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- * Photofragment Vibrational Distributions Of C 2N 2(C 1nu) Predissociation 
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Abstract 

Polyatomic indirect photodissociation is treated as a quantum transition 

between quasi discrete and dissociative (photofragment) states. Our adiabatic 

method is followed to describe the nuclear dynamics of the dissociative state: 

Ab initio MCHF excited electronic potential energy surfaces are constructed 

and used to determine heavy-particle dynamics. The theory is applied to 

single-photon predissociation of C2N2(C Inu) at 164, 158.7, and 153.6 nm to 

form CN(X 2E+) + CN(A 2TI). Theoretical predictions are found to be in 

good agreement with recent experimental product vibrational energy distribu-

tions. 
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I. Introduction 

Most theoretical treatments of polyatomic photodissociation have been 

limited to triatomic systems [1]. Some are based on the formal theory of 

scattering and lead to the necessity of solving sets of coupled differential or 

integral equations [2-7]. Such methods present well-known computational 

difficulties and become prohibitively difficult with the size of the polyatomic 

system. Approximations in formal scattering approaches can lead to simpler 

expressions requiring evaluation of a. Franck-Condon (FC) matrix element [s-

10j. Other FC approaches arise from perturbation theory [11-14j. Various FC 

methods have been found to yield reliable relative product energy distribu­

tions for direct single-photon photodissociation [15-20], but present difficulties 

in obtaining accurate absolute distributions. In this paper consideration is 

directed to indirect photodissociation which presents even more fundamental 

complications [Ie]. 

Recent experimental studies [21-24] of cyanogen (C2N2) photodissociation 

have shown that the C Inu state predissociates via a radiationless transition 

to ground state CN(X 2E+) and electronically excited CN(A 2n) fragments 

and have reported product vibrational distributions (PVDs) at several photon 

energies. An adiabatic correlation analysis identifies the predissociation as 

type II (vibrational), see below, which occurs on a single adiabatic electronic 

potential energy surface (PES). Although indirect photodissociation has been 

discussed in the theoretical literature [g,25-26], most computational studies 

have treated triatomic systems. 

In this paper we focus on the evaluation of photofragment PVDs using an 

adiabatic theory of polyatomic photodissociation developed by two of us [12-

.14]. The theory treats indirect photodissociation as a quantum transition 
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between quasiadiabatic (diabatic) states [27-31] and leads to a localized 

description of the excited electronic adiabatic PES. Obtaining PVDs in this 

approach requires the evaluation of a FC-type factor. The method includes 

important contributions from final-state interactions [14], i.e., the 

translational-vibrational coupling in the dissociative channel. This contrasts 

with other Fe approaches which neglect final-state interactions in the 

zeroeth-order approximation and include this coupling via a second step dis­

torting the zeroeth-order solution. 

This paper is organized as follows. In section II we summarize the theory, 

which has been presented in detail elsewhere [12-14]. Section In outlines the 

application of the approach to predissociation of C2N2(C Inu) and compares 

computed and measured fragment PVDs. A summary and concluding 

remarks comprise section IV. 

II. Theory 

Photodissociation as a Quantum Transition 

Indirect photodissociation occurs when absorption of radiation leaves the 

molecule in an excited electronic state of finite lifetime that subsequently 

undergoes a radiationless transition (predissociation) to a final dissociative 

state. Herzberg distinguishes three types of predissociation [32]: electronic 

(type I), vibrational (type II), and rotational (type III). Type I is accompanied 

by a change of PES, whereas types II and III occur on the same adiabatic elec­

tronic PES. For the latter cases, dissociation is caused by redistribution of 

vibrational or rotational energy of the molecule to translational and internal 

degrees of freedom of the fragments. Because of the finite lifetime of the 

excited state, it is a good approximation to neglect any dependence on the 

.. 
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electronic ground state and photon energy other than the specification of the 

transition. 

The general theory of quantum transitions is well-known and appears in 

several quantum texts [33]. We summarize here the first-order perturbation 

theory analysis for the present application, and note that the method is valid 

to any order (see Appendix A). The probability of a radiationless transition 

from a quasi discrete state (Q) to a dissociative state (D) is given by the golden 

rule expression 

21T' 1 I 12 , dWo_ Q == T HO_ Q cS(E -E) PE dE, (1) 

where 

(2) 

Here H' is the 'perturbation operator which governs the transition, PE is the 

density of states, "'0 and wQ are the total wave functions for the D and Q 

states, and r and Ii refer to the electronic and nuclear coordinates. To calcu­

late the probability of a D-Q transition it is necessary to obtain expressions 

for H', wO, and wQ. 

The applicability of the quantum theory of transitions arises from the 

capability of identifying that part of the total Hamiltonian, H', which causes 

the transition. For direct photodissociation it is the matter-radiation interac­

tion which is the pertinent term of the Hamiltonian [33]. For type I indirect 

photodissociation, H' is the deviation from the Born-Oppenheimer (BO) 

approximation resulting from the neglect of nuclear motion (or spin-orbit cou­

pling if the states are of different spin) [33]. For type II (vibrational) and type 

III (rotational) predissociation, the transition from the initial Q state to the 

final D photofragment state takes place on a single adiabatic PES. In the 
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former case we employ our method developed to treat chemical reaction as a 

quantum transition [34-35]. Type III predissociation could be treated similarly. 

Transformation to a diabatic representation yields a localized description of 

the quantum transition between two diabatic PESs. In this representation 

there are direct coupling terms which cause the transition between the dia­

batic states. 

Diabatic Representation 

The total Schrodinger equation can be written 

(3) 

where TR is the nuclear kinetic energy operator and 1\ is the electronic Ham­

iltonian 

(4) 

Here 1'., is the electronic kinetic energy operator and Vcr, R) is the total 

potential energy .. In accord with the BO approximation, the electronic wave 

function is defined by 

(5) 

The term fn(R') represents the nth adiabatic electronic PES and labels both 

the excited C2N2 molecule (Q state) and the photofragments (D state). 'vVe 

introduce a new potential Vcr, R}, constructed so that the D-Q process is a 

surface crossing in the diabatic representation, Le., the effect of substituting 

V(r, R) for V(r, R) in the electronic Schrodinger equation (5) is to change the 

adiabatic PESs fn(R) and fn+l (R) to diabatic PESs € Q(R) and € D(R) that are 

solutions to 

• 



[1'1' + Vcr, R) ] ~Q(rj R) = fQ(R) ~Q(rj R) 

[1'1' + Vcr, R) ] ~D(rj R) = fD(R) ~Dtrj R). 

5 

(6) 

More specifically, we choose the potential Vcr, R) such that the term f Q(R) 

corresponds to the Q (predissociative) channel and is equivalent to fn(R) for 

small interfragment distances, p, and becomes fn+l(R). in the asymptotic 

region p-OOj similarly, f o(R) is equivalent to fn(R) for large p as shown in 

Fig. 1. 

