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Group 2 Innate lymphoid cells (ILC2) contribute significantly to allergic inflammation.

However, the role of microbiota on ILC2s remains to be unraveled. Here we show

that short chain fatty acids (SCFAs), such as butyrate, derived from fermentation of

dietary fibers by the gut microbiota inhibit pulmonary ILC2 functions and subsequent

development of airway hyperreactivity (AHR). We further show that SCFAs modulate

GATA3, oxidative phosphorylation, and glycolytic metabolic pathways in pulmonary

ILC2s. The observed phenotype is associated with increased IL-17a secretion by lung

ILC2s and linked to enhanced neutrophil recruitment to the airways. Finally, we show that

butyrate-producing gut bacteria in germ-free mice effectively suppress ILC2-driven AHR.

Collectively, our results demonstrate a previously unrecognized role for microbial-derived

SCFAs on pulmonary ILC2s in the context of AHR. The data suggest strategies aimed

at modulating metabolomics and microbiota in the gut, not only to treat, but to prevent

lung inflammation and asthma.

Keywords: dietary fiber, short chain fatty acid, ILC2, airway hyperreactivity, allergic disease

INTRODUCTION

Allergic disease affects 10–15% of people in the U.S. reflecting dysregulated immunity toward
otherwise harmless environmental antigens. Recent studies have shown increased ILC2 activity
in asthma and allergic diseases (1, 2). Group 2 innate lymphoid cells (ILC2s) produce type 2
cytokines such as IL-5, IL-13, and IL-9 in response to a growing number of environmental signals
and epithelial cell-derived alarmins. In murine models of asthma, ILC2s are sufficient to provoke
eosinophilic inflammation accompanied by airway hyperreactivity (AHR) independent of adaptive
immunity (3). Finding negative regulators of ILC2 function remains an important clinical goal (1).

Both direct recognition of microbes as well as microbial metabolites have profound
effects on immune system function including barrier defense, pathogen protection (4)
and immune tolerance (5). Environmental stress including frequent use of antibiotics
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or high fat, low fiber diets are associated with increased
incidence of many common autoimmune diseases including
allergy and asthma alongside gut microbiome dysbiosis (6–8).
For example, mice treated with antibiotics early in life or Germ-
free mice were more prone to obesity and asthma, a finding
also observed in human cohorts (9–11). Importantly, high-
fiber diet or supplementation can restore both dysbiosis and
protect against asthma in both human and animal models, the
mechanism of which are incompletely understood (8, 12–14).
Antibiotics (and Germ-free mice) also have substantial changes
in ILC subset identity and epigenetic landscape in the small
intestine, suggesting ILCs respond to microbial signals (15).

Short-chain fatty acids (SCFA) are a dependent product of
dietary fiber fermentation by specific microbes in the intestinal
colon and possesses multiple anti-inflammatory properties both
on gut epithelial and immune cells (16, 17). SCFA bind G-protein
coupled receptors GPR41 and 43 with varying affinity and can
decrease pro-inflammatory cytokine expression by inhibiting the
NFκB pathway and enhancing anti-microbial peptide secretion
(16). Alternately GPCR signaling in non-hematopoietic cells can
promote inflammatory response in the gut (18). In immune
cells, butyrate inhibits Histone deacetylases (HDAC) to promotes
Regulatory T cell (Treg) differentiation, and can induce IL-
10 secretion in a GPR109 dependent manner in macrophages,
protecting from colitis (19, 20). Systemic SCFAs can also decrease
inflammation in the lungs, in part mediated by propionate-
GPR43 receptor signaling on dendritic cells to express PDL-1
(13). The role of dietary fiber-induced butyrate and microbial
metabolites on ILCs, in particular on ILC2s in the context of
asthma, remains unknown.

Studies from our group and others show that ILC2s play a
key role in the development of asthma pathogenesis. Following
challenge with IL-25, IL-33, or allergens such as Alternaria and
house dust mite (HDM), pulmonary ILC2s rapidly produce
copious amounts of interleukin (IL)-5 and IL-13, which in turn
leads to eosinophilia and mucous production and ultimately
development of AHR (21). ILC2s may also promote tissue
remodeling during chronic asthma in the lung via the secretion
of amphiregulin (22). In addition to epithelial alarmins, lipid
mediators produced by eosinophils and mast cells, such as
prostaglandins PDGE and PGD2 can synergize with alarmins to
activate cytokine receptor expression and ILC2 activity (23–25).
Importantly ILC2s retain plasticity, as cytokines IL-12 and IL-1β
convert ILC2 into ILC1 or Notch ligand DLL-1 converts ILC2
into ILC3-like cells (26–28).

Here we found that butyrate, derived from microbial
fermentation of high fiber diet, significantly suppresses the
production of type 2 cytokines by ILC2s in vitro and relieves
ILC2-dependent allergic inflammation in vivo. Transcript
analysis revealed GATA-3, a key transcription factor in
ILC2 development and function, was significantly down-
regulated after treatment with butyrate. Lowering GATA3
expression reduced cellular metabolism, limiting oxidative
phosphorylation and glycolytic potential. We further determine
that introducing endogenous butyrate production by specific
microbiota abrogated ILC2-dependent AHR. Reduced type II
response was also associated with increased IL-17a by ILC2 and

enhanced neutrophil recruitment to the lungs. Overall, we found
a mechanism of a well-studied bacterial metabolite important in
gut function and extend its reach to regulation of cells in a distal
organ such as the lung. This connection offers a unique way the
environment can regulate immune reactivity, including innate
lymphoid cells.

