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ABSTRACT OF THE DISSERTATION

Revisiting Aggregation Techniques for Data Intensive Applications

by

Jian Wen

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2013

Dr. Vassilis J. Tsotras , Chairperson

Aggregation has been an important operation since the early days of relational

databases. Today’s Big Data applications bring further challenges when processing

aggregation queries, demanding robust aggregation algorithms that can process large

volumes of data efficiently in a distributed, share-nothing architecture. Moreover, ag-

gregation on each node runs under a potentially limited memory budget (especially in

multiuser settings). Despite its importance, the design and evaluation of aggregation

algorithms has not received the same attention that other basic operators, such as joins,

have received in the literature.

This dissertation revisits the engineering of efficient aggregation algorithms for

use in Big Data platforms, considering both local and global aggregations. We firstly

discuss the salient implementation details and precise cost models of several candidate

local aggregation algorithms and present an in-depth experimental performance study

to guide future Big Data engine developers. We show that the efficient implementation

of the local aggregation operator for a Big Data platform is non-trivial and that many

factors, including memory usage, spilling strategy, and I/O and CPU cost, should be

considered. Then we show extended cost models that can precisely depict the cost of

vii



global aggregation plans, considering not only the local cost factors but also the network

cost. We discuss a generic framework to describe a tree-structured global aggregation

plan, and propose a cost-model based algorithm for efficiently finding the non-dominated

global aggregation plans for different output properties, given the input data statistics

and the global computation resources.

Furthermore, spatial and temporal information introduces more semantics to

traditional aggregations, requiring specific efficient algorithms that could utilize the

additional spatial and temporal information during the query processing. In the last

part of the thesis we show a novel aggregation application for monitoring the top-k unsafe

moving objects in a continuous data stream where the spatial and temporal information

change. We show that such a query can be generalized as an extended aggregation

operation where the grouping condition is unknown without looking at all valid data in

the given query time window. We then propose I/O-efficient algorithms to answer such

queries utilizing spatial and temporal index structures.
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1

Introduction

“Objects are grouped by their categories.”

– Xi Ci I

1.1 Aggregation

Aggregation has always been a very important operation in database process-

ing. For example, all 22 queries in the TPC-H Benchmark [3] contain aggregation. It

is also a key operation for data preprocessing and query processing in data intensive

applications, such as machine learning on large volume data [12], and web-related data

processing like web-log and page ranking [44], etc.

Aggregation operations in such data processing tasks usually can be divided

into to categories, both of which have been well-defined in the academic literature [17]

and also the industry standard like SQL. The first category is called scalar aggrega-

tion, where a single aggregation value is returned by aggregating the input data. The

other category is called aggregate functions, which firstly groups the input data based

on the given grouping keys, and then applies the aggregation functions for all the records
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of each group. Due to the nature of applying group-wise aggregations, this category is

also known as group-by operation.

To illustrate these two categories in SQL, here we consider the “big data”

dataset UserVisits from [44]; it contains a visit history of web pages with the attributes

shown in Table 2.1.

Attribute Name Description

sourceIP the IP address (the source of the visit)
destURL the URL visited
adRevenue the revenue generated by the visit
userAgent the web client the user used
countryCode the country the visit is from
languageCode the language for the visit
searchWord the search keyword
duration the duration of the visit

Table 1.1: Attributes in UserVisits dataset.

One example for the scalar aggregation is to get the total advertisement revenue

and also the total number of unique source IP addresses from this dataset. The SQL

query can be written as:

SELECT sourceIP, SUM(adRevenue), COUNT(DISTINCT sourceIP)

FROM UserVisits

For this query both aggregation operations (SUM and COUNT) are applied directly

to the whole column of interest. Note that we can also use the keyword DISTINCT to

eliminate the duplicates before applying the aggregation operation.

An example of an aggregation function query appears in the following SQL

query, which for each sourceIP address (representing a unique user), computes the

total advertisement revenue and the total number of visits:
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SELECT sourceIP, SUM(adRevenue), COUNT(*)

FROM UserVisits

GROUP BY sourceIP

The main difference here is that this query contains a GROUP BY clause to indi-

cate the grouping column. Multiple columns can be used in the GROUP BY clause. Note

that as far as the grouping columns are the same, different aggregation functions can

be processed together in a single aggregation procedure. Multiple aggregation functions

over the same group-by columns can be considered as a single “super” aggregation func-

tion containing all these aggregation functions as internal states. Scalar aggregations

can be considered as the special case of the aggregation functions where the whole input

dataset is in a single group. In this study we focus on the aggregation functions, so

without explicitly specification, we will use “aggregations” and “aggregation functions”

interchangeably through this writeup.

1.2 Motivation and Challenges

For aggregation in big data applications, the input data is always spread

over a distributed environment, like Hadoop and many popular distributed relational

databases. Aggregation is typically processed in a map-combine-reduce fashion. Such a

strategy first obtains the local aggregation results (“map” and “combine” phase), which

are then merged to get the global aggregation results (“reduce” phase). The physical

implementation of such a map-combine-reduce procedure for aggregations could be var-

ied a lot due to the different hardware environments. Different hardware environments

have different cost factors for the primitive operations the aggregation will use, like com-

parison, hashing, data loading and storing etc. Different aggregation algorithms always
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have significant different usage patterns on these primitive operations.

Given a certain hardware environment, an interesting (and also not trivial)

question is: how to find a cost-efficient implementation of an aggregation task for a

specific hardware environment. The “cost” could be evaluated through different mea-

surements during the experiments, like the total elapse time or the total computation

resource consumption during the whole aggregation operation.

To pick an efficient global aggregation plan, both local and global aggregation

strategies should be considered. The local strategy is about the aggregation algorithm

to be used to process a single partition of the input data, and the global strategy is

about transferring and redistributing the results of local aggregations to get the final

aggregation result.

In this thesis, I discuss a cost model based study for both local and global ag-

gregation plans. Chapter 2 will focus on the local aggregation, including the algorithms

and implementation details for several well-known local aggregation algorithms. The

most important contribution for this local aggregation work is that we propose a very

precise cost model to all the algorithms listed in that chapter. We also did extensive

experiments to verify the correctness of our model. Since our model is built over some

basic components for sorting and hashing, the model can be extended for other similar

algorithms utilizing the sort and hash strategies.

Then in Chapter 3, I show the extended work on the global aggregation plans

in a shared-nothing environment. In this chapter we describe the general physical aggre-

gation structure in such a environment, called aggregation tree. Then we will show the

different components affecting the overall performance of the global aggregation plans,

including the network structure, local aggregation algorithms and data redistribution

connectors. For the local aggregation algorithms, we also extended our local aggrega-
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tion study to address the partial aggregation algorithms that can be used in a global

plan. To answer the question on efficient global aggregation plans, we extended our local

cost model to predicate the global aggregation cost factors in a hardware-independent

way. We then proposed a plan searching algorithm to find the non-dominated global

aggregation plans without scanning the whole plan space.

Finally in Chapter 4, we discuss a novel aggregation application for spatial

and temporal data. This new aggregation application is different from the traditional

aggregation work covered in Chapter 2 and 3 in the sense that spatial and temporal

information should be considered when identifying the groups for aggregation. Fur-

thermore, we claim that this novel aggregation work should be processed to utilize the

characteristics of the spatial and temporal data. In this chapter we show this prob-

lem in a specific real scenario for public safety enforcement, and propose our efficient

algorithms utilizing index structures.
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2

Local Aggregation

In this chapter we discuss the implementations and also cost models for sev-

eral local aggregation algorithms. Although several of them have been well adopted

by different systems, in our effort to support the aggregation operation in our next

generation parallel data processing platform AsterixDB [6], we found that to correctly

implement them in order to guarantee the efficiency and skew tolerance, is not a triv-

ial work. Specifically we noticed two new challenges that big data applications impose

on local aggregation algorithms: first, if the input data is huge and the aggregation is

group-based (like the “group-by” in SQL, where each unique group will have a record

in the result set), the aggregation result may not fit in main memory; second, in order

to allow multiple operations being processed simultaneously, an aggregation operation

should work within a strict memory budget provided by the platform.