Formally, one can introduce the total wave functions $Q(r, R) = 

~Q(rj R) ¢Q(R) and $D(r, It) = .;j;D(r; It) ¢D(R), that are eigenfunctions of 

the total Hamiltonian 

(7) 

in a diabatic representation and lead to a PES crossing between the Q and D 

diabatic states. In the BO approximation, the diabatic nuclear wave func-

tions are solutions of 

[1'R + fQ(R) ] ¢Q(R) = E ¢Q(R) 

[1'R + f D(R) ] ¢D(R) = E ¢D(R). 
(8) 

This choice of diabatic representation yields a localized description of PESs. 

The function ¢Q(R) (and, hence, $Q(r, R)) is exponentially small in the D 

channel, and ¢D(R) (and $Dtr, R)) is exponentially small in the Q channel. 

Note that the total Schrodinger equation (3) can be rewritten in the form 

H w(r, R) = (H + ~H) w(r, R) = E w(r, R), (9) 

-where H is defined by (7), and 
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(10) 

The operator, ~H governs the D-Q transition given by Eq. (1). Note that 

~H does not depend on time and thus can only cause transitions between 

states of the same energy [33]. 

- -Using Eq. (6) and the orthogonality of 'l/Jq to 'l/JD the transition matrix ele-

ment of Eq. (2) can be reduced to the form 

• 
H~_q = J ~D(R) ~q(R) L(R) dR, (11) 

where 

• 
L(it) = J ~D(r; it) He ~q(f; It) dr. (12) 

The function L(R) contains relatively ~slowly varying functions .0fR. The 

major contribution to the matrix element will come from the region of overlap 

of the nuclear wave functions. This region will encompass the crossing point, 

Ro' of the diabatic PESs (which, in general, will include the transition st.ate of 

the adiabatic PES). Thus we can approximate Eq. (11) by 

• 
H~_Q = L(Ro) J ~D(R) ~q(R) dR. (13) 

Hence, determination of absolute photofragment energy distributions requires 

the evaluation of a multidimensional FC-type integral and an electronic fac­

tor, L(Ro). Evaluation of L(Ro) is not trivial; however, relative energy distri­

butions can be obtained from just the FC-type integrals reducing the determi­

nation of product energy distributions to a problem involving only nuclear 

degrees of freedom. 

Equation (13) is similar to expressions derived from scattering theory for 

chemical reactions [36-39]. However, the present approach is based on the 

theory of quantum transitions and is similar in spirit to. Bardeen's treatment 
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of tunneling [40]. Since the golden rule given by Eq. (1) results from first­

order time-dependent perturbation theory, all virtual transitions are neglected 

[41]. If higher-order corrections are important, the probability is given by an 
I 

expression similar to Eq. (1), but with the matrix element HD_ Q replaced by 

the T-matrix element connecting the Q and D states. These higher-order 

corrections correspond to virtual transitions to electronic states lying above 

the diabatic states. These terms contain products of FC factors resulting in 

additional orders of smallness, in a perturbative sense, and thus serve as a 

check of the applicability of Eq. (I). It is important to note here that the vali­

dity of the Eq. (1) depends on the product of the coupling matrix element and 

the characteristic time of the perturbation being small. Hence, Eq. (1) is valid 

.even if H~_Q is large for sufficiently short characteristic times. Our treat­

ment differs from those based on scattering theory which lead to a single FC 

factor 136,38]. 

Adiabatic Approach to Nuclear Dynam2~cs 

In order to evaluate the Fe integral it is necessary to obtain expressions 

- -for the nuclear wave functions tPQ and tPD' that are solutions to Eq. (8). In 

general, rotational motion is slower than translational and vibrational motion, 

thus the present analysis neglects rotational motion entirely. (Rotational 

motion can be included as an additional step in an adiabatic development.) 

The Q state can often be described in the harmonic approximation as a pro­

duct of normal modes. If the absorption spectrum consists of a set of equidis­

tant bands, the harmonic approximation should be accurate, otherwise it is 

necessary to include anharmonicity corrections. 

One of the most difficult aspects in treating polyatomic photodissociation 

is the proper description of the D state wave function, ~D(P' q/\ qIB), where 
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qiA and qlB are internal coordinates of fragments A and B. The complication 

-arises because ¢D contains factors describing both discrete spectra correspond-

ing to the internal motion of the individual photofragments, and continuous 

spectra associated with their relative motion. In general, there is strong cou-

piing between these two types of motion and, unlike the Q state, the potential 

energy U(p, qjA, qlB) for the D state cannot be expanded in a series of devia­

tions of all variables from equilibrium. The reason is that p, the distance 

between the centers of mass of the two fragments, represents unbounded 

translational motion. The major contribution to the transition matrix ele-­

ment will come from the region of overlap of the nuclear wave functions, 

where it is necessary to take explicit account of the interfragment interaction. 

Following the adiabatic method of reference [le,14], the D state of a linear 

tetra-atomic molecule may be described by the wave function 

(14) 

where ¢rel is the wave function for translational motion, and ¢ .. nt in the wave 

function for internal motion. This result was obtained following an adiabatic 

approach. A general expression is constructed from rigorous sol utions in two 

d' b t' l' 't (' ) f rel 1 l' 'f d' a 1a a 1C 1m1 s: 1 a = --» ,re at1ve mot1on ast compare to mter-
fint 

nal motion, and (ii) a « 1, the opposite condition, 

For case (i) (a » 1), one can use the clamped translational function 

approximation, for which it has been shown [14] that the fragment frequencies 

and bond lengths are constants and well approximated by isolated fragment 

or asymptotic (asy) values, i.e., 
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(15) 

Conceptually, case (ii) can be described as the slow formation of photofrag­

ments along the repulsive surface with adiabatic adjustment of frequencies 

and bond lengths. The wave function describing the internal motion depends 

parametrically on the interfragment distance p. This limit implies a minimum 

energy (reaction) path for the dissociative coordinate which can be defined 

mathematically as simultaneously satisfying the conditions, 

u = cr' - q." (p) 

8U(p, qA, qB) 
8qB qB _ q.sD(p) - 0 

and :rf O. 

-The relative motion part of 4>D (Eq. (104)) is the solution to 

where Jl. is the reduced mass of the system, 

Ue~P, qA, qB) = U(p, qf(p), CloB(P)) + fint (p) 

findP) = (nA + 1/2)liOA(p) + (nB + 1/2)liOB(p), 

and qoA(p) and qoB(p) are determined by the conditions 

The internal motion wave function, 4>int of Eq. (14) is given by 

where (in the harmonic approximation) 

(16) 

(18) 

(19) 



10 

Here QA(B)( qA ,qB, p) are normal coordinates for internal motion of the D 

state, which asymptotically become individual bond stretches of each product 

fragment, and HnA(B) is an nA(Btorder Hermite polynomial. The explicit form 

of QA(B)(qA, qB, p) is discussed in Sec. ill. The frequencies O(p) and the bond 

lengths Qo(p) depend on the interfragment dista.nce and are in general different 

from their asymptotic values Wasy and Clasy. Specifically, we have [14], 

(
"" )/J 

O(p) = wi W'!;) j 

'Io(p) = ~ ( ~~\P) r 
{3:= (0:'+ 1)-1 

(22) 

where the superscripts refer to the limiting cases (i) and (ii) above. 