MATERIALS AND METHODS

Mice
BALB/c and RAG−/−, and RAG−/−yC−/− (all BALB/c
background) mice were purchased from Taconic (Germantown,
NY) and provided food and water ad libitum and be maintained
on a 12 h light and dark cycle in the vivarium throughout study.
All animal studies were approved by the Institutional Animal
Care and Use Committee of Janssen R&D or USC and conducted
in accordance with the USC Department of Animal Resources’
guidelines. To induce allergic inflammation, mice received 0.5
ug recombinant mouse IL-33 (carrier-free, R&D) intranasally
(i.n.) in 50 uL under isoflurane for 3 consecutive days. For diet
studies, 5 week-old mice were place on normal chow (AIN-93,
4–5% cellulose Fiber content (w/w), or 30% cellulose or 30%
Pectin, Research Diets, Inc.) for at least 2 months and weight
monitored (Table S1). For mono-colonization studies, two
high butyrate producer strains: Clostridium butyricum ATCC
19398C and Clostridium sporogenes ATCC 11437 and two
low butyrate producing strains: Clostridium ramosum ATCC
13937 and Clostridium ramosum VPI 0427 ATCC 25582, were
cultured anaerobically. Cultures were centrifuged, washed, and
re-suspended in anaerobic solution (PBS) and frozen at −80◦C
until use. Germ-free mice received three gavages with 1 × 106

PFU of high or low butyrate producing strains every other day in
200 uL PBS and subsequently exposed to 0.5 ug intranasal IL-33
for 3 consecutive days. Twenty four hours after the last exposure,
lung function, bronchial alveolar lavage (BAL) and lung biopsies
of recipients were analyzed.

SCFA Measurement
Supernatant from Bead beater (Omni) homogenized Lung and
Colon were Methanol extracted with 10 uM deuterated Free
Fatty acid mix (Sigma) and derivatized with 3NPH (20mM
3-nitrophenylhydrazine, 1-Ethyl-3-(3-dimethylaminopropyl)
carbodiimide (EDC) 18mM, Pyridine 1.5%, in 75% acetonitrile
in water) for 30min and 1 uL loaded for LCMS on C18 column
in Agilent 1290 HPLC/6550 qTOF (Agilent, San Diego Ca) as
previously described (29).

Bacterial 16s
V4 rDNA sequencing and analysis was performed by Diversigen
from frozen fecal pellets of n = 10 individual mice as previously
described (30). Data are deposited as SRA.

Ex-vivo Incubation of FACS-Purified ILC2s
ILC2 were purified from the lungs of IL-33 treated mice, 24 h
after last challenge, as described previously (31, 32). Lungs
were finely chopped and digested in 1 mg/mL Collagenase
IV (MP Biomedicals, LLC) and DNaseI (Roche) for 30min
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at 37◦C followed by passage through 70 uM filter and
pelleted with 30% Percoll to remove debris. ILC2 were
FACS purified with ARIA Fusion cell sorter (BD Biosciences)
gated as Live CD45+ Lineage− Thy1-2+ CD127+ ST2+

to >95% purity. 5 × 103 cells/well were cultured ex-vivo
in RPMI (Lonza) with 10% FCS, HEPES, L-Glutamine, B-
mercaptoethanol for 2–3 days in the presence of 10 ng/mL
rmIL-2, rmIL-7, and 10 ng/mL IL-33 as indicated (R&D
systems). Sodium chloride, acetate, propionate, and butyrate
(Sigma) were dissolved in PBS pH 7.4 and added to the indicated
concentrations. For knockdown studies, 1 uM GATA3 in-vivo
morpholinos 5′-TGGTCCGCAGTCACCTCCATGTCCT-3′ or
5′mismatch control 5′-TGcTCCcCAcTCACCTCgATcTCCT-
3′ (Gene Tools, Philomath OR) were added as free
uptake oligos 24 h before butyrate addition. For GPR109a
knockdown studies, translation blocking morpholino 5′-
CTAGAAAATGGTCTGACTTGCTCAT-3′ and 5′mismatch
control 5′- CTTGTAAATCGTCTCACTTCCTCAT-3′.

Flow Cytometry
For BAL fluid collected, leukocyte populations were gated
as previously described (33). Single cell suspensions of lung
cells were stained for ILC2 as Live CD45+ Lineage− Thy1-2+

CD127+ ST2+. For cytokine detection cells were stimulated
for 4 h with PMA Ionomycin and Brefeldin A (cell stimulation
cocktail, Biolegend) or BrefeldinA alone. After 15min of viability
stain with GhostRED (Tonbo, San Diego CA), cell fixation
and intracellular cytokine staining was performed according
to manufacturer instructions (BD biosciences San Jose CA)
using IL-5-BV421, IL-13-APC, IL-17a-PeCy7 (Biologend,
San Diego CA). For Transcription factor staining, FOXP3
fixation permeabilization kit was used according to manufacture
and stained with GATA3-PECy7, ki67-e450, and IRF4-PE
(eBioscience San Diego, CA). For mitochondrial analysis,
ILC2 cultured with 20 nM MitoTrackerGreen and 100 nM
MitoTrackercmxROS-H2 or 5 uM mitoSOX (Invitrogen,
Carlsbad CA) in PBS with GhostRED dye for 30min at 37◦C
5% CO2. Cells were acquired on BD Canto II and analyzed with
FlowJo software (Treestar Ashland OR).

Cytokine Detection
BAL fluid, lung homogenate, or ILC2 culture supernatants were
analyzed for presence of cytokines using mouse 32-plex Luminex
kit (Millipore, Burlington MA), run on XMAP plate reader, and
quantity of cytokine was calculated from standard curve reported
as pg/mL using Masterplex software (Miraibio Inc) and graphed
in Prism Software (GraphPad Software Inc).

Seahorse
50,000–150,000 activated ILC2 were plated onto CellTak (BD
Biosciences) coatedmicroplates in Seahorse media supplemented
with 1mM Pyruvate, 2mM glutamine, and 10mM Glucose
followed by mito stress test kit performed according to
manufacture (Agilent, San Diego CA), using 1 uM FCCP.

Adoptive Transfer
Experiments were performed as described previously (31).
Briefly, activated ILC2 from IL-33 treated RAG−/− mice were
isolated as above and cultured for 48 h in the presence of 200
uM Sodium Chloride or Sodium Butyrate and 5 × 104 cells
transferred i.v. in PBS 1X into RAG−/−γC−/− mice. Twenty four
hours later, 0.5 µg rmIL-33 i.n. in 50 µL was given once a day for
3 days. AHR was then measured on day 4.

Measure of Airway Hyperreactivity
Experiments were performed as described previously (32, 34).
Lung function was evaluated by direct measurement of
lung resistance and dynamic compliance in restrained
tracheostomized mechanically ventilated mice using the
FinePointe RC system (Buxco Research Systems, Wilmington,
NC) under general anesthesia as described before (32). AHR was
measured by exposure to an aerosol containing increasing doses
of Methacholine (Sigma), following a baseline measurement after
the delivery of a saline aerosol.