Furthermore, for these well-known algorithms, like pre-sorting the input data

[17], or using hashing [50], have not been fully studied with respect to their performance

for very large datasets or datasets with different distribution properties. While some

join processing techniques [23] can be adapted for aggregation queries, they are tuned
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for better join performance. All these existing algorithms lack for details on how to

implement them using strictly bounded memory, and there is no study about which ag-

gregation algorithm works better for which circumstances. To answer these questions we

present in this chapter a thorough study of single machine aggregation algorithms under

the bounded memory and big data assumptions. Our contributions can be summarized

as:

1. We present detailed implementation strategies for six aggregation algorithms: two

are novel and four are based on extending existing algorithms. All algorithms work

within a strictly bounded memory budget, and they can easily adapt between in-

memory and external processing.

2. We devise precise theoretical cost models for the algorithms’ CPU and I/O behav-

iors. Based on input parameters, such models can be used by a query optimizer

to choose the right aggregation strategy.

3. We deploy all algorithms as operators on the Hyracks platform [8], a flexible, ex-

tensible, partitioned-parallel platform for data-intensive computing, and evaluate

their performance through extensive experimentation.

The rest of this chapter is organized as follows: Section 2.1 presents related

research, while Section 2.2 discusses the processing environment for our aggregation al-

gorithms. Section 2.3 describes in detail all algorithms and Section 2.4 presents their

theoretical performance analysis. The experimental evaluation results appear in Sec-

tion 2.5. Finally Section 2.6 summarizes this chapter. In the Appendix we list the

theoretical details of the basic component models used in our cost model analysis in

Section 2.4.
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2.1 Related Work

In our search for efficient local aggregation algorithms for AsterixDB, we no-

ticed that aggregation has not drawn much attention in the study of efficient algorithms

using tightly bounded memory. The well-known sort-based and hash-based aggregation

algorithms discussed in [17], [7], [45] and [52] provide straight-forward approaches to

handle both in-memory and external aggregations, but these algorithms use sorting and

hashing in a straight-forward way and there is space to further optimize the CPU and

I/O cost.

[21] discussed three approaches for aggregations that may not fit into mem-

ory, namely nested-loop, sort-based and hash-based. It suggests that the hash-based

approach using hybrid-hash would be the choice when the input data can be greatly

collapsed through aggregation. Our study of the hybrid-hash algorithm reveals that

its hashing and partitioning strategy can be implemented in different ways, leading

to different performance behaviors. These have not been discussed in the original pa-

per, and precise cost models are also missing for the proper selection of aggregation

algorithms under different configurations. [23] presented optimizations for hybrid-hash-

based algorithms, including dynamic destaging, partition tuning and many best-practice

experiences from the experience of SQL Server implementation. However, this chapter

focuses more on optimization related to joins rather than aggregations. [50] tried to

address the problem of efficient parallel aggregation algorithms albeit for SQL, as we

are doing for the AsterixDB project. For the local aggregation algorithm, they picked

a variant of the hybrid-hash aggregation algorithm that shares its hashing space among

all partitions. But no optimization has been done with other aggregation algorithms.

More recently, [13] examined thread-level parallelism and proposed an adaptive
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aggregation algorithm optimized for cache locality by sampling and sharing the hash

table in cache. However, in order to reveal the performance benefits from using the

CPU cache, only in-memory aggregation algorithms were addressed. We think that for

an external aggregation algorithm, it is important to address the I/O efficiency first,

and then to optimize the CPU behavior for each in-memory run of the aggregation. [58]

studied several in-memory aggregation algorithms for efficient thread-level parallelism

and reducing cache contention. Similar to our proposed Pre-Partitioning algorithm, the

PLAT algorithm in their paper partitions the input data based on their input order and

fills up the per-thread hash table first. However, PLAT processes records in memory

even after the hash table is full, based on the assumption that the input data can be

fit into memory. In our algorithm we explore the case where the memory is not enough

for in-memory aggregation, so disk spilling happens after the hash table is full. In our

experiments we also observe significant hash miss cost in our Pre-Partitioning algorithm,

and we use an optimized hash table design to solve this problem.

2.2 Processing Environment

We now proceed to describe the main characteristics of the aggregation oper-

ation that we consider as well as the assumptions about the data and resources used.

2.2.1 Aggregate Functions

Our focus is on aggregate functions [17] such as aggregation combined with

the “GROUP-BY” clause in SQL. As an example, consider the “big data” dataset

UserVisits from [44]; it contains a visit history of web pages with the attributes shown

in Table 2.1.
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Attribute Name Description

sourceIP the IP address (the source of the visit)
destURL the URL visited
adRevenue the revenue generated by the visit
userAgent the web client the user used
countryCode the country the visit is from
languageCode the language for the visit
searchWord the search keyword
duration the duration of the visit

Table 2.1: Attributes in UserVisits dataset.

An example GROUP BY aggregation appears in the following SQL query, which for each

sourceIP address (representing a unique user), computes the total advertisement rev-

enue and the total number of visits:

SELECT sourceIP, SUM(adRevenue), COUNT(*)

FROM UserVisits

GROUP BY sourceIP

The by-list (the GROUP BY clause in the example) specifies the grouping key,

while the aggregate function(s) (SUM and COUNT in the example) specify the way

to compute the grouping state. The grouping state in the above example has two

aggregated values (sum and count). The result of the aggregation (the group record

or group for short) contains both the grouping key and the grouping state.

Many commonly-used aggregate functions, like the SUM and COUNT in the exam-

ple, can be processed in an accumulating way, i.e., for each group, only a single grouping

state (with one or more aggregate values) needs to be maintained in memory, no matter

how many records belong to this group. Similar bounded-state aggregate functions

include AVERAGE, MIN, and MAX. Many other aggregate functions, like finding the longest

string of a given field per group (i.e., “find the longest searchWord for each sourceIP in

the UserVisits dataset”), can be considered as bounded-state functions if the memory
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usage of the grouping state is bounded (for example the searchWord could be at most

255 characters long, which is a common constraint in relational databases). A query

with multiple aggregate functions on the same group-by condition is also bounded on

the state, as far as each of them is a bounded-state function. So all our discussion in

this chapter also applies to this case.

However, there are aggregate functions that are not in the bounded-state cat-

egory. An example is LISTIFY (supported in AsterixDB) which for each group returns

all records belonging to that group in the form of a (nested) list. Since the size of

the grouping state depends on the number of group members, its memory usage could

be unbounded. In this chapter we concentrate primarily on bounded-state aggregate

functions, as those are the most common in practice. Note that the simpler, scalar

aggregation can be considered as an aggregate function with a single group (and thus

all algorithms we will discuss can be applied to scalar aggregation directly).

2.2.2 Data and Resource Characteristics

We assume that the size of the dataset can be far larger than the available

memory capacity, so full in-memory aggregation could be infeasible. Whether our algo-

rithms use in-memory or external processing depends on the total size of the grouping

state, which is decided by the number of unique groups in the dataset (grouping key

cardinality), and also the size of the grouping state. An efficient aggregation algorithm

should be able to apply in-memory processing if all unique groups can fit into memory,

and shift dynamically to external processing otherwise.

