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ABSTRACT

This thesis is based on two main projects completed during my graduate studies. The first
project consists of showing that hybrid inflationary theories are still viable meaning that there is a
parameter space that give us cosmological parameters in agreement with the Planck data.

The second project explore the mixing between gravity wave, electromagnetic waves and axion

waves in a curved space time as a way to potentially detect dark matter.

We revisit two-field hybrid inflation as an effective field theory for low-scale inflation with sub-
Planckian scalar field ranges. We focus on a prototype model by Stewart because it allows for a red
spectral tilt, which still fits the current data. We describe the constraints on this model imposed by
current CMB measurements. We then explore the stability of this model to quantum corrections.
We find that for relevant, marginal, and at least a finite set of irrelevant operators, some additional
mechanism is required to render the model stable to corrections from both quantum field theory
and quantum gravity. We outline a possible mechanism by realizing the scalars as compact axions
dual to massive 4-form field strengths, and outline how natural hybrid inflation may be supported

by strong dynamics in the dual theory.

We describe bosonic (scalar, electromagnetic and gravitational) wave mixing in curved space-
time. Curved spacetime adds a new length scale, the Schwarzschild radius, which significantly
alters the oscillation probabilities in comparison to the standard flat spacetime computations. The
alterations are analogous to the Mikheyev-Smirnov-Wolfenstein (MSW) effect for neutrinos and
are “frozen- in” as the outgoing gravitational and/or electromagnetic wave propagates away from

a compact object. Although we consider the axion and axion-like particles, our computations

iii



are largely model independent and applicable for generic spin-zero dark matter. We describe the
probabilities for axions and generic bosonic dark matter oscillations. We describe some of the ob-
servational consequences of the mixing including the energy and polarization of the waves exiting

the compact object.

v



ACKNOWLEDGEMENTS

Having the chance to pursue one’s passion is a gift and I would like to take the opportunity to
thank some of the people in my life who made it possible.
First I would like to thank my parents, who have always encouraged my intellectual endeavors
even though those took me far from home. I would have to thank my younger brother Pierre-Cecil
Konig, a fellow physicist, who has been my first student in life and has also become a teacher in
the recent years.
During my years in graduate school, Dr. Cameron Langer, a former fellow graduate student and a

very dear friend, has been by my side, encouraging me and motivating me continuously.

I would of course not be the physicist that I am today without the continuous support of my
PhD advisor, professor Nemanja Kaloper. From him I have learned the rigor and depth needed to

be a good theoretical physicist.

The list of people to thank could go on and on, but I would like to add a few:
Dr. Reynal Pain for giving me a first taste of astrophysics at an early age, Dr. Carl Pennypacker
for taking me under his wing during multiple summers spent at Lawrence Berkeley National Lab-

oratory.



Glossary

CMB : Cosmic Microwave Background.

DE: Dark Energy.

DM: Dark Matter.

EFT: Effective Field Theory.

EOM : Equations Of Motion.

IR : Infrared.

MSW : Mikheyev-Smirnov-Wolfenstein.
NDA : Naive dimensional analysis.
QCD : Quantum Chromodynamics.

RGE : Renormalization Group Equation.
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CHAPTER 1
INTRODUCTION

We live in the modern era of cosmology. Thanks to the technology available nowadays, we have
been able to probe the sky from all the way to the early stages of our universe. The discovery of
the Cosmic microwave background (CMB), which is an electromagnetic radiation remnant from an
early time of the universe, discovered in 1965 by American astronomers Arno Penzias and Robert
Wilson and granted them the Nobel prize in 1978, gives us a glimpse of the physics of the very
early universe. The WMAP and Planck satellites, produced maps of the universe at the time of the
CMB ie ¢t = 380000 years after the Big Bang. Those maps revealed crucial information about the
history of the universe as well as its composition. The current stage of the scientific knowledge
agrees that the universe is made of 68% of Dark Energy (DE), 27% of Dark Matter(DM) and 5% of
baryonic matter. Despite this consensus, the nature of DE and DM is still unknown to the scientific
community.

The CMB maps themselves have puzzled the community for decades. Indeed, those maps indi-
cates that the universe has always been very homogeneous: at the time of the CMB, it appears
that part of the universe that seemingly had never been able to communicate, share some common
information. For example, if one were to warm up a soup in the microwave, one would expect a
non uniform temperature distribution. One can wonder why the CMB temperature appears to be
so uniform, up to AT = +0.00335K. One way to answer this cosmological puzzle is to theorize
a very short period of accelerated expansion right after the Big Bang. We call it Inflation.
Inflation last 10325 during which the universe expands as much as it did between the end of in-

flation up to today. Although there are multiple arguments in favor of inflation, the mechanism



allowing for a period of accelerated expansion remains unknown.

During my PhD, I worked on a possible explanation for inflation, where the main fuel for this
expansion takes the form of a scalar field called an axion.

Axions are pseudo scalar particle, that could also be used to explain the nature of both DM and
DE.

I have also investigated theories which involve axions as DM candidate, by looking at the mixing
between axion waves, gravitational waves and electromagnetic wave near a Kerr black hole.

In addition to the previous projects, I worked on a model of Dark Energy Quintessence where DE
is described by an axion that mimics the behavior of the dominant component of the universe dur-

ing the different era of our universe and start behaving like DE at late time.

My journey as a theoretical cosmologist has taken me from the very beginning of the universe

to looking at the nature of DE, the dominant component of the late universe.



CHAPTER 2
INFLATION

2.1 Motivations for Inflationary theories

We live in the golden age of observational cosmology. Telescopes such as COBE (1989-1993)
, WMAP (2001-2010) and more recently, Planck (2009-2013) allowed the scientific community
to probe the early universe. WMAP in particular gave us the first measurement of the Cosmic
microwave background (CMB) and the Planck satellite provided physicists with very precise mea-

surements of cosmological parameters.

The CMB, or Cosmic Microwave Background, is the “oldest map” of the universe. Having
access to the temperature fluctuations at t = 380000 years after the Big Bang is a window into the
physics of the very early universe. We found the temperature to be 7' = 2.73 4+ 0.00335K which

indicates that the universe was very homogeneous at that time.

We know that the universe is very old, almost 14 billions years old, the universe is very homo-

geneous, d—pp ~ 1072, it is almost perfectly flat < 1072, allows for galaxies to form and is void

_k_
a?Hy

of problematic cosmological structures such as domain walls or magnetic monopoles.

However, these observations raise a few cosmological questions. We will only present a few of
them: The Horizon problem and the flatness problem, and we will show how a theory of inflation

solves those cosmological problems in the remaining part of this section:



2.1.1 The Horizon Problem

The CMB tells us that the universe is very homogeneous. Parts of the universe that are far away
from one another exhibit a similar temperature up to A7 = 0.00335K (see fig.2.1). This obser-
vation is puzzling as some parts of the universe are causally disconnected and yet still present the
same temperature. It is possible to evaluate the number of causally disconnected regions in the
universe by evaluating the ratio of the particle horizon, L, to the apparent horizon, [ at the time of
the CMB. We can assume a radiation dominated universe as a first order approximation. In such a

universe, the scale factor scales as follows a = ao\/% and we get :

t /
Ly — a(t)f o

/
1 10‘;(” @.1)
= — — %
H ~ Hyto

The ratio between the particle horizon and the apparent horizon is given by (taken into account

l 1 [t T
— = — = ~10° 2.2
Lh QtHO to T() ( )

Hence there are (10%)3 = 10° causally disconnected regions with the same temperature (up to

one spatial dimension):

AT = 0.00335K ).

One way to solve the horizon problem is to consider a universe dominated with a fluid with a

constant equation of state w = P/p prior to the original ¢ = Os from the original Big Bang model.
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Figure 2.1: Causally disconnected regions in old BIG-BANG models
Here the two red points have always been causally disconnected since their past light cone, here in
orange, never intersect.

The conformal time is defined as:

dt

For a universe dominated by a fluid with state parameter w, we know that the scale factor is

given by :
4 = aglt @ (2.4)
and we get:
o J 1= e (2.5)
apti@n  ao3(w + 1)

Hence, if w < —1/3, 7 — oo which allows for any two points to have been causally connected
earlier in time (see fig. 2.2).

We can also rephrase this solution looking at the dynamics of the comoving Hubble sphere,
defined as Ry = (aH) ! where H = a/a, is the Hubble parameter. Indeed, in order to ensure

that points were in causal contact earlier in time, we can theorize a period of increasing comoving
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Figure 1.2: Conformal diagram for inflationary cosmology.

Figure 2.2: Causally connected regions in inflation models
Here the two red points have always been causally connected earlier in time

Hubble sphere between the beginning of time until the end of inflation:

d -1
S (aH) <0 (2.6)

A period of decreasing comoving Hubble sphere is equivalent to having a period of accelerated

expansion:
d 4 d, a
a(CLH) = E(a) = —W hence 5
p 2.7
a(aﬂ)_1 <0 — >0

2.1.2 The Flatness Problem

The flatness problem a fine tuning problem. It is the statement that at ¢ = 1s we observe |1 — | <

1079, where 2 is the density parameter, defined as follow:



actual mass density

~ critical mass density

(2.8)
Using the Friedmann equation:
N

a &G  kc?

= () = @9
we can express () as:
k

-1 =~ (2.10)

We have shown in the previous section that inflation is a period of accelerated expansion that
solves the horizon problem. In the case of the flatness problem, a decreasing comoving Hubble
sphere, Ry = (aH)™!, would ensure that ) is close to 1 up to 107% at ¢ = 1s. This statement is

equivalent to a period of accelerated expansion, as shown previously.



2.2 Slow Roll Inflation

Now that we understand why inflation, a period of accelerated expansion, solves both the horizon
and the flatness problem, we need to develop models that can explain the mechanism that allows
for such an expansion. Because the universe is isotropic, it is natural to consider a scalar field

coupled to gravity as the motor of inflation as follows:

S = Jd‘lx\/ﬁ (MTS’R — %(5925)2 — v<¢)) (2.11)

In order to control the amount of inflation that is needed to solve the previously mentioned
cosmological problems, we need a potential that is flat for sometime. For that purpose, we can

define the following slow roll parameters:
(2.12)

Where m,, is the Planck mass and M, = m_,/(87) is the reduced Planck mass.

It should be clear that e controls the flatness of the potential and 7 controls how long the poten-

tial stays flat.

More precisely, we have established in the previous section, that for a universe filled with a
fluid with state parameter w, inflation is satisfied for w < —1/3 (or w — —1 is even better).

The density parameter and pressure for a scalar field are defined as follows:



_¢
p—2+V
p:%Q_V (2.13)

N [O--

-V 2
w="r = ~—14 —¢ (2.14)
p 3

+V

w|e§,

We can see that given a potential V' (¢), we will have the condition for inflation if: |e| < 1 and

In| < 1. Those are the conditions to realize slow roll inflation.

2.3 A Model of Inflation: Chaotic Inflation
Let us look at a simple model of inflation. The potential is given by:

2

m
‘/;haotic<¢) = 7¢2 (215)
Where ¢ is the inflaton and m, its mass.
The slow-roll parameters are given by:
Moy 21
vl =m(0) = (72) & 2.16)

Hence in order to satisfy the slow-roll condition i.e €,y << 1 and 1, << 1, we get the following



condition on the scalar field:

2 mz%l 2
¢” >> —— = 2My, hence
A (2.17)

¢ >> \/iMpl

We can see that in order to realize a slow-roll inflation in a chaotic inflation scenario, we need
to ensure that the field ¢ starts with super Planckian values.
Such a theory will be sensitive to quantum gravity effect and would need some mechanism pro-

tecting it from such effects.
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CHAPTER 3
AXION MONODROMY INFLATION

3.1 Introduction

Inflation is the leading candidate for explaining why the universe is so old, flat and smooth. Explicit
models rely on a local quantum field theory (QFT) of the agent behaving like a transient but long
lived vacuum energy, which forced the universe to rapidly expand early on. In a local Poincare-
invariant QFT, this requires scalar fields with a very flat potential. An immediate question is
whether such models are natural or fine-tuned. Leaving aside the conundrum of initial conditions,
and merely focusing on the naturalness of the parameters of the local QFT, the inflationary epoch
is obviously an arena where the ideology of naturalness may be tested observationally.

The simplest QFT models of inflation involve a single scalar field which needs both a very flat
potential and super-Planckian field variations [1], [2]. These large-field models typically produce
observable primordial gravitational waves. Thus they are increasingly in tension with observa-
tions although they are not yet ruled out. However the super-Planckian field ranges also present a
theoretical challenge, a large number of Planck-suppressed operators must be fine-tuned absent a
mechanism for suppressing them [3]—-[19]. Since data is starting to take a bite out of these mod-
els, one may be tempted to avoid the issue of Planck-suppressed operators by studying small-field
models, or by studying even more exotic alternatives where naturalness of the QFT of the inflaton
is altogether abandoned. These latter alternatives are also not safe from the predations of quan-
tum gravity. Therefore we will take a very conservative attitude, ignore exotic inflationary models

altogether, and only consider inflationary small-field QFTs which might be natural. As we will

11



find, such small-field models in fact require not so small fields after all, and are still threatened
by Planck-suppressed irrelevant operators!. Some mechanism is still required to ensure that the
quantum gravity corrections are under control.

In this paper we will revisit two-field hybrid inflation models [21]-[23], and explore their sta-
bility to both quantum field theoretic and quantum gravity corrections. The ‘classic’ model of
hybrid inflation [21]-[23] predicts a blue spectrum of CMB perturbations that is now ruled out by
observations [24]. However, this does not shut the door on hybrid inflation. For example, a variant
due to Stewart [25] (see also [26]—[28]) does produce a red spectrum (as we will review), and for
some range of parameters can be made compatible with observations. We will find that additional
quartic terms are induced by radiative corrections, which nevertheless can be kept naturally small.
However — unsurprisingly — the quadratic mass terms suffer from the usual hierarchy problem af-
flicting fundamental scalars, and a mechanism is needed to keep them sufficiently small. Even with
such a mechanism, we will find that the combination of data-based constraints and technical natu-
ralness put the theory into a corner for which the range of the scalar fields are close in magnitude

to the Planck scale. The main constraints are:

* We need to ensure that the inflaton rolls sufficiently slowly over a sub-Planckian range to

generate /V-efoldings of inflation.

* The two fields in the hybrid model can be roughly classified as “inflaton” and “‘waterfall”
fields. The former rolls during inflation leading to a spectral index. The latter is locked by
the large value of the inflaton during inflation, and provides the bulk of the vacuum energy,
and condenses at the end of inflation, ending vacuum dominance and initiating reheating.
We ask that the field displacement of the “waterfall” field is sub-Planckian, while being

high enough to give the right scale of density perturbations when the couplings remain weak

IThis has been noted in similar contexts before, such as in [20].

12



enough for radiative stability.

The upshot is that two-field hybrid models that fit the data, are technically natural, and protected
from quantum gravity corrections are very nontrivial to realize. In addition to requiring hierarchies
in masses and renormalizable couplings, the nearly-Planckian field ranges mean that there are a
large but finite number of Planck-suppressed irrelevant operators which may spoil slow-roll in-
flation unless there is a mechanism to make their dimensionless coefficients sufficiently small®.
Furthermore, satisfying the demands placed on inflation models with sub-Planckian field ranges
puts additional pressure on the EFT which one uses to describe the dynamics, because the inflaton
— which must be light during inflation — quickly becomes very heavy after inflation ends. This
is merely a matter of continuity: if the field rolls on a flat and short plateau to give 60 efoldings
of inflation, that plateau must be very flat, and the post-plateau minimum very narrow, and hence
with a large curvature. This pushes reheating out of the EFT used to describe inflation: the UV
embedding must be understood.

After exploring these issues, we will argue that an embedding of the Stewart model exists which
can protect the required hierarchies in masses and couplings from both QFT and quantum gravity
corrections. To do this we will use a two-field version of the axion monodromy effective field
theories developed in [7], [8], [12], [14], [16], [17], [19]. In these theories the two fields that drive
inflation and reheating are considered as axion-like pseudoscalars, dual to longitudinal modes of
two massive 4-form field strengths. The scalar mass maps to the gauge field mass [16]; as with
masses for Abelian vector fields, the 4-form mass is stable to quantum corrections. Additional
small hierarchies needed to support inflationary dynamics may then arise from dimensionless cou-
plings in the strong coupling regime. For models which match CMB data one must either tune

the value of the mass or find an additional mechanism, beyond EFT, to explain its smallness from

’In principle, it is possible that the individually dangerous operators may sum up to tamer contributions to the
effective potential, if there are approximate shift symmetries in some regimes of phase space.

13



first principles. Either way, the small mass is at least technically natural®>. We will also see that
the requirements of naturalness and bounds from data push the dual 4-form theory into the strong
coupling regime. However since the theory has only longitudinal propagating modes, in the in-
flationary regime the theory looks weakly coupled because each explicit power of the inflaton ¢
comes with a factor ocji/ M, where M is the cutoff and p the inflaton mass, thus providing addi-
tional suppression factors that make the theory appear weakly coupled in the axial gauge, and also
tame quantum gravity corrections to the irrelevant operators of the theory.

The current data put additional pressure on this EFT, suggesting that a full theory of hybrid
inflation really requires two different EFTs to consistently describe it, one for the slow roll regime
and another for reheating, when the inflaton becomes very heavy (and presumably other degrees
of freedom become very light). Providing the details of the complete first-principles construction
of such a model is beyond the scope of this work. Here our approach is bottom-up, reverse-
engineering a low energy theory in order to glimpse how it can be derived from a UV-complete
model. Hence we cannot provide a detailed contents of the full spectrum of the theory, which is
necessary to see how various fields transition to below and above the cutoff. Nevertheless, our
analysis indicates that such constructions exist, and serves as a guide for how to search for more
complete models which realize such dynamics.

We close with a summary of what is new in this chapter:

* First, a detailed consideration of matching the Stewart model to the most up-to-date data has
not been done before; nor has the stability of this model to either QFT or quantum gravity
corrections been explored. We do both in §3. While the model fits data well, we will find that
as it stands, it in fact is unnatural: the model suffers from the mass hierarchy problem, since

the dimensional scales in the theory are very sensitive to the UV completion. This requires at

3Lower bounds on the mass of 1-form gauge fields have been conjectured in [29]: we believe inflation is well away
from such bounds.
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least a small O(0.1) hierarchy between mass scales. A protection mechanism is necessary to
stabilize this against quantum corrections and render the theory at least technically natural.
We will also see that the theory has many irrelevant operators which are individually large,

and a dynamical explanation of why they do not spoil inflation is needed.

Furthermore, we will also see that the theory is additionally strained by the fact that the
post-inflationary mass of the inflaton is near the cutoff of the infationary EFT, meaning that
to reliably describe exit from inflation and reheating, we really should use a different EFT in

that regime.

Finally, our proposal for realizing the model as the theory of coupled axions dual to 4-form
field strengths is new. This provides a UV completion of the hybrid inflation model which
addresses the hierarchy problem and the subsequent fine tunings, rendering it both natural
and protected from quantum gravity corrections. To do this we take an approach that is dis-
tinct from standard axionic model-building. Typically axions have not been considered for
hybrid models because their nonderivative couplings are constrained by nonrenormalization
theorems, and taken to be simple trigonometric functions. This assumes that the axion po-
tentials are generated by instantons in some sort of dilute gas approximation. However, it has
been known for some time, if underappreciated, that this approximation often fails and axion
potentials can be more complex, looking more like perturbative polynomial interactions, if
we assume that the axion potential is multivalued [30]-[32]. The central lesson of [7], [8],
[12], [14], [16], [17], [19] is that the resulting effective field theories are still constrained by
gauge symmetries, and ‘dimensional transmutation’ between dual pictures allows for small
couplings that are protected from QFT loops and quantum gravity corrections. In §3 we

develop and deepen this story by expanding it to multifield models and explore its strong

15



coupling r

3.2 Hybrid Inflation with a Red Spectrum

3.2.1 The Model

The pioneering model of hybrid inflation [21] has the form:

V($,0) = % (02 _ M2>2 v 2R+ ig202¢2. 3.1)

Here ¢ is the inflaton. If ¢ > \M 2/g, then 0 = 0 is a minimum of the potential for fixed ¢,
leading to the effective potential

Vepp = M* + 1i°¢° . (3.2)

During inflation, if the second term dominates, the theory is effectively the standard chaotic infla-
tion, which requires a super-Planckian range for ¢ and which is ruled out by existing bounds on

gravitational waves. If the M* term dominates the potential, then

op\° B V3 1 (33)
o) 247T2MSZ(V’)2 @2’ '

grows larger as ¢ decreases, leading to a blue spectral index, which is ruled out by CMB measure-

ments [24]. More precisely the spectral index is

2
s=14+—>1, 34
n +N> (3.4)

where N is the number of efoldings.
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An alternate model by Stewart [25], [26], defined by
2 2 2
V(g o) = m? (g _ ﬁM) + gzq5202 , (3.5)

which does not have degenerate post-inflationary minima, and so also no dangers of any stable

defect production after inflation, does have a red spectrum:
Ng ~1— — . (3.6)

As we will show in §2.2, this model can be made compatible with current CMB data, while
maintaining sub-Planckian field ranges that are one of the strong motivations for hybrid inflation.
As far as we know, a full discussion of the quantum stability of these models has never been
carried out*. This is one of the main goals of this paper. We thus write a modification of Eq.
(3.5) containing all of the relevant and marginal operators that could be generated by quantum

corrections:
Vig,o) = T (o van) 42 (02—M2)2+“—2¢2+9—2¢%2+5¢4 3.7
’ 2 4 2 4 4" )

Since the first term breaks the 5 symmetry ¢ — —o one may be tempted to include terms pro-
portional to o¢? or o®. However, if we compute quantum corrections to this potential following
[34], linear terms in o can be absorbed into the source term used to explore the full theory space,
and thus these terms are never generated by loop corrections. In the effective field theory (EFT)
language, the reason is that the parity symmetry is softly broken, only by a relevant operator, and

thus is invisible to the UV effects in the loops.

“We are aware of a somewhat incomplete attempt in [33].
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In the EFT context, we would naturally expect that all of the dimensionful parameters in this
model should be below the cutoff. However, we will find in the next section that for a realization
of this model via massive 4-forms, this does not have to be the case for M, for which there is
a see-saw formula involving the ratio of the cutoff to a fundamental mass scale. A hint that this
might be the case comes from noting that if ¢ is a pseudoscalar axion, as it (along with ¢) is a dual
of a massive 4-form field strength in the embedding we described below, M is a spurion for the
breaking of CP, and so it might naturally be related to the initial expectation value of one of the
longitudinal modes of massive dual forms; we will see that this is so in §3. There is no a priori
reason that the expectation value of an axion field should be below the cutoff [35]. In principle,
since it is controlled by the initial flux of a 4-form field strength it may even be ~ M.

The first and fifth terms are absent in [21]; while Ref. [25] ignores the second, third and fifth
terms. To realize the latter model with its red spectrum of fluctuations, we must ensure that the
terms controlled by p, A, A" are subdominant, so that the Stewart model is a good approximation.
We will argue in §2.3 that the suppression of A, \’ can be made technically natural. Finding a
phenomenologically acceptable value of m and suppressing p enough that the ¢? term is sub-
dominant requires more work, as scalar masses are afflicted by the hierarchy problem. Rendering
these masses even technically natural requires a mechanism, such as axion monodromy, whose
application to hybrid inflation we will describe in §3.

For now and in §2.2, we will take (3.7) as given and explore the predictions of the model in the
limit well described by the Stewart model. As in [21], [25], at sufficiently large ¢, the g°>¢?c? term
renders o massive and we can integrate it out. At the classical level we simply solve the equation

oV
oo

B 2
— m? <0 _ \@M) A — A0 + %qﬁQU ~0, (3.8)
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for o at large ¢. We demand that the term Ao be subdominant. Ignoring this term, we find that:

2
i = *ﬁTA{Q. (3.9)
m? — AM? + & ¢?

It is instructive to neglect the term oc\, and in this limit plug equation (3.9) back into (3.7). So,

using opin = v2m?M /(m? + %qbQ) + O(\), this yields

Verp(9) =~ WZMQL + M—2¢2 + i/gzs‘* + O\ . (3.10)
m? + %qﬁ 2 4

If ¢* » 2m?/g?, then o ~ 2*/;2’(’;;]” , and in this limit the potential (3.10) becomes

2m?2
g*¢?

2 )\/
V;nflation =~ m2M2 (1 - ) + %¢2 + Z¢4 + O()\) N (311)

after expanding the fraction in the first term. Clearly, as ¢ grows the first term becomes flatter. This
is the inflationary plateau. The terms ocu, A’ limit it, since they make the potential convex again
as they take over. Essentially, the regime with positive spectral slope is therefore between the two

inflection points of the potential (3.10), when ¢ is in the regime

2 M
o<y =m. (3.12)
39 g

The hybrid inflation regime, with sub-Planckian ranges for ¢ and a red spectrum, will require that
the terms controlled by p, A’ also be sufficiently subdominant, during the first 10 efoldings of the
visible epoch of inflation (epochs which leave imprints on the CMB). The precise details depend
on how small g is. If p is larger than the critical value p, = 12247"5, the upper bound in (3.12)

is sub-Planckian, and so the period of inflation with a red spectrum is generically shorter with all
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other parameters being fixed. If p is smaller than i, the upper bound is super-Planckian. At any
rate we will insist that the final 50 efoldings must occur over a sub-Planckian range of the inflaton,
while the inflaton lies below the upper bound in (3.12). In other words, if we define the maximum
value of ¢ at 50 efolds before the end of inflation as am,,, we require o < 1. The upper bound in ¢
in (3.12) then implies v/12Mm?2a? g M. In this way, whichever option, any trans-Planckian field
excursions are observationally irrelevant, offering assurance that our model of nature need not be
too sensitive to the UV. We will however see that this puts stress on naturalness.

We will further require that ;1/m < 1, so that we can consistently integrate out the o field during
inflation, and ignore its fluctuations. This also ensures that the o fluctuations during inflation are
suppressed; as a consequence we can ignore isocurvature perturbations, which are anyway strongly
constrained by the data. We will however find that when other bounds are met, u/m < 1 is
automatically satisfied.

The limitations of an EFT are set by the cutoff M. While the effective potential (3.7) involves
only renormalizable operators, and so it gives no indication of any intrinsic UV cutoff, we can
place a lower bound on the cutoff of the two-field model by noting that M should be of the order
of the effective mass of o during inflation. This mass will provide a natural UV cutoff for the
effective theory, Eqs. (3.10) and (3.11) for ¢, once we integrate out . This potential is obtained
for large ¢ by integrating the field o when it is effectively near zero. Taking the second derivative

of (3.8) gives the effective mass of ¢ in that regime,

2 42
mi:m2+g¢

+O(\). (3.13)

To get an idea about the limit on the inflaton ¢ range in our EFT we conservatively use the range

~ M of o as a guideline’. Imposing M < M,, we thus take the cutoff M = /4T M., to be

>This assumes a lack of hierarchy between o, ¢; in practice we expect ¢ to have a somewhat larger range, as we
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M ~ gM. Here M, is the strong coupling scale, used to normalize the EFT operator expansion
in the Naive Dimensional Analysis (NDA) framework [36], [37], a framework which was deployed
to organize the EFT of large field inflation in [16], [17]. To get a sharper estimate of the cutoff,
we can also produce a lower bound by recalling that in NDA, the overall dimensional scale of the
potential terms in EFT is M at strong coupling. This sets an upper bound V M on the potential
energy during inflation [16], [17]. From (3.11), we then find M /mM. Thus the cutoff lies in the
range

VarmMM ~ gM . (3.14)

For values of these parameters which satisfy constraints we develop below, we find gM >
vmM so we take gM as a conservative estimate of M.
Note, however, that as the inflaton ¢ rolls towards the end of inflation, its effective (tachyonic)

mass on the plateau, \mi\ ~ 24A"}l—22m2 « m? changes to
*
mi ~ g*M?* ~ M*. (3.15)

Thus the EFT of inflation and the stage right after inflation breaks down as the theory proceeds
to reheating at the true vacuum o = +/2M. As serious as this is, by itself it is not a fundamental
flaw of the theory. It indicates that as inflation nears the end, the theory is undergoing a phase
transition where the energy density stored in the very flat potential tends to dissipate quickly, and
nonperturbatively, at very short distances. Some new fields, including o — which was very heavy
during inflation — become light and need to be integrated in. Others, like the inflaton ¢, become
heavy. Further, since the ¢ mass is tachyonic, as its magnitude becomes larger the tachyonic insta-

bility becomes faster near the end of inflation and operates at sub-horizon scales. So the important

are working to flatten its potential.
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lesson from this is a warning: we should not expect to have a single EFT of hybrid inflation, but
instead count on having the late stages of the exit and reheating as separate descriptions from slow

roll inflation.

3.2.2 Matching to Data

We next want to demonstrate that our model (3.10) has the capacity to match existing CMB data,

focusing on:

The number NV of efoldings of inflation, constrained (up to details of reheating, which we do
not model here) by bounds on spatial curvature to be at least on the order of 50 — 60. For the

sake of convenience we take N = 50.

* The power in scalar density (or CMB temperature) fluctuations at an appropriate pivot point,

set by experiments to be of order %p ~5x 1075,

* The tensor-scalar ratio 7, with a current upper bound at » < 0.056 [24]. We will in fact
demand here that the inflaton ¢ has a sub-Planckian field range over the last N efoldings of

inflation; this ensures that r is well below the above bound [33], [38].

The scalar spectral index a g, between 0.95 and 0.985, depending on .

