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Abstract

Expanding Single-Cell RNA-Sequencing in Scale and Dimension
by
Jase Gehring
Doctor of Philosophy in Molecular and Cell Biology
University of California, Berkeley

Professor Lior Pachter, Chair

Multicellular organisms rely on diverse cell types to carry out the multitude of tasks nec-
essary for complex life. Understanding the interplay between cell populations within a tissue
or organism is a major goal of biological and medical research. In pursuit of this aim, recent
advances in microfluidics and molecular biology have propelled single-cell RN A-sequencing
(scRNA-seq) to the forefront of cell population analysis. Routine scRNA-seq experiments
can profile tens of thousands of genes from tens of thousands of cells in parallel, offering a
platform ripe for technological development, a sandbox in which a clever molecular biologist
may develop more varied experiments at unprecedented scale and depth. Accordingly, we
have made significant inroads toward the goals of simultaneous RNA /epitope quantification
and ultra-low-cost library preparation, and we have expanded the capacity of scRNA-seq
with a novel sample multiplexing method. We demonstrate the power of parallel cell pop-
ulation analysis with a high-resolution screen of experimental perturbations, introducing a
new paradigm in which scRNA-seq is used to understand a cell population at multiple scales
with unprecedented depth of information.
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Chapter 1

Introduction

1.1 Life as Letters

Life on Earth, in all its wonder, creativity, and brutality, can be accurately described by
sequences of letters. The primary sequences of three linear polymers - DNA, RNA, and pro-
tein - determine the functions of these molecules, the conductors of the chemical orchestra of
life. For the nucleic acids, DNA and RNA, sequence and function are (to a first approxima-
tion) one and the same, while proteins are remarkable in their ability to precisely position
chemical functional groups in space based on their sequences. Sixty years ago, Francis Crick
proposed a model of molecular biology in which a DNA genome generates a dynamic popula-
tion of RNA molecules (the transcriptome), which codes for corresponding protein molecules
responsible for carrying out the chemistry of life (Crick 1958). In the years since Crick’s fa-
mous proposal, many additions have been made to this ”Central Dogma”, but the core idea
that the polymer sequences of a relatively small set of molecules uniquely defines a cell has
proven incredibly powerful. In a sense, Cricks model reframed biology from an impossibly
complex chemical problem to a potentially tractable informatics problem. But tractable is
a relative term. Biological genomes are enormous (commonly 10°-10° DNA bases), and the
four DNA bases conspire to produce a combinatorial sequence space of cosmic proportions.
Crick’s simple rules mask the staggering, incomprehensible complexity of earthly life. Even
if we make the tentative assumption that the immense chemical networks underlying all of
metabolism, signal processing, development, etc. can be thought of as an emergent property
arising from a fundamental information structure, our understanding of and control over
biology is at best limited by our ability to code and decode the primary sequences of the
molecules of life. Reflecting on the vast ocean of sequence space, our efforts to explore it are
perhaps akin to a beachgoer splashing in the surf.

In molecular biology, sequence determines structure, and structure determines function.
Cells long ago realized the utility of this paradigm. Function is complicated, but sequence
is not. Sequence gives cells (and biologists) a handle by which they can manipulate the
chemical world. It is a language of abstraction that brings all the power of biomolecules



within reach. While a complete understanding of cell biology is well beyond our current
capability, sequence abstraction allows us to perform specific, controlled experiments and
begin to tease apart the mechanisms by which biological systems operate. The Sequence
Hypothesis transformed molecular biology from a descriptive, mysterious field of study to
a mechanistic, hypothesis-driven hard science in which researchers can use experiments to
ask and answer specific questions. It was the beginning of the biotechnology revolution,
a framework in which we ignorant scientists can harness the results of billions of years of
biological evolution and direct the evolution of biological function to suit our ends.

1.2 History of Biomolecule Sequencing

With the realization that biology can be thought of as a problem in sequence informatics,
it is unsurprising that progress in molecular biology closely follows the ability to read and
write defined sequences of DNA, RNA, and protein. Sequencers and synthesizers are the
tools by which we have begun to wade into the vastness of sequence space. Things started
slowly, with the determination of individual sequences earning at first Nobel Prizes and then
entire doctoral theses. In the early 1950s, Fred Sanger and Hans Tuppy reported the primary
structure of of a biomacromolecule for the first time (Sanger and Tuppy 1951). Employing
a combination of chemical modifications and chromatography, they determined the amino
acid sequence of insulin and hypothesized that all proteins, by extension, were defined by
specific amino acid sequences. The impact of this result simply cannot be overstated. The
exquisite properties of a highly evolved biomolecule could be now be explained, in full, with
nothing more than a sequence of letters. The underlying chemistry of protein folding and
reactive group position and function is still far from understood, yet any molecular biologist
can describe and even reproduce insulin’s complex functionality from its sequence alone.
Sanger’s work proved highly influential in the development of Crick’s Sequence Hypothesis,
which linked protein sequences with those of DNA, the genetic material.

At first, nucleic acid sequencing lagged behind protein sequencing. Most methods for
DNA sequencing rely on synthetic DNA primers and DNA polymerases, two reagents that
were not widely available until the 1970s. But the relative uniformity of the DNA double-
helix along with the abundance of natural enzymes evolved to manipulate nucleic acids
eventually propelled DNA sequencing to the forefront of molecular biology research. Sanger
sequencing, the most successful DNA sequencing approach, was introduced by Sanger and
colleagues in 1977 (Sanger, Nicklen, and Coulson 1977). It involves enzymatic incorporation
of modified chain-terminating dideoxynucleotides into a growing DNA strand complementary
to a template of interest. This reaction produces new DNA strands terminated at all positions
along the template molecule. The identity of the last, terminating base of every truncated
sequence can be determined by a number of methods, the most popular being fluorescence
detection in a polyacrylamide gel.

For 40 years, Sanger sequencing has been a mainstay in molecular biology, culminating
in the determination of the human genome in the early 2000s. It was during the push to



unlock the secrets of the human genome that a radically different approach to DNA sequenc-
ing was brought to prominence. High-throughput, or "shotgun”, DNA sequencing involves
sequencing many (currently 105-10°) DNAs in parallel (Staden 1979, Anderson 1981). The
information from each sequenced DNA molecule, or "read”, is typically 20-500bp of sequence
along with corresponding quality metrics for each base. Illumina, Inc. sells the most com-
mercially successful platforms. On these machines, a glass slide coated in DNA, termed a
flow-cell, is used to capture DNA molecules to be sequenced. The molecules are amplified by
surface-bound primers to create clonal colonies spread across the flow-cell, and fluorescent
reversible chain terminators are used to read out the DNA bases one-by-one for the entire
flow-cell. The result is millions of short sequencing reads produced in a short timespan (days)
at very low cost (Reuter, Spacek, and M. P. Snyder 2015).

1.3 Single-Cell RN A-Sequencing

In parallel with the emergence of the first successful strategies for high-throughput DNA
sequencing, microarray technology was the subject of intensive development. Microarrays
are capable of monitoring gene expression patterns for thousands of genes in parallel (Schena
et al. 1995), and have been adapted to a wide range of functional assays (Hoheisel 2006).
Biologists were quick to realize that highly parallel assays were key to understanding bio-
logical phenomena that operate at a scale and complexity beyond the reach of individual
experiments. The field of systems biology emerged, revealing gene networks that govern
cellular functions. In the past decade, the availability of cheap, massively-parallel DNA se-
quencing has sparked an explosion of technological advances aiming to convert traditional,
singlet biochemical experiments into highly multiplexed sequencing-based assays. One of the
most powerful such applications is RNA-sequencing (RNA-seq), in which an RNA sample
is enzymatically converted into a corresponding complementary DNA (¢cDNA) library to be
analyzed by sequencing. In RNA-seq experiments, the sequencer is not used for sequence
analysis or assembly but rather as a way to count RNA molecules according to their sequences
and relative abundances. Originally developed in 2008 (Nagalakshmi et al. 2008, Mortazavi
et al. 2008, Lister et al. 2008), RNA-seq provides a snapshot of the RNA content of a sam-
ple. Thousands of genes can be detected and quantified for each sample, and much research
has focused on problems associated with generating cDNA libraries representative of the
input RNA as well as computational tools to quickly and accurately analyze individual sam-
ples. Success in these areas has prompted adoption of RNA-seq as an experimental platform
(Wang, Gerstein, and M. Snyder 2009. In the context of controlled experiments, RNA-seq
gives researches a quantitative, genome-wide view of the cellular response to experimental
variables. One aim of systems biology is the integration of high-throughput experimentation
and analysis into more realistic models for cellular behavior that incorporate the complex
interactions between various pathways and functions in the cell.

While some researchers were busy perfecting RNA-seq for experimental use, others were
thinking small and working to reduce the amount of RNA input required to produce a viable



cDNA library. Just a year after the initial demonstrations of RNA-seq, the first report of
single-cell RNA-seq emerged (Tang et al. 2009). Scaling the quantitative, transcriptome-
wide information produced by RNA-seq down to the level of individual cells represented
a major milestone in biological research. This approach yielded truly high-dimensional,
meaningful biological information at the level of the cell, the basic functional biological
unit, and bridged the gap between cytometry (single-cell characterization) and genomics
(genome-wide functional profiling). What has followed is nothing short of an explosion
of interest in single-cell RNA-sequencing (scRNA-seq), one of the most rapidly advancing
areas in biology. Since 2009, scRNA-seq has incorporated rare cell isolation (Torre et al.
2018), spatial information (FISH) (Karaiskos et al. 2017), protein quantification (Stoeckius,
Hafemeister, et al. 2017), Peterson et al. 2017), and electrophysiology (Cadwell et al. 2016)
while being miniaturized, optimized, and parallelized. Correspondingly, analysis of scRNA-
seq data is now a major topic of interest in computational biology, with mathematicians
and computer scientists alike racing to keep up with the newest datasets and prompting still
further advances in experimental approaches.

Initially, scRNA-seq was carried out on individual cells one-by-one. A major step forward
was the exploitation of a curious activity of certain reverse transcriptase enzymes known
as template switching (Picelli, Bjorklund, et al. 2013, Picelli, Faridani, et al. 2014). The
first step of template-switching involves the addition of non-templated bases at the end of
an RNA-DNA or DNA-DNA duplex. For biotechnology applications, the MMLV reverse
transcriptase displays a strong preference for the addition of non-templated deoxycytosine
bases to the 3’-end of the first-strand cDNA synthesis product. A template switching oligo
or TSO with several deoxyguanosine bases at its 3’ end can base-pair with non-templated
bases added by the reverse transcriptase, positioning the TSO to serve as a template for
further extension of the first-strand cDNA by the reverse transcriptase. Template switching
provides an efficient means to append specific nucleic acid sequences to the 3’ end of cDNAs,
addressing a major problem in low-input reverse transcription reactions. With a primer
binding site added to the 5’ end of first-strand cDNAs via a poly(dT) capture primer and a
3’ primer binding site attached via template switching, a poly(A)-selected cDNA library can
be easily and efficiently amplified from the RNA content of a single cell. Template switching,
under the moniker SMART-Seq, was first used for scRNA-seq in 2012 (Picelli, Bjorklund,
et al. 2013).

Concurrent with advances in molecular biology that enabled cDNA library preparation
from limiting inputs, great strides were being made to miniaturize and parallelize biochemical
reactions. The field of microfluidics, once strictly the realm of physicists, has come to play
a central role in molecular biology. Microfluidics is a broad term applied to manipulation of
fluids at small (nanometer to millimeter) scale. The devices used in microfluidics experiments
vary greatly in design and purpose, and various biotechnologies, from electrophoresis to PCR,
have been adapted to the microfluidic scale, resulting in drastic reductions in reagent cost,
sample requirements, and time for many applications (Sackmann, Fulton, and Beebe 2014).
Three approaches have played prominent roles in the recent history of scRNA-seq. The first
was a commercial platform offered by Fluidigm, the C1 chip, capable of generating scRNA-



seq libraries for dozens of cells in parallel. The C1 chip uses an extensively engineered series
of channels that sequentially add reagents to an increasing reaction volume. Individual cells
are captured by size in small traps, then flowed into one of 96 individual reaction chambers.
For scRNA-seq, cells are lysed, reverse-transcribed, amplified, and fragmented in a series of
discrete steps, resulting in full-length ¢cDNA libraries with sequencing adapters specific for
each channel on the microfluidic device (Xin et al. 2016). Compared to alternative scRNA-seq
platforms, Fluidigm libraries show very high sequence complexity and are often sequenced
very deeply (millions of reads per cell). The Fluidigm C1 chip gave scientists ready access to
scRNA-seq, and some progress has been made in adapting this chip design for other molecular
assays, most notably single-cell ATAC-seq (Buenrostro et al. 2015), which uses integration
events by Tnb transposase as a proxy for chromatin accessibility. But materials costs to
operate Fluidigm chips prevented massively parallel experimentation, and most studies were
limited to fewer than 10,000 cells.

