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High-throughput terahertz imaging: progress and
challenges
Xurong Li 1,2, Jingxi Li 1,2,3, Yuhang Li1,2,3, Aydogan Ozcan 1,2,3 and Mona Jarrahi 1,2✉

Abstract
Many exciting terahertz imaging applications, such as non-destructive evaluation, biomedical diagnosis, and security
screening, have been historically limited in practical usage due to the raster-scanning requirement of imaging systems,
which impose very low imaging speeds. However, recent advancements in terahertz imaging systems have greatly
increased the imaging throughput and brought the promising potential of terahertz radiation from research
laboratories closer to real-world applications. Here, we review the development of terahertz imaging technologies
from both hardware and computational imaging perspectives. We introduce and compare different types of hardware
enabling frequency-domain and time-domain imaging using various thermal, photon, and field image sensor arrays.
We discuss how different imaging hardware and computational imaging algorithms provide opportunities for
capturing time-of-flight, spectroscopic, phase, and intensity image data at high throughputs. Furthermore, the new
prospects and challenges for the development of future high-throughput terahertz imaging systems are briefly
introduced.

Introduction
Lying between the infrared and millimeter wave regimes,

the terahertz frequency range is often referred to as the
“terahertz gap”, because of the lack of efficient terahertz
emitters and detectors. However, this gap is being gradually
filled from both sides of the spectrum, as terahertz tech-
nology is developing in tandem with the more mature radio
frequency (RF) and photonics industries1,2. The unique
properties of terahertz waves have prompted numerous
compelling applications. Higher carrier frequencies com-
pared to millimeter waves promise unprecedented channel
capacities, making terahertz waves serious candidates for
signal carriers in 6 G and beyond wireless communication
systems3. As the host of spectral signatures of many mole-
cules, the terahertz spectrum has a wide range of applica-
tions in chemical identification, material characterization,

atmospheric/astrophysics studies, and gas sensing4–6. The
higher penetration through many non-conducting materials
compared to infrared waves and shorter wavelength com-
pared to millimeter waves, combined with the non-ionizing
nature of the radiation, make terahertz waves excellent
means for non-destructive testing, security screening, bio-
medical imaging, and cultural heritage conservation7–10.
Imaging systems operating at terahertz frequencies share

some similarities but also distinctions with those operating
in the infrared and millimeter wave regimes. While infrared
image sensors generally rely on thermal11 and photon12

detection, field detection is the most dominant mechanism
in millimeter-wave image sensors13. Terahertz imaging can
be performed through all three mechanisms, i.e., thermal,
photon, and field detection. Regardless, either the single-
frequency or frequency-averaged response of the imaged
object is captured through a frequency-domain terahertz
imaging system, or the ultrafast temporal response of the
imaged object in response to a pulsed terahertz illumination
is captured through a time-domain terahertz imaging sys-
tem. While most utilized terahertz image sensors are in a
single-pixel format, this has not hampered the exploration of

© The Author(s) 2023
OpenAccessThis article is licensedunder aCreativeCommonsAttribution 4.0 International License,whichpermits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if

changesweremade. The images or other third partymaterial in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to thematerial. If
material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Correspondence: Mona Jarrahi (mjarrahi@ucla.edu)
1Department of Electrical & Computer Engineering, University of California Los
Angeles (UCLA), Los Angeles, CA 90095, USA
2California NanoSystems Institute (CNSI), University of California Los Angeles
(UCLA), Los Angeles, CA 90095, USA
Full list of author information is available at the end of the article

12
34

56
78

90
()
:,;

12
34

56
78

90
()
:,;

1
2
3
4
5
6
7
8
9
0
()
:,;

12
34

56
78

90
()
:,;

www.nature.com/lsa
http://orcid.org/0000-0003-3770-723X
http://orcid.org/0000-0003-3770-723X
http://orcid.org/0000-0003-3770-723X
http://orcid.org/0000-0003-3770-723X
http://orcid.org/0000-0003-3770-723X
http://orcid.org/0000-0001-6595-8680
http://orcid.org/0000-0001-6595-8680
http://orcid.org/0000-0001-6595-8680
http://orcid.org/0000-0001-6595-8680
http://orcid.org/0000-0001-6595-8680
http://orcid.org/0000-0002-0717-683X
http://orcid.org/0000-0002-0717-683X
http://orcid.org/0000-0002-0717-683X
http://orcid.org/0000-0002-0717-683X
http://orcid.org/0000-0002-0717-683X
http://orcid.org/0000-0001-9514-555X
http://orcid.org/0000-0001-9514-555X
http://orcid.org/0000-0001-9514-555X
http://orcid.org/0000-0001-9514-555X
http://orcid.org/0000-0001-9514-555X
http://creativecommons.org/licenses/by/4.0/
mailto:mjarrahi@ucla.edu


many exciting applications. For example, histopathological
examination of basal cell carcinoma and melanoma speci-
mens14 and coating thickness monitoring of pharmaceutical
tablet15 were performed with terahertz time-domain sensors;
ancient paintings16 and concealed suspicious objects17 were
non-destructively examined by terahertz radars. However,
the total imaging time for the above-mentioned applications
ranges from tens of minutes to tens of hours due to the
single-pixel nature of these imaging systems and the
requirement for raster scanning to acquire the image data.
To realize the full potential of terahertz imaging for real-
world applications, the lengthy imaging process of tradi-
tional systems is gradually addressed by the development of
terahertz image sensor arrays and advanced computational
imaging algorithms.
In this article, we give an overview of the developments

in high-throughput terahertz imaging systems. We
introduce various image sensor arrays that have been
utilized to develop terahertz imaging systems that support
high-throughput operation. Then, we discuss approaches
to modify the terahertz imaging hardware to enhance the
imaging speed while trading off other imaging specifica-
tions. Next, we review various computational imaging
methods that provide additional imaging functionalities
and ease the restrictions of the imaging hardware to
enable high-throughput terahertz imaging. Finally, we will
summarize the high-throughput terahertz imaging tech-
niques and share our thoughts on the challenges and
opportunities for further advancements.

Terahertz imaging systems based on image sensor
arrays
Since the first demonstration of terahertz imaging in

197618, numerous image sensors have been invented for
terahertz imaging. However, not all types of image sen-
sors are scalable to large arrays, which is a crucial
requirement for high-throughput imaging. This section
highlights high-throughput terahertz imaging systems
based on various image sensor arrays. The performance
of these terahertz imaging systems is quantified by their
space-bandwidth product, sensitivity, dynamic range, and
imaging speed within their operation frequency range.
Space-bandwidth product is defined as the number of
resolvable pixels in a captured image, where the mini-
mum resolvable pixel size is determined by the diffraction
limit or the physical pixel size of the image sensor,
whichever is smaller. While the sensitivity of time-
domain imaging systems is generally specified by the
signal-to-noise ratio (SNR) of their image sensors, the
sensitivity of frequency-domain imaging systems is
usually quantified using the noise equivalent power
(NEP) of the utilized image sensor, defined as the mini-
mum detectable power per square root bandwidth that
results in an SNR of unity. Dynamic range, defined as the

ratio between the maximum and minimum detectable
signals by the image sensor, determines the maximum
achievable contrast in a resolved image. Generally, there
is a tradeoff between sensitivity/dynamic range and
imaging speed: increasing the integration time, in many
cases, enhances the sensitivity/dynamic range at the
expense of a reduced imaging frame rate.

