ce∇d h
d
c ´∇e h

ce∇b h
b
c `

1

2
gce∇e h∇c h

¯

¸

`
ε

4κ

a

´g glm hlm

´

R `
ε

2
gbd

`

∇a∇tb h
a
du ´∇d∇b h´ lhbd

˘

¯
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after the gravitational wave expansion is

L “

´

a

´g `
ε

2

a

´g gcd hcd ` . . .
¯

˜

1

2κ

´

R `
ε

2

´

gbd∇a∇b h
a
d ` g

bd∇a∇d h
a
b

´ gbd∇d∇b h´ g
bd lhbd

¯

`
ε2

4

´

gbd∇b hce∇d h
ce
` 2 gbd hce

`

∇b∇d hce `∇c∇e hbd ´∇d∇e hcb ´∇b∇e hcd
˘

` 2 gbd geg gch∇g hdh∇e hcb

´ 2 gbd geg gch∇g hdh∇c heb ´ g
bd∇e h

ce∇d hcb ´ g
bd∇e h

ce∇b hcd ` g
bd∇e h

ce∇c hbd

`
1

2
gbd gce∇e h∇d hcb

`
1

2
gbd gce∇e h∇b hcd ´

1

2
gbd gce∇e h∇c hbd

˘

` . . .
¯

´
1

4

ˆ

gab ´ ε hab `
1

2
ε2 hac h b

c ` . . .

˙ ˆ

gcd ´ ε hcd `
1

2
ε2 hce h d

e ` . . .

˙

Fac Fbd

´
1

2

ˆˆ

gab ´ ε hab `
1

2
ε2 hac h b

c ` . . .

˙

Baφ Bbφ`m
2φ2

˙

`
λ̃

8

ˆ

1
?
´g

´
ε

2
?
´g

gcd hcd ` . . .

˙

εabcd φFab Fcd

¸

`
1

90m4
e

´

a

´g `
ε

2

a

´g gcd hcd

¯

ˆ

ˆ

e2

4π

˙2
˜

``

gab ´ ε hab
˘ `

gcd ´ ε hcd
˘

Fac Fbd
˘2

`
7

4

ˆˆ

1
?
´g

´
ε

2
?
´g

gcd hcd

˙

εabcd Fab Fcd

˙2
¸

` . . .

(4.87)
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L “
a

´g

˜

1

2κ

´

R `
ε

2

´

gbd∇a∇b h
a
d ` g

bd∇a∇d h
a
b ´ g

bd∇d∇b h´ g
bd lhbd

¯

`
ε2

4

´

gbd∇b hce∇d h
ce
` 2 gbd hce

`

∇b∇d hce `∇c∇e hbd ´∇d∇e hcb ´∇b∇e hcd
˘

` 2 gbd geg gch∇g hdh∇e hcb

´ 2 gbd geg gch∇g hdh∇c heb ´ g
bd∇e h

ce∇d hcb ´ g
bd∇e h

ce∇b hcd ` g
bd∇e h

ce∇c hbd

`
1

2
gbd gce∇e h∇d hcb

`
1

2
gbd gce∇e h∇b hcd ´

1

2
gbd gce∇e h∇c hbd ` . . .

¯

´
1

4

ˆ

gab ´ ε hab `
1

2
ε2 hac h b

c ` . . .

˙ ˆ

gcd ´ ε hcd `
1

2
ε2 hce h d

e ` . . .

˙

Fac Fbd

´
1

2

ˆˆ

gab ´ ε hab `
1

2
ε2 hac h b

c ` . . .

˙

Baφ Bbφ`m
2φ2

˙

`
λ̃

8

ˆ

1
?
´g

´
ε

2
?
´g

gcd hcd ` . . .

˙

εabcd φFab Fcd

¸

`

´ ε

2

a

´g gcd hcd

¯

˜

1

2κ

´

R `
ε

2

´

gbd∇a∇b h
a
d ` g

bd∇a∇d h
a
b ´ g

bd∇d∇b h´ g
bd lhbd

¯

´
1

4

ˆ

gab ´ ε hab `
1

2
ε2 hac h b

c ` . . .

˙ ˆ

gcd ´ ε hcd `
1

2
ε2 hce h d

e ` . . .

˙

Fac Fbd

´
1

2

ˆˆ

gab ´ ε hab `
1

2
ε2 hac h b

c ` . . .

˙

Baφ Bbφ`m
2φ2

˙

`
λ̃

8

ˆ

1
?
´g

´
ε

2
?
´g

gcd hcd ` . . .

˙

εabcd φFab Fcd

¸

`
1

90m4
e

´

a

´g `
ε

2

a

´g gcd hcd

¯

ˆ

ˆ

e2

4π

˙2
˜

``

gab ´ ε hab
˘ `

gcd ´ ε hcd
˘

Fac Fbd
˘2

`
7

4

ˆˆ

1
?
´g

´
ε

2
?
´g

gcd hcd

˙

εabcd Fab Fcd

˙2
¸

` . . .
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L “
a

´g

ˆ

1

2κ
R `

ε

4κ

ˆ

gbd∇a∇tb h
a
du ´ g

bd∇d∇b h´ g
bd lhbd

˙

´
1

4
gab gcdFac Fbd `

ε

2
gab hcdFac Fbd ´

1

2

`

gabBaφ Bbφ`m
2φ2

˘

`
ε

2
habBaφ Bbφ

˙

`
ε

2

a

´g gcd hcd

ˆ

1

2κ
R ´

1

4
gab gcd Fac Fbd ´

1

2

`

gabBaφ Bbφ`m
2φ2

˘

˙

`
λ̃

8
εabcd φFab Fcd

`
1

90m4
e

ˆ

e2

4π

˙2
˜

a

´g

˜

`

gab gcd Fac Fbd ´ ε g
ab hcd Fac Fbd ´ ε h

abgcd Fac Fbd
˘2

`
7

4

ˆ

1
?
´g

εabcd Fab Fcd ´
ε

2
?
´g

`

gef hef
˘

εabcd Fab Fcd

˙2
¸

`
ε

2

a

´g gcd hcd

˜

`

gabgcdFac Fbd
˘2
`

7

4

ˆ

1
?
´g

εabcd Fab Fcd

˙2
¸¸

(4.88)
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L “
a

´g

ˆ

1

2κ
R ´

1

4
gab gcdFac Fbd ´

1

2

`

gabBaφ Bbφ`m
2φ2

˘

˙

`
a

´g
ε

4κ

ˆ

gbd∇a∇tb h
a
du ´ g

bd∇d∇b h´ g
bd lhbd

˙

(4.89)

`
a

´g
ε

2
hcd

ˆ

gab Fac Fbd ` Bcφ Bdφ´
1

4
gcd g

ab gef Fae Fbf ´
1

2
gcd

`

gabBaφ Bbφ`m
2φ2

˘

˙

`
a

´g
1

2κ

ε

2
gcd hcdR

`
λ̃

8
εabcd φFab Fcd

`
1

90m4
e

ˆ

e2

4π

˙2
˜

a

´g

˜

`

gab gcd Fac Fbd ´ ε g
ab hcd Fac Fbd ´ ε h

abgcd Fac Fbd
˘2

`
7

4

ˆ

1
?
´g

εabcd Fab Fcd ´
ε

2
?
´g

`

gef hef
˘

εabcd Fab Fcd

˙2
¸

+ ε{2ˆ
?
´g gcd hcd

˜

`

gabgcdFac Fbd
˘2
` 7

4

´

1?
´g
εabcd Fab Fcd

¯2

¸¸

(4.90)

We can substitute equation (4.1) into Einstein’s equations, Gab “ κTab, which we write in the

trace-reversed form

Rab “ κ

ˆ

Tab ´
1

2
gab T

˙

, (4.91)
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where T is the trace of the energy-momentum tensor. We derive the energy-momentum tensor in

the next section. As a reminder, the Ricci tensor can be written schematically as

Rab “ Rab ` εR
p1q
ab ` ε

2R
p2q
ab ` . . . (4.92)

where Rp1qab and Rp2qab are linear and quadratic in hab. Rab is composed solely of the background

metric and therefore only has the low frequency modes. Rp1qab is linear in hab and therefore contains

only the high-frequency modes. Because Rp2qab is quadratic in the metric perturbation, it can have

both high- and low-frequency modes. Note, two high-frequency modes can combine to generate a

low-frequency mode. In terms of the low- and high-frequency modes, we can rewrite the Einstein

equations as

Rab ` ε
2R

p2q
ab

ˇ

ˇ

ˇ

ˇ

ˇ

low

“ κ

ˆ

Tab ´
1

2
gab T

˙

ˇ

ˇ

ˇ

ˇ

ˇ

low

“ κ

ˆ

T ab ´
1

2
gab T

˙

` ε2 κ

ˆ

T
p2q
ab ´

1

2
gab T

p2q

˙

ˇ

ˇ

ˇ

ˇ

ˇ

low

(low-frequency)

(4.93)

εR
p1q
ab

ˇ

ˇ

ˇ

high
`ε2R

p2q
ab

ˇ

ˇ

ˇ

high
“ κ

ˆ

Tab ´
1

2
gab T

˙

ˇ

ˇ

ˇ

ˇ

ˇ

high

R
p1q
ab

ˇ

ˇ

ˇ

high
“
α

ε
κ

ˆ

T
p1q
ab ´

1

2
gab T

p1q

˙

ˇ

ˇ

ˇ

high
`κ

ˆ

T 1ab ´
1

2
gab T

1

˙

ˇ

ˇ

ˇ

high
(high frequency)

(4.94)

` ε κ

ˆ

T
p2q
ab ´

1

2
gab T

p2q

˙

ˇ

ˇ

ˇ

high
´εR

p2q
ab

ˇ

ˇ

ˇ

high
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whereRp1q andRp2q is given in equation (4.107). The first equation impacts the energy-momentum

tensor. The second equation will become the gravity wave equation in curved spacetime.

Given the separation of scales ă L, we now chose a scale l so that ă l ă L. For the length

scale l, the low-frequency modes are effectively static. We can therefore spatially average over

many reduced wavelengths, , of the metric perturbation 3. Equation (4.93) now becomes

Rab “ ´ε
2
A

R
p2q
ab

E

` κ
A

Tab ´
1

2
gab T

E

“ ´ε2
A

R
p2q
ab

E

` κ

ˆ

T ab ´
1

2
gab T

˙

(4.95)

where we have defined

xTaby “ T ab xgab T y “ gab T , (4.96)

which are the low frequency components of the energy-momentum tensor and metric. If we want

to consider a different , where e.g. À L, we can use an renormalization group analysis to relate the

length scales [66]. We can define

Rp2q “ gabR
p2q
ab (4.97)

as well as

tab “ ´
1

κ
xR

p2q
ab ´

1

2
gabR

p2q
y t “ gab tab “

1

κ
xRp2qy . (4.98)

3If we take ε „ fb{f , a temporal average over several 1{f periods of the metric perturbation is needed.
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Combing the two equations in equation (4.98) generates

´xR
p2q
ab y “ κ

ˆ

tab ´
1

2
gab t

˙

(4.99)

and substituting in to equation (4.95) generates

Rab “ ε2 κ

ˆ

tab ´
1

2
gab t

˙

` κ

ˆ

T ab ´
1

2
gab T

˙

“ κ
`

T ab ` ε
2 tab

˘

´
κ

2
gab

`

T ` ε2 t
˘

(4.100)

Contracting the above yields R “ ´κ pε2 t` T q and our final form

Rab ´
1

2
gabR “ κ

`

T ab ` ε
2 tab

˘

. (low frequency) (4.101)

Here it is clear tab is the energy-momentum contribution from the background curvature. It is

also clear the T ab sources the long-wavelength modes. This is how the low-frequency modes are

sourced by the low-frequency gravitational waves and the energy-momentum tensor.

4.1.7 Gravitational Perturbative Expansion

Using equation (4.1) and (4.2), we can now compute the connection, Ricci scalar and Ricci tensors

in terms of background quantities and the curvature perturbation hab.
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The expanded connection is

Γabc “ Γ
a

bc `
ε

2
gam

ˆ

∇c hmb `∇b hmc ´∇m hbc

˙

`
ε2

4

ˆ

gam
´

∇c

`

hmd h
d
b

˘

`∇b

`

hmd h
d
c

˘

´∇m

`

hbd h
d
c

˘

¯

(4.102)

´ 2ham
´

∇c hmb `∇b hmc ´∇m hbc

¯

˙

`Opε3q .

where

Γ
m

ij “
1

2
gmk pBjgki ` Bjgki ´ Bjgkiq (4.103)

Recall ε „ Op{Lq. Also ε, tracks the number of hab that are in each expression. The corresponding

Riemann tensor is [65]

Ra
bcd “ R

a

bcd ` εR
a p1q
bcd ` ε

2R
a p2q
bcd ` . . .

“ R
a

bcd `
ε

2

ˆ

∇c∇d h
a
b `∇c∇b h

a
d ´∇d∇c h

a
b (4.104)

´∇d∇b h
a
c ` g

am∇d∇m hbc ´ g
am∇c∇m hbd

˙

(4.105)

`
ε2

4

ˆ

∇c∇b ph
a
r h

r
dq ´∇d∇b ph

a
r h

r
cq ` g

am∇d∇m phbr h
r
cq ´ g

am∇c∇m phbr h
r
dq

´ 2
`

∇c h
am
˘`

∇d hmb `∇b hmd ´∇m hbd
˘

´ 2ham
`

∇c∇b hmd ´∇c∇m hbd
˘

` 2
`

∇d h
am
˘ `

∇c hmb `∇b hmc ´∇m hbc
˘

` 2ham
`

∇d∇b hmc ´∇d∇m hbc
˘

`
`

∇e h
a
c `∇c h

a
e ´ g

am∇m hce
˘`

∇d h
e
b `∇b h

e
d ´ g

eq∇q hbd
˘

´
`

∇e h
a
d `∇d h

a
e ´ g

aq∇q hde
˘`

∇c h
e
b `∇b h

e
c ´ g

em∇m hbc
˘

˙

`Opε3q .

where

R
a

bcd “ BcΓ
a

bd ´ BbΓ
a

cd ` Γ
a

ce Γ
e

bd ´ Γ
a

be Γ
e

cd . (4.106)
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The first line in the above equation again matches the Opεq result given in [68]. The expanded

Ricci tensor is now

Rbd “ Rbd ` εR
p1q
bd ` ε

2R
p2q
bd ` . . . (4.107)

“ Rbd `
ε

2

ˆ

∇a∇tb h
a
du ´∇d∇b h´lhbd

˙

`
ε2

4

ˆ

∇b hce∇d h
ce
` 2hce

`

∇b∇d hce `∇c∇e hbd ´∇d∇e hcb ´∇b∇e hcd
˘

` 2 geggch∇g hdh
`

∇e hcb ´∇c heb
˘

´

ˆ

∇e h
ce
´

1

2
gce∇e h

˙

`

∇d hcb `∇b hcd ´∇c hbd
˘

˙

` Opε3q

where Rbd is the standard Ricci tensor

Rbd “ BaΓ
a

bd ´ BbΓ
a

ad ` Γ
a

acΓ
c

bd ´ Γ
a

bcΓ
c

ad (4.108)

which matches the equation in [65]. We will use this equation in trace-reversed Einstein equa-

tions. The trace-reversed Einstein equation also requires the energy-momentum tensor. For future

convenience, we can modify the ε term by using the identity

1

2
∇a∇tb h

a
du “

1

2

`

∇b∇a h
a
d `Rsb h

s
d ´R

s

dab h
a
s `∇d∇a h

a
b `Rrd h

r
b ´R

s

bad h
a
s

˘
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The Ricci tensor is now

Rbd “ Rbd `
ε

2

ˆ

∇b∇a h
a
d `∇d∇a h

a
b ´∇d∇b h´lhbd `Rsb h

s
d ´R

s

dab h
a
s `Rrd h

r
b ´R

s

bad h
a
s

˙

(4.109)

`
ε2

4

ˆ

∇b hce∇d h
ce
` 2hce

`

∇b∇d hce `∇c∇e hbd ´∇d∇e hcb ´∇b∇e hcd
˘

` 2 geggch∇g hdh
`

∇e hcb ´∇c heb
˘

´

ˆ

∇e h
ce
´

1

2
gce∇e h

˙

`

∇d hcb `∇b hcd ´∇c hbd
˘

˙

`Opε3q

Using the parametrization described in the previous section, we can determine the most relevant

terms. The derivatives in each expression yield factors of and L when they act on low-frequency

and high-frequency objects. For example,

∇b∇a h
a
d `∇d∇a h

a
b ´∇d∇b h´lhbd „ A{2 (4.110)

Rsb h
s
d ´R

s

dab h
a
s `Rrd h

r
b ´R

s

bad h
a
s „ A{L2 (4.111)

where we follow the convention of MTW [65] and parametrize the dimensionless amplitude of the

metric perturbation with A. Because ! L, then 1{L ! 1{ and the second line in the above two

102



equations is far more suppressed. The other terms have a approximate parametrization of

Rbd “ Rbd
loomoon

1{L2

`
ε

2

ˆ

∇b∇a h
a
d `∇d∇a h

a
b ´∇d∇b h´lhbd

looooooooooooooooooooooooomooooooooooooooooooooooooon

A{2

`Rsb h
s
d `Rrd h

r
b

loooooooomoooooooon

A3{2

´R
s

dab h
a
s ´R

s

bad h
a
s

looooooooooomooooooooooon

A{L2

˙

(4.112)

`
ε2

4

ˆ

∇b hce∇d h
ce
` 2hce

`

∇b∇d hce `∇c∇e hbd ´∇d∇e hcb ´∇b∇e hcd
˘

looooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooon

A2{2

` 2 geg gch∇g hdh
`

∇e hcb ´∇c heb
˘

´

ˆ

∇e h
ce
´

1

2
gce∇e h

˙

`

∇d hcb `∇b hcd ´∇c hbd
˘

looooooooooooooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooooooooooooon

A2{2

˙

`Opε3q

which, combined with the ε factors, have roughly 1{L2, 1{pLq, {L3, 1{L2 and 1{L2 suppression

factors, respectively. Because! L, that means {L3 ! 1{L2. Also from this equation,Rp2qab „ A2{2.

Thus, from equation (4.99) and (4.100) as well as T ab “ 0, it is clear Rab „ A2{2, which is not

naively obvious.

The Rsb h
s
d terms in the above equation matches 35.57 in MTW [65]. We can verify that

ε „ Op{Lq by taking κ “ 0 and A “ 1 for equation (4.93). The proof is at 4. We drop the A{L2

4ε Parametrization: If κ “ 0, then the low-frequency equation is parametrically,

Rab ` ε
2R

p2q
ab

ˇ

ˇ

ˇ

low
“ 0 (4.113)

1

L2
`
ε2

2
“ 0 (4.114)

which justifies ε „ {L.
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and A3{2 terms (and those terms that are more suppressed). Assuming A is perturbative, we have

Rbd “ Rbd ` εR
p1q
bd (4.115)

where Rbd is given by equation (4.108) and

R
p1q
bd “

1

2

ˆ

∇b∇a h
a
d `∇d∇a h

a
b ´∇d∇b h´lhbd

˙

. (4.116)

4.2 Curved Spacetime Equations of Motion in the Presence of Non-Trivial Backgrounds

4.2.1 Perturbative Expansions

4.2.1 Bosonic and Electromagnetic Wave Expansion

We can split the physical fields into the long- and short-wavelength parts like the gravitational

waves as well. In addition, there is another length scale of interest, Lc, which is the characteristic

scale over which the amplitude, polarization and/or wavelength of the boson(axion)/electromagnetic

field changes substantially. We especially take this scale to be the length scale of the background

static fields. We assume the boson (axion), electromagnetic and gravity waves are cohered. Thus,

has the same value as with the gravitational wave expansion above. We also require ! Lc, where

as a reminder is the reduced wavelength of the cohered axion, electromagnetic and gravity waves.

We define α “ {Lc and assume Lc ă L. Therefore, α ą ε.

Fab “ F ab ` αF
p1q
ab (4.117)

φ “ φ` αφp1q (4.118)

104



where F p1q and φp1q are the high-frequency fields. F ab and φ are the background fields. This is con-

sistent with Section 1.5.1 in [66]. Here we make the assumption that the expansion for the boson

and electromagnetic waves are equivalent. Because the energy-momentum tensor electromagnetic

and axion fields, we also need to expand it. The energy-momentum expansion is therefore

Tab “ T ab ` αT
p1,0q
ab ` ε T

p0,1q
ab ` α ε T

p1,1q
ab ` α2 T

p2,0q
ab ` ε2 T

p0,2q
ab ` . . . (4.119)

where the a and b indices in T pa,bq represent the perturbative expansion in α and ε, respectively.

Also,

T ab “ gefF aeF bf
loooomoooon

1{L2

`Baφ Bbφ
loomoon

1{L2

´
2

45m4
e

ˆ

e2

4π

˙2 ˆ

gefF
2
F aeF bf

loooooomoooooon

1{L4

˙

´ gab

ˆ

1

4
F

2
loomoon

1{L2

`
1

2

¨

˚

˝

gmn Bmφ Bnφ
loooooomoooooon

1{L2

` m2 φ
2

loomoon

1

˛

‹

‚

(4.120)

´
1

90m4
e

ˆ

e2

4π

˙2
´

F
4

loomoon

1{L4

´
7

4 g

`

εmnopFmnF op

˘2

looooooooomooooooooon

1{L4

¯

˙
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The expansion terms are

T
p1,0q
ab “ gef

´

F p1qae F bf ` F ae F
p1q
bf

¯

looooooooooooooomooooooooooooooon

A{L

`Baφ Bbφ
p1q
` Baφ

p1q
Bbφ

loooooooooooomoooooooooooon

A{L

´
4

45m4
e

ˆ

e2

4π

˙2

gef gmn gop
´

F p1qnp Fmo F ae F bf
looooooooomooooooooon

A{L3

(4.121)

` F np Fmo F
p1q
ae F bf

looooooooomooooooooon

A{L3

¯

´ gab

ˆ

1

2
gmngop F np F

p1q
mo

loooooooomoooooooon

A{L

` gmn Bmφ Bnφ
p1q

looooooomooooooon

A{L

`m2 φφp1q
looomooon

A

´
4

90m4
e

ˆ

e2

4π

˙2 ˆ

gmn gop gqr gst F
p1q
rt Fmo F np F qs

looooooooomooooooooon

A{L3

´
7

4 g
εhijkεdefg F

p1q
jk F de F fg F hi

loooooooomoooooooon

A{L3

˙

“ gef
´

F p1qae F bf ` F ae F
p1q
bf

¯

` Baφ Bbφ
p1q
` Baφ

p1q
Bbφ´ gab

ˆ

1

2
gmngop F np F

p1q
mo (4.122)

` gmn Bmφ Bnφ
p1q
`m2 φφp1q

˙

` . . .
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where on the second line we have kept the terms more suppress than A{L2 and A3{2.

T
p0,1q
ab “ ´hcd F acF bd

loooomoooon

A{L2

`
2

45m4
e

ˆ

e2

4π

˙2
´

hcd F ac F bd F
2

looooooomooooooon

A{L4

` 2 gcd hmngop F ac F bd Fmo F np
looooooooooooooooomooooooooooooooooon

A{L4

¯

(4.123)

´

ˆ

1

4
hab F

2

loomoon

A{L2

`
1

2

ˆ

gmn hab Bmφ Bnφ
loooooooomoooooooon

A{L2

`m2 hab φ
2

looomooon

A

˙

´
1

90m4
e

ˆ

e2

4π

˙2
´

hab F
4

loomoon

A{L4

´
7

16 g
hab

`

εmnopFmnF op

˘2

looooooooooomooooooooooon

A{L4

¯

˙

´ gab

ˆ

´
1

2
hmngop F np Fmo
loooooooomoooooooon

A{L2

´
1

2
hmn Bmφ Bnφ
loooooomoooooon

A{L2

`
4

90m4
e

ˆ

e2

4π

˙2

hmn gop gqr gst Fmo F np F
2

looooooooooooooomooooooooooooooon

A{L4

˙

`
gab

90m4
e

ˆ

e2

4π

˙2 ˆ
7

16 g2 ε
hijkεdefg tr

´

gmn hmn

¯

F de F fg F hi F jk
looooooooooooooooomooooooooooooooooon

A{L4

˙

“ ´m2 hab φ
2
` . . . (4.124)

T
p0,2q
ab “ ´

1

4
m2 hac h

c
b φ

2
` . . .

(4.125)

= -hef
´

F
p1q
ae F bf ` F ae F

p1q
bf

¯

´

ˆ

1
4
hab g

mngop
´

F np F
p1q
mo ` Fmo F

p1q
np

¯

` gmn hab Bmφ Bnφ
p1q `m2 hab φφ

p1q

˙

´ gab

ˆ

´1
2
hmngop

´

F np F
p1q
mo ` Fmo F

p1q
np

¯

´ hmn Bmφ Bnφ
p1q

˙

` . . .
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It is clear there are mixing terms between the gravity-electromagnetic wave and gravity-bosonic

wave.