A remarkable breakthrough was made in 2015 when two groups succeeded in manu-
facturing barcoded microparticles for scRNA-seq, abandoning traditional well-based library
preparation entirely. Rather than miniaturizing and parallelizing known ¢cDNA synthesis
reactions, Drop-Seq (Macosko et al. 2015) and inDrops (Klein et al. 2015) were designed
from the ground up to utilize advanced microfluidic technologies and generate truly massive
single-cell libraries. The challenge was to generate large numbers of cell barcodes for paral-
lel library preparation, and both groups realized that barcoded, microparticle-immobilized
primers could be generated by split-pool synthesis, resulting in clonal particles, or beads,
in which each bead contains many copies of the same DNA sequence but is also unique
from the other clonal beads in the population. By isolating individual cells with individual
beads containing barcoded cDNA capture probes, the RNA content of a cell can be uniquely
tagged with a single, cell-specific barcode sequence. After cDNA synthesis, the cDNAs from
many cells can be pooled and amplified in a single batch, eliminating the need for extremely
sensitive or specialized molecular biology procedures.

In the Drop-Seq procedure (Macosko et al. 2015), barcoded beads are synthesized using
the same phosphoramidite chemistry used to make standard DNA oligos. First, a bead-bound
DNA primer is synthesized using a non-cleavable linker, giving a homogeneous population
of beads, each coated with millions of copies of the same DNA oligo. Next, a series of
split-pool steps are performed in which the beads are split into four groups, each of which
receives just one of the four standard DNA bases. After a round of single-base extension, the
beads are pooled, mixed, and redistributed into four new groups. The split-pool synthesis
is repeated a total of 12 times to give over 16 million possible bead barcodes, with each
bead coated in many clones of a single barcode from the theoretical set. The beads are then
subjected to 8 rounds of random single-base extensions, giving each oligo its own 8 bp unique
molecular identifier (UMI). Finally, 25 deoxythymidine bases are added to serve as a poly(dT)
capture sequence to enrich for polyadenylated mRNA molecules. The result is a population
of barcoded beads with the following structure: PCR primer binding site, cell barcode,
UMI, poly(dT) capture. These beads are sufficient for scRNA-seq using a droplet generating
microfluidic device. Such chips can generate nanoliter droplets at incredible rates (>10kHz).



In a Drop-Seq experiment, a co-flow droplet generator is used in which two aqueous streams
are met with a fluorous organic flow at a T-junction, producing highly monodisperse water-
in-oil emulsions. The two aqueous streams contain a cell suspension and a bead/lysis buffer
suspension, respectively. Upon droplet formation, the aqueous flows are combined in equal
proportion and rapidly mixed, lysing any captured cells with a mild detergent. Cells and
beads are encapsulated according to Poisson statistics, and in cases where a cell and a
bead are co-encapsulated, the cellular mRNAs are released into the aqueous droplet volume
where they are captured by annealing to the poly(dT) oligos on the bead. An on-bead reverse
transcription step produces bead-bound, cell-specific cDNA libraries which can be amplified,
fragmented, and size selected for sequencing. The Drop-seq approach proved enormously
successful thanks in large part to an outstanding effort by the McCarroll laboratory to
provide detailed instructions as well as the lack of a viable commercial alternative. Today,
Drop-seq has fallen out of favor, suffering from double-Poisson capture statistics (scRNA-seq
libraries are produced for only 5% of cells) and highly error-prone bead synthesis beyond
the capabilities of most molecular biology laboratories.

A contemporaneous, more sophisticated approach to barcoded bead production was also
reported (Klein et al. 2015). The inDrops method is based on the same principles as Drop-seq
but offers greatly improved cell capture rates and an accessible synthetic route to barcoded
microparticles. The plastic microparticles of Drop-seq are replaced with monodisperse hydro-
gel beads produced on a microfluidic droplet generator. A common, acrydite-modified DNA
oligo with a photocleavable moiety is covalently incorporated into a polyacrylamide gel upon
droplet formation. The resulting gel beads are modified throughout with a solvent-accessible
DNA oligo, and split-pool synthesis is achieved using enzymatic, rather than organic chem-
ical reactions. The bead oligo is extended in a series of split-pool rounds with a panel of
96 different oligos. After three rounds of split-pool, over 884,000 possible barcode sequences
are produced. The advantages of enzymatic synthesis will be further discussed in detail in
Chapter 4. A second key advantage of hydrogel bead-based approaches is the possibility
of super-Poisson loading in a droplet microfluidic device. Hydrogel beads are mechanically
deformable, a property which has been exploited to squeeze the beads in single-file through a
narrow channel, resulting in a controlled flow rate that can be tuned with the droplet gener-
ation rate of the microfluidic device. In this way almost every droplet produced will contain
a single barcoded bead, and correspondingly almost every cell will generate a scRNA-seq
library. Cell capture rates of 60-70% have been achieved by inDrops and the commercial 10x
Genomics platform.

The most recently developed approaches for massively parallel scRNA-seq involve bar-
coded microparticles but isolate cells and beads in a patterned array of microwells instead
of emulsion droplets (Gierahn et al. 2017, Han et al. 2018). In these approaches, beads can
be loaded at super-Poisson rates by size, and cells are captured by gravity, settling into the
bead-containing wells. Micro-well arrays offer many distinct advantages, including straight-
forward chip design and fabrication, arbitrary scaling, and ease of use. These features are
obvious in a recently published "Mouse Cell Atlas” (Han et al. 2018) which surveyed all the
major mouse organs across a total of 400,000 single-cell transcriptome profiles. As scRNA-



seq technology becomes more accessible and library costs continue to drop, experiments of
this scale will soon become the norm.

With the advent of barcoded beads, scRNA-seq has exploded in scale. The first Drop-seq
protocols generated libraries of about 10,000 cells in a single batch, approximately 100-fold
larger than typical scRNA-seq libraries prepared in microtiter plates or on the Fluidigm C1.
Today, multiplexing methods enable much greater cell loadings, and libraries of 20,000-50,000
cells can be prepared in a single batch. Combined with plummeting library prep costs, the
increased batch size has resulted in the first studies analyzing hundreds of thousands and
even millions of cells. In the coming years, the key limitation in scRNA-seq will be sequencing
costs, and methods to either selectively sequence cells from large populations or glean key
information of fewer reads per cell will be imperative to continue to scale scRNA-seq libraries.



Chapter 2

Highly Multiplexed Single-Cell
RNA-Seq for Defining Cell Population
and Transcriptomic States

2.1 Chapter Summary

We describe a universal sample multiplexing method for single-cell RN A-seq in which cells are
chemically labeled with identifying DNA oligonucleotides. Analysis of a 96-plex perturbation
experiment revealed changes in cell population structure and transcriptional states that
cannot be discerned from bulk measurements, establishing a cost effective means to survey
cell populations from large experiments and clinical samples with the depth and resolution
of single-cell RNA-seq.

2.2 Methods

Overview of Cell Tagging Procedure

Barcoded DNA oligonucleotides (tags) are attached to exposed NHS-reactive amines on the
cells of interest. Sample tagging is achieved in a one-pot, two-step reaction by exposing
cell samples to methyltetrazine-activated DNA (MTZ-DNA) oligos and the amine-reactive
cross-linker NHS-trans-cyclooctene (NHS-TCO) (Figure 2.1b). NHS-functionalized oligos are
formed in situ via inverse-electron demand Diels-Alder (IEDDA) chemistry, and nucleophilic
attack by accessible cellular amines chemoprecipitates the oligos directly onto the cells.
Our one-pot reaction based on the IEDDA reaction improves on a previous cell surface
modification scheme (Hsiao et al. 2009) that requires far higher DNA concentrations and
isolation of unstable activated DNAs immediately before use. A library of methyltetrazine-
modified sample tags can be prepared in advance, stored frozen for long periods, and applied
to many cell samples in parallel. Sequencing library preparation is derived from recently



published methods for multi-modal scRNA-seq (Peterson et al. 2017; Stoeckius, Hafemeister,
et al. 2017).

Oligo Activation

Sample tags were prepared with either 5- or 3’-amine modified oligonucleotides (100-250
nmol scale, Integrated DNA Technologies, Table A.1). HPLC purification was critical to
obtain highly reactive preparations of 5’-modified oligos, while 3’-modified oligos can be pur-
chased without HPLC purification (data not shown). In either case, oligos were resuspended
to a concentration of 500 pM in 50 mM sodium borate buffer pH 8.5 (Thermo). Activation
reactions were performed by combining 25 pL oligo solution with 41.8 pML DMSO (Sigma)
and 8.2 pL of 10 mM NHS-methyltetrazine (Click Chemistry Tools). The reaction was al-
lowed to proceed for 30 minutes at room temperature on a rotating platform. After 30 and
60 minutes, additional 8.2 nL aliquots of 10 mM NHS-methyltetrazine were added. After 90
minutes total reaction time, ethanol precipitation was performed by addition of 180 uL 50
mM sodium borate buffer and 30 pL. 3 M NaCl. After mixing, 750 nL ice-cold ethanol was
added and the mixture precipitated at —80°C overnight. The precipitate was pelleted at
20,000 x g for 30 minutes, washed twice with 1 mL ice-cold 70% ethanol, then resuspended
in 100 pL. 10 mM HEPES pH 7.2. Yield was determined by absorbance at 260 nm. Typical
final concentrations ranged between 40 and 80 uM.

Relative oligo activity was determined by electrophoretic mobility shift assay using Cy5-
trans-cyclooctene (Click Chemistry Tools). Methyltetrazine-derivatized oligos were diluted
100-fold in 10 mM HEPES pH 7.2, then 4L of this solution was added to 1pL of a 500
nM solution of TCO-Cy5 in DMSO. All tetrazine reactions in this work were protected from
light to reduce degradation of trans-cyclooctene. The reaction was allowed to proceed at
room temperature for 20-120 minutes and analyzed on a 12% SDS-PAGE gel. Oligo activity
varied within a 2-fold range across preparations. Oligos were stored at —20°C and used
without further normalization.

Cell Culture and Fixation

Neural stem cells were cultured according to the following protocol: Cryopreserved mouse
neural stem cells (NSCs) were thawed for 2 minutes at 37°C then transferred to a 15 mL
conical tube. Pre-warmed Neural Stem Cell Basal Medium (SCMO003, Millipore) was slowly
added to a total volume of 10 mL, and the resulting cell suspension centrifuged at room
temperature for 2.5 minutes at 200 x g. The supernatant was removed and the cell pellet
was resuspended in 2 mL pre-warmed Neural Stem Cell Basal Medium and counted on
a Countess II Automated Cell Counter (Thermo). Cells were seeded on poly-L-ornithine
(Millipore) and laminin (Thermo) coated 100mm culture plates at 700,000 cells per plate in
10 mL of pre-warmed Neural Stem Cell Basal Medium supplemented with EGF (Millipore)
and bFGF (Millipore) at 20ng/mL each, heparin (Sigma) at 2pg/mL, and 1% Penicillin-
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Figure 2.1: Direct cell labeling with Inverse Electron-Demand Diels-Alder (IEDDA) chem-
istry (a) Yeast cells were fluorescently labeled in a one-pot, two-step reaction with NHS-TCO
and MTZ-Cy5. Control reactions omitted NHS-TCO. (b) Fluorescence microscopy of yeast
cells labeled with NHS-TCO and MTZ-Cy5 shows labeling only in the presence of NHS-
TCO cross-linker. (c) Activity assay for panels of methyltetrazine-activated DNA sample
tags. MTZ-DNAs were reacted with TCO-Cy5 and the products separated by polyacry-
lamide gel electrophoresis. Lanes 1-12 are 3’-amine modified, while lanes 13 and 14 are
5’-amine modified.

Streptomycin (Thermo). Supplemented medium was changed the next day and every other
day thereafter until confluent.