Frequency-domain terahertz imaging systems
In the context of thermal terahertz imagers, micro-

bolometers are one of the most widely used image sensors,
which translate the temperature change caused by the
received terahertz radiation into conductivity change in a
thermistor material. Vanadium oxide (VOx) and amorphous
silicon (α-Si) are the most popular thermistor materials
used in room-temperature microbolometers. The archi-
tecture of these microbolometers is compatible with flip-
chip mounted readout integrated circuits, facilitating the
realization of large arrays. As a result, several terahertz
imagers based on VOx and α-Si microbolometer arrays have
been commercialized19–21. Despite the trade-off between
noise performance and response time, state-of-the-art
room-temperature microbolometers can provide sensitiv-
ities up to 1013 √Hz/W (NEP levels down to 10-13 √Hz/W),
space-bandwidth product as high as 1 million, and video-
rate imaging speeds (Fig. 1)20–22. An example terahertz
image captured using a microbolometer image sensor array
is shown in Fig. 2a. For applications requiring higher sen-
sitivity levels (e.g., astrophysics observations), micro-
bolometers can be cryogenically cooled. For example, the
Photodetector Array Camera and Spectrometer (PACS)
bolometers, developed for Herschel Space Observatory,
have a sensitivity close to the cosmic background23. How-
ever, their extremely low working temperature (0.3 K)
imposes strong limitations on the system’s cost and size. In
addition, restrictions of special readout circuits operating at
such low temperatures have limited the space-bandwidth
product of these cryogenic-cooled microbolometers com-
pared to their room-temperature counterparts. Pyroelectric
detectors are another category of thermal image sensors,
which translate the temperature change caused by the
received terahertz radiation into polarization change in
pyroelectric crystals that can be sensed electronically. Due
to the very broadband nature of the pyroelectric effect
(1 μm< λ < 3000 µm), many pyroelectric cameras developed
for infrared imaging are also used for video-rate terahertz
imaging at room temperature24. However, they have lower
sensitivity (sensitivity < 108 √Hz/W, or NEP > 10-8W/√Hz)
compared to other types of terahertz imagers. The tem-
perature change caused by the received terahertz radiation
can be also used for mechanical reshaping of meta-molecule
optical reflectors, enabling the use of a visible camera for
high-throughput terahertz imaging with a large number of
pixels25.
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For room-temperature terahertz imaging, field-effect-
transistor (FET) image sensors are the main competitors
to microbolometer image sensors. The operation of FET
image sensors relies on the excitation of plasma waves
inside the transistor channel, which induces a constant
voltage across the transistor junctions through a non-
linear rectification process. Since the excitation of plasma
waves is independent of the transistor parasitics, FET
image sensors can detect terahertz electric fields even at
frequencies higher than the transistor cutoff frequency.
The physical principles of these image sensors were
initially proposed by Dyakonov and Shur26, and experi-
mentally demonstrated first with III–V FETs27,28 and later
with Si FETs29. One of the main advantages of FET
imager sensors is their excellent scalability. Especially, Si-
FET image sensors are compatible with standard com-
plementary metal oxide semiconductor (CMOS) pro-
cesses and can be realized in large arrays integrated with
the readout electronics. Thanks to their cost-effective and
compact attributes, a number of terahertz imagers based
on III–V and Si FETs are now commercialized30,31.
Compared to room-temperature microbolometer imager
sensors, FET image sensors usually work at lower ter-
ahertz frequencies and offer lower sensitivities (sensitiv-
ities below 1011 √Hz/W, or NEP levels higher than 10-
11W/√Hz)32–35. However, since they do not use a thermal
detection process, higher imaging speeds can be offered
by FET image sensors. An example terahertz image cap-
tured using a FET image sensor array is shown in Fig. 2b.
As the most dominant image sensors in visible imagers,

photon detectors also play a crucial role in terahertz
imaging. Because of the low energy of terahertz photons,

very few intrinsic semiconductors have small enough
bandgap energies for terahertz photon detection. Instead,
extrinsic semiconductors, quantum wells, and quantum
dots are used to introduce interband and intersubband
energy level separations smaller than terahertz photon
energies. To prevent thermal-noise-induced carrier exci-
tation, this type of terahertz image sensors should operate
at cryogenic temperatures (typically <5 K), while offering
very high sensitivities (sensitivity ~1017 √Hz/W, or
NEP ~ 10−17W/√Hz)23,36. Apart from the cryogenic
cooling requirement, there are two other limitations
associated with terahertz photon detectors: operation
frequency and scalability restrictions. The lowest
demonstrated operation frequency of photon detectors
has been ~1.5 THz with a stressed gallium-doped ger-
manium substrate used as the extrinsic photon absor-
ber37. Furthermore, terahertz photon detectors cannot be
easily integrated with readout electronics because the
thermal emission from the electronic circuits can disrupt
the photon detection operation38. As a result, the
demonstrated terahertz imagers based on photon detector
image sensors have been assembled from small detection
and readout units with limited space-bandwidth pro-
duct23. A layer-hybrid readout architecture can potentially
block the thermal emission from the readout electronics
and enable larger pixel-count terahertz imagers38,39. An
example terahertz image captured using a photon image
sensor array is shown in Fig. 2c. Alternatively, the received
terahertz photons from the imaged object can be con-
verted to visible photons using quantum dots40 or laser-
excited atomic vapors41 and an optical camera can be
used for high-throughput imaging with a large number of
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pixels at room temperature. However, these THz-to-
visible photon conversion processes require complex and
bulky setups.
Superconducting terahertz imagers can provide similar

or even better sensitivity compared to photon imagers.
Meanwhile, they have better scalability and can work at the
lower portion of the terahertz frequency band. There are
four major types of superconducting imagers based on:
transition edge sensors (TESs), kinetic inductance detec-
tors (KIDs), kinetic inductance bolometers (KIBs) and
quantum capacitance detectors (QCDs). TES image sen-
sors work at the superconducting transition temperature
and sense the temperature-dependent DC resistance at the
onset of superconductivity. The largest pixel-count TES

imager that has been demonstrated contains 5120 pixels
and offers an NEP of 10-16W/√Hz (sensitivity of 1016 √Hz/
W) at 0.1 K42. To support fast time-multiplexed readout
from a large number of pixels, it uses a superconducting
quantum interference device enabling imaging speeds as
high as 180 fps42. KID and KIB image sensors measure the
kinetic inductance variations in response to the received
radiation. The absorption of terahertz photons breaks
Cooper pairs, reducing their density and increasing the
kinetic inductance43. KID imagers work at sub-Kelvin
temperatures and can provide NEP values down to ~10-
19W/√Hz (sensitivities up to 1019 √Hz/W)44–47. In contrast
to KIDs, KIBs utilize the kinetic inductance’s temperature
dependency and, therefore, relax the working temperatures
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Fig. 2 Example frequency-domain terahertz imaging systems based on image sensor arrays. a Terahertz imaging using a 384 × 288 VOx-based
microbolometer image sensor241. An oscillator with two frequency doublers (manufactured by Virginia Diodes) is used as the terahertz source at
395 GHz. Left: Schematic diagram of the terahertz imaging setup. Right: The stitched terahertz image of a USB flash drive at 395 GHz. Each sub-image
is captured with a 13.4 × 10.1 mm2