We will do this here under the assumption that the first two terms in (3.11) dominate in our
model. The above constraints can then be phrased in terms of bounds on m, M, g and the maximum
excursion oMy = ¢pq, Of the scalar field during the visible epoch. We will find that the data
supports a range for these parameters. The further question of whether there is a range for these
parameters and for A, M , i, A" for which the remaining terms in (3.11) are subdominant and the

whole theory is stable under quantum corrections is the central point of the rest of this paper.
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We first impose the constraint that inflation last for a sufficient number of efoldings. Assuming
that the magnitude of the potential energy V' is dominated by the first term in (3.11), the number

N of efoldings is given by:

1 % 1 ¢
N=——7 | =d¢p~— 3.16
MSIJV’ M2 16m2 "’ (3.16)

Using ¢pae = oMy, we find:

m o?

9Myu 4N

(3.17)

Note that we are interested in o < 1; thus, m « gM,y. Since we also wish to impose a sub-
Planckian range of o, and that range is set by M, this condition is at least compatible with m <
M ~ gM.

Our bound assumed that V' is dominated by the constant term ~ m?M? during the first ~ 10
efoldings of the visible epoch of inflation (the period which leads to observed CMB fluctua-
tions). We need to check that this is self-consistent. 10 efoldings corresponds to to approximately
‘z’m—]\;”“‘AN ~ Lj\fgbmw which is a small variation, so we need simply check the dominance of the

constant term at ¢ ~ ¢,,,. Under these conditions,

m m (%

= ~ «1
g¢max agMpl 4\/N

) (3.18)

so our assumption of the dominance of the constant term in V' is self-consistent. Note that in
light of the discussion in the previous section, this demonstrates that for parameters that yield the
requisite number of efoldings, m « M. Also note that it is straightforward to show that the slow

roll parameters 7 ~ MAV"/V', ~ M2 (V' /V')? are both small given (3.17) together with a < 1

23



We next check the scalar spectral index:

V\? 1% m? [ 2m? 3
2 2 2

In the last term in the RHS we are assuming that ;;“—22 « 1: this is the same as the demand that V' in
(3.11) is dominated by the leading constant term m?M?. If we take N between 50 and 60, n, varies
between 0.97 and 0.975. This is within current bounds, particularly for N ~ 50. However future
observations might be able to constrain this more strongly, and perhaps even falsify the model. In
any case, as we noted, in the rest of this paper we will take N = 50 as the pivot point to match the
model to the data.
Thirdly, we impose a constraint on m, M, g, o from the power in scalar fluctuations:
Sp 1 H? 1 V32 g*M¢?

o _ 1 HT_ _ , 3.20
p 21 27r\/§]\/[§l V! 87r\/§mM§l (3-20)

where we assume, following the above discussion, that the first term in (3.11) dominates the mag-
nitude of V. Using Egs. (3.17) and (3.20), and that §p/p ~ 5 x 107, we find two constraints on
m, M, g, . We can express any two in terms of the other two. For convenience, we will use these
equations to express m and M in terms of the two remaining parameters g and «, which we will
treat as independent parameters, at N = 50. We find

m a’g M 8.107°
M,  28° My,  ag '’

(3.21)

where we substituted the first equation into (3.20) to obtain the second one. We note that the
parameters g and « cannot be completely arbitrary. In addition to ¢ < 1 and o < 1, their choice

must be made to maintain M /Mp; < 1, and ensure that the approximation where we neglected 1
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and )\'-dependent terms is self-consistent, even when we include quantum corrections. We will see
that those requirements yield non-trivial restrictions on g and a.

Finally, the tensor-scalar ratio r is given by:

v\ 16m*  3m 1
_ 2 _ 2 _
r=6Mp (7) = 6M, i 2gM, N2 (3.22)
Using (3.17), we find
3a’ —4, 2
r = W ~ 15 x 107"« s (323)

well below the current bounds, and likely unobservable, given o« < 1. Thus we see that if, e.g,
were observed, and if ng ~ 0.95, our model would be challenged by data.

Using the above constraints, we wish to display more explicitly the region in the space of
parameters m, M, g, « that satisfy them. First, the scale of the potential, and therefore the lower

limit (3.14) on the cutoff M is

VY~ VmM ~ /o x 1073 My M /v/dx | (3.24)

As we noted above, we will impose the requirement that all the fields remain sub-Planckian, in
addition to the dimensional parameters that appear in the relevant operators of the theory. The field
range for o is ~ v/2M so we demand M < M, as well as o < 1. This is what helps keep the
tensor power low. Furthermore, in principle this might have helped with keeping quantum gravity
effects under control and allowing inflation and reheating to take place in the same effective field
theory. As have seen and will see, these conditions are sufficient for neither. We have already
argued that reheating takes place through a phase transition during which energies and momenta

of order the cutoff become activated. We will show below that the Stewart model will be at best

25



barely sub-Planckian, so that a large number of irrelevant operators must have small coefficients,
even if they appear as Planck-suppressed. Note also that when it is helpful to gain a conceptual
handle on the constraints of our theory, we will impose a field space “democracy” with o, M up
to O(1) factors.

With these in mind, we find that the second equation in (3.21) combined with M /M, < 1

yields a bound

gz (3.25)

It is worth noting that this bound makes p/m < 1 consistent. This is needed for ¢ to be a good
candidate for the inflaton with the fluctuations of o suppressed during inflation. In particular if we

impose (< (14, so that the plateau lasts for at least a Planck scale in range before quantum gravity

cuts it off, then combining p, = /12 24]‘2”22 with the first of Egs. (3.21) and using inequality (3.25)
pl

gives i, ~ 3.4 x 10~"aM,,;, and so, using (3.25),

201, (3.26)

m

Consistency of our EFT also demands that m « M ~ gM (using Eq. (3.14)). Combining
the two Egs. (3.21) we find m/M = 500 a3g¢?, and thus m/gM = 500 a3g. We already noted
however that m/gM ~ m/M « 1, and will recheck it in the next section that requiring radiative
stability of the marginal operators in the theory yields an independent bound g < 1.6 x 103, which
guarantees m/gM < 1 as well as m « M.

In the end there is a nontrivial subspace of the parameters m, M, g, « satisfying our bounds. In
Fig. 1 we have plotted a region in the space of g, a, which as we noted we treat as independent
parameters. For completeness we have also included the bound g < 1.6 x 1073, which we will

derive in the next section. Suppressing corrections to make the theory radiatively stable favors
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weaker couplings, g < 1. However, as seen from Eq. (3.25), g cannot be arbitrarily small as long
as a < 1. Decreasing g mandates increasing M and/or « to keep dp/p fixed. Conversely, lowering
« and/or M /M, puts pressure on the perturbativity of g. The theory therefore does not really work
at arbitrarily low scales, as is clear from Fig. 1. Nonetheless, there is still a nontrivial window here;

in particular, for e.g. a, M /M, ~ 0.1, we can have g ~ 0.001, and so on.

|09100ﬂ —?\4 3 -2 -1

Figure 3.1: Constraints on the inflation parameters g, « due to data and the naturalness of marginal
operators. The inclined line corresponds to the bound of Eq. (3.25), which follows from M /M,; < 1. The
vertical coordinate axis is the bound o < 1. The horizontal bound comes from g < 1.6 x 103 which
follows from imposing naturalness of quartic operators (see §2.3.2). The green shaded region is the regime
for which the Stewart model is consistent with all of these bounds. Note that this figure ignores the bounds
from naturalness of the mass terms, which are problematic for the Stewart model (3.5). The reason we
are ignoring these bounds is because ultimately they may be addressed by embedding (3.5) in dual form
monodromy, as we will outline in §3

We forewarn the reader that in the plots in Fig. 1 we have ignored the “elephant in the room”
of the Stewart model (3.5): the power law divergent contributions to the relevant operators, specifi-
cally the mass terms. As we will argue, these require additional fine tunings, unless a mechanism is
found which cancels them. Our goal in this paper is to indeed provide an example of such a mech-

anism, an embedding of (3.5) into a theory of dual forms, so that ¢, o are pseudoscalars exhibiting
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axion monodromy. However even after the cancellation, the bounds discussed here remain. In

particular we stress that the EFT of hybrid inflation can be at best barely sub-Planckian in order to

be both technically natural and consistent with data. The specter of quantum gravity still haunts
hybrid inflation.

The reader may be disturbed that M may well be the UV cutoff of many string compactifica-
tions. As we have discussed above and will expand on in more detail in §3, this does not place the

theory outside of the bounds of effective field theory below said cutoff.

3.2.3 Quantum Stability

In this section we discuss the degree to which the Stewart model (3.5) can be rendered technically
natural. The model will pick up corrections that include all of the terms in (3.7). If we take the
Stewart model as the tree-level action, the corrections will be generated through loops by the cou-
pling g%. We will thus assume that the additional relevant and marginal couplings in (3.7) that are
absent from (3.5) will be of the order of these loop corrections. The field theory corrections to
irrelevant terms are also dangerous. For these terms, we will note that quantum gravity is expected
to generate Planck-suppressed operators with order O(1) coefficients in a theory of quantum grav-
ity, and we will find that these dominate the corrections generated by QFT loops. We will then
show that despite the sub-Planckian field ranges of the Stewart model, a large but finite number
of irrelevant operators must have small coefficients in order for the Stewart model to be a good
description of the dynamics, so that an additional mechanism or fine tuning is needed to suppress
irrelevant operators. In §3, we will show that axion monodromy can provide it, as it does for large
field inflation [12].

The relevant terms in the Stewart model comprise the linear term ocm?M o, which does not
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get corrected, as we have discussed, and the scalar masses m, . As with the Standard Model,

the masses suffer from a potential hierarchy problem. We can realistically expect field-theoretic

corrections to give dm?, ju? ~ lg;MQ where M is the cutoff, under the generous assumption
that ¢, o couple with strength g to ultraviolet degrees of freedom. This encodes the well-known
ultraviolet sensitivity of the masses. There is also a weaker version of the hierarchy problem, which
is that the loops of the heavy field o can correct the light mass of ¢ by large terms.

In general, we can tame these corrections to a certain degree if we assume that a softly broken
shift symmetry holds up to the fundamental scale in the limit ¢ — 0. This of course is technical
naturalness. Current lore is that nonperturbative quantum gravity effects spoil such symmetries.®
An open question is whether these effects include relevant operators. As case studies of related
Euclidean wormhole effects on the Peccei-Quinn symmetry of axion potentials show, the complete
resolution of these questions remains open [39], [40] (see also [41], [42]). All we will do for this
paper is merely parameterize the problem, leaving the issue of the existence of softly broken sym-

metries conceptually unresolved. We will instead argue in §3 that gauge symmetries of the dual

formulation in terms of massive 4-form field strengths may accomplish the same goal.

3.2.3 Scalar Masses

Mass terms for ¢, o at the cutoff M would clearly invalidate our EFT, pushing all dynamics to the
cutoff. Furthermore, if we estimate M ~ gM, we have shown that constraints from data imply
that m/M ~ 500a3g. If we impose the constraints on ¢ < 1073 from technical naturalness, and
demand that inflation occur over a sub-Planckian field range, then some mechanism must keep m

well below the cutoff. Furthermore, we must also impose p « m. If we require that the second

®Perturbative quantum gravity effects preserve the shift symmetry of scalars: see [2], [12].
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derivative of ;12¢* be subdominant to the second derivative of the second term in (3.11), then, if
m, . ~ M, we find that this condition combined with (3.17) implies that

M > (%) x %Mpl ~ (%) x 8M, (3.27)

so that a sub-Planckian field range for o requires p < 0.12m.

Now let us assume for a moment that the mass m is pushed up to m ~ gM /4w ~ g M /47 by
UV corrections. Using Eq. (3.17) we find gM /M, = o*7/ v/N. Combining this with the second
equation in (3.21), we can solve for « to find o ~ 0.06. Looking at Figure 1, there is still a small
range of g for which this barely sub-Planckian theory is viable, in the far left corner of the shaded
region.

Note that M ~ gM is at most a lower bound on the scale of new physics. In practice, new
physics could appear up to the Planck scale, and thus push the technically natural scale for m
farther up still. In this case, the above argument shows that « is pushed up towards 1. As with
the Higgs mass, there is no clear barrier to new physics appearing up to the fundamental Planck
scale, be this the 4d or 10d Planck scale. If M is close to the Planck scale, gM < 10'° GeV
(using the constraints on g we will discuss below), so a higher fundamental scale indicates a more
serious hierarchy problem beyond the existing need for a little hierarchy between i, m. This little
hierarchy in itself is still a problem, albeit possibly a weaker one.

In the end, controlling 4, m in the face of QFT and quantum gravity corrections requires un-
natural fine-tunings or an explicit mechanism. In §3 we discuss one such mechanism, axion mon-
odromy. This promotes the scalar masses to gauge field masses which are much less sensitive to
UV corrections, whether from QFT or quantum gravity [16] (this is not to say that the mass is

completely unconstrained [16], [29].) If the cutoff scale contributions ~ gM /47 to the masses
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m, p are prohibited by a mechanism such as monodromy, the theory could be natural, UV safe and

consistent with the data. We will show explicitly how this happens in hybrid monodromy in §3.

3.2.3 Marginal Couplings

If we begin with the Stewart model (3.5) at tree level, we will induce not just mass terms but
marginal quartic couplings i)\a‘l and %X ¢*. The induced couplings A, \’ will be of order g* (times
some factors we will discuss momentarily). If we write down our EFT with couplings of this order
from the outset, these couplings are technically natural. If we choose g sufficiently small, we will
see that these couplings will remain subdominant and (3.5) is a good approximation to a model
that is stable to quantum corrections in the regime that generates phenomenologically acceptable
epochs of inflation and reheating. Thus, the marginal couplings by themselves are under control,
in principle - if we were to ignore the relevant operators, the marginal couplings could be natural.

We estimate the size of the quantum corrections following the discussion of [34]. The quantum

corrections to the quartic terms will include the term

4 2 12
g 99"\
Lradiative 3 m In <_/\;12 ) Qb . (3.28)

This set of terms arises from summing together the 1-PI irreducible diagrams renormalizing ¢*
terms due to the virtual ¢ modes. Here M is the subtraction scale, which is in principle arbitrary.
For example, it can be taken to be the mass scale of the o field during inflation, which is integrated
out to generate the effective ¢ theory; or it might be the cutoff of the 2-field hybrid model (since,
practically, we do not expect that they are far apart).

The log will give the largest contribution if the argument is small. This means, we will get the
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strongest correction to the scalar field potential for the smallest values of ¢, o during inflation —
i.e., near the exit. Since we already noted that the EFT during inflation will fail at the exit, needing
a different EFT to describe reheating, we will here only require these corrections to remain under
control during the early stages of inflation. To illustrate this quantitatively, let us take g of order
1072 and a ~ 0.1, with the cutoff M ~ 1072M,. In this case the log is of order unity; the loop
factor 6472 in the numerator gives a suppression factor of order 1072, so this gives a correction to
¢*, o* of order 10~3¢*. Note that these values of g, o are within the allowed region in Fig. 1.

The strongest constraint on the ¢* term is that its second derivative be subleading compared to
the second derivative of the first two terms in (3.11). As we discussed previously, this means that
the inflection point induced by the quartic corrections to (3.11) is far enough to allow the plateau
to yield ~ 50 efolds of inflation. In our numerical example, In(g2¢%/M?) ~ 1, and we find that

this condition combined with Egs. (3.17) gives

g<1.6x107°%. (3.29)

This is the bound we incorporated preemptively in Fig. 1. We see that this leaves a small region
of parameter space that is consistent with both naturalness of the quartic couplings, and with sub-
Planckian expectation values for ¢, 0. As noted, these scalars cannot be hugely sub-Planckian:
in this range one or both are within an order of magnitude of M,;. Allowing for both scalars to
have smaller ranges would require larger values of g. In turn this would require either finely tuned
small quartic couplings for ¢ or some additional mechanism to suppress the self-coupling at all
orders in the loop expansion. We of course assume that the theory is natural here, without large
cancellations between regularized and bare terms in the loop expansion.

Note that in [12], we have discussed a very similar-looking problem with single field inflation,

32



namely radiative corrections to the inflaton potential V. The point there was that the QFT cor-
rections to V' (¢) are automatically natural since they are of the form F'(n)V, where F(n) is an
analytic function of n ~ %‘2’”53)1/ at n = 0, with O(1) expansion parameters. Thus during infla-
tion, if the potential V' is chosen to be flat,  « 1 and loop corrections will remain small. In this
model the new issue arises from the presence of the new field o, and its new couplings to ¢. The
Stewart model requires the biquadratic potential ¢>0? to dominate the ¢?, o* terms. The bound
(3.29) ensures precisely that.

Yet as we just stressed in the previous subsection, without some additional mechanism(s) to

suppress the masses, and preserve a small hierarchy between them, it is not even possible to keep

the field ranges below the Planck scale without fine tuning. And even if we tune the field range for
M, we still need o < 0.12, which in turn implies g ~ 1072, as designated in Figure 1. This shows
just how fine tuned the theory must be — baring hierarchy protection mechanisms. One might hope
that selecting a special scale in the log in Eq. (3.28), which makes the log very small might help
[33], however this would only make sense if the UV corrections are tamed. Thus our discussion
showcases just how desperately the model needs a mechanism in the UV to protect it from large

quantum corrections to the masses.

3.2.3 Irrelevant Couplings

Finally, let us consider the irrelevant operators. In addition to being a potential problem in QFT,
these are also a portal for the effects of quantum gravity to come in. Let us first note that the latter

are far more dangerous. Basic dimensional considerations indicate that integrating out o during
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inflation will give corrections of the form’

44+2p 1 A4+2p
g
0L, ~ VI (3.30)
Taking the lower bound M ~ ¢gM and applying the second equation in (3.21), we find
g\t
0L, ~ 3.31
p Y (8><105) M G310

For ¢ ~ 1073, @ ~ 0.1, and noting that we are ignoring phase space and symmetry factors,
this is generally smaller by a factor of g* as compared to Planck-suppressed operators with O(1)
coefficients. We will therefore focus on the latter but note that in general QFT contributions will
also need to be suppressed.

Estimates such as the one above can be overly pessimistic. We know that in QFT, a series
of operators which individually look dangerous, can sum up in the effective action such that the
relevant effective potential remains flat. Essentially this can happen when the loop expansion is an
alternating series, with operators of the form ¢”** having signs (—1)P. As a result the sum total
of all the operators which should be included in the EFT is merely a log correction to the leading
term, as discussed in the previous section (see [12]). Thus the irrelevant operators then need not
be a show-stopper, and indeed flattened potentials such as those discussed in [11], [17] depend on
them.

However in the presence of the extra field o, and with quantum gravity corrections having no
known pattern, we will be maximally conservative, and instead outline the conditions which guar-

antee that operators irrelevant in the RG sense are also irrelevant in the sense of not contributing

7 Aside from the overall prefactor ~ 1/1672 this term displays correct normalizations as per NDA. We will however
ignore these factors in this section, since our main purpose here is to outline the issue. Such additional numerical
factors may in fact be helpful.

34



during inflation. To this end, we will focus on the potentially the worst-behaved terms which are
higher powers of the lighter field ¢, normalized for convenience by the Planck scale M. This
is merely a matter of choice; a different normalization would yield apparently different numerical

statements, but the contents would be exactly the same. So consider a coupling of the form

% o o (3.32)
(p+4) My '

If such corrections are too large, they behave as the inflaton mass term, shortening the width of the
hybrid plateau of (3.10). More specifically, the magnitude as well as derivatives of such operators
during inflation need to be smaller than the value and derivatives respectively of the tree-level

potential in Eq. (3.11). Focusing on the second derivative, we find that
6 < (p+2)a? x1.2x 1071, (3.33)

Thus for o ~ 0.1 we still need a mechanism which suppresses a finite set of irrelevant operators.
This mechanism must suppress both QFT and quantum gravity corrections. To this end, a sub-
Planckian axion, with or without monodromy, should be effective. We stress — as we noted above
— that if there are cancellations between adjacent irrelevant operators in the EFT expansion of
the effective potential, as in the case of large field models or Coleman-Weinberg theories where
irrelevant operators comprise an alternating series, that could help too. Our analysis of individual
operators nevertheless shows that this may be easier to realize with sub-Planckian field ranges and
parameters. As we have stressed all along, a mechanism which subverts the UV sensitivity of the
masses is beneficial, since it will also help with the irrelevant operators.

The upshot is that even though our model has sub-Planckian field ranges, the irrelevant opera-

tors are not automatically guaranteed to be parametrically suppressed relative to the Planck scale.
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The Planck-suppressed irrelevant operators of sufficiently low dimension might in fact interfere

with slow-roll inflation unless their dimensionless couplings are kept sufficiently small.

3.3 A Pseudoscalar Realization and its 4-Form Dual

Small field hybrid models of inflation, as exemplified by the Stewart model, face two serious issues:
e The scalar masses are UV sensitive within the confines of QFT;

* There are Planck-suppressed irrelevant operators which require very small dimensionless

coefficients.

As we will review and develop here, both of these problems may be addressed by considering ¢, o
as pseudoscalar axions dual to massive 4-form field strengths [16]. The masses p, m are dual to
the gauge theory masses, which are not UV sensitive; while corrections to the scalar potential are
suppressed by additional powers of the ratio of the masses to the cutoff, m/M, p/ M. These effects
follow from the gauge symmetries of the model. In the duality frame described by the 4-form field
strengths, these are a pair of nonlinearly realized U (1) gauge symmetries, with Stiickelberg fields
restoring the gauge symmetry of the mass term. In the dual scalar theory the gauge group is discrete
Z x Z, with each factor acting on a scalar and on a discrete variable. These discrete variables are
dual to 4-form flux, labelling distinct branches of a multivalued potential [8], [12], [16], and act as
a sort of discrete Stiickelberg field.

The symmetries are obscured on the scalar side by their nonlinear realization combined with
gauge fixing, which follows from picking a specific branch where the scalar longitudinal modes of
the massive 4-form field strengths reside. Nevertheless the gauge redundancies remain operational
in the full phase space of the theory, ensuring technical naturalness and protecting the scalar dy-

namics from the perils of quantum gravity. In the end, our goal here is to rewrite the Stewart model
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as an example of a simple gauge fixed EFT of massive 4-forms, and demonstrate how the ills of
the scalar theory may be healed by gauge symmetries.

We find that for scalar theories satisfying the constraints outlined in §2.2, with sub-Planckian
field ranges, the dual theory appears to be very strongly coupled: dimensionless coefficients of
the leading irrelevant operators, written as powers of the field strength, are pushed to be large.
The duality map yields an NDA-like presentation of the pseudoscalar action in terms of which
the functions defining the potential appear to have large coefficients in a Taylor series expansion.
These apparent large couplings are the price we pay for our mechanism for controlling m, , while
maintaining sub-Planckian field ranges in the face of constraints given by the data.

However, these coefficients may not be the proper measure of couplings, governing the scat-
tering amplitudes of asymptotic states. Absent mass terms, the 4-forms are non-propagating; with
masses, the propagating modes are the longitudinal ones, which come multiplied by powers of the
gauge field mass. Thus, the physical asymptotic states have couplings that are suppressed by ratios
like 11/ M, m/M. Wavefunction renormalizations (aka “seizing” [43]) can push down the effective
coupling further. The irrelevant operators induced by the leading “large” coupling are natural in
the naive sense — that is, they have order O(< 1) dimensionless coefficients.

A complete exploration of naturalness and NDA for massive p-form gauge fields has not been
carried out and we will not do so here. A UV completion of our 4-form theory, would be an impor-
tant way to explore the range of validity of our EFT. We will outline the issues that we encounter

and point the way to possible resolutions.
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3.3.1 A word on the Duality

The formalism of axion monodromy as a theory of inflation has been studied extensively. The pos-
sible UV completion as a string theory and apparent simplicity of the effective field theory makes
this theory an attractive candidate to explain the dynamics of inflation. In this note, we highlight
the mechanism that allow for a duality between a theory of a massive three form with a shift sym-

metry and a theory of a massive scalar field exhibiting a shift symmetry.

We start by considering the Lagrangian of a massless pseudo scalar field with a shift symmetry:

L = f*(0,0) (3.34)

We want to create a mass gap while maintaining the shift symmetry and with- out introducing any
additional degrees of freedom.

In this note we show that a theory of a massive three form with a shift symmetry is dual to a theory
of a massive scalar field with a shift symmetry. The number of degrees of freedom is equal to one
in both theories.

Let us start by considering a dynamical two-form B,,,,.. (In this dual picture, the pseudo scalar ¢ is

replaced by a two-form B, ). The Lagrangian for B is:

L = h\h"* (3.35)

where hy,» = 01, B, This theory exhibits a global shift symmetry:

B;w - B,uu + Q,uu (336)
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Now we want to promote that global shift symmetry to a gauge symmetry and create a mass

gap for B without introducing additional degrees of freedom:

First let us review the dynamics of a theory of a four-form. The Lagrangian for such a theory

is:
L= F;U/)\pFIW)\p

where

Fup = a[MAV/\p]

F is a totally antisymmetric tensor in 4 dimensions. Hence it is totally determined :

Funp = q(2%) €

The equation of motion for F is:

MFunp =0 = q(2”) = cst

(3.37)

(3.38)

(3.39)

(3.40)

This is a theory of constant with one propagating degree of freedom. Now, let us consider the

following Lagrangian, where A, \ couples to the external conserved current .J,,,x:

L= F " + A\

This Lagrangian is invariant under the gauge transformation:

App = Apwp + dpShup)
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It is worth noting that A contains no propagating degrees of freedom because of the gauge freedom.

By coupling the three-form A to the two-form B we effectively gauge the shift symmetry:

L—_Lp m

48 [1i22.Y) E(A,ul/)\ - h,u,u)\)2 (343)

We have successfully created a mass gap for B while maintaining the shift symmetry and
without introducing any additional degree of freedom.

We now wish to promote /), as a fundamental three-form by imposing the Bianchi identity:

e 0ubirg) = 0 (3.44)
The Lagrangian for our theory becomes:
1 2 m’ 2 M
L=—ghuwmt T3 Ama—ma)” + 5 0 Oubuny (3.45)

where the pseudo scalar ¢ appears as a Lagrange multiplier.
In the next part of that note, we wish to show how this theory is dual to a theory of a massive scalar
field with a shift symmetry.

First, let us integrate out h :

1

L= 48 Fin *

(8¢) cbe“””F LA (3.46)

We then enforce F),,\, = 40[,A,),) by introducing the Lagrange multiplier Q:

1 2 +1(ap)2+m¢+Q ,w/ApF

L= 74_8F}4V)\p 9 24 2V

Cgewpamw (3.47)
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The equation of motion for F give us:
FuuAp = (mgzﬁ + Q)E/w)\p (3.48)
We can integrate out F and we get:
1 2 1 2 1 o vAp
L£=500)" = 5(mé + Q)7 + zeun, (" Q)A (3.49)

This is a theory of a massive scalar field with a shift symmetry:

®— o+ do (350,
Q-Q-» |
L

3.3.2 Single Field Monodromy Inflation

Before we dive into the details of two fields hybrid inflationary theory, let’s first look into the

dynamics of a single field monodromy theory. We start with the following Lagrangian:

1
S=-13 JFW,)AF“”’“ (3.51)

where F'is F,,\ = O Aupa-

Because F' is totally anti-symmetric, /' can only be the levi-civita tensor:

Flvpn = q(2)€mpn (3.52)

The equation of motion gives us:
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DFMFpn =0 = q(2%) = cst (3.53)

We can see that a theory of a dynamical four form is nothing but a theory of a constant.

Now, let us couple this four form to a dynamical scalar field ¢ as follows:

1 ) /vb(b e;w)\o

S=|d'z/g %R—E(V@Q——F + e ——Fe + (3.54)
- I\2 " 2 a8l e Ty g e T '

This Lagrangian exhibits a shift symmetry, which is desired in order to control the flatness of

the potential in the case of inflationary theories:

o — p+c

L— L+ cue"”’))‘FWpA/M

(3.55)

Although the Lagrangian is shifted by cue"’**F,,,,»/24, this term is a total derivative and will

be absorbed by the boundary conditions.

Next, we can look at the tree level corrections to the propagator and we can see explicitly that
this theory is equivalent to a theory of a propagating massive scalar field ¢:
1

1 1,1 1 ,1 4,1
R R

1
—

(3.56)

2 2

p
More generally, we can show that a theory of a dynamical four-form coupled to a scalar field
exhibiting a shift symmetry is dual to a theory of a dynamical massive scalar field also exhibiting

a shift symmetry (see section 3.4).
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1 m? m
L= —4—F§W + E(Au,,A — hun)® + Egﬁewpauhw (3.57)
1 b)) 2 1 2 1 I VAo
L= §(O¢) - §(m¢ + Q) + ée,uz/)\a<a Q)A (358)

In models of inflation, although we want to control the flatness of the potential by having a shift
symmetry, we also want to break that shift symmetry, as inflation eventually has to come to an end.
The shift symmetry is broken by choosing a value for the mass of our scalar field. In other words,

we choose a path and we realize a monodromy (from the greek mono:single , dromy:path ).