Neural stem cells for 96-sample growth factor screen were cultured according to the fol-
lowing protocol after previously described cell culture plate reached 80% confluence: Stock
solutions (10x) were prepared in Neural Stem Cell Basal Medium for every factor and at ev-
ery concentration used: EGF+bFGF at 200 ng/mL, 40 ng/mL, 8 ng/mL, 0 ng/mL; BMP4
(Peprotech) at 200 ng/mL, 40 ng/mL, 8 ng/mL, 0 ng/mL; Retinoic Acid (Sigma) at 10 pM,
2 M, 0pM; Scriptaid (Selleckchem)/Decitabine (Selleckchem) at 1uM/5pM, 0.2 pM /1M,
0 uM/0 pM; heparin at 20 pg/mL + Penicillin-Streptomycin at 10%. 20 nL each of EGF/bFGF,
BMP4, Retinoic acid or Scriptaid/Decitabine, heparin, and Penicillin-Streptomycin were
added to each well of a poly-L-ornithine and laminin coated 96-well plate for a total of
80 pL.

NSCs previously plated on 100mm culture plates until 80% confluent were dissociated
by incubation in 4 mL of ESGRO Complete Accutase (Millipore) for 2 minutes at 37°C.
After incubation, the Accutase and NSCs were transferred to a 15 mL conical tube and
centrifuged at room temperature for 2.5 minutes at 200 x g. Supernatant was removed and
the cell pellet was resuspended in 2 mL Neural Stem Cell Basal Medium. Centrifugation and
medium replacement were repeated one more time and cells were counted on a Countess 11
Automated Cell Counter. The cell suspension was then diluted with additional Neural Stem
Cell Basal Medium to a concentration of 18.3 cells/nL. From this stock 120 nl. was added to
each well of the 96-well plate for a total of 2,200 cells/well. Supplemented media for every
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well in the 96-well plate was replaced every other day during the 5-day incubation.

Before NSC dissociation and fixation, 80 pL of ice-cold methanol was added to each well
of twelve 8-well PCR strips on an ice block. After 5 days in culture, all media in the 96-
well plate were removed and the cells washed three times with 150 uL. of Neural Stem Cell
Basal Medium. Any remaining media were removed and replaced with 20 pL of Accutase
and incubated at 37°C for 2 minutes with gentle pipetting to help break cell clumps. Next,
20 pL of dissociated NSCs in Accutase were transferred to the 8-well strip tubes containing
80 pL of 100% methanol, and the entire volume was pipetted to mix. After fixation, the
NSCs were stored at —20°C until sample labeling.

For 4-sample NSC labeling and species-mixing experiments (below), NSCs were cultured
on a 100mm poly-L-ornithine and laminin coated culture plate according to the protocol pre-
viously described until 80% confluent. NSCs were dissociated by removing culture medium
followed by incubation with 4 mL Accutase for 2 minutes. NSCs in Accutase were trans-
ferred to a 15 mL conical tube and centrifuged at room temperature for 2.5 minutes at 200
x ¢g. The supernatant was removed and the cell pellet was resuspended in 2 mLL Hanks Bal-
anced Salt Solution (HBSS, Thermo) with 0.04% BSA (Sigma). Centrifugation and medium
replacement were repeated once and cell concentration was determined on a Countess II
Automated Cell Counter. Cells were then fixed by addition of 4 volumes ice-cold methanol
added slowly with constant mixing. Fixed cells were stored at —20 °C until sample labeling
and scRNA-seq.

Frozen stocks of HEK293T cells (ATCC) were thawed for 2 minutes at 37°C with gentle
agitation. Thawed cells (500 pL) were added to 5 mL pre-warmed media (DMEM (Corning)
+ 10% FBS (Gemini Bio-Products) + 1% Penicillin-Streptomycin (Corning) and centrifuged
at 1,500 x ¢ for 5 minutes. The cells were resuspended in 5 mL media and transferred
to a T-25 cell culture flask. Cells were grown at 37°C with 5% CO2 following standard
practices. HEK293T cells were dissociated by incubation with TrypLE Select (Thermo) for
5 minutes at 37 °C, washed twice with HBSS, and resuspended in 1 mL at a concentration
of 6x10° cells/mL. Cell number and viability were measured using a Countess IT Automated
Cell Counter (ThermoFisher). Four mL ice-cold methanol was added slowly with constant
mixing, and the resulting cell suspension incubated at —20°C for at least 20 minutes. Cells
were stored at —20 °C until sample labeling and scRNA-seq.

Flow Cytometry and Fluorescence Microscopy

Yeast cells (Fleischmann’s Rapid Rise) were used as an abundant cellular substrate to test
cell labeling reactions. Approximately 5 g of dehydrated cells were rehydrated in 4 mL PBS
+ 0.1% Tween-20 (Sigma) for 10 minutes at room temperature with rotation. One mL of
the resulting cell suspension was diluted with 7 mL PBS-Tween and fixed by slow addition
of 32 mL ice-cold methanol with constant mixing. Cells were incubated at —20°C for at
least 20 minutes before further use.

Methanol-fixed cells were rehydrated by combining 700 pL. HBSS with 500 pL fixed cells in
80% methanol. This suspension was centrifuged at 3,000 x ¢ for 5 minutes, then washed twice
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more with HBSS. Cells were resuspended in 1 mL HBSS, and 50 pLL of this cell suspension
was used for cell labeling. Methyltetrazine-Cy5 (Click Chemistry Tools) was added to 2 pM
final concentration, NHS-TCO to 5 pM, and DAPI to 1png/mL. Cell labeling reactions were
incubated for 30 minutes at room temperature with rotation then quenched by addition of
Tris-HCI to 10 mM and methyltetrazine-DBCO (Click Chemistry Tools) to 50 pM. Samples
were diluted 20-fold in HBSS and analyzed on a MACSQuant VYB flow cytometer.

Fluorescence microscopy samples were prepared as above except NHS-TCO was used at
1M and MTZ-Cyb was used at 62.5 nM. Samples were imaged on a Zeiss LSM 800 laser
scanning confocal microscope.

Sample Labeling Proof of Concept

Fixed NSCs were split into four aliquots with 400,000 cells in 100 pL. 80% methanol. Live
NSCs were prepared as described above, washed into HBSS, and similarly aliquoted to four
samples with 400,000 cells in 100 pL. Prior to cell labeling, 8 labeling combinations were made
by combing 6 pL. each of two different sample tags. A 5-minute pre-incubation reaction was
performed in the dark at room temperature by addition of 4 pl. 1 mM NHS-TCO. After
pre-incubation, cell suspensions were thoroughly mixed with the entire volume of a single
sample label mix. Cell labeling proceeded for 30 minutes at room temperature on a rotating
platform. Reactions were quenched by addition of Tris-HCIl to 10 mM final concentration
and methyltetrazine-DBCO (Click Chemistry Tools) to 50 M final concentration. After
quenching for 5 minutes, cells were pooled to create a single sample for fixed cells and
a single sample for live cells. The two samples were combined with two volumes PBS-
BSA and pelleted by centrifugation at 500 x ¢ for 5 minutes. Cells were washed three
times with PBS-BSA and vigorously resuspended in a final volume of 150 pL. Cells were
analyzed and counted, then fixed and live samples were combined at equal concentration
and loaded onto a single lane of the Chromium Controller (10x Genomics, Inc.) targeting
10,000 cells. Library preparation was adapted from the REAP-Seq protocol (Peterson et al.
2017). The 10x Genomics v2 Single Cell 3’ Seq Reagent kit protocol (10x Genomics) was used
to process samples according to the manufacturer’s procedure with modifications as follows.
After initial ampilifcation of cDNA and sample tags, the two libraries were separated during
SPRI size-selection. The manufacturers instructions were used to complete cDNA library
preparation. For sample tags, rather than discarding 80 pL. SPRI supernatant, this fraction
was added to 45 L. SPRI beads and incubated at room temperature for 5 min. The SPRI
beads were washed twice with 80% EtOH and sample tags eluted in 20 pL. nuclease-free
water. Sample tags were quantified by Qubit High-Sensitivity DNA Assay (Invitrogen) and
amplified using primer R1-P5 and indexed reverse primers as appropriate (Table A.1). PCR
was performed in a 25 pLL volume including 2.5 nL. sample tag library, 1.5 nL of 10 M forward
and reverse primer, 7 pL nuclease-free water, and 12.5 pnL KAPA 2x HIFI PCR master mix
(Kapa Biosystems). The samples were cycled as follows: 98°C 3 min, 16 cycles of: 98°C 20
sec, 58°C 30 sec, and 72 °C 20 sec; and then a final extension step of 72°C for 4 min. Final
sample tag libraries were obtained using a PippinPrep automated size selection system with
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Figure 2.2: Proof-of-concept sample tagging experiment (a) Heatmap showing 3,768 detected
cells originating from four methanol-fixed samples each labeled by a pair of sample-specific
tags. (b) t-SNE visualization of sample tag data colored by k-means clustering (k=4). Four
main clusters are observed, corresponding to the four individual samples, as well as 6 = (42)
small clusters corresponding to each possible combination of cell doublet originating from
two different samples. (c) Scatter plot of counts for tags 1 and 2, which were used to label
the same sample. The low-count population (bottom-left) is background from droplets not
containing cells from the sample, while the high-count population corresponds to positive
cells from the sample and shows a striking correlation between the two tag counts (Pearsons
correlation coefficient r = 0.96). (d) Barnyard plot showing two tags from separate samples.
Tags are clearly orthogonal, with doublets easily identified. (e) Counts for tag 1 from each
cell in the experiment, ordered from highest to lowest and showing a clear inflection point
between Tag 1 (+) and Tag 1 (-) cells.

a 3% agarose gel set for a broad purification range from 200-250 bp (target library size is
225 bp). A Qubit assay was again used to determine library concentration for sequencing.
Sample tag and cDNA libraries were analyzed on a BioAnalyzer High Sensitivity DNA kit
(Agilent). Example traces are provided for reference (Figure 2.5). Sample tag libraries were
sequenced on an [llumina MiSeq using a MiSeq V3 150 cycle kit (26x98bp reads), and cDNA
libraries were sequenced on an Illumina HiSeq 4000 using a HiSeq SBS 3000/4000 SBS 300
cycle kit (2x150bp reads).
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Species Mixing and Sample Label Multiplexing

Methanol-fixed human HEK293T and mouse NSCs were prepared as described above. Sam-
ples were labeled with non-overlapping tags sets of increasing size (Table A). Suspensions
of both cell types were prepared at 700,000 cells/mL in 80% methanol. Samples of 100 pL
were prepared for each condition, with species mixing conditions comprising 50 uL. of cell
suspension from each species. For this experiment, 3’-modified oligos isolated by standard
desalting were used as opposed to the 5’-modified, HPLC-purified oligos used in all other
experiments presented. Tag sets were prepared by reacting 6 nL. of each oligo along with 2 ulL
of 1 mM NHS-TCO per oligo at room temperature. After 5 minutes, the entire volume of
each tag set was added to the appropriate cell suspension. Cell labeling was performed for
30 minutes at room temperature on a rotating platform. Reactions were quenched as above,
pooled, and added to 2 mL PBS + 1%BSA. Samples were split across two Eppendorf tubes
and centrifuged at 500 x g for 5 minutes. Cell pellets were resuspended in 500 nl. PBS-BSA,
combined, and centrifuged once more. The cell pellet was washed twice more with 1 mL
PBS-BSA. Finally, the cells were resuspended in 150 pL. PBS-BSA, counted, and diluted to
1x10° cells/mL and loaded on a single lane of the Chromium Controller targeting 12,000
cells. Sample tag and cDNA libraries were prepared as described. Libraries were submitted
as part of an Illumina NovaSeq library, targeting 500 M reads total (2x150bp reads), with
sample tags submitted at 10% of the total library concentration.