The form of general solution for the D state nuclea.r wave function given 

by Eqs. (14,17~22) results from direct comparison of the solutions in the two 

-adiabatic limits. In both limits the wave function <l>D is expressed as a product 

of two functions describing relative and internal motion of the fragments; 

moreover, the corresponding functions possess similar structure. "The limiting 

cases differ only in the behavior of the vibrational frequencies and equilibrium 

bond lengths. For 0« 1, the frequencies and equilibrium bond lengths are 

functions of p; whereas, the opposite limit is characterized by constant values 

of these parameters. The similar structure for the solutions of the two limit-

ing cases suggests it is reasonable to conclude that a continuous transition 
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occurs in proceeding from the case a« 1 to a» 1 that is accompanied by a 

change of the dependence of wii(p) and ~i(p) to wi ::::::: Wasy and ~ ::::::: Clasy; see 

Eq. (15). This change is described by the interpolation scheme of Eq. (22). 

The explicit solutions for the two adiabatic limits for a linear tetra-atomic 

system are given in Appendix B. 

\Ve emphasize that the interaction between the fragments is taken into 

account in two ways. First, the vibrational frequencies and reaction path 

bond lengths depend on the interfragment distance p. Second, the effective 

potential energy Uelf' describing the relative motion, contains the vibrational 

energy. 

Experiment 

Recent experimental studies [21-24] have indicated that C2N2(C Inu) 

undergoes predissociation at wavelengths between 164 nm and 154 nm result­

ing in CN(X 2E+) and CN(A 2n). Figure 2 shows a correlation diagram illus­

trating how the low-lying states of C2N2 adiabatically correlate to separated 

CN radicals for linear geometry. The three lowest-energy channels for dissoci­

ation and their thresholds are 

C2N2 - CN(X 2E+) + CN(X 2E+) 

- CN(X 2E+) + CN(A 2n) 

- CN(A 2TI) + CN(A 2n) 

222.2nm I 

184.7nm II 

157.9nm III. 

(23) 

For wavelengths between 164 and 184.7 nm earlier studies [21,231 have shown 

the ratio of CN(A 2rr) to CN(X 2E+) to be nearly unity indicating that only 

channel II occurs. At shorter wavelengths this ratio was found to be greater 

than unity implying that channel III must contribute. From Fig. 2 it is seen 
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-that channel n adiabatically correlates to C2N2(C 1TIu) and as such is an 

example of type n (vibrational) predissociation. Dissociation via channel In 

involves different electronic PESs and thus is type I (electronic) predissocia-

tion. 

"Miller et a1. [21] photolyzed C2N2 under collisionless conditions at 164, 

158.7, and 153.6nm and measured -nascent CN(X 2E+)<vibrational popula­

tions using laser induced fluorescence (LIF). They reported the ratio of popu­

lations (,8) of l/ = 1 to l/ = 0, and at all wavelengths found ,8< 1, but increas-: 

ing with photon energy_ Taherian et al. (22) measured the CN(A 2TI) vibra­

tional distribution resulting from F2 laser excitation of C2N2 at 151.6 nm. 

They reported a CN(A 2n) vibrational population detected by CN(X-A) 

emission spectra and observed vibrational levels up to the thermodynamic 

limit of l/ = 5 in a bimodal distribution with peaks at l/ = 0 and l/ = 2. 

'- -As described in Sec. li, the Q and D state wave functions, .,pQ' and .,pD' 

are not eigenstates of the electronic Hamiltonian, He' of the system but of a 

diabatic Hamiltonian He consistent with the transformation V(r, R) -

Vcr, R). In general, diabatic states result from a nondiagonal representation 

of fIe' of which there may be several of physical interest. The. adiabatic states 

are unique, however, resulting from the diagonalization of He. Hence, diabatic 

and adiabatic representations are rigorously equivalent, and the problem lies 

in specifying the representation that provides the most useful physical 

description of the system [27-31). 

-Electronic structure studies of C2N2(C 1TIu) indicate it is best described as 

an n _1T'0 excitation from the ground state n3~1T'·1 electronic configuration. 
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Here n represents a nitrogen atom lone-pair electron and 1r* is the lowest-lying 

unoccupied orbital [42]. The CN(A 2J1) radical results from the excitation of a 

1r electron into a half-filled (1 orbital localized on carbon. The CN(X 

22:+) + CN(A 211) supermolecule has an n41r7(1*1 electronic configuration. The 

adiabatic electronic PES reflects this change in character for increasing p. In 

the diabatic representation, however, C2N2(C 111u) dissociates to CN(X 22:+) 

and a higher energy CNel1) state. Collinear approach of CN(X 22:+) to CN(A 

2n) results in a repulsive diabatic surface because of the interaction of the two 

lone-pair electrons of carbon in the A2n radical with the single lone-pair elec­

tron or carbon in the ground state rragment (see Figure 3). It is the interac­

tion between these two diabatic PESs (i.e., the off-diagonal terms in the dia­

batic representation of He) that leads to the predissociative nature of the adia-

batic surface. 

The diabatic surfaces for the quasidiscrete and dissociative states can be 

constructed using the ab initio multiconfiguration Hartree-Fock (MCHF) 

method. The n - 1r* character of the C2N2(C 111u) state and the 1r - (1* char­

acter of the CN(X 2E+) + CN(A 211) supermolecule can be obtained by res-­

tricting the orbital occupations in the respective MCHF wave functions. To 

construct an MCHF wave function that correctly describes the adiabatic sur­

face, it is necessary to include all configurations obtained by distributing 14 

electrons among both the lone-pair orbitals (nu, ng), the 1r orbitals 

(1ru, 1rg, 7ru" 1rg*), and the CC bonding and anti bonding orbitals ((1g' (1u*) in all 

possible ways consistent with 1l1u symmetry. "We denote this wave function 

as MC[O'g' nu, ng, 1ru' 7rg, 1ru*, 1rg*, (1u*j14 (or just simply MC14). The diabatic Q 

state is obtained by omitting those configurations which include excitations 



out of the CC(O'g) or into the CC(O'u*) orbitals. This restricts the O'g orbital to 

remain fully occupied and the O'u" orbital to be empty. By this specification, 

the Q state wave function, MC[nu, ng• 1ru, 1rg, 1ru*, 1rg*p2 (MC12), will not disso­

ciate to adiabatic products but will retain its n - 1r. character. Similarly, if 

the configurations which include excitations from the lone 'pair orbitals ,are 

neglected, forcing them to remain fully occupied, the D state wave function, 

MC[O'g' 1ru' 1rg, 1ru*, 1rg*, O'u·po (MC1D) with1r-O'· character is obtained. 

Following these ideas, the optimized molecular geometry, force constants, 

and harmonic frequencies have been obtained [42] for C2N2(C lrIu) in excellent 

agreement with experimental data. The absorption spectrum consists of a.n 

equidistant set of bands [21], and thus the quasi discrete sta.te nuclear wave 

function can be well approximated by a product of harmonic oscillator func­

tions of the normal modes. Frequencies and normal coordinates were detero 

mined from force constants obtained from a minimum basis set (STO-3G). 