T
p2,0q
ab “ gcd F p1qac F

p1q
bd

looooomooooon

A2{2

`Baφ
p1q
Bbφ

p1q
looooomooooon

A2{2

´
2

45m4
e

ˆ

e2

4π

˙2

gcdgefggh
ˆ

F acF bdF
p1q

eg F
p1q

fh
loooooooomoooooooon

A2{2L2

`F p1qac F
p1q
bd F egF fh

loooooooomoooooooon

A2{2L2

(4.126)

`

´

F acF
p1q
bd ` F

p1q
ac F bd

¯´

F egF
p1q
fh ` F

p1q
eg F fh

¯

looooooooooooooooooooooooooomooooooooooooooooooooooooooon

A2{2L2

˙

´ gab

˜

1

4
gefggh F p1qeg F

p1q
fh

looooooooomooooooooon

A2{2

`
1

2

´

gcdBcφ
p1q
Bdφ

p1q
looooooomooooooon

A2{2

`m2 φp1q 2
looomooon

A2

¯

´
1

90m4
e

ˆ

e2

4π

˙2 ˆ
´

gab gcd
`

F ac ` αF
p1q
ac

˘

´

F bd ` αF
p1q
bd

¯¯2 ˇ
ˇ

ˇ

α2
loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

A2{2L2

`
7

4

ˆ

1
?
´g

εabcd
´

F ac ` αF
p1q

ac

¯ ´

F bd ` αF
p1q
bd

¯

˙2
ˇ

ˇ

ˇ

α2
loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

A2{2L2

˙

¸

“ gcd F p1qac F
p1q
bd ` Baφ

p1q
Bbφ

p1q (4.127)

The energy-momentum tensor is now

Tab “ T ab ` αT
p1,0q
ab ` ε T

p0,1q
ab ` α ε T

p1,1q
ab ` α2 T

p2,0q
ab ` ε2 T

p0,2q
ab ` . . .

(4.128)
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4.2.1 Low-Frequency Gravitational Wave Equation

From equation (4.101), the low frequency gravitational wave equation is

Rab ´
1

2
gabR “ κ

`

T ab ` ε
2 tab

˘

. (low frequency) (4.129)

where T ab is

T ab “ gefF aeF bf ` Baφ Bbφ´
2

45m4
e

ˆ

e2

4π

˙2

gefF
2
F aeF bf (4.130)

´ gab

ˆ

1

4
F

2
`

1

2

´

gmn Bmφ Bnφ`m
2 φ

2
¯

´
1

90m4
e

ˆ

e2

4π

˙2
´

F
4
´

7

4 g

`

εmnopFmnF op

˘2
¯

˙

As a reminder tab “ ´xR
p2q
ab ´

1
2
gabR

p2qy{κ, equation (4.98), and is the contribution to the energy-

momentum tensor from the curvature.

4.2.1 Expanded High-Frequency Gravitational Wave Equations

From equation (4.94), the high-frequency gravitational wave equation is

R
p1q
ab

ˇ

ˇ

ˇ

high
“
α

ε
κ

ˆ

T
p1,0q
ab ´

1

2
gab T

p1,0q

˙

ˇ

ˇ

ˇ

high
`κ

ˆ

T
p0,1q
ab ´

1

2
gab T

p0,1q

˙

ˇ

ˇ

ˇ

high
(4.131)

` ακ

ˆ

T
p1,1q
ab ´

1

2
gab T

p1,1q

˙

ˇ

ˇ

ˇ

high
(4.132)

` ε κ

ˆ

T
p0,2q
ab ´

1

2
gab T

p0,2q

˙

ˇ

ˇ

ˇ

high
`
α2

ε
κ

ˆ

T
p2,0q
ab ´

1

2
gab T

p2,0q

˙

ˇ

ˇ

ˇ

high
´εR

p2q
ab

ˇ

ˇ

ˇ

high
.

109



where

R
p1q
bd

ˇ

ˇ

ˇ

high
“

1

2

ˆ

∇b∇a h
a
d `∇d∇a h

a
b ´∇d∇b h´lhbd ´R

s

dab h
a
s ´R

s

bad h
a
s

˙

ˇ

ˇ

ˇ

high
(4.133)

R
p2q
bd

ˇ

ˇ

ˇ

high
“

1

4

ˆ

∇b hce∇d h
ce
` 2hce

`

∇b∇d hce `∇c∇e hbd ´∇d∇e hcb ´∇b∇e hcd
˘

` 2 geg gch∇g hdh
`

∇e hcb ´∇c heb
˘

(4.134)

´

ˆ

∇e h
ce
´

1

2
gce∇e h

˙

`

∇d hcb `∇b hcd ´∇c hbd
˘

˙

ˇ

ˇ

ˇ

high

The high-frequency wave equation, before gauge fixing and up to Opε3q, is

1

2

`

´lhbd `∇b∇a h
a
d `∇d∇a h

a
b ´∇d∇b h

˘

(4.135)

“ ´
1

2

ˆ

´R
s

dab h
a
s ´R

s

bad h
a
s

˙

(4.136)

´
ε

4

ˆ

∇b hce∇d h
ce
` 2 geg gch∇g hdh

`

∇e hcb ´∇c heb
˘

` 2hce
`

∇b∇d hce `∇c∇e hbd ´∇d∇e hcb ´∇b∇e hcd
˘

´
`

∇e h
ce
´

1

2
gce∇e h

˘ `

∇d hcb `∇b hcd ´∇c hbd
˘

˙

` κ

ˆ

α

ε
T
p1,0q
ab ` T

p0,1q
ab ` αT

p1,1q
ab

´
1

2
gab

´α

ε
T p1,0q ` T p0,1q ` αT p1,1q

¯

˙

where T p1,0qab , T p0,1qab and T p1,1qab are defined in equations (4.121)- (4.255). The expanded trace of
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the energy-momentum tensor is

T p1,0q “ 2 gef gab F p1qae F bf ` 2 gab Baφ Bbφ
p1q
´

8

45m4
e

ˆ

e2

4π

˙2

gmngop F p1qnp Fmo F
2

´ 4

ˆ

1

2
gmngop F np F

p1q
mo ` g

mn
Bmφ Bnφ

p1q
`m2 φφp1q (4.137)

´
4

90m4
e

ˆ

e2

4π

˙2 ˆ

gqr gst F
p1q
rt F qs F

2
´

7

4 g
εhijkεdefg F

p1q
jk F de F fg F hi

˙˙

“ ´2 gab Baφ Bbφ
p1q
´ 4m2 φφp1q ´

14

45m4
e

ˆ

e2

4π

˙2 ˆ
1

g
εhijkεdefg F

p1q
jk F de F fg F hi

˙
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T p0,1q “ ´gab hcd F acF bd `
6

45m4
e

ˆ

e2

4π

˙2

hcd gab F ac F bd F
2

´ h

ˆ

1

4
F

2
`

1

2

´

gmn Bmφ Bnφ`m
2 φ

2
¯

(4.138)

´
1

90m4
e

ˆ

e2

4π

˙2
´

F
4
´

7

16 g

`

εmnopFmnF op

˘2
¯

˙

´ 4

ˆ

´
1

4
hmngop F np Fmo ´

1

4
gmnhop F np Fmo

´
1

2
hmn Bmφ Bnφ`

1

90m4
e

ˆ

e2

4π

˙2 ˆ

hmn gop gqr gst F rt Fmo F np F qs

` hmn gop gqr gst F rt Fmo F np F qs

` hmn gop gqr gst F rt Fmo F np F qs ` h
mn gop gqr gst F rt Fmo F np F qs

˙˙

`
2

45m4
e

ˆ

e2

4π

˙2 ˆ
7

16 g2 ε
hijkεdefg tr

´

gmn hmn

¯

F de F fg F hi F jk

˙

“ ´gab hcd F acF bd `
6

45m4
e

ˆ

e2

4π

˙2

hcd gab F ac F bd F
2

´ h

ˆ

1

4
F

2
`

1

2

´

gmn Bmφ Bnφ`m
2 φ

2
¯

(4.139)

´
1

90m4
e

ˆ

e2

4π

˙2
´

F
4
´

7

16 g

`

εmnopFmnF op

˘2
¯

˙

` hmngop F np Fmo ` g
mnhop F np Fmo

` 2hmn Bmφ Bnφ´
2

45m4
e

ˆ

e2

4π

˙2 ˆ

hmn gop Fmo F np F
2
˙

`
2

45m4
e

ˆ

e2

4π

˙2 ˆ
7

16 g2 ε
hijkεdefg tr

´

gmn hmn

¯

F de F fg F hi F jk

˙
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T p1,1q “ ´2hef gabF p1qae F bf `
12

45m4
e

ˆ

e2

4π

˙2

hef gab gmngop
`

F p1qnp Fmo F ea F fb

` F p1qem F fn F oa F pb (4.140)

´ h

ˆ

1

4
gmngop

`

F np F
p1q
mo ` Fmo F

p1q
np

˘

` gmn Bmφ Bnφ
p1q
`m2 φφp1q

´
1

90m4
e

ˆ

e2

4π

˙2 ˆ

gmn gop gqr gst
´

F
p1q
rt Fmo F np F qs ` F rt F

p1q
mo F np F qs

` F rt Fmo F
p1q
np F qs ` F rt Fmo F np F

p1q
qs

¯

´
7

16 g
εhijkεdefg

´

F
p1q
jk F de F fg F hi ` F jk F

p1q
de F fg F hi

` F jk F de F
p1q
fg F hi ` F jk F de F fg F

p1q
hi

¯

˙

´ 4

ˆ

´
1

2
hmngop

`

F np F
p1q
mo ` Fmo F

p1q
np

˘

´ hmn Bmφ Bnφ
p1q

`
1

45m4
e

ˆ

e2

4π

˙2 ˆ

hmn gop gqr gst
´

F
p1q
rt Fmo F np F qs ` F rt F

p1q
mo F np F qs

` F rt Fmo F
p1q
np F qs ` F rt Fmo F np F

p1q
qs

¯

˙

`
1

45m4
e

ˆ

e2

4π

˙2 ˆ

gmn gop hqr gst
´

F
p1q
rt Fmo F np F qs

` F rt F
p1q
mo F np F qs ` F rt Fmo F

p1q
np F qs ` F rt Fmo F np F

p1q
qs

¯

˙

Minkowski Limit:. Taking the Minkowski limit and using the gauge fixing conditions,

B
ahab “ 0 h “ 0 (4.141)

the high-frequency wave equation is therefore

´
1

2
lhbd “ κ

ˆ

α

ε
T
p1,0q
ab ` T

p0,1q
ab ` αT

p1,1q
ab ´

1

2
gab

´ α

ε
T p1,0q ` T p0,1q ` αT p1,1q

¯

˙

(4.142)
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The axion terms are omitted for comparison. The remaining terms are

T p1,0q “ ´
14

45m4
e

ˆ

e2

4π

˙2

εhijkεdefg F
p1q
jk F de F fg F hi (4.143)

T p0,1q “
4

45m4
e

ˆ

e2

4π

˙2

hcd ηab F ac F bd F
2
` ηmnhop F np Fmo (4.144)

T p1,1q “ 2hef ηabF p1qae F bf

´
4

45m4
e

ˆ

e2

4π

˙2

ηab ηmnηop hef
`

F p1qnp Fmo F ea F fb ` F
p1q
em F fn F oa F pb

˘

(4.145)

To compare with [55] equation 7, the RHS equation must have T p1,1qab and no axion. Deriving T p1,1qab

from the energy-momentum tensor above reproduces equation 7 in [55]. We consider background

fields which is a key difference with [55].

4.2.1 Expanded Axion Waves Equations

The expanded axion equation of motion is

´

gab BaBb ´ g
abΓcab Bc ´m

2
¯

φ “
λ̃

8
?
´g

εabcd FabFcd (4.146)

where the left-handed side is given by
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´

gab BaBb ´ g
abΓcab Bc ´m

2
¯

φ “
`

gab BaBb ´ g
ab Γ

c

ab Bc ´m
2
˘

φ (4.147)

` α
`

gab BaBb ´ g
ab Γ

c

ab Bc ´m
2
˘

φp1q

` ε
´

´hab BaBb ` h
abΓ

c

ab Bc

´
1

2
gabgcm

`

∇b hma `∇a hmb ´∇m hab
˘

Bc

¯

φ

` α ε
´

´hab BaBb ` h
abΓ

c

ab Bc

´
1

2
gab gcm

`

∇b hma `∇a hmb ´∇m hab
˘

Bc

¯

φp1q

The right hand side of the axion equation is

λ̃

8
?
´g

εabcd FabFcd “
λ̃

8
?
´g

ˆ

1´
ε

2
gcdhcd `

3 ε2

8

`

gcdhcd
˘2
˙

εabcd
´

F ab ` αF
p1q
ab

¯´

F cd ` αF
p1q
cd

¯

“
λ̃

8
?
´g

ˆ

1´
ε

2
gcdhcd `

3 ε2

8

`

gcdhcd
˘2
˙

εabcd
`

F abF cd

` 2αF abF
p1q
cd ` α

2F
p1q
ab F

p1q
cd

“
λ̃

8
?
´g

`

εabcdF abF cd

˘

´
λ̃ ε

16
?
´g

`

gefhef
˘ `

εabcdF abF cd

˘

`
λ̃ α

4
?
´g

εabcd F abF
p1q
cd (4.148)

´
λ̃ α ε

8
?
´g

`

gcdhcd
˘

εabcd F abF
p1q
cd

“ j ´
ε

2

`

gefhef
˘

j `
λ̃ α

4
?
´g

εabcd F abF
p1q
cd ´

λ̃ α ε

8
?
´g

`

gefhef
˘

εabcd F abF
p1q
cd

(4.149)
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where

j “
λ̃

8
?
´g

`

εabcdF abF cd

˘

. (4.150)

Putting it all together, the background

`

gab BaBb ´ g
ab Γ

c

ab Bc ´m
2
˘

φ “ j (4.151)

and propagating equations of motions are

`

gab BaBb ´ g
ab Γ

c

ab Bc ´m
2
˘

φp1q “ ´
ε

α

´

´hab BaBb ` h
abΓ

c

ab Bc

´
1

2
gabgcm

`

∇b hma `∇a hmb ´∇m hab
˘

Bc

¯

φ

´ ε
´

´hab BaBb ` h
abΓ

c

ab Bc

´
1

2
gab gcm

`

∇b hma `∇a hmb ´∇m hab
˘

Bc

¯

φp1q

´
ε

2

`

gefhef
˘

j `
λ̃ α

4
?
´g

εabcd F abF
p1q
cd

´
λ̃ α ε

8
?
´g

`

gefhef
˘

εabcd F abF
p1q
cd . (4.152)

In the Minkowski space limit with no axion background, this equation reduces to

`

l´m2
˘

φp1q “ ´ε
´

´hab BaBb ´ η
ab ηcm pBb hmaq Bc

¯

φp1q `
λ̃ α

4
εabcd F abF

p1q
cd . (4.153)
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4.2.1 Expanded Electromagnetic Wave Equation

The expanded electromagnetic equations of motion is

Ba
`

gacgbdFcd
˘

` gacgbd Γeae Fcd “ jb `∇a P
ab . (4.154)

The LHS equation is expanded as

Ba
`

gacgbdFcd
˘

` gacgbd Γeae Fcd “ Ba
`

gac gbd
˘

F cd ` g
ac gbd BaF cd ` g

ac gbd Γ
e

aeF cd (4.155)

` α

ˆ

Ba
`

gac gbd
˘

F
p1q
cd ` g

ac gbd BaF
p1q
cd ` g

ac gbd Γ
e

ae F
p1q
cd

˙

´ ε

ˆ

Ba

´

`

gac hbd ` gbd hac
˘

F cd

¯

`
`

gac hbd ` hac gbd
˘

Γ
e

aeF cd

´
1

2
gem gac gbd

´

∇e hma `∇a hme ´∇m hae

¯

F cd

˙

´ α ε

ˆ

Ba

´

`

gac hbd ` gbd hac
˘

F
p1q
cd

¯

´
1

2
gem gac gbd

´

∇e hma `∇a hme ´∇m hae

¯

F
p1q
cd

˙

Putting it all together, we have the following background equation of motion

Ba
`

gac gbd
˘

F cd ` g
ac gbd BaF cd ` g

ac gbd Γ
e

aeF cd “ j
b
`∇aP

ab
(4.156)
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and propagating equation of motions

gac gbd
´

BaF
p1q
cd ` Γ

e

ae F
p1q
cd

¯

“ ´Ba
`

gac gbd
˘

F
p1q
cd `

ε

α

ˆ

Ba

´

`

gac hbd ` gbd hac
˘

F cd

¯

(4.157)

`
`

gac hbd ` hac gbd
˘

Γ
e

aeF cd

´
1

2
gem gac gbd

´

∇e hma `∇a hme ´∇m hae

¯

F cd

˙

` ε

ˆ

Ba

´

`

gac hbd ` gbd hac
˘

F
p1q
cd

¯

´
1

2
gem gac gbd

´

∇e hma `∇a hme ´∇m hae

¯

F
p1q
cd

˙

` jp1q b `
ε

α
j1 `∇aP

p1q ab
`
ε

α
∇aP

1ab

where we have used the currents,

j
b
“

1
?
´g

λ̃

2
εabcdBa

`

φF cd

˘

(4.158)

α jp1q b “
α
?
´g

λ̃

2
εabcdBa

´

φF
p1q
cd ` φ

p1q F cd

¯

(4.159)

ε j1 “ ´
ε

?
´g

λ̃

4

`

gcdhcd
˘

εabcdBa
`

φF cd

˘

. (4.160)
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We also include the contributions from the Euler-Heisenberg lagrangian

α∇aP
p1q ab

“
α
?
´g

ˆ

4

45m4
e

ˆ

e2

4π

˙2

Ba

´

a

´g gmngop
`

Fmo F np F
ba p1q

` Fmo F
p1q
np F

ba
` F p1qmo F np F

ba

`
7

180m4
e

ˆ

e2

4π

˙2

Ba

ˆ

1
?
´g

εbaefεcdgh
´

F efF cdF
p1q
gh ` F efF

p1q
cd F gh ` F

p1q
ef F cdF gh

¯

˙˙

(4.161)

∇aP
ab
“

1
?
´g

˜

4

45m4
e

ˆ

e2

4π

˙2

Ba

´

a

´g gmngop zFmo F np F
ba
¯

(4.162)

`
7

180m4
e

ˆ

e2

4π

˙2

Ba

ˆ

1
?
´g

εbaefεcdgh F ef F cd F gh

˙

¸

,

ε∇aP
1ab
“

ε
?
´g

˜

2

45m4
e

ˆ

e2

4π

˙2

Ba

´

a

´g
`

gcdhcd
˘

gmngop F
ba
Fmo F np

¯

(4.163)

´
7

360m4
e

ˆ

e2

4π

˙2
`

gcdhcd
˘

Ba

ˆ

1
?
´g

εbaefεcdgh F ef F cd F gh

˙

´
7

180m4
e

ˆ

e2

4π

˙2
1

?
´g
Ba

ˆ

1
?
´g

`

gcdhcd
˘

εbaefεcdghF efF cdF gh

˙

¸
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Minkowski Limit: Take the Minkowski limit and using the gauge gauge fixing conditions,

B
ahab “ 0 h “ 0 (4.164)

the high-frequency wave equation is therefore

BaF
ab p1q

“ Ba

´

`

ηac hbd ` ηbd hac
˘

F cd

¯

` Ba

´

`

ηac hbd ` ηbd hac
˘

F
p1q
cd

¯

(4.165)

´
1

2
ηem ηac ηbd

´

Be hma ` Ba hme ´ Bm hae

¯

F cd

´
1

2
ηem ηac ηbd

´

Be hma ` Ba hme ´ Bm hae

¯

F
p1q
cd

“ Ba

´

`

ηac hbd ` ηbd hac
˘

F
p1q
cd

¯

where we have eliminated the Euler-Heisenberg corrections, α “ ε “ 1 and axion terms for com-

parison with [55]. This matches [55] if the background electromagnetic fields are removed.

4.2.2 Effective Equations of Motion

4.2.2 Low-Frequency Equations of Motion

To summarize, the low-frequency equations of motion for the axion, electromagnetic and gravity

waves are respectively,

`

gab BaBb ´ g
ab Γ

c

ab Bc ´m
2
˘

φ “ j (4.166)

BaF
ab
` Γ

c

ac F
ab
“ j

b
`∇aP

ab
(4.167)

Rab ´
1

2
gabR “ κ

`

T ab ` ε
2 tab

˘

(4.168)
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where Γ
m

ij “
1
2
gmk pBjgki ` Bjgki ´ Bjgkiq and the currents are

j “
λ̃

8
?
´g

εabcdF abF cd (4.169)

j
b
“

1
?
´g

λ̃

2
εabcdBa

`

φF cd

˘

. (4.170)

The Euler-Heisenberg corrections are

∇aP
ab
“

1
?
´g

4

45m4
e

ˆ

e2

4π

˙2
˜

Ba

´

a

´g gmngop Fmo F np F
ba
¯

`
7

16
Ba

ˆ

1
?
´g

εbaefεcdgh F ef F cd F gh

˙

¸

.