Human ILCs
Purified from fresh Leukapheresis blood from healthy human
donors, collected with IRB approval. Samples were depleted
with Lineage depletion cocktail (Miltenyi) followed by cell
sorting using FACS ARIA Fusion (BD biosciences, San Jose, CA)
to purity >95%. Total ILCs were stained and gated as Live,
CD45+ lineage− (CD1a, CD3, CD14, CD16, CD19, CD20, CD56,
CD123, and CD235a), CD127+, CD161+ and ILC2 sorted as:
CRTH2+, CD117+/− (all antibodies from eBioscience, SanDiego
CA). After isolation, 5 × 103 ILCs were cultured in complete
RPMI with 10% FCS and 10 ng/mL rhIL-2, 10 ng/mL rhIL7 and
stimulated with 30 ng/mL rhIL-33 (R&D systems) for 5 days.
Cell supernatants were analyzed for cytokine production with
human 41-plex cytokine kit (Millipore) and read on XMAP
Luminex plate reader, MFIs normalized to absolute values
with provided standard curve using masterplex software and
concentrations compared across individual donors by percent of
untreated control. Cells were then fixed and stained intracellular
GATA3 using FOXP3 perm/fixation kit (eBioscience) according
to manufacture instructions and were acquired on BD Canto
II and analyzed with FlowJo software (Treestar Ashland OR)
for percentage and Median Florescence intensity compared in
Prism software (GraphPad Software Inc., La Jolla, CA) using
paired T-test.

Statistical Analysis
Experiments were repeated at least 2–3 times (n = 4–8 per
group) and data are shown as representative of independent
experiments. A Bonferroni adjusted t-test for unpaired data was
used for in-vitro samples. For in-vivo data, a Kruskal-Wallis test
with Benjamini-Hochberg adjusted FDR or Dunn-corrected P-
value was calculated using Prism Software (GraphPad Software
Inc.). The degrees of significance were indicated as: ∗p < 0.05,
∗∗p < 0.01, ∗∗∗p < 0.001.
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RESULTS

Dietary Fiber Dampens ILC2 Mediated
Allergic Inflammation
Dietary Fiber derived short chain fatty acids modulate

inflammation at distal sites including allergic airway

inflammation in the lung. However, most models require

suppressing T cell function through IL-10, PDL1, or FOXP3
regulation. To address if dietary fiber can modulate lung
inflammation in absence of T cells, we assigned 5 week-old

RAG2−/− mice to a Normal 4.5% cellulose chow (Control
Diet), or diets high in Cellulose (Hi-C) or Pectin (Hi-P) at
30% of dietary formula followed by allergic asthma challenge
(Figure 1A). Pectin is more fermentable than cellulose and leads
to increased SCFA production in vivo. The colon contained
millimolar levels of acetate, propionate, and butyrate whereas
lungs contained much lower micromolar levels of the three main
SCFAs (35). Two months of Pectin diet significantly increased all
SCFA levels, particularly butyrate (Figure 1B), without changes
in normal weight over controls (Figure S1A).

FIGURE 1 | High-fiber diets dampens allergic asthma. Five week-old RAG−/− were provided normal chow with 4.5% cellulose (Control Diet) or enriched with 30%

cellulose (Hi-C) or 30% Pectin (Hi-P) as fiber source. After 2 months mice were treated with IL-33 intranasally (i.n.) for 3 consecutive days, followed by analysis of lung

inflammation by flow cytometry. (A) Schematic. (B) Amounts of acetate, propionate, and butyrate in colon and lung tissue by LCMS. (C) Genus abundance by OTU

count in fecal pellet by 16S V4 profiling in individual mice as columns. (D) Average proportions of most abundant bacterial genera. (E) Resistance (cmH20/mL/S) and

Dynamic compliance (mL/cmH20) in anesthetized tracheotomized mice challenged with increasing dose methacholine. (F) Number of Eosinophils and ILC2 infiltrating

BAL fluid. (G) BAL cytokine production by Luminex. (H) Intracellular cytokine production by Lung ILC2 after 12 h of IL-33 followed by Brefeldin A (BFA) of total lung

cells, gated as Live CD45+Lineage−CD90.2+CD127+ST2+. Shown are representative plots and total number of IL-5 vs. IL-13 producing cells in lung. Data

representative of two of four independent experiment, n = 4–5 mice/group+-SD. *p < 0.05, **p < 0.01, and ***p < 0.001.
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Butyrate is preferentially derived by Phyla Firmicutes in mice,
containing Clostridia clusters IV and XIVa. We next checked
changes to microbiota in diet modified mice by 16S ribosomal
RNA sequencing amplified from fecal pellets of individual
mice. Phylogenetically, Pectin diet increased Proteobacteria
such as Salmonella, as well as multiple different Firmicutes
including genera Clostridiales, and Hungatella over Control or
Cellulose diet, but decreased Lachnospriaceae by Operational
Taxonomic Unit (OTU) count (Figure 1C). Interestingly, Pectin
fed mice had decreased microbial diversity compared to control
or Cellulose-fed mice by Shannon species diversity index
(Figure S1B). Weighted Principal coordinate analysis (UniFrac
distance) also showed Pectin-fed microbiome as distinct from
both Cellulose and Control diet (Figure S1C). Indeed, there
were significant changes in proportion of 9 out of 10 of the
most abundant bacteria by OTU between controls and Pectin
fed mice (Figure 1D). These results indicate Pectin diet allows
outgrowth of a distinct microbiota associated with increased
SCFA abundance.

Short term exposure to intranasal IL-33 induces ILC2
dependent eosinophilia and lung inflammation characteristic of
allergic asthma in absence of T cells. After 3 daily doses, lungs
of diet-modified mice were analyzed for Airway Hyperreactivity
(AHR) by direct measurement of lung resistance and dynamic
compliance in tracheostomized mechanically ventilated mice.
Upon increasing methacholine challenge, Pectin fed mice had
lower Resistance and increased Dynamic compliance than either
control or cellulose-fed mice, indicating fiber diet moderately but
significantly reduced the physiological features of allergic asthma
(Figure 1E).