MC12 wave function. The results of these calculations are summarized in 

Table 1. 

Because it is not possible experimentally to obtain geometries and force 

constants of fragments along the reaction path, we also employ ab initio 

MCHF metho~ to determine this data needed to describe the D state in the 

FC overlap region. A simple relationship can be derived for specifying the 

minimum energy path of a tetra-atomic system using the method of Lagrange 

multipliers (see Appendix C). 

Figure 4 displays the results of the D state MCHF calculations. ,\Ve note 

a strong p-dependence for both photofragment equilibrium bond lengths and 

frequencies along the repulsive PES. For small p the system resembles the 
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symmetric C2N2 supermolecule rather than distinct CN(X 2E+) and CN(A 2fI) 

radicals. The normal mode analysis yields normal coordinates expressible as 

symmetric and asymmetric linear combinations of the localized fragment bond 

stretches similar to those of quasi discrete C2N2(C lIIu)' The CN photofrag-

ments remain indistinguishable until an abrupt symmetry breaking at P = 3.2 

A. There the fragments are distinct, the bond lengths differ, and by P = 3.6 

A the fragments have almost reached the equilibrium bond lengths and fre­

quencies of isolated CN(X 2E+) and CN(A 2II). For larger p a normal mode 

analysis gives normal coordina.tes primarily composed of the individual local­

ized bond stretches. For small p the normal mode corresponding to the sym­

metric CN stretch is found to correlate asymptotically to the ground state 

CN(X 2E+) stretch, and that for the asymmetric eN stretch, which has the 

lower frequency, correlates to the excited state CN(A 2II) stretch. 

The quasi discrete state nuclear wave function will be nonzero for a region 

near its equilibrium geometry (Po, ~A, ~B). Therefore the main contributions 

to the FC overlap will also come from this region . 

• 
Po = 2.656 A. As shown in Figure 4, the frequencies and bond lengths in this 

region are clearly not the same as those for the isolated fragments. 

Evaluation of the Franck-Condon Overlap Integral 

Obtaining relative product energy distributions requires evaluation of the 

multidimensional overlap integral of the quasi discrete and dissociative state 

nuclear wave functions, 

• 
H~_Q -- J ~D(R) ~Q(R) dR. (24 ) 

In this paper we are primarily concerned with vibrational distributions of the 

CN(X 2E+) and CN(A 2n) fragments resulting from predissociation of C2N2(C 
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1I1u). Both the ground (X lEg+) and excited (6 1I1u) molecular states are 

linear and, as a further adiabatic approximation, we may neglect bending 

vibrations and rotations and limit the analysis to the collinear arrangement. 

The general theory is applicable to nonlinear polyatomics and is presented in 

detail in reference [12]. Evaluation of the fragment rotational distributions 

would, of course, require inclusion of the corresponding degrees of freedom. 

In the harmonic approximation, the nuclear wave function describing the 

internal motion of the quasidiscrete C2N2(C 1TIu) state is given by a. product 

of three oscillator functions, 

(25) 

where Qi are normal mode stretches. and nj are the vibrational quantum 

numbers of the harmonic oscillators with frequencies Wi' given in Table I. 

To describe the internal motion of the dissociative state, we use harmonic 

oscillator functions with /Fdependent frequencies and bond lengths given by 

Eqs. (20-22). The translational wave function describing relative motion is 

the solution of Eq. (17), which contains the coupling between internal and 

relative motions in the effective potential of Eq. (18). This approach for the D 

state surface differs from the usual procedures of approximating this region of 

the PES by ,a linear or exponential function [19-20], and neglecting the p­

dependence of the vibrational ·energy contributions to Ueffo The latter 

approaches result in analytical forms (Airy or Bessel functions) for the transla­

tional wave function. In the present method both terms of Ue~P, qA, qB) can 

be obtained from MCHF calculations. As will be discussed below, the 

ab initio MCHF data points are used to obtain an exponential fit for the dis-
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sociative state electronic PES in the crossing point region. The calculated 

vibrational energy is added to the electronic potential resulting in 

UetrtP, qA, qB), from which the translational wave function, <Prtl (p, qA, qB), is 

calculated using standard numerical methods [45]. 

The nuclear wave functions of the quasi discrete and dissociative states are 

conveniently expressed in terms of their respective sets of normal coordinates. 

How'ever, evaluation of the FC integral of Eq. (24) is computationally simpler 

if the nuclear wave functions are expressed in a single coordinate system. For 

this purpose, we choose the internal coordinates (p, qA, qB). The normal 

modes of the quasidiscrete state can be expressed as 

where 

1'A = qA - o.oA 

1'B = qB - o.oB 

p' = P - Po 

i = {1,2,3}, (26) 

(27) 

represent the deviations from the equilibrium geometry. Similarly, the normal 

mode functions of the dissociative state can be written 

Qz = az{p) [1'A - oqA{p)] + bz{p) [1'B - 6qB{p)] + cz{p) p' 

Z = {A,B}, 
(28) 

where the difference between the equilibrium bond lengths of the quasidiscrete 

and dissociative states are given by 

oqA{p) = 0.0 A - ~(p) 

oqB(p) = o.oB - ~F!i.p). 
(29) 

In this coordinate system the multidimensional FC overlap of Eq. (24) can 

be written 



H~_Q -- J [J <pnl(TA, TB' p') <pn2(TA' TB' p') <Pn.(TA' TB' p') 

<PnJTA' TB, p') <pnB(TA, TB, p') dTA dTB ] <Prtl (p') dp'. 
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(30) 

Integrations over TA and TB can be done analytically resulting in a one­

dimensional integral of the form 

. H~_Q -- J 4>"i6 (p') <Prtl (p') dp', (31 ) 

where <P"ib (p') is an effective vibrational wave function of the form 

(32) 

Here F is a. complicated function of the vibrational frequencies, the coordinate 

transformation coefficients, the vibrational quantum numbers, the changes in 

the equilibrium bond lengths, and p'. The explicit form of <P,,;6 is given in 

AppendixD. The gaussian factor is centered. at .p.o + op and has width c. The 

shift op results from the changes in the equilibrium bond lengths of the eN 

fragments in the Q and D states. Final integration of Eq. (31) is performed 

numerically [45]. The transition probability in Eq. (1) is obtained from the 

product of the square of the transition matrix element, HD_ Q, multiplied by 

the final density of states, PEo The one-dimensional final density of states is 

proportional to the inverse of the asymptotic momentum [33]. 

:Because H~_Q is explicitly a function of the vibrational quantum 

numbers, it yields state-to-state transition 'probabilities .and thus ·final-state 

vibrational energy distributions. It .has been shown previously [13] that Eqs. 