The energy-momentum tensor contributions are

T ab “ gefF aeF bf ` Baφ Bbφ´
2

45m4
e

ˆ

e2

4π

˙2

gefF
2
F aeF bf

´ gab

ˆ

1

4
F

2
`

1

2

´

gmn Bmφ Bnφ`m
2 φ

2
¯

´
1

90m4
e

ˆ

e2

4π

˙2
´

F
4
´

7

16 g

`

εmnopFmnF op

˘2
¯

˙

tab “ ´
1

κ
xR

p2q
ab ´

1

2
gabR

p2q
y (4.171)

where latter is the contributions from the long-wavelength gravitational waves. Importantly, it is

clear the background curvature is sourced by all of the background fields.
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4.2.2 High-Frequency Equations of Motion and Gauge Fixing

In summary, the high-frequency equations of motion for the gravitational, axion and electromag-

netic waves are

´
1

2
lhbd “ ´

1

2

ˆ

∇b∇a h
a
d `∇d∇a h

a
b ´∇d∇b h

˙

´
1

2

ˆ

´R
s

dab h
a
s ´R

s

bad h
a
s

˙

(4.172)

` κ

ˆ

α

ε
T
p1,0q
ab ` T

p0,1q
ab ` αT

p1,1q
ab ´

1

2
gab

´α

ε
T p1,0q ` T p0,1q ` αT p1,1q

¯

˙

`

gab BaBb ´ g
ab Γ

c

ab Bc ´m
2
˘

φp1q “ ´ ε
α

´

´hab BaBb ` h
abΓ

c

ab Bc

¯

φ

´ ε
α

´

´1
2
gabgcm

`

∇b hma `∇a hmb ´∇m hab
˘

Bc

¯

φ

´ ε
´

´hab BaBb ` h
abΓ

c

ab Bc

´ 1
2
gab gcm

`

∇b hma `∇a hmb ´∇m hab
˘

Bc

¯

φp1q

´ ε
2

`

gefhef
˘

j ` λ̃ α
4
?
´g
εabcd F abF

p1q
cd

´ λ̃ α ε
8
?
´g

`

gefhef
˘

εabcd F abF
p1q
cd
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BaF
p1q ab

` Γ
e

ae F
p1q ab

“
ε

α

ˆ

Ba

´

`

gac hbd ` gbd hac
˘

F cd

¯

`
`

gac hbd ` hac gbd
˘

Γ
e

aeF cd

(4.173)

´
1

2
gem gac gbd

´

∇e hma `∇a hme ´∇m hae

¯

F cd

˙

` ε

ˆ

Ba

´

`

gac hbd ` gbd hac
˘

F
p1q
cd

¯

´
1

2
gem gac gbd

´

∇e hma `∇a hme ´∇m hae

¯

F
p1q
cd

˙

` jp1q b `
ε

α
j1 `∇aP

p1q ab
`
ε

α
∇aP

1ab

where the energy-momentum tensor and currents are defined in equations (4.121)- (4.255), equa-

tions (4.138)- (4.140) and equations (4.158)- (4.163). To fix the gauge, we first make the redefini-

tion

ĥab “ hab ´
1

2
gab h (4.174)

where ĥ “ gab ĥab “ ´h. Thus, ĥab ´ 1
2
gab ĥ “ hab. After the shift, the high-frequency gravita-

tional wave equation of motion is

´
1

2
l

ˆ

ĥbd ´
1

2
gbd ĥ

˙

(4.175)

“ ´
1

2

ˆ

∇b∇a

´

ĥad ´
1

2
gad ĥ

¯

`∇d∇a

´

ĥad ´
1

2
gad ĥ

¯

`∇d∇b ĥ

˙

(4.176)

` κ

ˆ

α

ε
T
p1,0q
ab ` T

p0,1q
ab ` αT

p1,1q
ab ´

1

2
gab

´α

ε
T p1,0q ` T p0,1q ` αT p1,1q

¯

˙
ˇ

ˇ

ˇ

ˇ

hÑĥ,habÑĥab

´
1

2

ˆ

´R
s

dab

ˆ

ĥas ´
1

2
gas ĥ

˙

´R
s

bad

ˆ

ĥas ´
1

2
gas ĥ

˙˙
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We can now make the shift

hab Ñ h1ab “ hab ´ 2∇paξbq hÑ h1 “ h´ 2 gab∇a ξb . (4.177)

which results in the following transformation for ĥab and ĥ,

ĥab Ñ ĥ1ab “ h1ab ´
1

2
gab h

1
“ ĥab ´ 2∇paξbq ` gab g

cd∇c ξd (4.178)

ĥÑ ĥ1 “ gab ĥ1ab “

ˆ

gab h1ab ´
1

2
gabgab h

1

˙

“ gabĥab ´ 2 gab∇paξbq ` g
cdgcd g

ab∇a ξb

(4.179)

“ ĥ´ 2 gab∇paξbq ` 4 gab∇a ξb

We can fix the ξ’s to apply the standard gauge conditions[65], [68],

∇a
ĥab “ 0 ĥ “ 0, (4.180)

which reduces the total degrees of freedom of ĥab to five degrees of freedom.
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4.2.2 Diffeomorphism Gauged Fixed Equations of Motion

After gauge fixing and relabeling ĥab Ñ hab, the high-frequency equations of motion become

´
1

2
lhbd “ R

s

dab h
a
s ` κ

ˆ

α

ε
T
p1,0q
ab ` T

p0,1q
ab ` αT

p1,1q
ab (4.181)

´
1

2
gab

´ α

ε
T p1,0q ` T p0,1q ` αT p1,1q

¯

˙

`

gab BaBb ´ g
ab Γ

c

ab Bc ´m
2
˘

φp1q “ ´
ε

α

´

´BaBb φ` Γ
c

ab Bc φ
¯

hab ´ ε hab
´

´BaBb ` Γ
c

ab Bc

¯

φp1q

(4.182)

`
λ̃ α

4
?
´g

εabcd F abF
p1q
cd

`

Ba ` Γ
e

ae

˘

F p1q ab “
ε

α

ˆ

Ba

´

`

gac hbd ` gbd hac
˘

F cd

¯

`
`

gac hbd ` hac gbd
˘

Γ
e

aeF cd

˙

(4.183)

` ε

ˆ

Ba

´

`

gac hbd ` gbd hac
˘

F
p1q
cd

¯

˙

` jp1q b `
ε

α
j1

`∇aP
p1q ab

`
ε

α
∇aP

1ab

where we have used

Tp1,1qab “ ´hef
´

F
p1q
ae F bf ` F ae F

p1q
bf

¯

` 2
45m4

e

´

e2

4π

¯2
ˆ

2hefgmngop F
p1q

np Fmo F ae F bf

` hef F
2
´

F
p1q

ae F bf ` F ae F
p1q

bf

¯

` 2hmn gef gop
´

F
p1q
np Fmo ` F np F

p1q

mo

¯

F ae F bf

` 2hmn gef gop F np Fmo

´

F
p1q
ae F bf ` F ae F

p1q
bf

¯

˙

´ hab

ˆ

1
4
gmngop

´

F np F
p1q
mo ` Fmo F

p1q
np

¯
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` gmn Bmφ Bnφ
p1q `m2 φφp1q ´ 2

45m4
e

´

e2

4π

¯2
ˆ

gmn gop gqr gst F
p1q
rt Fmo F np F qs

´ 7
16 g

εhijkεdefg F
p1q
jk F de F fg F hi

˙

´ gab

ˆ

´1
2
hmngop

´

F np F
p1q
mo ` Fmo F

p1q
np

¯

´ hmn Bmφ Bnφ
p1q

` 2
45m4

e

´

e2

4π

¯2

hmn gop gqr gst
´

F
p1q
rt Fmo ` F rt F

p1q
mo

¯

F np F qs

˙

T p1,0q “ ´2 gab Baφ Bbφ
p1q ´ 4m2 φφp1q ´ 14

45m4
e

´

e2

4π

¯2
ˆ

1
g
εhijkεdefg F

p1q
jk F de F fg F hi

˙

T p0,1q “ gmnhop F np Fmo ` 2hmn Bmφ Bnφ`
4

45m4
e

´

e2

4π

¯2

hcd gab F ac F bd F
2

T p1,1q “ ´2hef gabF
p1q
ae F bf`

12
45m4

e

´

e2

4π

¯2

hef gab gmngop
´

F
p1q
np Fmo F ea F fb ` F

p1q
em F fn F oa F pb

¯

´ 4

ˆ

´1
2
hmngop

´

F np F
p1q
mo ` Fmo F

p1q
np

¯

´ hmn Bmφ Bnφ
p1q ` 1

45m4
e

´

e2

4π

¯2
ˆ

hmn gop gqr gst
´

F
p1q
rt Fmo F np F qs ` F rt F

p1q
mo F np F qs

` F rt Fmo F
p1q
np F qs ` F rt Fmo F np F

p1q
qs

¯

˙

` 1
45m4

e

´

e2

4π

¯2
ˆ

gmn gop hqr gst
´

F
p1q
rt Fmo F np F qs

` F rt F
p1q
mo F np F qs ` F rt Fmo F

p1q
np F qs ` F rt Fmo F np F

p1q
qs

¯

˙
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The currents and Euler-Heisenberg corrections are j1 “ 0 and

jp1q b “
1

?
´g

λ̃

2

ˆ

εabcdBa

´

φF
p1q
cd

¯

` εabcdBa
`

φp1q F cd

˘

˙

(4.184)

∇aP
p1q ab

“
1

?
´g

˜

8

45m4
e

ˆ

e2

4π

˙2

Ba

´

a

´g gmn gop gbq garF p1qmo F np F qr

¯

(4.185)

`
4

45m4
e

ˆ

e2

4π

˙2

Ba

´

a

´g gmn gop gbq garFmo F np F
p1q
qr

¯

`
14

180m4
e

ˆ

e2

4π

˙2

Ba

ˆ

1
?
´g

εbaefεcdgh F ef F cd F
p1q
gh

˙

`
7

180m4
e

ˆ

e2

4π

˙2

Ba

ˆ

1
?
´g

εbaefεcdgh F
p1q
ef F cd F gh

˙

¸

∇aP
1ab
“

1
?
´g

˜

2

45m4
e

ˆ

e2

4π

˙2

Ba

´

a

´g
`

gcdhcd
˘

F
ba
F

2
¯

(4.186)

´
4

45m4
e

ˆ

e2

4π

˙2

Ba

´

a

´g
`

gmngop
`

gbq har ` gar hbq
˘

` 2hmngop gbq gar
˘

Fmo F np F qr

¯

´
7

360m4
e

ˆ

e2

4π

˙2
`

gcdhcd
˘

Ba

ˆ

1
?
´g

εbaefεcdghF efF cdF gh

˙

´
7

180m4
e

ˆ

e2

4π

˙2
1

?
´g
Ba

ˆ

1
?
´g

`

gcdhcd
˘

εbaefεcdghF efF cdF gh

˙

¸

The above equations mix photon-scalar dark matter through the FF̃ term (or terms proportional

λ̃. The photon-graviton mixing should be symmetric like Dolgov and Ejili. What about graviton

scalar mixing?
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4.3 Riemann-Normal Equations of Motion

To do the mixing we consider a locally flat patch (local Minkowski space). A locally flat patch is

needed as the axion-photon-gravity wave mixing requires knowing the orientation, e.g. the back-

ground electromagnetic fields [56]. Thus, a local frame of reference is required. To ensure local

flatness (with a vanishing connection) [65] and account for curvature corrections in the patch, we

consider Riemann-normal coordinates. We denote the local Minkowski coordinates with Greek

indices in parenthesis.

4.3.1 Preliminaries: Kerr Geometry

The Kerr metric is defined as

ds2
“ ´

´

1´
rsr

Σ

¯

dt2 `
Σ

∆
dr2

` Σ dθ2
`

ˆ

r2
` a2

`
rsr a

2

Σ
sin2 θ

˙

sin2 θ dφ2

´
2 rsra sin2 θ

Σ
dt dφ

“

ˆ

dt dr dθ1 dφ1
˙

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´
`

1´ rsr
Σ

˘

0 0 ´ rsra sin2 θ
rs Σ

0 Σ
∆

0 0

0 0 Σ
r2s

0

´ rsra sin2 θ
ra Σ

0 0 1
r2s

´

r2 ` a2 ` rsr a2

Σ
sin2 θ

¯

sin2 θ

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

dt

dr

dθ1

dφ1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

(4.187)
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where

rs “ 2GM Σ “ r2
` a2 cos2 θ (4.188)

a “ J{M ∆ “ r2
´ rs r ` a

2 , (4.189)

h̄ “ c “ 1 and we rescaled the coordinates as

θ “
1

rs
prsθq “

1

rs
θ1 φ “

1

rs
prsφq “

1

rs
φ1 (4.190)

so all of the coordinates have units of length.

4.3.2 Preliminaries: Riemann-Normal Coordinates

The Kerr metric is not locally flat metric, i.e. around a generic point x0 “ tr0, θ0, φ0u the metric

does not reduce to the Minkowski metric. In the next subsection, we describe how to construct a

locally flat metric from Kerr geometry. In this section, we verify the important computations of

Riemann-Normal coordinates. Consider a local point x0 and a nearby point x. We can define a

coordinate system around a point x0 so that

ξµ “ saµ ` ξµ0 . (4.191)

Here ξµ are the Riemann-Normal coordinates. aµ and ξ0 is just numbers. Notice we use Greek

indices to denote the local Minkowski space. ξ0 is the original local point in Riemann-Normal
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coordinates. It is clear from the geodesic equation

ˆ

d2ξµ

ds2
` Γµαβ

dξα

ds

dξβ

ds

˙
ˇ

ˇ

ˇ

ˇ

ξ“ξ0

“ 0 . (4.192)

Γµαβ

ˇ

ˇ

ˇ

ˇ

ξ“ξ0

dξα

ds

dξβ

ds
“ 0 (4.193)

9ξα “ dξα{ds are chosen to be linearly independent thereby implying

Γµαβ

ˇ

ˇ

ˇ

ξ“ξ0
“ 0. (4.194)

As we describe below, it is easy to show that ξα can be chosen so that gµνpξ0q “ ηµν . Now consider

the geodesic equation,

d2xa

ds2
` Γabc

dxb

ds

dxc

ds
“ 0 . (4.195)

where we are using general covariant coordinates (latin indices). Geodesics passing through the

point x0 (with s “ 0) and initial four-velocity

xa
ˇ

ˇ

s“0
“ xa0

dxa

ds

ˇ

ˇ

ˇ

ˇ

s“0

“ ua0 (4.196)

The second and third derivatives of the geodesic are

d2xa

ds2

ˇ

ˇ

ˇ

ˇ

s“0

“ Γabc

ˇ

ˇ

ˇ

ˇ

s“0

ub0u
c
0

d3xa

ds3

ˇ

ˇ

ˇ

ˇ

s“0

“ ´

ˆ

d

ds
Γabc

˙

dxb

ds

dxc

ds

ˇ

ˇ

ˇ

ˇ

s“0

´2Γabc
d2xb

ds2

dxc

ds

ˇ

ˇ

ˇ

ˇ

s“0

“ ´
`

BdΓ
a
ef ´ 2ΓagfΓ

g
de

˘

ˇ

ˇ

ˇ

ˇ

s“0

ud0u
e
0u

f
0

(4.197)
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where on the second line we used the second derivative equation on the first line. We have also

assumed the standard symmetric connection. It is clear x is a function of the geodesic arc length,

s. We can also expand x around s “ 0 to get a solution to the geodesic equation. We can write

xmpsq “ xm0 `
8
ÿ

k“1

1

k!

Bkxmpsq

Bsk

ˇ

ˇ

ˇ

ˇ

s“0

sk (4.198)

“ xm0 `
Bxmpsq

Bs

ˇ

ˇ

ˇ

ˇ

s“0

s`
1

2

B2xmpsq

Bs2

ˇ

ˇ

ˇ

ˇ

s“0

s2
`

1

3!

B3xmpsq

Bs3

ˇ

ˇ

ˇ

ˇ

s“0

s3
` . . . (4.199)

“ xm0 ` s u
m
0 ´

1

2
s2 Γmab

ˇ

ˇ

ˇ

ˇ

s“0

ua0 u
b
0 ´

1

3!
s3

`

BdΓ
m
gb ´ 2 ΓmabΓ

a
dg

˘

ˇ

ˇ

ˇ

ˇ

s“0

ud0 u
g
0 u

b
0 ` . . .

where at second and higher order we have the curvature corrections. The initial 4-velocity, ua0, are

four linearly independent and orthonormal vectors at xa0 so that

um0 “ aµemµ gabpx0q e
a
α e

b
β “ ηαβ (4.200)

where eαa is the tetrad (velbein) and the greek indices are the local Minkowski indices. The general

covariant indices are the latin indices. We can rewrite the expansion the generic coordinates in

terms of the Riemann-Normal coordinates. Using equation (4.191), we find

xmpsq “ xm0 ` s a
µemµ ´

1

2
s2 Γmab

ˇ

ˇ

ˇ

ˇ

s“0

aµaνeaµe
b
ν

´
1

3!
s3

`

BdΓ
m
gb ´ 2 ΓmabΓ

a
dg

˘

ˇ

ˇ

ˇ

ˇ

s“0

aµ aν aβ edµ e
g
ν e

b
β ` . . .

“ xm0 ` e
m
µ pξ

µ
´ ξµ0 q ´

1

2
Γmab

ˇ

ˇ

ˇ

ˇ

s“0

eaµ e
b
ν pξ

µ
´ ξµ0 q pξ

ν
´ ξν0 q (4.201)

´
1

3!

`

BdΓ
m
gb ´ 2 ΓmabΓ

a
dg

˘

ˇ

ˇ

ˇ

ˇ

s“0

edµ e
g
ν e

b
β pξ

µ
´ ξµ0 qpξ

ν
´ ξν0 qpξ

β
´ ξβ0 q ` . . .

We can do a similar computation for a locally flat metric. The metric has the following Taylor

131



expansion in Riemann-Normal coordinates

gµνpξq “ ηµν `
1

2

B2gµνpξq

BξαBξβ

ˇ

ˇ

ˇ

ˇ

ξ“ξ0

pξ ´ ξ0q
α
pξ ´ ξ0q

β
` . . . (4.202)

Again, the Greek indices are local Minkowski indices. At the origin, ξ0, we have Minkowski

geometry and the first derivative term,

gµνpξ0q “ ηµν
Bgµνpξq

Bξα

ˇ

ˇ

ˇ

ˇ

ξ“ξ0

“ 0 (4.203)

vanishes as one would expect for a locally flat metric. We construct the locally flat Kerr metric in

the next section. We now work out the details of the second derivative term. We can rewrite the

third derivative of the geodesic equation, in Riemann-Normal coordinates and we find

d3ξµ

ds3

ˇ

ˇ

ˇ

ˇ

s“0

“ ´

ˆ

d

ds
Γµαβ

˙
ˇ

ˇ

ˇ

ˇ

s“0

dξα

ds

dξβ

ds
´ 2 Γµαβ

ˇ

ˇ

ˇ

ˇ

s“0

d2ξα

ds2

dξβ

ds
(4.204)

0 “
´

BδΓ
µ
βγ

¯

ˇ

ˇ

ˇ

ˇ

ξ“ξ0

dξδ

ds

dξβ

ds

dξγ

ds
. (4.205)

Equivalently, we have

`

BδΓ
α
βγ ` BβΓαγδ ` BγΓ

α
δβ

˘

ˇ

ˇ

ˇ

ξ“ξ0
“ 0 or Bp δΓ

α
βγ q

ˇ

ˇ

ˇ

ξ“ξ0
“ 0 (4.206)

For the RH equation, the indices are symmetric under exchange. Given the definition of the
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Riemann tensor and knowing Γα βγpξ0q “ 0, we can write

`

Rα
βγδ `R

α
γβδq

˘

ˇ

ˇ

ˇ

ξ“ξ0
“
`

BγΓ
α
βδ ´ BδΓ

α
βγ ` BβΓαγδ ´ BδΓ

α
γβ

˘

ˇ

ˇ

ˇ

ξ“ξ0

“
`

BγΓ
α
βδ ` BβΓαγδ ´ 2 BδΓ

α
γβ

˘

ˇ

ˇ

ˇ

ξ“ξ0

“ ´3 BδΓ
α
γβ

ˇ

ˇ

ˇ

ξ“ξ0

´
1

3

`

Rα
βγδ `R

α
γβδq

˘

ˇ

ˇ

ˇ

ξ“ξ0
“ BδΓ

α
γβ

ˇ

ˇ

ˇ

ξ“ξ0
(4.207)

where in the second to last step we use equation (4.206). We can also write for affine connections

Γabcpξq ` Γbacpξq “
1

2
pgab,c ` gac,b ´ gbc,aq `

1

2
pgba,c ` gbc,a ´ gac,bq “ gab,c (4.208)

(4.209)

and

BdΓabcpξq ` BdΓbacpξq “ gab,cd . (4.210)

Using equation (4.207), we can write

gαβ,γδ
ˇ

ˇ

ξ“ξ0
“ ´

1

3

´

Rαβγδ `Rαγβδ `Rβαγδ `Rβγαδ

¯

ˇ

ˇ

ξ“ξ0
(4.211)

“ ´
1

3

´

Rαγβδ `Rβγαδ

¯

ˇ

ˇ

ξ“ξ0
(4.212)

“ ´
1

3

´

Rαγβδ `Rαδβγ

¯

ˇ

ˇ

ξ“ξ0
(4.213)
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Thus, the expansion of the metric

gµνpξq “ ηµν ´
1

6

´

Rµανβpξ0q `Rµβναpξ0q

¯

pξ ´ ξ0q
α
pξ ´ ξ0q

β
` . . . (4.214)

“ ηµν ´
1

3
Rµανβpξ0q pξ ´ ξ0q

α
pξ ´ ξ0q

β
` . . . (4.215)

As similar computation generates the equivalent contravariant computation

gµνpξq “ ηµν `
1

3
gνζRµ

αζβpξ0q pξ ´ ξ0q
α
pξ ´ ξ0q

β
` . . . (4.216)

In the next subsection, we compute the locally flat metric in Kerr geometry around a point x0.

Other important equations include

Γµαβ,ν “ ´
1

3

`

Rµ
αβν `R

µ
βαν

˘

(4.217)

which is derived from the equations in (4.206). We can also write

Γµαβpξq “ ´
1

3

`

Rµ
αβν `R

µ
βαν

˘

pξ ´ ξ0q
ν
` . . . (4.218)
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4.3.2 Constructing a Locally Flat Metric from Kerr Geometry

To find gµνpξq for Kerr geometry, we need to compute Rβγαδpξ0q. We can write

Rαβδγpξ0q “

ˆ

Bxa

Bξα
Bxb

Bξβ
Bxc

Bξγ
Bxd

Bξδ

˙

ˇ

ˇ

ˇ

ˇ

ˇ

s“0

Racbdpx0q (4.219)

“

ˆˆ

ds

Bξα
Bxa

ds

˙ˆ

ds

Bξβ
Bxb

ds

˙ˆ

ds

Bξγ
Bxc

ds

˙ˆ

ds

Bξδ
Bxd

ds

˙˙

ˇ

ˇ

ˇ

ˇ

ˇ

s“0

Racbdpx0q (4.220)

“ eapαqe
b
pβqe

c
pγqe

d
pδqRacbdpx0q (4.221)

where we have used equation (4.200). For Kerr geometry, we have the following for the tetrad

vector epλqm

ep0qm dx
m
“

c

∆

Σ

`

dt´ a sin2 θ dφ
˘

(4.222)

ep1qm dx
m
“

c

Σ

∆
dr (4.223)

ep2qm dx
m
“
?

Σ dθ (4.224)

ep3qm dx
m
“

sin θ
?

Σ

`

´a dt` pr2
` a2

q dφ
˘

(4.225)

where

Σ “ r2
` a2 cos2 θ (4.226)

∆ “ r2
` a2

´ 2Mr (4.227)
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We used a simple Mathematica program to compute

Rαβδγpξ0q “ eapαqe
b
pβqe

c
pγqe

d
pδq gaeR

e
cbdpx0q (4.228)

“ eapαqe
b
pβqe

c
pγqe

d
pδq eapσqe

pσq
e Re

cbdpx0q (4.229)
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As an example, we can choose x0 “ tt0, r0, θ0 “ π{2, φ0u as well as a small but non-trivial,

we get the following components of Re
cbdpx0q,

R1
221px0q “ R1

331px0q “ ´R
0

202px0q “ ´R
0

303px0q “
M

r0

(4.230)

R1
301px0q “ R1

031px0q “
2aMp4M ´ 3 r0q

r4
0

(4.231)

R2
302px0q “ R2

032px0q “
2aMp´2M ` r0q

r4
0

(4.232)

R3
101px0q “ ´R

0
131px0q “

6aM

r4
0pr0 ´ 2Mq

(4.233)

R2
121px0q “ R3

131px0q “ ´
M

r2
0pr0 ´ 2Mq

(4.234)

R3
303px0q “ ´R

0
003px0q “ ´

4aM2

r4
0

(4.235)

R2
332px0q “ ´R

3
232px0q “

´2M ` r0

r0

(4.236)

R2
002px0q “ ´R

3
003px0q “ ´

Mp´2M ` r0q

r4
0

(4.237)

R1
001px0q “

2Mp´2M ` r0q

r4
0

(4.238)

R3
202px0q “ ´

2aM

r3
0

(4.239)

R0
101px0q “

2M

r2
0p´2M ` r0q

(4.240)

R3
202px0q “ ´

6aM

r0

(4.241)

Recall, a has units of r and the Schwartzschild radius is rs “ 2M in these units. The curvature cor-

rections go as Op1{nq where n is the number of Schwartzchild radii x0 is from the event horizon.

The key point is as the particle goes from patch to patch the curvature corrections become more

important and alter the local Minkowski space computations.
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4.3.2 Other Important Equations

The gravitational wave equation of motion in Riemann-Normal coordinates is

´
1

2
lhβδ “ R

σ

δαβ h
α
σ ` κ

ˆ

α

ε
T
p1,0q
αβ ` T

p0,1q
αβ ` αT

p1,1q
αβ ´

1

2
gab

´ α

ε
T p1,0q ` T p0,1q ` αT p1,1q

¯

˙

(4.242)

where

lhβδ “
´

gξκBξBκ ´ g
ξκΓ

λ

ξκBλ

¯

hβδ (4.243)

“ ηξκ BξBκhβδ `
1

3
gκζ Rξ

α1ζβ1pξ0q pξ ´ ξ0q
α1
pξ ´ ξ0q

β1
pBξBκhβδq ` . . . (4.244)

´

ˆ

ηξκ `
1

3
gκζ Rξ

αζβpξ0q pξ ´ ξ0q
α
pξ ´ ξ0q

β
` . . .

˙ˆ

´
1

3

´

R
λ

ξκνpξ0q

`R
λ

κξνpξ0qpξ ´ ξ0q
ν
` . . . Bλhβδ

“ ηξκ BξBκhβδ `
1

3
ηξκ

`

R
λ

ξκνpξ0q `R
λ

κξνpξ0q
˘`

Bλhβδ
˘

pξ ´ ξ0q
ν (4.245)

`
1

3
gκζ Rξ

α1ζβ1pξ0q
`

BξBκhβδ
˘

pξ ´ ξ0q
α1
pξ ´ ξ0q

β1

`
1

9
gκζ Rξ

αζβpξ0q
`

R
λ

ξκνpξ0q `R
λ

κξνpξ0q
˘`

Bλhβδ
˘

pξ ´ ξ0q
α
pξ ´ ξ0q

β
pξ ´ ξ0q

ν
` . . .
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R
σ

δαβpξq “ BαΓσβδpξq ´ BδΓ
σ
βαpξq ` ΓιβδpξqΓ

σ
ιαpξq ´ ΓιβαpξqΓ

σ
ιδpξq (4.246)

“ ´
1

3
Bα

´´

Rσ
δβνpξ0q `R

σ
βδνpξ0q

¯

pξ ´ ξ0q
ν
¯

`
1

3
Bδ

´´

Rσ
αβνpξ0q `R

σ
βανpξ0q

¯

pξ ´ ξ0q
ν
¯

(4.247)

`
1

9

`

Rι
δβν `R

ι
βδν

˘ `

Rσ
ιαµ `R

σ
αιµ

˘

pξ ´ ξ0q
ν
pξ ´ ξ0q

µ

´
1

9

`

Rι
αβν `R

ι
βαν

˘ `

Rσ
ιδµ `R

σ
διµ

˘

pξ ´ ξ0q
µ
pξ ´ ξ0q

ν

“
1

3

´

Rσ
αβδpξ0q `R

σ
βαδpξ0q ´R

σ
δβαpξ0q ´R

σ
βδαpξ0q

¯

(4.248)

`
1

9

´

`

Rι
δβνpξ0q `R

ι
βδνpξ0q

˘ `

Rσ
ιαµpξ0q `R

σ
αιµpξ0q

˘

´
`

Rι
αβνpξ0q `R

ι
βανpξ0q

˘ `

Rσ
ιδµpξ0q `R

σ
διµpξ0q

˘

¯

pξ ´ ξ0q
ν
pξ ´ ξ0q

µ
` . . .