field of view at an imaging speed of 50 fps. b Terahertz imaging with a 32 × 32 FET image sensor array fabricated
using a 65 nm CMOS technology32. A ×48 multiplier chain is used as the radiation source at 650 GHz, providing a 1.2 mW radiation power. Bottom:
One image frame of a 6 mm wrench taken from a 25-fps video at 650 GHz. c Passive terahertz imaging with a photon image sensor array. Left:
Photograph of the Multiband Imaging Photometer for Spitzer (MIPS) containing two Ge:Ga photoconductor arrays: an unstressed 32 × 32 array
operating in the 50–100 µm wavelength range and a stressed 2 × 20 array operating at 160 µm wavelength242. Right: Images of the Messier 81 galaxy
at 70 µm (top) and 160 µm (bottom)243. d Passive terahertz imaging with a superconducting image sensor array. Left: Photograph of one of the two
focal-plane units on Submillimeter Common-User Bolometer Array 2 (SCUBA-2) for James Clerk Maxwell Telescope (JCMT)244. Each focal-plane unit
comprises a 5120-pixel TES image sensor array, working at 450 and 850 µm wavelengths, respectively42. Right: Images of the Andromeda Galaxy at
450 µm (top) and 850 µm (bottom)245. a adapted with permission from ref. 241© 2020 SPIE. b adapted with permission from ref. 32 © 2012 IEEE.
c reproduced courtesy of NASA/JPL-Caltech. d reproduced courtesy of NIST and the HASHTAG team
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to 5–10 K48–50. The largest pixel-count KIB imager
demonstrated has 8712 pixels and offers an NEP of
10−14W/√Hz (sensitivity of 1014 √Hz/W)51. The operation
of QCD image sensors also relies on Cooper pair breaking
caused by the absorbed terahertz photons. The generated
quasiparticles tunneling in or out of a superconducting
island change the effective capacitance, which can be
electronically measured. QCD imagers have provided the
highest sensitivity among all demonstrated terahertz ima-
gers with NEP levels as low as 10−20W/√Hz (sensitivities
up to 1020 √Hz/W)52,53. The high sensitivity of terahertz
image sensors based on superconductor and photon
detectors enables fully staring passive imaging, while
requiring operation at cryogenic temperatures51. Different
from the time-multiplexing readout scheme used in TES
imagers, KID, KIB, and QCD imagers adopt a frequency-
multiplexing readout scheme, where a common feedline
connects all the pixels and greatly reduces the complexity.
An example terahertz image captured using a super-
conducting image sensor array is shown in Fig. 2d.
The frequency-domain terahertz imagers that have been

discussed so far are capable of incoherent imaging and only
resolve the intensity response of the imaged object. Coherent
terahertz imaging can be realized using a heterodyne detec-
tion scheme to resolve both the amplitude and phase response
of the imaged object54. By mixing the received radiation from
the imaged object with a local oscillator (LO) beam and down-
converting the terahertz frequency to an RF intermediate
frequency (IF), high-performance RF electronics can be used
for coherent signal detection. Superconductor-insulator-
superconductor (SIS), hot-electron bolometer (HEB),
Schottky diode, FETmixers, and photomixers can be used for
THz-to-RF frequency down-conversion55–58. SIS and HEB
mixers offer quantum-level sensitivities, however, they require
cryogenic cooling to temperatures down to mK. Schottky
diode and FET mixers operate at room temperature while
offering lower sensitivity. Due to the complexity of the het-
erodyne detection architecture, the demonstrated coherent
terahertz imagers have been limited to tens of pixels59,60. The
largest demonstrated array has been a 64-pixel 0.34THz
imager based on cryogenically-cooled SIS mixers developed
for astrophysics observations at the Heinrich Hertz Tele-
scope61. For room-temperature coherent imaging, a 32-pixel
0.24-THz heterodyne array with integrated synchronized LOs
has been demonstrated62.

Time-domain terahertz imaging systems
Terahertz pulsed imagers based on time-domain spec-

troscopy (TDS) form another type of coherent imager,
which provide not only amplitude and phase, but also
ultrafast temporal and spectral information of the imaged
object. THz-TDS imaging systems use photoconductive
antennas or nonlinear optical processes to generate and
detect terahertz waves in a pump-probe imaging setup63

(Fig. 3). The optical beam from a femtosecond laser is
split into pump and probe branches. A photoconductive
antenna or a nonlinear optical crystal pumped by the
femtosecond pump pulses generates terahertz pulses64–67,
which illuminate the imaged object. The transmitted or
reflected terahertz pulses, which carry the object infor-
mation, are detected through photoconductive or elec-
trooptic image sensors. When a terahertz pulse
illuminates a photoconductive image sensor probed by a
femtosecond optical pulse, the received terahertz field
drifts photo-generated carriers and induces a photo-
current that is proportional to the instantaneous terahertz
electric field68–70. By varying the time delay between the
optical pump and probe beams, the time-domain electric
field profile of the terahertz signal, which carries the
ultrafast temporal information of the imaged object, is
obtained. By taking the Fourier transform of the time-
domain electric field, the terahertz radiation spectrum,
which carries the spectral amplitude and phase informa-
tion of the imaged object, is calculated. The time-domain
electric field profile of the terahertz signal and the cor-
responding spectral information can also be obtained
using electro-optic image sensors. The terahertz field
detection mechanism in most electro-optic image sensors
is the Pockels effect, where the received terahertz electric
field changes the birefringence of a nonlinear crystal and
hence the polarization of the optical probe beam propa-
gating through the cystal71–73.
While conventional THz-TDS imaging systems are

typically single-pixel and require raster scanning to
acquire the image data, arrays of electro-optic and pho-
toconductive image sensors have been utilized to address
the slow imaging speed and bulky/complex nature of
single-pixel THz-TDS imaging systems. Since terahertz
field detection in an electro-optic image sensor involves
the detection of the optical probe beam, scaling a single-
pixel electro-optic image sensor to an array is straight-
forward. An optical camera can capture the 2D profile of
the optical probe beam after interaction with the terahertz
beam in the electro-optic crystal, during which the
object’s amplitude and phase information is converted
from the terahertz beam to the probe beam. The first
raster-scan-free THz-TDS imaging system based on
electrooptic sampling was demonstrated using a ZnTe
crystal and a CCD camera in 199674. Despite the sub-
stantial increase in the imaging speed, the SNR and
spectral bandwidth at each pixel are significantly lower
compared to single-pixel THz-TDS imaging systems
based on electro-optic sampling. This significant SNR and
bandwidth reduction is due to the exposure of the electro-
optic crystal to an unfocused terahertz beam to maintain
the spatial information of the imaged object. The dramatic
drop in the terahertz field intensity reduces the birefrin-
gence in the electro-optic crystal and the corresponding
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signal at each pixel. Since the first demonstration, many
techniques were explored to address the SNR and band-
width reduction problems, including the use of regen-
erative amplified lasers75, dynamic background
subtraction76, lock-in detection in a time-of-flight cam-
era77, and balanced electro-optic detection78. In order to
provide sufficient birefringence in the electro-optic crystal
to achieve acceptable SNR levels, they generally require
high-energy amplified laser systems that provide μJ - mJ
optical pulse energies78–83. An example terahertz image
captured using electro-optic sampling with an optical
camera is shown in Fig. 4a.
Raster-scan-free THz-TDS imaging systems based on