This thesis assumes a commonly-used frame-based memory management strat-

egy, which has been implemented in the Hyracks [8] data processing engine where all

our algorithms are implemented. The Hyracks engine manages the overall system mem-
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ory by assigning a tightly bounded memory budget to each query, in order to support

parallel query processing. We will use M to denote the memory budget (in frames or

memory pages) for a particular aggregation query, R to denote the size of the input data

in frames, and G the size of the result set in frames.

For aggregation algorithms that utilize a hash table, current Hyracks operators

use a traditional separate chaining hash table with linked lists [35]. The memory assigned

to a hash table is used by a slot table and a list storage area. The slot table contains

a fixed number of slots H (i.e., it is static hashing; H is also referred to as the slot table

size). Each non-empty slot stores a pointer to a linked list of group records (whose keys

were hashed to that slot). The list storage area stores the actual group records in these

linked list(s). Group records from different slots can be stored in the same frame. A new

group is hashed into a slot by being inserted to the head of the linked list of that slot (or

creating a new linked list if the slot was empty). An already-seen group is aggregated

by updating its group record in the linked list.

Figure 2.1: An In-memory Hash Table.

An in-memory hash table is full when no new group record can fit in the list

storage area based on its given memory budget. Figure 2.1 shows such an in-memory

hash table with a budget of M frames (for both the slot table and the list storage area),

where h frames are occupied by the slot table.
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Figure 2.2: Sort-based Algorithm

2.3 Aggregation Algorithms

This section takes an in-depth look at six candidate aggregation algorithms:

the Sort-based, the Hash-Sort, and four hybrid-hash-based algorithms (Original Hybrid-

Hash, Shared Hashing, Dynamic Destaging, and Pre-Partitioning). The Hash-Sort and

Pre-Partitioning algorithms are novel, while the others are based on adapting approaches

discussed in the previous literature. Table 2.2 gives an overview of these algorithms.

2.3.1 Sort-based Algorithm

The classic Sort-based aggregation algorithm includes two phases, sort and

aggregate. Figure 2.2 depicts the algorithm’s workflow. The sort phase sorts the data

on the grouping key (using a sort-merge approach), while the aggregate phase scans the

sorted data once to produce the aggregation result. In detail:

• Phase 1 (External Sort): (i) Sort: Data is fetched into memory in frames. When

the memory is full, all in-memory records are sorted using the Quicksort algorithm

[47], and flushed into a run file. If the total projected input data size is less than

the memory size, the sorted records are maintained in memory and no run is

generated. Otherwise, runs are created until all input records have been processed.

(ii) Merge: Sorted runs are scanned in memory, with each run having one frame

as its loading buffer. Records are merged using a loser-tree [35]. If the number of
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Algorithm Using Sort? Using Hash?

Sort-based [17],[7],[45], [52] Yes No

Hash-Sort (New) Yes Yes

Original Hybrid-Hash [49] No Yes

Shared Hashing [50] No Yes

Dynamic Destaging [23] No Yes

Pre-Partitioning (New) No Yes

Table 2.2: Overview of all six algorithms.

runs is larger than the number of available frames in memory, multiple levels of

merging are needed (and new runs may be generated during the merging).

• Phase 2 (Group): Each output record of the last round of merging in Phase 1 (i.e.,

when the number of runs is less than or equal to the available frames in memory)

will be aggregated on-the-fly, by keeping just one group as the current running

group in memory and comparing the merge output record with the running group:

if they have the same grouping key, they are aggregated; otherwise, the running

group is flushed into the final output and replaced with the next merge output

record. This continues until all records outputted from Phase 1 are processed.

(a) Sort in Phase 1 (b) Group in Phase 2

Figure 2.3: Memory structure in the Sort-based algorithm.

The algorithm uses only the available memory budget M , since (i) the in-place

Quicksort algorithm [47] sorts M−1 frames with one frame as the output buffer, and (ii)
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for merging, at most M − 1 runs will be merged in a single merge round, and multiple-

level merging will ensure this if the number of runs is larger than M − 1. The group

phase is pipelined with the last round of merging and it needs to maintain only one

running group in memory (since the input records of this phase are provided in sorted

order on the grouping key).

2.3.2 Hash-Sort Algorithm

The main disadvantage of the Sort-based algorithm is that it first scans and

sorts the whole dataset. For a dataset that can be collapsed during aggregation, applying

aggregation at an early stage would potentially save both I/O and CPU cost. The Hash-

Sort algorithm that we developed for AsterixDB takes advantage of this observation by

performing some aggregation before sorting. Figure 2.4 illustrates the workflow of this

algorithm. Specifically, the Hash-Sort algorithm contains two phases, as described below:

Figure 2.4: Hash-Sort Algorithm

• Phase 1 (Sorted Run Generation): An in-memory hash table is initialized using

M−1 frames while the remaining frame is used as an output buffer. Input records

are hashed into the hash table for aggregation. A new grouping key creates a new

entry in the hash table, while a grouping key that finds a match is aggregated.

When the hash table becomes full, the groups within each slot of the table are

sorted (per slot) on the grouping key using in-place Quicksort, and the sorted

slots are flushed into a run file in order of slot id (i.e., records in each run are
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stored in (slot-id, grouping key) order). The hash table is then emptied for

more insertions. This continues until all input records have been processed. If all

groups manage to fit into the hash table, the table is then directly flushed to the

final output (i.e., Phase 2 is not applicable).

• Phase 2 (Merge and Group): Each generated run is loaded using one frame as its

loading buffer, and an in-memory loser-tree priority queue is built on the combi-

nation of (slot-id, grouping key) for merging and aggregation. The first group

record popped is stored in main memory as the running group. If the next group

popped has the same grouping key, it is aggregated. Otherwise, the running group

is written to the output and is replaced by the new group (just popped). This

process continues until all runs have been consumed. Similar to the Sort-based

algorithm, at most M − 1 runs can be merged in each round; if more runs exist,

multiple-level merging is employed.

(a) Phase 1 (b) Phase 2

Figure 2.5: Memory structure in the Hash-Sort algorithm.

This algorithm also uses a bounded memory budget. Figure 2.5 shows the

memory configuration in its two phases. In the first phase the in-memory hash table

uses exactly M−1 frames of the memory, and the table is flushed and emptied when it is

full. Sorting (although slot-based) and merging are similar to the Sort-based algorithm

in terms of memory consumption.
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2.3.3 Hybrid-Hash Variants

Hybrid-hash algorithms assume that the input data can eventually be parti-

tioned so that one partition (the resident partition) can be completely aggregated

in-memory, while each of the other partitions (spilling partitions) is flushed into a

run and loaded back later for in-memory processing. I/O is thus saved by avoiding

writing and re-reading the resident partition. Specifically, there are (P + 1) partitions

created, with the resident partition (typically partition 0) being aggregated in-memory

using M − P frames, and the other P partitions being spilled using P frames as their

output buffers. The required number of spilling partitions P can be calculated for a

given memory budget M assuming that (i) the full memory can contain an in-memory

hash table for the resident partition plus one frame for each spilling partition, and (ii)

the size of each spilling partition is bounded by the memory size (and can thus be pro-

cessed in-memory in the next step). The following formula gives a formal description of

this partition strategy:

M − P = G ∗ F − (M − 1) ∗ P

⇒ P =
G ∗ F −M
M − 2

(2.1)

where F is a fudge factor used to reflect the overhead from both the hash table

and other structures (more about the fudge factor will be discussed in Section 2.5.7).