“ Rσ
βαδpξ0q `

1

9

´

`

Rι
δβνpξ0q `R

ι
βδνpξ0q

˘ `

Rσ
ιαµpξ0q `R

σ
αιµpξ0q

˘

(4.249)

´
`

Rι
αβνpξ0q `R

ι
βανpξ0q

˘ `

Rσ
ιδµpξ0q `R

σ
διµpξ0q

˘

¯

pξ ´ ξ0q
ν
pξ ´ ξ0q

µ
` . . .

Before moving on, we note the leading term is just Rσ
βαδpξ0q “ BαΓσβδpξ0q ´ BδΓ

σ
βαpξ0q.
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From now on we keep all the term to first order in pξ ´ ξ0q
α. We can write out the equations of

motion

´
1

2
ηξκ BξBκhβδ “

1

6
ηξκ

`

R
λ

ξκνpξ0q `R
λ

κξνpξ0q
˘`

Bλhβδ
˘

pξ ´ ξ0q
ν
`R

σ

δαβpξ0qh
α
σ

(4.250)

` κ

ˆ

α

ε
T
p1,0q
βδ ` T

p0,1q
βδ ` αT

p1,1q
βδ ´

1

2
ηβδ

´ α

ε
T p1,0q ` T p0,1q ` αT p1,1q

¯

˙

`

ηαβBαBβ ´m
2
˘

φp1q “
ε

α

`

BαBβ φ
˘

hαβ ` ε hαβ
`

BαBβ φ
p1q
˘

(4.251)

´
1

3
ηαβ

`

R
µ

αβνpξ0q `R
µ

βανpξ0q
˘ `

Bµφ
p1q
˘

pξ ´ ξ0q
ν

`
ε

α

1

3

`

R
µ

αβνpξ0q `R
µ

βανpξ0q
˘ `

Bµφ
˘

hαβ pξ ´ ξ0q
ν

`
1

3
ε hαβ

`

R
µ

αβνpξ0q `R
µ

βανpξ0q
˘

pξ ´ ξ0q
ν
`

Bµφ
p1q
˘

`
λ̃ α

4
?
´g

εabcd F abF
p1q
cd

`

Ba ` Γ
e

ae

˘

F p1q ab “
ε

α

ˆ

Ba

´

`

gac hbd ` gbd hac
˘

F cd

¯

`
`

gac hbd ` hac gbd
˘

Γ
e

aeF cd

˙

(4.252)

` ε

ˆ

Ba

´

`

gac hbd ` gbd hac
˘

F
p1q
cd

¯

˙

` jp1q b `
ε

α
j1

`∇aP
p1q ab

`
ε

α
∇aP

1ab

If we average the background fields by a suitable averaging mechanism and if the background

fields are indeed static on the length scale of interest, we have:
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1

2
ηξκ BξBκhβδ “ ´

A

R
σ

δαβpξ0q

E

hασ ´
1

6

A

ηξκ
`

R
λ

ξκνpξ0q `R
λ

κξνpξ0q
˘

pξ ´ ξ0q
ν
E

Bλhβδ

(4.253)

´ κ

ˆ

α

ε
T
p1,0q
βδ ` T

p0,1q
βδ ´

1

2
ηβδ

´ α

ε
T p1,0q ` T p0,1q

¯

˙

where

T
p1,0q
αβ “

A

F
µ

β

E

F p1qαµ `

A

F
µ

α

E

F
p1q
βµ ´

1

2
ηαβ

A

F np

E

F p1qnp ´ ηαβm
2
A

φ
E

φp1q

´
4

45m4
e

ˆ

e2

4π

˙2 ˆ
A

F
np
Fαe F

e

β

E

F p1qnp `

A

F np F
np
F

e

β

E

F p1qαe

´
1

2
ηab

´A

F qs F
2
E

F p1q qs ´
7

4
εhijkεdefg

A

F de F fg F hi

E

F
p1q
jk

¯

˙

T
p0,1q
αβ “ ´hcd

A

FαcF βd

E

´ hab

A 1

4
F

2
`

1

2
m2 φ

2
E

` ηαβ

A 1

2
ηop F np Fmo

E

hmn

` hab

ˆ

1

90m4
e

ˆ

e2

4π

˙2
A

F
4
´

7

16

`

εmnopFmnF op

˘2
E

˙

´
4 ηab
90m4

e

ˆ

e2

4π

˙2

hmn ηop ηqr ηst
A

Fmo F np F
2
E

`
2

45m4
e

ˆ

e2

4π

˙2
´

hcd
A

F ac F bd F
2
E

` 2hmn ηcd ηop
A

F ac F bd Fmo F np

E¯
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Notice the energy-momentum tensor features transitions between graviton-photon and graviton-

dark matter.

`

ηαβBαBβ ´m
2
˘

φp1q “ ´
1

3

A

ηαβ
`

R
µ

αβνpξ0q `R
µ

βανpξ0q
˘

pξ ´ ξ0q
ν
E

Bµφ
p1q

`
ε

α

1

3

`

R
µ

αβνpξ0q `R
µ

βανpξ0q
˘ `

Bµφ
˘

hαβ pξ ´ ξ0q
ν

`
1

3
ε hαβ

`

R
µ

αβνpξ0q `R
µ

βανpξ0q
˘

pξ ´ ξ0q
ν
`

Bµφ
p1q
˘

`
λ̃ α

4
?
´g

εabcd F abF
p1q
cd

(4.254)

where

T
p1,1q
αβ “ ´hef

´

F p1qae F bf ` F ae F
p1q
bf

¯

`
2

45m4
e

ˆ

e2

4π

˙2 ˆ

2hefηmnηop F
p1q

np Fmo F ae F bf

(4.255)

` hef F
2
´

F
p1q

ae F bf ` F ae F
p1q

bf

¯

` 2hmn ηef ηop
´

F p1qnp Fmo ` F np F
p1q

mo

¯

F ae F bf

` 2hmn ηef ηop F np Fmo

´

F p1qae F bf ` F ae F
p1q
bf

¯

˙

´ hab

ˆ

1

4
ηmnηop

`

F np F
p1q
mo ` Fmo F

p1q
np

˘

` ηmn Bmφ Bnφ
p1q
`m2 φφp1q ´

2

45m4
e

ˆ

e2

4π

˙2 ˆ

ηmn ηop ηqr ηst F
p1q
rt Fmo F np F qs

´
7

16
εhijkεdefg F

p1q
jk F de F fg F hi

˙

´ ηab

ˆ

´
1

2
hmngop

`

F np F
p1q
mo ` Fmo F

p1q
np

˘

´ hmn Bmφ Bnφ
p1q
`

2

45m4
e

ˆ

e2

4π

˙2

hmn gop gqr gst
´

F
p1q
rt Fmo ` F rt F

p1q
mo

¯

F np F qs

˙
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and

jp1q b “
λ̃

2

ˆ

εabcdBa

´

φF
p1q
cd

¯

` εabcdBa
`

φp1q F cd

˘

˙

(4.256)

∇aP
p1q ab

“
8

45m4
e

ˆ

e2

4π

˙2

Ba
`

ηmn ηop ηbq ηarF p1qmo F np F qr

˘

(4.257)

`
4

45m4
e

ˆ

e2

4π

˙2

Ba
`

ηmn ηop ηbq ηarFmo F np F
p1q
qr

˘

`
14

180m4
e

ˆ

e2

4π

˙2

Ba

´

εbaefεcdgh F ef F cd F
p1q
gh

¯

`
7

180m4
e

ˆ

e2

4π

˙2

Ba

´

εbaefεcdgh F
p1q
ef F cd F gh

¯

∇aP
1ab
“

1
?
´η

˜

2

45m4
e

ˆ

e2

4π

˙2

Ba

´

`

ηcdhcd
˘

F
ba
F

2
¯

(4.258)

´
4

45m4
e

ˆ

e2

4π

˙2

Ba
` `

ηmnηop
`

ηbq har ` ηar hbq
˘

` 2hmnηop ηbq ηar
˘

Fmo F np F qr

˘

´
7

360m4
e

ˆ

e2

4π

˙2
`

ηcdhcd
˘

Ba
`

εbaefεcdghF efF cdF gh

˘

´
7

180m4
e

ˆ

e2

4π

˙2

Ba
``

ηcdhcd
˘

εbaefεcdghF efF cdF gh

˘

¸
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We can now set F p1qαβ “ Fαβ and φp1q “ φ. After averaging, the high-frequency equation of

motions are

1

2
ηξκ BξBκhβδ “ ´

A

R
σ

δαβpξ0qx
E

hασ ´
1

6

A

ηξκ
`

R
λ

ξκνpξ0q `R
λ

κξνpξ0q
˘

pξ ´ ξ0q
ν
E

Bλhβδ

(4.259)

´
κα

ε

ˆ

xF
µ

δ yF
p1q
βµ ` xF

µ

β yF
p1q
δµ ` x Bδφ y Bβφ

p1q
` x Bβφ yBδφ

p1q

´ ηβγ

ˆ

1

2
xFαβ yF

p1qαβ
` x Bmφ y B

mφp1q `m2
xφ yφp1q

˙

´
4

45m4
e

ˆ

e2

4π

˙2
´A

F
np
Fαe F

e

β

E

F p1qnp `

A

F np F
np
F

e

β

E

F p1qαe (4.260)

´
1

2
ηab

`

A

F qs F
2
E

F p1q qs ´
7

4
εhijkεdefg

A

F de F fg F hi

E

F
p1q
jk

˘

¯

˙

´ κT
p0,1q
βδ

ˆ

´hcd F acF bd ´ hab

ˆ

1

4
F

2
`

1

2

´

ηmn Bmφ Bnφ`m
2 φ

2
¯

˙

´ ηab

ˆ

´
1

2
hmnηop F np Fmo ´

1

2
hmn Bmφ Bnφ

˙

` hab

ˆ

1

90m4
e

ˆ

e2

4π

˙2
´

F
4
´

7

16

`

εmnopFmnF op

˘2
¯

˙

´ ηab

ˆ

4

90m4
e

ˆ

e2

4π

˙2

hmn ηop ηqr ηst Fmo F np F
2
˙

`
2

45m4
e

ˆ

e2

4π

˙2
´

hcd F ac F bd F
2
` 2 ηcd hmnηop F ac F bd Fmo F np

¯

˙

`
κ

2
ηβδ

α

ε
T p1,0q

`
κ

2
ηβδT

p0,1q

“ (4.261)
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`

ηαβBαBβ ´m
2
˘

φp1q “ ε hαβ
`

BαBβ φ
p1q
˘

´
1

3
ηαβ

`

R
µ

αβνpξ0q `R
µ

βανpξ0q
˘ `

Bµφ
p1q
˘

pξ ´ ξ0q
ν

`
1

3
ε
`

R
µ

αβνpξ0q `R
µ

βανpξ0q
˘ `

Bµφ
p1q
˘

hαβ pξ ´ ξ0q
ν

`
λ̃ α

4
εαβνδ FαβF

p1q
νδ

BαF
p1qαβ

“
ε

α

`

ηαγ Bαh
βδ
` ηβδ Bαh

αγ
˘

F γδ ` ε
`

ηαγ Bαh
βδ
` ηβδ Bαh

αγ
˘

F
p1q
γδ

(4.262)

` ε
`

ηαγ hβδ ` ηβδ hαγ
˘

BαF
p1q
γδ `

1

3

`

R
µ

αµνpξ0q `R
µ

µανpξ0q
˘

F p1qαβ pξ ´ ξ0q
ν

´
ε

α

1

3

`

ηαγ hβδ ` hαγ ηβδ
˘ `

R
µ

αµνpξ0q `R
µ

µανpξ0q
˘

F γδ pξ ´ ξ0q
ν

` jp1q b `
ε

α
j1 `∇aP

p1q ab
`
ε

α
∇aP

1ab

4.3.3 Riemann-Normal Equations of Motion

The equations of motion are in Riemann-Normal coordinates are:

4.3.3 Other Important Equations

For a point x0 in the patch, the low-frequency, background metric in equation (4.1) can be expanded

as

gabpxq “ gabpx0q `
1

2
gab,cd px´ x0q

c
px´ x0q

d
` . . . (4.263)
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Given the above expansion, we can write the background connection and background Riemann

tensor as

Rmnab “ gan,mb ´ gam,nb (4.264)

Γ
m

ab,n “ ´
1

3

`

R
m

abn `R
m

ban

˘

. (4.265)

In the next section, we expand around the origin to derive important relations.

4.3.3 Important Equations

Given this expansion, we can write the expansion of the background connection as

Γmabpxq “ Γmabpx0q ` Γmab,ppxq
ˇ

ˇ

ˇ

x“x0
px´ x0q

p
`

1

2
Γmab,pt

ˇ

ˇ

ˇ

x“x0
px´ x0q

p
px´ x0q

t
` . . . (4.266)

where Γmabpx0q “ 0 by definition of the Riemann-Normal coordinates. We can substitute in for the

background connection is and background Riemann tensor to get the following expanded metric

gabpxq “ ηab ´
1

3
β2Racbd

ˇ

ˇ

ˇ

x“x0
yc yd `O

`

β3
˘

(4.267)

gabpxq “ ηab `
1

3
β2 gbeR

a

ced

ˇ

ˇ

ˇ

x“x0
yc yd `O

`

β3
˘

. (4.268)

where x is a general point in the patch, x “ x0 ` β y and β is a dimensionless, perturbative

parameter. ηab is the Minkowski metric. We have assumed a Lorentzian manifold. The radius of

curvature of the background metric is β; β y sets the length scale of the patch. Our analysis is valid

for β y ă L. The modified background connection is now

Γ
m

abpxq “ ´
1

3
β
`

R
m

abn `R
m

ban

˘

ˇ

ˇ

ˇ

x“x0
yn `O

`

β3
˘

. (4.269)

146



We can substitute in to find the expanded background Riemann tensor as

R
s

dab “ Γ
s

db,a ´ Γ
s

da,b ` Γ
m

db Γ
s

ma ´ Γ
m

da Γ
s

mb

“ ´
1

3
β
`

R
s

dbn,a `R
s

bdn,a

˘

ˇ

ˇ

ˇ

ˇ

x“x0

yn `
1

3
β
`

R
s

dan,b `R
s

adn,b

˘

ˇ

ˇ

ˇ

ˇ

x“x0

yn (4.270)

`
1

9
β2

ˆ

`

R
m

dbn `R
m

bdn

˘ `

R
s

map `R
s

amp

˘

˙
ˇ

ˇ

ˇ

ˇ

x“x0

yn yp

´
1

9
β2

ˆ

`

R
m

dan `R
m

adn

˘ `

R
s

mbp `R
s

bmp

˘

˙
ˇ

ˇ

ˇ

ˇ

x“x0

yn yp ` . . .

We now choose a coordinate system where gabpx0q “ ηab and average the background quantities

to find

x gab y “ ηab ´
1

3
β2
@

Racbd

ˇ

ˇ

ˇ

x“x0
yc yd

D

`O
`

β3
˘

“ ηab ´
1

3
β2 ∆ab `O

`

β3
˘

(4.271)

x gab y “ ηab `
1

3
β2
@

gbeR
a

ced

ˇ

ˇ

ˇ

x“x0
yc yd

D

`O
`

β3
˘

“ ηab `
1

3
β2 ∆ab

`O
`

β3
˘

(4.272)

xΓ
m

ab y “ ´
1

3
β
@`

R
m

abn `R
m

ban

˘

ˇ

ˇ

ˇ

x“x0
yn

D

`O
`

β3
˘

“ ´
1

3
β ∆̃m

ab `O
`

β3
˘

(4.273)

xΓ
m

ab,c y “ ´
1

3
β
@`

R
m

abn,c `R
m

ban,c

˘

ˇ

ˇ

ˇ

x“x0
yn

D

`O
`

β3
˘

“ ´
1

3
β ∆̃m

ab,c `O
`

β3
˘

. (4.274)
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where

∆ab “
@

Racbd

ˇ

ˇ

ˇ

x“x0
yc yd

D

(4.275)

∆̃m
ab “

@`

R
m

abn `R
m

ban

˘

ˇ

ˇ

ˇ

x“x0
yn

D

(4.276)

∆̃m
ab,c “

@`

R
m

abn `R
m

ban

˘

ˇ

ˇ

ˇ

x“x0
yn

D

(4.277)

and ∆s retain information on Schwarzschild radius. The indices are Minkowski indices in the local

patch. We assume the external fields are homogeneous over the patch. The averaged Riemann

tensor is

xR
s

dab y “ ´
1

3
β
@`

R
s

dbn,a `R
s

bdn,a

˘

ˇ

ˇ

ˇ

ˇ

x“x0

yn
D

`
1

3
β
@`

R
s

dan,b `R
s

adn,b

˘

ˇ

ˇ

ˇ

ˇ

x“x0

yn
D

(4.278)

`
1

9
β2

@

ˆ

`

R
m

dbn `R
m

bdn

˘ `

R
s

map `R
s

amp

˘

˙ˇ

ˇ

ˇ

ˇ

x“x0

yn yp
D

´
1

9
β2

@

ˆ

`

R
m

dan `R
m

adn

˘ `

R
s

mbp `R
s

bmp

˘

˙ˇ

ˇ

ˇ

ˇ

x“x0

yn yp
D

` . . .

“ ´
1

3
β
´

∆̃s
db,a ´ ∆̃s

da,b

¯

`
1

9
β2

´

∆̃m
db ∆̃s

ma ´ ∆̃m
da ∆̃s

mb

¯

` . . .

We combine these quantities to re-express the wave equations.
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4.3.4 An Estimate

We can estimate the values of the quantities listed in this section. We consider, e.g. the Kerr-

Newman metric for the background geometry

ds2
“ ´

ˆ

1`
r2
q ´ rsr

Σ

˙

dt2 `
Σ

∆
dr2

` Σ dθ2
`

˜

r2
` a2

`
a2

`

rsr ´ r
2
q

˘

Σ
sin2 θ

¸

sin2 θ dφ2

(4.279)

´
2 a

`

rsr ´ r
2
q

˘

sin2 θ

Σ
dt dφ

where rs “ 2GM , a “ J{M , Σ “ r2`a2 cos2 θ, ∆ “ r2´rs r`a
2`r2

q and r2
qQ

2 and rq “ Q2{

Please note, astrophysical black holes are known to have a minuscule charge. We consider Q to

be effectively zero throughout these notes. We seek to show this background metric is locally flat

for a local neighborhood of points around point P. For this example background metric, we will

reproduce equations (4.267) and (4.268). For there we will be able to reproduce the results of the

previous sections for this example.

Locally Flat Metric: We can make the transformation on the background metric in equation (4.279)

g1lspx
1
q “ gmnpxq

Bxm

Bx1l
Bxn

Bx1s
(4.280)

where x is point P. We henceforth set x “ 0. We can Taylor expand the metric

gmnpxq “ gmnp0q `
Bgmnpxq

Bx1l

ˇ

ˇ

ˇ

ˇ

x“0

x1l `
1

2

Bgmnpxq

Bx1lBx1s

ˇ

ˇ

ˇ

ˇ

x“0

x1lx1s ` . . . (4.281)

“ gmnp0q ` Amn,l x
1l
`Bmn,ls x

1lx1s ` . . . (4.282)
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and around point P

xm “ xmp0q `
Bx1m

Bxl

ˇ

ˇ

ˇ

ˇ

x“0

x1l `
1

2

Bxm

Bx1lBx1s

ˇ

ˇ

ˇ

ˇ

x“0

x1lx1s ` . . . (4.283)

“ Km
l x
1l
` Lmls x

1lx1s `Mm
vls x

1nx1lx1s ` . . . (4.284)

If we require x1 “ 0, the transformation on the background metric at the point P is now

g1lsp0q “ gmnp0qK
m
lK

n
s (4.285)

where K is a matrix which diagonalizes the background metric. In general, K has n2 degrees of

freedom (dof). gmnp0q is a symmetric matrix with npn ` 1q{2. Thus, npn ` 1q{2 dof of K are

needed to diagonalize the matrix leaving the anti-symmetric components npn´1q{2. We use these

degrees of fix g1lsp0q “ ηls, the Minkowski metric.

4.3.5 High-Frequency Gravitational Wave Equation in Riemann-Normal Coordinates

The gravitational wave equations is

´
1

2
lhbd “ R

s

dab h
a
s ` κ

ˆ

α

ε
T
p1,0q
ab ` T

p0,1q
ab ` αT

p1,1q
ab ´

1

2
gab

´ α

ε
T p1,0q ` T p0,1q ` αT p1,1q

¯

˙

(4.286)
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where we can write

gac∇a∇c hbd “ gac∇a∇c hbd (4.287)

“ gac
ˆ

Ba
`

Bc hbd ´ Γ
e

cb hed ´ Γ
e

cd hbe
˘

´ Γ
e

ac

´

Be hbd ´ Γ
f

eb hfd ´ Γ
f

ed hbf

¯

´ Γ
e

ab

´

Bc hed ´ Γ
f

ce hfd ´ Γ
f

cd hef

¯

´ Γ
e

ad

´

Bc hbe ´ Γ
f

cb hfe ´ Γ
f

ce hbf

¯

˙

“ xgacy

ˆ

BaBc hbd ´ xBa Γ
e

cbyhed ´ xΓ
e

cby Bahed ´ xBaΓ
e

cdyhbe ´ xΓ
e

cdy Bahbe

´ xΓ
e

acy Be hbd (4.288)

` xΓ
e

ac Γ
f

ebyhfd ` xΓ
e

ac Γ
f

edyhbf ´ xΓ
e

aby Bc hed ` xΓ
e

ab Γ
f

ceyhfd ` xΓ
e

ab Γ
f

cdyhef

´ xΓ
e

ady Bc hbe ` xΓ
e

ad Γ
f

cbyhfe ` xΓ
e

ad Γ
f

ceyhbf

˙

“ ηacBaBc hbd ` η
ac

ˆ

´xBa Γ
e

cbyhed ´ xBa Γ
e

cdyhbe ´ 2 xΓ
e

cby Ba hed ´ 2 xΓ
e

cdy Bahbe

(4.289)

´ xΓ
e

acy Be hbd ` xΓ
e

ac Γ
f

ebyhfd ` xΓ
e

ac Γ
f

edyhbf ` xΓ
e

ab Γ
f

ceyhfd

` xΓ
e

ab Γ
f

cdyhef ` xΓ
e

ad Γ
f

cbyhfe ` xΓ
e

ad Γ
f

ceyhbf

˙

“ ηacBaBc hbd ` η
ac

ˆ

´xΓ
e

cb,ayhed ´ xΓ
e

cd,ayhbe ´ 2 xΓ
e

cby Ba hed ´ 2 xΓ
e

cdy Bahbe

(4.290)

´ xΓ
e

acy Be hbd ` xΓ
e

ac Γ
f

ebyhfd ` xΓ
e

ac Γ
f

edyhbf ` xΓ
e

ab Γ
f

ceyhfd

` xΓ
e

ab Γ
f

cdyhef ` xΓ
e

ad Γ
f

cbyhfe ` xΓ
e

ad Γ
f

ceyhbf

˙

“ ηacBaBc hbd `
1

3
β ηac

ˆ

∆̃e
cb,ahed ` ∆̃e

cd,ahbe ` 2 ∆̃e
cb Bahed ` 2 ∆̃e

cd Bahbe

(4.291)

` ∆̃e
ac Be hbd

˙

` . . .
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In addition, we have the new components of the energy-momentum tensor

T
p1,0q
ab “ xgefyxF bfyF

p1q
ae ` xg

ef
yxF aeyF

p1q
bf ` x Baφ y Bbφ

p1q
` xBbφ yBaφ

p1q (4.292)

´
4

45m4
e

ˆ

e2

4π

˙2

x gef gmn gop y
´

xFmo F ae F bfyF
p1q
np ` xF np Fmo F bf yF

p1q
ae

¯

´ x gab y

ˆ

1

2
x gmngop F np yF

p1q
mo ` x g

mn
y xBmφy Bnφ

p1q
`m2

xφ yφp1q

´
4

90m4
e

ˆ

e2

4π

˙2 ˆ

x gmn gop gqr gst yxFmo F np F qsyF
p1q
rt ´ ε

hijkεdefg x
7

4 g
F de F fg F hi yF

p1q
jk

˙˙

“ ηef
´

xF bfyF
p1q
ae ` xF aeyF

p1q
bf

¯

` x Baφ y Bbφ
p1q
` xBbφ yBaφ

p1q (4.293)

´
4

45m4
e

ˆ

e2

4π

˙2

ηefηmnηop
´

xFmo F ae F bfyF
p1q
np ` xF np Fmo F bf yF

p1q
ae

¯

´ ηab

ˆ

1

2
ηmnηopxF np yF

p1q
mo ` η

mn
xBmφy Bnφ

p1q
`m2

xφ yφp1q

´
4

90m4
e

ˆ

e2

4π

˙2 ˆ

ηqr ηstxF
2
F qsyF

p1q
rt ´

7

4
εhijkεdefg xF de F fg F hi yF

p1q
jk

˙˙

` . . .