electro-optic sampling can also be used for near-field
terahertz imaging. The working principles are the same as

far-field imaging, except that the imaged object is in direct
contact with the nonlinear crystal84–93. Interaction
between the near-field terahertz response of the imaged
object and the optical probe beam in the nonlinear crystal,
enables resolving much higher resolution images beyond
the diffraction limit. While higher imaging resolution can
be achieved using thinner electro-optic crystals94, the
shorter interaction length between the terahertz and
optical probe beam reduces the terahertz field detection
sensitivity. Therefore, the thickness of the electro-optic
crystal should be carefully chosen in these near-field
imaging systems while considering the tradeoff between
image resolution and SNR. By eliminating the scanning
probes or apertures used in other near-field imaging
techniques, much faster image acquisition speeds can be
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Optical and terahertz images of a metallic Siemen star, respectively100. a adapted with permission from ref. 78 © 2010 Elsevier B.V. All rights reserved..
b adapted with permission from ref. 92 © 2016 Optica Publishing Group. c adapted with permission from ref. 100 © 2014 Optica Publishing Group
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achieved95. The first raster-scan-free, near-field, electro-
optic terahertz imaging system was demonstrated in
201189. Using a 1 µm-thick LiNbO3 crystal, a spatial
resolution of 5 μm (λ/600 at 100 GHz) was achieved92

(Fig. 4b). In the following developments, the use of intense
terahertz pulse sources with electric fields exceeding
hundreds of kV/cm94 and alternative nonlinear crystals
with the Kerr nonlinearity effect instead of the Pockels
effect96 offered enhanced image contrast and resolution.
Consequently, free induction decay signals from a tyr-
osine crystal88 and laterally propagating electric field
around split-ring resonators91,97 were observed using this
near-field terahertz imaging scheme.
Another direction for raster-scan-free THz-TDS

imaging is using an array of photoconductive image
sensors. Early work explored the use of 1D photo-
conductive antenna arrays with the data readout per-
formed by multi-channel lock-in amplifiers, offering up
to a 39 dB SNR and spectral bandwidth of 0.8 THz98–100

(Fig. 4c). However, allocating a lock-in amplifier chan-
nel to each pixel is not a scalable readout architecture,
limiting the total number of pixels of the demonstrated
1D photoconductive antenna arrays to 16. While using
1D photoconductive antenna arrays enables concurrent
acquisition of the image data along one axis, raster
scanning along the other axis is still required to capture
the 2D image data, limiting the imaging speed. Another
major challenge in developing high-efficiency photo-
conductive image sensors is the fundamental limit on
the optical fill factor associated with the discrete
architecture of conventional photoconductive antennas.
Conventional photoconductive image sensors use dis-
crete terahertz antennas connected to optically-probed
photoconductive active areas much smaller than the
terahertz antenna area. Therefore, an array of image
sensors comprised of conventional photoconductive
antennas has a very low fill factor, which results in very
poor optical probing efficiency. To address this limita-
tion, a plasmonic photoconductive terahertz focal-
plane array (THz-FPA) was recently developed for
raster-scan-free THz-TDS imaging101. By increasing
the optical fill factor and maximizing the spatial overlap
between the photocarriers and terahertz electric field,
SNR levels as high as 81.0 dB and spectral bandwidths
exceeding 4 THz were achieved without a multi-
channel lock-in amplifier. Using a multiplexing elec-
trical readout, a time-domain imaging speed of 16 fps
was achieved, enabling the capture of the terahertz
time-domain video of water flow101. Furthermore, the
multispectral amplitude and phase data provided by
this THz-FPA was used to super-resolve both the shape
and depth of 3D structures with a lateral/depth reso-
lution as small as 60/10 μm and an effective number of
pixels exceeding 1-kilo-pixels101.

Raster-scan-free THz-TDS imaging systems based on
photoconductive and electro-optic image sensors enable
concurrent data acquisition from all pixels. However,
attributes of the optical delay stage required for time-
domain scanning impose another limitation on the overall
imaging speed. The conventional method to introduce
variable optical delay is mounting a pair of mirrors on a
linear mechanical motorized stage. Faster mechanical delay
lines based on voice-coil-driven mirrors102, rotary mir-
rors103, and rotary dielectrics104 provide 10–100 traces per
second with a temporal range of ~10 s ps. An acousto-optic
delay can enable 36,000 traces per second in a 12.4-ps time
window105. Another way to increase the speed of optical
delay scanning is by non-mechanical time-domain sam-
pling methods, such as asynchronous optical sampling
(ASOPS)106,107 and electronically controlled optical sam-
pling (ECOPS)108,109. These methods enable optical sam-
pling speeds exceeding 100 kHz107 and a very large (for the
case of ASOPS) or adjustable (for the case of ECOPS) time
window, with the drawback of requiring two costly fem-
tosecond lasers. Alternatively, optical sampling by cavity
tuning (OSCAT)110, single-laser polarization-controlled
optical sampling (SLAPCOPS)111, and single-laser self-
triggered ASOPS112 utilize only one femtosecond laser for
optical sampling with the drawback of a slower time-
domain scanning speed. It should be noted that non-
mechanical time-domain sampling methods are less com-
patible with electro-optic imagers, which usually use
regenerative amplified lasers with high pulse energies and
kHz-range repetition rates.

Functionalities and limitations of terahertz imaging
systems based on image sensor arrays
Figure 5 highlights the functionalities and limitations of

different terahertz imaging systems based on image sensor
arrays. Frequency-domain imaging systems only resolve
the amplitude response of the imaged object at a single
frequency or a broad range of frequencies, without
obtaining the ultrafast temporal and multispectral infor-
mation. In the meantime, they have flexible setups that
can be used for both passive and active terahertz imaging
using different types of terahertz illumination sources.
Time-domain imaging systems resolve both the amplitude
and phase response of the imaged object, as well as the
ultrafast temporal and multispectral information. How-
ever, they can only be used for active terahertz imaging
and require a pump-probe imaging setup with a variable
optical delay line, increasing the size, cost, and complexity
of the imaging hardware.
While the functionalities of terahertz imaging systems

are generally determined by the above-mentioned prin-
ciples, it is possible to make modifications in their
operation framework to achieve new and/or enhanced
capabilities. This is accompanied by possible degradation