Next we analyzed Bronchial Alveolar Lavage (BAL) fluid for
immune infiltration. There was a large influx in total number
and percentage of Eosinophils in intranasal IL-33 in control
mice and was decreased with Hi-Pectin diet compared to both
normal chow and Hi-Cellulose control diets (Figure 1E). In turn,
neutrophils were over-represented in percentage (Figure S1D)
but not in overall number inmice fed hi-Pectin diets compared to
controls. Next, we examined the levels of inflammatory cytokines
in BAL fluid. IL-33 induces high amounts of type II cytokines
IL-5 and IL-13, followed by IL-4 and TNF-α in control mice.
Hi-Pectin diet reduced amounts of IL-13 and IL-4, but not IL-5
or TNF-α inflammatory cytokines (Figure 1G). Interestingly, we
found increased in IL-17a found in BAL of Pectin fed mice. There
was also an increase in IFN-γ across Pectin fed mice (Figure 1G).
These data suggest Pectin fedmice had amixed immune response
with elements of Type I, II, and III responses, whereas control
mice had Type II dominant response.

Innate lymphoid cells are the major producers of type II
cytokines in this model (3). IL-33 induced ILC2 activation
and expansion in the lungs of control diet fed mice, gated
as CD45+ Lineage− (CD3e, B220, Gr1, CD11b, Ter119, DX5,
FcRe1) CD90.2+ CD127+ ST2+. Hi-Pectin diet had reduced
numbers of ILC2 in the lungs compared to control diet fed mice
(Figure 1F and Figure S1E). To further analyze ILC2 function,
we cultured total lung cells overnight with IL-33, followed by
4 h stimulation with Brefeldin A to trap cytokine release, and
measured intracellular cytokine production on ILC2 by flow

cytometry. While the majority of activated ILC2 in control diet-
fed mice produce IL-5 and IL-13, the total number of cytokine
producing cells is decreased by hi-fiber diets, particularly IL-13
(Figure 1H). Next, we examined GATA3 expression in the lung
ILC2 and found reduced GATA3 expression in Hi-Pectin diet
groups compared to expression control group in the lungs where
ILCs still strongly upregulated another transcription factor, IRF4
(Figure S1F). We did not see detectable changes in TBET or
RORyT protein expression (Figure S1G). Overall these data
indicate that increased levels of SCFA in vivo through diet can
modulate the character of innate response to alarmin exposure in
the lung, with reduced type II response and GATA3 expression.

Butyrate Suppresses Activated ILC2
Function in vitro and in-vivo
Given the observation of reduced ILC2 activity in vivo in
response to IL-33, we next asked if activated ILC2 (aILC2)
can respond directly to SCFA ex vivo. We cultured murine
FACS-purified ILC2s as Live CD45+ Lineage− CD90.2+ CD127+

CD25+ ST2+ (Figure S2A) from lungs of IL-33-treated mice ex
vivo 48 h in the presence of IL-2, IL-7, and IL-33, and either
sodium chloride or sodium butyrate at indicated physiologic
concentration. Purified ILC2 secreted substantial amounts of IL-
5 and IL-13 with IL-33 stimulation, measured in supernatants
by Luminex. Butyrate treatment at 200 uM decreased IL-5 and
IL-13 secretion in ILC2 when compared to the NaCl control
group (Figure 2A). Sodium Butyrate did not affect viability,
proliferation, or apoptosis below 1mM (Figures S2B–D).

Butyrate also functions as a histone deacetylase inhibitor. We
compared SCFA to HDAC inhibitor TSA and Quisinostat, a
HDAC1 inhibitor. ILC2 underwent substantial apoptosis at 1 nM
after 48 h whereas butyrate treatment did not induce similar
effects (Figure S2E). When treated with Butyrate, activated
ILC2 secreted less IL-13 and GM-CSF, but similar amounts
of IL-5 and TNF-α into supernatant compared to acetate or
propionate treated ILC2 (Figure 2B). Strikingly, purified ILC2
cultured with sodium butyrate secreted more IL-17a. We also
tested cytokine production of aILC2 on a per cell basis by flow
cytometry. Butyrate treatment, but not acetate or propionate,
decreased intracellular both IL-5 and IL-13 production on a
per cell basis. TNF-α production was not affected, consistent
with Luminex data. Further, ILC2 that had lost IL-5 production
start to produce IL-17a (Figure 2C). Activated ILC2 make
copious amounts of IL-5 or may have stable IL-5 mRNA before
Butyrate dampens secretion in supernatant, compared to PMA
stimulation after 48 h where both IL-5 and IL-13 were reduced.
ILC2 here were also capable of making small amount of IL-
17a without butyrate, suggesting ILC2 have existing potential to
make IL-17a, where IFN-y was not detected (not shown). These
results demonstrate butyrate, among SCFA, is directly capable of
modulating activated ILC2 function.

Increasing fiber in diet or Tributyrin supplementation can
be beneficial for asthma patients, however Butyrate acts on
many immune cells (12). Next, we tested whether butyrate
treated ILC2s were sufficient to modulate disease in vivo. FACS-
purified activated ILC2s (aILC2), characterized as above, were

Frontiers in Immunology | www.frontiersin.org 5 September 2019 | Volume 10 | Article 2051

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Lewis et al. Microbial SCFA Suppress ILC2-Dependent AHR

FIGURE 2 | Butyrate suppresses ILC2 function in-vitro and in-vivo. ILC2s were FACS purified from lungs of mice with or without 3 days 0.5 ug IL-33 administration i.n.

as indicated and 5 × 103 cells/well-cultured ex-vivo for 2–3 days in the presence of IL-2 and IL-7, indicated salt at 2–200 uM and 10 ng/mL IL-33. (A) Schematic.

(B) Dose dependence of ILC2 suppression by Sodium Butyrate compared to Sodium Chloride. (C) IL-5, IL-13, TNF-α, and IL-17a secretion in supernatant by

activated ILC2 measured by Luminex after SCFA treatment at 200 uM. (D) Cytokine production by flow cytometry after 5 h stimulation with PMA/Ionomycin/BFA,

comparing IL-5 and IL-13 (upper row), TNF-α (middle), or IL-17a in activated ILC2 after 3 days in-vitro. (E) Schematic, 5 × 104 ILC2 treated with 200 uM NaCl or

Butyrate, washed, transferred i.v. into RAG−/−γC−/− mice challenged and with 3 days IL-33 i.n. (F) Lung resistance (AHR) upon increasing methacholine challenge.