T
p0,1q
ab “ ´hcd xF acF bd y `

2

45m4
e

ˆ

e2

4π

˙2
´

hcd xF ac F bd F
2
y ` 2 gcd gop hmn xF ac F bd Fmo F np y

¯

(4.294)

´ hab

ˆ

1

4
F

2
`

1

2

´

gmn Bmφ Bnφ`m
2 φ

2
¯

´
1

90m4
e

ˆ

e2

4π

˙2
´

F
4
´

7

16 g

`

εmnopFmnF op

˘2
¯

˙

´ gab

ˆ

´
1

2
hmngop F np Fmo ´

1

2
hmn Bmφ Bnφ`

4

90m4
e

ˆ

e2

4π

˙2

hmn gop gqr gst Fmo F np F
2
˙

We can account for this by requiring the external electromagnetic fields to numerically vary slowly

over the size of the patch, perhaps with a phenomenologically modeled profile. We will likely

explore any additional experimental consequences of this in future work.
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4.3.6 Averaging

The high-frequency waves described in the previous section have a wavelength that is much smaller

than the characteristic length-scales of the background curvature. This is the geometric optics

regime. If we consider some suitable covariant averaging [59]–[64], the background quantities

become gab ” xgaby, Rabcd ” xRabcdy and Rab ” xRaby. As well, I consider φ ” xφy and

F ab ” xFaby as background quantities. Before I leave the averaging procedures to the appropriate

graduate student, we note the Brill-Hartle average of a tensor field, Aab, is defined by

xAaby “

ż

d4x1
a

´gpx1q g c
a px, x

1
q g d

b px, x
1
qqAcd fpx, x

1
q (4.295)

where fpx, x1q is a weighted function that decreases to zero when the difference of x to x1 is greater

than some scale d. Thus the value is finite. Understand all averaging schemes have a weighting

function that goes to zero when the difference is greater than a scale.
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4.4 Eikonal Approximation wave mixing

R bd “ R bd `
ε

2

ˆ

´lhbd ´∇d∇b h`∇q∇b h
q
d `∇q∇d h

q
b

˙

`
ε2

4

ˆ

´l phbr h
r
dq ´∇d∇b ph

a
r h

r
aq

(4.296)

`∇q∇b ph
q
r h

r
dq `∇q∇d ph

q
r h

r
bq

´ 2∇a

´

ham
`

∇d hmb `∇b hmd ´∇m hbd
˘

¯

` 2∇d

´

ham
`

∇a hmb `∇b hma ´∇m hba
˘

¯

`
`

∇e h
a
a `∇a h

a
e ´ g

am∇m hae
˘`

∇d h
e
b `∇b h

e
d ´ g

eq∇q hbd
˘

´
`

∇e h
a
d `∇d h

a
e ´ g

aq∇q hde
˘`

∇a h
e
b `∇b h

e
a ´ g

em∇m hba
˘

˙

`Opε3q

“ R bd `
ε

2

ˆ

´lhbd ´∇d∇b h`∇q∇b h
q
d `∇q∇d h

q
b

˙

`
ε2

4

ˆ

´l phbr h
r
dq ´∇d∇b ph

a
r h

r
aq

(4.297)

`∇q∇b ph
q
r h

r
dq `∇q∇d ph

q
r h

r
bq ´ 2

´

ham∇a∇d hmb ` h
am∇a∇b hmd ´ h

am∇a∇m hbd

¯

` 2
´

p∇dh
am
qp∇a hmbq ` p∇dh

am
qp∇b hmaq ´ p∇dh

am
qp∇m hbaq

¯

(4.298)

` 2
´

ham∇d∇a hmb ` h
am∇d∇b hma ´ h

am∇d∇m hba

¯

` p∇a h
a
eqp∇d h

e
bq ` p∇a h

a
eqp∇b h

e
dq ´ p∇a h

a
eqpg

eq∇q hbdq

´ pgam∇m haeq∇d h
e
b ´ pg

am∇m haeq∇b h
e
d ` pg

am∇m haeqpg
eq∇q hbdq

´
`

∇e h
a
d `∇d h

a
e ´ g

aq∇q hde
˘`

∇a h
e
b

˘

`
`

∇e h
a
d `∇d h

a
e ´ g

aq∇q hde
˘`

∇b h
e
a

˘

´
`

∇e h
a
d `∇d h

a
e ´ g

aq∇q hde
˘`

gem∇m hba
˘

˙

`Opε3q
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In the lagrangian, we can use integration by parts

R bd “ R bd `
ε

2

ˆ

´lhbd ´∇d∇b h`∇q∇b h
q
d `∇q∇d h

q
b

˙

(4.299)

`
ε2

4

ˆ

´l phbr h
r
dq ´∇d∇b ph

a
r h

r
aq `∇q∇b ph

q
r h

r
dq `∇q∇d ph

q
r h

r
bq (4.300)

´ 2
´

ham∇a∇d hmb ` h
am∇a∇b hmd ´ h

am∇a∇m hbd

¯

` 2
´

´ham∇d∇a hmb ´ h
am∇d∇b hma ` h

am∇d∇m hba

¯

(4.301)

` 2
´

ham∇d∇a hmb ` h
am∇d∇b hma ´ h

am∇d∇m hba

¯

´ hae∇a∇d h
e
b ´ h

a
e∇a∇b h

e
d ´ g

eq hae∇a∇q hbd

´ gam hae∇m∇d h
e
b ´ pg

am∇m haeq∇b h
e
d ´ g

am geq hae∇m∇q hbd

` had∇e∇a h
e
b ` h

a
e∇d∇a h

e
b ´ g

aqhde∇q∇a h
e
b

´ had∇e∇b h
e
a ´ h

a
e∇d∇b h

e
a ` g

aq hde∇q∇b h
e
a

´
``

gem∇m hba
˘

∇e h
a
d `

`

gem∇m hba
˘

∇d h
a
e ´

`

gem∇m hba
˘

gaq∇q hde
˘

˙

`Opε3q
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R bd “ R bd `
ε

2

ˆ

´lhbd ´∇d∇b h`∇q∇b h
q
d `∇q∇d h

q
b

˙

(4.302)

`
ε2

4

ˆ

´l phbr h
r
dq ´∇d∇b ph

a
r h

r
aq `∇q∇b ph

q
r h

r
dq `∇q∇d ph

q
r h

r
bq (4.303)

´ 2ham
´

∇a∇d hmb `∇a∇b hmd ´∇a∇m hbd

¯

´ hae

´

∇a∇d h
e
b `∇a∇b h

e
d ` g

eq∇a∇q hbd

¯

´ gam hae∇m∇d h
e
b ` g

amhae∇m∇b h
e
d ´ g

am geq hae∇m∇q hbd

` had∇e∇a h
e
b ` h

a
e∇d∇a h

e
b ´ hdelheb

´ had∇e∇b h
e
a ´ h

a
e∇d∇b h

e
a ` g

aq hde∇q∇b h
e
a

` hbalhad ` hba∇m∇d h
am
´ h q

b ∇m∇q h
m
d

˙

`Opε3q
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Denoting h “ haa, the Ricci tensor and scalar are

R bd “ R bd `
ε

2

ˆ

´lhbd ´∇d∇b h`∇q∇b h
q
d `∇q∇d h

q
b

˙

`
ε2

4

ˆ

´l phbr h
r
dq ´∇d∇b ph

a
r h

r
aq

(4.304)

`∇q∇b ph
q
r h

r
dq `∇q∇d ph

q
r h

r
bq

´ 2∇a

´

ham
`

∇d hmb `∇b hmd ´∇m hbd
˘

¯

` 2∇d

´

ham
`

∇a hmb `∇b hma ´∇m hba
˘

¯

`
`

∇e h
a
a `∇a h

a
e ´ g

am∇m hae
˘`

∇d h
e
b `∇b h

e
d ´ g

eq∇q hbd
˘

´
`

∇e h
a
d `∇d h

a
e ´ g

aq∇q hde
˘`

∇a h
e
b `∇b h

e
a ´ g

em∇m hba
˘

˙

`Opε3q

“ R bd `
ε

2

ˆ

´lhbd ´∇d∇b h`∇q∇b h
q
d `∇q∇d h

q
b

˙

`
ε2

4

ˆ

´l phbr h
r
dq ´∇d∇b ph

a
r h

r
aq

(4.305)

`∇q∇b ph
q
r h

r
dq `∇q∇d ph

q
r h

r
bq

´ 2∇a

´

ham
`

∇d hmb `∇b hmd ´∇m hbd
˘

¯

` 2∇d

´

ham
`

∇a hmb `∇b hma ´∇m hba
˘

¯

` p∇a h
a
eq
`

∇d h
e
b `∇b h

e
d ´ g

eq∇q hbd
˘

´ pgam∇m haeq
`

∇d h
e
b `∇b h

e
d ´ g

eq∇q hbd
˘

´
`

∇e h
a
d `∇d h

a
e ´ g

aq∇q hde
˘`

∇a h
e
b `∇b h

e
a ´ g

em∇m hba
˘

˙

`Opε3q
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The ε2 terms can further simplified to find

´ggh∇g∇h phbr h
r
dq “ ´g

gh∇g phbr∇h h
r
dq ´ g

gh∇g ph
r
d∇h hbrq (4.306)

“ ´ggh p∇g hbrq p∇h h
r
dq ´ g

gh
phbr∇g∇h h

r
dq ´ g

gh
p∇gh

r
dq p∇h hbrq

´ ggh phrd∇g∇h hbrq

“ ´2 ggh p∇g hbrq p∇h h
r
dq ´ g

gh
phbr∇g∇h h

r
dq ´ g

gh
phrd∇g∇h hbrq

´∇d∇b ph
a
r h

r
aq “ ´∇d ph

a
r∇b h

r
aq ´∇d ph

r
a∇b h

a
rq (4.307)

“ ´p∇dh
a
rq p∇b h

r
aq ´ h

a
r∇d∇b h

r
a ´ p∇dh

r
aq p∇b h

a
rq ´ h

r
a∇d∇b h

a
r

“ ´2 p∇dh
a
rq p∇b h

r
aq´2har∇d∇b h

r
a

∇q∇b ph
q
r h

r
dq “ ∇q ph

q
r∇b h

r
dq `∇q ph

r
d∇b h

q
rq (4.308)

“ p∇qh
q
rq p∇b h

r
dq ` h

q
r∇q∇bh

r
d ` p∇qh

r
dq p∇b h

q
rq ` h

r
d∇q∇b h

q
r

∇q∇d ph
q
r h

r
bq “ ∇q ph

q
r∇dh

r
bq `∇q ph

r
b∇dh

q
rq (4.309)

“ p∇qh
q
rq p∇dh

r
bq ` h

q
r∇q∇dh

r
b ` p∇qh

r
bq p∇dh

q
rq ` h

r
b∇q∇dh

q
r
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as well as

´2∇a

´

ham
`

∇d hmb `∇b hmd ´∇m hbd
˘

¯

“ ´2∇a

`

ham∇d hmb
˘

´ 2∇a

`

ham∇b hmd
˘

` 2∇a

`

ham∇m hbd
˘

(4.310)

“ ´2
`

∇ah
am
˘`

∇d hmb
˘

´ 2ham∇a∇d hmb

´ 2
`

∇ah
am
˘`

∇b hmd
˘

(4.311)

´ 2ham∇a∇b hmd ` 2
`

∇ah
am
˘`

∇m hbd
˘

` 2ham∇a∇m hbd

“ ´2
`

∇ah
am
˘`

∇d hmb
˘

´ 2ham∇a∇d hmb

´ 2
`

∇ah
am
˘`

∇b hmd
˘

(4.312)

´ 2ham∇a∇b hmd ` 2
`

∇ah
am
˘`

∇m hbd
˘

` 2ham∇a∇m hbd

2∇d

´

ham
`

∇a hmb `∇b hma ´∇m hba
˘

¯

“ 2∇d

`

ham∇a hmb
˘

` 2∇d

`

ham∇b hma
˘

´ 2∇d

`

ham∇m hba
˘

(4.313)

“ 2
`

∇dh
am
˘`

∇a hmb
˘

` 2ham∇d∇a hmb

` 2
`

∇dh
am
˘`

∇b hma
˘

` 2ham∇d∇b hma ´ 2
`

∇dh
am
˘`

∇mhba
˘

´ 2ham∇d∇m hba

“ 2
`

∇dh
am
˘`

∇a hmb
˘

` 2
`

∇dh
am
˘`

∇b hma
˘

` 2ham∇d∇b hma ´ 2
`

∇dh
am
˘`

∇mhba
˘
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and

`

∇e h
a
a `∇a h

a
e ´ g

am∇m hae
˘`

∇d h
e
b `∇b h

e
d ´ g

eq∇q hbd
˘

(4.314)

“ p∇e h
a
aq p∇d h

e
bq ` p∇e h

a
aq p∇b h

e
dq ´ g

eq
p∇e h

a
aq p∇q hbdq

` p∇a h
a
eq p∇d h

e
bq ` p∇a h

a
eq p∇b h

e
dq

´ geq p∇a h
a
eq p∇q hbdq ´ g

am
p∇m haeq p∇d h

e
bq ´ g

am
p∇m haeq p∇b h

e
dq

` gam p∇m haeq pg
eq∇q hbdq

´
`

∇e h
a
d `∇d h

a
e ´ g

aq∇q hde
˘`

∇a h
e
b `∇b h

e
a ´ g

em∇m hba
˘

“ p∇e h
a
dq p∇a h

e
bq ` p∇e h

a
dq p∇b h

e
aq ´ g

eq
p∇e h

a
dq p∇q hbaq

` p∇d h
a
eq p∇a h

e
bq ` p∇d h

a
eq p∇b h

e
aq

´ geq p∇d h
a
eq p∇q hbaq ´ g

am
p∇m hdeq p∇a h

e
bq ´ g

am
p∇m hdeq p∇b h

e
aq

` gam p∇m hdeq pg
eq∇q hbaq

We can sum everything up to find

terms “ p∇d harq p∇b h
ar
q ` 2ham∇a∇m hbd (4.315)
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terms “ (4.316)

´ 2 ggh p∇g hbrq p∇h h
r
dq ´ g

gh
phbr∇g∇h h

r
dq ´ g

gh
phrd∇g∇h hbrq

´ 2 p∇dh
a
rq p∇b h

r
aq ´ 2har∇d∇b h

r
a

` p∇qh
q
rq p∇b h

r
dq ` h

q
r∇q∇bh

r
d ` p∇qh

r
dq p∇b h

q
rq

` hrd∇q∇b h
q
r p∇qh

q
rq p∇dh

r
bq ` h

q
r∇q∇dh

r
b

` p∇qh
r
bq p∇dh

q
rq ` h

r
b∇q∇dh

q
r ´ 2

`

∇ah
am
˘`

∇d hmb
˘

´ 2ham∇a∇d hmb

´ 2
`

∇ah
am
˘`

∇b hmd
˘

´ 2ham∇a∇b hmd ` 2
`

∇ah
am
˘`

∇m hbd
˘

` 2ham∇a∇m hbd

` 2
`

∇dh
am
˘`

∇a hmb
˘

` 2
`

∇dh
am
˘`

∇b hma
˘

` 2ham∇d∇b hma ´ 2
`

∇dh
am
˘`

∇mhba
˘

` p∇e h
a
aq p∇d h

e
bq

` p∇e h
a
aq p∇b h

e
dq ´ g

eq
p∇e h

a
aq p∇q hbdq

` p∇a h
a
eq p∇d h

e
bq ` p∇a h

a
eq p∇b h

e
dq ´ g

eq
p∇a h

a
eq p∇q hbdq ´ g

am
p∇m haeq p∇d h

e
bq

´ gam p∇m haeq p∇b h
e
dq ` g

am
p∇m haeq pg

eq∇q hbdq p∇e h
a
dq p∇a h

e
bq

` p∇e h
a
dq p∇b h

e
aq ´ g

eq
p∇e h

a
dq p∇q hbaq ` p∇d h

a
eq p∇a h

e
bq ` p∇d h

a
eq p∇b h

e
aq

´ geq p∇d h
a
eq p∇q hbaq ´ g

am
p∇m hdeq p∇a h

e
bq ´ g

am
p∇m hdeq p∇b h

e
aq

` gam p∇m hdeq pg
eq∇q hbaq
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R “ R ` ε

ˆ

´lh`∇q∇b h
qb

˙

`
ε2

4

ˆ

´2 l
`

hbr h
rb
˘

` 2∇q∇b

`

hqr h
rb
˘

´ 2∇a

`

ham
`

2∇d h
d
m ´∇m h

˘˘

` 2∇d

´

ham
`

∇a h
d
m ` g

bd∇b hma ´∇m h
d
a

˘

¯

`
`

∇e h
˘`

2∇d h
ed
´ geq∇q h

˘

´
`

∇e h
ab
` gbd∇d h

a
e ´ g

aq∇q h
b
e

˘`

∇a h
e
b `∇b h

e
a ´ g

em∇m hba
˘

˙

`Opε3q

4.5 Appendix: Explicit Calculations

4.5.1 Einstein Tensor Computations

The covariant and contravariant perturbative expansions for the metric are

gab “ gab ` ε hab `
1

2
ε2 hac h

c
b `Opε3q (4.317)

gab “ gab ´ ε hab `
1

2
ε2 hac h b

c `Opε3q (4.318)

We compute up to Opε3q in order to better understand any ε dependence of the mixing matrix.

Given the metric expansion, the perturbative expansion for the connection is
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Γabc “
1

2
gam

´

Bc gmb ` Bb gmc ´ Bm gbc

¯

“
1

2

ˆ

gam ´ ε ham `
1

2
ε2 hac h m

c

˙ˆ

Bc gmb ` Bb gmc ´ Bm gbc ` ε pBc hmb ` Bb hmc ´ Bm hbcq

(4.319)

`
ε2

2

´

Bc phmc h
c
bq ` Bb

`

hmd h
d
c

˘

´ Bm
`

hbd h
d
c

˘

¯

˙

`Opε3q

“
1

2
gam pBc gmb ` Bb gmc ´ Bm gbcq `

ε

2

ˆ

gam pBc hmb ` Bb hmc ´ Bm hbcq

´ ham pBc gmb ` Bb gmc ´ Bm gbcq

˙

`
ε2

4

ˆ

gam
`

Bc phmc h
c
bq ` Bb

`

hmd h
d
c

˘

´ Bm
`

hbd h
d
c

˘˘

´ 2ham pBc hmb ` Bb hmc ´ Bm hbcq

` hac h m
c pBc gmb ` Bb gmc ´ Bm gbcq

˙

`Opε3q

“ Γ
a

bc `
ε

2

ˆ

gam pBc hmb ` Bb hmc ´ Bm hbcq ´ h
am
pBc gmb ` Bb gmc ´ Bm gbcq

˙

(4.320)

`
ε2

4

ˆ

gam
`

Bc phmc h
c
bq ` Bb

`

hmd h
d
c

˘

´ Bm
`

hbd h
d
c

˘˘

´ 2ham pBc hmb ` Bb hmc ´ Bm hbcq

` hac h m
c pBc gmb ` Bb gmc ´ Bm gbcq

˙

`Opε3q

“ Γ
a

bc `
ε

2
gam

ˆ

Bc hmb ` Bb hmc ´ Bm hbc

˙

´ ε ham gmeΓ
e

bc (4.321)

`
ε2

4

ˆ

gam
´

Bc phmc h
c
bq ` Bb

`

hmd h
d
c

˘

´ Bm
`

hbd h
d
c

˘

¯

´ 2ham
´

Bc hmb ` Bb hmc ´ Bm hbc

¯

` 2hac h m
c Γmbc

˙

Γabc “ Γ
a

bc `
ε

2
gam

ˆ

∇c hmb `∇b hmc ´∇m hbc

˙

(4.322)

`
ε2

4

ˆ

gam
´

∇c phmq h
q
bq `∇b phmq h

q
cq ´∇m phbq h

q
cq

¯

´ 2ham
´

∇c hmb `∇b hmc ´∇m hbc

¯

˙

`Opε3q .
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For the ε{2 term, we calculate

gam
ˆ

∇c hmb `∇b hmc ´∇m hbc

˙

“ (4.323)

gam
ˆ

Bc hmb ´ Γ
d

mc hdb ´ Γ
d

bc hmd ` Bb hmc ´ Γ
d

mb hdc ´ Γ
d

bc hmd ´ Bm hbc ` Γ
d

bm hdc

` Γ
d

cm hbd

˙

“

gam
ˆ

Bc hmb ` Bb hmc ´ Bm hbc ´ Γ
d

mc hdb ´ Γ
d

bc hmd ´ Γ
d

mb hdc ´ Γ
d

bc hmd ` Γ
d

bm hdc

` Γ
d

cm hbd

˙

“

gam
ˆ

Bc hmb ` Bb hmc ´ Bm hbc

˙

´ gam
´

Γ
d

bc hmd ` Γ
d

bc hmd

¯

“

gam
ˆ

Bc hmb ` Bb hmc ´ Bm hbc

˙

´ 2 gamΓ
d

bc hmd .
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We compute the ε2 terms,

gam

˜

∇c phme h
e
bq `∇b

`

hmd h
d
c

˘

´∇m

`

hbd h
d
c

˘

¸

´ 2ham

˜

∇c hmb `∇b hmc ´∇m hbc

¸

“

(4.324)

gam

˜

Bc phme h
e
bq ´ Γfmc phfe h

e
bq ´ Γfbc

`

hme h
e
f

˘

` Bb phme h
e
cq ´ Γfmb phfe h

e
cq ´ Γfcb

`

hme h
e
f

˘

´ Bm
`

hbd h
d
c

˘

` Γfbm
`

hfd h
d
c

˘

` Γfcm
`

hbd h
d
f

˘

¸

´ 2ham

˜

Bc hmb ´ Γfmc hfb ´ Γfcb hmf ` Bb hmc

´ Γfmb hfc ´ Γfcb hmf ´ Bm hbc ` Γgbm hgc ` Γgcm hbg

¸

“

gam

˜

Bc phme h
e
bq ´

XXXXXXXΓfmc phfe h
e
bq ´ Γfbc

`

hme h
e
f

˘

` Bb phme h
e
cq

´
XXXXXXXΓfmb phfe h

e
cq ´ Γfcb

`

hme h
e
f

˘

´ Bm
`

hbd h
d
c

˘

`
XXXXXXX
Γfbm

`

hfd h
d
c

˘

`
XXXXXXX
Γfcm

`

hbd h
d
f

˘

¸

´ 2ham

˜

Bc hmb ´
XXXXXΓfmc hfb

´ Γfcb hmf ` Bb hmc ´
XXXXXΓfmb hfc ´ Γfcb hmf

´ Bm hbc `
XXXXXΓgbm hgc `

XXXXXΓgcm hbg

¸

“

gam

˜

Bc phme h
e
bq ` Bb phme h

e
cq ´ Bm

`

hbd h
d
c

˘

¸

´ 2ham

˜

Bc hmb ` Bb hmc ´ Bm hbc

¸

´ 2 gam Γfbc
`

hme h
e
f

˘

` 4ham Γfcb hmf “

gam

˜

Bc phme h
e
bq ` Bb phme h

e
cq ´ Bm

`

hbd h
d
c

˘

¸

´ 2ham

˜

Bc hmb ` Bb hmc ´ Bm hbc

¸

` 2hac h m
c Γmbc
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We now compute the Riemann tensor, Ra
bcd “ Bc Γabd ´ Bd Γabc ` Γace Γebd ´ Γade Γebc. Each of the

terms in this equation are

Bc Γabd “ Bc Γ
a

bd `
ε

2
Bc

ˆ

gam
`

∇d hmb `∇b hmd ´∇m hbd
˘

˙

(4.325)

`
ε2

4
Bc

ˆ

gam
´

∇d phmq h
q
bq `∇b phmq h

q
dq ´∇m phbq h

q
dq

¯

´ 2ham
´

∇d hmb `∇b hmd ´∇m hbd

¯

˙

`Opε3q

´Bd Γabc “ ´Bd Γ
a

bc ´
ε

2
Bd

ˆ

gam
`

∇c hmb `∇b hmc ´∇m hbc
˘

˙

(4.326)