3.3.3 Dual of a Two Field Hybrid Model

We now turn to illustrating how to embed the family of two interacting scalar field theories that
can support hybrid inflation, and contain the Stewart model as a limit into a dual theory of two
interacting 4-form field strengths. In this case, in addition to the complications arising due to
nonlinear terms, the model also includes a term linear in ¢. In principle, we could try to just shift
the field until the linear term is absorbed away. However, o ~ 0 gives the “instantaneous” vacuum
(in the Born-Oppenheimer sense) in the o sector at the beginning of inflation. As we noted above,
in our version of hybrid inflation, the inflaton (¢) mass goes up to the cutoff at the end of inflation;
while the ¢ mass drops below the cutoff as ¢ — 0, as seen in Eq. (3.13). Since we regard the
pseudoscalar-4-form duality as an IR duality, with field and operator dimensions computed from
the IR fixed point, we must carefully specify the EFT and thus the scalar field value about which
we perform the dualization.

In this section we will compute the dual form theory following these steps:

* We will establish the dual correspondence of the canonical variables on the two sides, using
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NDA-normalized variables; in order to connect ¢ and ¢ with their dual forms, we invoke the
sector of the theory just at the end of inflation, but before o relaxes to the true vacuum; here

both scalars are light.
e We will show that the scalar kinetic terms dualize to mass terms for the dual forms.
* We will then identify the NDA-normalized non-linear couplings.

* We will establish the mapping between the operators on the two dual sides in the weak
coupling; we will identify the lower bound on the cutoff of the theory in terms of the di-
mensional parameters in the EFT. By weak coupling we mean that dimensionless couplings
for operators normalized by the cutoff are small, and the theory is in some sense close to

Gaussian.

We are limiting this section to weak coupling for illustrative purposes. In §3.3 we will find that
the bounds from naturalness and from observations, which we explored on the scalar side, appear
to imply that the dual form theory must be in strong coupling during inflation. We will discuss the
possible implications of this observation there. The main result here will be a somewhat telegraphic
walk through the duality transformation, skipping some of the explicit steps above; the reader can
however readily fill in the missing steps of the complete analysis.

Let us begin by establishing the canonical transformation between the scalar and 4-form pic-
tures, setting up the ‘dictionary’ for transitioning from one side to the other. To simplify our

formulae, we will use the dimensionless zero-form duals of the 4-forms:

1
- MEMV)\O'

1

Frvdo G=———€un
o Crvio
4IM:2

F = GHAT (3.59)

Here F' = dA, G = dB locally; globally, the values A, B in different charts of the cover of
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spacetime may be related by 2-form gauge transformations A — A — dA4, B — B — dAp in the
overlap between the charts.

The scale M, in (3.59), included for dimensional reasons here, is the strong coupling of the
scalar EFT (3.7), as per NDA. We will link it to the theory’s dimensional parameters below. Note
that since we are interested in dualizing a model of hybrid inflation for which higher-derivative
terms do not contribute to the dynamics, we restrict our attention to only the terms which are
quadratic in derivatives. Note that we will ignore terms of higher than quadratic order in ¢, 0. In
standard slow roll inflation, these terms are kept small by the dynamics [17]. As in that work there
could be other regimes of the theory in which higher-derivative terms could also assist a slow-roll
phase of the theory. A hybrid model with these higher-derivative terms activated would be an
interesting topic for future work.

We expect that the dual scalar theory in general takes the form

A~

_ 1 pup mo 2, 1s po mo 2 qdyy MO MmO

As in the single-field case, we introduce the axions ¢ and x, which are related to the hybrid inflation
scalars ¢ and o via:

o = pup + Q mo =myx + P. (3.61)

This is to say that the discrete gauge symmetry Z x Z shifts (), ¢ and P, x so that ¢, o remain
unchanged. The compact scalars ¢, x are the duals to the longitudinal modes of the full massive
form system: more precisely dp, dy are dual to the 3-form Stiickelberg field strengths. They can
be absorbed into the local fluctuations of the massive 3-form potential via gauge fixing.

The functional form (3.60), in which non-derivative couplings of ¢, o come multiplied by fac-

tors of 1, m, and normalized by M., is based on our experience with the single-field case. In
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the weak coupling limit we study here, this form is justified in that it produces a natural theory of
4-forms, in the sense of NDA. It should be possible to justify this combination of mass parameters
and scalar field values entirely within the scalar frame by utilizing discrete gauge invariances of
the model, with the explicit discrete Stiickelberg fields P, (), but we leave this for future work.

To formally dualize the scalar theory, we have found it useful to employ the dimensionless

variables
myx + P

_ e+ Q
M2

* =0

: X = (3.62)

and then rewrite the potential in (3.60) in terms of them. We call these “NDA-normalized vari-
ables” as the potential V and the kinetic functions Z, Z , can be written in terms of them. Further-
more, imagine for the moment that we can approximate Z, Z ~ 1. Adding and subtracting the

Lagrange multiplier terms ®F + X'G, the “chimera” Lagrangian that ensues is

1 |
£ = (00 +5(0x)+ ’Z—fewmw“" + %E#WGW” M <V(<I>, X)—®F— X G) | (3.63)

which, after integrating the scalar-4-form bilinears by parts, becomes

L= 200 + L (00 ~ Bepuns 00 A 4 Do, B — M (V(®, ) — 0 F — X6)

(3.64)

The first four terms dualize to mass terms for A, B: we can complete the squares for the scalar

derivatives and integrate them out, with the remaining terms being precisely u?A? and m?B2. This
part is straightforward because this contribution to the Lagrangian is bilinear at weak coupling.

What remains is to dualize the effective potential, and replace the variables ® and X with F and

G defined in (3.59). We can treat the last four terms in (3.64) independently from the rest because

®, are combinations of the discrete Stiickelberg fields (), P, and so can be varied independently
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of ¢, 0. The 4-form dual of the final term in brackets in (3.64) is the Legendre transform of the
effective potential. In practice, we integrate out the fields ¢, X’ to replace them with F, G, which
means inverting [44], [45]

F=0sV, G=0dxV, (3.65)

and substituting & = ¢(F,G), X = X(F,G)into K = ®F + X G — V(P,X). In doing this, we
bear in mind that during inflation the scalar ¢ is much heavier than ¢ — in fact it may be heavier
than the cutoff M ~ ¢gM. Since it is changing very slowly, with initial value ¢ ~ 0, the field o
remains displaced from its true minimum at /2 for a period after inflation ends, when ¢ is much
lighter than during inflation. Thus we can pick the transient value of o ~ 0 as a “pivot” to dualize
the scalar theory at it. This means that we should dualize o around zero during inflation and right
after inflation, and around /2 at the very late stages after inflation when much of reheating takes
place, when o oscillates around the true minimum. The region near o = \/2M, about which the
theory reheats, and the “plateau” at o ~ 0 describing inflation and its end prior to reheating, are
different phases; they are best treated as distinct EFTs as we already explained in §2. In the latter,
o remains heavier than ¢. This is true even for small ¢ when we choose m » pu, as we do if we
wish ¢ to be the inflaton. Near 0 = /2M, ¢ becomes the heavy field with a mass at or near the
cutoff. These phases must in general be connected inside a UV completion.

We compute the duality transformation for the case that ) is has the functional form (3.7): in
terms of @, X', this is:

1 1 s G2 A 2 )N
24 (X — 9 p2x2 —<X2 _ 52) A SOV 3.66
Y 5 +2( )"+ T + 7 + 7 (3.66)
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where the rescaled couplings are:

mM mM - M., 4
VZﬁWaCS:W,)\:)\(m g - ) (3.67)

These are the couplings that appear in the 4-form dual; we have not written out the operators that
would be irrelevant in the scalar frame. We expect that a proper formulation of NDA for this theory
will involve potentials and coefficients of (¢)?, (¢)? that are functions of ®, X, g%/1672, \/1672,
X' /1672, The appearance of couplings with factors of 1/167% generally arises in effective actions
due to phase space factors in loop integrals [37].

In this section, to provide an explicit example, we will work in the approximation A, 6, ' «2 1,
and drop terms proportional to ,”, 4. This limit is consistent with the functional form of the Stewart
model. Note that this “weak coupling” assumption is stronger than the assumption that A, J, A" «
g*1; as we will see when we impose consistency with the constraints of §2, data pushes g* to be
large. Yet it can remain the domain of strong coupling below the cutoff of the NDA-normalized
action. We will retain only the lowest order irrelevant operators on the dual form side, as they are
duals of the marginal operators on the scalar side. We will neglect writing out explicitly the higher
dimension irrelevant operators here; we will however need to discuss them in §3.3, when we go to
comparatively large ¢ in order to describe the epoch of inflation that imprints on the CMB.

To solve Egs. (3.65), we solve the nonlinear equations one at a time, and perform the expansion
of the algebraic inversions of (3.65) in Taylor series in the couplings (3.67). This means, formally,
that we take the “instantaneous vacuum” to be controlled by the root of the nonlinear equations
(which, to any finite order in couplings, are polynomials), dominated by the linear terms. The solu-

tions remain perturbative in the coupling constants, and thus consistent with the EFT description.
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Using (3.66) in (3.65), inverting, and expanding in the couplings, we find:

@::F@——Xﬂ + OO N, 5

X = (G+7)<——%— O, N, ). (3.68)

Since we want solutions which are perturbative in the coupling, we can use each of these equations
to O(1) to replace the terms to O(g?) in the other, and find the correct answer to the order g°.

Thus, the inversion formulas are

g’ S Voo
@:F@f~5w+vf)+OMA4ﬁ,
)

X = (G + 7) (1 — %F2) + O\ N, gh).

Substituting these into X' = & F + X G — V(P, X') and using (3.66) finally yields

1, 1 2 1, g, 2 Ty A4
K_ZF +2<G+7> 57 - 4F <G+7> + O\ N, g%). (3.69)

Using (3.59), the total Lagrangian in the dual variables and at weak coupling is therefore

=2 2 2

E=Mi{%F2+%<G+fy)2—%fy?—gZﬁ(Gﬂ) }+ AW STl B%_ +0O\ N, g% . (3.70)

where again F' = dA, and G = dB, and F, G are defined in terms of F, G in Egs. (3.59).
Note that from the first of Eqgs. (3.69), the vacuum of the theory X = 0 maps to G + v =
0 + O(g?). This means that G does not correctly describe the fluctuations of the dual form sector

B, GG around this vacuum. Instead the correct canonical variable to use is

G=G+n~. (3.71)
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This constant shift of the magnetic dual of the 4-form field strength implies a shift of the electric

4-form G,ns = M2 €00 G by

g,uz/)\cr = G,u,u)\o + ’VMi €uvio » (372)

or in the form notation, G = G + w\/li Q4, where €1, is the space-time volume 4-form. If we write

G = dB, then the 3-form potentials are are related by

Bux = Bux + b (3.73)

Here £ is defined locally, by integrating

dh = y M2 Q. (3.74)

to yield
h=yM2tQy, (3.75)

where (23 is the volume form of the constant comoving time hypersurfaces.
With all of this, the renormalizable and leading irrelevant terms in the dual theory at weak

coupling around the transient vacuum o ~ ( are:

ﬁ:_LFQ)\ _L 2/\_172/\44_ g2 FQ/\ 2)\
2. 417 #PAT g AT VAT 9 o4 (A2 My rereTeAT
2 2 9 o
+ %AIQ/)\O’ + Tln_2 (BHV)\ o h‘ﬁ“»‘) + O<)\7 )‘/7 94) .

This is the dual form EFT of the Stewart model limit (3.5) of hybrid inflation in the regime o ~ 0

and g¢ < m (in the case that ), N« g* « 1). This region of field space, which is reached right

50



after inflation ends, is readily accessible to simple analytical tools to construct the dual. Note that
this regime can be readily extrapolated down to ¢ = 0 as long as o ~ (0. However the extrapolation
down to 0 = +/2M requires a different EFT, because at 0 = v/2M the ¢ field gets Higgsed by
the o vev, having the mass usz ~ g?M? ~ M? (3.15). Next we wish to discuss the limit of the
theory that extends beyond this regime and supports inflation — which requires g¢ » m. As we
have stated, and will see in detail shortly, that forces us to go beyond weak coupling and the action
(3.76).

Note, that the situation here is analogous to what we encountered in the single field case. The
scalar and massive 4-form duals are related simply in the weak coupling limit, with the scalar
being the light and weakly coupled longitudinal mode of the massive 4-form field strength. Yet to
produce inflation that fits the data the theory must be pushed into the strong coupling, beyond the
simple perturbative picture, where the connection between the scalar and the form fields becomes
very nonlinear. Nevertheless, we take the attitude that the existence of the dual form picture suffices
for our purpose since it is a ‘home’ for the gauge symmetries that protect the scalar mass. Once
that is in force, to study inflation one can work on the scalar side alone, and evolve the theory to
strong coupling.

Before continuing with the foray into the inflationary regime, let us clarify the role of the ~y-
dependent terms in Eq. (3.76). These are the positive vacuum energy %72/\/1;{, and the 3-form h
inside the mass term for B. The former is the initial value of the vacuum energy driving inflation.
In the dual scalar picture, this comes from the ¢ mass term near ¢ = 0, and assumes that any
additional contribution to the vacuum energy is negligible during inflation. The additional cosmo-
logical contributions which we neglected here would be the vacuum energy in the true vacuum,
and neglecting them corresponds to choosing the vacuum energy in the true vacuum to be very

small. This is just the cosmological constant problem, which is notoriously difficult to address in
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any EFT. This appearance of the vacuum energy as a constant in our EFT points to the fact that
this appears to be fine tuned. This fine tuning could be addressed via saltatory variation of the cos-
mological constant by nucleation of membranes charged under the 4-forms, following [46]—[48];
regions with a different initial vacuum energy but the same couplings otherwise will either inflate
forever, or collapse too soon.

Absent the mass term here, the only way to relax the initial vacuum energy towards zero is
via membrane nucleation. In our theory, the mass term allows this vacuum energy to also be re-
laxed by the slow rolling of the longitudinal mode of the massive form. Here the 3-form A in the
mass term ensures that the pivot point G, B = 0 correctly describes the onset of inflation in terms
of variables with canonical kinetic terms. It appears as a source term in the equation of motion

d*G +m?*B = m?h, driving the longitudinal mode to evolve so that the vacuum energy is lowered.

3.3.4 Scales and Couplings for Hybrid Monodromy EFT

We now turn to considering pseudoscalar axions in the parameter regime controlled by the dual
requirements that the theory have sub-Planckian field ranges and be consistent with current data.
Our aim is to write an effective action which respects NDA normalizations, in which we are assured
that the mass parameters /., m are UV-insensitive, and the irrelevant operators are suppressed.
The first thing we might try is to perform the duality map outlined in the previous section. The
masses £, m map to 4-form masses which we know are UV-insensitive; while past experience in
the more extreme case of large-field inflation is that the irrelevant operators do not spoil slow-roll
inflation [8], [12], [14], [16], [17]. From the discussion above, one would expect that a natural
effective action of 4-forms following [37] would be a function of F’ /MZ G/ ./\/li m, i, gQ / 1672,

/1672, X /1672, with the factors of 1/1672 arising from loop factors.
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As we noted, however, and in full analogy with the single large field theories, in the parameter
regime of the Stewart model pointed to by the data, the duality map is no longer controlled by the
leading linear map F' ~ ¢, G ~ mo. We can see from Eq. (3.68) that this would require ® < 1/2;
we will see that this does not hold during the epoch of inflation that imprints on the observed CMB.

Inspired by the map at weak coupling, however, we could hope that there is an effective action
in the scalar frame which satisfies some version of NDA. At weak coupling, the duality map
indicates that p, m are not renormalized (though we currently lack an argument directly in the
scalar frame). It is then natural to suppose that the effective action would be a function of M,, P,
X, 3%/1672, N/1672, X' /1672 with O(1) coefficients, as the weak-coupling duality points in this
direction.

However, we will see that in the regime allowed by the data, g?/167? is large, and when the
field ranges are lowered by an order of magnitude below the Planck scale and more, perturbativity
of the theory appears to be in jeopardy. A concern is that the effective action is strongly coupled
and out of control. On the other hand, we will see that with «O(< 1) we can still meet the data
and suppress irrelevant operators enough while keeping g2 /1672 barely within the range of EFT.
One possible take from this is that identifying g* defined in Eq. (3.67) as the coupling may be
overly naive. On the scalar side, ®, X" are of course not canonically normalized, and moving to
canonical variables demonstrates that the natural couplings are g2, X\, \’. On the 4-form side, at
weak coupling, the massive 4-forms F' only propagate in the presence of a mass term for the gauge
fields: the two-point functions (* F™* F)ocu, (*G*G yocm up to contact terms, so that even % =1
can induce O(1) values of ), N via quantum corrections. The large effective g2, which is required
by combining naturalness and data, can come about as a result of nontrivial nonlinear mixings of
various irrelevant operators on backgrounds with large form fluxes, that simulate the inflationary

vacuum energy. In other words, the scale of the biquadratic operator ~ g%¢?c? on the scalar side
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is not set by a single large irrelevant operator in the dual theory but is a combination of many
irrelevant operators of dimension higher than eight, which add together enhancing the effective
coupling. In the end, it is an open question how to implement naturalness and NDA for massive
4-forms or their duals®. We leave this for future work.

In the remainder of this section we develop the above points in detail, and highlight possible
paths towards ensuring hybrid inflation makes sense both phenomenologically and as a natural

QFT safe from quantum gravity.

3.3.4 Identification of NDA Parameters

We open with identifying the range of parameters M., g2, \, X in the potential (3.66). We dub
this the NDA potential for the scalar fields. We will conjecture that the discrete gauge symmetries
together with dimensional analysis demand that ¢, o appear in the form ¢, X'. We would further
demand that the couplings of the theory are consistent with the values induced by quantum cor-
rections; that is, that the model is self-consistently technically natural, or even simply natural. At
present we do not know how this would work in practice, just as we do not completely understand
NDA for massive 4-forms. Should the duality hold, there are nonrenormalization theorems in the
scalar theory that we have not derived that will constrain the effective action. A simple guess,
by rough analogy with [37], would be that if all couplings were O(1672), our theory would be
technically natural if the effective potential could be writen as V (&, X') with O(1) couplings; if
G%/1672 « 1, our theory could be natural for \/1672, X// 1672 to be small; and for g%/1672 > 1,
the theory is strongly coupled and completely out of control.

Before turning to the couplings, our first question is the choice of the cutoff scale M and the

8 And for that matter, NDA for massive vector fields.
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strong coupling scale M, = M /y/4r. In a top-down theory these would of course be fundamental
quantities. Here we are taking a bottom-up approach, asking what values of the cutoff give an
action such that the dual form theory takes an NDA-like form. We thus identify M3 as the scale of
the energy density over which the effective potential varies, and in particular the scale that drives
inflation:

M2 = 2mM . (3.76)

The scale of the energy density driving inflation is thus V' ~ m2M?2M?%/2 = M*/3272. Given
the subtleties we are about to discuss in identifying expansion coefficients in NDA for this theory,
there may be some wiggle room here. We will simply adopt our straightforward definition of M.,
and see where it gets us. Note that this definition of M, guarantees that the field range of X
between the end of inflation and reheating is O(1).

Next, we wish to bound g2. Equation (3.16), giving the number of efolds of inflation in terms
of the field displacement ¢, gives (after a few lines of algebra):

=2
N =a2r-d 92, 77
s 6.2 (3.77)

Demanding now that &« < 1 and N Z 50 immediately shows that to have inflation we must start

with g?®? which is initially at least as big as

16N
7 0% = —5 800 . (3.78)

If this were the only constraint, we could support sufficient inflation in a regime where the
coupling §?/167% is small. At weak coupling, ® ~ 4 is a unitarity bound. This maps to the

statement F//M?2 < 4m, F//M? < 1. If this bound on ® extends past the regime that the duality
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map can be constructed perturbatively in powers of the fields, we can ask when the unitarity limit
saturates the inequality in Eq. (3.78). This occurs when g* > 5, or g%/1672 = 0.032. Taking
g°?/1672 to be the right parameter for an NDA analysis of the scalar action, the effective action
should still be under perturbative control even if the tree-level coupling looks strong. A further
constraint on g comes from imposing the observed scalar power which combine with the number

of efolds leads to Eq. (3.21). We begin with

2 =2 2

g g mpy

= 7

16w2 1672 (MZ) 7 ©79)

and employ our bound (3.76). Furthermore, we will assume a hierarchy y = m; = 1/8 corre-

sponds to the bound from M being sub-Planckian. Finally, using Eq. (3.76), and then Eq. (3.21)
to write m/M in terms of «, g we find: The resulting lower bound on g? is:

72 6 x 1078
<
1672 20642

(3.80)

If we were to set € = 1/8, as required for M < M, and choose g ~ 1.6 x 1073, the maximum
value allowed for the Stewart model to be technically natural, then g?/1672 < 1 would require
« > 1. This can be satisfied with a just barely super-Planckian field displacement. The coupling
becomes strong rather quickly if we lower o while fixing g2, . There is thus a tension between
keeping the scalar theory technically natural and sub-Planckian, and our criterion that the NDA

couplings be O(< 1).
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If we further input the technically natural scalings A\, \' ~ g*, we find

- M\
Ve () e ()

4 4
A’~g%ﬁ?)~f<ﬁ) . (3.81)

Thus g2 = 1 is still consistent with O(< 1) couplings \, N.If 1 ~ 0.3g M., then X /1672 ~ O(1).
g pling 2 g

Form = 8t ~ 2g M, A ~ 2 x 1074,

We have computed these values of \, X from technically natural values of the couplings in the
scalar theory, as discussed in §2. In terms of our NDA variables they indicate that a consistent
application of the principles behind NDA — that couplings are of the same order as their quantum
corrections — allows for some complicated structure of the action in the variables @, X'. This should
not be surprising as these variables are not canonically normalized, and their correlation functions
will scale as positive powers of m, u relative to those for ¢, c. But it is these variables which
naturally map to the dual 4-forms.

Finally, we can ask what happens if operators such as ®*** appear in the action with O(1)
coefficients. From the discussion above, this could be overly pessimistic from the point of view
of technical naturalness, but it is expected that a UV completion that includes quantum gravity
will enhance irrelevant operators from their technically natural values. We are assuming that said
completion will still give couplings that are functions of ¢, mo weighted by powers of M, or
M. Let us consider the former scale, to be maximally conservative within our set of conjectures.

Then we find

Cp M4+p¢4+p
(p+4)

5L, ~ (382)
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Comparing this to Eq. (3.32), we find

P, p+4
c ‘Ajpl:u

P 2p+d
*

J

p

(3.83)

If we saturate our bound Eq. (3.76), let 1 = m, and impose the constraints Eq. (3.21), we find:

P 3 22 2
ag a’g
5y ~ . 3.84
P (1.1 x 104) (3.1 x 103) @ (5-84)

This is consistent with Eq. (3.33) if

a29 p &3922 2
(1 1% 104) <3 1 x 103> &« (p+2)! x1.2x 1077 (3.85)

If we adopt g ~ 1.6 x 1072 and take € ~ 0.1, this bound translates into
(1.45 X aQ)p e, « (p+2)! x2x1073, (3.86)

and is readily achieved for all p > 1 even when ¢, ~ 1 aslong as o < 0.7. In this regime, using
Eq. (3.80), g%/167% ~ 1.5/a%, we find that for o ~ 0.7 the coupling becomes §*/167% ~ O(10).
This demonstrates that there is some wiggle room with the numbers, where we can either adjust
the cutoff M down by a factor of a few, or take a slightly larger dimensionless coefficient of the
biquadratic operator to reduce the effective coupling g while maintaining control over irrelevant
operators. So for our theory to hang together, all we need is to keep ¢, ~ 1 even though /1672
is large, consistent with some notion of naturalness. From our discussion above, meeting this re-
quirement does not seem out of reach. However we see rather dramatically how naturalness and

data press the theory against Planck scale.
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3.3.4 Comments on the Dual Massive 4-Form Theory

Our conjectures for writing an action for ¢, o consistent with NDA and the discrete gauge sym-
metries was inspired by the 4-form dual, in a regime for which the duality transformation can be
computed and simply understood. However, the regime of the Stewart model supporting inflation
consistent with data and sub-Planckian scalar fields is well out of this regime. We can see from the
transformation (3.68) that our iterative procedure for constructing the duality map begins to break
down when ® > /2. Indeed, (3.78) shows that 50 efolds before the end of inflation — the epoch
during which inflaton fluctuations imprint on the CMB — we are well out of this range for o < 20.
This value of o would defeat the original purpose of hybrid inflation, and we will set it aside.

Thus, we do not have complete control of the 4-form dual when the parameters of the Stewart
model are consistent with the data and when the field values are in the range which is relevant for
the CMB. Nevertheless the scalar theory exists in this regime, and maps to the dual 4-form theory
cleanly in the small field limit where we understand the duality. Thus, we could follow the theory
in either frame as we increase the couplings and field values. The small field regime attained as
inflation ends then serves as the anchor for this ‘theory flow’: as long as we are sufficiently close
to ¢, 0 ~ 0, then ® will become arbitrarily small and the duality transformation is under control.
In this regime we can derive insights into the pseudoscalar dual. Let us then discuss aspects of the
duality map in this regime.

When the duality pertains, the effective action

1, | 1 5. 4 C1 2 2
L= _ﬂFHUAo‘ T o 1 Tmae T 57 M, — WFMW\U Ao

C3 m2

Co 9 2 9 2 /-1/2A2 h 9
+ (4|)2Mi <F,uu>\a> + (4'_)2Mi < 'ul/)\a'> + E VAo + E(Blw)\ — ,ul/>\> + ...,
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where we have included all dimension-8 operators consistent with the symmetries, should capture
the pseudoscalar dynamics well. In this action, ¢; ~ §%; ¢2 ~ A, ¢35 ~ . The results which we find
in this regime will be corrected at larger coupling and larger field values, but as long as the theory
remains below the unitarity bound and the fluctuating light longitudinal modes have couplings
suppressed by u/ M, m/M, the qualitative insights gained by this analysis may continue to the
phenomenologically relevant case of large .

First, the parameters x, m are UV-insensitive and are at most logarithmically divergent. This
follows from the arguments given in [16] for the single field case. We suspect that we can run
this argument directly in the pseudoscalar dual, using the nonlinearly realized x discrete gauge
symmetry. Realizing this would give further support for maintaining this feature of the theory in
the large g® regime.

Secondly, we can treat M as a derived quantity. Recall this appears as a source term for ¢ in the
dual theory, and sets the field range in o between inflation and the end of reheating. Once we fix
the cutoff M, then if the bound (3.76), is saturated, M = /\/lz / V2m is given by a see-saw formula.
In particular it is a derived quantity. In weak coupling, (3.76) can be translated into a bound on
the maximal 4-form flux above which our EFT (3.76) breaks down. Since M? ~ 47 Gpow ~
47 Nonaz €, then Eq. (3.76) implies:

M? e

M ~ Nmax =
V2m V2m

f
~ Nmaz \/_5 ) (3.87)
where e is the fundamental charge of membranes charged under G and f = e/m is the period of the
dual axion . The upshot is that as a derived quantity, the scale M can exceed the cutoff M without
violating naturalness. Note here that NV, f represents the field range of o during inflation; we are

simply saying that field ranges need not be bounded by the cutoff, a fact we already understand for
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axions without monodromy (see for example [35]).

Finally, while it is tempting to identify c; ~ g* as a coupling in terms of which we would write
an effective action following the rules of NDA, the actual story is more complex. The essential
point is that F, G only propagate because of the gauge field mass. Their two-point functions scale
as j12, m? respectively. This can be seen directly by consistency with the duality transformations
F ~ pg, G ~ mo. Alternatively, we can simply compute the propagator for £ G. Given the

propagator presented in [16] for a massive 3-form potential

£ 00" —_ &\ prpr

U (1-35)pp

<A,u1/)\ (p)A,u’u’)\’(_p)> = €uvdp€u/v/ N p! ( : 2 + 2 ) (388)
PP (PP — i) (p® - )

where £ is a gauge-fixing parameter, the propagator for F' is
12
CF(p) F(=p)=C <1 R MQ) : (3.89)

where C' is a dimensionless constant comprised of symmetry factors. The first term in paren-
theses is a contact term; removing this by taking appropriate account of operator mixing, we find
*F behaves p times a scalar, consistent with the duality. Because propagators scale with the 4-
form masses, calculations that are perturbative in ¢, will come with additional powers of m /M.,

i/ M.,. For example, let us ask whether ¢; » c¢3 is consistent with quantum corrections. The F

4 4
Cg ~A (/\Z ) ~ (9/7\:*) . (3.90)

In this regime the scaling should come as no surprise — when G ~ mao, this is compatible with

propagators yield

the technically natural value A\ ~ g*. Our conclusion is that in a proper treatment of the effective

action for 4-forms, extending the principles of Naive Dimensional Analysis, ¢; ~ g> will appear
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in combination with powers of z, m so that the natural coupling is some §? « g2; and that a large
value of is still compatible with a sensible effective action for which ¢;~; can be O(< 1).
Can we extend this observation to higher-dimension irrelevant operators in this regime? Con-

sider the operators
F2k
k=4
*

0Ly = cp (3.91)

which are the most important for the dynamics in a phase G ~ mo ~ 0, F' # 0. At weak
coupling, these terms are dual to a series of operators with leading terms (3.32), with p = 2k — 4.
These operators will be generated after integrating out the heavy o field, or on the dual side, from
considering diagrams with G internal lines’. The simplest diagram generating (3.91) involves k
vertex insertions ocg? F2G?/ M4 in a G loop. This gives 0L ~ g2k%<(g2)k>, so that after the
loop integral we find, using {(G*)¥) ~ M%(m/M)?* (note the cutoff in the numerator as opposed

to the strong coupling scale),

6Ly ~ Mig?