This formula indicates that the total input data is processed as one resident partition

(occupying M − P frames for in-memory aggregation), and P spilled partitions (each

will fit into memory using M − 1 frames). The above formula appeared in [49] for joins;

we adapt it here for aggregation, so it uses the result set size G instead of the input size
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R, because records from the same group will be aggregated and collapsed.

All hybrid-hash algorithms in this chapter process data recursively using two

main phases as illustrated in Figure 2.6. In detail,

Figure 2.6: General Hybrid-hash algorithm structure.

• Phase 1 (Hash-Partition): If the input data is too large to be hybrid-hash processed

in one pass (G ≥M2), all memory is used to partition the input data into smaller

partitions (grace partitioning in Grace Join [34]), and for each partition one

run file is generated. Otherwise (G < M2), partition 0 is immediately aggregated

using an in-memory hash table. At the end of this phase, partition 0 will be either

flushed into a run file (if its aggregation is not completed due to the incorrect

estimation on partitioning) or directly flushed to the final output (otherwise).

• Phase 2 (Recursive Hybrid-Hash): Each run file generated above is recursively

processed by applying the hash-partition algorithm of Phase 1. The algorithm

terminates if there are no runs to be processed. To deal at runtime with grouping

key value skew, if a single given run file’s output is more than 80% of the input file

that it was partitioned from, or the number of grace partitioning levels exceeds the

number of the levels that would have been needed for the Sort-based algorithm, this

particular run file will be processed next using the Hash-Sort algorithm (instead

of recursive hybrid-hash) as a fallback to avoid deep recursion.

Clearly, hybrid-hash algorithms need G as an input parameter in order to man-
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age memory space optimally. While the aim is to fully aggregate the resident partition

in memory (when G < M2), this is not guaranteed under strictly bounded memory

by the existing hybrid-hash approaches we have seen, including the Original Hybrid-

Hash [49], the Shared Hashing [50] and the Dynamic Destaging [22] algorithms. Thus

in AsterixDB we propose a new approach using Pre-Partitioning that guarantees the

completion of resident partition in memory. The details of these variants are described

in the following subsections.

2.3.3.1 Original Hybrid-Hash

In this algorithm, adapted from [49], if an input record is hashed to partition 0,

then it is inserted into the in-memory hash table for aggregation, otherwise it is moved to

an output buffer for spilling. Figure 2.7 depicts the memory structure of this algorithm.

Ideally partition 0 should be completely aggregated in-memory and directly flushed to

the final output; however if the hash table becomes full, groups in the list storage area

are simply flushed into a run (i.e., partition 0 also becomes a spilling partition).

Figure 2.7: Memory Structure in the Original Hybrid-hash Algorithm.

Note that the proper choice of the number of spilled partitions P depends on

the result size G which is unknown and can only be estimated. An incorrect estimation

of G may result in partition 0 being too large to fit into memory and finally being

spilled. While this may cause more I/O, the memory usage of this algorithm is still
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tightly bounded, since at most M frames are used during the whole procedure.

2.3.3.2 Shared Hashing

The hybrid-hash algorithm proposed in [50] creates the same partitions as the

Original Hybrid-Hash does, but the in-memory hash table is shared by all partitions.

This sharing allows for aggregating data from both partition 0 and the other P parti-

tions. Effectively, the Shared Hashing algorithm initially treats all partitions as ‘resident’

partitions. In order to use as much of memory for aggregation for all partitions, and

also to reserve enough output buffers for spilling partitions, the list storage area of the

hash table is divided into two parts: the non-shared part contains P frames for the P

spilling partitions, while the remaining frames (shared part) are assigned to partition

0 but initially shared by all partitions. Using this layout, the P frames for spilling par-

titions can also be used for hashing and grouping before the memory is full, and then

for spilling output buffers after that. Figure 2.8 illustrates the memory structure of this

stage. P1 and P2 are the frames allocated to partition 1 and 2 respectively so they are

not shared. Other frames (marked as Px) are assigned to partition 0, but also shared

by partition 1 and 2 before any spilling. Spilling is triggered when a new group record

arrives to one partition and there is no space available for more data from that partition

(including the shared frames). The first two spillings are handled differently from future

ones, as described below:

Figure 2.8: Memory structure before the first spilling of the Shared Hashing algorithm.
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• First Spilling: When the first spilling is triggered (from any partition) by lack of

additional space, all P spilling partitions are flushed. Each frame in the (soon-to-

be) non-shared part is first flushed into a run for its corresponding partition using

partition 0’s output buffer. After flushing, the non-shared frames will become

the output buffers for the P spilling partitions. Then the shared part is scanned.

Group records from all spilling partitions are moved to the corresponding parti-

tion’s output buffer for spilling, while groups of partition 0 are rehashed into a

new list storage area built upon recycled frames (i.e., a frame in the shared part

is recycled when all its records have been completely scanned and moved) and

clustered together. Figure 2.9 depicts the memory structure when the scan is pro-

cessed. After the first spilling the new list storage area belongs only to partition

0, and there is one output buffer for each spilling partition; the memory structure

is now the same as the Original Hybrid-Hash showed in Figure 2.7.

Figure 2.9: Memory structure during the first spilling of the Shared Hashing algorithm.

• Second Spilling: When the new list storage area has no more space for new group

records from partition 0, partition 0 will be spilled. Its groups are flushed to a run

file, and the frames they occupied are recycled. From now on, a single frame is

reserved as the output buffer for partition 0 as well, and it is directly spilled like

the other partitions.
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The above algorithm uses bounded memory. Before the first spilling, the en-

tire M -frame memory allocation is used as an in-memory hash table. When scanning

the shared part in the first spilling, non-shared frames are reserved for the P spilling

partitions, and frames recycled from the shared part are used for the new list storage

area to cluster the partition 0 groups. After the second spilling the out-buffer frames

for spilling partitions are obviously always memory-bounded.

2.3.3.3 Dynamic Destaging

Unlike the previous two approaches, where the memory space for partition 0 is

pre-defined (based on Formula 2.1), the Dynamic Destaging algorithm [22] dynamically

allocates memory among all partitions, and spills the largest resident partition when the

memory is full. After all records have been processed, partitions that remain in memory

can be directly flushed to the final output (i.e., they are all resident partitions). This

algorithm has two stages:

• Stage 1 (Initialization): An in-memory hash table is built so that one frame is

reserved for the resident partition and each of the P spilled partitions in the

list storage area, and the remaining frames are managed in a buffer pool. All

partitions are initially considered to be resident partitions. Figure 2.10 (a) depicts

the memory structure after this stage.

• Stage 2 (Hash-and-Partition): Each input record is hashed and aggregated into

the frame of the corresponding partition. When a frame becomes full, a new

frame is allocated from the pool for this partition to continue its aggregation.

If no frame can be allocated, the largest (still) resident partition is spilled into

a run file. Frames that this partition occupied are recycled, and a single frame
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is now reserved as its output buffer. Additional records hashed to such a spilled

partition will be directly copied to its output buffer for spilling (i.e., no aggregation

happens for a spilled partition and no additional frames will be allocated for that

partition in the future). Figure 2.10 (b) illustrates the memory structure after

some partitions are spilled.

(a) Before spilling (all partitions are resident).

(b) After partition 2 and 3 are spilled.

Figure 2.10: Memory structure in the Dynamic Destaging algorithm.

Following [22], for computing the initial number of spilled partitions P , our

implementation allocates between 50-80% of the available memory (i.e., 50% if the com-

puted P value is less than 50% and 80% if the computed P is larger than 80%), in order

to balance the size of the in-memory and spilling partitions (i.e., so the partition size

is not too large or too small). Small runs created due to possible over-partitioning are

merged and processed together in a single in-memory hash aggregation round, if the

merged run can be fully processed in-memory (mentioned as partition tuning in [22]).