96-Sample Growth Factor Screen

Cells for the 96-sample perturbation experiment were prepared as described above. For each
sample, two sample tags (6 nl. each) were combined with 4 nl. 1 mM NHS-TCO according
an 8x12 matrix. Columns 1-12 of the 96-well plate correspond to tags BC21-BC32, while
rows A-H correspond to tags BC33-BC40 (Table A.1). Fixed cells from each experimental
condition (100 pL) were labeled with the entire volume of the corresponding sample tag
mix for 30 minutes at room temperature on a rotating platform. Samples were quenched as
described above, pooled, and combined with 15 mL PBS-BSA. Samples were split across two
15-mL conical tubes and spun at 500 x ¢ for 5 minutes. Cell pellets were resuspended in 3
mL PBS-BSA each and centrifuged again. The pellets were washed twice with one mL PBS-
BSA and resuspended in a final combined volume of 200 pL. Cells were loaded on two lanes
of the 10x Chromium Controller targeting 10,000 cells per lane. Sequencing libraries were
prepared as described, with sample tag libraries sequenced on two lanes of Illumina MiSeq
using MiSeq v3 150 cycle kits (26x98bp reads), and ¢cDNA libraries pooled and sequenced
on Illumina HiSeq 4000 using two HiSeq 3000/4000 SBS 300 cycle kits (2x150bp reads).

cDNA Data Processing

Standard bioinformatics tools were used to process and analyze DNA sequencing informa-
tion. Raw sequencing data were processed using the 10x Genomics Cell Ranger pipeline
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Figure 2.3: Species Mixing and Tag Multiplexing. Mouse neural stem cells and human
HEK293T cells were labeled as follows: Sample 1: mouse, one label; Sample 2: human,
one label; Sample 3: mouse, two labels; Sample 4: human, two labels; Sample 5: mix, two
labels; Sample 6: mix, three labels; Sample 7: mix, 4 labels; Sample 8: mix, 5 labels (a)
10,054 cells were detected. t-SNE of sample tags x cells count matrix, colored by sample
assignment from k-means clustering performed on a matrix normalized for tag numbers and
counts per cell. Eight major clusters are clearly identified. (b) t-SNE colored according to
species assignment based on cDNA content. Four clusters represent a single species, and the
remaining four are mixed, concordant with the experimental design. Cells identified as a
mix of human and mouse are explained as cell doublets, and as expected fall outside of the
major clusters, indicating a mix of sample tag signals as well. (c¢) t-SNE representation with
detected cells colored as the logarithm of the sum of sample tags used in each of the eight
experimental samples. (d) Sum of sample tag counts for each sample across all detected cells.
Smaller NSCs present fewer sample tags than HEK293Ts from the same samples, indicating
a correlation between cell size and the extent of labeling.

(version 2.0). Cellranger mkfastq was used to demultiplex libraries based on sample indices
and convert the barcode and read data to FASTQ files. Cellranger count was used to identify
cell barcodes and align reads to mouse or human transcriptomes (mm10 and hgl9) as ap-
propriate. For the 96-sample perturbation experiment, cellranger aggr was used to combine
and normalize sequencing data from the two 10x lanes split across two HiSeq lanes. Cells
were selected by cellranger using the inflection point of detected cell numbers as a function
of ordered read counts as a cutoff. For the sample labeling proof of concept and species
mixing experiments, no further analysis of the cDNA data was performed.

Sample Tag Data Processing and Assignment

Sequencing reads from sample tag libraries were processed using cellranger and synthetic
transcriptomes corresponding to the sequences of the tags used in a given experiment. Cell-
ranger count outputs a post-sorted genome BAM file containing error-corrected cell barcodes
and UMIs as well as read2 sequence containing sample tag information. The post-sorted
genome BAM file was used to generate a digital count matrix for the sample tags correspond-
ing to each cell barcode. A modified version of CITE-Seq Count (Stoeckius, Hafemeister, et
al. 2017) was used to count sample tag data. Briefly, a fuzzy matching package, fuzzywuzzy
(https://github.com/seatgeek /fuzzywuzzy), was implemented to find the sample barcode re-
gion in staggered sample tag libraries that were synthesized to improve sequencing quality.
Tag reads were summed according to the combinations used in a given experiment, and
sample calling was based simply on the sample with the highest number of reads. Sample
assignment was performed by querying the sample tag matrix with cell barcodes identified
from cDNA data, generating a vector of sample assignments that can be input into standard
scRNA-seq analysis packages. For the species mixing experiment (Table A), in which up
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Figure 2.5: Representative BioAnalyzer traces for (a) fragmented ¢cDNA libraries and (b)
sample tag libraries.

to five tags were used for each cell, t-SNE was performed on the sample tags x cells count
matrix while k-means clustering was performed on a normalized count matrix in which the
counts corresponding to each cell were first (1) collapsed and normalized according to the
tag sets used by adding the tag counts corresponding to each sample and dividing by the size
of the tag set then (2) dividing each normalized sample count by the sum of all normalized
samples for that cell.
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Data Analysis

For the 96-sample perturbation experiment, the ScanPy Python package (version 1.0.4, Wolf,
Angerer, and Theis 2018) was used to process the filtered genes x cells matrix produced by
cellranger. The data was log transformed, normalized per cell, and highly variable genes
were selected as those with mean normalized counts > 0.0125 and < 3 and with dispersion
> 0.5, giving 1,221 highly variable genes. The per-cell read counts were regressed out and
the data scaled to unit variance. PCA was performed on this matrix, followed by t-SNE
visualization based on the top 20 principal components. Clustering was performed using the
neighbors and louvain tools in ScanPy with the size of the local neighborhood set to 30. For
clustering based on Louvain community detection, the resolution parameter was adjusted
to agree well with subpopulations produced by the perturbation experiment. We reasoned
that these natural groupings represent reproducible, quantitatively distinct biological states
under the conditions of our experiment and would thus hold the most information relevant to
the changing experimental parameters. In practice, a resolution setting of 2 yielded clusters
that agreed quite well with the sample-specific subpopulations produced by the perturbation
experiment. Sample assignments were combined with cluster assignments from each cell to
produce a matrix of cluster occupancy x experimental condition as well as a normalized
version of the same matrix showing cluster relative abundance for each sample (Figure 2.7a).
Principal component analysis was performed on the cluster relative abundance matrix to
visualize relationships between the experimental conditions used in our perturbation (Figure
2.7b). Differential expression analysis was performed with the rank_genes_groups function
in ScanPy. The top differential genes between the cluster(s) of interest and the rest of the
dataset are shown (Figure 2.7c,d).

2.3 Results

Massively parallelized single-cell RNA-sequencing (scRNA-seq) is transforming our view of
complex tissues and yielding new insights into functional states of heterogeneous cell popula-
tions. Currently, individual scRNA-seq experiments can routinely probe the transcriptomes
of more than ten thousand cells (G. X. Y. Zheng et al. 2017, Svensson, Vento-Tormo, and Te-
ichmann 2018), and in the past year the first datasets approaching and exceeding one million
cells have been reported (Datasets - Single Cell Gene Ezpression - Official 10z Genomics
Support 2018, Han et al. 2018). However, despite numerous technical breakthroughs that
have increased cell capacity of many scRNA-seq platforms, researchers are at present limited
in the number of samples that can be assayed. Many biological and therapeutic problems
rely on finding genes or signals responsible for a phenotype of interest, but the enormous
space of possible variables calls for screening hundreds, or even thousands, of conditions. At
present, analyzing genetic, signaling, and drug perturbations (and their combinations) at
scale with scRNA-seq is impeded by microfluidic device operation, high reagent costs, and
batch effect. While a multiplexing method based on epitope expression has been developed
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(Stoeckius, S. Zheng, et al. 2017, Peterson et al. 2017), it can only be practically applied to
about a dozen samples. The in silico demuxlet algorithm (Kang et al. 2018) is more scalable
but requires samples from distinct genetic backgrounds.

The scRNA-seq sample multiplexing method presented here allows for cells from indi-
vidual samples to be rapidly chemically labeled with identifying DNA oligonucleotides, or
sample tags (Figure 2.6). This universal approach can be applied to cells from any organism
without the need for specific epitopes, sequence markers, or genetic manipulation, and is
compatible with any scRNA-seq protocol based on poly(A) capture. We demonstrate the
utility and versatility of our technique in the context of a multifaceted experimental pertur-
bation in which neural stem cells (NSCs) were exposed to 96 unique combinations of growth
factors, with the perturbed cell populations profiled as a single pooled library (Figure 2.6a).
Despite the cell capacity of scRNA-seq platforms, single-cell transcriptome-wide analysis of
such an experiment, which produces a unique cell population in each condition, has been
technically and financially inaccessible in the absence of a suitable means of sample pooling.
This experiment introduces a powerful new experimental and analytical paradigm, under-
pinned by our flexible, scalable cell tagging procedure, in which the massive cell capacity of
scRNA-seq is effectively leveraged to analyze and compare large numbers of cell populations.

Neural stem cells (NSCs) are known to differentiate into many unique cell types in vivo,
primarily neurons, astrocytes, and oligodendrocytes (Bond, Ming, and Song 2015). In vitro,
NSCs can be forced into different differentiation trajectories by exposing the cells to a variety
of synthetic chemicals, hormones, and growth factors. We investigated the response of NSCs
to varying concentrations of Scriptaid/Decitabine, epidermal growth factor (EGF)/basic
fibroblast growth factor (bFGF), retinoic acid, and bone morphogenic protein 4 (BMP4),
producing a 4x4x6 perturbation array representing a large space of experimental conditions
(Figure 2.6a). NSCs were cultured in a single 96-well plate with each sample corresponding
to a unique combination of factors (Figures 2.4, 2.6c). After chemical DNA labeling (Figure
2.6b), the samples were pooled and subjected to a modified version of the 10x Genomics
Single-Cell Expression protocol. A total of 21,232 cells were detected based on cDNA counts,
and sample assignment was performed for the detected cells based on the sample tags with
the highest UMI counts.

Visualization of the cell populations produced by each experimental condition revealed a
complex interplay between the perturbations used in this 96-plex experimental space (Fig-
ure 2.6e). On a global level, cell proliferation varied widely across the experiment, revealing
growth rates specific not just to each condition but also to each cell state across the experi-
ment. Highly proliferative states (clusters 1, 2, 3, 6, 7, 8, 9, 12, and 16), which account for
large regions of the cell state space when plotted according to t-SNE, differentially express
various genes associated with cell growth and the cell cycle, including ribosomal, cytoskele-
tal, and cyclin-dependent proteins. Conversely, samples deprived of EGF/bFGF exhibited
apoptotic phenotypes including low cell counts and expression of stress response genes such
as Cryab, Mtl, and Gpx4. We sought to define the cell states produced by the array of
experimental conditions, a frequently challenging procedure in scRNA-seq analysis and a
potential roadblock to perturbation experiments where the presence of classical marker genes
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Figure 2.6: 96-Plex scRNA-seq experiment (a) Four experimental factors (EGF/bFGF,
BMP-4, Decitabine/Scriptaid, and Retinoic acid) were titrated against one another to pro-
duce an array of 96 unique perturbations. (b) Prior to scRNA-seq, a one-pot, two-step
reaction with MTZ-DNA and NHS-TCO labeled cells with sample-specific tags (c¢) Neural
stem cells subjected to a 96-plex array of growth conditions were dual-labeled with a unique
pair of sample tags (d) t-SNE of 21,232 cells from 96-plex perturbation. Cluster assignments
closely match population behavior driven by experimental parameters (e) Visualization of
cell populations produced by each experimental condition. Each t-SNE corresponds to a
given EGF/bFGF concentration against a series of retinoic acid or Scriptaid/Decitabine
concentrations and displays eight samples colored by BMP-4 concentration.

may depend on experimental conditions. Identification of functional cell states was greatly
aided by the large number of samples in our experimental perturbation. Various distinct
regions of transcriptome space were repeatedly populated by cells originating from multiple
samples in localized regions of perturbation space, forming natural groupings of cells that
were validated and assigned by clustering using Louvain community detection (Figure 2.6d).
Plotting the cluster occupancy of each sample revealed the structure of the cell populations
produced across the experiment (Figure 2.7a). Overall trends, such as high proliferation
under low BMP4 conditions and high cluster specificity under high BMP4 conditions, are
readily observed. Principal component analysis of the relative cluster abundance x sample
matrix was used to identify relationships between the experimental inputs (Figure 2.7b).
The experimental perturbations associate directly with the cell populations observed in the
scRNA-seq samples. The absence of EGF/bFGF has a drastic effect, yielding an isolated
group of samples, while BMP4 concentration has a graded effect and a strong interaction
with either Scriptaid/Decitabine or retinoic acid, each of which produces a separate branch
of samples when combined with the two highest BMP4 concentrations. This analysis demon-
strates that multiplexed scRNA-seq can be used to classify cell populations and interpret
the conditions that produced them. In the context of a perturbation experiment, relevant
features of the experimental space can be learned, e.g. the strong effect of BMP4 concentra-
tion shown here. Of perhaps greater interest would be to extend this proof-of-principle to
biomedical diagnostics: by applying Bayes Rule to the relative cluster abundance x samples
matrix, it should be possible to infer disease conditions from high-resolution cell population
observations.