F2k: 2 k 2,12 \ k F2k: 2 2\ k F2k:
) (L) ) o

m

M <47r—/\/l*2 4t M2) Mk 42 ) Mk
The last equality looks dangerous due to the to appearance of the small mass x is the denominator.
First, we note that that the limit  — 0 is not a problem since F' ~ u¢/M? so y1 precisely cancels if
we move back to the pseudoscalar frame. Furthermore, if 47u? > g M2, it appears that ¢, ~ O(1)
is consistent even as ¢ is increased.

More precisely, if we substitute © ~ m/8 the overall dimensionless factor multiplying the
NDA-normalized part of the operator L, becomes, using Eq. (3.76), and substituting (3.21) for
M /m,

o~ (LO MY (g 5 SVIMYE 02y (3.93)

m m 0%

“Which contribute to the virtual momentum transfer due to the propagating longitudinal mode.
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Remarkably this shows that the irrelevant operator contributions generated by integrating out o
remain safely small for even sub-Planckian field displacements o = 0.2, which as we noted we
need to enforce to suppress their corrections to the inflationary plateau of (3.10). Further note that
for k = 2, the loop-induced term is co F' 4 / ./\/lf,f, 1.e. just the radiative correction to ). We therefore
find that 5\ ~ (0.2/c)%, which, again, is under control unless « is too small.!® If this holds, then
the resulting dual operators are precisely of the form (3.82), with coefficients ¢, ~ 1, and these are
subleading during inflation for o < 0.5. Data pushes the theory towards the dangerous Planckian
region, but there is still a consistent sub-Planckian regime in which the irrelevant operators are
under control.

A rigorous understanding of the 4-form theory in the inflating regime is a matter of future work.
Here we simply note that it is plausible to have a well-defined theory with irrelevant operators
built from powers of F, G, uA, and m(B — h) having O(< 1) dimensionless parameters when
normalized via M, even when the leading coefficient ¢; ~ g? » 1. In this case we would need
to show in this theory that the phenomenologically relevant phase of inflation would occur for
F < M? = 47 M2, where we expect our effective theory to be well-defined.

To conclude this section, we have seen that the theory (3.87) and its special limit (3.76) whose
strong coupling limit can realize hybrid inflation!! are theories of two massive U (1) gauge theories
of 4-form field strengths in the unitary gauge, with 4-form kinetic mixings mediated by irrelevant
operators. The mixing coefficients are controlled by natural parameters of O(1). In this form
the theory is strongly coupled but natural: the unbroken gauge symmetries of (3.87) will protect

the selection of the masses and couplings in (3.87) from UV effects in QFT. However, since the

10Here of course we are looking near ¢ = 0 where the duality makes sense; a has meaning in the dual pseudoscalar
theory as the range of ¢ in field space covered by the last 50 efolds of inflation, a range over which the duality map
becomes complicated.

"1 Again, such a theory can generate inflation if for a given cutoff M, the masses obey ;1 « m « M, and one of
the form field strengths develops an initial CP-breaking flux on the background, controlled by M., ~ M2 /m.
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scales are all sub-Planckian, and the symmetries are gauged, the theory will be safe from quantum
gravity corrections as well. The mass terms cannot receive large UV corrections since they are
also couplings of the longitudinal modes, and are protected by gauge redundancies. We cannot
predict what the values of these masses are from within the EFT itself. But once chosen, the gauge
symmetries of the theory protect them from QFT and quantum gravity corrections, as in [16], [17].
Furthermore, while the masses are small relative to the cutoff, they will not be foo small; they can
be a few (< 10) orders of magnitude below the Planck scale. Thus the theory should be able to pass
the bounds which one might find using arguments based on the weak gravity conjecture, and from

other technical lamppost-based bounds coming from recent developments in string phenomenol-

ogy.

3.3.5 Discussion

We have outlined how hybrid inflation might be made UV complete via dualizing it to a theory of
two massive 4-form field strengths/3-form potentials. This UV completion contains gauge symme-
tries which explain the suppression of potentially dangerous operators which can adversely affect
inflation [16], [17]. In a top-down approach to deriving hybrid inflation, this procedure would be
reversed.

Indeed, imagine that in some UV-complete theory such as string theory, some of the higher
rank forms yield massive 4-forms after compactification, with masses which are much smaller
than the UV cutoff of the EFT of the 4-form systems. We believe that such constructions would
be conceptually similar to the previous approaches [6], [9], [11], [49]-[54] where the main focus
was on realizing the conditions for single large field inflation. In the present case they should

involve multiple massive 4-forms below the cutoff. The EFTs of interest arise after integrating out
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the stabilized heavier fields, the KK states and the heavy string modes. The cutoff M demarcates
this EFT from the full theory with those additional degrees of freedom, and could be viewed
as scale where ignoring the lightest of the modes, which were integrated out to define the low
energy EFT, would start yielding problems with unitarity. The irrelevant operators in (3.87) arise
as the corrections generated by the virtual heavy modes as well as loops of the virtual light modes
kept in the EFT. In the minimal case, these are the longitudinal modes of the massive 4-forms
and the matter degrees of freedom, that the longitudinal modes decay into at the end of inflation.
Perhaps the simplest manner in which these models can be realized is to imagine a theory with
coupled p-forms, which includes higher-derivative corrections suppressed by a cutoff, and where
after dimensional reduction the emergent 4-forms mix with pseudoscalar axions. These can be set
to become longitudinal modes by a gauge fixing; after dualization, the higher-derivative operators
are the potential for the longitudinal mode.

The longitudinal modes remain light because the 4-form/3-form potential gauge symmetries:
continuous compact U(1) and the discrete shift, A — A + da, B — B + db. These ensure
that the dangerous corrections to the mass terms are absent. This extends to the quantum gravity
corrections as well, which cannot break gauge symmetries. So as long as the operators in (3.87) are
below the cutoff M, the theory has a weak coupling expansion where a minor tuning of parameters
realizes the regime which supports hybrid inflation.

This is manifest once one reverses the steps which led from (3.5) to (3.87). Indeed, inverting the
steps in §3.2 will map the mass terms and irrelevant operators in (3.87) precisely on the potential
(3.5). The mass terms are naturally small by gauge symmetry, whereas the marginal operator
couplings in (3.5) are rendered small because they are controlled by the ratio of masses and the
cutoff, and m4 p « M. Finally, the scale M in (3.5) appears to be larger than the cutoff because

it is see-sawed by the mass: M ~ M?/m as we discussed above. This can explain the origin of
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the Stewart limit of hybrid inflation naturally.

In this paper we have focused on realizing a model of hybrid inflation in the Stewart limit, con-
trolled by only relevant and marginal operators. Our observation that the 4-form theory needs to
be strongly coupled suggests that we consider models in which other higher-dimension operators
play a significant role. In particular, it is possible that phenomenologically interesting and natural
low-scale hybrid models could be realized with flattened potentials, following [6], [9], [11], [17].

It would be interesting to explore such more general models of hybrid inflation.

3.4 Summary

Many inflationary models have been severely constrained by the observations in the past decade or
so. Specifically the improving bounds on the spectral index and on the tensor-scalar ratio have put
pressure on the large field inflation models, which are arguably the simplest candidates for natural
EFTs of inflation. These models are quite predictive as well, because they must occur at high
scales to yield viable inflationary evolution, where their structure becomes sensitive to quantum
gravity corrections. Thus the tightening constraints on large field models might be taken to imply
that the prospects of learning something about quantum gravity from inflation have diminished.
Moreover, by placing increasingly tighter constraints on large field models, observations might
appear to favor more exotic, unnatural, proposals for inflation, or even more radical approaches to
early universe cosmology.

Our results here suggest that these allusions are not a foregone conclusion yet. The pressures
from observational bounds are significantly relieved by reducing the scale of inflation. This can be
done in multifield inflation models, and it occurs in hybrid inflation with two non-degenerate fields,

when the post-inflationary vacuum manifold is not degenerate. In this case, the tensor-scalar ratio
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is almost unobservably small, and the spectrum of perturbations is safely red, with the spectral
index ng between 0.97 and 0.975, which is still in agreement with the bounds. Further, the EFT
of this variant of hybrid inflation is technically natural, and if it is realized as a dual for a theory
with two massive 4-forms, which might be realized as an IR limit of string compactifications, it
may also be protected from quantum gravity corrections although it involves almost Planckian
field displacements. The UV safety of the theory is not a generic feature of all hybrid inflation
proposals, as we have seen in detail. Yet it may arise in some constructions such as those which we
outline here. However, remarkably, even in these cases the natural EFTs are still close to Planck
scale. This, in our view, is quite interesting, since it keeps the possibility open that inflation, while
being a viable EFT, might still be sensitive to some subleading corrections from quantum gravity,

which while small might compete with the UV field theory effects.
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CHAPTER 4
BOSONIC MIXING IN CURVED SPACE

In Collaboration with Professor Devin Walker (Dartmouth College), Nizar Ezroura (Michigan
State University) and Bradley Shapiro (Dartmouth College) , we looked at the mixing between
axions, as Dark Matter (DM) candidate, photons and gravitons in curved spacetime. We studied
the mixing between those waves in the vicinity of a Kerr black hole. Our goal is to evaluate the
conversion probability between these three types of waves. This would allow for a possible multi-

messenger indirect detection of axions or generic Bosonic DM.

The mixing between gravitational waves and electromagnetic waves in the presence of a cos-
mological magnetic field in flat space has been studied by Dolgov and Ejlli [55]. In 1988, Raffelt
and Stodolsky [56], and later in 2017, Masaki, Aoki and Soda [57] discussed the mixing and
probability conversion between axion waves and electromagnetic waves in flat spacetime using a
Chern-Simons term to model the coupling between axions and photons: af,, F'*.

However the mixing between an axion waves and a gravitational waves has yet never been studied.
The main reason being that the effects are negligible in flat spacetime.

In this work, we describe bosonic (scalar, electromagnetic and gravitational) wave mixing in curved
spacetime. Curved spacetime adds a new length scale, the Schwarzschild radius, which signifi-
cantly alters the oscillation probabilities in comparison to the standard flat spacetime computations.
The alterations are analogous to the Mikheyev-Smirnov-Wolfenstein (MSW) effect for neutrinos
and are “frozen-in” as the outgoing gravitational and/or electromagnetic wave propagates away

from a compact object. Although we consider the axion and axion-like particles, our computations
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are largely model independent and applicable for generic spin-zero dark matter. We describe the

probabilities for axions and generic bosonic dark matter oscillations.

In some future work, we wish to describe some of the observational consequences of the mixing
including the energy and polarization of the waves exiting the compact object.

In the next section, we present a preliminary version of the work that has been done so far.

4.1 Introduction

In flat space and in the presence of a static external electromagnetic field, axion waves can mix
with electromagnetic and gravitational waves [56]. The gravitational wave mixing is not often
considered because of Planck mass suppression in the mixing terms. However in the immediate
environs of compact objects gravity is strong and gravitational wave mixing is necessary. In this
work, we describe the mixing of axion waves with electromagnetic and gravitational waves in
curved spacetime. The presence of non-trivial gravitational fields has observational consequences

that are distinct from the well-known flat spacetime signatures.

4.1.1 Bosonic Mixing in Curved Spacetime

In order to compute the mixing, we use effective field theory techniques. These techniques are im-
plicit for the standard flat space computation. The flat space computation requires a static external
electromagnetic field that varies on very large length scales. This is in contrast to the important
short wavelength, oscillating degrees of freedom of the electromagnetic and axion waves. Thus the

calculation separates the important short degrees of freedom from the longer wavelength physics.
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In this work, we consider a similar separation of length scales while also including gravitational
waves.

For a patch of local spacetime near compact objects, we require the frequency of the cohered
electromagnetic, gravitational and axion waves () to be large compared to the characteristic length
scale of the background curvature (). It is therefore essential to explicitly average of the back-
ground curved spacetime at large distance scales in order to get a proper understanding of their
effects on high-frequency waves. Any averaging scheme will lead to corrections to the non-linear
Einstein equations at larger length scales. The averaged quantities are analogous to static external
electromagnetic field in the flat spacetime computation. To be able to consider longer wavelength
mixing, we can theoretically employ techniques analogous to renormalization group averaging
(analogous IR RGE averaging). Some of the averaging schemes include Isaacson [58] which is
based on Brill and Hartle [59]. Noonan [60] generalizes Isaacson in order to define a consistent
gravitational energy-momentum pseudotensor in the presence of matter. Other efforts include Fu-
tamase [61], who performed spatial averaging in 3 + 1 splitting of spacetime, Boersma [62], who
constructed gauge-invariant averaging in perturbation theory as well as Kasai [63] and Zalaletdi-
nov [64].

To summarize in general throughout this work, we use concepts from effective field theory
in order to separate out the important from the unimportant, non-linear physics. At the length
scales of interest and up to an error in the coupling, we mix the axion, electromagnetic and grav-
itational waves in order to place the equations of motions into their mass eigenstate form. The
new, diagonalized equations of motion now do not have explicit interaction terms. Thus, the mass
eigenstates carry information about the probability of conversion of an axion, electromagnetic and
gravitational wave into an axion, electromagnetic and gravitational wave. We can now use tetrad

vectors to take the equations of motion and propagate them through all of spacetime. The exter-
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nal electromagnetic field slowly and numerically varies as the tetrad vectors propagate the patch
through all of spacetime. In order to in compute superradiance effects, we can construct and sepa-

rate Newman-Penrose scalars into the master equations.

4.1.2 Review of Gravitational Wave Effective Theory

In this section, we review much of what is in [65], [66]. To understand gravity waves in curved
spacetime, we employ standard effective field theory techniques to separate the wavelength of
the metric perturbation from the background [65]-[67]. We review these techniques to establish
notation and the mixing equations in the next section. We consider a locally flat patch of spacetime
over which an external electromagnetic field is homogeneous and static. Importantly this locally
flat patch of spacetime can be relatively close to compact objects. The need for a locally flat patch
important for a variety of reasons: (1) To understand the axion, electromagnetic and gravitational
wave oscillations, we must provide an orientation of the static, background electromagnetic field
in relation to the freely falling body (the cohered mixed state). (2) The locally flat patch allows for
an inertial frame to be constructed that allows for the mixing as well as providing the formalism to
understand curvature corrections for the freely falling particle. To compute the mixing equations

in the patch, we first consider the metric perturbation A,

1
Gab = Gop + € hap + 3 €% hae hS, + O(€%) 4.1)

1
g =g —eh® + 3 EhChb + O, 4.2)

where g% g, = 2, € is parametrized as € ~ O(/L), = \/2r is the reduced gravitational perturba-

tion wavelength and L is the characteristic scale of variation of g, the background metric [67].
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We justify the parametrization of € below. Often the €? term is notated by 7,5 [65]. It is clear, in or-
der to give a proper perturbative expansion, equation (4.1) requires « £ which separates the length
scales of the gravitational wave perturbation and the background metric. This separation of scales
ultimately allows for a proper definition of a gravitational wave !. In addition to this expansion,

we also note the expansions

2
— € — € =
V=g =1+/—7 +§«/—g h+§«/—g h?+ ... 4.3)
1 1 € b €2

V=9 V=9 2V 8¢

ITo be sure our analysis applies to as many physical situations as possible, we also consider the parameterization

€ ~ fv/f in parallel, where f is frequency of the gravitational wave perturbations and f}, is the maximal frequency of
the background metric [66]. A priori fi, is not correlated with £;,. Moreover, often gravitational waves background
are static. Thus, it may be possible to search for a wider variety of graviton-axion-electromagnetic waves. Ultimately,

we will also consider graviton-axion-electromagnetic waves from a variety of astrophysical sources, including super-
massive black holes, which will provide a variety of probes of the parameter space despite the « L}, requirement.

R+ ... (4.4)
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which will be useful later. The expanded connection and Riemann tensor are now

Fabc = fabc + ggam (vc hmb + vb hmc - vm hbc)

€ — —
+ 5 (577 (Fehns 1) 4 T4 )

Vo (g hqc)) 9 pam (vc By + Vi home — Vom hb>> + O(H)

Ry = Ry + % (?am (VeVahimp + VeV hing — VeV hia)

— g (Vﬁc Py + VaVo hine — VaVin hb6)>

62

4
2V (h™ (Va hnt + Vo hing — Vi hoa) )
— 3" (VaVe (g h%) + VaV (Rung h9.) — VgV, (hyg BY,)) —

2V (W™ (Vo Bty + Vi home — Vo i)

+ geq gam (ve hmc + vc hme - v'm hce) (vd hqb + vb h/qd o vq hbd)

— g g (Ve hga + Vi hge — vq hde) (vc Bt + Vo Bime = Vi hbc))

where R ,; = R%,; and 3" R 14 is the Ricci tensor and Ricci scalar, respectively.
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4.5)

(4.6)

4.7)

(4.8)

4.9)

(4.10)



4.1.3 Covariant Equations of Motion

The lagrangian in curved spacetime is

2K 4 8y/—9g
2 2
V=g (€ b cd 2 7 1 bed
— g% Foe Fy — | =— " Fy F.
90m2 \ 4w (o9 bd) +4 2«/—96 b *

where k = 1 /mfﬂ, Mo = mp1/V8m, I w18 the electromagnetic field strength tensor, ¢ is the axion,

1 1 1 A
E = v g <_R_ _gabQCdFachd_ 5 (gabaa¢8b¢+m2¢2) + —eade¢Fab&%->l)

)\ is the axion-photon coupling and m, is the axion mass. We also used €,pcq = \/@ €abeq and
gbed = son(g) €2/, /|g| where €gpeq is +1 for an even perturbation of 0123 . .. and —1 for an odd
perturbation. We also define F'% = ¢®d [, /(2 1/]g|). Throughout we use natural units 2. There
is a minus sign in front of the J,¢ 0*¢ term, because we are working in a (— + ++) signature.
The terms on the second line is the lowest order, one-loop, correction from the Euler-Heisenberg

Langrangian.

4.1.4 Effective Equations of Motion

The action is
4 4 1 1 ab _cd 1 ab 2 2
S=|deL=|dvy=g(5-R-79"9 FaCde—ﬁ(g 0 Opp + m?¢”)  (4.12)

+ abed Fa Fc 4.13
W TQG ¢ Fop Frq (4.13)

+ 1 62 ? ( ab CdF F )2 + 7 1 abch F 2 +
- e — [ —— € wb Fre e
90m? \ 4w g9 . 4\ 2y/—g b

2See the definitions in, e.g., https://www.seas.upenn.edu/~amyers/NaturalUnits.pdf.
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Here we define

S

S2

I
I

0| >

S5

~ 90md

> |
_

|
N = = X
(&

i 1
d*z/—gR = 7n Jd‘lx vV—g9g" R,

[ 12 V=99" g Fe Fya

[S—

[ dte =g (6% 2u6 206 + m2?)

(&

J‘d4x 6abcd ¢Fab ch

1
47

2 2
(6—> Jd“x V=g ((g“b 9 Foe Foa)” +

(4.14)
(4.15)

(4.16)

(4.17)

2
etbed ch) ) (4.18)

To evaluate these actions, we use the expansions from equations (4.1), (4.2), (4.3), (4.4) and (4.8).

4.1.4 Gravitational Perturbation Expansion

We can do the gravitational perturbative expansion for each term in the action. We define

and therefore h = —h and substitute both into the action. Applying the gauge fixing terms,

hab = hab - gab h/2

V,h* =0

and using the following equations from the appendix,
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va d hmb = vdva hmb - Efmad hT’b - Rsbad hsm )

R=¢""Ryy =R+ s (?bd (Vﬁb h®, + V.V hab) — 3" V4Vyh—g"0 hbd)

+ % <§bd Vi heeVah + 20 (G NV Vg hee + 7V Ve bog — 7" VaVe hey — 7V Ve hea)
+25" 995" Vg han (Ve hay — Ve hey) =g (Ve h — 2 GV h) (Vahe, + Vi hea — Ve hya) )
+ O(€3).

We can now write out the gauge-fixed action. Dropping the bars off the /A’s, we have now

Slzijd‘lx <R+ (" h,¢ Ryq + W™ R Rbad)—ihbdihbd) (4.21)

Sy = —i JP d*z /-7 (?ab G Foe Fya — 2 K T + & W h*'Fe de) (4.22)

Sy = —% JP d*z /-7 (gab 0a® Oy + m2¢? + e A TG § h* b 0a abqs) (4.23)
1

e2\ 2 9o 7 1 2
Ss = — dz /g (gPG*F,. F - ——— e, F, 4.24
5 90m3<47r) f $< 9((9 g bi ) 1 (3 = b Led (4.24)
der/—g W™ G G G Foy Fri Fom an>.

where the energy-momentum tensors are

1
TS = G" Foe Fya — Zﬁcd 7 g F,. Fyy (4.25)

1 1
T3 = Gog (5 9% 0u s + 3 m2¢2) — 09 O (4.26)
Here we have used the results of the expanded the Ricci scalar in the appendix. Equations (4.21), (4.22)
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and (4.24) match Dolgov and Ejilli equation 5 and 6 when the Minkowski limit is taken.
We express the actions into multiple forms that facilitate integration by parts. Specifically, the

gravitational action is given by

S d4x hd@ ( 2 D hde B <_qw dqwa h® — §Cd Eerca har) > i i Jd4x\/jgﬁ .

(4.27)

The parts of the electromagnetic action are

Sd4l' /_— Af <% —ab cf(vb ac) _ %6 (gcdgfe gab _ gcd gbe gaf) Vb(hde Fac)

+ 129V, (97 h hye Fue — % h hye Fye )>

Sq = §d*z\/~7 %Eab(}dCﬁFab Fea

= [dioy=g 2™ AV, (6 Fuy)

N o ) 2
= {d'z\/—3g 901m:§ <Z_7r> (((gabQCdFachd) +£ (2 1_§ EadeFachd> )

o Ghde ( gmd gne gab —kf ggh Fk th Fam an>)
2
= [d'ev=7 5 (£) A ( ~2V, (999" 9" Fuc Foa Fyn )
- F7§ eebcd Eafgh Vb(j:wcd Faf th) - Sevg(gcdgabgefggh hmm th Fam an)>

9 Bmi \4r

9 2
— [dlav=7 5 (£) A6V9<—F2Fge—7F69(F Fel)
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_ 4€ng gab —ef ggh hmn th Fam an>

which includes the Euler-Heisenberg corrections.
A reminder: The energy-momentum tensors are in equations (4.25) and (4.26). The scalar dark

matter action is

1 2
53 _ —Efd4$\/j§ (?“b 6agb8b¢+m2¢2 + hde (Eg gjeTbcalar + %gadgfe hfb (8a¢ab¢))>

(4.28)
4 — 1 —ab 1 2 1 1 —ab — cd 1 2
Sy = | d'x\/—g ¢ 59 Vavb¢—§m ¢—§€ 59 Gea Va (h Vb¢)+§m h¢ =V .Vqd
2
_ %va (haf hfb O ¢)> ’ (4.29)

We can double check our results in the the Minkowski limit. Consider the gravitational wave

equation of motion from the action

1 e _ €2 —d —e
_ J d'2r/—F hae ( -5 Oh - — (ng R b — 7R, h) (4.30)
1 —cd —fe em 1 ab —=cd —=fe
4( 269 T )_Zeh g g Fachf
which yields
— 2
_‘:‘ hde (—qw quwa hoe _ gcdR e har) o _'Ligcd —fe Tem + I{hab gcd —fe Fac be =0 (4 31)

To match Dolgov and Ejlli, note we substitute x — 2/2 and ¢ — k. Note Dolgov and Ejlli
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equation 7 leaves off the proper normalization of the kinetic term. The last term of the above
equation is left off in Dolgov and Ejlli because it is higher order. The background Riemann tensors

are zero in the Minkowski limit. As for the electromagnetic equation of motion from the action we

have

1
S=3 Jd4$\/ —g Ay (a“g 57 (Vo Foe) =€ (599" =95 5" ) Vi(hae Foc) - (4:32)

1
+3 GV (77 B hae Fue — 3% h hae Fue ) +

2 e? 2 2 1gf 7 1 e ? fg 10 ah
~ 45m4 \4r Vo (F Fg)_§45m4 An v9<FgF“hF)

8 (e’
<_) €7 g g gy (W Fon Fom Fin) ) -

abfd
—2\/j§€ Vd(QbFab)

~45mdt \4n

The equation of motion is

1 2\* o~
v, (Fgf — oo (%) (472 P —TFI9 By Fo") ) (4.33)
e v

5= Va6 Fun) (434)

8e 2\ ? —ed
— ) Vo (g h"" FI9 Fyp FS)

=eVy (K F) —h? Fl) -

15mt \ dn
1
- 5 62 ECd vb (gfe hab hde Fac - gbe hafhde Fac )

This pretty much matches Dolgov and Ejlli.
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4.1.4  Electromagnetic and Scalar Perturbation Expansions from the Action

Equations (4.1) and (4.2) separates the long and short wavelength gravitational waves. We can do

the same for the electromagnetic and dark matter waves. We can make the following expansions

Fop=Fg+aFY + .. db=0+pBoW + ...

For notational convenience, we may define F = fu and ¢ = 0. The expanded energy-

momentum tensors are

T =T +aTo W 4 2T 4
. 1 _
- (a“*’Fachd 199”7 Faerf> +a (g (FuFy) + FOTu)
1 _ _
- ch gab gef (Faer(}) + Fé?F(ﬁ)

—Q 1 a, €
+a? (g "F Fyy — 00" 9 FL )sz}))

ngalar _ Tscalar + 8 Tcssalar i 52 scalar @
= Yed ( % 9” 0u 0o + 3 m%Q ) — 0.6 0adp
+ 3(Goa (@ 0utp 060" +m? ¢ 1) — 0. ¢ 04! — 04 0.01)
+ (ycd (% 7% 00000 + L ¢<l>2) SR acao(”)

The relevant expanded actions, up to second order in the perturbative parameters, are now
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1 _ _
S = fd%\/fg (79 (Fue + aFY) (Fua + o) (4.39)

+ hae (—2E§Cd§fe (TE? +E?(1) +a2Tf;”(2)> + e2habgeigle (Fac +aFY <be + aFéﬁ)))

(4.40)
- f d'ey/ G (A (~4a7"5 (ViFoe) — 20°5°5° (VoFLD) (4.41)
+ 4o (g9g%g" — 599"G™) Vin (hge Fme) + 5 FacFba (4.42)
+ hae (26597 Ty; + GG W™ F oo Fyy) (4.43)

We assume the background is constant on the length scales of interest, i.e. the covariant derivatives

of background fields is zero. We can apply the gauge fixing condition

VAV =0 (4.44)
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The action now becomes

Sy = —i fd‘lx —7 (Ad(” (—2a?g g (V, FY) (4.45)
+4ae(g9g" g™ =599 5™) Vi (hgeFme) (4.46)
+ GG 0o Foa — 25 g° Ti? hae + € GG F o Ty, s he hde)
_ _i f d'z+/—7 ( Al (—2 a2 g gt (VyV,AD -V, v,.AD) (4.47)
+dae(gUg g™ - 505" 5" ) Vi (heeFone) )

+ G G 0o Foa — 25 g° Ti? hae + € GG F o Ty, s he hde)

where we applied the gravitational gauge fixing conditions. The equation (4.46) is consistent with

equation (4.1.4.1). We can also use

=T

V,V. A, =V.V, A, — R , A, (4.48)

abc

and write

1 — _—
2= f d*zr/—g <—2a2Ad<1> (71 (@AY + g* R, AD) (4.49)
2 — —
B aE (gcg gde gmn . gcg gne gmd) vn (hgech)

+ G GF oo F g + hae (—2€7 g Ti}n + GG F, Fyy hab))
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We also have the following Euler-Heisenberg action to second order in the perturbative parameters

1 2\ 2 —9 —
S: = | d*z/—7 c (F 20 FFW 2F(1)F(1)>
5 J iy 990m§<47r> ( + 2 + o
2 120 FFW 4 o2 F<1>F<1>> (4.50)

F
((F% +a (Fﬁ(” + F“@) + oﬂF(l)ﬁ’(l)>

_ Jd‘lx 3 901mg (%)2 <F4 + g (FF)FF)—4ch F-F F™ (4.51)
+a (8 FFIV, + 2 (F ) emed Fabvc) AW

H
+a? (4F2F<1>cd V. AY + 8F"F Y v, AP + % (FF)e?d pOT, A0 (4.52)
N \/1%% FEO el F 5. Af;))
~dae(Fh TV, - F b FV+ PO F VY, - F 0 FV, (4.53)

+ 40y F, T F"V, ) A )
After integration by parts and assuming the background quantities are static,
gh——=cd =

yath v c n 1 T abed 1
+0? (AF V, FOA —gF"FV, F') — L (FF)eV,F})

_ 14 (Fef V. ”(1)) cabed Fab) Agll)
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~dac(~FF'Vh + TV, by ~FF V0t + FF Y, 0

— AT F“F"Vyhye ) A )

47

2\2 [ — — 2 s =2 5 d ==ae
= §d'oy=7 ks (_) <F4+;Z(FF)(FF)—4ehdeF2FadF

2

F

+a? ( SF"FV FU) — L (FF) eV Fy) — 4 (FTV, E) e Eb) AW

+dae(2F FV,h! +4F, F“Fd”vbhge)Ag”)
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As for the scalar action, we can expand to find

S3

= —% Jd%\/ —g <§ab 0a00s® + 28G™ a0y + B2 G 0,0 3y
+ m2$2 +2m? 8¢ oM

n ﬁz m2 ¢(1)2 n €§Cd ?je B (T(s:;alar 4 B TC(JI) scalar n 62 TC(JZ) scalar)
2

+ % 99 hae hf (0ad 3@))

—de

: S _
-3 f d'z\/=g <§“b 0ab040 + M2 G + € hae Tty + 285 0uo0ys")

+ B2 g 0apM 0y

+2m?BdoM) + B2 m? 6 + Behae % (57 0udp 00" + m? § o)
—2Beh9 0.9 0;0W + ; he b 0,0 a@)

= -5 a7 (005 + w2 d 4 00 (-2005 4 2020
— 82060 4 g2m2 W

—de

2
+2B8€hY (0;0.0) + € hae Torar + % he h® 0,6 aba) )
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(4.57)
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which is truncated at the perturbative parameter squared. As for the axion-photon coupling

Sy = J d'ay/=5 o= F e®ed (3 + B o) ( w+aFl ) (Ed + aFg)) (4.59)
_ J d'ay/=3 5 Fe“bcd @+ 56Y) (FuFu+20 Fy Fu+ o FYFY)  (4.60)
S, = Jd v/—F — SW ! (FuFud+ 20 Fy Foad+ 0* Fy) FY 6 (4.61)
+ 00 (BFuFup+ 20 BFY Fua) ) (4.62)

— 5\ abed (7 T L 'S s 1)~
S4=Jd4:1:«/—g ﬁebd<chFab¢—A£)Va <4aFCd¢+2a2Fc(d)¢

+4a B¢V o+ B0 FouFor)

4.1.5 High-Frequency Expanded Equations of Motion

The action with the gravitational perturbation factored out is

Szfd‘*a:«/—yh —1 N (£ (ngﬁd hee — IR h‘”") (4.63)
de 4/€ 4,{ qua reca .