(31) and (32) can lead to inverted vibrational distributions. The possibility of 

an inverted distribution arises from the fact that for low vibrational levels 

and hence large relative kinetic energy the translational wave function is a 

highly oscillatory function which can lead to small nuclear overlap and 
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transition probabilities. However, transition probabilies to high vibrational 

states can also be reduced because of a larger effective potential which dis­

places the classical turning point further from the center of the effective vibra­

tional wave function. The latter favors a noninverted distribution. In gen­

eral, the PVDs will depend on these competing factors which l:lltimately are 

determined by the PESs and the p-dependence of the vibrational energy. 

Vibrational Distributions 

Figure S shows a section of the diabatic potential energy surfaces from the 

ab initio STO-3G MCHF calculations of the Q and D states. The points of 

the D state curve define the minimum energy path that satisfies the condi­

tions of Eqs. (16) and (C3). The corresponding points of the Q surface were 

calculated at the same nuclear geometries. The crossing point of the two 

curves occurs near p= 2.9S .A. corresponding to 8.9 eVa The main contribu­

tions to the Fe overlap will come from the region near the crossing point. It 

is reasonable to approximate the repulsive electronic PES by an exponential of 

the form 

(33) 

Others [17,20,2S] have employed similar exponential forms for a D state PES, 

where the parameters A and "Y were determined from experimental data or 

electronic structure calculations. This results in a Bessel function for the 

trarislational wave function simplifying the H~_Q integral. The ab £nitio 

calculations yield A = 2.-1 . 109 cm-1 and "Y = 3.gS A-I in Eq (33). 

The magnitudes of the transition probabilities and PVDs will be sensitive 

to the classical turning points of the D state PES. The effective vibrational 

wave function is centered near the Q state minimum, po. The translational 



wave function will not have appreciable amplitude until the classical turning 

point, Ptp' Inspection of Figure 5 indicates that Po = 2.66A. and Ptp = 3.15A. 

at 164 nm. The STO-3G PESs yield very small transition probability with 

overlap resulting mainly from the exponentially decreasing tails of the nuclear 

wave functions in the classically forbidden-region. 

The computed transition probabilities (and Ptp) are found to be consider­

.ably more sensitive to the PES parameter "Y than to the preexponential factor 

A of Eq. (33). Variations in A displace the D state curve without changing its 

shape; whereas, changes in "Y affect the curva.ture. For example, a.t 164 nm, a 

20% decrease in A Cram 2.4 . 109 to 1.82· 109 cm-1 decreases Ptp by 0.06 A 

(2% change); however, a 20% increase in "Y from 3.gS to 4.74 A-I decreases Ptp 

by 0.54 A (17% change) which significantly alters the computed PVD.s 

The 164 nm photon energy is only 0.26 eV above the ground vibrational 

level of CzNz( C Inu). Because predissociation is experimentally observed at 

this energy, we expect the crossing point to actually occur at lower energy 

and a smaller interfragment distance than depicted by the calculated STO-3G 

MCHF PESs. Given the sensitivity of computed PVDs to the D state elec­

tronic PES parameters, we have carried out the analysis using the ab initio 

STO-3G value for the less sensitive pre-exponential factor A leaving the 

exponential constant "Y to be determined from·a fit to the 'experimental data. 

Extended basis set calculations (DZP level) are in progress. Preliminary 

results indicate a lower D state PES as expected. 

CN(X 2E+) PVDs. The experiments of Miller et al. and Jackson [21,23-

2·t] were done at three photon wavelengths separated by -.; 2100 cm-1, the 

vibrational frequency of the symmetric CN stretch. The lowest wavelength, 
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164 nm, is also about 2100 cm-1 above the ground vibrational level of C2N2(C 
1ITu)' Thus, it is reasonable to assume that the initial state reached at 164 

nm is (1,0,0) corresponding to one vibrational quantum in the symmetric CN 

stretch. Here we label the initial Q state by (VI' V2, V3) where VI refers to the 

vibrational quantum number of the symmetric CN stretch, v2 identifies the 

CC stretch, and v3 corresponds to the asymmetric CN stretch. On this basis 

the symmetric CN stretch is excited at 158.7nm with one additional quantum 

(2,0,0), and two more quanta (3,0,0) at 153.6nm. Because Miller et al. report 

only the CN(X 2E+) vibrational populations at these wavelengths, our com­

puted results, which only consider the single surface predissociation of channel 

II, can be directly compared to experiment. 

Figure 6 compares computed CN(X 2E+) PVDs to the measurements of 

Miller et a!. Good qualitative agreement is obtained for A =2.4 . 109 cm-1 

and "'Y:::::: 4.64-4.88 A-I of Eq. (33). These values indicate a more repulsive 

surface in the FC region to obtain increased nuclear overlap than that 

obtained from the minimum basis set MCHF calculations. The effective 

potential curves (Eq. (18)) for transitions at 164 nm to several final states are 

shown in Figure 7. The dips in the effective potential at 3.2 A reflect the p­

dependence of the frequencies in the vibrational energy contribution (see Fig. 

4). 'We had sought a single "'Y to satisfy the experimental data, but found 

instead a small range of values that provided agreement with the CN(X 2E+) 

data. These findings support our expectation of a crossing point lower in 

energy and at a smaller interfragment separation as shown in Fig. 7. 

In a recent study, Eros et. a!. [46], reported 133 kcal for the dissociation 

energy of ground state C2N:lX lEg+) - 5 kcal larger than the previously 
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accepted value. This difference ( "'" 1750 cm-I ) changes the number of ener­

geticially accessible fragment vibrational channels and hence the calculated 

distributions. The effect of this increased binding is to raise the effective 

potential, resulting in less nuclear overlap and smaller transition probabilties. 

Similar qualitative agreement between calculated and experimental CN(X 

~E+) vibrational distributions is obtained with this increased ~dissociation 

• energy but it requires a slightly larger "I, i.e., 4.72<"1<5.02 A-I to compensate 

for the larger binding. 

CN(A 2n) PVDs. At 157.6 nm laser energy used in the experiments of 

Taherian et ai., channel III becomes accessible with the possibility of forming 

two CN(A 2n, v = 0) fragments. We have not calculated contributions from 

this channel and therefore cannot make a direct comparison with experiment. 

Because channel III can only contribute CN(A 2n) "fragments in v = 0, how~ 

ever, the vibrational distribution solely from channel II should be peaked at 

v =,2 in order that the total distribution from both 'channe,ls have the bimCF 

dal character observed by Taherian et 201. 

At 157.6 nm it is not clear which initial vibrational level of C2N2(C Inu) is 

reached. A 157.6 nm photon has energy 440 cm-I above the (2,0,0) vibra­

tional state and it is possible that this excess energy goes into the bending 

and rotational modes -not considered here. \Vith the '"assumption that the ini­

tial state is (2,0,0) we have estimated the contribution from channel II. No 

reasonable values of the exponential parameters of Eq. (33) resulted in a 

vibrational distribution peaked at v = 2. At all wavelengths for which the 

initial state contained only excitation into the symmetric CN stretch of 

C2N2(C 1TIu), all PVDs had greater than 99% of the CN(A 2n) fragments 
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formed in v = o. Inclusion of contributions from channel III would only lead 

to poorer agreement with experiment. 