The Dynamic Destaging algorithm is memory bounded since memory is dy-

namically allocated among all partitions. When memory becomes full, a partition is

spilled to recycle space. In the worst case, when all partitions are spilled, the available
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memory can be dynamically allocated among all partitions and used simply as output

buffers.

2.3.3.4 Pre-Partitioning

All of the approaches described so far assume that the hash function and the

distribution of the hash values into partitions are properly chosen so that resident par-

tition(s) can be completely aggregated in memory. Unfortunately, there can be no such

guarantee, especially without precise knowledge about the input data. The naive ap-

proach of partitioning the hash value space based on Formula 2.1 will not work if the

hash values used by the input data are not uniformly distributed in the hash value space.

Moreover, these hybrid-hash aggregation algorithms are all derived from (and thus in-

fluenced by) hybrid-hash joins. One important property that distinguishes aggregation

from join is that, in aggregation, the size of a group result is fixed and is not affected

by duplicates. As a result, the memory requirement for a set of groups is fixed by the

cardinality of the set (while the group size in a join could be arbitrarily large).

Based on these observations, we developed and implemented in AsterixDB the

Pre-Partitioning algorithm. This algorithm divides the entire memory space similarly

to the Original Hybrid-Hash, where M − P frames are used for an in-memory hash

table for partition 0. But, instead of assigning the groups of partition 0 based on

hash partitioning, Pre-partitioning considers all groups that can be inserted into the

in-memory hash table (before the table becomes full) as belonging to partition 0.

After the hash table is full, grouping keys that cannot be aggregated in the

in-memory partition are spilled into the remaining P output frames. In order to decide

whether a record should be spilled or aggregated, each input record needs a hash table
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Figure 2.11: Comparisons of CPU cost among Pre-Partition with bloom filter, Pre-
Partition without bloom filter, and the Original Hybrid-Hash.

lookup to check whether it can be aggregated or not. This would cause a much higher

hash lookup miss ratio compared with other hybrid-hash algorithms. To improve the

efficiency of identifying the memory-resident vs. spilling groups, we add an extra byte

as a mini bloom filter for each hash table slot. The bloom filter is updated when a

new group is inserted into the slot (before the hash table becomes full). After the

hash table is full, for each input record a lookup on the bloom filter is first performed,

making a hash table lookup necessary only when the bloom filter lookup returns true.

If the bloom-filter lookup returns false, it is safe to avoid looking into the hash table

(since a bloom filter could only cause a false-positive error). For a properly sized hash

table (i.e. where the number of slots is no less than the number of groups that can

be contained in the table), the number of groups in each slot will be small (less than

two on average), and a 1-byte bloom-filter per slot works well to reduce hash table

lookups with a very low false-positive error rate. Figure 2.11 shows the CPU cost of

aggregating 1 billion records with around 6 million unique groups using Pre-Partitioning

with bloom filtering, Pre-Partitioning without bloom filtering, and the Original Hybrid-

Hash algorithms. From the figure we can see that by applying the bloom filter, the CPU

cost of the Pre-Partitioning algorithm is greatly reduced and becomes very close to the
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cost of the Original Hybrid-Hash algorithm.

In order to reduce the overhead of maintaining the bloom filters, in our imple-

mentation no bloom filter lookup is performed before the hash table is full. This means

that there is only the cost of updating the bloom filters when updating the hash table

through a negligible bit-wise operation. This is because before the hash table is full, all

records are inserted into the hash table anyway, and the benefit from bloom filters on

reducing the hash misses is very limited (since a hash miss because of an empty slot can

be easily detected without bloom filter lookup). Furthermore, if the dataset could be

aggregated in memory based on the input parameters, no bloom filter will be needed,

and the bloom filter overhead can be eliminated. Note that the output key cardinality

(G in Formula 2.1) could be underestimated, and the bloom filters could be falsely dis-

abled, causing more CPU cost on hash misses. Pre-Partitioning still outperforms other

hybrid-hash algorithms in this case because other hybrid-hash algorithms have more

extra I/O cost on spilling the in-memory partition. Section 2.5.6 shows our experiments

in this scenario. Figure 2.12 shows the two stages of the Pre-Partitioning algorithm:

(a) Partition-0-build: before the hash table is full.

(b) Hash-And-Partition: after the hash table is full.

Figure 2.12: Memory Structure in the Dynamic Destaging Algorithm.
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• Stage 1 (Partition-0-Build): Using Formula 2.1, P frames are reserved as the

output buffers (to be used in Stage 2 for the spilling partitions). The remaining

M − P frames are used as an in-memory hash table storing groups of partition 0.

Input records are inserted into this hash table for aggregation until the list storage

area is full. If P > 1, a 1-byte bloom filter is used for each hash table slot, and all

insertions to the hash table update the respective bloom filters. Figure 2.12 (a)

shows the memory structure of this stage.

• Stage 2 (Hash-And-Partition): After the hash table is full, for each input record

we check if that record has been seen before in partition 0 by first performing

a bloom filter lookup; if the bloom filter lookup is positive, a hash table lookup

follows, and it is aggregated if a match is found (no more memory is needed

for this aggregation). Otherwise, this record is stored into one of the P output

frames. When such a frame becomes full it is spilled. Figure 2.12 (b) illustrates

this procedure. When all records have been processed, the groups aggregated in

the in-memory hash table are directly flushed to the final output.

The Pre-Partitioning algorithm uses bounded memory since the in-memory

hash table never expands beyond the M − P pre-allocated frames. A benefit of this

algorithm is that it allocates as many records to partition 0 as possible (until the in-

memory hash table becomes full, at which time the pre-allocated M − P frames are

fully utilized) and this partition is guaranteed to be fully aggregated in-memory. Since

the previous hybrid-hash variants cannot provide this guarantee, they may not fully

utilize the pre-allocated memory for partition 0 (even if partition 0 could be finished

in-memory).

We have also explored the idea of applying the bloom filter optimization to
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Symbol Description

b Tuple size in bytes
o Hash table space overhead factor (for its slot

table and references of linked list)
p Frame size in bytes
A Collection of sorted run files generated
D(n,m) Dataset with n records and m unique keys
G Output dataset size in frames
Gt Number of tuples in output dataset
H Number of slots in hash table
K Hash table capacity in number of unique groups
M Memory capacity in frames
R Input dataset size in frames
Rt Number of tuples in input dataset
RH Number of raw records inserted into a hash

table before it becomes full

Table 2.3: Symbols Used in Models

other hash-based algorithms discussed in this chapter. However the overhead would be

more significant than the benefit for the other algorithms. This is because a bloom filter

is useful to avoid hash collisions (i.e. using a bloom-filter may avoid the hash lookup

leading to a hash miss). However, with properly sized hash tables and assuming good

hashing functions, most of the hash table insertions will not cause a hash collision, so

the bloom filter does not help much reduce the collisions but introduces more memory

overhead for the hash table.

2.4 Cost Models

We proceed by introducing applicable cost models for all six aggregation al-

gorithms discussed in previous section. For simplicity we assume that the grouping

keys are uniformly distributed over the input dataset. Moreover, for the hybrid-hash

algorithm models it is assumed that the input parameters (size of input file, number of
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unique keys etc.) are precise. The analysis focuses on the CPU comparison cost (for

sorting and hashing) and the I/O cost (read and write I/Os). For simplicity, we omit

the CPU and I/O costs for scanning the original input file and flushing the final result

since they are the same for all algorithms (any may be pipelined). We also omit the

pointer swapping cost in sorting and merging since it is bounded by the comparison cost

(for a random dataset, the swap count is around 1/3 of the total comparisons [47]).