´
ε2

4
Bd

ˆ

gam
´

∇c phmg h
g
bq `∇b phmg h

g
cq ´∇m phbg h

g
cq

¯

´ 2ham
´

∇c hmb `∇b hmc ´∇m hbc

¯

˙

`Opε3q
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Γace Γebd “ Γ
a

ceΓ
e

bd `
ε

2

ˆ

gem Γ
a

ce

`

∇d hmb `∇b hmd ´∇m hbd
˘

` gam Γ
e

bd

`

∇e hmc `∇c hme ´∇m hce
˘

˙

`
ε2

4

ˆ

gem Γ
a

ce

`

∇d phmq h
q
bq `∇b phmg h

g
dq ´∇m phbg h

g
dq
˘

´ 2hem Γ
a

ce

`

∇d hmb `∇b hmd ´∇m hbd
˘

` geq gam
`

∇e hmc `∇c hme ´∇m hce
˘`

∇d hqb `∇b hqd ´∇q hbd
˘

` gam Γ
e

bd

`

∇e phmn h
n
cq `∇c phmn h

n
eq ´∇m phcm h

m
eq
˘

´ 2ham Γ
e

bd

`

∇e hmc `∇c hme ´∇m hce
˘

˙

`Opε3q

´Γade Γebc “ ´Γ
a

deΓ
e

bc ´
ε

2

ˆ

gem Γ
a

de

`

∇c hmb `∇b hmc ´∇m hbc
˘

` gam Γ
e

bc

`

∇e hmd `∇d hme ´∇m hde
˘

˙

´
ε2

4

ˆ

gem Γ
a

de

`

∇c phmg h
g
bq `∇b phmg h

g
cq ´∇m phbg h

g
cq
˘

´ 2hem Γ
a

de

`

∇c hmb `∇b hmc ´∇m hbc
˘

` gem gaq
`

∇e hqd `∇d hqe ´∇q hde
˘`

∇c hmb `∇b hmc ´∇m hbc
˘

` gam Γ
e

bc

`

∇e phmn h
n
dq `∇d phmn h

n
eq ´∇m phdm h

m
eq
˘

´ 2ham Γ
e

bc

`

∇e hmd `∇d hme ´∇m hde
˘

˙

`Opε3q

167



This yields

Ra
bcd “ Bc Γ

a

bd ´ Bd Γ
a

bc ` Γ
a

ceΓ
e

bd ´ Γ
a

deΓ
e

bc (4.327)

`
ε

2

ˆ

Bc
`

gam
`

∇d hmb `∇b hmd ´∇m hbd
˘˘

´ Bd
`

gam
`

∇c hmb `∇b hmc ´∇m hbc
˘˘

` gem Γ
a

ce

`

∇d hmb `∇b hmd ´∇m hbd
˘

` gam Γ
e

bd

`

∇e hmc `∇c hme ´∇m hce
˘

´ gem Γ
a

de

`

∇c hmb `∇b hmc ´∇m hbc
˘

´ gam Γ
e

bc

`

∇e hmd `∇d hme ´∇m hde
˘

˙

`
ε2

4

ˆ

Bc

´

gam
´

∇d phmq h
q
bq `∇b phmq h

q
dq ´∇m phbq h

q
dq

¯

´ 2ham
´

∇d hmb `∇b hmd ´∇m hbd

¯¯

´ Bd

ˆ

gam
´

∇c phmg h
g
bq `∇b phmg h

g
cq ´∇m phbg h

g
cq

¯

´ 2ham
´

∇c hmb `∇b hmc ´∇m hbc

¯

˙

` gem Γ
a

ce

`

∇d phmc h
c
bq `∇b phmg h

g
dq ´∇m phbg h

g
dq
˘

´ 2hem Γ
a

ce

`

∇d hmb `∇b hmd ´∇m hbd
˘

` gem gam
`

∇e hmc `∇c hme ´∇m hce
˘`

∇d hmb `∇b hmd ´∇m hbd
˘

` gam Γ
e

bd

`

∇e phmn h
n
cq `∇c phmn h

n
eq ´∇m phcm h

m
eq
˘

´ 2ham Γ
e

bd

`

∇e hmc `∇c hme ´∇m hce
˘

´ gem Γ
a

de

`

∇c phmg h
g
bq `∇b phmg h

g
cq ´∇m phbg h

g
cq
˘

` 2hem Γ
a

de

`

∇c hmb `∇b hmc ´∇m hbc
˘

´ gem gaq
`

∇e hqd `∇d hqe ´∇q hde
˘`

∇c hmb `∇b hmc ´∇m hbc
˘

´ gam Γ
e

bc

`

∇e phmn h
n
dq `∇d phmn h

n
eq ´∇m phdm h

m
eq
˘

` 2ham Γ
e

bc

`

∇e hmd `∇d hme ´∇m hde
˘

˙

`Opε3q
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Like before, we can promote the partial derivatives to covariant derivatives and cancel terms.

∇cF
a
bd ´∇dF

a
bc “ BcF

a
bd ´ Γ

q

bcF
a
qd ´

HHHH
Γ
q

cdF
a
bq ` Γ

a

cqF
q
bd ´ BdF

a
bc ` Γ

q

bdF
a
qc `

HHHH
Γ
q

cdF
a
bq ´ Γ

a

dqF
q
bc

“ BcF
a
bd ´ BdF

a
bc ´ Γ

q

bcF
a
qd ` Γ

a

cqF
q
bd ` Γ

q

bdF
a
qc ´ Γ

a

dqF
q
bc

Here F is a generic tensor.

Ra
bcd “ R

a

bcd

`
ε

2

ˆ

∇c

`

gam
`

∇d hmb `∇b hmd ´∇m hbd
˘˘

´∇d

`

gam
`

∇c hmb `∇b hmc ´∇m hbc
˘˘

˙

(4.328)

`
ε2

4

ˆ

∇c

´

gam
`

∇d phmr h
r
bq `∇b phmr h

r
dq ´∇m phbr h

r
dq
˘

´ 2ham
`

∇d hmb `∇b hmd ´∇m hbd
˘

¯

´∇d

´

gam
`

∇c phmg h
g
bq `∇b phmg h

g
cq ´∇m phbg h

g
cq
˘

´ 2ham
`

∇c hmb `∇b hmc ´∇m hbc
˘

¯

` geq gam
`

∇e hmc `∇c hme ´∇m hce
˘`

∇d hqb `∇b hqd ´∇q hbd
˘

´ gem gaq
`

∇e hqd `∇d hqe ´∇q hde
˘`

∇c hmb `∇b hmc ´∇m hbc
˘

˙

`Opε3q

169



Ra
bcd “ R

a

bcd `
ε

2

ˆ

gam
`

∇c∇d hmb `∇c∇b hmd ´∇c∇m hbd
˘

´ gam
`

∇d∇c hmb `∇d∇b hmc ´∇d∇m hbc
˘

˙

(4.329)

`
ε2

4

ˆ

gam
`

∇c∇d phmr h
r
bq `∇c∇b phmr h

r
dq ´∇c∇m phbr h

r
dq
˘

´ 2∇c

`

ham
`

∇d hmb `∇b hmd ´∇m hbd
˘˘

´ gam
`

∇d∇c phmg h
g
bq `∇d∇b phmg h

g
cq ´∇d∇m phbg h

g
cq
˘

´ 2∇d

`

ham
`

∇c hmb `∇b hmc ´∇m hbc
˘˘

` geq gam
`

∇e hmc `∇c hme ´∇m hce
˘`

∇d hqb `∇b hqd ´∇q hbd
˘

´ gem gaq
`

∇e hqd `∇d hqe ´∇q hde
˘`

∇c hmb `∇b hmc ´∇m hbc
˘

˙

`Opε3q

We can simplify a bit more to find a final form for the Riemann tensor

Ra
bcd “ R

a

bcd `
ε

2

ˆ

∇c∇d h
a
b `∇c∇b h

a
d ´ g

am∇c∇m hbd ´∇d∇c h
a
b ´∇d∇b h

a
c ` g

am∇d∇m hbc

˙

(4.330)

`
ε2

4

ˆ

∇c∇d ph
a
r h

r
bq `∇c∇b ph

a
r h

r
dq ´ g

am∇c∇m phbr h
r
dq

´∇d∇c

`

hag h
g
b

˘

´∇d∇b ph
a
r h

r
cq ` g

am∇d∇m phbr h
r
cq

´ 2∇c

´

ham
`

∇d hmb `∇b hmd ´∇m hbd
˘

¯

` 2∇d

´

ham
`

∇c hmb `∇b hmc ´∇m hbc
˘

¯

`
`

∇e h
a
c `∇c h

a
e ´ g

am∇m hce
˘`

∇d h
e
b `∇b h

e
d ´ g

eq∇q hbd
˘

´
`

∇e h
a
d `∇d h

a
e ´ g

aq∇q hde
˘`

∇c h
e
b `∇b h

e
c ´ g

em∇m hbc
˘

˙

`Opε3q .
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Denoting h “ haa, the Ricci tensor and scalar are

R bd “ R bd `
ε

2

ˆ

´lhbd ´∇d∇b h`∇q∇b h
q
d `∇q∇d h

q
b

˙

`
ε2

4

ˆ

´l phbr h
r
dq ´∇d∇b ph

a
r h

r
aq

(4.331)

`∇q∇b ph
q
r h

r
dq `∇q∇d ph

q
r h

r
bq

´ 2∇a

´

ham
`

∇d hmb `∇b hmd ´∇m hbd
˘

¯

` 2∇d

´

ham
`

∇a hmb `∇b hma ´∇m hba
˘

¯

`
`

∇e h
a
a `∇a h

a
e ´ g

am∇m hae
˘`

∇d h
e
b `∇b h

e
d ´ g

eq∇q hbd
˘

´
`

∇e h
a
d `∇d h

a
e ´ g

aq∇q hde
˘`

∇a h
e
b `∇b h

e
a ´ g

em∇m hba
˘

˙

`Opε3q

“ R bd `
ε

2

ˆ

´lhbd ´∇d∇b h`∇q∇b h
q
d `∇q∇d h

q
b

˙

`
ε2

4

ˆ

´l phbr h
r
dq ´∇d∇b ph

a
r h

r
aq

(4.332)

`∇q∇b ph
q
r h

r
dq `∇q∇d ph

q
r h

r
bq

´ 2∇a

´

ham
`

∇d hmb `∇b hmd ´∇m hbd
˘

¯

` 2∇d

´

ham
`

∇a hmb `∇b hma ´∇m hba
˘

¯

` p∇a h
a
eq
`

∇d h
e
b `∇b h

e
d ´ g

eq∇q hbd
˘

´ pgam∇m haeq
`

∇d h
e
b `∇b h

e
d ´ g

eq∇q hbd
˘

´
`

∇e h
a
d `∇d h

a
e ´ g

aq∇q hde
˘`

∇a h
e
b `∇b h

e
a ´ g

em∇m hba
˘

˙

`Opε3q

The ε2 terms can further simplified to find
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´ggh∇g∇h phbr h
r
dq “ ´g

gh∇g phbr∇h h
r
dq ´ g

gh∇g ph
r
d∇h hbrq (4.333)

“ ´ggh p∇g hbrq p∇h h
r
dq ´ g

gh
phbr∇g∇h h

r
dq

´ ggh p∇gh
r
dq p∇h hbrq ´ g

gh
phrd∇g∇h hbrq

“ ´2 ggh p∇g hbrq p∇h h
r
dq ´ g

gh
phbr∇g∇h h

r
dq ´ g

gh
phrd∇g∇h hbrq

´∇d∇b ph
a
r h

r
aq “ ´∇d ph

a
r∇b h

r
aq ´∇d ph

r
a∇b h

a
rq (4.334)

“ ´p∇dh
a
rq p∇b h

r
aq ´ h

a
r∇d∇b h

r
a ´ p∇dh

r
aq p∇b h

a
rq ´ h

r
a∇d∇b h

a
r

“ ´2 p∇dh
a
rq p∇b h

r
aq´2har∇d∇b h

r
a

∇q∇b ph
q
r h

r
dq “ ∇q ph

q
r∇b h

r
dq `∇q ph

r
d∇b h

q
rq (4.335)

“ p∇qh
q
rq p∇b h

r
dq ` h

q
r∇q∇bh

r
d ` p∇qh

r
dq p∇b h

q
rq ` h

r
d∇q∇b h

q
r

∇q∇d ph
q
r h

r
bq “ ∇q ph

q
r∇dh

r
bq `∇q ph

r
b∇dh

q
rq (4.336)

“ p∇qh
q
rq p∇dh

r
bq ` h

q
r∇q∇dh

r
b ` p∇qh

r
bq p∇dh

q
rq ` h

r
b∇q∇dh

q
r
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as well as

´2∇a

´

ham
`

∇d hmb `∇b hmd ´∇m hbd
˘

¯

“ ´2∇a

`

ham∇d hmb
˘

´ 2∇a

`

ham∇b hmd
˘

` 2∇a

`

ham∇m hbd
˘

(4.337)

“ ´2
`

∇ah
am
˘`

∇d hmb
˘

´ 2ham∇a∇d hmb

´ 2
`

∇ah
am
˘`

∇b hmd
˘

´ 2ham∇a∇b hmd ` 2
`

∇ah
am
˘`

∇m hbd
˘

` 2ham∇a∇m hbd

“ ´2
`

∇ah
am
˘`

∇d hmb
˘

´ 2ham∇a∇d hmb

´ 2
`

∇ah
am
˘`

∇b hmd
˘

(4.338)

´ 2ham∇a∇b hmd ` 2
`

∇ah
am
˘`

∇m hbd
˘

` 2ham∇a∇m hbd

2∇d

´

ham
`

∇a hmb `∇b hma ´∇m hba
˘

¯

“ 2∇d

`

ham∇a hmb
˘

` 2∇d

`

ham∇b hma
˘

´ 2∇d

`

ham∇m hba
˘

(4.339)

“ 2
`

∇dh
am
˘`

∇a hmb
˘

` 2ham∇d∇a hmb

` 2
`

∇dh
am
˘`

∇b hma
˘

` 2ham∇d∇b hma ´ 2
`

∇dh
am
˘`

∇mhba
˘

´ 2ham∇d∇m hba

“ 2
`

∇dh
am
˘`

∇a hmb
˘

` 2
`

∇dh
am
˘`

∇b hma
˘

` 2ham∇d∇b hma ´ 2
`

∇dh
am
˘`

∇mhba
˘
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and

`

∇e h
a
a `∇a h

a
e ´ g

am∇m hae
˘`

∇d h
e
b `∇b h

e
d ´ g

eq∇q hbd
˘

(4.340)

“ p∇e h
a
aq p∇d h

e
bq ` p∇e h

a
aq p∇b h

e
dq ´ g

eq
p∇e h

a
aq p∇q hbdq

` p∇a h
a
eq p∇d h

e
bq ` p∇a h

a
eq p∇b h

e
dq

´ geq p∇a h
a
eq p∇q hbdq ´ g

am
p∇m haeq p∇d h

e
bq ´ g

am
p∇m haeq p∇b h

e
dq

` gam p∇m haeq pg
eq∇q hbdq

´
`

∇e h
a
d `∇d h

a
e ´ g

aq∇q hde
˘`

∇a h
e
b `∇b h

e
a ´ g

em∇m hba
˘

“ p∇e h
a
dq p∇a h

e
bq ` p∇e h

a
dq p∇b h

e
aq ´ g

eq
p∇e h

a
dq p∇q hbaq

` p∇d h
a
eq p∇a h

e
bq ` p∇d h

a
eq p∇b h

e
aq

´ geq p∇d h
a
eq p∇q hbaq ´ g

am
p∇m hdeq p∇a h

e
bq ´ g

am
p∇m hdeq p∇b h

e
aq

` gam p∇m hdeq pg
eq∇q hbaq

We can sum everything up to find

terms “ p∇d harq p∇b h
ar
q ` 2ham∇a∇m hbd (4.341)
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terms “ (4.342)

´ 2 ggh p∇g hbrq p∇h h
r
dq ´ g

gh
phbr∇g∇h h

r
dq ´ g

gh
phrd∇g∇h hbrq

´ 2 p∇dh
a
rq p∇b h

r
aq ´ 2har∇d∇b h

r
a

` p∇qh
q
rq p∇b h

r
dq ` h

q
r∇q∇bh

r
d ` p∇qh

r
dq p∇b h

q
rq

` hrd∇q∇b h
q
r p∇qh

q
rq p∇dh

r
bq ` h

q
r∇q∇dh

r
b

` p∇qh
r
bq p∇dh

q
rq ` h

r
b∇q∇dh

q
r ´ 2

`

∇ah
am
˘`

∇d hmb
˘

´ 2ham∇a∇d hmb ´ 2
`

∇ah
am
˘`

∇b hmd
˘

´ 2ham∇a∇b hmd ` 2
`

∇ah
am
˘`

∇m hbd
˘

` 2ham∇a∇m hbd

` 2
`

∇dh
am
˘`

∇a hmb
˘

` 2
`

∇dh
am
˘`

∇b hma
˘

` 2ham∇d∇b hma ´ 2
`

∇dh
am
˘`

∇mhba
˘

` p∇e h
a
aq p∇d h

e
bq

` p∇e h
a
aq p∇b h

e
dq ´ g

eq
p∇e h

a
aq p∇q hbdq

` p∇a h
a
eq p∇d h

e
bq ` p∇a h

a
eq p∇b h

e
dq ´ g

eq
p∇a h

a
eq p∇q hbdq ´ g

am
p∇m haeq p∇d h

e
bq

´ gam p∇m haeq p∇b h
e
dq ` g

am
p∇m haeq pg

eq∇q hbdq p∇e h
a
dq p∇a h

e
bq

` p∇e h
a
dq p∇b h

e
aq ´ g

eq
p∇e h

a
dq p∇q hbaq ` p∇d h

a
eq p∇a h

e
bq ` p∇d h

a
eq p∇b h

e
aq

´ geq p∇d h
a
eq p∇q hbaq ´ g

am
p∇m hdeq p∇a h

e
bq ´ g

am
p∇m hdeq p∇b h

e
aq

` gam p∇m hdeq pg
eq∇q hbaq
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R “ R ` ε

ˆ

´lh`∇q∇b h
qb

˙

`
ε2

4

ˆ

´2 l
`

hbr h
rb
˘

` 2∇q∇b

`

hqr h
rb
˘

´ 2∇a

`

ham
`

2∇d h
d
m ´∇m h

˘˘

` 2∇d

´

ham
`

∇a h
d
m ` g

bd∇b hma ´∇m h
d
a

˘

¯

`
`

∇e h
˘`

2∇d h
ed
´ geq∇q h

˘

´
`

∇e h
ab
` gbd∇d h

a
e ´ g

aq∇q h
b
e

˘`

∇a h
e
b `∇b h

e
a ´ g

em∇m hba
˘

˙

`Opε3q

The Einstein tensor is now

Gab “ Gab `
ε

2

ˆ

´lhab ´∇b∇a h`∇q∇a h
q
b `∇q∇b h

q
a ´ gab

`

´lh`∇c∇d h
cd
˘

˙

(4.343)

`
ε2

4

ˆ

´l phar h
r
bq ´∇b∇a

`

hqr h
r
q

˘

`∇q∇a ph
q
r h

r
bq `∇q∇b ph

q
r h

r
aq

´ gab
`

´l phqr h
qr
q `∇q∇u ph

q
r h

ru
q
˘

´ 2∇q

`

hqm
`

∇b hma `∇a hmb ´∇m hab
˘˘

` 2∇b

`

hqm
`

∇q hma `∇a hmq ´∇m haq
˘˘

`
`

∇e h`∇q h
q
e ´ g

qm∇m hqe
˘`

∇b h
e
a `∇a h

e
b ´ g

eq∇q hab
˘

´
`

∇e h
q
b `∇b h

q
e ´ g

qu∇u hbe
˘`

∇q h
e
a `∇a h

e
q ´ g

em∇m haq
˘

´ gab

´

´∇q

`

hqm
`

2∇d h
d
m ´∇m h

˘˘

`∇d

`

hqm
`

∇q h
d
m ` g

ud∇u hmq ´∇m h
d
q

˘˘

`
1

2

`

∇e h
˘`

2∇d h
ed
´ geq∇q h

˘

´
1

2

`

∇e h
qp
` gpd∇d h

q
e ´ g

qu∇u h
p
e

˘`

∇q h
e
p `∇p h

e
q ´ g

em∇m hpq
˘

¯

˙
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For future convenience, we can use the identity,

∇q∇x h
v
y ´∇x∇q h

v
y “ Rv

rqx h
r
y ´R

s
yqx h

v
s , (4.344)

to alter the order ε and ε2 terms

ε term “´lhab ´∇b∇a h`∇q∇a h
q
b `∇q∇b h

q
a ´ gab

`

´lh`∇c∇d h
cd
˘

(4.345)

“´lhab ´∇b∇a h`∇a∇q h
q
b `R

q
sqa h

s
b ´R

s
bqa h

q
s `∇b∇q h

q
a

`Rq
rqb h

r
a ´R

s
aqb h

q
s ´ gab

`

´lh`∇c∇d h
cd
˘

ε2 term “´l phar h
r
bq ´∇b∇a

`

hqr h
r
q

˘

`∇q∇a ph
q
r h

r
bq `∇q∇b ph

q
r h

r
aq

´ gab
`

´l phqr h
qr
q
˘

(4.346)

`∇q∇u ph
q
r h

ru
q ´ 2∇q

`

hqm
`

∇b hma `∇a hmb ´∇m hab
˘˘

` 2∇b

`

hqm
`

∇q hma `∇a hmq ´∇m haq
˘˘

`
`

∇e h`∇q h
q
e ´ g

qm∇m hqe
˘`

∇b h
e
a `∇a h

e
b ´ g

eq∇q hab
˘

´
`

∇e h
q
b `∇b h

q
e ´ g

qu∇u hbe
˘`

∇q h
e
a `∇a h

e
q ´ g

em∇m haq
˘

´ gab

´

´∇q

`

hqm
`

2∇d h
d
m ´∇m h

˘˘

`∇d

`

hqm
`

∇q h
d
m ` g

ud∇u hmq ´∇m h
d
q

˘˘

`
1

2

`

∇e h
˘`

2∇d h
ed
´ geq∇q h

˘

´
1

2

`

∇e h
qp
` gpd∇d h

q
e ´ g

qu∇u h
p
e

˘`

∇q h
e
p `∇p h

e
q ´ g

em∇m hpq
˘

¯

(4.347)
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ε2 term “´l phar h
r
bq ´∇b∇a

`

hqr h
r
q

˘

` gab l phqr h
qr
q (4.348)

`∇a∇q ph
q
r h

r
bq `R

q
sqa ph

s
r h

r
bq ´R

s
bqa ph

q
r h

r
sq

`∇b∇q ph
q
r h

r
aq `R

q
sqb ph

s
r h

r
aq ´R

s
aqb ph

q
r h

r
sq

`∇u∇q ph
q
r h

ru
q `Rq

squ ph
s
r h

ru
q `Ru

squ ph
q
r h

rs
q

´ 2
`

∇qh
qm
˘`

∇b hma `∇a hmb ´∇m hab
˘

´ 2hqm
`

∇q∇b hma `∇q∇a hmb ´∇q∇m hab
˘

` 2
`

∇b h
qm
˘`

∇q hma `∇a hmq ´∇m haq
˘

` 2hqm
`

∇b∇q hma `∇b∇a hmq ´∇b∇m haq
˘

`
`

∇d h
qm
˘`

∇q h
d
m ` g

ud∇u hmq ´∇m h
d
q

˘

` hqm
`

∇d∇q h
d
m ` g

ud∇d∇u hmq ´∇d∇m h
d
q

˘

`
`

∇e h`∇q h
q
e ´ g

qm∇m hqe
˘`

∇b h
e
a `∇a h

e
b ´ g

eq∇q hab
˘

´
`

∇e h
q
b `∇b h

q
e ´ g

qu∇u hbe
˘`

∇q h
e
a `∇a h

e
q ´ g

em∇m haq
˘

´ gab

´

´
`

∇q h
qm
˘`

2∇d h
d
m ´∇m h

˘

´ hqm
`

2∇q∇d h
d
m ´∇q∇m h

˘

`
1

2

`

∇e h
˘`

2∇d h
ed
´ geq∇q h

˘

´
1

2

`

∇e h
qp
` gpd∇d h

q
e ´ g

qu∇u h
p
e

˘`

∇q h
e
p `∇p h

e
q ´ g

em∇m hpq
˘

¯

Similar to the linearized Einstein equation, we used the “traced-reversed” perturbation to simplify

the order ε terms,

hab “ hab ´
1

2
gab h h “ ´h . (4.349)
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In addition, we make the gauge transformation,

hab Ñ h
1

ab “ hab ´ 2
`

∇a ξb `∇b ξa
˘

, (4.350)

where we can pick ξ to generate the conditions,

∇a
h
1

ab “ 0 h
1
“ 0 . (4.351)