After evaluating the high-level information that can be gleaned from a large perturbation
array, we closely examined two regions of our experimental space to illustrate the depth of
analysis afforded by multiplexed scRNA-seq. First, we explored an isolated portion of cell
state space, cluster 13, which was populated under a strict range of conditions with interme-
diate EGF/bFGF concentrations, no BMP4, and moderate to no retinoic acid. Cells from
just five samples accounted for practically all the cells in cluster 13 and little across the rest
of cell state space, exhibiting strong condition dependence (Figure 2.7¢c). Differential expres-
sion analysis showed that this cluster is strongly enriched for Hesb, a gene with important
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roles in cell fate determination (Imayoshi et al. 2013).

A more complex cellular response was observed under high BMP4 conditions, where nu-
merous cell states were identified, many populated only within a small region of experimental
space. Cells from conditions with > 0.8 ng/mL EGF/bFGF and BMP4 > 4 ng/mL, 36 sam-
ples in total, mapped to just three clusters (0, 10, and 14) which were further subdivided
by orthogonal experimental factors (Figure 2.7d). The cell state defined by cluster 14 was
not observed in samples with high EGF/bFGF, high BMP4, or high Scriptaid/Decitabine
or retinoic acid concentrations. Instead, cells from those conditions were found in clusters 0
and 10, with cells treated with Scriptaid/Decitabine appearing almost exclusively in cluster
0, while those treated with retinoic acid mapped strongly to cluster 10 with secondary popu-
lations mapping to cluster 0. Such a dissection of cellular response to perturbations has been
a long-standing goal in cell biology (Janes 2005, Nelander et al. 2008, Sims et al. 2011, Lamb
et al. 2018, Datlinger et al. 2017). It has been hypothesized that cells occupy a relatively
limited number of transcriptional states in response to disease or experimental perturbation,
and elucidating the connections between various perturbations will help in understanding
cellular behavior. One such endeavor, the Connectivity Map (CMap) project (Lamb et al.
2018), is a large-scale effort to measure gene expression response to molecular perturbations.
While impressive in scope CMap has been used to profile more than a million perturbation
experiments major challenges have included batch effects, averaging across cell populations,
and difficulty in examining conditions that yield very few cells. The multiplexing method
presented here overcomes these obstacles and provides single-cell whole-transciptome res-
olution at very low cost. To further validate sample multiplexing and explore its limits,
we performed a multiplexing experiment in which four samples of live mouse neural stem
cells (NSCs) and four samples of methanol-fixed NSCs were each labeled with unique sets
of two methyltetrazine-modified sample tags. The samples were then quenched, pooled, and
processed with the 10x Genomics Single-Cell Gene Expression Kit. Analysis of sample tag
profiles from methanol-fixed cells recapitulated matched pairs of sample tags, indicating ef-
ficient single-cell labeling, and permitting facile sample demultiplexing (Figure 2.2)). Cell
doublet events were unambiguously detected as collisions of four pairs of tags correspond-
ing to two separate samples. In methanol-labeled samples, we noted a strong correlation
between UMI counts for pairs of tags applied to the same samples (Figure 2.2¢), suggesting
that the extent of chemical tagging may be correlated with cell size. To test this hypothesis,
we devised a species-mixing experiment in which large, human HEK293T cells and small,
mouse NSCs were reacted individually and in combination with a series of non-overlapping
sample tag pools of increasing size (Figure 2.3). We found that up to five cell tags could
be deposited on a single cell without loss of tag recovery, implying that 15,504 experiments
could be multiplexed with a panel of just 20 tags. In addition, a strong correlation was
observed between species of origin and sample tag counts, indicating our chemical tagging
method is indeed sensitive to cell size, a relatively unexplored biological phenotype with
intriguing implications for future work. Live cell labeling in aqueous solution resulted in
diminished signal-to-noise (data not shown), likely a result of the high rate of NHS-ester
hydrolysis in aqueous solution, along with the reduced rate of IEDDA reactions in water
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compared to methanol. Under methanol fixation conditions, cell tagging is a robust and
flexible method for multiplex scRNA-seq with high capacity for tag multiplexing on indi-
vidual cells. Compared to labeling strategies based on antibody-oligo conjugates (Stoeckius,
S. Zheng, et al. 2017, Stoeckius, Hafemeister, et al. 2017, Peterson et al. 2017), our chemical
tagging procedures are cheaper, not reliant on epitope markers, compatible with fixed cells,
and, most notably, subject to chemical quenching, permitting high-throughput scRNA-seq
analysis of low-input samples by pooling many cell populations before washing. While we
have demonstrated multiplexing on the 10x Chromium system, our method is compatible
with other similar platforms (e.g. Drop-Seq (Macosko et al. 2015), inDrops (Klein et al.
2015), sci-RNA-seq (Cao et al. 2017), Bio-Rads ddSEQ), and should be readily extendible
to full-length scRNA-seq (Picelli, Faridani, et al. 2014) and other single-cell genomic assays.

We envision our chemical multiplexing strategy playing a central role as sequencing-based
single-cell profiling continues its phenomenal increase in scale. As multiplexing of DNA
libraries has vastly improved the utility and adoption of high-throughput DNA sequencing,
our solution for scRNA-seq will similarly reduce costs, drive increases in cell capacity, and
extend the scope of scRNA-seq beyond bulk tissue profiling. Furthermore, the increasing
throughput of scRNA-seq will facilitate even higher multiplexing, and our method can be
readily applied to thousands of samples. For diagnostic purposes, the cost savings associated
with multiplex scRNA-seq also have the potential to accelerate the adoption of single-cell
genomics in the clinic.

2.4 Future Directions
SUGAR-seq

We have demonstrated a powerful application for labeling cells with identifying nucleic acids
- sample multiplexing - but the concept of cell tagging can be expanded to many other
important areas. For example, the collection of sugars that decorate the cell surface, known
as the glycome, is dynamically regulated and plays important roles in aging and disease. The
glycome, unlike the transcriptome or proteome, is not directly encoded by the genome, and
thus impervious to standard genomic analysis. In fact, the challenges associated with study
of the glycome are so great that it is has been synthetic chemists, rather than molecular
biologists, who have made the greatest strides in understanding the role of glycan-modified
proteins in biology.

Glycosylation is a form of post-translational protein modification involving the attach-
ment of one or many sugars to a protein, often resulting in a complex chain consisting of
a handful of specific sugar residues (Moremen, Tiemeyer, and Nairn 2012). Glycan chains
are synthesized stepwise by glycosyltransferases whose substrates are most often uridine
diphosphate (UDP)-activated sugars. A merger of synthetic chemistry with biochemistry
has succeeded in chemically labeling specific glycans (Aguilar et al. 2017). First, a small,
bioorthoganol functional group is installed on a sugar of interest. Then, the modified sugar
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Figure 2.8: Overview of SUGAR-seq. Cultured cells or tissue samples are dissociated into
a single-cell suspension before three sequential rounds of chemoenzymatic labeling to affix a
unique, sugar-specific DNA-oligo barcode to each glycan. These labeled cells can then be sub-
mitted for scRNA-seq where they are encapsulated in droplets along with oligo-conjugated
microparticles and lysed. Because the sugar specific barcodes have a poly(dA) tail, they are
captured and reverse transcribed along with the poly-adenylated cellular mRNAs to form
cDNA libraries that can be separated by size. These libraries can then be PCR amplified
and sequenced using high-throughput sequencing and the transcript and glycan counts for
each individual cell determined based a unique identifier derived the droplet-specific oligos
on each microparticle.

is ligated to uridine diphosphate, forming the modified UDP-sugar. Finally, a glycosyl-
transferase is engineered to accept this modified sugar and install it onto protein substrates.
So far, a handful of enzymes has been developed that can be used in this way. To selec-
tively label terminal GlcNAc sugars, bovine f-1,4-galactosyltransferase 1 engineered with
a Y289L mutation in its active site (Y289L GalT) has been successfully used to append
azidoacetylgalactosamine (GalNAz) onto the C-4 hydroxyl group of N-acetylglucosamine
(GlcNAc) (Boeggeman et al. 2009). To selectively label fucose-a(1-2)galactose sugars, the
bacterial homolog of the blood human blood group A antigen glycosyltransferase (BgtA) has
been employed to transfer a GalNAz sugar to the C-3 position of galactose in fucose-c(1-
2)galactose (Chaubard et al. 2012). Finally, core fucose residues can be selectively labeled
using a -1,4-galactosyltransferase from C. elegans (GALT-1), which transfers Gal-6-N3 onto
the C-4 position of core fucose (Titz et al. 2009).

In the past, chemoenzymatic labeling has been used for microscopy (attaching clickable
fluorophores) or proteomics (attaching mass tags) of specific sugars. While powerful, these
approaches fail to capture the transcriptional state of the cell. We will combine the cell
tagging methods developed in this work to sequentially label each of these three classes
of glycan with a unique barcoded oligo (Figure 2.8). The oligos will be captured, along
with the cellular transcriptome, by scRNA-seq, as described. This experiment will reveal
for the first time the relationship between the transcriptome and the glycome at single-cell,
transcriptome-wide resolution for multiple glycans simultaneously. We have termed this new
experiments SUGAR-seq, for Single-cell Unified Glycan And RNA sequencing.

Taking this approach a step further, we will combine the idea of sample multiplexing
with SUGAR-seq. Cultured neurons will be exposed to a perturbation screen and their com-
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bined glycomes and transcriptomes profiled. Such an experiment will not only describe the
contents of each sugar on a cell and associate such a measurement with the transcriptome,
but also explore the potential space of transcriptional and glycomic response to the environ-
ment, providing an unprecedented connection between glycobiology and genomics. Finally,
SUGAR-seq will provide a new window onto Alzheimer’s disease as we sample primary tis-
sue samples from both mice disease models and recently deceased humans. We hope to
shed new light onto the role of glycome disregulation in Alzheimer’s disease and to identify
transcriptional states and cell types most highly associated with abnormal glycan profiles.

A Molecular Roadmap for Disease

Biology is unique in the daunting scale of potential experimental space. As stated previously,
biological sequence space is undeniably huge, but even the vastness of sequence space pales
in comparison to that of functional space. The range of functional states in which cells may
exist is almost completely unknown, as evidenced by the fact that we have only just begun
to appreciate the functional states in which cells typically occur in healthy individuals, and
in those cases only for a select few model organisms.

Cells are thought to populate a high-dimensional functional landscape with each cell’s
position in such a landscape determined by its genotype, life history, and physical environ-
ment. The extent to which the potential landscape is actually explored in vivo is at present
entirely unknown, but we have begun to model many diseases as perturbations in functional
space away from ”healthy” regions. Ailments from cancer to Alzheimer’s to pathogenic in-
fections can all be modeled as stable cell states far from normal. From this viewpoint, our
understanding of disease can only be as good as our understanding of cell state space.

The method for high-throughput scRNA-seq presented here represents a breakthrough in
defining the landscapes of cell population and transcriptional states. The ability to observe
many (hundreds to thousands) of samples each with many (hundreds to thousands) of cells
in a single experiment will enable researchers to explore functional space through experi-
mentation. By pushing cells out of frequently populated "healthy” regions of cell space, we
can begin to build an understanding of disease at the fundamental level of biology - that of
the individual cell.

Such an endeavour will first necessitate a broad survey of disease states across individ-
uals, immediately highlighting the need for sample multiplexing. First, samples from many
individuals across many disease states will require hundreds of samples. From there, pertur-
bations could be used to drive healthy cell populations into disease states or to drive diseased
cell populations into healthy states. Finally, time-course experiments can be utilized to build
a model of disease progression over time both in model systems and clinical patients.
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Chapter 3

Antibody-0Oligo Conjugation for
Simultaneous Single-Cell Protein and
RNA Quantification

3.1 Chapter Summary

Cell populations have long been described by the presence of certain marker genes expressed
on the cell surface. Antibodies raised against such markers can be used to isolate cells of
interest from large populations of undesired cells. For this reason flow cytometry has become
the backbone of immunology, providing researchers with tools to characterize and obtain tar-
get cell populations. Single-cell RNA-seq, essentially a transcriptome-wide RNA cytometry
assay, follows many of the same principles. Indeed, the primary results from scRNA-seq
are the transcriptomes of various cell populations defined by clustering algorithms based on
pairwise similarities. In practice, biologists interpret these clusters by the presence of marker
genes first identified by flow cytometry of immunohistochemistry. However challenges can
arise when the genes of interest do not represent a significant fraction of the mRNA pool or
when splice variants of biological importance cannot be readily distinguished by sequencing.
In these cases it is desirable to specifically quantify proteins of interest in the context of a
scRNA-seq dataset, generating a "multi-modal” dataset that incorporates a transcriptome
profile as well as supplementary information mapping to the same cells.