In our analysis, we use the following basic component models that are common

for all algorithms, namely: the input, sort, merge and hash components. The details

of these component models can be found in the Appendix. Table 2.3 lists the symbols

used in the component and algorithmic models.

• Input Component: Let D(n,m) denote a dataset with total number of records n

and containing m unique grouping keys. The model’s input component computes

the following two quantities:

– Ikey(r, n,m), denotes the number of unique grouping keys contained in r

records randomly drawn from D(n,m) without replacement (see Equation

A.1).

– Iraw(k, n,m), denotes the number of random picks needed from D(n,m) in

order to get k unique grouping keys (see Equation A.2).

• Sort Component: Csort(n,m) represents the number of CPU comparisons needed

(using quicksort) in order to sort n records containing m unique keys (see Equation

A.4).

• Merge Component: CCPU.merge(A,M) and

CIO.merge(A,M) represent the CPU and I/O cost respectively, for merging a set
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of files A using M memory frames (see Section A.3).

• Hash Component: Assume a hash table whose slot table has H slots and whose

list storage area can store up to K unique keys (i.e. at most K unique groups

can be maintained in the list storage area). The hash component computes the

following quantities:

– Hslot(i,H, n,m) represents the number of occupied slots in a hash table with

H slots after inserting i random records (i ≤ K) taken from D(n,m) (see

Equation A.6).

– Chash(n,m,K,H) represents the total comparison cost until filling up the list

storage area of a hash table with H slots and capacity K if the records are

randomly picked from D(n,m) (see Equation A.9). Note that the hash table

could become full before all records from D(n,m) are loaded.

– Chash(n,m,K,H, u) is again the total comparison cost for filling up the list

storage area as above, but assumes that D(n,m) has been partially aggre-

gated, and the partially aggregated part (u unique records) are first inserted

into the hash table before the random insertion.

2.4.1 Sort-based Algorithm Cost

The I/O cost for the Sort-based algorithm is solely due to external sorting since

grouping requires just a single scan that is pipelined with merging. Let R denote the

number of frames in the input dataset. The sort phase scans the whole dataset once

using R write I/Os to produce A sorted runs (where |A| = R
M ), each of size M , that are

then merged. The total I/O cost is thus: CIO = R+ CIO.merge(A,M).

The CPU comparison cost Ccomp consists of the sorting cost before flushing
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the full memory into a run and the merging cost for merging all sorted runs. Hence:

Ccomp =|A| ∗ Csort(Rmem, Ikey(Rmem, Rt, Gt))

+ CCPU.merge(A,M) (2.2)

where Rmem denotes the number of records that can fit in memory (Rmem =

Mp
b , where p is the frame size and b is the input record size), Rt is the number of records

in the input dataset, and Gt is the number of unique keys in the input dataset (which

is the same as the number of tuples in the output dataset).

2.4.2 Hash-Sort Algorithm Cost

The Hash-Sort algorithm applies early aggregation using hashing and slot-

based sorting. In the first phase (Sorted Run Generation), the I/O cost arises from

flushing the unique keys in the hash table whenever it becomes full. Since the hash

table uses the whole available memory M , its capacity is K = Mp
ob (note that o is

used to represent the memory overhead per record due to the hash table structure).

The number of raw records inserted into the hash table until it becomes full is then:

|RH | = Iraw(K,Rt, Gt). Once the hash table is full, all unique keys would be flushed

after being sorted by (slot id, hash id). There are totally Rt
|RH | files generated, each file

with size Kb
p ; hence: CIO.phase1 = Rt

|RH | ∗
Kb
p .

The comparison cost for the first phase contains both hashing and slot-based

sorting comparisons. The hashing comparison cost can be computed as
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Ccomp.hash =
Rt

|RH |
∗ Chash(|RH |, Gt,K,H) (2.3)

To estimate the sorting comparisons we note that when K unique keys have

been inserted, the number of non-empty slots used is given by Hu(|RH |, H,Rt, Gt).

Based on the uniform distribution assumption, the number of unique keys in each slot

is: Lslot = K
Hu(|RH |,H,Rt,Gt)

. Since duplicates have been aggregated, the Lslot records to

be sorted in each slot are all unique; hence the total number of comparisons due to

sorting becomes:

Ccomp.sort =Hu(|RH |, H,Rt, Gt) ∗ Csort(Lslot, Lslot) (2.4)

During the merging phase, the I/O cost includes the I/O for loading the sorted

runs, and the I/O for flushing the merged file. The size of each sorted run generated by

the sorting phase is the memory size M . The size of a merged file can be computed as the

size (number) of unique keys contained in the sorted runs that are used to generate this

merged file. The number of unique keys can be computed using the input component,

given the number of raw records that are aggregated into the merged file. If A denotes

the total sorted runs and A′ denotes the files to be merged (A′ ⊆ A and |A′| ≤M), the

number of raw records that will be aggregated into the merged file will be Rt∗|A′|
|A| , so

the number of unique keys in the merged file would be Ikey(Rt∗|A′|
|A| , Rt, Gt). So the total

I/O cost for merging the A sorted runs is
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F (A′) =|A′| ∗M +
Ikey(Rt∗|A′|

|A| , Rt, Gt) ∗ b
p

(2.5)

By applying F (A′) in CIO.merge(A,M), we can compute the total I/O cost for

merging. The CPU comparison cost of merging the A run files Ccomp.merge(A,M) can

be computed in a similar way using the merge component.

2.4.3 Hybrid-Hash Based Algorithm Costs

In this section we describe the cost model for the hash-partition phase (Phase

1) for each of the four hybrid-hash algorithms described in Section 2.3. In the recursive

hybrid-hash phase (Phase 2), all algorithms recursively process the produced runs using

their hash-partition algorithm, and their cost can be easily computed by simply applying

the cost model from Phase 1 so we omit the details. When the key cardinality of the

input dataset is too large for direct application of a hybrid-hash algorithm we need first

to perform a simple partitioning until the produced partitions can be processed using

hybrid hash. The cost of this partitioning is 2 ∗ L ∗ R for its I/O cost of loading and

flushing, and L ∗Rt for CPU cost of scanning, if L levels of partitioning are needed.

2.4.3.1 Original Hybrid-Hash

The Original Hybrid-Hash algorithm aggregates records from partition 0 only

in its hash-partition phase while the other P partitions are directly spilled using P

output buffers. Hence the available memory for the hash table is (M − P ) and the

capacity of the hash table is K = (M−P )p
ob . Assuming that keys are uniformly distributed

in the input dataset, partition 0 can be fully aggregated in the hash table. Since the
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number of raw input records of partition 0 is K
Gt
∗Rt, the comparison cost for hashing is

Chash( K
Gt
∗Rt,K,K,H) (since the K

Gt
∗Rt records contain K unique keys). The I/O cost

arises from loading the input records from the disk, and from spilling the raw records

belonging to the P spilled partitions onto the disk; hence CIO = R+ (R− K
Gt
∗R).

2.4.3.2 Shared Hashing

The uniform key distribution and precise input parameter assumptions made

by our cost model eliminate the second spilling phase of the Shared Hashing algorithm;

hence the following discussion concentrates on the first spilling phase. The Shared

Hashing algorithm aggregates records from all partitions until the hash table is full. At

this stage all memory except for one output buffer frame is used for the hash table, so

the hash table capacity is K = (M−1)p
ob . The hash comparison cost is thus similar to the

Hash-Sort algorithm, i.e., Ccomp.before full = Chash(|RH |, Gt,K,H).