Li et al. Light: Science & Applications          (2023) 12:233 Page 8 of 21



in other imaging specifications, e.g., speed, SNR, or system
complexity. For example, spectroscopic imaging with a
frequency-domain terahertz imager can be performed by
frequency scanning through switching among different
terahertz sources113,114, tuning the frequency of a single
source115,116, or applying different terahertz filters117,118 at
the expense of much lower imaging speed and higher
setup complexity. This modified operation framework is
illustrated in Fig. 6a, where a complete spectroscopic data
set Iðx; y; f Þ is depicted by a 3D datacube in the xyf space
(xy: the 2D spatial plane, f : the frequency axis). For a
frequency-domain imager, the captured image data at a
given illumination frequency f 0 is Iðx; y; f 0Þ, a 2D slide of
the datacube. By scanning the illumination frequency and

recording the 2D slides of the datacube at different fre-
quencies, the complete spectroscopic image data Iðx; y; f Þ
is collected. An alternative approach to performing
spectroscopic imaging with a frequency-domain terahertz
imager is to incorporate dispersive terahertz optics and
use the imager as a line-scanning spectrometer119,120. The
dispersive optics maps different frequency components
onto 1D positions on the imager, where the other
dimension can still record the spatial image information.
With an additional 1D spatial scanning, the complete
spectroscopic image data can be obtained (Fig. 6b) at the
expense of much lower imaging speed and higher setup
complexity. Such a line-scanning spectroscopic imaging
approach would be attractive when the movement of
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imaging objects is automated in one dimension (e.g., on a
conveyor). Through this approach, spectroscopic imaging
within the bandwidth of 1.3 – 2.1 THz was performed
with a frequency resolution ranging from 30 to 70 GHz
and a 1D imaging speed of 15 fps using a microbolometer
array119.
A similar tradeoff exists for spectroscopic imaging with a

time-domain terahertz imager. Conventional THz-TDS
imaging systems use a variable optical delay between the
pump and probe beams to acquire the 2D image data at
different temporal points (Fig. 6c). The complete spectro-
scopic image data Iðx; y; f Þ is obtained by taking the Fourier
transform of the time-domain image data Iðx; y; tÞ. An
alternative method to realize spectroscopic imaging with a
THz-TDS imager is to encode the time-domain information
in one dimension of the image sensor array, while the other
dimension can still record the spatial information. With an
additional 1D spatial scanning, the complete Iðx; y; tÞ data-
cube can be obtained (Fig. 6d). This can be achieved through
non-collinear electro-optical time-to-space conversion by
tilting the wave front of the terahertz radiation121–125, the
optical probe beam126,127, or both128. This approach is spe-
cifically advantageous when the movement of the imaged
object is automated in one dimension, and is accompanied

by a degradation in the temporal range and frequency
resolution.
Another example of a modified terahertz imaging fra-

mework is phase imaging with a frequency-domain ter-
ahertz imager through digital holography methods at the
cost of system complexity. A coherent terahertz beam is
separated into two paths: one impinging on the imaged
object (object beam), and the other serving as a reference
(reference beam). Interferograms of the two beams are
recorded by the terahertz image sensor array and digi-
tized. With the prior knowledge of the reference beam,
the object beam at the image plane is calculated, and the
complex object information is reconstructed by back-
propagating the object beam from the imager plane to the
object plane. More details on computational terahertz
holography systems are provided in the next section.

Computational terahertz imaging
As discussed in the previous sections, image sensor

arrays have been instrumental in realizing high-
throughput terahertz imaging. Operation principles, spe-
cifications, and limitations of different types of terahertz
image sensor arrays used in both frequency-domain and
time-domain systems were discussed. This section
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introduces various computational imaging methods that
provide additional imaging functionalities and ease the
restrictions of terahertz image sensors for high-
throughput operation.

Computational terahertz holography
Holography methods allow extracting the object

information from the interferograms of two beams
interacting with the object and a reference. Terahertz
holography systems utilize off-axis or in-line inter-
ference. In in-line digital holography, object and refer-
ence beams travel along the same direction when
recorded by the terahertz image sensor array. To
minimize the distortion of the reference beam, the
object must be fairly transparent or smaller than the
terahertz beam. In-line digital holography requires
additional effort to separate the interferograms from
autocorrelation components, as well as the real image
from the virtual image conjugate129,130. In off-axis
digital holography, an angle is introduced between the
object and reference beams to help separate inter-
ferograms from other autocorrelation components in
the spatial frequency domain. Since the first demon-
strations of digital holography with 2D terahertz image
sensors131,132, terahertz digital holography has evolved
rapidly with both hardware and algorithm improve-
ments. Dual-frequency reconstruction was utilized to
overcome the 2π phase ambiguity when unwrapping the
phase response of thick objects133. Image quality and
resolution were improved by recording holograms at
multiple imaging planes to suppress image arti-
facts134,135, lateral shifting of the image sensor array to
synthesize a larger detecting area136,137, and sub-pixel
shifting of the image sensor array or the object to
enable pixel super-resolution129,135. Today’s terahertz
digital holography systems can offer video-rate (50 fps)
imaging speeds138 and lateral resolution down to 35 μm
(�λ=3 at 2.52 THz)130. Compared to phase imaging
through THz-TDS imaging systems, terahertz digital
holography does not require femtosecond laser-based
setups and is more cost-effective. The choice of ter-
ahertz source and image sensors array is more flexible
and can be optimized according to the operation fre-
quency. However, terahertz digital holography imposes
more limitations on the imaged object and is restricted
when imaging multi-layered and/or highly lossy
objects139.

Single-pixel terahertz imaging through spatial scene
encoding
In contrast to the direct image capture with a terahertz

image sensor array, a single-pixel terahertz image sensor
can be used to reconstruct the image of an object by
sequentially measuring/recording the terahertz response

of the spatially modulated scene with a known spatial
pattern sequence140,141. This imaging scheme benefits
from the superior performance (e.g., SNR, dynamic range,
operation bandwidth) of most single-pixel terahertz image
sensors compared to terahertz image sensor arrays for
both frequency-domain and time-domain imaging sys-
tems. Analogous to conventional raster-scanning-based
imaging systems, the simplest scheme to resolve an N-
pixel image through single-pixel imaging is to sequentially
measure the terahertz response of the spatial region cor-
responding to each pixel, while blocking other pixels, with
the total number of measurements, M, being equal to the
number of pixels, N. Since the terahertz radiation corre-
sponding to N-1 pixels is blocked in each measurement,
this scheme has a low power efficiency. While random
spatial modulation patterns can provide fairly good single-
pixel image reconstruction results142,143, the use of
orthogonal pattern sets, such as Hadamard144,145 and
Fourier basis146, provides higher SNRs. Furthermore,
since most natural images are sparse when represented in
an appropriate basis, compressive sensing algorithms can
reconstruct the image with fewer measurements than the
number of pixels (M <N), enabling higher imaging
speeds. The faster imaging operation is also supported by
the fact that spatial modulation of terahertz response can
be performed much faster than mechanical raster scan-
ning using spinning disks143,optically-controlled spatial
light modulators (SLMs)147,148, meta-material
SLMs149–151, spatial encoding of the optical probe beam
in electro-optic imaging systems152, and spatial encoding
of the optical pump beam in imaging systems using
nonlinear153 or spintronic terahertz emitters154. Single-
pixel amplitude-only imaging148, broadband imaging155,
and time-domain imaging156 have been realized in both
far-field143,148,149 and near-field154,157,158 settings. Imaging
speeds as high as 6 fps were demonstrated for amplitude-
only imaging148,159. Figure 7 summarizes the development
of single-pixel terahertz imaging systems. It should be
mentioned that compressive sensing algorithms are not
only applicable to single-pixel imaging and can also be
used to increase the imaging throughput of multi-pixel
image sensor arrays160.