The behavior of the CN(A 2fJ) vibrational distributions can be explained 

with symmetry arguments. As discussed above, the photofragments have a 

supermolecule appearance in the FC region. The normal modes of the dissoci­

ative sta.te in this region are symmetric (Et) and asymmetric (Eu+) linear 

com binations of localized CN bond stretches similar to those of C2N2( C lnu). 

Orthogonality of the Hermite functions describing these normal modes yields 

a propensity rule for the sum of the vibrational quantum numbers of the 

asymmetric stretches. Their sum must be even for a nonzero transition pre>­

bability. Since we assume that the quasi discrete initial states are excitations 

of the symmetric CN stretch with the asymmetric CN stretch in its zero-point 

level, by symmetry the transition probabilty to fragment states with odd 

quanta in the asymmetric CN stretching mode (which asymptotically becomes 

the CN(A 2n) stretch) will be small. 

Okabe and Jackson [24] note that if the C2N2(X lEt) dissociation energy 

is 133 kcal, then the thermodynamic limit for the CN(A 2n) fragment at 15i.6 

. nm would be v = 4. According to these authors, the fact that Taherian et al. 

observe v = 5, coupled with the possibility of multiphoton effects, casts doubt 

on their analysis. Okabe and Jackson [2-1] state that the two experiments 

(Ta.herian et al. and Miller et al.) are in direct contradiction unless the predis­

sociative dynamics are highly sensitive to the exact point within the absorp­

tion band excited by the laser. 

Mode Specificity. Photodissociation dynamics offer a unique possibility 

for the study of internal energy redistribution in a molecule. A predissociat-
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ing molecule can be prepared in different initial levels of nearly the same 

energy from which one can observe whether mode-specific behavior occurs. 

Figure 8 compares theoretical vibrational distributions obtained for different 

initial states at 164 nm. Our computations yield characteristically different 

PVDs depending on the quantum number of theQ state asymmetric CN 

_stretch, v3' .The propensity rule described in the previous section, namely that 

the sum of the quantum numbers of the asymmetric stretches of the Q and.D 

states, v3 + vA' be even for nonzero probability for the transition 

(VX, vA) - (vl' v2' V3), accounts for this behavior. This propensity rule can 

be expressed 

(3-4) 

Here the probability of a specific D-Q transition is given by \VD_ Q and we 

denote final states by (VX, VA) where the subscripts refer to the vibrational 

quantum numbers of the CN(X 2E+) and CN(A 2n) stretches. The population 

of X-state or A-state fragments with vibrational quantum number, Vx or vA 

can be written 

P ~(VI' £120 va) ,..." E W(Vx. £1...)-(£11. V:z. va) 
VA 

p V~-(VI' £12. Va) ....... , E W(Vx. V...)-(VI.,&I:z. Va) 
Vx 

(35) 

At 164 nm there is enough energy to reach final states for which 

LIT = VX + VA < 3. Following the propensity rule Eq. (34), for Q state 

(1,0,0), transitions occur to D state channels with vA even. On the other hand, 

for Q state (0,0,1), transitions occur to product channels with V A odd. Our 

results for 164 nm indicate that the transition probabilities to states with 
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vT>2 are negligible. Table n gives the dominant terms that contribute to 

the fragment populations in Eq. (35). 

From Figure 8, we see that for (1,0,0), both fragments are primarily popu­

lated in their ground vibrational level. Nearly 100% of the CN(A 211) frag­

ments are in vA = a due to the propensity rule which does not allow transi­

tions to product channels with VA = 1. We can explain the PVD for the 

ground state CN(X 2E+) fragments from the dominant terms contributing to 

the populations (see Table II). For product channels with larger vT the 

effective potential increases. The classical turning point will be shifted to a 

larger interfragment distance and, in general, away from the effective oscilla­

tor. In many cases, we would expect this shift to result in less nuclear overlap 

and smaller transition probabilities. From this reasoning, W(O,O)_(l,O,O) would 

be larger than \V(l,O)-(l,O,O)i and hence, PO~(l,O,O) > Pt-(l,O,O). 

The effect of the propensity rule is seen much more strongly in the CN(A 

211) PVDs. The behavior of the PVDs changes dramatically between Q (1,0,0) 

and Q (0,0,1). For (1,0,0), the CN(A 211) fragments are predominantly popu­

lated in VA = 0, as transitions to product channels with VA = 1 are not 

allowed. The oPI?osite is true for (0,0,1), as product channels with VA = a are 

nearly zero and A-state fragments are mostly VA = 1, resulting in an inverted 

vibrational distribution. 'Ne emphasize that the propensity rule, Eq. (3-1), 

arises from the symmetry of the system in the FC region at small interfrag­

ment separations 

IV. Conclusions and Remarks 

\Ve have applied our adiabatic theory of polyatomic photodissociation to 

C2N2(C 1fIu) to obtain product vibrational distributions for CN(X 2E+) and 
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CN(A 2rr) photofragments. The theory treats type II (vibrational) predissoci­

at ion as a quantum transition in a diabatic representation. Relative product 

vibrational distributions are obtained from the evaluation of multidimensional 

Franck-Condon overlap integrals. The adiabatic description of the nuclear 

dynamics 'explicitly treats final-state interactions, i.e, the coupling between 

the relative motion of the fragments with their internal degrees of freedom,.as 

an integral part of the theory. 

Ab initio MCHF calculations using a minimum basis set (STO-3G) were 

used to construct the diabatic electronic potential energy surfaces and to com­

pute the geometries and force constants necessary to determine nuclear wave 

functions. \Ve found a strong dependence of the dissociative state fragment 

bond lengths and frequencies on the interfragment distance, p. As depicted in 

Figure 4, our calculations show that the CN(X 2I;+) + CN(A,2rr) dissociative 

state has a supermolecule appearance for small·· interfragment separations, 

where the eN fragments are indistinguishable. ,There exists a large variation 

of CN vibrational frequencies that correlates with symmetry breaking of the 

CN fragments as they separate and become recognizable as CN(X 2I;+) and 

CN(A 2fJ) radicals. 

Qualitative agreement with experiment is obtained for relative vibrational 

distributions for CN(X 2E+) at 164, 158.7, :and 153.6' nm. These results were 

obtained assuming the initial state of the precursor C2N2(C lrru) system to 

include only excitation of the symmetric CN stretching mode. At 157.6 nm 

the initial C2N2(C lrru) vibrational state could not be ascertained from the 

present study. Direct comparison with experiment would entail inclusion of 

the product channel corresponding to two CN(A 2rr) fragments. However, at 
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this photon energy, the experimental bimodal distribution obtained for CN(A 

2TI) could not be reproduced. It is possible that bending vibrations or rota­

tions are important which must await three-dimensional studies in progress. 

Another result of our analysis is the occurrence of mode specificity. Com-

puted product vibrational distributions for C2N2(C 1TIu) prepared with quanta 

solely in the symmetric CN stretching mode vl differ from those with the 

same number of quanta solely in the asymmetric mode v3' A propensity rule 

is found for f7 = v3 + V A 'II: for f7 odd, the transition probabilty will be small 

or nearly zero. This propensity rule results from symmetry restrictions arising 

from the pa.rity of normal modes functions for the Fra.nck-Condon-type 

integrals. 