(G) Total Eosinophils in BAL. Total Neutrophil count in BAL. (A–D) Data are graphed as duplicate wells+-SEM, representative of three independent experiments and

(E–G) two independent experiments, n = 4–5 mice/group+-SEM. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.

cultured 48 h ex-vivo with either sodium chloride or sodium
butyrate. Washed cells were transferred i.v. into RAG−/−γC−/−

mice, followed by 3 daily doses of IL-33 i.n. to induce
AHR (Figure 2D). Twenty four hours after last dose lung
function was assessed by resistance and dynamic compliance.
Recipient mice (RAG−/−γC−/−) lack all lymphocytes and
do not otherwise develop AHR, where adoptive transfer of
control treated ILC2 induces asthma-like symptoms upon
methacholine challenge. However, butyrate treated ILC2 are

unable to induce airway resistance upon transfer (Figure 2E).
Following lung function measurement, BAL fluid was analyzed
for eosinophil number by flow cytometry. Control-treated
ILC2 strongly recruit eosinophils to the lungs upon IL-33
challenge. Consistent with AHR, butyrate-treated ILC2 did not
recruit eosinophil to BAL (Figure 2F). In contrast, butyrate-
treated ILC2 increased neutrophil recruitment to the lungs,
consistent with IL-17a production (Figure 2G) (36). These
results indicate that butyrate treatment on highly purified ILC2
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is sufficient to limit pathogenic potential and modulate disease
in vivo.

Butyrate Regulates GATA3 and ILC2
Metabolism
To better understand the effects of butyrate, we next analyzed
mRNA expression 24 h after ex-vivo stimulation, utilizing a panel
of over 250 immune-related genes. ILC2 expressed prominent

level of il5 and il13 mRNA. Butyrate treatment decreased il5,
il13, and il9 expression by more than 50%, shown as heatmap
of log2 absolute expression counts (Figure 3A, right). Whereas
tnfa, il4, and il6 transcripts were expressed at much lower levels
than il5 and il13, but also slightly reduced by butyrate treatment
compared to control. Butyrate also decreased expression of il1r2
(ST2), il2ra (CD25), and icos but not pdcd1 (PD1) surface
markers (middle panel) compared to control treated ILC2. In

FIGURE 3 | Butyrate regulates GATA3 expression and ILC2 metabolism. Activated ILC2s were FACS purified from lungs after 3 days IL-33 administration i.n. and

cultured ex-vivo for 24 h in the presence of 200 uM Sodium Butyrate or Sodium Chloride as control for mRNA expression (A) or incubated with indicated SCFA sodium

salt at 200 uM for 2–3 days (B–D). (A) mRNA quantification of immune-related genes by Nanostring panel shown as heatmap of absolute expression counts. (B)

Surface expression of ST2 and Intracellular expression of GATA3 in response to indicate SCFA. (C) Oxygen consumption measure (OCR) from Seahorse mito stress

test 48 h post butyrate treatment. (D–F) Activated ILC2s were cultured ex-vivo for 2 days in the presence of 1 uM GATA3 Morpholino (GATA3 MO) or 5’ mismatch

control (CTRL MO) followed by another 2 days of Acetate or Butyrate treatment in presence of 10 ng/mL rmIL-33. (D) GATA3 expression over isotype. (E) IL-5 and

IL-13 cytokine secretion in supernatant after acetate or butyrate addition. (F) Seahorse mito stress test assay after GATA3 knockdown ILC2 showing OCR and ECAR

response. Data are graphed as duplicate-triplicate wells +-SEM, representative of 2–3 independent experiments. *p < 0.05, **p < 0.01, and ***p < 0.001.
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previous studies, sodium butyrate acted as an anti-inflammatory
agent by inhibiting NFκB activation in human epithelial cells.
Our transcript analysis showed butyrate also down-regulates
nfκb1 and nfκb2 transcription as well as increased negative
regulators tnfaip3 (A20) and socs3 (Figure 3A).

ILC2 require the transcription factor GATA3 and ST2 and IL-
7r are GATA3 targets (37–39). Control ILC2 expressed high levels
of gata3 and butyrate reduced gata3 within 24 h (Figure 3A-
right). IRF4 is also important for IL-5 and IL-13 cytokine
production and strongly induced in activated ILC2, however
butyrate only slightly reduced irf4 transcripts. This suggests
butyrate downregulates gata3 in ILC2. To confirm these results,
we analyzed protein expression. The majority of untreated ILC2
express GATA3 in culture and expression was decreased with
butyrate, and to lesser extent by propionate, but not acetate
treatment (Figure 3B). There was no difference in viability or
proliferation in these cultures (Figures S3A,B). Additional ILC2
surface ST2 and CD25, but not ICOS protein expression, were
suppressed by Butyrate treatment, in line with mRNA results
(Figure 3B and Figure S3C).

ILC2 utilize Long Chain Fatty acids over glucose for energy
(40). To test if butyrate, as a carbon donor, altered cellular
metabolism we first measured the amount of mitochondrial ROS
generated using MitoSOX dye. Butyrate treated ILC2 generated
less mitochondrial ROS than control treated cells (Figure S3D).
We further analyzed the metabolic rate of ILC2 by Seahorse
assay using mito stress test 48 h after butyrate addition. Resting
metabolic rate of ILC2 was slightly reduced compared to acetate
treated ILC2. However, butyrate completely ablated the spare
respiratory capacity (SRC) of these cells after FCCP challenge,
when compared to acetate treatment (Figure 3C). Interestingly,
upon challenge with Oligomycin, ILC2 also had reduced ability
to upregulate glycolytic activity (Figure S3E). We further tested
propionate, which also did not reduce SRC compared to PBS
treated ILC2 (Figure S3F). These data suggest Butyrate reduces
the overall metabolic potential of ILC2 to utilize both OXPHOS
and Glycolysis.