Computational terahertz imaging via diffractive processing
The terahertz imaging systems described so far follow a

paradigm that relies primarily on computer-based digital
processing to reconstruct the desired image. However, it
is important to note that digital processing-based recon-
struction is not without limitations. Due to the large
amount of measurement data to be processed, a sig-
nificant computational burden is imposed on the digital
processing modules, resulting in substantial resource
consumption and high output latency. Additionally, when
the measurement data are inadequate or inaccurate,
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restoring lost information becomes challenging, even with
robust algorithms and prior knowledge.
In the general discussion of computational optical

imaging, the entire architecture of the imaging hardware
can be analyzed as a combination of an optical encoder
and an electronic decoder161. The front-end optical
component can be seen as encoding the information of
the object, while the back-end electronic part performs
the decoding process. In the middle, the focal-plane
sensor array plays a crucial role in the optoelectronic
conversion process. Given the considerable design chal-
lenges posed by terahertz components and sensors,
especially in aspects such as pixel count, dynamic range,
and signal-to-noise ratio, one can consider the focal-plane
array as an important bottleneck in the context of com-
putational terahertz imaging. To address some of these
challenges, an optimal strategy could be to engineer the
optical front-end for task-specific optical encoding, and
enable it to take over some of the computational tasks
typically handled by the digital back-end.
In contrast to conventional optical devices employed for

computational imaging within the visible spectrum, the
design of a terahertz front-end exhibits unique char-
acteristics. The use of planar diffractive optical elements
(DOEs) is particularly advantageous in developing pow-
erful terahertz front-ends, thanks to their inherent cus-
tomizability and ease of fabrication due to the relatively
large wavelength. For example, diffractive lenses can be
engineered by manipulating their surface topology or the

distribution of their refractive index. These components
can be fabricated through 3D printing or laser cutting,
forming components capable of modulating the ampli-
tude and/or phase of the beam162–165. In terahertz ima-
ging, diffractive lenses find their most widespread
application as Fresnel lenses incorporated within raster
scanning systems, primarily for reducing the size of the
focused light spots. Additionally, some applications utilize
multifocal diffractive lenses to achieve wide-field, broad-
band, or extended-depth-of-focus imaging166–170. Other
diffractive lens designs offer capabilities of beam shap-
ing171 and generation of intricate patterns, such as
Airy172,173, Bessel174–176, and vortex beams177,178,
expanding their utility in diverse terahertz imaging
applications. Another possibility to precisely manipulate
the phase distribution involves using metasurfaces based
on the interaction of terahertz radiation with an array of
resonators to form spatially varying phase changes. Some
of the mainstream methods developed to introduce phase
delay in dielectric metasurfaces include truncated wave-
guide179,180, geometrical phase181,182, and resonant/Huy-
gens nanoantennas183,184. In recent years, much research
has been dedicated to designing metasurface-based ter-
ahertz DOEs with properties such as broadband achro-
maticity, tunability, multi-foci and sub-diffraction
characteristics185–188.
Recently, a new optical information processing frame-

work that incorporates multiple optimizable diffractive
layers in a cascaded manner has also emerged, wherein
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these diffractive surfaces, once optimized, can collectively
perform a complex function between the input and out-
put fields-of-view using light-matter interactions, as
shown in Fig. 8a. Referred to as a diffractive deep neural
network (D2NN)189,190, this architecture is trained/opti-
mized using deep learning methods in a data-driven
fashion. Within this framework, the trainable variables are
constituted by the complex-valued transmission coeffi-
cients of thousands of diffractive features distributed
across each diffractive layer. Between different diffractive
layers, the features are connected through the diffraction
of light in free space, as illustrated in Fig. 8b. After the

training process, the D2NN design can be physically fab-
ricated to form an optical processing unit, as presented in
Fig. 8c, which can all-optically perform transformations
between its input and output field of views (FOVs) to
achieve a specific computation or processing task, such as
information encoding, classification, and detection. In
contrast to conventional methods that rely on the com-
bination of lens-based imaging using focal plane arrays or
image sensors and digital processing of the sensor-
captured signals, employing a diffractive optical front-
end allows for the direct manipulation and processing of
the input optical information in a highly parallel manner.
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This diffractive visual computing strategy provides an
efficient and scalable alternative to the traditional
machine vision pipeline undertaken by conventional
optical imaging front-end and computational processing
performed by a digital back-end. Moreover, since the
D2NN framework solely employs passive optical elements,
it requires no external energy for computing, except the
illumination at the input. Compared to conventional
optical processing platforms, this framework also pos-
sesses a compactness advantage, with the diffractive
volume typically spanning only a few tens of wavelengths
along the axial direction, showcasing an extremely low
latency in addition to low-power consumption.
In essence, a D2NN can be considered a universal linear

optical transformer, as depicted in Fig. 8d. It has been
proven that the optical transformation embodied by a
D2NN can approximate any arbitrarily-selected, complex-
valued linear transformation, provided that the total
number of trainable diffractive features in the diffractive
network is no fewer than the degrees of freedom in the
target linear transformation (i.e., the product of the
degrees of freedom at the input FOV and the output
FOV)191,192. Furthermore, a depth-related performance
advantage is achieved by incorporating multiple, succes-
sive diffractive layers within a D2NN design. Both theo-
retical and numerical analyses presented in the
literature191,192 reveal that, given a fixed number of dif-
fractive features, allocating these features solely on one
diffractive layer would result in significantly reduced
performance instead of distributing them across two or
more consecutively arranged diffractive layers. Given a
specified target linear transformation, deeper D2NN
designs can deliver superior transformation accuracy,
diffraction efficiency, and optical signal contrast at their
output.
D2NNs have been demonstrated with numerous appli-

cations in terahertz imaging and sensing tasks, particu-
larly for performing task-specific statistical inference on
input objects or scenes. A typical example involves all-
optical object classification, whereby a detector array
corresponding to the number of data classes is positioned
at the output plane of a D2NN, and the classification
result is determined by the maximum intensity measured
by the output detectors, as illustrated in Fig. 8i. In this
context, D2NNs were reported to classify amplitude-
modulated MNIST handwritten digits, phase-modulated
Fashion-MNIST product objects and grayscale CIFAR-10
image objects189,190,193. To experimentally demonstrate
D2NN-based image classifiers, 3D printing was used to
fabricate the diffractive layers of the trained network and
assemble them into a physical neural network. A single-
frequency continuous terahertz source operating at
400 GHz (~0.75 mm) was employed to illuminate 3D-
printed objects (amplitude or phase), and a terahertz