Appendix A: General Expression For The Transition Probability [411 

One can write the total Hamiltonian 

(AI) 

The wave function can be expressed in terms of the eigenfuctions, .,pn' and 

eigenvalues, En' of flo 

w = ~ 8.n( t) .,pn e -iE.t/li • 
n 

(A2) 

If the system is initially in a stationary state with energy Em' the probability 

of being in a stationary state with energy En after the interaction is given by 

the absolute square of the coefficients 8.nm(t) 

(A3) 

The solution of 8.nm is an infinite series which can be expressed in terms of 

transition matrix, <n I tim>, where 
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(A4) 

If V(t) = V, then transitions can only occur between states of equal energy. 

The general expression for the transition probability per unit time from initial 

state 1m> to a final state I n> can be expressed as 

(AS) 

In first-order t = V resulting in the well-known golden rule expression of Eq. 

(1). The higher order terms correspond to transitions to virtual electronic 

states. From Eq. (A4) one can see that these higher-order terms contain pro­

ducts of Franck-Condon factors resulting in additional· orders of smallness-and 

serve as a check of the applicability of Eq. (1). Based on,Eq. (A4) one can 

calculate higher-order terms to obtain a desired accuracy. We note .here that 

our approach differs from those based on scattering theory [36,38]-which lead 

to only a single Franck-Condon factor. 

Appendix B: Wave Functions in the Adiabatic Limits 

In this appendix we report the solutions for the nuclear Schrodinger equa­

tion in the two adiabatic limits following a similar analysis presented earlier 

IIe,HI· 

Case (i): Fast Translalionallvfotion , Q = fret »1 
Ejnt 

In this limit we can use the clamped translational function approximation 

[1·iJ and obtain for the D state nuclear wave function the product function, 
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- -A B) (AI BI) (A B) <PD(P, q , q = <Prel p, QO ,QO <Pint q ,q . (Bl) 

The wave function describing relative motion, <Prel , is the solution of 

[ 
1 8

2 
AI BI) ] ( AI BI) - 2 J.L 8p2 + U(p, QO , QO <Prel p, QO , QO 

(B2) 

E ( AI BI) A. ( AI B') = QO, QO ""rei p, qo ,qo . 

In the harmonic approximation, <Pint is given by 

(B3) 

where 

(B-1) 

Here, Qz are normal coordinates, which in this limit are the asymptotic bond 

stretches of the product fragments. The wi are vibrational frequencies, Z -

{A.B} refers to product fragments, and TZ are given by 

(BS) 

It can be shown [141 that in this limit the vibrational frequencies and equili­

brium bond lengths are constants and can be well approximated by their 

asymptotic noninteracting-fragment values, Wasy and Clasy. 

Case (ii): Slow Translational Alotion , a « 1 

In this limit the wave function is also separable into two functions of the 

form 
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(B6) 

Here the wave function describing the internal motion depends parametrically 

on the interfragment separation p and can be written 

Again in the,harmonic,,-approximation, 

(BS) 

( 
wii(p) Qi(T)!(p), T~i(p); p) ) H (Q ( ii() ii()) r:J(;)) 

. exp - 2li z z TA P , TB P ; p Vf'· 
As above, Qz are normal coordinates, which asymptotically become the indivi­

dual.bond stretches of each product fragment (see Section III). The ":'Zi(p) are 

vibrational frequencies of the fragments, and rii(p) are given by 

The wave function 4>rtl is obtained by solving 

where the effective potential UeII is 

Ue~P) = U(p, <loAU(p), <loBII(p)) + (nA + 1/2)"1iw)!(p) 

+ (n + 1/2) 1iw~i(p). 

(B9) 

(BlO) 

(Bll) 

One notes that in this limit, the vibrational frequencies and equilibrium bond 

lengths are functions of p and differ quite significantly from their asymptotic 

values (see Figure 4). 
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Intermediate Cases, a :::::::: 1 

The general form of ~D for arbitrary a given by Eqs. (14,17-22) results 

from comparison of the solutions for the two limiting cases given above. In 

both limits the total nuclear wave function is expressed as a product of two 

functions (see Eqs. (B 1) and (B6)). Moreover, the structure of the correspond­

ing functions for each case is very similar (cf. (B3) and (B7), (B4) and (B8), 

(B2) and (BlO), (B5) and (B9)). One notes that the limiting cases differ only 

in the explicit form of the vibrational frequencies and equilibrium bond 

lengths. For a> > 1, the frequencies and bond lengths are functions of p (see 

(B8) and (Bg)); whereas, the case a« 1 is characterized by constant values of 

these quantities. Therefore, it appears reasonable to conclude that a continu­

ous change occurs from the limit a« 1 to the opposite case, accompanied by 

a change ,in the p-dependence of the vibrational frequencies and equilibrium 

bond lengths. This transition is describable by the interpolation expression of 

Eq. (22). 

Appendix C: Optimization On The Minimum Energy Path 

\Ve seek the minimum energy molecular geometry for a fixed interfrago 

ment distance p. Employing the method of Lagrange multipliers, we intro­

duce the function G == U + )..p for which we want to sa,tisfy 

dG = dU + )"dp = 0, (Cl) 

where U is the electronic potential depending on the nuclear positions and)" is 

a constant. For a linear tetra-atomic, choosing the molecular axis to be along 

the Z axis, 
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p - (C2) 

Here Zj is the Z-coordinate of the ith atom. For C2N29 ml=m4=mN' and 

m2=m3=mC. Substituting (C2) in (Cl) results in the following condition for 

the'gradients of the atoms"on the:minimum energy path 

Geometries and force constants (i.e., second derivatives of the energy with 

respect to nuclear coordinate) along the reaction path were calculated using 

the minimum basis MelO wave function for the dissociative state (see Sec. 

III). Because these geometries are not stationary points of the potential 

energy surface, the usual procedure of diagonalizing the Corce constant "matrix 

to obtain 3N;S (linear molecule) normal modes and frequencies is not ·valid. 

The variable p corresponds to unbounded relative motion of the photofrag­

ments. \Ve can employ the reaction path Hamiltonian method of Miller, 

Handy, and Adams [471 to obtain the frequencies of the normal coordinates 

orthogonal to the reaction path. In this procedure one projects out the reac­

tion path from the matrix of second derivatives of the energy w.r.t. nuclear 

coordinates to obtain the projected force constant matrix 

°KP = (l-P)·K·(l-P), (C-l) 

where K and P have dimensions 3N X 3N and are given by 

(C5) 

Here L is a 3N-dimensional unit vector which defines the direction of the reac-
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tion path and the subscripts i and j label nuclei. Diagonalization of KP 

results in 3N-6 nonzero eigenvalues corresponding to the frequencies of the 

normal coordinates orthogonal to the reaction path. The 6 null eigenvalues 

correspond to the infinitesimal translations(3) and rotations(2) of an N-atom 

linear molecule, and motion along the reaction path. For C2N2 constrained to 

be linear, the gradients obey the simple relationship given by Eq. (C3); the 

unit vector L is constant for all values of p and is given by 

(C6) 

where M = v'2(mJ + md) . 