1 d
- =cC —fe Tem o hab —cd fe F F - —je Tscalar
2 €g 4 g acL bf 2 g g

2 2
_ E_—ad—fe 2e 6_ 2 o d rpae

The resulting gravitational equations of motion are

e —quw P4 ae —cd ¢ ar 2K —cd =fe rem ab—cd —fe
th ( ! waah‘ - dchah >__gdgf ch +thgdgf Fachf
2/{_d_j 1 d 8K 2\’ (1 2 - d
=2 —c e rpscalar —a fe . - Z) FZRpdpaee _
+ g cj thYg (0 ¢0b¢> 45 mg A € a
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where

1
Tfén = gab F(IC de - chd gab §6f Fae be (464)
1 1
T = Gea (5 " Qa0 + 5 m2¢2) — e 0at (4.65)

The action with the electromagnetic perturbation factored out is

1 _ —
Sy =~ f d*zr/—7 <—2 ?AMN (g7 (@AY + g R, AY) (4.66)
B 2¢
«

+ gab ngﬁachd + hde (_2 €§Cd gfe Ti;ﬂ + 62 gcd gfe Fac be hab))

(gcg gde gmn - §Cg gne g’md ) vn (hgeﬁmc)

2
« — -7
S = f d'z+/—g (Ad(” ( 59 (0AY + 9" R . A7) (4.67)
CY2 2e —cg =de =mn —cg =ne =md \ 7 il
- 7; (g g g —9°9 g ) vn (hgech) (468)
1 1 1
5 gab ng vand +e (gab va (hcd de> - Z gmn gab gcf Va (hmn be)) + 5 62 va (hab hcd de)
(4.69)
5\ abed 1 62 ’ —ab —cd =gf —eh
+ ﬁe V(o Fy) + 904 \ 1 =2V, (g% 99" G Foe Foa Fp1,) (4.70)

7
-5 el M7, (Foq Fop Fyy) — 8¢V, (acd g gl g B Fry Fu Fim )) =0
g
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The equation of motion is
—cd (75 —ab " 2€ —cg =de =mn __ —cg =ne =md \ 7 Il
7 (QAQ + 5 R A%) = 2 (05 37 — 7075 Do (hFon) = 0

The scalar equations of motion are

1
2 2
e )

7 Ve (R b} oy ¢) + W

1 1 1 1
_gab vavb¢ _ §m2¢ — 56 (— gabgcd V. (th Vs ¢) + 5 m2h¢ - V.Vy ¢>

Eabcd Fab ch =0

Q
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4.1.5 Electromagnetic and Scalar Perturbation Expansions

Equations (4.1) and (4.2) separates the long and short wavelength gravitational waves. We can do

the same for the electromagnetic and dark matter waves. We can make the following expansions
Fop=Fg+aFY + .. db=0+pBoW + ... 4.72)

For notational convenience, we may define Fé;) = fu and ¢V = 6. The expanded energy-

momentum tensors are

T =T +aT W 2T (4.73)
- (a‘“’ﬁmﬁbd - iycd 9°g EEQ va (g (Fuhly + FOTw) @474
- 19477 (FuFy + FVFy)
+a? (y“bFa(? FY — 077 FY R )
T = Tog ™ + BT W + 2@ “4.75)
— Ju <% G 0,0 O + % m2gb2) — 0cp 0q@ (4.76)
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S2

Sy =

Sy =

Ss =

1 ab —c ab —c —ab —c 1
= 4fd4x«/ (gbngachd—i-Zong UF e F()—i-a b dFa(C)Fb(d)

— 2RO 4 2 b ped (EC Fog+20Fp FY + a2 FO Rl >))

2
Jd4x / —( abaa¢ab¢+m2¢2+€hchscalar %hafhfb (aa¢6b¢)>

OOI>A

fdzlx Eabcd ¢Fab ch

+e (_4hmn§ab§ef§ghFegthFaman>>

90

4.77)

(4.78)

(4.79)

1 e? 7/ 1 2
50 (E) J d*zA/— (((_“bngFachdf—i-Z (ﬁe“b“lFachd) ) (4.80)



4.1.6 Expanded Lagrangian

The first term in the lagrangian, equation (4.11), can be expanded as

1 — € —
=5 (VT 5V )
— € - — — — —
x (R 1 G AT R AT RS R ml 9 (4.81)

2
+ EZ (ﬁbd Vi hee Vg h® + 2 gbd hee (vad Bee + VeV hyg — Vg Vehg — Vi Ve hcd)

(4.82)
+2 gbd geggch vg hdh (ve hcb - vc heb) - gbd (ve ht (4.83)
1 —ce v 7 Svi 7
- 59 Veh) (thcb + Vi heq — Vchbd) ) >
1 — [ € il = 14 == —
= ﬂ ] (R 4 5 gbd (Vav{b dy Vdvb h — Dhbd> (484)
62 ce [/ v v v d v b —bd & v ce
+ 7 (2h (Dhce I AV B A v VbVehc> + 74V, heVa b
+29" 599" Vo han (Ve hoy = Ve ha) =3 (Ve b (4.85)

1 o o _ _
-3 gV, h) (Vd hey + Viyheg — V. hbd) ) >

- iﬁ?lm him (E * %?bd (VaVip ey = VaVih — ihbd))
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1 1 — € — _ .
_H (\/—g R) = ﬂ\/ —q <R + §§bd <VaV{b ad} — V4V h — Dhbd> (4.86)
2
+ % (zhce (mce I VA I R L v v h;)

+ 3V hee Vah™ + 259V, h* V. hy

_ _ 1 — _ _ _
V.hV hed + §vehvbheb—veh°‘evch

N —

_|_
— — — — — — 1 —
— 2V, WV, h! =V h“Vah® —V . h“V,h} + 59° Vehvch)>

+ iﬁ?}lm hzm<ﬁ - %?]bd (VaVip 'y = VaVih — ihbd))
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after the gravitational wave expansion is
1 /— — —
£ = (V-9+5V-35"ha+...) (ﬂ R CAAN RS S A
— 9" VaVyh — 3" hbd)
2
+ (Vo he Vi + 28 W (V¥ hee + VoV hoa = Va Ve has = Vo V. hea)
+ 2997 G" Vg han Ve hey

— 29" G" Vo han Vehe, = 5 Ve BV hey — 3 Ve KV hea + 37 Ve hN e hia

+ %_bd G VehVyhe,
" %gbdgce Y. hV heg — %gbdgw V.hV, hbd) + .. )
_ i (g“b—eh“bJr%th“thvL...) (ECd—eth+%Ethehed+--'> Fac Fra
- % ((gab—ehab+ %th“Chcb+...> aa¢ab¢+m2¢2)
+ é ( :(_] - 2\/6_—§§thcd+...) eade¢Fachd>
+ 901m (HJr% -9 7“ hcd>
2

g% — 6hab) (gcd . 6hcd) Fac de)2

1 € _u bed ?
- cdp ) e®d L E
V7 23’ > : ) i

Y
—
|
Q
o

X
=~ = N
»-l>|<'b
3 )
TN N o

(4.87)
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— (1 /= €/ i 10 i 10 —bis b —
V=7 (ﬂ <R +5 <g”d VoV h®y + 3V Vah% — 3 VaVy h — gbdDhbd)

2

GZ (g”d Vi heeVah + 25" b (ViVahee + VeVe hoa — Va Ve hey — Vi Ve Beq)
29" G" Vg han Ve hey

25 GG Vg han Ve hey — G Ve iV hgy — 3V hVy heg + G2V iV . g
GG Ve hVahe

. 1 .
771GV hVy heg — 3 3GV hVehpg + ... >

1 1
g ehab+§3h“hcb+...) (ECdeth+§ezhcehed+...) Foe Fyg

/?
<)
>

( (gab —eh® + %8 h*nb 4 .. ) Outh Opd + m2¢2)

1
( - ‘ §Cd hcd + .. ) eabcd ¢Fab ch)

O] >0 NI =N =N =

V=9 2vV/-9

€ 1 /— ¢ - — - _ _
(577" hea) <ﬂ<R+§(gbdvavbh“d+§bdvavdh“b—§bdvdvbh—§bd|jhbd>
1 —ab ab 1 21acy, b —cd cd 1 21ceq d
1 g” —¢€h +§eh h, + ... [ ) +§eh ht + ... | Fae Fra
1 —ab ab 1 27acy, b 212
3 g —eh +§e h*h. + ... | 0u® Opp + m~¢
A 1 € o bed
- — “Cheg+ ... €CPF, F,
8(—@ 2y 7 T ) q“’")
1

— e —_,
90m4< _9+§V_ggdhcd>
2

62 2
(4_ (((gab — ¢ hab) (gcd — € th) Fac de)
7
4

1 € _d bed ?
— “ h, wed By F
((ﬁ N ) : ) !
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— 1 — € (== ;a4 e = —bd =
H( ﬁR s (gbd VoV h'y =5 VVyh — g0 hbd>
1 1

€ €
1 GG Foe Fra + 5 G W Fye Fyg — 3 (G%0u0 Oy + m*¢* ) + 3 h*0,¢ 5b¢)

€ — —cd L= 1 L b 2,2
/= —R-Z F . F,— =
5V —99 hw(zﬁR 19797 Fac Fra 2(9 0a Opp + m?¢”)

A
3 el Fop Frg

1 (e
(e ) (ﬁ ((ﬁabycd Foo Foa — €5 h* Foe Fog — € h™G% Fo Fig)”

90 m? \ 4r

7 1 bed € — bed ’

n —_Eac Fachd* = gefhe € Fachd

(7 275 7 ")

€ — —cd —ab—cd 2 7 1 abed ’

5V —9 G hea (9 G Fae de) + 1 \/T—gﬁ Fap Fea (4.88)
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— 1

1
L= V7 ( 3R (T T B 5 (700800 + ) )

,4;

+ (9 VoV h'y =5 VaVeh -7 Dhbd> (4.89)
1
+ A/—7 —th ( G Fue Fog + 0o Oatd — _gcdg "9 Fe Fyp — 59@1 (5" 0t Ovgp + m2¢2))
1
+ A/—q 2—§_Cd hcdR

abed
€ ¢ Fab ch

| >

1 2\ 2 )
+ 90 m4 (E) (ﬁ((gab ECd Fac de - Egab th Fac de — € hab§6d Fac de>

7 1 obed € 2
- abc Fa Fc o —ef he abcd Fa Fc
v (e gy @) R

2
+ 6/2 X A/=g §Cd hcd <(§ab§CdFac de)2 + ;‘i (\/%eabcd Fap ch) ))
(4.90)

We can substitute equation (4.1) into Einstein’s equations, G, = & 71,;, which we write in the

trace-reversed form

1
Rab =K (Tab - 5 Gab T) ) (491)
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where 7' is the trace of the energy-momentum tensor. We derive the energy-momentum tensor in

the next section. As a reminder, the Ricci tensor can be written schematically as
Rap = Rap + € R} + @ RY 4 . (4.92)

where R((Z? and R((j)) are linear and quadratic in hy,. Rgp is composed solely of the background
metric and therefore only has the low frequency modes. Rfl? is linear in A, and therefore contains
only the high-frequency modes. Because Rffb) is quadratic in the metric perturbation, it can have
both high- and low-frequency modes. Note, two high-frequency modes can combine to generate a
low-frequency mode. In terms of the low- and high-frequency modes, we can rewrite the Einstein
equations as

Eab + € R((j)) 5

1
=K (Tab_ =g T

low

_ 1 - 1
(Tab - 5 YGab T) + 62 R (TCEE) — 5 Yab T(Q))

low

=

5 (low-frequency)

low

(4.93)

1
€ R((;)) +é2 R((li) =K (T wb — = Jab T)
high high 2
high
R(l) _ @ T(l) 1 (1) ! 1 / .
ab| . — K ab 5 Yab T . tK ab — 5 Yab T ) (hlgh frequency)
high € 2 high 2 high
(4.94)
1
+ €K (Téz) — =g T(2)> —€ Rﬁ)
2 high high
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where R(Y) and R is given in equation (4.107). The first equation impacts the energy-momentum
tensor. The second equation will become the gravity wave equation in curved spacetime.

Given the separation of scales < L, we now chose a scale [ so that < [ < L. For the length
scale [, the low-frequency modes are effectively static. We can therefore spatially average over

many reduced wavelengths, , of the metric perturbation 3. Equation (4.93) now becomes

Rup =~ (R ) + kT 1gabT>
——(RY)+ /i< o — gab T) (4.95)

where we have defined

<Tab> = Tab <gab T> gab (4.96)

which are the low frequency components of the energy-momentum tensor and metric. If we want
to consider a different , where e.g. < £, we can use an renormalization group analysis to relate the

length scales [66]. We can define
R® =g*R{) (4.97)

as well as

1 1 _ 1
Top = —E<Rfj)) ~ 50 R®) f=9"T = E<R(2)>. (4.98)

3If we take € ~ fi,/f, a temporal average over several 1/f periods of the metric perturbation is needed.
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Combing the two equations in equation (4.98) generates
2) ; 1
(R =K | ta — 2gab (4.99)

and substituting in to equation (4.95) generates

Fab = 62/{ ( ab — gab ) ( gabT)

= 5 (Tus + €Tw) = 570 (T + €F) (4.100)

Contracting the above yields R = —x (€27 + T') and our final form

_ 1 — _ _
Rap — 5 Jab R=rk(Tay+ta). (low frequency) (4.101)

Here it is clear f,, is the energy-momentum contribution from the background curvature. It is
also clear the T, sources the long-wavelength modes. This is how the low-frequency modes are

sourced by the low-frequency gravitational waves and the energy-momentum tensor.

4.1.7 Gravitational Perturbative Expansion

Using equation (4.1) and (4.2), we can now compute the connection, Ricci scalar and Ricci tensors

in terms of background quantities and the curvature perturbation Ay,.
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The expanded connection is

re =10 + ggam (ve Bt + Vo hane — Vi hie
2
+ EZ (?‘”" (VC (hma h%) + Vi (R h%) = Vo (Poa hdc)) (4.102)

21 (Tt + Vi e — Vo hbc>) L o).

where

R
Iy = 59" (0594 + G — O5Gk:) (4.103)

Recall e ~ O(/L). Also e, tracks the number of h,;, that are in each expression. The corresponding

Riemann tensor is [65]

Ry, =R +eR + @R 4
S (vﬁd B T b — VT b (4.104)
— ViV b + 3"V aVim hie — GV Vi hbd> (4.105)

62

+7 (vﬁb (R h")) — Vg Vo (R R") + GV Vo (hyr B7.) — GV NV, (B BT)
— 2 (Vo 2™ (Vi by + Vi hona = Vi ha) = 20 (VN Buna — VeV hia)
+2(Vah™™) (Ve By + Vo Bane = Vi i) + 20 (Vg Vi Byne — Va Vi e
+ (Ve b, + Ve b — GV hee) (Va b + Vi b — G Vg hyg)

(Vo + Vb, — 3T, hal) (Vo by + Vo b, — T h,m)> L O,

where

Ry =0T — ol +T0 T, - T5. T, (4.106)
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The first line in the above equation again matches the O(¢) result given in [68]. The expanded

Ricci tensor is now

Rog = Rpa+ € R + R + .. (4.107)

= Ebd + g (Wav{b had} — vdvb h — ihbd)

2
+ EZ (vb hcevd hCe —+ 2 hcﬁ (vbvd hce + vcve hbd - vd ve hcb — vb ve hcd)

— _ — — 1 — S — —
+ 2§eg§ch Vg hdh (ve hcb - Vc heb) - (ve ht — 5 gce ve h) (vd hcb + vb hcd - Vc hbd) >

+ O(e)
where R, is the standard Ricci tensor
Rya = 0aL g — O g + T gl g — T T o (4.108)

which matches the equation in [65]. We will use this equation in trace-reversed Einstein equa-
tions. The trace-reversed Einstein equation also requires the energy-momentum tensor. For future

convenience, we can modify the e term by using the identity

= = 1l == - —s = = - —s
VQV{[) had} - 5 (vaa had + Rsb h/Sd - R dab h/as + Vdva h(lb + R',"d h?"b - R bad h(l8>
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The Ricci tensor is now

Rbd = Ebd + % <vbva had + vdva hab — Vdvb h — i hbd + }_%sb hsd - Esdab has + }_%rd hrb - Rsbad has)

(4.109)

2

+ EZ (vb hcevd he + 2 h* (vbvd hce + vcve hbd - vd ve hcb - vb ve hcd)
+ 2 gegECh vg hdh (ve hcb - vc heb)

— 1 — — — —
= (ve he — =gV, h) (Vahe + Vo hea — Ve i) ) +O(e)

2

Using the parametrization described in the previous section, we can determine the most relevant
terms. The derivatives in each expression yield factors of and £ when they act on low-frequency

and high-frequency objects. For example,

VVa h +ViVa b — VoV h —Ohyg ~ A/? (4.110)

R h®y— R, h% + Rogh'y — Ry, g b ~ A/L? (4.111)

where we follow the convention of MTW [65] and parametrize the dimensionless amplitude of the

metric perturbation with A. Because « L, then 1/£ « 1/ and the second line in the above two
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equations is far more suppressed. The other terms have a approximate parametrization of

Rya = R
——
1/c2

N % (vbva h%, + VgV h® — VgV h —Ohyg + Ry by + Reg 'y — Esdab b — Esbad has)
AP RE Ale:
4.112)

62

+ 5 (TohaVa b + 20 €t + V5 s = TV, b~ 57, )

P

__ __ __ __ 1 __ __ __ __
+299G"V, ha (Ve hey — Ve heb) — (Ve ht — 3 9“ Ve h) (Vd hey + Vi heg — Ve hbd) )

-

~—

A2/2

+ O(€®)

which, combined with the e factors, have roughly 1/£2, 1/( L), /£, 1/£* and 1/L? suppression
factors, respectively. Because « £, that means /£3 « 1/L£2. Also from this equation, Rfi) ~ A%/2
Thus, from equation (4.99) and (4.100) as well as T, = 0, it is clear R,, ~ A%/2, which is not
naively obvious.

The Ry, h?, terms in the above equation matches 35.57 in MTW [65]. We can verify that
€ ~ O(/L) by taking x = 0 and A = 1 for equation (4.93). The proof is at *. We drop the A/L?

“€ Parametrization: If x = 0, then the low-frequency equation is parametrically,

Rap + € R =0 (4.113)
1 €
5ty =0 (4.114)

which justifies ¢ ~ /L.
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and A?/? terms (and those terms that are more suppressed). Assuming A is perturbative, we have
Ryg = Roq + € R\ (4.115)
where Ry is given by equation (4.108) and

|y - = -
Rl = 5 (vbva he, 4+ VVa % — VoV h — O hbd) . (4.116)

4.2 Curved Spacetime Equations of Motion in the Presence of Non-Trivial Backgrounds

4.2.1 Perturbative Expansions
4.2.1 Bosonic and Electromagnetic Wave Expansion

We can split the physical fields into the long- and short-wavelength parts like the gravitational
waves as well. In addition, there is another length scale of interest, L., which is the characteristic
scale over which the amplitude, polarization and/or wavelength of the boson(axion)/electromagnetic
field changes substantially. We especially take this scale to be the length scale of the background
static fields. We assume the boson (axion), electromagnetic and gravity waves are cohered. Thus,
has the same value as with the gravitational wave expansion above. We also require « L., where
as areminder is the reduced wavelength of the cohered axion, electromagnetic and gravity waves.

We define a = /L, and assume L. < L. Therefore, a > e.

Fuy=Fay+aFY (4.117)

¢=¢+agpl (4.118)
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where F(1) and ¢ are the high-frequency fields. F',; and ¢ are the background fields. This is con-
sistent with Section 1.5.1 in [66]. Here we make the assumption that the expansion for the boson
and electromagnetic waves are equivalent. Because the energy-momentum tensor electromagnetic

and axion fields, we also need to expand it. The energy-momentum expansion is therefore

Ty =Tw+ T3 +eTOY + 0 e T3 + 21RO 4+ 270 4+ (4.119)

where the @ and b indices in 7*%) represent the perturbative expansion in « and ¢, respectively.

Also,

_ _ _ _ 9 2\ ? o
Tup = ' FacFos + 00 046 ———— (—e > (aef F’ Faerf)
——— ~~—— 4dm: \4r ————

1/L£2 1/L2 1/L4

1 — 1 S _
- gab < n F2 +5 gmn am(b an¢ + m2 ¢2 (4120)
—_— =
/L2 1/£2 1
1 e\’ 7 — = \2
_ _ F o mnOmenFo )
90 (47r> (af—J 4g£6 ) >

1/L£4 1724
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The expansion terms are

Ta(l},()) = gef <Fa(;) be + Fae Fb(;)> + aag_b 6b¢(1) + aa¢(1)(9b$

.

A7£ A/L
4 e2\? Ne= = =
A3
T inl — 1 —mn—op 1, —mn oy Y
+anFmoFé;)be)_gab(§g gpanF7§L12+g m¢an¢(l)+m2¢¢(1)
“ ~ ) & ~ > - ~- ~/ H_/
A/L3 AL A/L A

N J

4 62 ’ —MN —0p —qT —S T T 7 ij e EnlE S nl
_ 50 <E) <g g qu 7 t r(tl) Fmo an Ffbj _E Eh Jked fg f‘(}i) Fde ng th>

A/L3 A723
— — — — 1 —
=77 (FO For + Fuc By ) + 030007 + 0,006 - 3, ( 5 "G Fp F) (4.122)

+ ™ 000 0V + m? $¢<1>> + ...
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where on the second line we have kept the terms more suppress than A/£? and A3 /2.

2\ 2
(5) (/PP + 215" Foy Fua T Foy
—_———

45m? \ 47 ~ ~
A/L2 A/L4 A/L4
(4.123)
1 —2 1(_.. - A7 2, 72
— | - hab F 4= g hab 6m¢ 0n¢ +m hab (b
4 —— 2\X ~- -
AJL? AfL? A
1 e\ 2 -7 = 7 \2
i —_— h‘(l F - o __ ha mnome?’LFO )
90 m? <47T) <\—2/—’ 164G - ’ (6 ~~ p)J )
A/L A/

1 — = 1 — - 4 2\ _
_gab(_§ {Lmngop an Fmo__ h™" am¢ an(b +— (e_> fLmHEOpgqrgﬁ Fmo an Fi)

v 2 —_— 90 m‘el 47 -
A/L2? A/L2 e

9ab e\’ 7 hijk def -

+ 90 mA <E) ( 165_2 NIk edely tr(gmn hmn) FaFryFi ij)
Al

= had (4.124)

1

Ta(l()]g) =7 m2 hac hcb §b2 + ...

4
(4.125)

= _hef (Fa(é) be + Fae Fb(;)> - ( %1 hab gmngop (an Fr(nlg + Fmo F’rggl))>

+ g’mn hab ama 5n¢(1) + m2 hab 5 ¢(1))

~ G ( ~ 1 (Fp B + Fong iy ) = 17 006 M”) b
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It is clear there are mixing terms between the gravity-electromagnetic wave and gravity-bosonic

wave.

—c 2 62 2—c—e— — — —(1)=(1 —
TG0 =g PO FY + 0.0V — (—) 7 g (FachdFig)F§,j + FY FYFoFp,

~ _ 45 m‘é 47 ~ ~
A2/2 A2/2 A2/202 A2/2(2
(4.126)

4 (FuF + FOTo) (P Fip) + ngffh))

Az;g r2

1 1
~ T (1 g9 FQFL) +5 (1000 +m? o2
—_— —

~ _A‘Q(/Q - A2 / 2 A2

1 e2\? — _ 2
" 90ms (E) (<§ab§Cd (P +aF) (Pu+aF))

A2/2£2
7 &) o\’
abc T Enl - 1
1 ( =~ bed <Fac+04Fac> (de+and )) a2)>
A27g£2
— g FO Y 4 0,6 0,00 4.127)

The energy-momentum tensor is now

Toy = Tapp + aTibl’O) + eTig’l) + aeTég’l) + a? T;i’o) + € T(,?’Q) + ...

a

(4.128)
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4.2.1 Low-Frequency Gravitational Wave Equation

From equation (4.101), the low frequency gravitational wave equation is

— 1 — _ _

Ry — 5 Jab R=~k(Ta+ € la). (low frequency) (4.129)
where T, is
— e S — 2 e? 2_€f—2— —
Tap =G Faelyp + 0ap O — woila) I F"FooFyf (4.130)

G 2P+ L (7 a4 md) - (S 2(74_l(emnopf F,)")
Jav\ 4 o \J m@Cn 90m* \ 4r 17 mn-" op

As a reminder ¢, = —<R((j,) — 19,, R?)/k, equation (4.98), and is the contribution to the energy-

momentum tensor from the curvature.

4.2.1 Expanded High-Frequency Gravitational Wave Equations

From equation (4.94), the high-frequency gravitational wave equation is

1 1
S}) = @ Ta(;’O) _ 2 g T R Ta(z?’l) g TOD | 4.131)
high € 2 high 2 high
1
+ak <ch;’” — g TC 1>> (4.132)
2 high
1 1
+ T(o 2) L . 7(0.2) n T(2,0) B ] 7(2.0) C) '
< ( ab 29 high € ab 2 high ¢ Hab high
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(Vﬁah“ﬁ%%hb VaVoh —Ohea — R4y b Rsbadh“5>'h'h (4.133)
ig

(vb bV 4+ 21 (Vo5 how + VoV by — Va Vo hey — Vo Vo h)

+2999" Vg har, (Ve hey — Ve hey) (4.134)

— 1 — — — —
— (Ve he — 5 9°V, h) (Vd heo + Vi heg — Ve hbd) >

high

The high-frequency wave equation, before gauge fixing and up to O(e?), is

1, _ - — _

5 (—D hpa + ViV, had + V4V, hab — Va4V h) (4.135)
1 -S -

= —§ (_R dab h(ZS - R bad has) (4.136)

- i (vb hcevd h*¢ +2 ?eg §Ch vg hdh (ve hcb - vc heb)
+ 2h°€ (vad hee + V V hpq — Vd V hep — Vb o Ped

— 1 — —
—(Vehce—ﬁﬁceve}O (thb—FVb ed — Ve hbd )

+ K @ T(;’O) + T(g’l) + aT(;’l)
€ al a a

L (% 700 L 700 4 T(m)))
2 €

where Té; ’0), Tég’l) and Ta(; V) are defined in equations (4.121)- (4.255). The expanded trace of
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the energy-momentum tensor is

—ef —a il —a s 8 62 2—mn—o = T2
T = 257 g F O Fyp + 25" 0,6 0y (—) "GP F YV F o F

~45md \4n
1 o _ —
—4 ( S5 TG Fup FL) + " 0m 00" +m? 6 60 (4137
4 e\ —gr—st P() = 2 7 hijk defg ()7 T T
~ 5o \ 1 g Fy F F —Ee € F]k Fae Fyy Fy;

- _ 14 [\’ (1 . — - =
_ _2§ab aa¢ ab¢(1) . 4m2 ¢¢(1) i o (E) (E 6hzjkedefg P’](]i) Fue ng th>

111



T(O»l) —

6

—ab pcd 7 I
—g%h
g 45 m?

ac

2\’ —_ab T T T2
(E) hcdgab Fac deF

1 —mn -y 2772
h(4F 45 (7 00505+ m* ) (4.138)

1 2\?
B e (F4_ 7_(
90md \ 47 169
1 — 1
(WG F P
( 4h g P 4

_ 1 2\ 2 _
hmn am¢ an(b + I <€_) (hmn gop gqr gst Frt Fmo an Fqs
+ hmn gop gqr gst F F

F pF‘]S
+ hmn —op —qT stF F F F

+ pmn gop qu —st T F Fmo an Fqs))

2 e?\? 7 hijk _defg ... [ —=mn T ... F

2\ 2
—ab pcd 7 T € cd—=ab ™ & T2
— G F, Foy+——|(— ) h FoeFoa I
g bd t 5 mi (47r> 9 bd
l— 1 — = —
—h(ZF2+§(§m” B0+ m? ) (4.139)

1 62 2 —4 7 mnop T I 2 mn—op I, I smnpop I
© 90m4 \4r (F _ﬁ(e anFOp) > TG Fup Foo + G0 Fup Fino

Lo g 5(35 2 e? 2 hmn—opf F 72
Om On 45m* \ 4 g mes b

e

2 e\’ 7 chidkdefg . (Fmn
T Hmmi\ar ) \168¢ tr( hm”)FdengF’“F
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_ — 12 [e2\? _ o
T = 2pf g FOFy, + <—) hel g g g (EQ) Fro Fea Py
+ Fe(rln) an Fo pr (4.140)
1 —mn—op (17 al —mn oy =
_h(zg gp(anFy(nngrFmqu%))‘Fg am¢an¢(l)+m2¢¢(l)

1 622___r_s —- = = -
= 90 (E) (gm” 775" 5" (FY Fono Fap Fas + Frt FL) P T

+ Ft Fro FY) Fys + Foy Py P Fq<;>)
_ T cismets (PO, Ty T+ Fyo FO Ty, F
167 jk 4 ded fg L hi jktde L fgt hi

- T 1)+ - T T 1 1 mn _op (T il
+ Fy Fae Fyy) Fi + Fi Fae F g F,EQ)) - 4(—5 W™ g (Frp FLD + Fro FLY)

— B 0, DoY)

1 62 ’ mn o r s W= = T Enl al
+45m3 (E) (h gpgq gt(Frt Fmanqus‘f’FrtFn(qlo)anFqs

+ F,,nt Fmo F7,(111)) Fqs + F'r’t Fmo FTLP Fq(81)> )

1 62 ? mn o r s Vs —&= T
+45m§ (E) (g g ht gt(Fr(t)Fmanqus

£ T FOF oy Foot Frt Fog EO Fyy + Fyy Py Fop F;;>)>
Minkowski Limit:. Taking the Minkowski limit and using the gauge fixing conditions,
0“hay =0 h =0 (4.141)
the high-frequency wave equation is therefore

1_ 1
5 Ol = n( 2700 4 pOD 4 7Y 5 Jab ( 2700 4 7O 4 oM )) (4.142)
€ €
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The axion terms are omitted for comparison. The remaining terms are

710 _ _ 14 (e i hijk defg p)F T F,.
B 45mi \ 4w cc jk e T fg = hi
2
rov = ANy, BT e F, T
*45m§ A n ac 4’ bd n np 4" mo

T(l’l) =2 hef ’I]abFag) be

~45md \4n

(4.143)

(4.144)

4 2\° o o
<€_) 77ab77777,71,,7017]’Lef (FY(LZI))FmoFeaFfb—i_ e('r%m)anFanpb) (4145)

To compare with [55] equation 7, the RHS equation must have Té; ") and no axion. Deriving Ta(; D

from the energy-momentum tensor above reproduces equation 7 in [55]. We consider background

fields which is a key difference with [55].