SCFAs have been reported to signal through GPCRs GPR41,
43, and 109a. We further measured mRNA expression by qPCR
of gpr41, gpr43, and gpr109a. ILC2 express GPR109a over HPRT
housekeeping gene but much lower levels of gpr41 and 43
(Figure S4A). We further measured Calcium flux by florescent
indicator, Fura2, loaded into ILC2 followed by SCFA challenge.
SCFA did not induce Ca2+ flux expressed by ILC2 regardless
of GPR109a morpholino treatment, both groups responded to
PMA control (Figure S4B). We then attempted knockdown
of GPR109a, a single exon gene, using translation blocking
morpholino, compared to 5’ mismatch control. We measured
IL-13 and IL-17a secretion by Luminex after treatment of cells
with GPR109a Morpholino for 24 h followed by 48 h of butyrate
or sodium chloride control. GPR109a morpholino treated ILC2
still produced less IL13 and more IL17a in response to butyrate,
similar to Control morpholino (Figure S4C). We confirmed
the function of ILC2 after GPR109a knockdown by 5 h of
PMA stimulation in presence of BFA flowed by intracellular
flow cytometry. GPR109a morpholino treated had similar IL-
5 and IL-13-positive ILC2 as well as TNF-α-positive ILC2 as

FIGURE 4 | Human ILC2 are suppressed by Butyrate treatment. Human

ILC2s were FACS purified (Live Lin− CD45+ CD161+ CD127+ CRTh2+) from

healthy human PBMCs and cultured ex-vivo for 5 days in the presence of

10 ng/mL rhIL-2, rhIL-7, and 30 ng/mL rhIL-33 with Sodium Chloride or

Sodium Butyrate (10 uM unless indicated), at 5 × 103 cells/well. (A) Dose

titration and cytokine production in culture supernatant by Luminex assay,

n = 2 donors. (B,C) Data are represented as percent of untreated controls,

representative of four independent donors. (C) Intracellular GATA3 expression

by flow cytometry in Acetate-treated (line) and butyrate (gray fill). Data

representative of n = 6 independent donors *p < 0.05 using paired T-test.

control morpholino treated after butyrate from 200 to 2 uM
(Figure S4D). These data, alongside lack of effect of acetate
and propionate as ligands suggest ILC2 do not utilize GPCR
downstream of butyrate.

GATA3 is required for ILC2 to persist in vivo and
produce IL-5 and IL-13 (39). To confirm acute downregulation
of gata3 transcription was required for effects of butyrate
we knocked down GATA3 protein (GATA3KD) by 48 h of
splice-blocking morpholino. Targeted cells expressed 50% less
GATA3 protein compared to 5’ mismatch control morpholino
treated cells, shown over isotype staining (gray), measured by
intracellular flow cytometry (Figure 3D). GATA3KD strongly
reduced intracellular IL-5 and IL-13 on a per cell basis after
PMA Ionomycin stimulation, graphed over Brefeldin A only
control (gray), indicating GATA3 is required for continuous
ILC2 function (Figure S5A). GATA3KD cells had similar ki67
staining to control cells (Figure S5B). To examine if GATA3KD

also affected mitochondrial function, we again ran seahorse mito
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stress test on GATA3KD ILC2. GATA3KD ILC2 had decreased
spare respiratory capacity after FCCP treatment, similar to
butyrate treated ILC2 (Figure S5C).

To examine if butyrate could affect ILC2 in GATA3
sensitized background, we cultured GATA3KD cells with SCFA
for 3 days and measured cytokine production by Luminex.
Again, IL-5 secretion was not affected by SCFA or GATA3KD,
consistent with previous in vitro data (Figure 3E). However,
IL-13 secretion was decreased by butyrate in control cells
as expected and GATA3KD reduced IL-13 secretion to levels
similar to butyrate treatment (Figure 3E). Further, addition
of butyrate to GATA3KD had minimal further effect on IL-
13, we measured membrane potential by flow cytometry using
MitoTracker dye that binds actively respiring mitochondria at
48 h post stimulation. Addition of butyrate slightly decreased
membrane potential (Figure S5D). Interestingly GATA3KD also
decreased mitochondrial membrane potential in IL-33 and
acetate stimulated cells and addition of butyrate only had
small effect on potential in GATA3 sensitized background.
There was no change in mitochondrial size in staining with
MitoTrackerGreen (Figure S5D). We next monitored real time
mitochondrial function by Seahorse. Compared to control
morpholino, GATA3KD had slightly reduced basal respiration but
again lacked SRC when challenged with Oligomycin and FCCP,
similar to sodium butyrate treated ILC2 above in mito stress
test (Figure 3F). Further treatment of GATAKD with Butyrate
reduced did not decrease SRC below GATA3KD. These data
suggest indicating butyrate requires GATA3 to reduce ILC2
metabolic activity.

Human ILC2 Are Suppressed by Butyrate
To extend our results to human we FACS-purified ILC2 from
healthy donor PBMCs, as lineage− CD45+ CD127+ CRTH2+

CD161+ (Figures S6A,B), cultured for 5 days in presence of
recombinant human IL-2, IL-7, and IL-33 with indicated dose
of SCFA. Similar to mouse, IL-33 activated human ILC2 produce
substantial amounts of type 2 cytokines in-vitro. Butyrate, but not
acetate or propionate, decreased type 2 cytokine secretion in a
dose dependent manner (Figure 4A). We observed a significant
decrease in IL-13 production and IL-9 across four individuals at
10 uM without affecting viability (Figure 4B). ILC2s from two
patients showed a decrease in IL-5, the other two patients did not
show a significance reduction in IL-5 after butyrate treatment,
similar to mouse ILC2 where IL-5 was less affected than IL-13.
We next tested whether human ILC2 also downregulatedGATA3.
Butyrate treatment also significantly decreased GATA3 protein
expression compared to NaCl treatment, shown as representative
overlay and percent positive paired across 4 donors (Figure 4C).
These results suggest butyrate can also negatively regulate human
ILC2 function via GATA3 expression.