detector was scanned at the output plane to obtain the
intensity measurements of the D2NN outputs. These
measurements aligned well with numerical simulations
and accurately identified the classes of the input objects.
The optical classification accuracy of D2NNs can be
enhanced with design improvements, including differ-
ential detection schemes193, time-lapse detection
schemes194, class-specific195 and ensemble learning-
based195 multi-D2NN parallel configurations, reaching,
e.g., >98.5% and >62% for the classification of MNIST
handwritten digit objects and CIFAR-10 images, respec-
tively. These improvements, however, necessitate an
increase in the number of output detectors or individual
diffractive networks, the introduction of additional optical
routing, or the measurement time.
Expanding on the capabilities of terahertz all-optical

object classification using diffractive networks, D2NNs
can also be coupled with electronic back-end processors
or digital neural networks to improve their classification
performance;190 when compared with traditional systems
that combine terahertz cameras with electronic pro-
cessors, this approach delegates part of the processing by
the electronic processing system to the optical front-end,
thereby showing advantages of enhanced inference speed
and reduced need for high pixel count at the detector
array. D2NNs have also been demonstrated with similar
applications to perform statistical inference of input
objects at other electromagnetic bands, such as visible
light, near-infrared, and microwave. These applications
encompass object classification196–199, image encryp-
tion200, image segmentation and saliency detection201,
and human motion recognition202,203. Owing to the
wavelength-dependent scalability of the free-space dif-
fraction-based processing that D2NNs rely on, these
unique designs, once trained using a certain spectral band,
can be readily scaled physically to adapt to and operate at
other parts of the electromagnetic spectrum.
The statistical inference tasks introduced above leverage

D2NNs as all-optical encoders to extract and compress
information from an input scene/FOV, outputting an
optimized set of specific feature information. Another
design paradigm involves using D2NNs to create imaging
systems that preserve a high space-bandwidth product in
their outputs. With their unique ability to perceive and
process optical wavefronts, D2NN can undertake tasks
beyond the capabilities of conventional lens-based ima-
ging systems. A typical example of this is quantitative
phase imaging (QPI), as illustrated in Fig. 8m204. In this
case, D2NNs were trained to perform phase-to-intensity
transformations from the input FOV to the output FOV
in a snapshot, which enables the quantitative phase
information of the input object to be obtained through the
relative variations in optical intensity within the output
FOV, serving as an all-optical substitute for digital phase-
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recovery algorithms. In another example, D2NNs were
designed to enable imaging through scattering media,
allowing all-optical reconstruction of unknown objects
behind a random diffuser never seen during the training,
as shown in Fig. 8o205–207. This demonstrates the gen-
eralization capability of this diffractive computational
framework, revealing its robustness to unpredicted per-
turbations of the wavefront. Moreover, D2NNs can be
trained to conduct unidirectional imaging tasks208. As
shown in Fig. 8l, a D2NN facilitates the imaging of input
objects only in the forward direction, while effectively
blocking the imaging process in the reverse direction, thus
breaking the conventional symmetry of lens-based ima-
ging systems. Other applications of D2NNs in computa-
tional imaging include class-specific imaging and
encoding of input objects200,209 (see Fig. 8e, k), which
enhances imaging functionality with its statistical infer-
ence capacity. These applications have been experimen-
tally validated in the terahertz band, with hardware system
designs and implementations akin to those in prior
examples189.
D2NNs can also access and handle other types of infor-

mation present at the input FOV, such as the optical spec-
trum. By engineering the thickness profiles of diffractive
layers based on their dispersion properties, one can design a
broadband D2NN to form a wavelength-multiplexed linear
transformation processor210, as illustrated in Fig. 8f. This
processor can execute, in parallel, hundreds to thousands of
distinct linear transformations across multiple wavelengths,
given a proportionate increase in the number of trainable
diffractive features according to the number of target oper-
ating wavelengths. Building on this principle, broadband
D2NNs can be employed for multispectral imaging tasks211,
as depicted in Fig. 8n. For example, researchers successfully
designed a D2NN to function as a virtual filter array, which
enables the imaging of an input object at up to 16 different
target spectral bands (simultaneously), without using any
additional spectral filters. The feasibility of this concept for
terahertz multispectral imaging was experimentally con-
firmed in the same study. Furthermore, as illustrated in Fig.
8j, D2NNs can be designed as spatial-spectral encoders with
statistical inference capabilities for spectral encoding and
classification of objects207,212. Under pulsed illumination,
D2NNs encode the spatial information of an object onto
distinct wavelengths on a single-pixel spectroscopic detector,
with the measured power intensity at each wavelength
representing a probability score corresponding to an object
data class. This feature facilitates all-optical object classifi-
cation using a single pixel by selecting the wavelength with
the maximum spectral class score at the output. The same
research also presented that a shallow digital neural
network-based decoder can be trained to reconstruct the
input object image from each output spectral class score,
thereby achieving spectral-based image encoding and

decoding. Researchers verified these designs using a THz-
TDS setup, successfully achieving high-accuracy classifica-
tion and high structural-fidelity reconstruction of the input
amplitude objects using a spectral band of ~200–300GHz.
Recently, similar concepts and methods have been used to
illustrate the applicability of terahertz broadband D2NNs for
rapid, non-destructive inspection of hidden defects in
objects213. All these works collectively highlight the sig-
nificant potential of D2NNs for developing various terahertz
hyperspectral imaging and intelligent machine vision
systems.
D2NNs can also be designed to harness the polarization

information of light. As illustrated in Fig. 8h, by inserting
multiple deterministic polarizer arrays into a trainable,
isotropic D2NN architecture, a polarization-sensitive
optical processing unit can be realized to process polar-
ized input optical fields214,215. Analyses have shown that,
by using different combinations of polarization states at
the input and output FOVs, a polarization-encoded D2NN
can implement up to four different independent linear
transformations, albeit at the expense of requiring a four-
fold increased number of diffractive features compared to
a standard isotropic design;214,215 see Fig. 8g. By com-
bining the polarization manipulation capabilities of
D2NNs with spatial and spectral encoding, there is pro-
mising potential for developing terahertz camera systems
with polarization-aware information processing cap-
abilities, which could be instrumental in advanced ter-
ahertz polarization imaging and sensing instrumentation.
It is worth noting that the various terahertz imple-

mentations of the aforementioned D2NN designs often
confront practical challenges arising from fabrication
errors, misalignments between components, and other
error factors, leading to a degradation in the performance
of the experimental systems. However, these issues can be
mitigated by “vaccination” strategies216,217. Specifically,
the 3D printing or fabrication errors of diffractive layers
and potential misalignments induced by imperfect stages/
holders can be incorporated as random noise into the
physical forward model during the training, making the
D2NN system resilient to these errors and effectively
enhancing robustness in their experimental implementa-
tion. Finally, while the discussed D2NN applications
process input object information under spatially coherent
illumination light, recent advancements revealed that
D2NNs could also function as spatially incoherent optical
processing modules218. This will open up new possibilities
for the use of D2NNs in imaging applications employing
spatially incoherent terahertz sources.