This requires l ξb “ ∇ahab. The metric perturbation is now traceless and transverse. In essence

we substitute in for

hab “

ˆ

hab ´
1

2
gab h

˙

Ñ h
1

ab h “ ´hÑ 0 , (4.352)
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and take ∇a
h
1

ab “ 0. The ε and ε2 terms are now

ε term “´lh1ab ´ gab∇c∇d h
1cd
´Rs

bqa h
1q
s ´R

s
aqb h

1q
s `R sa h

1s
b `R sb h

1s
a

ε2 term “´l ph1ar h
1r
bq ´∇b∇a

`

h1qr h
1r
q

˘

` gab l
`

h1qr h
1qr
˘

`∇a ph
1q
r∇q h

1r
bq

`Rsa h
1s
r h

1r
b ´R

s
bqa h

1q
r h

1r
s (4.353)

`∇b ph
1q
r∇q h

1r
aq `Rsb h

1s
r h

1r
a ´R

s
aqb h

1q
r h

1r
s `∇u ph

1q
r∇q h

1ru
q

`Rsu h
1s
r h

1ru
´Rsq h

1q
r h

1rs

´ 2h1qm∇q∇b h
1
ma ´ 2h1qm∇q∇a h

1
mb ` 2h1qm∇q∇m h

1
ab

` 2 p∇b h
1qm
q
`

∇a h
1
mq

˘

´ 2 p∇b h
1qm
q
`

∇m h
1
aq

˘

` 2h1qm∇b∇q h
1
ma ` 2h1qm∇b∇a h

1
mq

´ 2h1qm∇b∇m h
1
aq

`
`

∇d h
1qm

˘`

∇q h
1d
m ` g

ud∇u h
1
mq ´∇m h

1d
q

˘

` h1qm∇d∇q h
1d
m ` h

1qmlh1mq ´Rrm h
r
q h

1qm
`Rs

qdm h
1qm hd s

´
`

∇e h
1q
b `∇b h

1q
e ´ g

qu∇u h
1
be

˘`

∇q h
1e
a `∇a h

1e
q ´ g

em∇m h
1
aq

˘

`
1

2
gab

`

∇e h
1qp
` gpd∇d h

1q
e ´ g

qu∇u h
1p
e

˘`

∇q h
1e
p `∇p h

1e
q ´ g

em∇m h
1
pq

˘

From MTW, the terms proportional to the Ricci tensor are suppressed and are be dropped.
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The second order correction is now

´l phar h
r
bq ´∇b∇a

`

hqr h
r
q

˘

`∇q∇a ph
q
r h

r
bq `∇q∇b ph

q
r h

r
aq

´ gab
`

´l phqr h
qr
q `∇q∇u ph

q
r h

ru
q
˘

(4.354)

´ 2∇q

`

hqm
`

∇b hma `∇a hmb ´∇m hab
˘˘

` 2∇b

`

hqm
`

∇q hma `∇a hmq ´∇m haq
˘˘

`
`

∇e h`∇q h
q
e ´ g

qm∇m hqe
˘`

∇b h
e
a `∇a h

e
b ´ g

eq∇q hab
˘

´
`

∇e h
q
b `∇b h

q
e ´ g

qu∇u hbe
˘`

∇q h
e
a `∇a h

e
q ´ g

em∇m haq
˘

´ gab

ˆ

´∇q

`

hqm
`

2∇d h
d
m ´∇m h

˘˘

`∇d

`

hqm
`

∇q h
d
m ` g

ud∇u hmq ´∇m h
d
q

˘˘

`
1

2

`

∇e h
˘`

2∇d h
ed
´ geq∇q h

˘

´
1

2

`

∇e h
qp
` gpd∇d h

q
e ´ g

qu∇u h
p
e

˘

ˆ
`

∇q h
e
p `∇p h

e
q ´ g

em∇m hpq
˘

˙

´l

´

h
1

ar h
1r

b

¯

´∇b∇a

´

h
1q

r h
1r

q

¯

`∇q∇a

´

h
1q

r h
1r

b

¯

`∇q∇b

´

h
1q

r h
1r

a

¯

´ gab
`

´l

´

h
1

qr h
1qr
¯

`∇q∇u

´

h
1q

r h
1ru
¯

˘

´ 2h
1qm`∇q∇b h

1

ma `∇q∇a h
1

mb ´∇q∇m h
1

ab

˘

` 2∇b

`

h
1qm`∇q h

1

ma `∇a h
1

mq ´∇m h
1

aq

˘˘

`
`

∇e h
1
`∇q h

1q

e ´ g
qm∇m h

1

qe

˘`

∇b h
1e

a `∇a h
1e

b ´ g
eq∇q h

1

ab

˘

´
`

∇e h
1q

b `∇b h
1q

e ´ g
qu∇u h

1

be

˘`

∇q h
1e

a `∇a h
1e

q ´ g
em∇m h

1

aq

˘

´ gab

ˆ

∇d

`

h
1qm`∇q h

1d

m ` g
ud∇u h

1

mq ´∇m h
1d

q

˘˘

´
1

2

`

∇e h
1qp
` gpd∇d h

1q

e ´ g
qu∇u h

1p

e

˘`

∇q h
1e

p `∇p h
1e

q ´ g
em∇m h

1

pq

˘

˙
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The corresponding Ricci scalar is

Rbd “ R `
ε

2

ˆ

gbd∇a∇tb h
a
du ´ g

bd∇d∇b h´ g
bd lhbd

˙

(4.355)

`
ε2

4

ˆ

gbd∇b hce∇d h
ce
` 2hce

`

gbd∇b∇d hce ` g
bd∇c∇e hbd

´ gbd∇d∇e hcb ´ g
bd∇b∇e hcd

` 2 gbdgeggch∇g hdh p∇e hcb ´∇c hebq

´ gbd
ˆ

∇e h
ce
´

1

2
gce∇e h

˙

p∇d hcb `∇b hcd ´∇c hbdq

˙

`Opε3q

“ R ` ε

ˆ

∇a∇b h
ab
´lh

˙

`
ε2

4

ˆ

gbd∇b hce∇d h
ce
` 2hce lhce ` 2hce∇c∇e h

´ 4hce∇d∇e h
d
c (4.356)

` 2 geg p∇g hdcq
`

∇e h
cd
˘

´ 2 p∇g h
c
d q

`

∇c h
gd
˘

´ p∇e h
ce
q
`

∇d h
d
c

˘

´ p∇e h
ce
q
`

∇b h
b
c

˘

` p∇e h
ce
q p∇c hq `

1

2
p∇e hq

`

∇d h
ed
˘

`
1

2
p∇e hq

`

∇b h
be
˘

´
1

2
gce p∇e hq p∇c hq

˙

`Opε3q

“ R ` ε

ˆ

∇a∇b h
ab
´lh

˙

`
ε2

4

ˆ

3gbd∇b hce∇d h
ce
` 2hce lhce ` 2hce∇c∇e h

´ 4hce∇d∇e h
d
c (4.357)

´ 2 p∇g h
c
d q

`

∇c h
gd
˘

´ p∇e h
ce
q
`

∇d h
d
c

˘

´ p∇e h
ce
q
`

∇b h
b
c

˘

` 2 p∇e h
ce
q p∇c hq ´

1

2
gce p∇e hq p∇c hq

˙

`Opε3q
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4.5.2 Energy-Momentum Computations

Using the expansion above, the energy-momentum tensor, we get

Tab “

ˆ

gef ´ ε hef `
1

2
ε2 hec h f

c

˙

FaeFbf ` Baφ Bbφ (4.358)

´
λ̃

8
?
´g

ˆ

1´
ε

2
tr
`

gefhef
˘

`
3 ε2

8
tr
`

gefhef
˘2
˙

ˆ

ˆ

gab ` ε hab `
1

2
ε2 hac h

c
b

˙

εdefg φFdeFfg

´
2

45m4
e

ˆ

e2

4π

˙2 ˆ

gef ´ ε hef `
1

2
ε2 hec h f

c

˙

F 2 FaeFbf

´

ˆ

gab ` ε hab `
1

2
ε2 hac h

c
b

˙

˜

1

4
F 2
`

1

2

ˆ

´

gmn ´ ε hmn `
1

2
ε2 hmc h n

c

¯

Bmφ Bnφ`m
2 φ2

˙

´
1

90m4
e

ˆ

e2

4π

˙2
˜

F 4
´

7

16

˜

1

g
´ ε

tr
`

gefhef
˘

g2 ` ε2
tr
`

gefhef
˘2

g3

¸

pεmnopFmnFopq
2

¸

´
λ̃

8
?
´g

ˆ

1´
ε

2
tr

`

gefhef
˘

`
3 ε2

8
tr
`

gefhef
˘2
˙

εdefg φFdeFfg

¸

` . . .

Here we have used det pA` εXq “ detA ` ε det pAq tr pA´1Xq ` Opε2q to expand the factors

of
?
´g. However, the energy momentum tensor is also a function of the vector potential and the

axion. Those waves are cohered with the gravitational waves. Knowing this, we can also expand

Fab “ F ab ` ε F
p1q
ab ` ε

2 F
p2q
ab ` . . . (4.359)

φ “ φ` ε φp1q ` ε2 φp2q ` . . . (4.360)
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Tab “

ˆ

gef ´ ε hef `
1

2
ε2 hec h f

c

˙

`

F ae ` ε F
p1q
ae ` ε

2 F p2qae

˘

´

F bf ` ε F
p1q
bf ` ε

2 F
p2q
bf

¯

(4.361)

` Ba
`

φ` αφp1q
˘

Bb
`

φ` αφp1q
˘

´
λ̃

8
?
´g

ˆ

1´
ε

2
tr
`

gefhef
˘

`
3 ε2

8
tr
`

gefhef
˘2
˙ˆ

gab ` ε hab `
1

2
ε2 hac h

c
b

˙

εdefg φFdeFfg

´
2

45m4
e

ˆ

e2

4π

˙2 ˆ

gef ´ ε hef `
1

2
ε2 hec h f

c

˙

F 2 FaeFbf

´

ˆ

gab ` ε hab `
1

2
ε2 hac h

c
b

˙

˜

1

4
F 2
`

1

2

ˆ

´

gmn ´ ε hmn `
1

2
ε2 hmc h n

c

¯

Bmφ Bnφ`m
2 φ2

˙

´
1

90m4
e

ˆ

e2

4π

˙2
˜

F 4
´

7

16

˜

1

g
´ ε

tr
`

gefhef
˘

g2 ` ε2
tr
`

gefhef
˘2

g3

¸

pεmnopFmnFopq
2

¸

´
λ̃

8
?
´g

ˆ

1´
ε

2
tr

`

gefhef
˘

`
3 ε2

8
tr
`

gefhef
˘2
˙

εdefg φFdeFfg

¸

` . . .
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Tab “ gefFaeFbf ` Baφ Bbφ´
λ̃

8
?
´g

gab
`

εdefg φFdeFfg
˘

´
2

45m4
e

ˆ

e2

4π

˙2

gefF 2 FaeFbf

(4.362)

´ gab

ˆ

1

4
F 2
`

1

2

`

gmn Bmφ Bnφ`m
2 φ2

˘

´
1

90m4
e

ˆ

e2

4π

˙2
´

F 4
´

7

16 g
pεmnopFmnFopq

2
¯

´
λ̃

8
?
´g

`

εdefg φFdeFfg
˘

˙

` ε

˜

´hefFaeFbf ´
λ̃

8
?
´g

hab
`

εdefg φFdeFfg
˘

`
λ̃

16
?
´g

gab tr
`

gefhef
˘ `

εdefg φFdeFfg
˘

`
2

45m4
e

ˆ

e2

4π

˙2

hefF 2 FaeFbf ´ gab

ˆ

´
1

2
hmn Bmφ Bnφ

´
1

90m4
e

ˆ

e2

4π

˙2
7

16 g2 tr
`

gefhef
˘

pεmnopFmnFopq
2

`
λ̃

8
?
´g

1

2
tr

`

gefhef
˘ `

εdefg φFdeFfg
˘

˙

´ hab

ˆ

1

4
F 2
`

1

2

`

gmn Bmφ Bnφ`m
2 φ2

˘

´
1

90m4
e

ˆ

e2

4π

˙2
´

F 4
´

7

16 g
pεmnopFmnFopq

2
¯

´
λ̃

8
?
´g

`

εdefg φFdeFfg
˘

˙

¸

` ε2

˜

1

2
hec h f

c FaeFbf ´
λ̃

16
?
´g

hac h
c
b φ

`

εdefg FdeFfg
˘

`
λ̃

16
?
´g

tr
`

gefhef
˘

hab φ
`

εdefg FdeFfg
˘

´
3 λ̃

64
?
´g

tr
`

gefhef
˘2
φ gab

`

εdefg FdeFfg
˘

´
2

45m4
e

ˆ

e2

4π

˙2
1

2
hec h f

c F
2 FaeFbf

´ gab

ˆ

1

4
hmc h n

c Bmφ Bnφ`
1

90m4
e

ˆ

e2

4π

˙2
7

16 g3 tr
`

gefhef
˘2
pεmnopFmnFopq

2

´
λ̃

8
?
´g

3

8
tr
`

gefhef
˘2 `

εdefg φFdeFfg
˘

˙

´ hab

ˆ

´
1

2
hmn Bmφ Bnφ´

1

90m4
e

ˆ

e2

4π

˙2
7

16 g2 tr
`

gefhef
˘

pεmnopFmnFopq
2

`
λ̃

16
?
´g

tr
`

gefhef
˘ `

εdefg φFdeFfg
˘

˙

´
1

2
hac h

c
b

ˆ

1

4
F 2
`

1

2

`

gmn Bmφ Bnφ`m
2 φ2

˘

´
1

90m4
e

ˆ

e2

4π

˙2 ˆ

F 4
´

7

16 g
pεmnopFmnFopq

2

˙

´
λ̃

8
?
´g

`

εdefg φFdeFfg
˘

˙

¸
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We can now expand each term order-by-order. The terms are

first term “ gefFaeFbf ` Baφ Bbφ´
λ̃

8
?
´g

gab
`

εdefg φFdeFfg
˘

´
2

45m4
e

ˆ

e2

4π

˙2

gefF 2 FaeFbf (4.363)

´ gab

ˆ

1

4
F 2
`

1

2

`

gmn Bmφ Bnφ`m
2 φ2

˘

´
1

90m4
e

ˆ

e2

4π

˙2
´

F 4
´

7

16 g
pεmnopFmnFopq

2
¯

´
λ̃

8
?
´g

`

εdefg φFdeFfg
˘

˙

(4.364)
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first term “ gef
`

F ae ` ε F
p1q
ae ` ε

2 F p2qae

˘

´

F bf ` ε F
p1q
bf ` ε

2 F
p2q
bf

¯

(4.365)

` Ba
`

φ` ε φp1q ` ε2 φp2q
˘

Bb
`

φ` ε φp1q ` ε2 φp2q
˘

´
λ̃

8
?
´g

gab

´

εdefg
`

φ` ε φp1q ` ε2 φp2q
˘

´

F de ` ε F
p1q
de ` ε

2 F
p2q
de

¯

ˆ

´

F fg ` ε F
p1q
fg ` ε

2 F
p2q
fg

¯

´
2

45m4
e

ˆ

e2

4π

˙2

gefgmngop
`

Fmo ` ε F
p1q
mo ` ε

2 F p2qmo

˘

ˆ
`

F np ` ε F
p1q
np ` ε

2 F p2qnp

˘

ˆ
`

F ae ` ε F
p1q
ae ` ε

2 F p2qae

˘

´

F bf ` ε F
p1q
bf ` ε

2 F
p2q
bf

¯

´ gab

ˆ

1

4
gmngop

`

Fmo ` ε F
p1q
mo ` ε

2 F p2qmo

˘ `

F np ` ε F
p1q
np ` ε

2 F p2qnp

˘

`
1

2

`

gmn Bm
`

φ` ε φp1q ` ε2 φp2q
˘

Bn
`

φ` ε φp1q ` ε2 φp2q
˘

`m2
`

φ` ε φp1q ` ε2 φp2q
˘2

´
1

90m4
e

ˆ

e2

4π

˙2
´

`

gmngop
`

Fmo ` ε F
p1q
mo ` ε

2 F p2qmo

˘

ˆ
`

F np ` ε F
p1q
np ` ε

2 F p2qnp

˘2

´
7

16 g

`

εmnop
`

Fmn ` ε F
p1q
mn ` ε

2 F p2qno

˘ `

F op ` ε F
p1q
op ` ε

2 F p2qop

˘˘2
¯

´
λ̃

8
?
´g

´

εdefg
`

φ` ε φp1q ` ε2 φp2q
˘

´

F de ` ε F
p1q
de ` ε

2 F
p2q
de

¯

times
´

F fg ` ε F
p1q
fg ` ε

2 F
p2q
fg

¯

˙

(4.366)
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T
p1q
ab “ gef

´

F p1qae F bf ` F ae F
p1q
bf

¯

` Baφ Bbφ
p1q
` Baφ

p1q
Bbφ

´
2

45m4
e

ˆ

e2

4π

˙2

gefgmngop
´

F p1qnp Fmo F ae F bf (4.367)

` F np F
p1q
mo F ae F bf ` F np Fmo F

p1q
ae F bf ` F np Fmo F ae F

p1q
bf

¯

´ gab

ˆ

1

4
gmngop

`

F np F
p1q
mo ` Fmo F

p1q
np

˘

` gmn Bmφ Bnφ
p1q
`m2 φφp1q

´
1

90m4
e

ˆ

e2

4π

˙2 ˆ

gmn gop gqr gst
´

F
p1q
rt Fmo F np F qs ` F rt F

p1q
mo F np F qs

` F rt Fmo F
p1q
np F qs ` F rt Fmo F np F

p1q
qs

¯

´
7

16 g
εhijkεdefg

´

F
p1q
jk F de F fg F hi ` F jk F

p1q
de F fg F hi

` F jk F de F
p1q
fg F hi ` F jk F de F fg F

p1q
hi

¯

`
7

16 g2 ε
hijkεdefg tr

´

gmn hmn

¯

F de F fg F hi F jk

˙

´
1

2
hmnBmφ Bnφ

˙

` hab

ˆ

´
1

4
gmngopFmo F np

´
1

2

´

gmn Bmφ Bnφ`m
2 φ

2
¯

´ hef F ae F bf

´
1

90m4
e

ˆ

e2

4π

˙2
´

F
4
´

7

16 g

`

εmnopFmnF op

˘2
¯

˙

`
2

45m4
e

ˆ

e2

4π

˙2

gmngop hef F ae F bf Fmo F np (4.368)
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4.5.3 Axion Equation of Motion

The axion equation of motion is

´

gab BaBb ´ g
abΓcab Bc ´m

2
¯

φ “
λ̃

8
?
´g

εabcd FabFcd (4.369)

The LHS is

´

gab BaBb ´ g
abΓcab Bc ´m

2
¯

φ “

˜

´

gab ´ ε hab `
1

2
ε2 hac h b

c

¯

BaBb (4.370)

´

´

gab ´ ε hab `
1

2
ε2 hac h b

c

¯´

Γ
c

ab

`
ε

2
gcm

ˆ

∇b hma `∇a hmb ´∇m hab

˙

`
ε2

4

´

gcm
´

∇b

`

hmd h
d
a

˘

`∇a

`

hmd h
d
b

˘

´∇m

`

had h
d
b

˘

¯

´ 2hcm
´

∇b hma `∇a hmb ´∇m hab

¯¯¯

Bc ´m
2

¸

φ

(4.371)
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´

gab BaBb ´ g
abΓcab Bc ´m

2
¯

φ “

˜

gab BaBb ´ ε h
ab
BaBb `

1

2
ε2 hac h b

c BaBb (4.372)

´ gab Γ
c

ab Bc ` ε h
abΓ

c

ab Bc ´
1

2
ε2 hac h b

c Γ
c

ab Bc

´

´

gab ´ ε hab
¯ ε

2
gcm

ˆ

∇b hma `∇a hmb ´∇m hab

˙

Bc

´
ε2

4
gab gcm

´

∇b

`

hmd h
d
a

˘

`∇a

`

hmd h
d
b

˘

´∇m

`

had h
d
b

˘

¯

Bc

`

´

gab ´ ε hab `
1

2
ε2 hac h b

c

¯ε2

4
2hcm

´

∇b hma

`∇a hmb ´∇m hab

¯

Bc ´m
2

¸

φ

“
`

gab BaBb ´ g
ab Γ

c

ab Bc ´m
2
˘

φ (4.373)

` ε
´

´hab BaBb ` h
abΓ

c

ab Bc ´
1

2
gabgcm

`

∇b hma

`∇a hmb ´∇m habBc

¯

φ

` ε2
ˆ

1

2
hac h b

c BaBb ´
1

2
hac h b

c Γ
c

ab Bc `
1

2
hab gcm

`

∇b hma

`∇a hmb ´∇m habBc

´
1

4
gab gcm

´

∇b

`

hmd h
d
a

˘

`∇a

`

hmd h
d
b

˘

´∇m

`

had h
d
b

˘

¯

Bc

`
1

2
gab hcm

´

∇b hma `∇a hmb ´∇m hab

¯

Bc

˙

φ
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∇aF
ab
“ λ̃∇a

`

φ F̃ ab
˘

`
4

45m4
e

ˆ

e2

4π

˙2 ˆ

∇a

`

F ab Fcd F
cd
˘

`
7

4
∇a

´

F̃ ab Fcd F̃
cd
¯

˙

∇aF
ab
“

λ̃

2
?
´g

εabcd Ba pφFcdq (4.374)

`
4

45m4
e

ˆ

e2

4π

˙2
1

?
´g
Ba

´?
´g F ba Fcd F

cd
¯

`
7

180m4
e

ˆ

e2

4π

˙2
1

?
´g
Ba

ˆ

1
?
´g

εbaefεcdghFef FcdFgh

˙

∇aF
ab
“

λ̃

2
?
´g

ˆ

1´
ε

2

`

gcdhcd
˘

`
3 ε2

8

`

gcdhcd
˘2
˙

εabcdBa pφFcdq (4.375)

`
4

45m4
e

ˆ

e2

4π

˙2
1

?
´g

ˆ

1´
ε

2

`

gcdhcd
˘

`
3 ε2

8

`

gcdhcd
˘2
˙

ˆ Ba

ˆ

a

´g

ˆ

1`
ε

2

`

gcdhcd
˘

´
ε2

8

`

gcdhcd
˘2
˙

F ba F 2

˙

`
7

180m4
e

ˆ

e2

4π

˙2
1

?
´g

ˆ

1´
ε

2

`

gcdhcd
˘

`
3 ε2

8

`

gcdhcd
˘2
˙

ˆ Ba

ˆ

1
?
´g

ˆ

1´
ε

2

`

gcdhcd
˘

`
3 ε2

8

`

gcdhcd
˘2
˙

εbaefεcdghFefFcdFgh

˙

(4.376)
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∇aF
ab
“

λ̃

2
?
´g

εabcdBa pφFcdq ´
λ̃ ε

4
?
´g

`

gcdhcd
˘

εabcdBa pφFcdq

`
3 λ̃ ε2

16
?
´g

`

gcdhcd
˘2
εabcdBa pφFcdq (4.377)

`
4

45m4
e

ˆ

e2

4π

˙2
1

?
´g

ˆ

Ba

´

a

´g F ba F 2
¯

`
ε

2
Ba

´

a

´g
`

gcdhcd
˘

F ba F 2
¯

´
ε2

8
Ba

´

a

´g
`

gcdhcd
˘2
F baF 2

¯

˙

´
4

45m4
e

ˆ

e2

4π

˙2
ε

2
?
´g

`

gcdhcd
˘

ˆ

Ba

´

a

´g F ba F 2
¯

`
ε

2
Ba

´

a

´g
`

gcdhcd
˘

F ba F 2
¯

˙

`
4

45m4
e

ˆ

e2

4π

˙2
3 ε2

8
?
´g

`

gcdhcd
˘2
Ba

´

a

´g F ba F 2
¯

`
7

180m4
e

ˆ

e2

4π

˙2
1

?
´g

ˆ

Ba

ˆ

1
?
´g

εbaefεcdghFefFcdFgh

˙

´
ε

2
Ba

ˆ

1
?
´g

`

gcdhcd
˘

εbaefεcdghFefFcdFgh

˙

`
3 ε2

8
Ba

ˆ

1
?
´g

`

gcdhcd
˘2
εbaefεcdghFefFcdFgh

˙˙

´
7

180m4
e

ˆ

e2

4π

˙2
1

?
´g

ε

2

`

gcdhcd
˘

ˆ

Ba

ˆ

1
?
´g

εbaefεcdghFefFcdFgh

˙

´
ε

2
Ba

ˆ

1
?
´g

`

gcdhcd
˘

εbaefεcdghFefFcdFgh

˙

`
3 ε2

8
Ba

ˆ

1
?
´g

`

gcdhcd
˘2
εbaefεcdghFefFcdFgh

˙˙

`
7

180m4
e

ˆ

e2

4π

˙2
1

?
´g

3 ε2

8

`

gcdhcd
˘2
Ba

ˆ

1
?
´g

εbaefεcdghFefFcdFgh

˙
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∇aF
ab
“

λ̃

2
?
´g

εabcdBa pφFcdq ´
λ̃ ε

4
?
´g

`

gcdhcd
˘

εabcdBa pφFcdq

`
3 λ̃ ε2

16
?
´g

`

gcdhcd
˘2
εabcdBa pφFcdq (4.378)