During the first spilling, grouping keys of partition 0 that are already in the

hash table are re-hashed in order to be clustered together in a continuous memory space.

Remaining records of partition 0 are hashed and aggregated until the hash table becomes

full again. The fraction of partition 0 (the resident partition) rres and a spilled partition

rspill in the total input dataset can be computed based on Formula 2.1 as below:

rres =
M − P

(M − P ) +MP
, rspill =

1− rres
P

The hash comparison cost after the first spilling (including re-hashing and inserting the

remaining records from partition 0) can be computed by considering that the rres ∗K

unique groups are inserted ahead:
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Ccomp.after full =Chash(rres ∗Rt − Iraw(rres ∗K,Rt, Gt),

rres ∗Gt,K,H, rres ∗K) (2.6)

where Iraw(rres ∗ K,Rt, Gt) is the number of raw records inserted before the

first spilling, while rres ∗ K corresponds to the unique keys inserted before the first

spilling that are then re-hashed during the first spilling. Here all partition 0 records are

drawn from the rres ∗G unique keys assigned to partition 0.

After partition 0 is completely aggregated in memory and when the spilled runs

are recursively processed, each run may already be partially aggregated, which corre-

sponds to the ‘mixed’ input case. Hence the comparison cost for all resident partitions

phase is computed as:

Ccomp.spill parts =Chash(rspill ∗Rt−

Iraw(rspill ∗K, rspill ∗Rt, rspill ∗Gt),

rspill ∗Gt,K
′, H, rspill ∗K) (2.7)

This is very similar to the cost model showed in Equation 2.6, where the records

inserted before the first spilling (Iraw(rspill ∗K, rspill ∗Rt, rspill ∗Gt)) are collapsed into

(rspill ∗K) unique records and reloaded during the recursive hashing.

The I/O cost emanates from the spilling partitions only. Since part of each

spilling partition has been aggregated before the table is full, the I/O cost contains the

I/O both for spilling the partially aggregated partition, and for flushing the remaining

raw records of that partition (computed by subtracting the aggregated raw records from
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the total raw records of the spilling partition):

CIO.spill =
rspill ∗K ∗ b

p
+ rspill ∗R (2.8)

− Iraw(rspill ∗K,Rt, Gt) ∗ b
p

where
rspill∗K∗b

p is the I/O for spilling the partial aggregated results, and the

remaining part is the I/O for spilling the raw records (where the records that are partially

aggregated are excluded).

2.4.3.3 Dynamic Destaging

Until the hash table becomes full, the Dynamic Destaging algorithm behaves

similarly to the Hash-Sort algorithm; hence the CPU comparison cost before any par-

tition is spilled can be computed by Chash(|RH |, Gt,K,H) (note that when this model

is recursively applied to runs that have partially aggregated records, the ‘mixed’ input

Equation A.13 should be used). When the hash table is full, the largest resident parti-

tion is spilled. The uniform assumption of the input dataset implies that at this time all

partitions have the same number of grouping keys in memory; hence, any one partition

can be randomly picked for spilling. If partition i is picked for the i-th spill, the total

available memory for the hash table is M − (i− 1) (where i− 1 frames are used as the

output buffers for the spilled partitions). The number of in-memory aggregated groups

of the i-th spilling partition can be computed using Formula 2.1 as:

Ki =
K ∗ (M − (i− 1))

M(P + 1− (i− 1))

while the size of raw records hashed into the hash table for the i-th spilled partition is

given by:
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RH.i =Iraw(Ki,
Rt

P + 1
,
Gt

P + 1
)

Note here that for a specific partition i, the hash table capacity and the number

of slots are the portion of the total K and H assigned to this partition. Then the CPU

comparison cost for hashing this partition becomes:

Ccomp.i =Chash(RH.i,Ki,
K

P + 1
,

H

P + 1
) (2.9)

When spilling the i-th partition, since part of the partition has been hashed

and collapsed before the partition is spilled, the total spilling I/O emanates from the

raw records directly flushed ( R
P+1 − RH.i), plus the partially aggregated unique keys

(Ki∗b
p ); hence:

CIO.i =
Ki ∗ b
p

+
R

P + 1
−RH.i (2.10)

This cost is summed for all spilled partitions. The number of spilled partitions,

Ps, can be estimated by the following inequality (inspired by Formula 2.1), where the

remaining P + 1 − Ps partitions have enough memory to be completely aggregated in

memory:

G

P + 1
≤ K ∗ (M − Ps)

M(P + 1− Ps)
(2.11)
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2.4.3.4 Pre-Partitioning

The Pre-Partitioning algorithm aggregates records from partition 0 only in its

hash-partition phase, while the other P partitions are directly spilled using P output

buffers. When bloom filters are used with the hash table slot headers, there is an

overhead of one byte per slot, or formally o′ = o + 1
b . The capacity of the list storage

area is thus K = (M−P )p
ob+1 . Since the algorithm guarantees that partition 0 can be fully

aggregated in the hash table, the number of raw input records of partition 0 is K
Gt
∗Rt.

The I/O cost consists of loading the records to be processed and spilling the raw records

in the P spilled partitions, i.e.:

CIO = R+ (R− K

Gt
∗R) (2.12)

The CPU comparison cost includes the cost of hashing the records of partition 0 into

the hash table, plus the cost for checking whether a record should be spilled (for records

from the P spilling partitions). Assume that the per-slot bloom-filter has a false positive

ratio α. Then for each of the (Rt ∗ (1− K
Gt

) spilled records, if the bloom filter can detect

that the record is not in the hash table, the record is directly flushed (we omit the bloom

filter lookup cost since it is negligible compared with the hash comparison cost). If the

bloom filter fails to detect that the record is not in the hash table (false positive error

with probability α), a hash table lookup for the record will cause a hash miss with cost

of K
H . Therefore the CPU cost is given by:

Ccomp =Chash(
K

Gt
∗Rt,K,K,H)

+ α(Rt ∗ (1− K

Gt
) ∗ K

H
) (2.13)
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2.5 Experimental Evaluation

We have implemented all algorithms as operators in the Hyracks platform [8]

and performed extensive experimentation. The machine hosting Hyracks is an Intel

Xeon E5520 CPU with 16GB main memory and four 10000 rpm SATA disks. We used

the Java 6 software environment on 64-bit Linux with kernel version 2.6.18-194.el5. We

ran the example query of Section 2.2.1 on a synthetic UserVisits dataset (table) that has

two fields: a string ip field as the grouping key, containing an abbreviated IPv6 address

(from 0000:0001::2001 to 3b9a:ca00::2001 for 1 billion records), and a double adRevenue

field (randomly generated in [1, 1000]). To fully study the algorithm performance and

validate the cost models, we consider the variables listed below. The values that we

used for these variables in our experiments (organized by subsection) appear in Table

2.4.3.3.

• Cardinality ratio: the ratio between the number of raw input records (input size

R) and the number of unique groups (output size G).

• Memory: the size of the memory assigned for the aggregation.

• Data distribution: the distribution of the groups (keys) in the dataset.

• Hash table slots: the number of slots in the hash table, measured by the ratio

between the number of slots and the number of unique keys that can fit in the list

storage area.

• Fudge factor: the hybrid-hash fudge factor.

• Unique Group Estimation Error: (applies only to hybrid-hash algorithms) the

ratio between the user (query compiler) specified and the actual number of unique

groups.