Clostridia butyricum Provides Systemic
Butyrate to Modulate ILC2 Dependent AHR
We found Fiber diet induced many changes in microbiota.
We questioned if endogenous sodium butyrate produced by
gut microflora was sufficient to abrogate AHR in vivo in an
ILC2 dependent mouse asthma model. To this end, we took

Germ-Free RAG−/− mice (GF), with minimal microbiome
exposure from birth, and gavaged 1 × 106 PFU of fresh thawed
aliquots of each of two butyrate producing strains of Clostridia
species (Clostridium butyricum ATCC 19398C, Clostridium
sporogenes ATCC 11437), labeled C. butyricum in legends,
compared to gavage of two non-butyrate producing strains
(Clostridium ramosum ATCC 13937, Clostridium ramosum
VPI 0427 ATCC 25582) (41). We used two characterized
strains each to increase engraftment and prevent artifacts of
monocolonization. Following three gavages every other day,
mice were exposed to intranasal IL-33 for 3 consecutive days
and lungs analyzed 24 h after last challenge as diagramed
(Figure 5A). To confirm effectiveness of gavage, we measured
butyrate levels in whole lung homogenate (Figure 5B). Mice
given butyrate producing Clostridia had increased levels of
butyrate and propionate in lung, measured by LC-MS. Whereas,
treatment with either Clostridia species increased acetate levels
over germ-free controls.

Next, we looked at ILC2 number and function by flow
cytometry in the lung. Interestingly butyrate producing
Clostridia reduced both the percentage and total number of ILC2
producing IL-5 and IL-13 on per cell basis after PMA stimulation,
when compared to C. ramosum control inoculated animals or
GF controls where around 50% of ILC2 responded to produce
IL-5 and IL-13 in assay (Figure 5C). To measure any shift in
function we further look at IFN-γ and IL-17 production by ILC2.
Consistent with previous data, ILC2 from lungs with increased
butyrate had increased percentage and total number of IL-17a
and IFN-γ producing cells after PMA Ionomycin stimulation
(Figure 5D). Next, we analyzed the type of inflammatory cells
infiltrating the lungs. Consistent with decreased IL-5, analysis
of BAL fluid showed Clostridia producing butyrate reduced
the number of eosinophils recruited to the lungs compared
to control GF and C. ramosum gavaged mice (Figure 5E).
In addition to decreased eosinophilia, C. butyricum gavage
increased neutrophil numbers in the lungs compared to GF or
control gavage (Figure 5F). Finally, C. butyricum gavage reduced
physical airway resistance, upon measuring AHR with increasing
methacholine challenge, compared to untreated GF mice or
C. ramosum gavage controls (Figure 5G). Together these data
suggest specific microbes that can produce butyrate in the gut
influence ILC2 dependent lung inflammation and AHR in vivo.

DISCUSSION

Low fiber, high fat intake along with decreased microbial
exposure are associated with increased development of
autoimmune diseases and allergies such as asthma (42).
Here we show that SCFAs derived from fermentation of dietary
fibers by the gut microbiota, such as butyrate, can strikingly
protect from ILC2-dependent Airway Hyperreactivity. SCFAs,
as naturally occurring immune modulatory agents, are thought
to have a wide variety of health benefits (43). Specifically, SCFAs
in mice prevent obesity (44), reduce colitis by inducing colonic
regulatory T cells (45), decrease pathology in models of asthma
(13), and pathological bone loss (46). Most recently, in both mice

Frontiers in Immunology | www.frontiersin.org 9 September 2019 | Volume 10 | Article 2051

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Lewis et al. Microbial SCFA Suppress ILC2-Dependent AHR

FIGURE 5 | Clostridia butyricum provides systemic butyrate to dampen ILC2 dependent AHR. Germ-free RAG−/− mice gavaged with 1 × 106 pfu Clostridia

butyricum and Clostridia Sporogenes (butyrate producer, BUT+) or two strains of Clostridia ramosum (non-butyrate producer, BUT–) every other day over 5 days,

followed by once daily 0.5 ug rmIL-33 challenge intranasal for 3 days. Twenty four hours after last challenge, Lung function and composition was analyzed.

(A) Schematic. (B) SCFA levels in Lung homogenate measured by LC-MS. (C) Representative flow plots, percentage and number of IL-5 and IL-13 producing ILC2 in

BAL after PMA ionomycin/BFA. (D) Representative flow plots, percentage and number of IL-17a producing ILC2 as in (C). (E) Total Eosinophils in BAL. (F) Total

Neutrophil count in BAL. (G) Lung resistance (AHR) upon methacholine challenge. Data representative of two independent experiment, n = 8 mice/group+-SEM.

*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.

and humans increasing Fiber consumption correlated decreased
risk of Type II diabetes (47). Our results give mechanistic insight
into the protective nature of dietary fiber-induced SCFAs on the
development of asthma and allergic disease.

The colon and lungs of mice fed high Pectin diet were
significantly enriched in acetate, propionate, and butyrate
alongside large alterations in gut microbiota. The loss of diversity
found here was also reported under Fiber diets in humans
(47), where previously low microbial diversity is associated with
dysbiosis. We found in vivo reconstitution of germ-free mice
with specific butyrate-producing clostridia increased systemic
butyrate exposure and reduced ILC2-dependent AHR in adult
animals. This suggests short-term butyrate treatment might
alleviate asthma symptoms. In confirmation, a recent publication
claimed that administration of Sodium Butyrate in the drinking
water may restrict pro-inflammatory cells via apoptosis in the
context of airway inflammation, in a GPCR independent manner,
similar to the HDAC inhibitor Tricostatin A (48, 49). However,

butyrate is odorous and has low oral palatability and caused
nasal inflammation in our hands in local delivery (not shown).
Further, such histone deacetylase activity is genotoxic and may
not be a physiological approach for long term treatment or
prevention. We show that the production of butyrate by specific
microbiota is a physiologic, non-invasive approach to treat
allergic disease in-vivo.

Originally, isolated Clostridia species in mono-colonized mice
and butyrate in vitro enhanced Treg differentiation through
HDAC inhibitor function on FOXP3 locus. This protects
against allergic airway disease and colitis in mice (20, 50).
Acetate can similarly regulate HDAC activity in Tregs in-
vivo, including in utero exposure through maternal diet (51).
Increasing endogenous SCFA production by a high-fiber diet
significantly also suppresses T cell immune responses in the
lungs via propionate induced PDL1 on Bone Marrow derived
Dendritic Cells in response to House Dust Mite (HDM) or Alum
(13, 52). Interestingly our asthma modulation by butyrate occurs
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in RAG−/− in absence of T cells, particularly Tregs. Clostridia
also protect outgrowth of the fungal pathogen Candida albicans
and subsequent macrophage derived prostaglandin PGD2 that
can activate ILC2 (53). Whereas the presence of other bacteria,
including Lactobacillus johnsonii and non-pathogenic strains of
Esherischia coli are associated with increased type I immune
responses (IFN-γ) and reduced Th2 response in lungs (54–56).
Indeed, we found outgrowth of gram-negative Salmonella in
Pectin treated mice and we detected increased IFN-γ in BAL
of Pectin-fed mice and this might contribute to reduced ILC2
response (57).