`
4

45m4
e

ˆ

e2

4π

˙2
1

?
´g

Ba

´

a

´g F ba F 2
¯

`
4

45m4
e

ˆ

e2

4π

˙2
1

?
´g

ε

2
Ba

´

a

´g
`

gcdhcd
˘

F ba F 2
¯

´
4

45m4
e

ˆ

e2

4π

˙2
1

?
´g

ε2

8
Ba

´

a

´g
`

gcdhcd
˘2
F baF 2

¯

´
4

45m4
e

ˆ

e2

4π

˙2
ε

2
?
´g

`

gcdhcd
˘

ˆ

Ba

´

a

´g F ba F 2
¯

`
ε

2
Ba

´

a

´g
`

gcdhcd
˘

F ba F 2
¯

˙

`
4

45m4
e

ˆ

e2

4π

˙2
3 ε2

8
?
´g

`

gcdhcd
˘2
Ba

´

a

´g F ba F 2
¯

`
7

180m4
e

ˆ

e2

4π

˙2
1

?
´g

ˆ

Ba

ˆ

1
?
´g

εbaefεcdghFefFcdFgh

˙

´
ε

2
Ba

ˆ

1
?
´g

`

gcdhcd
˘

εbaefεcdghFefFcdFgh

˙

`
3 ε2

8
Ba

ˆ

1
?
´g

`

gcdhcd
˘2
εbaefεcdghFefFcdFgh

˙˙

´
7

180m4
e

ˆ

e2

4π

˙2
1

?
´g

ε

2

`

gcdhcd
˘

ˆ

Ba

ˆ

1
?
´g

εbaefεcdghFefFcdFgh

˙

´
ε

2
Ba

ˆ

1
?
´g

`

gcdhcd
˘

εbaefεcdghFefFcdFgh

˙

`
3 ε2

8
Ba

ˆ

1
?
´g

`

gcdhcd
˘2
εbaefεcdghFefFcdFgh

˙˙

`
7

180m4
e

ˆ

e2

4π

˙2
1

?
´g

3 ε2

8

`

gcdhcd
˘2
Ba

ˆ

1
?
´g

εbaefεcdghFefFcdFgh

˙
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4.5.3 Gauge Fixing

Similar to the linearized Einstein equation, we use the “traced-reversed” perturbation to simplify

the order ε terms,

hab “ hab ´
1

2
gab h h “ ´h . (4.379)

In addition, we make the gauge transformation,

hab Ñ h
1

ab “ hab ´ 2
`

∇a ξb `∇b ξa
˘

, (4.380)

where we can pick ξ to generate the gauge fixing conditions,

∇a
h
1

ab “ 0 h
1
“ 0 . (4.381)

This requires l ξb “ ∇ahab. The metric perturbation is now traceless and transverse. Overall, we

substitute in for

hab “

ˆ

hab ´
1

2
gab h

˙

Ñ h
1

ab h “ ´hÑ 0 , (4.382)
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and take ∇a
h
1

ab “ 0. The Einstein tensor is now

Gbd “ Gbd `
ε

2

ˆ

∇a∇tb h
1a
du ´lh1bd

˙

(4.383)

`
ε2

4

ˆ

∇b h
1
ce∇d h

1ce
` 2h1ce p∇b∇d h

1
ce `∇c∇e h

1
bd ´∇d∇e h

1
cb ´∇b∇e h

1
cdq

` 2 geg∇g h
1 c
d p∇e h

1
cb ´∇c h

1
ebq

´
1

2
gbd

ˆ

gmn∇m h
1
ce∇n h

1ce
` 2h1ce plh1ce ´ 2∇m∇e h

1 m
c q

` 2∇g h
1 c
m pg

eg∇e h
1 m
c ´∇c h

1gm
q

˙˙

`Opε3q .

Knowing ∇q∇x h
v
y ´∇x∇q h

v
y “ Rv

rqx h
r
y ´ Rs

yqx h
v
s and terms like Rrtb h

1r
du are, according

to [65], the same order as the Opε3q corrections, we can place the Einstein tensor in a final form

Gbd “ Gbd `
ε

2

ˆ

´lh1bd ` 2Rabds h
1as

˙

(4.384)

`
ε2

4

ˆ

∇b h
1
ce∇d h

1ce
` 2h1ce p∇b∇d h

1
ce `∇c∇e h

1
bd ´∇d∇e h

1
cb ´∇b∇e h

1
cdq

` 2 geg∇g h
1 c
d p∇e h

1
cb ´∇c h

1
ebq

´
1

2
gbd

ˆ

gmn∇m h
1
ce∇n h

1ce
` 2h1ce plh1ce ´ 2∇m∇e h

1 m
c q

` 2∇g h
1 c
m pg

eg∇e h
1 m
c ´∇c h

1gm
q

˙˙

`Opε3q .
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Parametrically, the energy-momentum tensor goes as

T ab “ gefF aeF bf
loooomoooon

1{L2

`Baφ Bbφ
loomoon

1{L2

´
2

45m4
e

ˆ

e2

4π

˙2

gef F
2
F aeF bf

loooomoooon

1{L4

´ gab

ˆ

1

4
F

2
loomoon

1{L2

`
1

2

¨

˚

˝

gmn Bmφ Bnφ
loooooomoooooon

1{L2

` m2 φ
2

loomoon

m2

˛

‹

‚

(4.385)

´
1

90m4
e

ˆ

e2

4π

˙2
´

F
4

loomoon

1{L4

´
7

16 g

`

εmnopFmnF op

˘2

looooooooomooooooooon

1{L4

¯

˙

“ T
p1{L2q

ab ` T
pm2q

ab ` T
p1{L4q

ab (4.386)

where we have separated out the 1{Ln terms. It is clear the Euler-Heisenberg terms are less impor-

tant in terms of the long-wavelength physics as well as the parametric suppression.

The higher order terms are
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T
p1q
ab “ gef

´

F p1qae F bf ` F ae F
p1q
bf

¯

loooooooooooomoooooooooooon

1{L

`Baφ Bbφ
p1q

loooomoooon

1{L

`Baφ
p1q
Bbφ

looomooon

1{L

´
2

45m4
e

ˆ

e2

4π

˙2

gefgmngop
´

F p1qnp Fmo F ae F bf
looooooooomooooooooon

1{L3

(4.387)

` F np F
p1q
mo F ae F bf

loooooooomoooooooon

1{L3

`F np Fmo F
p1q
ae F bf

looooooooomooooooooon

1{L3

`F np Fmo F ae F
p1q
bf

looooooooomooooooooon

1{L3

¯

´ gab

ˆ

1

4
gmngop

`

F np F
p1q
mo ` Fmo F

p1q
np

˘

looooooooooooomooooooooooooon

1{L

` gmn Bmφ Bnφ
p1q

loooomoooon

1{L

`m2 φφp1q
looomooon

m2

´
1

90m4
e

ˆ

e2

4π

˙2 ˆ

gmn gop gqr gst
´

F
p1q
rt Fmo F np F qs

looooooooomooooooooon

1{L3

`F rt F
p1q
mo F np F qs

loooooooomoooooooon

1{L3

` F rt Fmo F
p1q
np F qs

looooooooomooooooooon

1{L3

`F rt Fmo F np F
p1q
qs

looooooooomooooooooon

1{L3

¯

´
7

16 g
εhijkεdefg

´

F
p1q
jk F de F fg F hi

loooooooomoooooooon

1{L3

`F jk F
p1q
de F fg F hi

loooooooomoooooooon

1{L3

` F jk F de F
p1q
fg F hi

loooooooomoooooooon

1{L3

`F jk F de F fg F
p1q
hi

loooooooomoooooooon

1{L3

¯

`
7

16 g2 ε
hijkεdefg tr

´

gmn hmn

¯

F de F fg F hi F jk
loooooooomoooooooon

1{L4

˙

´
1

2
hmnBmφ Bnφ
loooooomoooooon

1{L2

˙

` hab

ˆ

´
1

4
gmngop Fmo F np

looomooon

1{L2

´
1

2

´

gmn Bmφ Bnφ
looomooon

1{L2

` m2 φ
2

loomoon

m2

¯

´ hef F ae F bf
loomoon

1{L2

´
1

90m4
e

ˆ

e2

4π

˙2
´

F
4

loomoon

1{L4

´
7

16 g

`

εmnopFmnF op

˘2

looooooooomooooooooon

1{L4

¯

˙

`
2

45m4
e

ˆ

e2

4π

˙2

gmngop hef F ae F bf Fmo F np
looooooooomooooooooon

1{L4

“ T
p1q p1{Lq
ab ` T

p1q pm2q

ab ` T
p1q p1{L2q

ab (4.388)
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ε T
p1q
ab “ gef

´

F
p1q
ae F bf ` F ae F

p1q
bf

¯

` Baφ Bbφ
p1q `

Baφ
p1qBbφ´ gab

ˆ

1
4
gmngop

´

F np F
p1q
mo ` Fmo F

p1q
np

¯

` gmn Bmφ Bnφ
p1q `m2 φφp1q ´ 1

2
hmnBmφ Bnφ

˙

` hab

ˆ

´1
4
gmngopFmo F np ´

1
2

´

gmn Bmφ Bnφ`m
2 φ

2
¯

´ hef F ae F bf

˙

` . . . „ ε
λL ` εm

2 ` ε
L2 `more supressed terms

Using equations (4.93) and (4.94), we can see the parametrics work

Rab
loomoon

1{L2

` ε2R
p2q
ab

ˇ

ˇ

ˇ

low
loooomoooon

ε2{2

“ κ

ˆ

T ab ´
1

2
gab T

˙

loooooooooomoooooooooon

p1{L2q`m2`more suppressed terms

` ε2 κ

ˆ

T
p2q
ab ´

1

2
gab T

p2q

˙

ˇ

ˇ

ˇ

low
loooooooooooooooomoooooooooooooooon

pε2{λ2q`pε2{λLq`pε2{L2q`ε2m2`more suppressed terms

(4.389)

εR
p1q
ab

ˇ

ˇ

ˇ

high
loooomoooon

ε{2

` ε2R
p2q
ab

ˇ

ˇ

ˇ

high
loooomoooon

ε2{2

“ ε κ

ˆ

T
p1q
ab ´

1

2
gab T

p1q

˙

ˇ

ˇ

ˇ

high
loooooooooooooooomoooooooooooooooon

ε{L`εm2`ε{L2

` ε2 κ

ˆ

T
p2q
ab ´

1

2
gab T

p2q

˙

ˇ

ˇ

ˇ

high
looooooooooooooooomooooooooooooooooon

pε2{λ2q`pε2{λLq`pε2{L2q`ε2m2`more suppressed terms

(4.390)

Multiplying both equations by L2 and keeping the most important terms for the low-frequency

equations are
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Rab ` ε
2R

p2q
ab

ˇ

ˇ

ˇ

low
“ κ

ˆ

gefF aeF bf ` Baφ Bbφ´ gab

´

1
4
F

2

` 1
2

`

gmn Bmφ Bnφ`m
2 φ

2 ˘
¯

´ 1
2
gab

´

F 2 ` gcd Bcφ Bdφ´ F
2
´ 2 gmn Bmφ Bnφ` 2m2 φ

2
¯

˙

` ε2 κ
´

T
p2q
ab ´

1
2
gab T

p2q
¯
ˇ

ˇ

ˇ

low

εR
p1q
ab

ˇ

ˇ

ˇ

high
`ε2R

p2q
ab

ˇ

ˇ

ˇ

high
“ κ

`

Tab ´
1
2
gab T

˘

ˇ

ˇ

ˇ

high

“ ε κ
´

T
p1q
ab ´

1
2
gab T

p1q
¯ ˇ

ˇ

ˇ

high
`ε2 κ

´

T
p2q
ab ´

1
2
gab T

p2q
¯ ˇ

ˇ

ˇ

high

The high-frequency equations of motion for the electromagnetic, axion and gravitational waves

are, respectively,

gac1 gbd1 Ba
`

gac gbd
˘

F
p1q
cd ` BaF

p1q
c1d1 ` Γ

e

ae F
p1q
c1d1

´
ε

α

ˆ

gac1 gbd1 Ba

´

`

gac hbd ` gbd hac
˘

F cd

¯

(4.391)

` gac1 gbd1
`

gac hbd ` hac gbd
˘

Γ
e

aeF cd

´
1

2
gem

´

∇e hma `∇a hme ´∇m hae

¯

F c1d1

˙

´ ε

ˆ

gac1 gbd1 Ba

´

`

gac hbd ` gbd hac
˘

F
p1q
cd

¯

´
1

2
gem

´

∇e hma `∇a hme ´∇m hae

¯

F
p1q
c1d1

˙

“ gac1 gbd1 j
p1q b

` gac1 gbd1
ε

α
j1 ` gac1 gbd1 ∇aP

p1q ab
` gac1 gbd1

ε

α
∇aP

1ab
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BaF
p1q
ef ` Γ

e

ae F
p1q
ef “ ´gae gbf Ba

`

gac gbd
˘

F
p1q
cd

`
ε

α

ˆ

gae gbf Ba

´

`

gac hbd ` gbd hac
˘

F cd

¯

(4.392)

` gae gbf
`

gac hbd ` hac gbd
˘

Γ
e

aeF cd

´
1

2
gem

´

∇e hma `∇a hme ´∇m hae

¯

F ef

˙

` ε

ˆ

gae gbf Ba

´

`

gac hbd ` gbd hac
˘

F
p1q
cd

¯

´
1

2
gem

´

∇e hma `∇a hme ´∇m hae

¯

F
p1q
ef

˙

` gae gbf j
p1q b

` gae gbf
ε

α
j1 ` gae gbf ∇aP

p1q ab
` gae gbf

ε

α
∇aP

1ab

In the limit where we go to Minkowski space, we have

BaF
p1q
ef ` Γ

e

ae F
p1q
ef “ ´gae gbf Ba

`

gac gbd
˘

F
p1q
cd `

ε

α

ˆ

gae gbf Ba

´

`

gac hbd ` gbd hac
˘

F cd

¯

(4.393)

´
1

2
gem

´

Be hma ` Ba hme ´ Bm hae

¯

F ef

˙

` ε

ˆ

gae gbf Ba

´

`

gac hbd ` gbd hac
˘

F
p1q
cd

¯

´
1

2
gem

´

Be hma ` Ba hme ´ Bm hae

¯

F
p1q
ef

˙

` . . .

BaF
p1q
ef “

ε

α

ˆ

Ba

´

ηbf h
bd F ed ` ηae h

ac F cf

¯

´
1

2
pBa hqF ef

˙

(4.394)

` ε

ˆ

Ba

´

hfdF
d p1q
e ` hedF

d p1q
f

¯

´
1

2
pBa hq F

p1q
ef

˙

` . . .
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Gauge fixing and removing the background electromagnetic field strength yields,

BaF
p1q
ef “

ε

α
Ba

´

hfd F
d

e ` hec F
c

f

¯

` ε Ba

´

hfd F
d p1q
e ` hed F

d p1q
f

¯

` . . .

ηeaηfbBaF
p1q
ef “

ε

α
ηeaηfb Ba

´

hfd F
d

e ` hec F
c

f

¯

` ε ηeaηfb Ba

´

hfd F
d p1q
e ` hed F

d p1q
f

¯

` . . .

BaF
ab p1q

“
ε

α
Ba

´

hbd F
a

d ` h
ac F

b

c

¯

` ε Ba

´

hbd F
a p1q
d ` hac F b p1q

c

¯

` . . .

This reproduces equation 8 in Dolgov and Ejlli.

4.5.4 Local Perturbative Equations of Motion

Gab “ Gab ´
1

2
lhab `Rcbad h

cd (4.395)

where l ” ∇a∇
a

and the overlined quantities are composed of the background metric.

Rαβγδ (4.396)

R
pwq
αβγδ (4.397)

ε „ Op{Lq ! 1
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¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

ω ´ i Bz `

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

∆K ∆M 0 0 0

∆M 0 0 0 0

0 0 ∆‖ ∆M ∆1
M

0 0 ∆M 0 0

0 0 ∆1
M 0 ∆a

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

`

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

∆̃K 0 0 0 0

0 ∆̃` 0 0 0

0 0 ∆̃‖ 0 0

0 0 0 ∆̃ˆ 0

0 0 0 0 ∆̃a

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

AK

G`

A‖

Gˆ

φ

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“ 0

∆̃K “ fKpβ, ∆̃q (4.398)

∆̃` “ f`pβ, ∆̃, ∆̃
1
q (4.399)

∆̃1
“ h1pβ, ∆̃q (4.400)

∆̃‖ “ g‖pβ, ∆̃q (4.401)

∆̃ˆ “ gˆpβ, ∆̃, ∆̃
1
q (4.402)

∆̃a “ hapβ, ∆̃q (4.403)
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Diagonalizing the matrix. The first transformation is

V “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

cos θ sin θ

´ sin θ cos θ

1

1

1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(4.404)

We can do the gravitational perturbative expansion for each term in the action

S2 “ ´
1
4

ş

d4x
?
´g

ˆ

gab gcdFac Fbd ´ 2 ε hcd T em
cd ` ε

2
`

hab hcdFac Fbd ´ g
ab hcdFac Fbd h

˘

` ε2

8
gab gcd h2 Fac Fbd

˙

` . . .

S3 “ ´
1
2

ş

d4x
?
´g

ˆ

gab Baφ Bbφ`m
2φ2` ε hcd T scalar

cd ´ ε2

2

´

hhab´haf h b
f `

1
4
h2 gab

¯

Baφ Bbφ

` ε2

8
h2m2φ2

˙

S5 “
1

90m4
e

´

e2

4π

¯2
ş

d4x

˜

?
´g

ˆ

`

gab gcd Fac Fbd
˘2
` 7

4

´

1?
´g

εabcd Fab Fcd

¯2
˙

` ε
?
´g

ˆ

1
2
h
`

gab gcd Fac Fbd
˘2
´ 4hmn gab gef ggh Feg Ffh Fam Fbn `

7
8
h
´

1?
´g

εabcd Fab Fcd

¯2

´ 7
4

1?
´g

´

1?
´g

εabcd Fab Fcd

¯

`

h εabcd Fab Fcd
˘

˙

¸
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CHAPTER 5

CONCLUSION

5.1 Summary of key findings and significance

We live in a time where we can access a wealth of information thanks to the multiple astrophysical

probes available to us. However, several questions remain unresolved. The mapping of the Cosmic

Microwave Background (CMB) revealed an extremely homogeneous primordial universe which

was qualitatively explained by inflationary theories, though the exact mechanism is still unknown.

Moreover, it is now believed that only 5% of the universe is made of known particles. The other

95%, of which 27% consists of Dark Matter (DM) and 68% of Dark Energy (DE), remains es-

sentially hidden from our experimental probes and has yet to be under- stood theoretically. These

crucial open problems are at the center of my work, which investigates the physics of early uni-

verse cosmology, inflationary cosmology and the nature of Dark Matter and Dark Energy. During

my time as a PhD student, I have worked on theories of inflation involving multiple scalar fields

as well as models of Dark Energy quintessence. In both projects, the Quantum ChromoDynamics

(QCD) axion was utilized as a favorable candidate for both the inflaton and Dark Energy. The ma-

jority of the work done during my PhD has been focused on theories with observable signatures.

For instance, in our work on hybrid inflation I thoroughly analyzed the phenomenology of our

theory and verified its consistency with the current bounds on cosmological parameters given by

the Planck data. Let us review some of the main projects completed during the course of my PhD.

204



5.1.1 Hybrid Inflation

One of the main project that I worked on is a theory of hybrid inflation. Inflation is the leading can-

didate for explaining why the universe is so old and so smooth. Most models realize inflation using

a local quantum field theory with a single scalar field in a flat potential. These simple single-field

inflation models require both a very flat and super-Planckian field variations and usually predict

observable primordial gravitational waves which are in increasing tension with the current observa-

tions. Since the experimental data is in conflict with such models, one may be tempted to avoid the

issue of Planck-suppressed operators by studying small-field models or more exotic alternatives.

With my collaborators Nemanja Kaloper, Albion Lawrence and James Scargill, I revisited two-

field hybrid inflation models, where the inflaton field is taken to be an axion, and explored their

stability to both quantum field theoretic and quantum gravity corrections. The “classic” model of

hybrid inflation of A. Linde, predicts a blue spectrum of CMB perturbations that has been ruled out

by observations . However, this does not eliminate hybrid models altogether. In particular, a variant

model by E. Stewart does produce a red spectrum and can be made observationally compatible. We

demonstrated that an embedding of the latest model that protects it from QFT and quantum gravity

corrections exists and is consistent with experimental data. We carefully showed that this model

agrees with the current cosmological data from Planck and that it is stable with respect to QFT

and quantum gravity corrections. We found that as it stands, our model is unnatural as it suffers

from the so-called mass hierarchy problem, and therefore a protection mechanism to make our the-

ory natural is necessary for the consistency of hybrid inflation. The Effective Field Theory of our

model is technically natural; in particular, if the scalars are realized as axions dual to a theory with

two massive four-forms — which might be realized as an IR limit of string compactifications —

we argued that our hybrid model may be protected from quantum gravity corrections. Furthermore,

we showed how the ultraviolet safety of the theory can arise in a monodromy construction, which
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we plan to investigate in future work. To provide additional evidence of the protection mechanism

we propose, we gave an explicit dualization procedure for a two-field scalar theory by explicitly

carrying out the calculation at weak coupling. I plan to revisit this issue in future work.

5.1.2 Axions as Dark Matter Candidate

In an ongoing project with Professor Devin Walker, Nizar Ezroura and Bradley Shapiro, we found

out that axion waves, electromagnetic waves and gravitational waves mixed in curved spacetime.

This is the first time that such a mixing has been shown. In previous work, the mixing between

gravitational waves and electromagnetic waves in flat spacetime has been studied by Dolgov and

Ejlli [55]. In 1988, Raffelt and Stodolsky [56], and later in 2017, Masaki, Aoki and Soda [57]

discussed the mixing and probability conversion between axion waves and electromagnetic waves

in flat space time. Our works explores for the first time, the mixing term between these three

waves.

The next step of that work, is to describe some of the observational consequences of the mixing

including the energy and polarization of the waves exiting the compact object.

This could give us a way to indirectly search for axionic dark matter.

5.2 Opportunities for Future Research

5.2.1 Multi-Fields Monodromy Inflation:

The next generation of the CMB experiment, CMB-S4, has recently been approved and is on track

for completion by 2029. A major focus of CMB-S4 is to “investigate a spectacular prediction of

the inflationary paradigm: primordial gravitational waves.” This experiment will be able to im-

prove the current constraints on r, the ratio of gravitational waves to tensor perturbations, by over
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an order of magnitude. Such a precise measurement of r will eliminate some inflationary theories:

CMB-S4 should be designed to rule out or detect the remaining monomial models. It is crucial

to develop multi-field models that are in agreement with the observations. Moreover, theories that

exhibit a weakly broken shift symmetry are favored. In this light, multi-field inflationary models,

which have precisely such a symmetry, should be examined as they appear to be a viable alterna-

tive to conventional monomial inflationary theories. The two-field inflationary model that I studied

appears as a potential candidate for a viable theory. In addition to investigating the relevance of

such multi-field inflationary models to current observational data, I also plan to revisit the open

problems regarding their UV completion and naturalness.

5.2.2 Axions as Dark Matter Candidate and Dark Energy Quintessence:

The direct detection of gravitational wave by LIGO opened the door to a new era of detection in

cosmology. It is now possible to use gravitational waves to experimentally probe theories of dark

matter. String theory predicts the existence of axions in the universe in high abundance. Those

particles - theoretically useful as a solution to the strong CP problem - have been extensively

studied as a candidate for dark matter. I plan to investigate gravitational waves propagating in

an axion background and look for possible gravitational wave signatures. Models of Dark energy

quintessence and k-essence involving axion fields with dynamical attractor solutions are increasing

in popularity due to the oscillating nature of the potential, and offer a possible explanation of the

fine-tuning and coincidence problems which is not anthropic. I plan on studying the observable

signatures of these models which can be used to distinguish quintessence from the cosmological

constant.
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