We envisioned an approach to convert epitope expression into sequencing data using
antibody-oligo conjugates (Figure 3.1). In such an experiment, synthetic oligonucleotides are
designed with the following components: 1) Poly(dA) tail for capture by barcoded poly(dT)
primers in scRNA-seq 2) unique barcode for identification during sequencing 3) PCR primer
binding site 4) chemical modification for antibody conjugation. Antibody-oligo conjugates
are prepared by covalently attaching the modified DNA oligos to antibodies using NHS-ester
chemistry, which modifies primary amines, and the tetrazine ligation to link specific anti-
bodies with unique barcodes. Large panels of such antibody-oligo conjugates can be used in
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Figure 3.1: Antibody-Oligo Sequencing Overview (a) Antibody-Oligo conjugates are formed
using either strain-promoted azide-alkyne cycloaddition (SPAAC, shown) or the tetrazine
ligation. A cleavage linker, such as a disulfide can be included. The oligo has components
required for capture during scRNA-seq (b) Cell populations are stained with antibodies
against multiple markers, each with unique oligo tags. After sequencing cDNA and antibody-
oligo libraries, epitope expression can be associated with transcriptional states.

parallel to generate high-dimensional epitope quantification alongside transcriptome profiles
from the same single cells (Peterson et al. 2017). Immediately prior to scRNA-seq, the cell
population is stained with a panel of antibody-oligo conjugates and thoroughly washed. Once
the cells are encapsulated with barcoded microparticles, the synthetic, antibody-conjugated
oligos serve as a template for DNA-dependent DNA polymerization by reverse transcriptase
using the poly(dT) cell barcode primers. In this way, the epitope profile of the cell is en-
coded in the same ¢cDNA library as the mRNA from the same cell. After amplification of
the pooled cDNA and antibody-tag library, the antibody-tag library can be separated from
the cDNA library by DNA size selection using solid-phase reversible immobilization (SPRI)
beads. From here, the antibody-tag library is amplified with primers containing sample
indexes and Illumina sequencing adapters, and the ¢cDNA library is processed as normal,
typically involving fragmentation, adapter ligation, and final amplification. This strategy is
applicable to practically any epitope for which a corresponding antibody is available. Be-
cause the antibody-tags are captured via a poly(dA) tail, no additional modifications to the
library prep need to be made, and the approach is compatible with any scRNA-seq platform
that relies on poly(A) capture and a reverse transcriptase possessing DNA-dependent DNA
polymerase activity.
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3.2 Antibody-Oligo Conjugation Procedures

During development of this procedure, two other groups reported success in applying antibody-
oligo conjugates to scRNA-seq (Peterson et al. 2017, Stoeckius, Hafemeister, et al. 2017).
The Satija group performed a proof-of-concept experiment (dubbed CITE-Seq) in which
cord blood mononuclear cells (CBMCs) were stained simultaneously with 13 antibody-oligo
conjugates, 10 of which (77%) were found to give sufficient signal:noise to determine positive
and negative cell populations. This work was greatly expanded in the form of REAP-Seq,
an antibody-oligo conjugate approach based on the same principles. The developers of
REAP-Seq succeeded in staining peripheral blood mononuclear cells PBMCs with 82 unique
antibody-oligo conjugates, and impressive improvement in scale. REAP-Seq surpasses even
commercial mass-spectrometry-based approaches (CyTOF, Fluidigm) for high-dimensional
single-cell epitope profiling. Such high-dimensional analysis alone would be a significant
technological advance, but the additional same-cell transcriptome profiles make REAP-Seq
a singularly powerful approach to single-cell analysis.

Compared to CITE-seq and REAP-seq, our antibody-tagging approach is significantly
cheaper in large part due to the development of custom labeling procedures. While significant
time was invested in developing strategies for antibody-oligo conjugation, our optimized
procedures are simple, rapid, and far less expensive than commercial alternatives. We were
able to prepare six unique antibody-oligo conjugates in a single day using the PK136 universal
anti-NK cell antibody, saving around $3,000 by avoiding use of proprietary reagents. Our
initial antibody-oligo conjugation strategy involved a RedOx-cleavable crosslinker DBCO-
SS-NHS ester which contains a disulfide bond for controllable cleavage, an NHS-ester moiety
which is susceptible to nucleophilic attack by primary amines, and a dibenzocyclooctyne
(DBCO) functional group, which reacts specifically with azides in one of the most popular
click chemistry reactions known as strain-promoted azide-alkyne cycloaddition, or SPAAC.
Over the course of this work, it was reported that non-cleavable linkers suffice for scRNA-seq
detection, and we turned once again to the incredibly fast tetrazine ligation. Antibody-oligo
conjugation was achieved according to the following procedures:

First, antibodies (500 ng) are buffer-changed into borate-buffered saline buffer, pH 8.5,
using a 0.5 mL Zeba spin desalting column with 40 kDa molecular weight cutoff according
to the manufacturer’s incstructions. To the resulting antibody solution, NHS-TCO is added
to 250 uM concentration and the reaction is allowed to proceed for 30 minutes at room
temperature protected from light. The reaction is then diluted with PBS pH 7.4 to a volume
of 1 mL and desalted using a 2 mL Zeba spin desalting column with 40 kDa molecular weight
cutoff equilibrated with the same PBS solution. Antibody concentration is determined by
NanoDrop spectrophotometer using a molar extinction coefficient of 210,000 M ~1em™!. At
this point, methyltetrazine activated DNA oligos (prepared as in chapter 2), are added at
1.5x molar excess over the antibody concentration. The reactions are allowed to proceed for
30 minutes, and the products can be analyzed by polyacrylamide gel electrophoresis (PAGE)
using a 12% denaturing PAGE gel (Figure 3.2).
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Figure 3.2: Antibody-Oligo Conjugation and Activity Assay (a) SDS-PAGE depicting an-
tibody oligo conjugation. Lanes: 1) ladder 2) 4LO unmodified 3) 4LO + BC40 4) 20d5
unmodified 5) 20d5 + BC38 6) YLI-90 unmodified 7) YLI-90 + BC39 8) ladder. Antibody-
oligo conjugation is seen as laddering child bands above the unmodified parent band. Each
rung of the ladder corresponds to an additional oligo. 4L.O and 20d5 have an average of
2-3 oligos per antibody, while YLI-90, which was conjugated at lower pH, is poorly modified
and was conjugated again in a separate reaction under optimal pH conditions. (b) Flow
cytometry demonstrating activity of antibody oligo conjugates. Antibody-oligo conjugates
and their unmodified versions were stained with appropriate secondary antibodies. YLI-90
and 20d5 retained activity, while 4L.O displayed no activity after oligo modification. (c)
To recover 4LO activity, a different strategy was employed in which streptavidin (SA) was
oligo-conjugated and targeted against biotin-4L.O. This strategy proved effective, recovering
cell labeling by an anti-DNA fluorescent secondary antibody only when oligo-conjugated,
and not unmodified, streptavidin was used.
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3.3 Application to Inhibitory Receptor Variegation in
Natural Killer Cells

With antibody-oligo conjugation protocols in hand, we looked for intriguing biological pro-
cesses that would be uniquely suited to simultaneous protein and RNA quantification. We
have noticed a strong tendency for proof-of-principle studies to dominate the scRNA-seq
literature. In the cases of REAP-Seq and CITE-Seq, few experiments were performed in
the initial publications. Known antibodies were used to stain cell populations that had long
been studied by flow cytometry and previously analyzed by scRNA-seq. Relatively little
computational analysis was performed to leverage the unprecedented datasets being pro-
duced. The resulting publications, although technically impressive, offered relatively few
biological insights. When developing new technologies, we believe that the applications for
a new technology are as consequential as the technology itself. In the case of antibody-
oligo conjugates for scRNA-seq, we sought a biological system in which complex cell types
traditionally characterized by flow cytometry could be understood with previously unattain-
able resolution by scRNA-seq. More specifically we wanted a system in which experimental
perturbations could be used to tease apart subtle differences in the cell populations.

We turned to the phenomenon of receptor variegation in natural killer cells. Natural
killer (NK) cells surveil host cells in the body for signs of damage or infection. NK activity
is a balance between inhibitory and activating signals transduced by a series of receptors on
the cell surface (Joncker et al. 2009). Inhibitory receptors recognize MHC Class I molecules
on the target cell, while stimulatory receptors recognize cellular stress ligands. Mice possess
three unique inhibitory receptors that are expressed in an overlapping, variegated pattern in
which the expression of a any given receptor is random and independent of expression of either
of the other two receptors. Such behavior presents a problem, however, because individual
NK cells need to appropriately tune their response to damaged host cells. An NK cell lacking
any inhibitory receptors must respond to host cell stress with equivalent potency as an NK
cell expressing three inhibitory receptors. This dilemma led our collaborators to propose a
rheostat model for NK cell activation in the face of inhibitory receptor variegation. This
model suggests that individual NK cells tune their responsiveness based on their inhibitory
receptor expression profile.

This system is an excellent test-bed for simultaneous, single-cell protein and RNA de-
tection. Variegated expression of three inhibitory receptors, Ly49C, Ly49I, and NKG2A,
gives rise to 8 unique and rare cell populations, each representing less than 1% of the to-
tal lymphocyte population, presenting a significant barrier to performing bulk RNA-seq on
sorted populations. Conversely, scRNA-seq alone is insufficient to address this biological
question because the transcriptome generated for each cell is too sparse to accurately quan-
tify individual genes, in this case the inhibitory receptors. To describe transcriptome profiles
corresponding to the eight unique receptor expression profiles in NK cells, we need to cap-
ture accurate receptor expression information as well as a full transcriptome for each cell.
We created antibody-oligo conjugates specific for each of the three inhibitory receptors ex-
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pressed by NK cells using corresponding antibodies 4LO (anti-Ly49C), YLI-90 (anti-Ly49I),
and (anti-NKG2A). Antibody-oligo conjugates were tested for activity via flow cytometry
using either fluorescent secondary antibodies or a fluorescent anti-DNA antibody (AE-2,
EMD Millipore). In the case of 4LO, it was found that oligo conjugation ablated avidity, so
an alternative approach was devised in which biotinylated 4L.O, which retains biological ac-
tivity, was stained with a streptavidin oligo conjugate. This circumvented the loss of activity
seen in 4L.O-oligo conjugates and completed the set of antibody-oligo conjugates required
for receptor variegation studies in B6 mice. Finally, we prepared 6 unique antibody-oligo
conjugates using the PK136 antibody which stains NK1.1. This general marker of NK cells
was used to pool cells from multiple animals without losing animal-of-origin information.