4.2.1 Expanded Axion Waves Equations

The expanded axion equation of motion is
<gab aaéb - gachab ac o m2)¢ _ Eabcd Fachd

where the left-handed side is given by
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<gab Oaly — g™, 3, — m2> 6 = (G 0u0y — Ty 0. — m?) (4.147)
+ (gab aaab . gab Fcab ac o m2) ¢(1)
+e (—h‘“’ 0ol + T, 8,

1 _ _ _
= 577" (Vo hma + Vo by = Vi hus) e ) %

+ae <—h“b Ouly + hT ., 0,

- % ?ab gcm (vb hma + va hmb - vm hab) ac) ¢(1)

The right hand side of the axion equation is

A € 3e? 9 _ _
abed —cd —cd abed (1) (1)
A bedpop (1= Sgedp, + 25 (gen, <Fa+ F )<F+ F )
8\/jg6 bl cd 8\/—7§< 29 d 8(9 d))E b T QL d T Qr
5\ € _, 3 € —c 2 abed (7 7
= 8—_ ? <1 — 5 qg dhcd + ? (g dhcd) ) € bed (FabFCd
+20F,FY) + ?FPFY)
A — Ne _
= 8\/—75 (EadeFachd) - 16\/j§ (gefhef) (EadeFachd)
A _
+ 7 \/% gtbed T D) (4.148)
Aae —
o < _g (gcdhcd) 6abcd Fach(;)
:j_f(gefh f) 7+ Ao cabed bF(l)_ Ao (gefh f) EabchbF(l)
2 /=7 ‘87 “

(4.149)
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where

= A bed o T
J= g 7= (""Faplea) . (4.150)
=l )
Putting it all together, the background
(@ 0a0 — 9T 0. —m*) 6 =] (4.151)

and propagating equations of motions are

(gab 0,0 — gab Fcab 0, — m2) ¢(1) _ _2 (_hab 0O -+ habfcab 0.

1 — — —
- 5 ?abgcm (vb hma + Va hmb - Vm hab) ac)Qb

p (-h@b 0uly + hT 0,

1 o o —
_ ?ab gcm (vb h/ma + va hmb - VW hab) 66) ¢(1)
Aa

abed T (1)
A —3 € Fachd

2
€ (ef -
3 (G hey) J+

4

Aae (
8v/—9

G hey) €T, FL) (4.152)

C

In the Minkowski space limit with no axion background, this equation reduces to

A _
(D o m2) ¢(1) = —¢ (_hab 0aab . nab ncm (ab hma) (’]\c> ¢(1) + Ta 6abcd Fach(;) ) (4153)
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4.2.1 Expanded Electromagnetic Wave Equation

The expanded electromagnetic equations of motion is
00 (9%°0" Fua) + g*g" T, Foa = §° + Vo P™. (4.154)
The LHS equation is expanded as

O (976" Fug) + g%g" T, Fog = 80 (5 7") Foa + 757 0. Fog + 5 7T, Fog (4.155)
e <5a (@7) FY + 7" 0uF + 77 T FYY )
. ( 2, ((?ac pbd 4 gh hac) ch> " (gac pbd 4 pac §bd) feaefcd
57777 (e + T — Vo hae)Ed>

— e <aa<(§ac hbd + ybd hac) Fc((})>

1 = o —
. 5gem gac gbd <Ve hima + Vo hime — Vi hae) Fc(c})>

Putting it all together, we have the following background equation of motion

aa (gac gbd) ch + Eac gbd aafcd + gac gbd feachd = jb + vaﬁab (4 156)
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and propagating equation of motions

gac gbd (aaFc(;) + Feae FC(;)> _ _aa (gac gbd) Fc(;) + 2 <aa<(§ac hbd + gbd hac) ch> (4157)

+ (gac hbd + hac gbd) feaefcd

1 __ _ _ _
- 5 gem gac gbd (Ve hma + Va hme - vm hae) ch>
+e (aa<(§ac hbd + gbd hac) Fc(d1)>

1 - . —
. 5 gem ECLC gbd (Ve hma + Va, hme - Vm h’ae) Fc(d1)>

where we have used the currents,

. 1 5\ abe N nl
J==3¢ P40 (¢ Fea) (4.158)
(p _ @ é abedn (7 (1) 1)
aj =5 <¢ FY 44 ch> (4.159)
-/ € A —cd abed P al
= _ -z F.) . 4.1
€J \/jg 4 (g h’cd) € 6(1 (¢ cd) ( 60)
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We also include the contributions from the Euler-Heisenberg lagrangian

\vé @ o 4 mn o Enl a
V=5 (45m4 <47r) (V77970 (Fons Ty F 0

+ Froo FOF" + FO T, "

7 2\ 1 — = _
T 180 (Z?) & (—\/_@Eb“ef e (FoFaly) + FogFyY Fyp + F§}>chpgh)))
(4.161)
— —ab 1 4 6 mn—op b
Vel'' = 75 5t \ 4 a“ (\ﬁg 2P Fop F ) (4.162)
7 2\’ 1 -
* 180 m? (E) Ca (\/fgebaefECdgh Fep Feq th)) )
v - (2 () (V=3 (@) 75" F" Fruy iy (4.163)
‘ V=g \45m2 \4r) cd mo :

7 62 i ¢ 1 aef c - T T
360 m3 (E) (5"he) 2 (ﬁeb Tel" Fop Feg th)

7 e2\? 1 1 _
- | = aa _thc baef CdghFe Fc Ia
180 m (47T> ] (\/fg (g d)e € L cd L gh
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Minkowski Limit: Take the Minkowski limit and using the gauge gauge fixing conditions,
0"hay = 0 h=0 (4.164)
the high-frequency wave equation is therefore

CF™ D = 0, (0 B+ 0 1) Fg) + 0 (B 4+ ) FY) (4.165)
1 —
- 5 nem T]ac Ubd <ae hma + azz hme - am hae) ch
1
_ _ nem nac nbd <a€ hma + &a hme - 6m hae) Fc(c})

2
_ aa<(nzzc hbd + nbd hac) Fs;))

where we have eliminated the Euler-Heisenberg corrections, &« = € = 1 and axion terms for com-

parison with [55]. This matches [55] if the background electromagnetic fields are removed.

4.2.2 Effective Equations of Motion
4.2.2  Low-Frequency Equations of Motion

To summarize, the low-frequency equations of motion for the axion, electromagnetic and gravity

waves are respectively,

(G 0alp — " Ty 0c —m*) 6 = j (4.166)
0. F" +T°, F" =7 +V,P" (4.167)

_ 1 — _ _
Ray, — 5 Jab R=k(Tw+ € la) (4.168)
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where fnzj = 29" (0;94s + 0jGy; — 0;7x;) and the currents are

A

cdE \F o (4.169)

€0y (¢ Feq) - (4.170)

The Euler-Heisenberg corrections are

v Fub i 1 4 62 2 6 \/i—mn—op F F Fba
o T /=7 Bmt \ i ( —99 97 Fmo Fnp )

7 1 - - —
L aa _ —  _baef cdgh Fe Fc Ia )
+ 16 ( %_EG € fled P gn

The energy-momentum tensor contributions are

_ o = - — 2 e? 2_ —2 = —
Tab = gechaerf + aa¢ ab(b - 45 mA (E) gefF Faerf

e

_3 1F2+1(—mna G0u5+m*3) - L (& 2(ﬁ4_i(emnopﬁ F,)’)
Jab | 4 o \9 Om@n 90m4 \ 4 163 i op
_ 1 1
tap = —— (R = 500, ) (4.171)

where latter is the contributions from the long-wavelength gravitational waves. Importantly, it is

clear the background curvature is sourced by all of the background fields.
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4.2.2 High-Frequency Equations of Motion and Gauge Fixing

In summary, the high-frequency equations of motion for the gravitational, axion and electromag-

netic waves are
1_ 1/— — — - — 1/ —s —s
—3 Uhyg = —3 (vaa he, + ViV he — ViV, h) —3 (—R dab P — R o h“s) 4.172)

+ K (g T30 4+ 10D 4 a1V - %gab (g 70 4 7O 4 aT(1’1)>>
€ €

(5% 0ty = T Ty 0 = m2) 6V = —£ (=R 0,04 + hT",,0.) 3
= £ (=377 (Vo huna + Vb = Vi ) 22 ) &
. (-hab 0uly + hOTC, 0.
=37 (Vo ima + Vo by = Vo ) )6
— 5 (7 hey) T+ 75 e FurFYy

Aae (=e abed T (1)
— S (G hey) e FuyFyy
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0 T, P = = <9a((§‘” P g0 Fog) 4 (5 0+ b5 T, Fog

(4.173)

—_

5 gem gac gbd (ve hma + va hme - vm hae>ch)

Y <3a <(§ac h 4 g o) FS))

(\V]

1 —em —ac — v ivi v
- 5 g g gbd (Ve hma + va hme - Vm hae) FC(;))

+ 00 S 4 T, p0eb L £, pre
(07 (0%

where the energy-momentum tensor and currents are defined in equations (4.121)- (4.255), equa-
tions (4.138)- (4.140) and equations (4.158)- (4.163). To fix the gauge, we first make the redefini-
tion

- 1

hap = hap — §§ab h (4.174)

where h = g% hy, = —h. Thus, hey — 5 Jab h = hg,. After the shift, the high-frequency gravita-

tional wave equation of motion is

1_ /- 1 -
- §D (hbd — 5 9w h) (4.175)
_ v, fz“d—%gadfz A ﬁad_%gadiz AN (4.176)
2

2

1/ —s - 1. — . 1 .
Y (_R dab (has - §§as h) - R bad (has - §§as h))

i K(g 700 L O | o lg , <2 700 4 P01 &T(1,1)>>
e @ a; a a €

h_ﬁ}vhab_’ilab

\)
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‘We can now make the shift

hab = By = hap — 2V (&) h—h =h—-23"V,&. 4.177)

which results in the following transformation for izab and fL,

~ ~ 1 ~ __ __
hap — h;b = h;b — igab B = hg — 2 V(afb) + G ECd V&4 4.178)
7 7 —ab ] —a 1—(1— —ab7]. —ab 7 —cd— —ab
h—h' =g"hy = (9 "oy = 59 bgabh’) = 7har — 25" Vialt) + 797" Va &
4.179)

= }Al —2 gab v(agb) + 4§ab va fb
We can fix the £’s to apply the standard gauge conditions[65], [68],

V' ha =0 h =0, (4.180)

which reduces the total degrees of freedom of hap to five degrees of freedom.

124



4.2.2 Diffeomorphism Gauged Fixed Equations of Motion

After gauge fixing and relabeling gy — hap, the high-frequency equations of motion become

— =T hpg = Ry % + m( % TGO 4 7OV 4 oY (4.181)

(6%
(4.182)

abed T (1)
+ —¢ FabFC
44/—7q d

€

(o +T'g) PV = = (‘%((?‘“ P G0 Fog) 4 (5 0+ B g T Ed)
(4.183)
+e (@((?“C R+ g hee) ng)) Iy O gj/

VY, pWab 4 EF prab
(0

where we have used

T = e (Féi) Fog + Fae Fu)) + <z72r) ( helgmrgor Fs) Fono Foe Fiy
+ hefF (F( )be + Fae Fl(;f)> + 9 pmn gef gop (F(I)F

+ 2R g G T Fong (F(” Fiyp + Foe Fb(f)>> — hap ( Lgmger (T, F( ) 4 Frno F,E;))
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— 2
F T 000 0000 + 2 G0 — 2 (£) (gm"g"pgqr 7" FY Fouo Frup P
— 1L ehidhedels FYFaTFy, F,w) —gab(—g pmn gop (an FS 4 Foo an>) R 0,0 0, 0D

e? mn 0 T S 1) 7= T 1 =
+ Tt (g) prn g gt gt (FY P + Fru F) oy Fqs>

TOO = ~25% 2,53,01) — 4m? o) — i (£ (% hij’“edeng;,?Fdengm)

45 m4

TOD =GB Frpy Frng + 20" 0o 00 + g5 (4—) B G Foe Fa B

2 — = e
T(Ll) = hef achge) be+45 4 (%) hef gab gmnyop (FT(L]l?) Fmo Fea Ffb + Fe(%’z an Foa pr)
—4( $ g (P Fld + Fno P

2 2 = 5 - - =
= W 006 0n) + i <4—> ( hm gop gin gt (FS) FroFop Fys+ Fry FS) Frp Fy

7y
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The currents and Euler-Heisenberg corrections are ;' = 0 and

1A - _
()b _ - abcda ( F(1)> abcda (1) i
J —= o (€0, (P Fpy ) + ™0y () Fla) (4.184)
V=9 2< ‘
2
_P(l)ab_ 1 8 6_2 0 __—mn—op—bq—arF(l)f Ia 4.185
Va = = \mi \a) N=9G GGG Fo Pnp Lgr (4.185)
4 e? ’ mn —op =bq —ar (1)
* gamt (i) 0 (VI T Ty 1Y)
2

4
14 e\ ? 1 -
- aa baef _cdgh Fe Fc F(l)
T 1R0m! <47r) <«/—§€ ‘ /5 ed Zgh
1 —
( _Ebaefecdgh Fe(}) ch th) >

— 1 2 e\’ = . —ba =2
VP = (45m4 (E) 0 (V=7 @hea) T ) (4.186)
4 e\ 2 —
_ : (_) aa< / g (gmngop( —bq hor + —ar hbq) + 9 pmng opgbq ar) F F qu>
7 62 ’ —cd 1 baef cdghTm T I
— 360 A (E) (g hcd) ﬁa (ﬁe fe 9 Fechngh)

T () 1 1 _
. c aa —cdhc baef cdgthe Fc F
0t (i) 77 (55 ) T ToTo

The above equations mix photon-scalar dark matter through the F'F term (or terms proportional

. The photon-graviton mixing should be symmetric like Dolgov and Ejili. What about graviton

scalar mixing?
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4.3 Riemann-Normal Equations of Motion

To do the mixing we consider a locally flat patch (local Minkowski space). A locally flat patch is
needed as the axion-photon-gravity wave mixing requires knowing the orientation, e.g. the back-
ground electromagnetic fields [56]. Thus, a local frame of reference is required. To ensure local
flatness (with a vanishing connection) [65] and account for curvature corrections in the patch, we
consider Riemann-normal coordinates. We denote the local Minkowski coordinates with Greek

indices in parenthesis.

4.3.1 Preliminaries: Kerr Geometry

The Kerr metric is defined as

Z 2
ds? = — (1 _ m)dﬁ FE2dr? L nde? + (ﬁ +a?+ %smw) sin? 0 ¢’

b A
2r.ra sin® 6
- dtd
S ¢
rsT rera sin?
—(1-%) 0 0 —nragné dt
0 20 0 dr
= <dt dr do' d¢’)
0 0 = 0 e’

oy 2 . . /
__rgra sin© @ 0 0 % <T’2 4 CL2 4 LsTa” SlIl2 9) Sln2 0 d¢
Tq 5 Ts Y

(4.187)
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where

re=2GM Y =12+ a%cos’d

a=J/M A=r*—r,r+ad,

i = ¢ = 1 and we rescaled the coordinates as

1 1 1 1
O =—(rs0) =—0 ¢ = T—(rsqb) = —¢

71S rS S S

so all of the coordinates have units of length.

4.3.2 Preliminaries: Riemann-Normal Coordinates

(4.188)

(4.189)

(4.190)

The Kerr metric is not locally flat metric, i.e. around a generic point xy = {rg, 6y, ¢} the metric

does not reduce to the Minkowski metric. In the next subsection, we describe how to construct a

locally flat metric from Kerr geometry. In this section, we verify the important computations of

Riemann-Normal coordinates. Consider a local point 3 and a nearby point . We can define a

coordinate system around a point g so that

& =sa" +&.

(4.191)

Here ¢ are the Riemann-Normal coordinates. a* and &, is just numbers. Notice we use Greek

indices to denote the local Minkowski space. & is the original local point in Riemann-Normal
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coordinates. It is clear from the geodesic equation

dzer dee deP

 ——— =0. 4.192
< ds? T g ds ds ) £=to ( )

dee deP
I L (4.193)

g, ds ds

0
fa = d&™/ds are chosen to be linearly independent thereby implying
| =0. (4.194)
§=%o

As we describe below, it is easy to show that {* can be chosen so that g, (§) = 7),,,. Now consider
the geodesic equation,

d?z¢ . dabdaxt

o, 4.1
ds? e ds ds 0 (4.195)

where we are using general covariant coordinates (latin indices). Geodesics passing through the

point z (with s = 0) and initial four-velocity

dz*®
z® e i = U (4.196)
-0 |
The second and third derivatives of the geodesic are
d*x® u .
dSQ 5:0: r be S:Ougu()
d3z® d da® da* d*a® dz°
- —( =pe )= | _ope - 7 4.197
ds® |,_, (ds bc) ds ds L_o b ds? ds |,_, ( )
S ((9dI‘“ef — 2F“gffgde) ugugug
s=0
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where on the second line we used the second derivative equation on the first line. We have also
assumed the standard symmetric connection. It is clear x is a function of the geodesic arc length,

s. We can also expand z around s = 0 to get a solution to the geodesic equation. We can write

o 1 ok ,
T+ Z ask s=0$ (4.198)
o (s) 10%2™(s) 1 B3z™(s) 5
=y + +-—— - + ... 4.199
o 0s LZOS 2 08 |, “+ 3! 0s? 5208 ( )
1 1
=xy" + suy — 3 52 ro. ugy ug ~ 35 s (@dﬁgb - 2F”;bF“dg) ug uf ug + ...
s=0 s=0

where at second and higher order we have the curvature corrections. The initial 4-velocity, ug, are

four linearly independent and orthonormal vectors at x(j so that
ug' = ate™, Jan(x0) €2, ebﬂ = Nap (4.200)

where e, is the tetrad (velbein) and the greek indices are the local Minkowski indices. The general
covariant indices are the latin indices. We can rewrite the expansion the generic coordinates in

terms of the Riemann-Normal coordinates. Using equation (4.191), we find

z™(s) = xy' + sale”, ; st szoa“al’e“eb
—%s (0al"yy — 2173, 1%,) Szoa"a”aﬁ ehedel+ ..
= ) T el (€ ) (€ &) @201)
- % (05 = 2l) | en el el (§ — &) (€ = EE” = &) +

We can do a similar computation for a locally flat metric. The metric has the following Taylor
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expansion in Riemann-Normal coordinates

1 %9, (§) o
g,ul/<€> = Nuv + Ew e (f — 50) (f — fo)ﬂ + ... (4.202)

Again, the Greek indices are local Minkowski indices. At the origin, £,, we have Minkowski

geometry and the first derivative term,

aguu (€)
o&e

=0 (4.203)
§=¢%o

Guv (50) = N

vanishes as one would expect for a locally flat metric. We construct the locally flat Kerr metric in
the next section. We now work out the details of the second derivative term. We can rewrite the

third derivative of the geodesic equation, in Riemann-Normal coordinates and we find

d3&r d dee deP d?ee deP

- (Zpw &5 opw a8 & 4.204
ds3 |,_, (ds O"B> Is:[) ds ds B _, ds? ds ( )

de® deP der

= u — e ——
0= (1", s (4.205)

=&o
Equivalently, we have
(0575, + 05T 5+ ,1°,) L =0 or 0T | _ =0 (4.206)
=&o =0

For the RH equation, the indices are symmetric under exchange. Given the definition of the

132



Riemann tensor and knowing I'* ;_ (&) = 0, we can write

(Raﬂvé + Ravfﬁ)) ) - (aVFaBE - 85Fa67 + aﬂravé - 55Fawﬁ) ‘

§=%o

= (a»yraﬁ(s + a/@ra,y(s - 2 agra,yﬁ) L_&)

- _3 aé‘Fa,yB

&=¢&o

1 (6% (6% (6%
3 (R prs + IR 756)> ‘5_50 = Ol 75’5_50 (4.207)

where in the second to last step we use equation (4.206). We can also write for affine connections

1 1
Pabc<€> + FbaC(f) = 5 (gab,c + Gacp — gbc,a) + 5 (gba,c + Gbe,a — gac,b) = Gab,c (4208)
(4.209)
and

Oalabe(§) + 0al'vac(§) = Gavyed - (4.210)

Using equation (4.207), we can write

1
9045775’5:50 = _g (Raﬁfw + Ra’yﬁé + R,Ba'y5 + Rﬁ'yaé) {5:&) 4.211)

1
=3 (Ram + R/MQ le—e, (4.212)

1
= _g (Ra'yﬂ6 + Ra567> ’5:50 4.213)
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Thus, the expansion of the metric

G (§) = T — é(Ruau,8<§0) + Rugya(ﬁo)> (€= &)*(E— &) + ... (4.214)
= o 3 Fuas(60) (€~ &) (€~ &) + .. @215

As similar computation generates the equivalent contravariant computation

g€ =n"" + %Q”CR“GCB(&)) (€= &) (E—&)° +... (4.216)

In the next subsection, we compute the locally flat metric in Kerr geometry around a point x.

Other important equations include
e, = ! R: . + R" 4.217
aBv _g ( afv ow) ( . )

which is derived from the equations in (4.206). We can also write

I 506 = —% (Rs, + Ra) (E— &)+ ... (4.218)
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4.3.2  Constructing a Locally Flat Metric from Kerr Geometry

To find g,,, (§) for Kerr geometry, we need to compute Rz.q5(&o). We can write

ox® 0zt oxc Oz
) ‘ Racbd(xO) (4219)

() = (G 5 - o
ds 0x° ds OxP ds 0z° ds 0z
— ((@ - ) (0§5E> (@ ds) <0£5 o )) ‘ ORacbd(Zco) (4.220)

= €)' (8)€()€"5) Racta(0) (4.221)

where we have used equation (4.200). For Kerr geometry, we have the following for the tetrad

vector e()‘%

A
e dz™ = o 5 (dt = asin® 0 dg) (4.222)

¥
el dy™ — N dr (4.223)
e dz™ =/ df (4.224)

@) m sin 6 9 9
e dx™ = —adt+ (r*+a°)d 4.225
where

Y =r%+a®cosd (4.226)
A=7r%+a*>—2Mr (4.227)
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We used a simple Mathematica program to compute

Rapsy(§o) = ea(a)eb(g)ec(y)ed((s) Jae R pa(T0) (4.228)

= )€ (51 65) Catore”) B spal0) (4.229)
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As an example, we can choose xy = {to, 70,600 = 7/2, ¢o} as well as a small but non-trivial,

we get the following components of R (),

R 291 (T0) = R 331(T0) = —R0202(:L“0) = —R0303(m‘0) =

2aM (4M — 31q)

R 301(%) = R! 031(%) = o
0
Q(ZM(—QM + 7’0)
R2302($0) = R2032($0) = A
0
6aM
R3 101(IO) = _RO 131($0) = 7‘3(7“0 _ 2M)
M
R? 121(20) = R’ 131(370) = _7“8(7“0 —2M)
4aM?
R3303(I0) = _30003(%) = v
0
—2M + To
R2332(x0) = _R3232($0) = T
M(—2M + o)
R2002($0) = _R3003($0) = A -
0
2M(=2M + 7
R 001@0) = ( 4 0)
T
2aM
R3202(x0) =773
To
2M
R’ = o T
101(%0) r23(—2M + 1)
6aM
R3202($0) = -
To

M
To

(4.230)

(4.231)

(4.232)

(4.233)

(4.234)

(4.235)

(4.236)

(4.237)

(4.238)

(4.239)

(4.240)

(4.241)

Recall, a has units of r and the Schwartzschild radius is 7, = 2M in these units. The curvature cor-

rections go as O(1/n) where n is the number of Schwartzchild radii x is from the event horizon.

The key point is as the particle goes from patch to patch the curvature corrections become more

important and alter the local Minkowski space computations.
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4.3.2  Other Important Equations

The gravitational wave equation of motion in Riemann-Normal coordinates is

1_ = QO (1,0) | (0,1) ay 1 O (1,0) 4 (0,1) (1,1)
_§Dh55=R 5a5hU+K(ETaﬁ + 1,5 +al,g ——gab<zT +T +aT )

2
(4.242)
where
D hss = (gf“aéaﬁ - g’f’f;@ hs (4.243)
= o Belehas + 5 0% R (&) (€~ €)' (6~ &) (Pcdehan) + - (4.244)
- (nf” 426 RE opl60) (6~ @) (€~ &0)° + . ) (% (Rew @)
+ R (€0) (€ — &) + ... Orhgs
= 0 Geduss + 51 (R (60) + P, (&) (Onh) (€ — &) (4.245)
42 6% R (60 (Gedehan) (€ — €)' (€ ~ &)
+ 5 0B (@) () + B (60) (0ahan) (€~ &0)(E — &) (€~ &) + ..
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R 505(6) = 0aT%5(6) = 05T %a(€) + T 55()T %0 (€) — I 50 (T (€)
_ _% 0u( (B3, (60) + R, (60)) (€ — &0)")
(R lE0) + R () (€ - €0)")

(R'sq, + R'a5y) (RO + Ro) (€= &)7 (€ — &)

+

O~ W~ Ol—= O~ Wl
&

_l’_

(RLaﬁu + RL,BaV) (Rabé,u + RU&LM) (5 - 50)# (6 - fO)V
(s (€0) + Ras(€0) = Rsgal60) = R%50(0))

(( R'sp,(&0) + Rig5,(&0) ) (R0u(60) + R%,,(&0) )

+

~—

= R%.s(80) + %(( R's,(&0) + RLB&/(&J)) (Riau(fo) + Rgaw(fo))

(4.246)

(4.247)

(4.248)

RLQBV(SO) + RLﬁaz/(&))) (RUL&L(&)) + RU&#(&)))) (5 - 60)’/ (5 - fO)u +..

(4.249)

- (RLaﬁy(fo) + Rbﬂay(fo)) (Riau(fo) + RUm(fo))) (E—6)" (E—&)" +...