Appendix D: The Effective Vibrational Wave Function 

The transition matrix element, Eq. (30), can be rewritten 

(D1) 

Here, i={1,2,3} refers to the symmetric CN, CC, and asymmetric CN stretch­

ing modes of the quasidiscrete state and i={ 4,5} refers to the dissociative 

state symmetric CN and asymmetric CN stretches which asymptotically 

correlate to CN(X 2E+) and CN(A 2n) localized bond stretches. The normal 

coordinates can also be expressed in terms of internal coordinates similar to 

Eqs. (26-29) 
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(D2) 

The harmonic oscillator functions have the usual form 

(D3) 

For the quasi discrete state i={1,2,3} the transformation coefficients (ai' bi, Ci), 

vibrational frequencies (Wi), and changes in equilibrium bond lengths (6qi~= 0) 

are constants. However, for the dissociative state i={4,S}, they depend on 

both p and a: as given by ,Eqs. (22,28,29). 

The effective vibrational wave function is the term enclosed by brackets in 

Eq. (Dl). Substituting Eqs. (D2) and (D3) in Eq. (Dl) and employing the geno 

erating function for Hermite polynomials 

(D4) 

one can integrate over the internal coordinates "analytically resulting in the 

following expression 

{ 

5 ] 1/4 IlWj 
<Pvib (p') = i~5 

[ 
H

I) I) '] [ 

el) - J-
. exp --- + _1_ + __ 1 __ K exp -C

1 4 A 4 Bl 4 C1 

where 

5 80 2 w, 
A= E 1 1 

, 9Ji 
1=1 -



5 b·2 W' 
B = L: \ \ 

i==1 21i 

5 C 2 W' 
C= E I \ 

i==1 21i 

5 a· b· W· 
D = 2: \ \ \ 

i=1 1i 

5 a c W· 
E= E \ \ \ 

i==1 1i 

5 b· c· W· 
F= E \ \ \ 

i-=1 1i 

[ 
5 ~i 5 Wi (2 A B) ] G = - 2E a i - ti + .E- a; c5Qi + a; b i c5Qi 

\=1 1i \==1 1i 

[ 5 ~i 5 Wi ( A 2 B)] H = - 2Ebi T ti + .E-n ai bi c5qi + bi c5qi 
\==1 \=1 

[ 
5 ~i 5 Wi ( B) ] J == - ') ~ c· - t· + ~ - a· c· 6Q·A + a· b· c5q. - l...l \ 1i IL...J 1i \ I I \ I \ 

1=1 1==1 

D2 
Bl = B- -"'-

4A 

DG 
Hl=H--

2A 

Fl=F_DE 
2A 

E2 F12 
C1 = C- -----

4 A 4 Bl 
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G E FI HI 
JI=J-----~ 

2 A 2 Bl 

Note that G, HI' J17 and K all are functions of the dummy variables tj which 

arise from the generating function of Eq. (D4) of the Hermite polynomials. 

The effective vibrational wave function for a particular vibrational transtion 

(n1' n2' n3) - (n4' ns) can be obtained from differentiating'Eq. "(D5) w.r.t. tie 

.The resulting expression has the form of'Eq. (32). 

• 
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Table L Computed Properties of C 2N 2 and CN 

State 

, ... 1 
C2N2(C TIu) 

CN(A 211) 

CN(X 2E+) 

aReference 43 

bReference 44 

Property 

R(CC) 
"0 

R(CN) 

111 (sym CN) 

112 (CC) 

113 (asym CN) 

(C 1 - 1 + Te TIu+-X Eg) 

r(CN) 

'VA 

Te(A 211+-x2E+) 

r(CN) 

VX 

Calculated 

1.308 A 

1:252 A 

2082 cm-1 

8~6 cm-1 

1726 cm-1 

8.64 eV 

1.2~83 A 

1716 cm-l 

1.53 eV 

1.2087 A 

2101 cm-1 

40 

'. 
Experimental 

--

--
2100 cm-1& 

--

-

7.30 eV 

1.2327 Ab 

1814 cm-1 
b 

1.146 eV 
b 

1.171SAb 

2069 cm-1 
b 



Table II. Dominant Terms for the CN(X 22:+) 
and CN(A 2n) Populations at 164 nm 

Q (1,0,0) Q (0,0,1) 

pX 
o..-Q \\1(0.0)..-(1.0.0) \\1(0. IJ_"-(O.O. 1) 

pX l..-Q W(1,O)..-{l,O,O) --0 

Pt-Q -0 --0 

P~"-Q W(O.O}..-(l,O.O) + W(l,O)-(l.o,O) -0 

Pf'--Q -0 W(O, 1)..-(0,0, 1) 

P .\ !i .... Q -0 -0 

41 
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Figure Captions 

Figure 1. Adiabatic potential energy surfaces fn(R) and fn+1(R) from diag-
onalization of the electronic Hamiltonian, I\ ( ...... ). Diabatic potential 

energy surfaces fQ(R) and fD(R), which cross, fromanondiagonal 
representation of I\ ( -). 

Figure 2. Correlation diagram of several low-lying electronic st~tes of 
C"N" showing CN state products from collinear dissociation. 

Figure 3. Character of dissociative pathway. C2N2(C lnu) is an n - 1r
tJ 

transition from the ground state, whereas CN(X 2E+) + CN(A 2n) is a 
1r - 0-. transition. Initial approach of CN(X 2E+) and CN(A 2n) frag­
ments is a repulsive interaction. 

Figure 4. Bond lengths and frequencies versus p for CN(X 2E+) and CN(A 
2rr) states from ab initio MCHF minimal basis set calculations for .the 

minimum energy path for collinear dissociation of C2~2(C lITu). 

Figure~5. Section of calculated diabatic electronic potential energy sur­
faces. The solid line indicates energy of 164 nm photon. Crossing point 
occurs at 8.9 eV which is 1.4 ev above 164 nm photon energy. 

Figure 6. CN(X 2E+) Vibrational Distributions. Calculated 0 and experi­
mental 0 relative PVDs for CN(X 2r;+) at wavelengths studied by Jackson 
et al. Computed results obtained for A == 2.4 • 109 cm- 1 at all energies, 
and T== ·1.88 A-I at 16-1 nm, 1 == 4.81 A-I at 158.7.nm,.and "f)== 4.6-1 A-I 
at 153.6 nm; see Eq. (33). 

Figure 7. Effective Potentials for Transitions at 164 nm. Calculated elec­
tronic potential for minimum energy path (,.-). Labeled curves indi­
cate effective potentials for transitions to fragment states (Vx, VA) for 
A = 2..1 109 cm- I and 1 == 4.88 A-I; see Eq. (33). 

Figure 8. Computed CN(X 2E+) and CN(A 2n) PVDs at 164 nm. 0 - ini­
tial quasi discrete state with one quantum in the symmetric CN stretch. 0 
-initial state with one quantum in the asymmetric CN stretch. 

.. 
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