As a negative control, the 2m knockout mouse strain was compared against wild-type
B6 mice. $2m mice lack expression of MHC Class 1 protein, the main ligand for inhibitory
receptors expressed by NK cells. Correspondingly, NK cells from 2m mice display severely
depressed NK cell activation phenotypes. NK cells were harvested from 3 female B6 and 3
female 2m mice, and, in a biological replicate, 3 male mice of each genotype. To reduce
cost and batch effects, a multiplexing strategy was employed in which white blood cells
from each mouse were separately stained with a unique PK136 antibody-oligo conjugate as
well as 4LO biotin. The cells were washed in parallel, then pooled and stained with oligo-
conjugated antibodies against NKG2A and Ly49I as well as a streptavidin-oligo conjugate as
a secondary stain against 4LO biotin. The cells were thoroughly washed then subjected to
flow cytometry using a gating scheme designed to isolate all NK cells. The cells, purified and
stained with oligo-conjugates for each of the three inhibitory receptors, were processed using
the 10x Genomics Single-Cell Gene Expression Kit according to a modified workflow (Figure
3.3). This experiment did not yield the expected results. While library preparation and
cDNA sequencing appeared normal (Figure 3.3a and 3.3b), antibody-oligo tags were poorly
distributed among the cell population (Figure 3.3c) and failed to generate positive and
negative populations (Figure 3.3d, 3.3e, and 3.3f). Dissection of this result and optimization
of antibody labeling methods will be the subject of future work.
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Figure 3.3: Antibody-Oligo Sequencing Results (a) BioAnalyzer traces for a full-length nat-
ural killer cell cDNA library, and antibody tag library, and a fragmented cDNA library (b)
cDNA sequencing results for 1,039 natural killer cells. An average of 16,558 reads and 1,071
genes were detected across the population (¢) Antibody tag reads for the same 1,039 cells.
A clear distinction between positive and negative droplets cannot be made (d) Histogram
showing antibody tag reads for the 20d5 antibody. A single population is observed, rather
than positive and negative populations (e) Histogram showing antibody tag reads for the
4L.O antibody. Again, a single population is observed, failing to distinguish positive and
negative populations (f) Scatter plot of 20d5 and 4LO antibody tag reads plotted against
one another for each cell. No clear populations are observed.
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Chapter 4

Split-Pool DNA Barcoding: Targeted
Single-Cell RN A-Sequencing

4.1 Chapter Summary

In the previous chapters, I have addressed two limitations in single-cell genomics, sam-
ple throughput and multi-modal analysis. In both cases, barcoded oligonucleotides were
attached to cells, either chemically or through an antibody mediator, to add identifying
information to cells prior to scRNA-seq. These advances represent two ways in which the
scRNA-seq library prep can be leveraged for more complex or larger scale analysis. So what,
if any, are the limitations of scRNA-seq? The current challenges fall into three general classes:
sample preparation, cDNA capture efficiency, and cost. Sample preparation, which involves
dissociating cultured cells or tissue samples into single cells, is a major concern because every
tissue type is unique, potentially requiring individual optimization, and because it is known
that tissue dissociation causes transcriptional changes that can be difficult to control (Wu
et al. 2017). For now, orthogonal approaches, such as high-dimensional, quantitative FISH
probing, may be required to ensure the validity of biological results based on scRNA-seq of
tissues requiring extensive dissociation procedures (Shah et al. 2016, G. Wang, Moffitt, and
Zhuang 2018). Capture efficiency, referring to the conversion rate of transcript molecules
into an amplified cDNA library, is a more general problem where any improvements will
broadly impact single-cell genomics. Low capture efficiency increases false negative rates for
transcript detection, especially for low-abundance transcripts typically associated with cell
state, such as transcription factors.

Capture efficiency is also directly related to cost, perhaps the biggest barrier in scRNA-
seq. The economics of current scRNA-seq workflows break down as follows: 10,000 cells
captured with 30,000 reads each, with library prep costs at $1,000-2,000 and sequencing
costs at $2,000 (Figure 4.1). Improvements in microfluidic platforms and sample multiplex-
ing are rapidly driving down the cost of library preparation, meaning sequencing cost is the
only barrier to performing scRNA-seq at scales orders of magnitudes larger than today’s
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Current scRNA-seq Experiment

10,000 30,000

Cells Reads per Cell
$1,500 $2,000 $0.35
Library Prep DNA Sequencing Dollars per Cell

Figure 4.1: A typical scRNA-seq experiment profiles 10,000 cells at 30,000 reads each. Costs
for library preparation and sequencing are roughly equivalent, but library preparation costs
are plummeting due to sample multiplexing and improvements in microfluidic technologies.
Sequencing costs are stagnant in comparison, prompting an urgent need to decrease the
number of reads per cell without sacrificing biological information.

experiments. Single-cell genomics is putting more pressure on the high-throughput sequenc-
ing industry than at any time since the human genome project. For the first time in many
years, DNA sequencing is preventing, rather than enabling, massive increases in experimental
scope. The price of sequencing is sure to continue to drop, although one cannot reasonably
expect capacity per dollar to increase more than around two-fold year over year, at best.
The only conclusion that can be drawn is that sequencing cost per cell must be dropped,
and that cost reductions will come from molecular biologists, not Illumina, Inc. To this end,
we are developing a platform for targeted scRNA-seq that will improve capture efficiency,
reduce the cost of library preparation, and, most importantly, directly reduce the requisite
sequencing depth for scRNA-seq.

4.2 Targeted scRNA-seq

We reasoned that targeted RNA capture could be transformative for scRNA-seq by enriching
for biologically relevant genes while reducing the number of reads required for each cell.
Advances in high-throughput oligo array synthesis could be leveraged to generate panels
of capture probes suitable for a given biological system (i.e. the immune system, cancer,
neuroscience). Hundreds to thousands of individual targets could be selected, including non-
coding RNAs that are currently undetectable with poly(A) capture protocols. Single-cell
sequencing information could be used to identify the most informative genes for a given
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tissue, for example by selecting the top 1,000 genes contributing to the overall variance in
a standard scRNA-seq experiment. The cost reduction provided by targeted scRNA-seq is
potentially enormous. Capture strategies based on poly-adenylated RNAs successfully avoid
abundant, uninformative ribosomal RNAs, but targeted capture takes this concept a step
further and avoids abundant, uninformative mRNAs as well. Most ¢cDNAs sequenced in a
given scRNA-seq experiment map to a small subset of genes. A preliminary analysis found
that over 50% of the reads captured in scRNA-seq map to just 20 genes. Our targeted
approach will turn this dynamic on its head. We will design capture panels that correspond
to the most variant genes in a population, and using array-based oligo synthesis we can
control the relative ratios of the capture sequences, effectively normalizing for average gene
expression and distributing sequencing depth more evenly across the most informative subset
of the transcriptome.

4.3 Split-Pool Synthesis via the Primer Exchange
Reaction

The key advance responsible for the recent dramatic increases in scRNA-seq capacity is the
DNA-barcoded microparticle. The beads used in Drop-Seq are polystyrene microspheres
coated in DNA oligos produced by split-pool phospharmidite synthesis, while those used by
the competing inDrops protocol are polyacrylamide hydrogel beads synthesized enzymati-
cally by primer extension. Both of these methods for barcoded bead synthesis are extremely
labor intensive and relatively inefficient. Drop-Seq beads are infamous for their high error
rates and low number of oligos per bead, while adoption of the inDrops protocol has been
slow due to high up-front costs and labor demands. We sought a flexible split-pool bar-
coding procedure that could reduce the high costs, labor, and inefficiencies associated with
barcoded bead synthesis while providing an avenue to generate beads with custom capture
panels for targeted scRNA-seq. We turned to a recently demonstrated method for single-
stranded nucleic acid synthesis dubbed the primer exchange reaction (PER) (Kishi et al.
2018).

PER is a primer extension reaction that relies on the phenomenon of branch migration
to recycle a catalytic template molecule. The PER catalytic cycle begins with a toe-hold
primer extension reaction in which a catalytic template hairpin anneals to a short (9bp)
complementary region at the 3" end of a DNA primer (to be extended). A DNA polymerase
with strand-displacing activity (such as Bst DNA polymerase), extends the primer while
displacing the upstream hairpin sequence (Figure 4.2). Primer extension is stopped when the
polymerase reaches a blocking sequence, such as a modified template base. Having stalled,
the DNA polymerase will dissociate, leaving a branched structure that can explore base-
pairing combinations in a process known as branch migration. When the branch migrates
sufficiently in favor of hairpin formation, the melting temperature of the partially displaced
primer will fall below the reaction temperature, and the primer dissociates. The product
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Figure 4.2: The primer exchange reaction (PER) consists of a four-step catalytic cycle. (a)
First, a primer to be extended binds to a complementary toe-hold region on a catalytic
hairpin. (b) A DNA polymerase with strand displacement activity extends the primer and
displaces the hairpin top strand until reaching a lesion through which it cannot continue
polymerization. (c¢) The polymerase dissociates, and branch migration proceeds as the primer
and hairpin top strand compete for binding to the hairpin bottom strand. (d) With the
branch migrated sufficiently in favor of hairpin formation, the primer-template interaction is
sufficiently destabilized, the primer dissociates, producing an extended primer and recycling
the catalytic hairpin for another round of primer extension.
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of the reaction is a primer extended with a specific sequence, dependent on its original 3’-
terminal sequence, and a recycled PER hairpin that can go on to catalyze primer extension
on a new primer. Repurposing the template as a catalyst, rather than a substrate to be
consumed in the reaction, dramatically reduces the concentration of template oligo required
while making PER highly efficient at moderate temperatures (typically 37 °C) and capable of
high-fidelity, one-pot multiple extension reactions. These advantages make PER extremely
attractive as the basis for split-pool DNA barcoding on primer-coated microspheres.

4.4 Results

We began by synthesizing hydrogel beads according to the inDrops protocol (Klein et al.
2015). Briefly, oligos are covalently incorporated into a polyacrylamide gel matrix via a
5’-acrydite modification. Beads are formed using a microfluidic emulsion generator operated
by flowing a fluorous oil continuous phase and an aqueous discontinuous phase through a
T-junction. The radical catalyst TEMED is dissolved in the continuous phase. As a monodis-
perse emulsion is formed at the T-junction, TEMED diffuses into the aqueous droplets and
initiates polyacrylamide polymerization. Each droplet produces a polyacrylamide gel bead
decorated with up to 10° oligos per bead. A suspension of clear gel beads is depicted in
Figure 4.3a. We confirmed the presence of covalently incorporated DNA oligos using a
fluorescence in situ hybridization (FISH) experiment in which an fluorescently labeled com-
plementary oligo was annealed to gel beads synthesized in the presence and absence of an
acrydite-modified DNA oligo (Figure 4.3b). Strong fluorescence signal was observed only for
beads synthesized with acrydite-modified DNA oligos, indicating efficient incorporation of
DNA during polymerization as well as accessibility to non-immobilized macromolecules.
Bead barcodes are generated by split-pool barcoding using PER. For scRNA-seq, it is
advantageous for capture oligos to be released upon droplet encapsulation with target cells.
We used a modified polyacrylamide cross-linker, N,N’-Bis(acryloyl)cystamine (BAC), to
serve as a reversible cross-linker. The disulfide bond in BAC allows cleavage via a reducing
agent such as DTT, resulting in the dissolution of the gel matrix (Figure 4.3a). After
BAC cleavage, bead oligos are still covalently attached to a linear polyacrylamide tail. We
discovered that the presence of this tail led to decreased binding to silica matrix, preventing
standard nucleic acid purification. To circumvent this problem, we installed a deoxyuridine
residue on the bead oligo, permitting facile cleavage from the polyacrylamide support by
USER enzyme, a cocktail of uracil-DNA glycosylase, which leaves abasic sites at deoxyuracil
residues, and Endonuclease VIII, which cleaves single- or double-stranded DNA at abasic
sites. Both DTT and USER enzyme are compatible with reverse transcription, meaning
we can dissolve the polyacrylamide gel matrix, cleave bead oligos from the support, and
perform reverse transcription all within a microfluidic droplet upon cell capture. In sum,
this protocol serves as a drop-in, non-proprietary replacement for commercial scRNA-seq
procedures. Coupled with an improved split-pool barcoding strategy, these tools will open
up new avenues of research while applying additional pressure to reduce costs and add
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Figure 4.3: (a) Clear hydrogel beads can be visualized by light microscopy. Beads (60 pum)are
synthesized in a microfluidic emulsion. DNA oligos are covalently incorporated via a 5’-
acrydite modification. Treatment of BAC-cross-linked beads with reducing agent (DTT)
dissolves the gel matrix in minutes. (b) FISH probe for bead-bound DNAs. A fluorescein-
labeled DNA oligo complementary to the bead oligo was hybridized to either control beads
synthesized without DNA (left) or positive beads synthesized with an acrydite-modified DNA
oligo (right). Beads were imaged on a Typhoon laser scanning imager, and fluorescent mi-
croparticles are cleary seen when beads are synthesized in the presence of acrydite-modified
DNA. (c) Synthesis of mini-split-pool barcoded bead library. Bead-bound oligos are sequen-
tially extended by PER. Shown are one (1), two (2), three (3), and four (4) rounds of primer
extension. Lane 5 is the product of a primer extension reaction that caps the bead oligos
with a poly(dT) capture sequence, and lane 6 shows this product after exonuclease treatment
and denaturing wash. The final product is a single species of correct molecular weight. (d)
Schematic of the hydrogel bead barcode. Beads oligos are covalently attached to a hydrogel
support and contain a series of four split-pool barcodes appended with a variable capture
sequence.
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features in commercial scRNA-seq kits.