Before moving on, we note the leading term is just R%,5(§0) = dal%5(S0) — I51'%,(60)-
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From now on we keep all the term to first order in (£ — &y)“. We can write out the equations of

motion

_% 77£K aﬁa”vh’&s = é ngn(ﬁ)\énu(&o + E)\fiflx(&]) ) ( (3/\}155 ) (g - fO)V + Eaéaﬂ(&]) h‘aa

(4.250)

O (1,0) | (0,1 1y 1 Qo , ,
+H<ET55 +Tge + a Ty —yma(zT(l“)+T(°1)+aT<“>))

€

(1*°0,05 —m?) ¢V = — (0,056 ) ™" + € h*? (0,05 ¢'V) (4.251)

Q

1% (R'y5, (&) + R san(&0)) (0.01) (€ = &)"

1

3 (Ruaﬁu(go) + RHB@V(SO)) (%5) hoP (€ - &)”

+ e h® (R 5, (&) + Rsa, (&) (€ — &)7 (0,0

A _
Oé_ 6abcd FabF(;)

+ C
4y/—7

+
ROl Wl

w

(o + ) FO = 2 <a“<(§“ ' + g hee) Ed) + (g% B + hee gt Fifcd>

(4.252)
te <aa((gac pbd 4 g hac) Fc(;)>) yOLn gj/
+ vap(l) ab + E vaplab
Q

If we average the background fields by a suitable averaging mechanism and if the background

fields are indeed static on the length scale of interest, we have:
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S Bctehas =~ Fioal@) Y1 — = (R (60) + Frg(60)) (€~ &0)” ) b

(4.253)
K < @ T(l 0) T(o 1) % %5( @ 10 L .1 >)
€ €

where

1 _ p—
(52 R ()R B 0 (3)
P —Se€ (1 — TP e 1
45m4 (47r> (<F F“F5>F"P)+<F"PF F5>F()
— 7o —_ = =
S D)

~

_ 1l— 1 ,— 1 T
Tc(u%l = 7h€d < FacFﬁd > o hab< R _m2 Cb > + 77OC/B< 5 nop an Fmo > e
1 o 7 T )2
a — mnomenFo >
”“’(90 g(zm) < "6 2 )
4 2
1 (Vo (5 7,

90 m?
2 2 o _
t ( ) (h Fac Fsa By + 20 5 57 (Foe Foa Fog Py ) )

D

W
g |

1%
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Notice the energy-momentum tensor features transitions between graviton-photon and graviton-

dark matter.

(naﬁaaaﬁ - <77a6 aﬁu 50 + R ﬁal/(fo)) (5 - é&o)V > aﬂ¢(1)

* E 3 ( o (€0) + B30 (£0)) (040) K7 (€ — &)"

1 — — v
+ §€ haﬁ (Ruaﬁl/(g(]) + R#ﬁau(go)) (5 - 50) (0H¢(1))
+ 4\/j§ 6abcd Fab Fc(;)
(4.254)

where

1,1 € i il L 2 62 ’ ef.mn,op o= = &
7" = —he! (F;Q Fiyf + Foe F,ff)> t (E 2 Wy P B, Fro Fae Foy
(4.255)
+ bl T (Fffe) Ty + Fae F},})) + 2 B gged gp <F,§;> Foo + Frp T ) Foo Fo

o - 1
+ 2R T P Fy Fong (F;? Fo + Fae F,f}’)) — hy < 17 (g B + Fono D)

_ — 2 e\ 2 —
™ 0 OV + m2 M) — yEg! (E) (nm” 1 " 0t EY Fr Fop Fos

7 . -
T ehiikedels PO F o F g th-) - nab< —— WGP (Fp FS) + Frno FL))

_ 2 2\? _
— B 0 0V + =) g g g (B Fono + Fr ) Fup Fo
45m} \ 4w

142



and

b % <€abcd6a (g_b FS)) 4 eabedq (¢(1) ch)) (4.256)

a (0™ 0P "™ () Frp Foy) (4.257)

4 € ? mn o ar
<—) Oa (™" 0P N 0" F o Frp FV)
2

2
e_) 0, (ebaefECdgh Fef F Fg(,ll)>

7 e?\’ b dgh p(1) & 7
+ (—> O <e uef ecdoh (1 chth>

2\ 2
VPt = \%( : (Z-ﬂ) o ((rnea) F* ) (4.258)

2
) 2 (O (e o ) 2 ) B oy )
2

(ncdhcd) (?a (EbaefGCdghﬁefFCngh)

aa ((nthcd) 6baef ECdghFechngh>>

143



We can now set FSB) = F,5 and ¢!V = ¢. After averaging, the high-frequency equation of

motions are

1 " 1 . -
3 %" OcOhgs = — < R 505(80) :E> e — s <77€N(R)‘§W(€O) LR () ) (6~ €D)V> Onhss
(4.259)
- % (<F<5“> Fy) + FY L) + (056 056 + (056 050
— Ty ( % <Fa,8 >F(1)a'8 + <6m$> 6m¢(1) + m2 <5>¢(1))
B 45 mg (E) (<F Foc Fﬁ > F"p + <an F Fﬁ > Fae (4260)

1 T T2 S 7 1] e = T T 1
B (P Py = Lo (B, T, oy i)

= = 1l— 1 - —
- KJT/g’g’l) <_th Fachd - hab(sz2 + = (nmn m¢ an¢ + m2 ¢2)>

2

1 - = 1 S
— Nap ( _5 hmnnop an Fmo _ 5 pmn 6m¢ anqb)

tha = (£ 2(74_1(€mmpf 7))
“®\ 90mt \ 47 16 mn £ op

4 62 ’ mn op qr st 7 I 2
— Tab W E h nen-n FmanpF

2 e2\? — = —
+ I m4 (E) (hcd Fac de F2 + 2ncd hmnn‘)p Fac de Fmo F’n,p))
K
2
K

2
- (4.261)

(6]
+ 7755? T(1>0)

(0,1)

+ nﬁgT
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(naﬂaaaﬂ - m2) ¢(1) =€ haﬁ (aaaﬁ ¢(1)) - %naﬂ (R“aﬁu<§0) + Ruﬁau(&])) (al-lfgb(l)) (5 - SO)V

+ %E (F’uaﬁl/(go) + Euﬁau(fo)) (au¢(1)) haﬁ (5 - 50)11

Ao —
+ T Eaﬁué FozﬁF,,(;)

QDB — E (107 0,1 1 0,1 Fog + € (™7 0ah™ + 1% 0,0°7) FLY
(0%

%)
(4.262)
1 — —
e (0B 0 W) Qa4 g (R (G) + B (€0) FO (€~ &)
1 D ) nl v
- 25 (77&7 h’ﬁa + ha’y 77’85) (Ruauu(&]) + Ruuoa/(g())) F’Y5 (5 - 60)

+j(1)b+£j/+vap(1)ab+ Eﬁapmb
(0] (0

4.3.3 Riemann-Normal Equations of Motion

The equations of motion are in Riemann-Normal coordinates are:

4.3.3 Other Important Equations

For a point z in the patch, the low-frequency, background metric in equation (4.1) can be expanded

as

1 d

gab(l') = gab(xo) + 9 Yab,cd (l’ - mo)c(x - IL‘()) T+ (4263)
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Given the above expansion, we can write the background connection and background Riemann

tensor as

Rmnab = gan,mb - gam,nb (4264)
=m 1 —m —m
I abn — _g (R abn + R ban) . (4265)

In the next section, we expand around the origin to derive important relations.

4.3.3 Important Equations

Given this expansion, we can write the expansion of the background connection as

1
" () = T (w0) + T (@) (x — )P + 3 "t (2 — 20)?(z — 20)" + ... (4.266)
T=x0 T=x0

where ', (zo) = 0 by definition of the Riemann-Normal coordinates. We can substitute in for the

background connection is and background Riemann tensor to get the following expanded metric

1

gab(x) = Nab — g 62 Eacbd yc yd + O (63) (4267)
T=x0
1 o oo . ,
g (z) =n™ + 35 9 R .ql Yy HO(B). (4.268)
T=x0

where x is a general point in the patch, x = zy + Sy and [ is a dimensionless, perturbative
parameter. 7, is the Minkowski metric. We have assumed a Lorentzian manifold. The radius of
curvature of the background metric is 5; (3 y sets the length scale of the patch. Our analysis is valid

for Sy < L. The modified background connection is now

=m m

1 — —m
I ab(m) = _gﬁ (R abn + R ban) .

y"+0(68) . (4.269)
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We can substitute in to find the expanded background Riemann tensor as

"} S S =M =S =M =S
R g =Tava = Laap + TapUina — Daa Tt

Yy (4.270)

r=x0

1 —s —s
yn + g B (R dan,b + R adn,b)
=0

map + Es amp))

1 —=m —=m - —=s
- §ﬁ2 ((R dan + R adn) (R mbp + R bmp))

1 —s —s
= _g 6 (R dbn,a + R bdn,a)

S n

1 —m —=m =
+ §ﬁ2 ((R dbn +R bdn) (R Yy yp

r=x0

yryP +

T=x0

We now choose a coordinate system where g,,(z9) = 74 and average the background quantities

to find

(> =~ 5 B R 79"+ O (5)

1
= Ty~ 3 B2 Aw + O (8) 4.271)

1 —a
<§ab> = 77ab + 552<§b6 R ced
1
_ nab i 3 52 A® 1+ O (53) 4.272)

T=x0

. ,yc yd> +0 (63)

—-=m

—m 1 —m
<Fab>: _§B<(R abn+R ban) .

_ _% BA™, + 0 (6) (4.273)

O

—=m 1 —m —m
(Tape) = =3 B e+ Blhane) | _

- _% BAT, .+ O (5. (4.274)

o)
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where

A = Roera|  y°y*) (4.275)
T=x0
Aty ={(R oy + R ) | ") (4.276)
T=x(
abc - <( abn ban) R yn> (4277)

and As retain information on Schwarzschild radius. The indices are Minkowski indices in the local
patch. We assume the external fields are homogeneous over the patch. The averaged Riemann

tensor is

Yy (4.278)

T=T0

1 —s —s
yn> + g B<(R dan,b + R adn,b)

T

T=x0

Yy YR+

<(Emdan + Emadn) (Es mbp + ES bmp))

= —% B (AS dba — As da,b) + = 5 (Amdb AT Amda A mb> +

T=x0

We combine these quantities to re-express the wave equations.
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4.3.4 An Estimate

We can estimate the values of the quantities listed in this section. We consider, e.g. the Kerr-

Newman metric for the background geometry

7“2—7“57“ > a? rsr—r2
ds* = — (1—1— q 5 )dt2+Zdr2~l—Zd92+ <T2+a2+¥sin29) sin? 0 d¢?

4.279)
2a (ryr — rg)sin2«9

- dtd
S ¢

where r, =2G M,a = J/M,% = r*+a? cos?0, A = r® —r,r+a*+r2 and r2Q* and ry = Q?/
Please note, astrophysical black holes are known to have a minuscule charge. We consider () to
be effectively zero throughout these notes. We seek to show this background metric is locally flat
for a local neighborhood of points around point P. For this example background metric, we will
reproduce equations (4.267) and (4.268). For there we will be able to reproduce the results of the

previous sections for this example.

Locally Flat Metric: We can make the transformation on the background metric in equation (4.279)

;o ox™ ox"
915(&") = gmn () 77 =52 (4.280)

where z is point P. We henceforth set z = (0. We can Taylor expand the metric

8gmn(x) ) 1 agmn(x) n
mn = mn0+ . S 4.281
G (%) = g (0) o |, 2 Dl og's z=0x x ( )
= gmn(0) + Aping 2" + Bunys 22’ + .. (4.282)
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and around point P

ox'™ a1 ox™
l’ —
art | _, 20202’ |,_,

™ = 2"(0) +

o+ (4.283)

= K™ 4 L™ a2’ + M™ 2 (4.284)

vls

If we require 2’ = 0, the transformation on the background metric at the point P is now
915(0) = gimn(0) K™} K™, (4.285)

where K is a matrix which diagonalizes the background metric. In general, K has n? degrees of
freedom (dof). ¢,,,(0) is a symmetric matrix with n(n + 1)/2. Thus, n(n + 1)/2 dof of K are
needed to diagonalize the matrix leaving the anti-symmetric components n(n — 1)/2. We use these

degrees of fix ¢,(0) = n;s, the Minkowski metric.

4.3.5 High-Frequency Gravitational Wave Equation in Riemann-Normal Coordinates

The gravitational wave equations is

1_ —s 1
5 Ohg = R g % + li(g Ta(;,o) + T(S))’l) + aTa(;’l) ~ 5 Yab ( 20 4 7O 4 o7 ))
€ €

(4.286)
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where we can write

7°°VaVehoa = 3 VoV hig (4.287)

_ g <aa (O has ~ T hea = Ty hie) T (6 g = Tl hga — Ty

~ T (0 hea = Tl hga = Tgheg) = Tag (0 hue = Ty hge = T hbf))

={g") <5a5c hoa = 0a T ) hea = T ) Oahed — (0al o) hbe — (T'eq) Qahie

— (T 1) Oc I (4.288)

+ T T hpa + T Ty g = T O hea + T o) hpa + T T heg

- T e+ T+ T

= 1040, hpg + 1% (—<aa T hed — 0a T ) hoe — 2<T ) 0q heq — 2<T°,1> Oulige
(4.289)

— (T 0 b + T Tl hpa + T T by + (T T B

F T by + T g+ Ty

B () et = (o o = 2000 s = 2 ) e
(4.290)

— (T 0 i + T Tl hga + T Do) by + T T g

+ <Feab ffcd> hep + <fead chb> hfe + <Fead ffce> by )

— 190,40, hpa + % Bne ( A% ohea + A%y e + 2 A%, Ogheq + 2 A%,y Ouhye
(4.291)

+ Aeac O hbd) + ...
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In addition, we have the new components of the energy-momentum tensor

TGO = GINFop) FO + GINFoe) B +(0a0) 08 + (068 )0V (4.292)

4
45m?

(G >< % (GG Fup) Flo) + (G ) (0m6) 0nd™) + m?(d) 01

62 ’ —ef =mn —o T T - T T
<E) (575" G ) (Fono Fae Fogy FY) + (Foy Frno Fug ) FLY )

4 e2\? PN M) hiik.d 7T - = —
= —mn —op —=qr —Ss i efg s L ' (1)
90 m! (47r) ( 9" GP GG ) F oo Frp Fgs) Fry” — "¢ g<4§FdengFm>ij))

=nf <<be> EY 4+ (F, Fb(})> + {000 0pdY + (0 >0upV (4.293)

4 62 ? ef, mn, o Snl R nl - T Enl
_45mg <E) 77f77 np(<FmoFaerf>F7§11;)+<anFmobe>Fa(;))

1 _ _ _
— Nab ( 5 nmnn0p< Fop > F?Sllo) + nmn@m@ an¢(1) + m2< ¢ > (b(l)

4 62 ? r st/ 2T 1 7 1] e Eni niES nl 1
_90m3 <E) (77‘1 ' F FqS>FT(t)—Zeh]kedf9<FdengFhi>Fj(k))> + ...

2\ 2

(0,1) cd 2 € ( cd 2 —cd —op 1, mn )

T = —h“{(F,Fpg)+ — | — hCF e Fra >+ 2 P h FoicFvaFro
ab < ) 45m? (47?) < b F7) g9 < bd p)

(4.294)

ha ST 4 2 (7 00+ 2T - —— (S 2(F4_i(emnopﬁ F,)’)
w\qh T\ me 90m? \dn 167 e op

e\’ 2
(_> hmn gop gqr gst Fmo an F )

1 — = 1 - -
— Gl —=h"GP Frp Frno — = h™" O Op,

90 m4

e

We can account for this by requiring the external electromagnetic fields to numerically vary slowly
over the size of the patch, perhaps with a phenomenologically modeled profile. We will likely

explore any additional experimental consequences of this in future work.
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4.3.6 Averaging

The high-frequency waves described in the previous section have a wavelength that is much smaller
than the characteristic length-scales of the background curvature. This is the geometric optics
regime. If we consider some suitable covariant averaging [59]-[64], the background quantities
become G, = (Gav)> Raved = (Rapeay and Ry, = (Rg). As well, I consider ¢ = (¢) and
F,, = (F,;) as background quantities. Before I leave the averaging procedures to the appropriate

graduate student, we note the Brill-Hartle average of a tensor field, A, is defined by

(Ao = f 02 /=g (@) g (2, 2) g, (2, 2)) Aca (2, 2) (4.295)

where f(z, ') is a weighted function that decreases to zero when the difference of z to 2’ is greater
than some scale d. Thus the value is finite. Understand all averaging schemes have a weighting

function that goes to zero when the difference is greater than a scale.
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4.4 Eikonal Approximation wave mixing
Rys= Rog + % (-D hoa — VaV h + V,Vy h%) + V, V4 hqb) + % (—D (hor h'g) = Va Vy (K% R7,)
(4.296)
+V, Vi (R 7)) + V,Va (he A7)
_92v, (ham(vd [ v S v hbd)> 42 vd(ham(va B + Vo hona — Vi hba)>
+ (Ve h®, + Vo b — GV, hae) (Va b + Vi ey — G99V hya)
— (Ve h® + Vah?, — GV hae) (Vo b + Vi b, — G Vi, hba)> +O(€)
— Ry + % (—D hoa — VaV h + V,Vy h') + V, V4 hqb) + ; (—D (how hTy) — Vg Yy (h% B7,)
(4.297)
YV (W BT + Y,V (h BT) — 2 (hamvavd By + B Ny B — O™V oV hbd>
+ 2 ((Tah™) (T hot) + (T ) (T hna) = (Vah™) (T ) ) (4.298)
+2 (hamvdva By + hV gV Bona — hO™V ¥, hba)
+ (Vo i) (Vah%) + (Va h%) (Ve h%y) — (Va h) (G Vg wa)
— (@ Vin hae)Va % = (G Vi hae) Vo By + (G Vin Pae) (G Vg hva)
— (Ve h® + Vah — GV hae) (Vo 1)
+ (Ve h® + Vi b — GV hae) (Vi h,)
(

— (Ve %+ Vah, = 5%V hae) (37 Vom hba)) +0(e)
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In the lagrangian, we can use integration by parts

Ryg= R+ % <—D hoa = VaViph +V Vi b+ VVq hqb) (4.299)

2
+ % <—D (B B7)) — Va Vo (B B7,) + Y,V (R 17y + Vo Va (A% 1) (4.300)
_9 (hamvavd hew + W™ Ny By — WOV, V. hbd>

+ 2 —h""VaVa by — K VaVy hing + K™ ViV, hba> (4.301)

/N

+2 (h‘””VdVa B + W™ gV B — W™V gV hba>

— WV, Va ke, — h% VoV, by — G he VY, hoa

— 7" hae Vi Va b — (0" Vi hae) Vo by — G G hae Vi Vg hg
+ WV V0 b, + W%V g Vo B, — Ghae VoV B,

— WV B, — WV Ny hE, + G hae VoV b,

— (T Vi hoa) Ve B + (G Vi hoa) Va % — (G Vi hoa ) GV hde)> + O(e)
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Ria =R+ % (—D hog — ViV h +V Vi b+ V, Vg hqb) (4.302)

2

+ g (—D (b Wg) = Va Vo (B 1) + V0, () + Vo Va (1) (4.303)

_ 9 pem (vavd By + VoV hond — VoV hbd>

Y (va Vahe, + VaVy he, + GV, hbd)

= 9" hae VinVa by + G hae Vi Vi by — %" G hae Vi Vg hag
+ RNV b, + he Vg Vo b, — ha 1S,

— RNV, B, — WOV Vi hE, + G hae VoV B,

+ hoaD B + MgV Vg ™ — IV, Y, hdm) +O(e)
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Denoting h = h? , the Ricci tensor and scalar are

2

Rog=Ro+ % <—D hoa — VaViy h + V,Vy b, + V,Vy hqb) + % (—D (how h7,) — Va Vi (B® BT,)
(4.304)
+ YV Yy (W2 17,) + V,Va (h BT
_9v, <h‘””(Vd By + Vi o — Vi hbd)> 42 vd(hm(va Bt + Vi o — Vi hba)>
+ (Ve h®, 4+ Va B = GV hae) (Va By + Vi b — G2V hig)

— (Ve h® + Vah?, — GV hae) (Vo b + Vb, — G Vi, h,,a)> + O(€)

2

— R+ g (—D hoa — VaViyh + V,Vy b, + V,V, hqb) + GZ (—D (how h7,) — V4 Vi (R® BT,)
(4.305)
YV (W BT + Y,V (Y BT
_9v, (ham(vd B + Vi o — Vi hbd)) 42 vd(h“m(va By + Vi o — Vi hba))
+ (Vo h) (Va b + Yy by — GV hod) — (@ Vo hae) (Va b + Vi B — G0V, o)

— (Ve h%y + Vah®, — 3%V hae) (Vo h + Vy BS, — 57 Vi, hba)) +O(e)
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The €2 terms can further simplified to find

—gghvg Vi (hbr hrd) = —gghvg (hyr Vi, hrd) — gghvg (hrd Vi hbr) (4.3006)
= _ggh (vg hbr) (vh hrd) - ggh (hbr ngh hrd) - ggh (vghrd) (Vh hbr)
— " (W, V V1, hyy)

= _299h (Vg hbr) (vh hrd) - ggh (hbr VeV, hrd) - ggh (hrd VeV hbr)
—VaVy (R R") = =Va(h®. Vyh",) — Vg (R, Vy h%) 4.307)
= —(Vah®) (Vph",) — he. V Vo b, — (Vah',) (Ve he) — R V4V he

= —2 (vdhar) (Vb hra)

Y,V (R B)) = V, (k% Vy b)) + YV, (h", Vy hY) (4.308)

= (Voh%) (Vo h'y) + WV Vuh'y + (Vh'y) (Vi hY) + 1y VoV I,

Vo Va (R h%) =V, (KN 4h") + VYV, (R, Vah?) (4.309)

= (Vh0) (Vah'y) + WOV Valy + (V') (Vaht) + 1V, Vo,
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as well as

2V, (ham(vd Bt + Vo Bond — Vo hbd)) = 2V, (B g ) — 2V, (B i)
+ 2V (h""V 1 hia) (4.310)
= —=2(Voh™) (Vi hmp) — 207"V (Vg B
— 2(Vah™™) (Vy hina) (4.311)
— 21 Vi Byna + 2(Voh™™) (Vo i)
+ 20"V V1, g
= —2(V,h™) (Vi hup) — 20"V Vg hiy
— 2(Vah™™) (Vb hina) (4.312)
— 21"V oV Byna + 2(Voh™™) (Vo Tia)

_|_

2V, ( ™ (Vg By + Vo hona — Vi h,,a)) = 2V (W ho) + 2V (V) s
— 2V ( hV 1, ) (4.313)
= 2 (Vah®™) (Vg hy) + 20V gV,
+ 2 (Vah™) (Vi hna)
+ 20"V 4V hina — 2 (Vah™™) (Vi hia)
— 20"V 4V B
= 2 (Vah™™) (Vo hum) + 2 (Vah™™) (Vi hia)

—2(Vah™™) (Vi)
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and

(Ve he, + Va b = GV hae) (Va by + Vo hey — GV g o) (4.314)
= (Veh',) (Vah%) + (Ve %) (Vo hy) =g (Ve h%) (Vg hua)
+ (Vo ') (Vah%) + (Vo h%) (Ve h%)
=G (Vo b)) (Vahea) = 5" (Vi hae) (Vah%) =G (Vin hae) (Vi h%)

+ gam (Vm hfae) (geq vq hbd)

—(Veh® + Vah% — GV g hae) (Vo % + Vi b — G Vi, hyg)
= (Ve h%y) (Vah%) + (Ve hy) (Vo b)) = G% (Ve hy) (Vg hua)
+ (Vah?) (Vah) + (Vah%,) (Vi %)
=3 (Vah?,) (Vehw) = 7" (Vi hae) (Va h%) — G (Vin hae) (Vi 5S,)

+ 7" (Vi hae) (9 Vg va)

We can sum everything up to find

terms = (Vg hay) (Vy h) + (4.315)
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(4.316)

terms =
— 299" (Vg ha) (Vi h"y) — ¢ (hr Vg Vi b)) — g7 (W', V 4V hiy)
— 2 (Vghe) (Vyh",) — 202 VgV, I,
+ (Vh?) (Vo h'y) + WOV VR + (Vh'y) (Vi hY)
+ WV Vi he (V) (Vah™) + hi VY, Vh",
+ (Vgh"y) (Vah?) + b,V Vah® — 2(V,h™™) (Vg hunp) — 28V oV g B
— 2(Vah™) (Vo hind) — 207"V oV hing + 2(Vah™™) (Vi hwa) + 207"V oV hipg
+ 2 (Vah™™) (Vo has) + 2 (Vah™™) (Vo hna)
+ 2RV gV hing — 2 (Vah™™) (Vinhsa) + (Ve h%) (Vg BS,)
+ (Ve h',) (Vi hey) =3 (Ve h,) (Vg hea)
+ (Vo h%) (Vo) + (Va h%) (Vo %) =3 (Vo h%) (Vg hea) = 5" (Vin hae) (Va h)
=" (Vi hae) (Vo 1) + G (Vin hae) (% Vg hoa) (Ve h%) (Va h%)
+ (Ve b)) (Vo hS,) — G (Ve h'y) (Vg ha) + (Vah,) (Vo h%) + (Vahe,) (Vi h5,)
— G (Vah%) (Vghea) — 3™ (Vi hae) (Vo h%) =G (Vi hae) (Vi R,)

+ gam (vm hde) (geq vq hba)
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2

R=R+e (—Dh +V, Vs hqb) + EZ (—25 (hor ™) + 2V Y, (B9 R™)

— 2V, (R (2Vah®, = Vin b))
£ 2V (B (Va i + GV i = Vi %)) + (V) 2V b = 599, h)

— (Ve h™ + 3"V b — g“ N h2) (Vo b + Vo b, — G Vi, hba)> +O(é)

4.5 Appendix: Explicit Calculations

4.5.1 Einstein Tensor Computations

The covariant and contravariant perturbative expansions for the metric are

1
Gab = Gop + € hap + 3 €? hae S + O(€%) (4.317)

1
gab _ gab o Ehab + 5 62 hac hcb + O(ES) (4318)

We compute up to O(e3) in order to better understand any ¢ dependence of the mixing matrix.

Given the metric expansion, the perturbative expansion for the connection is
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1
Fabc = 5 gam <ac Gmp + ab Ime — am gbc>
1 1
= 5 (gam — e hem 4 5 62 hac hcm> <8C G T+ 8;, Gme — &n Jp € (6c hmb + 3;) hmc — am hbc)

(4.319)

62

+ 5 (ac (Bae 1%) + 0y (Rona D) — O (i h@)) + O

1 €
=35 gam (ac gmb + ab gmc - am gbc) + 5 (gam (ac hmb + ab hmc - é’m hbc)

\)

— (aC gmb + ab gmc - am gbc) )

2
+ EZ (gam (ac (hmc hcb) + ab (hmd hdc) - am (hbd h’dc)) —2Rp"" (aC hmb + ab hmc - am hbc)

+ haC hcm (ac gmb + ab gmc - am gbc)) + 0(63)
=T be T % <§am ((’}C R + (9b Rme — (9m hbc) — hom ((70 Gy T+ (?b e — (3m gbc) ) (4.320)
+ — (gam (ac (hmc hcb) + ab (hmd hdc) - am (hbd h/dc)) -2 ham (ac hmb + ab hmc - am hbc)

+ h* hcm (ac gmb + ﬁb gmc - am gbc)) + 0(63)

a €

=T + 3 " (ac Bon + Op Pne — O h,,c) —eh*™g, T, (4.321)

62 —am c d d
+ (7 <6c(hmchb)+8b(hmdhc)—é‘m(hbdhc))

_ 9 pam (ac By + O B — O hbc> + 2 hoe fmbc)

€

re =T,
be bc+ 2

gam (Vc hmb + Vb hmc - Vm hbc) (4322)

2

(7 (T 1)+ 9 g 10 = T i 1)

_ 9 pem (vc B+ Vo B — Vi hbc>> + O
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For the ¢/2 term, we calculate

[ (Vc howo + Vo hme — Vi hbc> = (4.323)
gam (ac hmb - dec hdb - dec hmd + ab hmc - deb h'dc - dec hmd - am hbc + fdbm hdc
+T hbd) =
gam ac hmb + ab hmc - am hbc - Tdmc hdb - fdbc hmd - deb hdc - dec hmd + fdbm hdc
T, ) -

am —am (T4 =d
g ((’/3 mb T ab me am hbc) —4g <F be hmd +TI be hmd) =

g‘"” (6 hmb + ﬁb me ﬁm hbc) -2 gamfdbc hmd .