Conclusion and future directions
High-throughput terahertz imaging systems will con-

tinue to evolve via advancements in both imaging hardware
and computational imaging algorithms, targeting faster
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imagining systems with larger space-bandwidth product,
higher sensitivity, and larger dynamic range, while tailoring
imaging functionalities for specific applications.
For room-temperature applications where intensity

contrast is needed to differentiate between object features,
microbolometers and FET image sensors will continue to
serve as the key players due to their high sensitivity and
scalability. Further developments in the microbolometer
and FET image sensor technologies involve the optimi-
zation of the terahertz antenna219 and integration with
metamaterials to improve the terahertz absorption effi-
ciency220, as well as scaling to larger arrays while main-
taining high imaging speeds. Further sensitivity
enhancement could enable room-temperature passive
imaging221, eliminating the need for a terahertz illumi-
nation source and greatly reducing the system complexity
and cost. While VOx and α-Si are widely used in room-
temperature microbolometers, alternative materials could
provide new functionalities in future thermal image sen-
sors. For example, the photothermoelectric effect in 2D
materials could be used as the terahertz detection
mechanism in future flexible and wearable terahertz
image sensor arrays222. In terms of scalability, FET image
sensors, especially Si metal–oxide–semiconductor field-
effect transistor (MOSFET) sensors, would be highly
desirable for two reasons: the availability of CMOS
foundry processes and the possibility of monolithic inte-
gration with the readout electronics. Therefore, FET
image sensors are expected to prevail in applications
where cost-efficiency matters the most. While 16.4 k-pixel
CMOS image sensors with a 73 dB dynamic range have
already been demonstrated35, larger-pixel CMOS image
sensors are anticipated to be available in the near future.
Apart from direct terahertz detection, FET image sensors
can also be used to perform on-chip heterodyne terahertz
detection using integrated phase-locked local oscillators
and backend IF electronics. While previously demon-
strated heterodyne image sensors had a limited number of
pixels62, larger-format FET heterodyne image sensors are
expected to be realized thanks to the dimensional and
functional scaling of CMOS. With large-format image
sensors, many snapshot spectroscopic imaging techniques
developed for visible and infrared regimes will be feasible
for multi-spectral terahertz imaging, such as integral field
spectroscopy with lenslet arrays223, tunable echelle ima-
ging224, and image mapping spectrometry225. Many ter-
ahertz far-field microscopy techniques, such as dark-field
microscopy226 and polarized light microscopy227, will also
benefit from the advanced terahertz sensor arrays.
For intensity imaging applications requiring superior

sensitivity, such as astrophysics studies, superconducting
image sensors are expected to dominate photon image
sensors, at least in the near future. Many challenges
remain to be addressed for photon imagers, including

challenges in monolithic integration of large-pixel photon
image sensor arrays based on quantum wells, quantum
dots, and Ge:Ga detectors;228,229 challenges in the devel-
opment of cold readout electronics with sufficiently low
thermal emission;39 and the limitation of existing extrinsic
semiconductors in supporting photon detection at the
lower terahertz frequency range37. Superconducting
image sensors, on the other hand, have demonstrated
remarkable sensitivity and scalability, and are the main
workhorses in many observatories for astrophysics
research230. In-depth studies on our universe demand
larger-pixel imagers with higher sensitivities. For example,
to trace our cosmic history, the Origins Space Telescope
requires terahertz image sensors with ~104 pixels and
NEP levels as low as 3 × 10−21W/√Hz (sensitivities as
high as 3.3 × 1020√Hz/W)47. TES, KID, and QCD image
sensors are all promising candidates for future astro-
physics sensing. Among them, TES is the most mature
technology. However, further developments are needed to
address the fabrication and data readout challenges of
large-array TES image sensors. KID image sensors are less
mature compared to their TES counterparts but pro-
gressed rapidly in recent years. Their highly efficient
frequency-domain readout promises great scalability; 961-
pixel image sensors are already demonstrated with NEP
levels as low as 3 × 10−19W/√Hz (sensitivities as high as
3.3 × 1018√Hz/W)47. QCD image sensors exhibit superior
sensitivity (sensitivities up to 1020 √Hz/W, or NEP levels
as low as 10−20W/√Hz), while supporting frequency-
domain readout231. However, they are a less mature
technology, and many challenges need to be addressed to
increase their fabrication yield, reduce their dark current,
and increase their dynamic range.
Photoconductive and electro-optic image sensors will

continue to be the pursuit of the future THz-TDS imaging
systems enabling time-of-flight, spectroscopic, intensity, and
phase imaging simultaneously. Developing high-throughput,
large-pixel-count photoconductive image sensor arrays
requires new photoconductive terahertz detection schemes
that can maintain high SNR and large bandwidth when
configured in a large array format. For example, using
plasmonic nanoantennas integrated with 3D plasmonic
electrodes232,233 or plasmonic nanocavities234–236 can sig-
nificantly enhance the terahertz detection sensitivity, while
dramatically reducing the required optical probe power
while operating at different optical probe wavelengths237,238.
As a result, high-SNR and broadband operation can be
maintained for each pixel, even at a low optical probe budget
for a large image sensor array235,236. With the development
of short-carrier-lifetime, high-mobility, photo-absorbing
semiconductors at ~1550 nm wavelength239,240, the realiza-
tion of telecommunication-compatible photoconductive
image sensor arrays integrated with femtosecond fiber lasers
is another direction that could significantly reduce the cost,
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size, and complexity of future THz-TDS systems. To achieve
faster imaging speeds, advanced 2D readout integrated cir-
cuits as well as non-mechanical time-domain sampling
methods (e.g., ASOPS and ECOPS) can be used in con-
junction with the photoconductive image sensor arrays. For
THz-TDS imaging systems based on electrooptic image
sensor arrays, expanding the field of view would decrease the
terahertz field intensity at each pixel. Therefore, increasing
the energy of the terahertz pulses illuminating the imaged
object and using nonlinear crystals with higher nonlinearity
effects are possible ways to maintain an acceptable SNR and
detection bandwidth. Large-format THz-TDS image sensors
would bridge the gap between many exciting potentials and
real-world applications of terahertz waves to reconstruct 3D
images of multi-layered objects and identify chemical com-
position of unknown objects in real-time, for various
industrial quality control, security screening, and health
monitoring applications.
Future terahertz imaging systems are also expected to

benefit from rapid advancements in computational and
data sciences. Multi-pixel sensor arrays utilized with
quantum sensing and compressive sensing algorithms160

are expected to push the envelope and offer unprece-
dented functionalities for future terahertz imaging sys-
tems. By delving deeper into innovations in 3D
fabrication and lithography techniques, particularly using
nonlinear materials, the capabilities of terahertz imaging
techniques powered by D2NNs can further expand,
allowing a broader range of applications, including ter-
ahertz microscopy, non-line-of-sight imaging and wire-
less communication. While advancements in terahertz
imaging techniques covering both hardware and com-
putational methods will be crucial for future terahertz
systems, the interaction of terahertz electromagnetic
waves with real-world objects and materials should be
carefully studied and modeled to further extend the
boundaries of terahertz imaging and sensing applications.
We foresee a flourishing future for terahertz imaging
science and technology and a significant growth in the
utilization of terahertz imaging systems not only in sci-
entific laboratories and industrial settings, but also in our
daily lives.
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