Interestingly, these reports did not find increased neutrophils
in BAL or lung alongside decreased eosinophilia and AHR. We
found that high fiber diets led to a decrease of type-2 cytokine
secretion by pulmonary ILC2s, and an increase in neutrophil
recruitment in the lungs. Interestingly, a recent publication by
Huang et al. reported inflammatory iILC2, induced by IL-25 or
N. brasiliensis infection as KLRG+ ILC2, trafficked from lamina
propria to the lungs during inflammation, rather than being local
tissue derived nILC2 (58) where iILC2 were previously shown to
have potential to make IL-17a (59). These data might support a
direct link of microbiome metabolites exposure of ILC2 in the
lamina propria, colon, or blood that then traffic to the lungs.

Shifts in immune response toward IL-17a driven neutrophilia
have also been reported in chitin stimulated animals deficient
in ILC2 derived cytokines IL-5 and IL-13 where ydT cells
make IL-17a (60) and in Alternaria challenged IL-4r-deficient
animals which lack GATA3 expression. We also found that
purified ILC2s are capable of producing both IL-13 and IL-
17a in vitro. Dual producing mouse ILC2 have been described
after in vitro culture with notch ligands DLL1 as well as
in human and non-human primate BAL samples (61, 62).
Similarly, although obesity driven asthma shows an IL-17a
signature alongside steroid resistance, neutrophils have been
shown to be regulatory in asthma and hence butyrate-treated
ILC2s might be anti-inflammatory overall by balancing the
immune response away from pathogenic Th2 response (63).
It remains open how the lung environment can contribute to
ILC plasticity.

IL-33 is a potent activator of ILC2s, utilizing NFκB
and MAPK signaling. We found reduced Rela and NFκB
transcripts and increased tnfaip3 (A20) levels after butyrate
treatment in vitro, consistent with reduced NFκB signaling.
Transient modulation of GATA3 was also sufficient to reduce
cytokine production by ILC2. Recently inducible deletion of
GATA3, using ER-cre in adult mice, decreased ILC2 responses
indicating a continuous requirement for GATA3 in a dose
dependent manner (37, 39, 64). Inducible GATA3 deletion also
showed GATA3 necessary for maintenance of IL-7r and c-
myc expression in ILC2, which can drive metabolic growth
pathways using glycolysis and oxidative phosphorylation. Indeed,
IL-7r is important on memory CD4T cells to maintain
survival in part through metabolic programming (65). We
found GATA3 was important for ILC2 to have both spare
respiratory capacity and utilize glycolysis effectively. This
might underscore the importance of GATA3 in all lymphocyte

development and allow ILC2 to survive and respond effectively
in periphery.

Butyrate undergoes beta-oxidation to increase acetate donor
pool used for acetylation of both histone and non-histone
proteins and where acetyl-CoA is not needed for TCA cycle,
functions as HDAC inhibitor (66). Butyrate is also reported
to be class III HDAC inhibitor of Sirtuins, where acetylation
of PDHA1 suppresses complex I activity in mitochondria (67).
Accumulation of acetylated H3 occurs in CNS1 region of
FOXP3 locus, however the authors report no differences in
acetylation status of gata3, tbx21, or rorc loci with butyrate
in functionally similar CD4T cells. We did not detect FOXP3
expression or changes in TBET or RORyT expression in ILC2.
We found specific effects of butyrate on ILC2, and not acetate,
arguing against HDAC activity and increased acetate levels
as mechanism of action. Butyrate can also signal through a
family of G-protein coupled receptors (GPCRs), GPR41, 43,
and 109a in competition with acetate and propionate with
different affinities, typically at millimolar concentrations. We
also found acetate and propionate did not functionally influence
ILC2 and SCFA did not induce Calcium flux inside cells,
results that argue against receptor mediated GPCR activity.
The direct link between Gata3 and metabolic function in ILC2
remains unknown.

Interestingly, ILC2s respond to many dietary metabolites
and are important regulators of thermogenic brown adipose
tissue in mice (68, 69). ILC2s rely on fatty acid oxidation
(FAO) of long chain fatty acids for IL-13 production during
N. brasilienisis infection (40). Similarly, a switch to glycolysis
in VHL deficient mice, via HIF stabilization, can also suppress
ILC2 function (70). Interestingly HIF stabilization or enhancing
glycolysis can drive IL-17a production in CD4T cells. We did
not see increased glycolytic function after butyrate treatment
and perhaps iILC2 prefer to increase arginase activity to
provide polyamines for proliferation rather than glucose
(71). Vitamin A is also important metabolite negatively
regulating IL-13 function in ILC2, similarly through IL-
7r response and decreasing spare respiratory capacity such
that under starvation conditions of RA deficiency, IL-13 is
increased to maintain barrier function (72). These results
suggest butyrate, alongside Vitamin A and hypoxia as tissue
specific signals that promote differentiation of ILC3 function
in gut and conversely, accumulation of ILC2s in the lung
environment. ILC2s, lacking other antigen specific receptors,
might function primarily as metabolic sensors to skew immune
responses (15, 73, 74).

The World Health Organization projects allergic disease
associated with industrialization and western lifestyle to double
over the next decade (75). Current therapeutic options
for Th2-mediated diseases are limited to bronchodilators
and immunosuppressive drugs that usually must be given
indefinitely. Here we show dietary-derived butyrate inhibits
ILC2s and subsequently reduces AHR, lung inflammation,
and eosinophilia in a murine model of allergic asthma. Our
data suggest that anti-inflammatory contributions of butyrate
production and other microbial metabolites derived from our
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diet can be used not only to treat, but also to prevent
lung inflammation and asthma.
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