164



We compute the €2 terms,

gam (vc (hme heb) + vb (hmd hdc) - Vm (hbd hdc)) —2h"" (Vc hmb + vb hmc - vm hbc) =
(4.324)
gam ((90 (hme heb) - 1—‘fmc (hfe heb) - Ffbc (hme hef) + ab (hme hec) - 1_‘fmb (hfe hec) - chb (hme hef)
— O (hoa h%) + T, (Rpah%) + T (hog hdf)>

— 2 pom (ac By — 0L By — T, B g + O e

— T hpe =T, B — O B + 19, hge +T9, hbg> -

7" (@ (hone 163) = T cthpe ) = Ty, (e 1) + 04 (e )

= T thye) = T (o ) = O (s 1)

+W+W> — 2 (achmb ~Tihy,

— chb hmf + ab Pme _%@_ chb hmf

— O e +%+M) =

g (ac (e h%) + O (hune 1) — O (Paa hi)) —2h" (ac s+ Oy hne = Orm hbc>
- 2§am 1—‘fbc (hme hef) + 40" chb hmf =
g™ (ac (hame h%) + 0 (e 1) = O (Bt h‘i)) — 2 (ac P+ O hame — O hbc>

+ 20 R T e
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We now compute the Riemann tensor, k%, = 0. I'%, — . 1'%, + 1'%, T'9, — I'%,. I'%,.. Each of the

terms in this equation are

0. 1%, = 0.T 0y + % Oc <§am (Vd Py + Vi hpa — Vi, hbd)> (4.325)
2

€
+ o, (aam (Vg 1) + V4 (g 1) = T (g 1))

— 2 hom <Vd B + Vo hima — Vi, hbd)) + O(€3)
_ad Fabc = _ad Fabc - g ad (gam (Vc hmb + Vb hmc - vm hbc)) (4326)

62
= 00 (77 (T 1) + Vil 1) = Vo (g 1)

_ g pam (vc hw + Yy by — hbc>> +O(e)
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—a —e € [ _emTa
Face Febd =T ceF bd T 5 (g r ce (vd Py + Vi hing — Vi, hbd)

+ gam Febd (Ve hmc + Vc h'me - Vm h’ce))

2

+ GZ (gem Face (Vd (hmq hqb) + Vb (h’mg hgd) - Vm (hbg hgd))

— 2R face (vd hmb + vb hmd - Vm hbd)
+ geq yam (Ve hmc + Vc hme - V’m hce) (vd hqb + Vb hqd o Vq hbd)
+ 7 T (Ve Pann 1) + Ve (B h%) = Vi (e 7))

— 9 pam febd (ve hmc + vc hme — Vm hce))

+ O(e)

_Fade 1—\ebc = _Fadefebc - % (gem Fade (Vc P + Vi e — Vi, hbc)

+ gam Febc (Ve hmd + vd hme - vm hde))

62

(T T (9 g 1) 4 90y 1) = 1 1y 1)

— 9 pem fade (vc hmb + Vb hmc — Vm hbc)
+9" g (Ve hga + Vahge —V, hde) (Vc b + Vi e — Vi hbc)
+ 7 T (Ve (R 1) + YV (B 1) = Vi (ham 1))

— 20" T (Ve huna + Va hine — Vi hde))

+ O(€)
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This yields

Ry =0Ty — 04Ty + Tl — Tl (4.327)

+ g <ac @™ (Yl + Vo Fomd — Von hid)) = (@™ (Ve oy + Vi hame — Vi i) )

+ gem face (Vd hmb + Vb hmd - Vm hbd) + gam rebd (Ve hmc + Vc hme - Vm hce)
g fade (vc hmb + vb hmc - Vm hbc) g™ febc (Ve hmd + Vd hme - vm hde))

62

5 (0T (T g 1)+ 0 12 = Vo (i 1)

— 2 pom (Vd oy + Vo ha — Vi hbd))
o (_“m (Ve (o %) + T (g 1%) = Vo (g 1))
_ zham(v By + Vi home — Vi hbc )

+ 7T (Vi (Bune h%) + Vi (Bung BY) — Vi (hyg B2,))
20T, (Vb + Vo hna — Vi B
+ GG (Ve hine + Ve hine = Vi hee) (Va Py + Vi P — Vi Bipa)
+ 97 T4 (Ve (o 172) + Ve (R W) = Vo (hem W)
— 20" T (Ve hne + Ve hine — Vi Bee)
— 9" T e (Ve (Bng 1) + Vi (hung B%,) = Vi (i b2,))
+ 20T (Ve humy + Vi Bune — Vi i)
— GG (Vehga + Vahge = Vihae) (Ve by + Vi Bune — Vi hye)
— " T (Ve (hunn 1) + Vi (Byn h) — Vi (ham B'))
+ 2R T, (Ve himg + Vahme = Vi, hde))
+0(€)
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Like before, we can promote the partial derivatives to covariant derivatives and cancel terms.

VeF% —Val'y, = 0.F% — FqchC;d _MJF fach%d — 0aF. + FqbdF?zc + Dok — faqu%C

= aCP’%d - adelLu: - F(;(bcPw(L]d + facq‘F%d + Fqdew(L]c - FCquﬁﬂgjc

Here F'is a generic tensor.

:UI

[\')Im

e
< (T (Va by + Vo huna = Vi hwa) ) = V(G (Ve b + Vo hine — Vi hbc))>
(4.328)

—am (Va (B 1) + Vo (g B3) — Vi (i 7))
—9 h‘””(Vd s+ Vi hna = Vo hi) )
=V (77 (Ve (g 15) + Vi (g %) = Vo (g 1)
~ W (VP + Vo e — Vi ) )
+ TG ™ (Ve e + Ve hime — Vi hee) (Va hay + Vi hga — Vg o)

— gem gaq (Ve h/qd + Vd hqe - Vq hde) (Vc hmb + Vb hmc - vm hbc)) + 0(63)
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Ry = Eabcd + g (?am (chd Py + VeV hpg — VeV, hbd)

—g"™" (VdVC Py + VaVy e — ViV, hbc)) (4.329)

2

€
+ Z (Eam (vad (h'mT hrb) + chb (hmr th) - chm (hbr hrd>)

=2V (™ (Va by + Vo hng — Vi hia))
=G (VaVe (hing h%) + ViV (hng %) = VaVy, (hag BY,))
— 2V (h™ (Ve Bonty + Vi Bune — Vi b))
+ 3G (Ve e + Ve bime = Vin hee) (Vahgy + Vi hga — Vg hua)

- ?em gaq (Ve hqd + Vg hqe - vq hde) (vc hmb +Vy hmc — Vi hbc)) + 0(63)

We can simplify a bit more to find a final form for the Riemann tensor

Ryt = Roa + 5 (vcvd B+ VoV By — GV Vo g — VaVe B — VaVy BS + GV gV h,,c>
(4.330)
+ % (vcvd (B% %) + VoV (RS 1)) — G o o (B 1)
— VaVe (W BS) = V4V (B BT + GV a Vi (e )
_9vV, (ham (Y by + Vi ot — Vi hbd)> +2 vd(ham(vc Bt + Vi Bone — Vi hbc)>
+ (Ve h + Vo b — TV hee) (Va by + Vi B, — TU Y g

— (Ve h® + Vah — GV hae) (Ve hS + Vo b, — G Vi, hbc)> +O(e).
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Denoting h = h? , the Ricci tensor and scalar are

2

Rog=Ro+ % <—D hoa — VaViy h + V,Vy b, + V,Vy hqb) + % (—D (how h7,) — Va Vi (B® BT,)
(4.331)
+ YV Yy (W2 17,) + V,Va (h BT
_9v, <h‘””(Vd By + Vi o — Vi hbd)> 42 vd(hm(va Bt + Vi o — Vi hba)>
+ (Ve h®, 4+ Va B = GV hae) (Va By + Vi b — G2V hig)

— (Ve h® + Vah?, — GV hae) (Vo b + Vb, — G Vi, h,,a)> + O(€)

2

— R+ g (—D hoa — VaViyh + V,Vy b, + V,V, hqb) + GZ (—D (how h7,) — V4 Vi (R® BT,)
(4.332)
YV (W BT + Y,V (Y BT
_9v, (ham(vd B + Vi o — Vi hbd)) 42 vd(h“m(va By + Vi o — Vi hba))
+ (Vo h) (Va b + Yy by — GV hod) — (@ Vo hae) (Va b + Vi B — G0V, o)

— (Ve h%y + Vah®, — 3%V hae) (Vo h + Vy BS, — 57 Vi, hba)) +O(e)

The €2 terms can further simplified to find
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—gghvg Vi (hy By) = —ggth (hor Vi h"y) — ggth (h", Vi, hey) (4.333)
= _ggh (vg hbr) (vh hrd) - ggh (hbr ngh hrd)
— g™ (Voh'y) (Vi hiy) — 7" (W4 VgV 1 i)

= —2 ggh (Vg hbr) (vh hrd) - ggh (hbr VeV hrd) - ggh (hrd VeV hbr)
—VaVy (R R") = =V (h®. Vyh",) — V4 (R, Vy h%) (4.334)
= —(Vah®) (Vyh",) — he. V Ve b, — (Vah',) (Ve he) — R V4V he

= —2 (vdhar) (Vb hra)

Y,V (R B = V, (k% Vy ) + YV, (h", Vy hY) (4.335)

= (Voh%) (Vo h'y) + WV Vuh'y + (Vh'y) (Vi hY) + 1y VoV Y,

Vo Va (R h%) =V, (KN 4h") + VYV, (R, Vah?) (4.336)

= (Vh0) (Vah'y) + WOV aly + (V') (Vaht) + 1V, Vo,
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as well as

2 (R (Vs + Vi hna = Vi haa) ) = =2 Va (B Va ) = 2V (h" Vi hya)
+ 2V (h""V 1 hia) (4.337)
= —=2(Voh™) (Vi hmp) — 207"V (Vg B
— 2(Voh™) (Vi hing)
= 20,V B + 2(Vah®™) (Vo hi)
+ 20,V i
= —2(Vah®™) (Vg honp) — 20V oV g By
— 2(Voh™) (Vy ) (4.338)
= 2K,V i + 2(Vah™™) (V)

_|_

2V, ( ™ (Vg By + Vo hona — Vi h,,a)) = 2V (W ho) + 2V (V) s
— 2V ( hV 1, ) (4.339)
= 2 (Vah®™) (Vg hy) + 20V gV,
+ 2 (Vah™) (Vi hna)
+ 20"V 4V hina — 2 (Vah™™) (Vi hia)
— 20"V 4V B
= 2 (Vah™™) (Vo hum) + 2 (Vah™™) (Vi hia)

—2(Vah™™) (Vi)
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and

(Ve he, + Va b = GV hae) (Va by + Vo hey — GV g o) (4.340)
= (Veh',) (Vah%) + (Ve %) (Vo hy) =g (Ve h%) (Vg hua)
+ (Vo ') (Vah%) + (Vo h%) (Ve h%)
=G (Vo b)) (Vahea) = 5" (Vi hae) (Vah%) =G (Vin hae) (Vi h%)

+ gam (Vm hfae) (geq vq hbd)

—(Veh® + Vah% — GV g hae) (Vo % + Vi b — G Vi, hyg)
= (Ve h%y) (Vah%) + (Ve hy) (Vo b)) = G% (Ve hy) (Vg hua)
+ (Vah?) (Vah) + (Vah%,) (Vi %)
=3 (Vah?,) (Vehw) = 7" (Vi hae) (Va h%) — G (Vin hae) (Vi 5S,)

+ 7" (Vi hae) (9 Vg va)

We can sum everything up to find

terms = (Vg hay) (Vy h) + (4.341)
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terms — (4.342)
—2g" (Y, hiy) (Vi h7y) — g9 (hue VgV B7y) — g7 (W7, V V1 by
— 2 (Vaghe) (Vyh",) — 2h% YV, 7,
+ (Vh?) (Vo h'y) + W4V Vb + (Vh'y) (Vi 1Y)
+ RV Vi h (V) (Vah™) + hi VY,V h",
+ (Vgh'y) (Vah) + B,V Vah® — 2(Voh™™) (Va hins)
— 207"V oV g humty — 2(Vah™™) (Vi hina)
— 20"V Vi b + 2(Voh™™) (Vin hoa) + 207"V Vo hya
+ 2 (Vah™™) (Va hinp) + 2 (Vah™™) (Vo hina)
+ 2RV gV hing — 2 (Vah™™) (Vinhea) + (Ve h%) (Vg BS,)
+ (Ve h%) (Vo h%y) = g% (Ve h,) (Vg hoa)
+ (Vo h%) (Va ) + (Vo h%) (Vo %) =3 (Vo h%) (Vg hea) = 5" (Vin hae) (Va h,)
=" (Vi hae) (Vo 1) + G (Vin hae) (% Vg hoa) (Ve h%) (Va h%)
+ (Ve h'y) (Vo he) =7 (Ve h'y) (Vg hea) + (Vah%) (Vo b)) + (Vah%) (Vo 1)
=3 (Vah?,) (Vghu) =" (Vin hae) (Vo h%) — G (Vin hae) (Vi h%,)

+ gam (vm hde) (geq vq hba)
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2

R=R+e (—D h+V,V, hqb) + EZ (—25 (her h'") + 2,V (R4 R

— 2V, (™ (2Vah%, = Vi b))
+ 2V (B (Va by 4§V g = i %)) + (Ve ) 2V = 5 9, h)

— (Ve + 3"V b — g* 'V h") (Vo S + Vy he, — 5" Vi, hba)) + O(e)

The Einstein tensor is now

Gap = G + % (—D hao — VVa b + VoV b + YV, Vi he, — gop (<0 h + VeV th)>

(4.343)

+ (—D (har h) — Vi Va (hqr hrq) + V Vo (R h") + VY,V (R R",)

=~ T

= gab (= (hgr ) + V4V (A7, ™))
=2V (™ (Vb hina + Va huns = Vi hap) ) + 2V (AT (Vg buna + Va hng — Vi hag) )
+ (Ve h + Vb, — GV, hee) (Vo b, + Va b — G99 Vg hap)
— (Ve by + Vi Y, — G7Vy hye) (Vg Sy + Va b, — G Vi hag)
— ga (= Va (R 2 Vb, = Vb)) + Va( D (T B+ G5 by = Vi 1))
+ % (Veh)(2Vah =gV, h)

(Ve h® + N g h', — GV, h2) (Vo he, + Vb, — G Vi, hpq)>)

N | —
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For future convenience, we can use the identity,
V.V, h”y - V.V, h”y = erqa: hry — Rsyqx hY, (4.344)
to alter the order ¢ and €2 terms

eterm = —Ohe — VoV h + VVo b + V Vi b, — gop (—0h + V.V h*?) (4.345)

— — Ohap — VoVa b + VoV B + RO, h% — RS he + YV, b,

bqa
+ RN, = R hY — gay (00 + Ve Vg h)
¢ term = — [ (he 1"y) — Vy Vo (K1) + VoV (W% R) + VoV (b4 B
— Gab (=0 (hgr BT)) (4.346)
+ VoV (W% W) = 2V, (W™ (Vg huna + YV Bt — Vo ha) )
+ 2V (h7™ (Vg hna + Va hing — Vi hag))
+ (Veh+ Vb, — g7V hge) (Vo B, + Vo S — G99V hap)
— (Ve + Vb, — g7V hye) (Vo b + Va b = G Vi hag)
= g (= V(R 2V, = Vi h)) + Va( AT (T Y, + GV g = Vi B))
+ % (Veh)(2Vah =gV, h)

(Ve % + GV g b, — GV B2 (Vg B, + YV B, — G Vo hpq)>

N | —

(4.347)
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¢ term = — [ (ha, 1",) — Vi, Vo (R4 1) + g [ (hgr h7) (4.348)
+ vavq (hq'r hrb) + Rqsqa (hsr th> - Rsbqa (hqr hTs)

+ VWV, (hOh7,) + R

sqb

(h% 1) = Ry (RS BT)

+ V.,V (R R™) + R%, (R B™) + R",, (h%, h"™)

—2(Voh™™) (Vi huna + Va Bnt — Vin hap)

— 2R (V Vi hina + VoV iy — VoV ha)

+2 (Vo hT™) (Vg hina + Va hing — Vi hag)

+ 2R (VY Bina + ViV Bung — Vo Vi hag)

+ (VahT™) (Vg b, + "V o hing — Vi h%)

+ h (Ve bt + GV Vo g — VaVi hY)

+ (Veh+ Vb, — GV hge) (Vo B, + Vo S — G99V hap)
— (Ve + Vb, — §7V hye) (Vo B + Va by = G Vi hag)
. (—(vq W) (2V g e, — Vo h) — W™ (2V, Vb, — YV, V0, h)
- % (Veh)(2Vah =gV, h)

(T 7+ GV, = GOV 1) (Vg B, + VB = G Vi By )

N[ —

Similar to the linearized Einstein equation, we used the “traced-reversed” perturbation to simplify

the order € terms,

>
|

|
>=

hab = hab — 5 gab h (4.349)
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In addition, we make the gauge transformation,
Fab = T = hap = 2 (Va & + Vi) | (4.350)
where we can pick £ to generate the conditions,
V'h, =0 n=0. (4.351)

This requires [1&, = V®hy,. The metric perturbation is now traceless and transverse. In essence

we substitute in for

— 1 — _
hap = (hab - anb h) = hay h=—-h—0, (4.352)
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and take V" E;b = 0. The € and €? terms are now

eterm = — Ay, — gap VeVa '™ — RS0 W% — RS, W' + R oo 5 + R g B
¢ term = — [ (h},, 1'y) — VoVa (WOR') + gap O (Rl ') + Vo (W9 1)
+ Ryo WS By — Ry WO N, (4.353)
+ Vo (WIV 1) + Ry WS B — RS, WK, + Y, (W ™)
4 Rsu h/i h/ru _ qu h/(i h/rs
— 20N Ny kL — 2R N By + 2 WYY R,
+2 (Vy ') (Vo iy,)
— 2 (Vo ') (Vi hly) + 2R,V b + 209V 1,
— 21N,V
+ (Va ') (Vg 5, + G4 by — Vi 1g)
+ WGV B+ WO R, — Reg B T 4 RS g KO RY
— (Ve W'+ Vo ' — GV o by ) (Vg I + Vo B = G Vi B, )

1
5 Ga (Ve WP+ GOV =GV W) (Vo b + Y, 1 =7 Vo )

From MTW, the terms proportional to the Ricci tensor are suppressed and are be dropped.
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The second order correction is now

—O(har 1) = Vi Vo (R 0,) + V Vo (B R) + V Yy (R 1)

— gab (—O (hgr R7) + VY, (h9 R™)) (4.354)
— 2V, (h"™ (Vi homa + Vo Banty — Vi Bap) ) + 2 Vi (A (Vg Bana + Ve hing — Vi Bag))

+ (Ve h + Vo h, = g7V hye) (Vo by + Va b = 5V hay)

— (Ve by + Vi b, = GV o e ) (Vg by + Va b = G Vi hag)

g (—Vq(hqm(Q Vi, — Vo B)) + Val B (T o, + G5 Py — Vo )

+ % (Veh)(2Vah =gV, h) — % (Ve h® + g7 Ny he, — g7V, hP)

« (Vg 4 VI, — GV hpq))

~O (R 73) = Vo Va (RIH,) + 9,V (RTR}) + 9,9, (B 77)

— g (O <E;r E’“) +V,V, (E"j E””“))

—Iqm

— 21" (Vi e + VoVa By — VoV By

-/

(Vo lrma + Va iy — Vin Fioy))

q ""ma

—Iqm

+2Vy(h
+ (Ve + VB = g™V b ) (Vo 'y + Vo By — G50V Ty
— (VR + Vo B =GV By ) (Vo B+ Vo B — G Vo By
— g (vd(ﬁ’qm(vq B L, — VaRY)

1 =/ _ -/ —aqu -/, —le ——le —em -/
=5 (Ve 4+ Vb =gV h ) (Vo + Vo by =3 vmhpq))
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The corresponding Ricci scalar is

— €
Rua = R+ (g”d VoV by — " VaVyh — "0 hbd) (4.355)

2

+ GZ (gbd Vb hcevd he + 2 h* (gbd vad hce + gbd vcve hbd

— "V aVeha — g"Vy Ve hea
+ 29" 99" N s han (Ve hey — Ve hep)

1
— gbd <V6 he — 5 gce Ve h> (Vd hey + Vi heg — Ve hbd) > + 0(63)

=R+e <vavb h — Dh) + % (gbd Vo hee Vg he + 20 Dhee + 2R V.V, h
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4.5.2 Energy-Momentum Computations

Using the expansion above, the energy-momentum tensor, we get

1
Tab = (gef — € hef + 5 62 he° hcf> Faerf + aa¢ ab¢ (4358)
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Here we have used det (A + € X) = det A + € det (A) tr (A1 X) + O(€?) to expand the factors
of \/—g. However, the energy momentum tensor is also a function of the vector potential and the

axion. Those waves are cohered with the gravitational waves. Knowing this, we can also expand

a

Fop=Fap+eFY +@FY 4 (4.359)

¢ — 5 + € ¢(1) + 62 ¢(2) + ... (4360)
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We can now expand each term order-by-order. The terms are

A
5 —=Ya
8v/—7 b

2 e? 2_
S (E) G F? F, Fyy (4.363)

first term = §efFaerf + 0,0 Opp — (edefg qudeng)
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first term = g/ (Fae +€ FU 4 ¢ Fég)) (be + er(}) + € Fb(?)) (4.365)
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4.5.3 Axion Equation of Motion

The axion equation of motion is

<gab aaab . gabFCab ac o m2)¢ _ 2 6abcd Fachd
The LHS is
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4.5.3 Gauge Fixing

Similar to the linearized Einstein equation, we use the “traced-reversed” perturbation to simplify

the order € terms,

hay = hap — %gab h h=—h (4.379)
In addition, we make the gauge transformation,
By = Ty, = hay =2 (Va & + Vi &) (4.380)
where we can pick  to generate the gauge fixing conditions,
V'h, =0 n=0. (4.381)

This requires [1&, = V%hg,. The metric perturbation is now traceless and transverse. Overall, we

substitute in for

— —

— 1 —
hay = (hab - §gab h) - hab h=—-h— Oa (4382)
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and take V" E;b = 0. The Einstein tensor is now

Grg = abd + % (VaV{b h/z} — h;)d) (4.383)
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Knowing V,V, h" —V,V, 0" = R" h", — R’ 1" and terms like R, h”c"l} are, according

to [65], the same order as the O(e?) corrections, we can place the Einstein tensor in a final form

Gpa = Gy + % (—D hyy + 2 Rapas h/as) (4.384)
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Parametrically, the energy-momentum tensor goes as
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— 2 — (m?2
(1/£7) I Ta(b

ab + ab

where we have separated out the 1/L£™ terms. It is clear the Euler-Heisenberg terms are less impor-

tant in terms of the long-wavelength physics as well as the parametric suppression.

The higher order terms are
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—hefF, be> +oo~ et em? + 7z + more supressed terms

Using equations (4.93) and (4.94), we can see the parametrics work

Y T T B (R L I
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Multiplying both equations by £? and keeping the most important terms for the low-frequency

equations are
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The high-frequency equations of motion for the electromagnetic, axion and gravitational waves

are, respectively,

_ S 1 1) =e 1
Gac’ Ibdr Ca (9 gbd) Fc(d) + aaFc('d)' + 1 Fc('d)’

‘ (%a Goar (%((?“C A+ g* h) ch) (4.391)

“a
- Goer Toar (7 W+ 1 g T, Fa

- %gem (Ve o + Ve = Vi h)Fd)

—€ (gad o Oa ((y“c htd 4 g hee) B
1. /= _ _
- 5 g <ve hma + Va hme - vm hae) F(/ld)/)

o €, = ooMa - - €5 pa
:gac’gbd’](l)b+gac/gbd’a]/"_gac’gbd/vap(l)b+gac’gbd/avaplb

199



0F +T 0 FYY = 590y 00 (57 5) FYY
n 2 <§ae Tos O ((gac B 1 gt pee) ch> (4.392)
+ gae gbf (gac hbd + hac gbd) feaefcd
_ %gem (ve B + V' hine — Vo B )Fef)
¢ (aae Gug 0a (3 12+ " 0) F)

1 _
- 59" (ve S v N v hae) r )

+ Gae Gy 3" +gaegbf_] "+ Gae To VaP V™ + Goo o — - VP

In the limit where we go to Minkowski space, we have
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Gauge fixing and removing the background electromagnetic field strength yields,

€ —d —
aaFe(}) = aaa(hdee +hech> +eaa<hfdped(1) +heded(1)> L

0 0aFy = 2 " 0 ( hia P+ hee Fcf> +en*n’ d, ( hia B0 4 hey Ffd(”) +o

€
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!
This reproduces equation 8 in Dolgov and Ejlli.

4.5.4 Local Perturbative Equations of Motion

_ 1_ _
Gab = Gab - 5 U] hab + Rcbad th (4395)

where (] = V,V" and the overlined quantities are composed of the background metric.
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Diagonalizing the matrix. The first transformation is

cosf sind
—sinf cos6

vV — 1 (4.404)

We can do the gravitational perturbative expansion for each term in the action
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CHAPTER S
CONCLUSION

5.1 Summary of key findings and significance

We live in a time where we can access a wealth of information thanks to the multiple astrophysical
probes available to us. However, several questions remain unresolved. The mapping of the Cosmic
Microwave Background (CMB) revealed an extremely homogeneous primordial universe which
was qualitatively explained by inflationary theories, though the exact mechanism is still unknown.
Moreover, it is now believed that only 5% of the universe is made of known particles. The other
95%, of which 27% consists of Dark Matter (DM) and 68% of Dark Energy (DE), remains es-
sentially hidden from our experimental probes and has yet to be under- stood theoretically. These
crucial open problems are at the center of my work, which investigates the physics of early uni-
verse cosmology, inflationary cosmology and the nature of Dark Matter and Dark Energy. During
my time as a PhD student, I have worked on theories of inflation involving multiple scalar fields
as well as models of Dark Energy quintessence. In both projects, the Quantum ChromoDynamics
(QCD) axion was utilized as a favorable candidate for both the inflaton and Dark Energy. The ma-
jority of the work done during my PhD has been focused on theories with observable signatures.
For instance, in our work on hybrid inflation I thoroughly analyzed the phenomenology of our
theory and verified its consistency with the current bounds on cosmological parameters given by

the Planck data. Let us review some of the main projects completed during the course of my PhD.
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5.1.1 Hybrid Inflation

One of the main project that I worked on is a theory of hybrid inflation. Inflation is the leading can-
didate for explaining why the universe is so old and so smooth. Most models realize inflation using
a local quantum field theory with a single scalar field in a flat potential. These simple single-field
inflation models require both a very flat and super-Planckian field variations and usually predict
observable primordial gravitational waves which are in increasing tension with the current observa-
tions. Since the experimental data is in conflict with such models, one may be tempted to avoid the
issue of Planck-suppressed operators by studying small-field models or more exotic alternatives.
With my collaborators Nemanja Kaloper, Albion Lawrence and James Scargill, I revisited two-
field hybrid inflation models, where the inflaton field is taken to be an axion, and explored their
stability to both quantum field theoretic and quantum gravity corrections. The “classic” model of
hybrid inflation of A. Linde, predicts a blue spectrum of CMB perturbations that has been ruled out
by observations . However, this does not eliminate hybrid models altogether. In particular, a variant
model by E. Stewart does produce a red spectrum and can be made observationally compatible. We
demonstrated that an embedding of the latest model that protects it from QFT and quantum gravity
corrections exists and is consistent with experimental data. We carefully showed that this model
agrees with the current cosmological data from Planck and that it is stable with respect to QFT
and quantum gravity corrections. We found that as it stands, our model is unnatural as it suffers
from the so-called mass hierarchy problem, and therefore a protection mechanism to make our the-
ory natural is necessary for the consistency of hybrid inflation. The Effective Field Theory of our
model is technically natural; in particular, if the scalars are realized as axions dual to a theory with
two massive four-forms — which might be realized as an IR limit of string compactifications —
we argued that our hybrid model may be protected from quantum gravity corrections. Furthermore,

we showed how the ultraviolet safety of the theory can arise in a monodromy construction, which
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we plan to investigate in future work. To provide additional evidence of the protection mechanism
we propose, we gave an explicit dualization procedure for a two-field scalar theory by explicitly

carrying out the calculation at weak coupling. I plan to revisit this issue in future work.

5.1.2 Axions as Dark Matter Candidate

In an ongoing project with Professor Devin Walker, Nizar Ezroura and Bradley Shapiro, we found
out that axion waves, electromagnetic waves and gravitational waves mixed in curved spacetime.
This is the first time that such a mixing has been shown. In previous work, the mixing between
gravitational waves and electromagnetic waves in flat spacetime has been studied by Dolgov and
Ejlli [55]. In 1988, Raffelt and Stodolsky [56], and later in 2017, Masaki, Aoki and Soda [57]
discussed the mixing and probability conversion between axion waves and electromagnetic waves
in flat space time. Our works explores for the first time, the mixing term between these three
waves.

The next step of that work, is to describe some of the observational consequences of the mixing
including the energy and polarization of the waves exiting the compact object.

This could give us a way to indirectly search for axionic dark matter.

5.2 Opportunities for Future Research

5.2.1 Multi-Fields Monodromy Inflation:

The next generation of the CMB experiment, CMB-S4, has recently been approved and is on track
for completion by 2029. A major focus of CMB-S4 is to “investigate a spectacular prediction of
the inflationary paradigm: primordial gravitational waves.” This experiment will be able to im-

prove the current constraints on 1, the ratio of gravitational waves to tensor perturbations, by over
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an order of magnitude. Such a precise measurement of r will eliminate some inflationary theories:
CMB-S4 should be designed to rule out or detect the remaining monomial models. It is crucial
to develop multi-field models that are in agreement with the observations. Moreover, theories that
exhibit a weakly broken shift symmetry are favored. In this light, multi-field inflationary models,
which have precisely such a symmetry, should be examined as they appear to be a viable alterna-
tive to conventional monomial inflationary theories. The two-field inflationary model that I studied
appears as a potential candidate for a viable theory. In addition to investigating the relevance of
such multi-field inflationary models to current observational data, I also plan to revisit the open

problems regarding their UV completion and naturalness.

5.2.2 Axions as Dark Matter Candidate and Dark Energy Quintessence:

The direct detection of gravitational wave by LIGO opened the door to a new era of detection in
cosmology. It is now possible to use gravitational waves to experimentally probe theories of dark
matter. String theory predicts the existence of axions in the universe in high abundance. Those
particles - theoretically useful as a solution to the strong CP problem - have been extensively
studied as a candidate for dark matter. I plan to investigate gravitational waves propagating in
an axion background and look for possible gravitational wave signatures. Models of Dark energy
quintessence and k-essence involving axion fields with dynamical attractor solutions are increasing
in popularity due to the oscillating nature of the potential, and offer a possible explanation of the
fine-tuning and coincidence problems which is not anthropic. I plan on studying the observable
signatures of these models which can be used to distinguish quintessence from the cosmological

constant.
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