With a viable chemistry strategy to prepare oligo-functionalized beads compatible with
scRNA-seq, we began serial primer extension reactions to prepare barcoded bead libraries.
We designed a mini-split-pool library consisting of four rounds of split-pool synthesis with 10
unique barcodes at each round, generating a final library of 10* possible bead barcodes. PER
was used to perform serial bead oligo extension reactions. A crucial, unique aspect of PER
is that the product of the reaction is a single-stranded DNA oligo. This feature, combined
with the sequence specificity of primer extension, makes PER an ideal reaction for split-pool
synthesis of barcoded oligos. The reactions, which require very little catalytic hairpin, can
be performed sequentially without denaturation or washing steps, greatly reducing the labor,
costs, and sample loss typically associated with washing-intensive split-pooling approaches.
Figure 4.3 shows the results of a mini-split pool barcoding experiment. Each sequential
extension reaction converts almost all of the substrate into a singly-extended product. After
four rounds of split-pooling, the oligos are capped with a poly(dT) capture sequence. A single
denaturing wash and exonuclease treatment yields a single species (lane 6) with the structure
shown in Figure 4.3d. In all, these improvements represent a major advance in synthesis
of barcoded beads for scRNA-seq, a process that until now has proven so prohibitively
challenging and expensive that only a handful of laboratories in the world have successfully
produced barcoded beads in-house. In demonstrating a user-friendly, cost-effective synthesis,
we hope to democratize scRNA-seq technology, allowing individual laboratories to prepare
custom barcoded beads for applications beyond our current imagination.

4.5 Future Directions

In parallel with our goal of demonstrating user-friendly bead synthesis, we plan to use the
first PER-barcoded hydrogel beads for previously intractable experiments. First, we need
to perform a quality control experiment in which oligo populations from single beads are
amplified and appended with bead-specific Illumina indexes. By sequencing ten to twenty
beads, we will determine the barcode error rate. For a full-scale library, four rounds of split-
pool with 48 barcodes at each round will yield a total library size of over five million unique
bead barcodes, sufficient for scRNA-seq of more than 10,000 cells. We will first perform a
species mixing experiment using standard mouse and human cell lines (3T3 and HEK293T,
respectively). Library preparation will combine elements from the 10x Single Cell 3’ Gene
Expression Kit and the inDrops protocol. Once we have demonstrated scRNA-seq using our
homemade beads, we will focus on untouched experimental territory. A clear implication
of making is our beads is that we can design any sequences we want. We will start by
creating a targeted scRNA-seq panel for the mouse brain by identifying the most variable
and informative genes capture by previous scRNA-seq of brain tissue. We will cap our bead
oligos with a targeted panel designed against 100-1,000 genes of interest. We hypothesize
that targeted capture sequences will enrich for informative genes, thus greatly reducing the
read depth required for effective cell clustering and analysis. Such an experiment is the first
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step toward a leap in the capacity of scRNA-seq. By attacking the problem of sequencing
cost, we plan to perform scRNA-seq experiments on significantly larger numbers of cells with
no increase in cost per cell.
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Name

Sequence

Scale

Purification

BC21

/5AmMC6/TCGTCGGCAGCGTCAGATG
TGTAAGCAGTTACAGBAAAAAAAAAA
AAAAAAAAAAAAAAA

250nm

HPLC

BC22

/5AmMC6/ TCGTCGGCAGCGTCAGATG
TGTACTTGTACCCAGBAAAAAAAAAA
AAAAAAAAAAAAAAA

250nm

HPLC

BC23

/BAmMMC6/TCGTCGGCAGCGTCAGATG
TGTAGAACCCGGCAGBAAAAAAAAAA
AAAAAAAAAAAAAAA

250nm

HPLC

BC24

/BAmMC6/TCGTCGGCAGCGTCAGATG
TGTATCGTAGATCAGBAAAAAAAAAA
AAAAAAAAAAAAAAA

250nm

HPLC

BC25

/BAmMMC6/TCGTCGGCAGCGTCAGATG
TGTAACGCGGAACAGBAAAAAAAAAA
AAAAAAAAAAAAAAA

250nm

HPLC

BC26

/5AmMC6/TCGTCGGCAGCGTCAGATG
TGTACGCTATCCCAGBAAAAAAAAAA
AAAAAAAAAAAAAAA

250nm

HPLC

BC27

/BAmMMC6/TCGTCGGCAGCGTCAGATG
TGTAGTTGCATGCAGBAAAAAAAAAA
AAAAAAAAAAAAAAA

250nm

HPLC

BC28

/BAmMC6/TCGTCGGCAGCGTCAGATG
TGTATAAATCGTCAGBAAAAAAAAAA
AAAAAAAAAAAAAAA

250nm

HPLC

BC29

/BAmMC6/TCGTCGGCAGCGTCAGATG
TGTAATCGCCATCAGBAAAAAAAAAA
AAAAAAAAAAAAAAA

250nm

HPLC
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BC30

/BAmMMC6/TCGTCGGCAGCGTCAGATG
TGTACATAAAGGCAGBAAAAAAAAAA
AAAAAAAAAAAAAAA

250nm

HPLC

BC31

/BAmMC6/TCGTCGGCAGCGTCAGATG
TGTATCACGGTACAGBAAAAAAAAAA
AAAAAAAAAAAAAAA

250nm

HPLC

BC32

/BAmMMC6/TCGTCGGCAGCGTCAGATG
TGTACACTCAACCAGBAAAAAAAAAA
AAAAAAAAAAAAAAA

250nm

HPLC

BC33

/5AmMC6/TCGTCGGCAGCGTCAGATG
TGTAGCTGTGTACAGBAAAAAAAAAA
AAAAAAAAAAAAAAA

250nm

HPLC

BC34

/BAmMMC6/TCGTCGGCAGCGTCAGATG
TGTATTGCGTCGCAGBAAAAAAAAAA
AAAAAAAAAAAAAAA

250nm

HPLC

BC35

/BAmMC6/TCGTCGGCAGCGTCAGATG
TGTAATATGAGACAGBAAAAAAAAAA
AAAAAAAAAAAAAAA

250nm

HPLC

BC36

/BAmMC6/TCGTCGGCAGCGTCAGATG
TGTACACCTCAGCAGBAAAAAAAAAA
AAAAAAAAAAAAAAA

250nm

HPLC

BC37

/5AmMC6/ TCGTCGGCAGCGTCAGATG
TGTAGCTACTTCCAGBAAAAAAAAAA
AAAAAAAAAAAAAAA

250nm

HPLC

BC38

/5AmMC6/ TCGTCGGCAGCGTCAGATG
TGTATGGGAGCTCAGBAAAAAAAAAA
AAAAAAAAAAAAAAA

250nm

HPLC

BC39

/BAmMMC6/TCGTCGGCAGCGTCAGATG
TGTAATCCGGCACAGBAAAAAAAAAA
AAAAAAAAAAAAAAA

250nm

HPLC

BC40

/BAmMC6/TCGTCGGCAGCGTCAGATG
TGTACCGTTATGCAGBAAAAAAAAAA
AAAAAAAAAAAAAAA

250nm

HPLC

REAP_BC41_v4

TCGTCGGCAGCGTCAGATGTGTAGGT
AATGTCAGBAAAAAAAAAAAAAAAAA
AAAAAAAA/3AmMO/

100nm

REAP_BC42_v4

TCGTCGGCAGCGTCAGATGTGTATAA
GCCACCAGBAAAAAAAAAAAAAAAAA
AAAAAAAA/3AmMO/

100nm
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REAP_BC43_v4

TCGTCGGCAGCGTCAGATGTGTAACC
GAACACAGBAAAAAAAAAAAAAAAAA
AAAAAAAA/3AmMO/

100nm

REAP_BC44 v4

TCGTCGGCAGCGTCAGATGTGTACGA
CTCTTCAGBAAAAAAAAAAAAAAAAA
AAAAAAAA/3AmMO/

100nm

REAP_BC45_v4

TCGTCGGCAGCGTCAGATGTGTAGTT
TGTGGCAGBAAAAAAAAAAAAAAAAA
AAAAAAAA/3AmMO/

100nm

REAP_BC46_v4

TCGTCGGCAGCGTCAGATGTGTATAG
ACGACCAGBAAAAAAAAAAAAAAAAA
AAAAAAAA/3AmMO/

100nm

REAP_BC47 v4

TCGTCGGCAGCGTCAGATGTGTAACG
CTTGGCAGBAAAAAAAAAAAAAAAAA
AAAAAAAA/3AmMO/

100nm

REAP_BC48 v4

TCGTCGGCAGCGTCAGATGTGTACGC
TACATCAGBAAAAAAAAAAAAAAAAA
AAAAAAAA/3AmMO/

100nm

REAP_BC49_v4

TCGTCGGCAGCGTCAGATGTGTAGAA
AGACACAGBAAAAAAAAAAAAAAAAA
AAAAAAAA/3AmMO/

100nm

REAP_BC50_v4

TCGTCGGCAGCGTCAGATGTGTATTT
GCGTCCAGBAAAAAAAAAAAAAAAAA
AAAAAAAA/3AmMO/

100nm

REAP_BC51.v4

TCGTCGGCAGCGTCAGATGTGTAATG
GTCGCCAGBAAAAAAAAAAAAAAAAA
AAAAAAAA/3AmMO/

100nm

REAP_BC52 v4

TCGTCGGCAGCGTCAGATGTGTACGA
CATAGCAGBAAAAAAAAAAAAAAAAA
AAAAAAAA/3AmMO/

100nm

REAP_BC53_v4

TCGTCGGCAGCGTCAGATGTGTAGAT
TCGCTCAGBAAAAAAAAAAAAAAAAA
AAAAAAAA/3AmMO/

100nm

REAP_BCbH4_v4

TCGTCGGCAGCGTCAGATGTGTATCC
AGATACAGBAAAAAAAAAAAAAAAAA
AAAAAAAA/3AmMO/

100nm

REAP_BC55_v4

TCGTCGGCAGCGTCAGATGTGTAACT
ACTGTCAGBAAAAAAAAAAAAAAAAA
AAAAAAAA/3AmMO/

100nm
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REAP_BC56_v4

TCGTCGGCAGCGTCAGATGTGTACGG
GAACGCAGBAAAAAAAAAAAAAAAAA
AAAAAAAA/3AmMO/

100nm

REAP_BC57_v4

TCGTCGGCAGCGTCAGATGTGTAGAC
CTCTCCAGBAAAAAAAAAAAAAAAAA
AAAAAAAA/3AmMO/

100nm

REAP_BC58_v4

TCGTCGGCAGCGTCAGATGTGTATTA
TGGAACAGBAAAAAAAAAAAAAAAAA
AAAAAAAA/3AmMO/

100nm

REAP_BC59_v4

TCGTCGGCAGCGTCAGATGTGTAACA
GCAACCAGBAAAAAAAAAAAAAAAAA
AAAAAAAA/3AmMO/

100nm

REAP_BC60_v4

TCGTCGGCAGCGTCAGATGTGTACGC
AATTTCAGBAAAAAAAAAAAAAAAAA
AAAAAAAA/3AmMO/

100nm

P7+A1.3_ CAAGCAGAAGACGGCATACGAGATTCG| 100nm
11bpS3v4 GCGTCGTGACTGGAGTTCAGACGTG
TGCTCTTCCGATCTATGGGATGTCGT
CGGCAGC
P7+A1.2_ CAAGCAGAAGACGGCATACGAGATCTA| 100nm
11bpS2v4 AACGGGTGACTGGAGTTCAGACGTG
TGCTCTTCCGATCTATGGGATTCGTC
GGCAGC
P7+A1.1. CAAGCAGAAGACGGCATACGAGATGGT] 100nm
11bpS1v4 TTACTGTGACTGGAGTTCAGACGTG
TGCTCTTCCGATCTATGGGATCGTCG
GCAGC
P7+Al1.4. CAAGCAGAAGACGGCATACGAGATAAC| 100nm
11bpSOv4 CGTAAGTGACTGGAGTTCAGACGTG
TGCTCTTCCGATCTATGGGTCGTCGG
CAGC
R1-P5 AATGATACGGCGACCACCGAGATCTA

CACTCTTTCCCTACACGACGCTCT

TCCGAT

Table A.1: Primers used in this study



Mouse and Human Mix 3 tags

BC49, BC50, BC51

Mouse and Human Mix 4 tags

BC52, BC53, BCH4, BCH5

Sample Number | Species Tag(s)

1 Mouse 1 tag BC41

2 Human 1 tag BC42

3 Mouse 2 tags BC43, BC44
4 Human 2 tags BC45, BC46
5 Mouse and Human Mix 2 tags BC47, BC48
6

7

8

Mouse and Human Mix 5 tags

BC56, BC57, BC58, BCH9, BC60

Table A.2:

Sample Labeling Scheme for Limits of Multiplexing Experiment
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