39



2.5.1 Cost Model Validation

To validate the accuracy of our models, we depict the I/O and CPU (as pre-

dicted by the models and measured by the experiments) of the six algorithms in different

memory configurations for two datasets with cardinality ratios 100% and 0.02% in Fig-

ures 13 and 14 respectively; we also experimented with cardinalities 44.1% and 6.25%

which showed similar behavior (not shown due to the space limitation). As we can see,

our models can predict both the I/O and the CPU cost with high precision. In par-

ticular, the I/O cost estimation is consistently very close to the actual I/O. For most

cases, the cost for the (hash) CPU comparisons is slightly underestimated by our models

because they assume no skew; however, in reality even slightly skewed data will result

in higher hash collisions. This explains the slightly lower model prediction for the CPU

cost of the hash-based algorithms in Figure 2.14.

There are cases where our models overestimate the CPU cost, as when process-

ing the “all unique” dataset (Figure 2.13, with cardinality ratio 100%) for the Dynamic

Destaging and Shared Hashing algorithms. This is because with actual data, the hash

table spilling could be triggered earlier than the model prediction since the key distribu-

tion is not perfectly uniform; as a result, less groups from spilling partitions are hashed

into the dynamic/shared hash scheme, leading to less actual CPU cost.

Among all algorithms, the CPU model for Dynamic Destaging showed the

largest overestimation compared to the real experiments for some configurations. The

reason is that in these cases, our cost model assumes that the resident partition can

be completely aggregated in-memory, however in reality our experiments show that in

these configurations, the resident partition has also been spilled due to the imperfect

hash partitioning and dynamic destaging technique (i.e., evicting the right partitions for

40



spilling) in reality. When reloading the spilled resident partition, the number of hash

table collisions is less since the records are hashed to the whole hash table space instead

of just a potion of it, so the actual CPU comparison cost is less than predicted.

2.5.2 Effect of Memory Size

To study the effect of memory size on the aggregation algorithms we measured

their running time using the four uniform data sets (with cardinality ratio 100%, 44.1%,

6.25% and 0.02%) in different memory configurations (0.5M to 4G). (The effects of

skewed data are examined later). In Figure 2.15, we show the running time, CPU

comparison cost and I/O cost for all these experiments. When considering the CPU cost,

the algorithms that use sorting require more CPU than the pure hashing algorithms.

The I/O cost for all algorithms decreases when memory increases (since more records

can be aggregated in memory).

We first observe that for larger memories (memory larger than 64M) the run-

ning time of the Sort-based algorithm increases. This is because larger memory settings

cause higher cache misses for the comparing and swapping in the sorting procedure.

Furthermore, when the cardinality ratio is high (100%, 44.1%, and 6.25%), the total

CPU cost for sorting is increasing according to Formula A.4 of the sort component in

Appendix A.2(the records to be sorted in each full memory chunk m is larger). This can

also be observed through the similar rising of the CPU cost for memories larger than

64M (Figure 2.15 (e-h)). Thus it is not always the case that larger memory leads to bet-

ter performance in the Sort-based algorithm. Different from the Sort-based algorithm,

the Hash-Sort algorithm has better performance when the memory is larger because

it utilizes collapsing, and most of the time it is faster than the Sort-based algorithm

(except for the case with small memory, where the collapsing cannot be fully exploited).
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The four hybrid-hash algorithms have the best performance since they avoid

sorting and merging. Among the hybrid-hash algorithms, the Pre-Partitioning algorithm

has the most robust performance along all memory and key cardinality configurations.

This is because Pre-Partitioning always creates the resident partition to fill up the in-

memory hash table. This will reduce both the I/O (since more groups are aggregated

within the resident partition) and the CPU comparison cost (since less spilled records

need to be processed recursively). Furthermore, by using bloom filters within the hash

table, the extra cost for hash misses is reduced so its CPU cost is just slightly higher

than the Original Hybrid-Hash algorithm (as showed in Figure 2.11).

Also note that according to Formula 2.1, the memory space reserved for the

resident partition (M − P ) = M2−3M−G∗F
M−2 is not linearly associated with the memory

size. This means that when the memory increases, although the number of hash table

slots increases correspondingly, the size of the resident partition does not increase lin-

early. So the hash collision could vary based on the ratio between the unique records in

the resident partition and the hash table slots. In the case that this ratio is higher due to

a larger increase of the unique records in the resident partition than the increase of the

hash table slots, there will be more hash comparison cost for aggregating the resident

partition. This explains the spikes of the CPU cost for all hybrid-hash algorithm along

different memory configurations.

We further notice that the running time for Dynamic Destaging is increasing (it

becomes larger than the other hybrid-hash algorithms) for memories between 16M and

2048M. In these memory configurations only one round of hybrid-hash is needed (i.e.,

no grace partition is used). However the partition tuning optimization [22] increases

the number of partitions as the memory increases, which causes more cost overhead

for maintaining the spilling files. Furthermore, as the memory increases, the number
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of records from spilling partitions that have been partially aggregated and flushed will

be larger (recall that in Dynamic Destaging, spilling partitions are dynamically spilled

in order to maximize the in-memory aggregation); this could potentially increase the

hashing cost because all partial results must be reloaded and hashed again.

Finally when the memory size is relatively very large (4G), all hybrid-hash

algorithms have the same running time, as no spilling happens (so all can do in-memory

aggregation).
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2.5.3 Effect of Cardinality Ratio

Figure 2.15 also compares the algorithms for different cardinality ratios. Note

that full in-memory aggregation happens for the 0.02% dataset when memory is larger

than 16M, while it occurs for the 6.25% dataset only for the 4G memory. In the higher

cardinality ratio datasets (100% and 44.1%) there is no in-memory aggregation (since

the number of grouping keys is so large that all algorithms need to spill).

The Sort-based algorithm is typically slower than the rest, with the hybrid-hash

algorithms being the fastest and the Hash-Sort falling in between (except for the case of

very small memories and high cardinalities to be discussed below). As the cardinality

ratio increases, the gap in performance between the Sort-based and the hybrid-hash

algorithms is reduced. This is because a higher cardinality means more unique keys,

and thus less collapsing, which reduces the advantage of hashing. Note that when the

memory is small and the cardinality is large, the Hash-Sort algorithm performs even

worse than the Sort-based algorithm because there is very limited benefit from early

aggregation and the hash cost is almost wasted.

The hybrid-hash-based algorithms are greatly affected by the higher cardinality

ratio, as fewer records can be collapsed through aggregation and the performance mainly

depends on the effectiveness of partitioning. The spikes in the CPU cost (caused by the

non-linear correlation between the resident partition size and the hash table size; see the

discussion in the previous subsection) are more clear for data sets with higher cardinality

ratios since the hash miss cost is more significant.
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2.5.4 Aggregating Skewed Data

To examine the performance of the algorithms when aggregating skewed data,

we considered the following skewed datasets, each with 1 billion records and 10 million

unique keys, generated using the algorithms described in [25]:

• Uniform: all unique keys are uniformly distributed among the input records;

• Zipfian: we use skew parameter 0.5;

• Self-similar: we use the 80-20 proportion;

• Heavy-hitter: we choose one key to have 109 − (107 − 1) records, while all other

keys have only one record each;

• Sorted uniform: we use a uniform data set with records sorted on the grouping

key.

Figure 2.16 shows the running time, CPU cost and I/O cost of all algorithms for

different skew distributions. Overall we observe that if the skew distribution is similar

to the uniform distribution (the Zipf and the Self-Similar data sets), the behaviors of

the algorithms are similar to the uniform case. A common characteristic of the two

less-skewed datasets (Zipf and Self-Similar) is that the duplicates are distributed in

a “long-tail” pattern. There are a few keys with very many duplicates (the peak of

the distribution) and many keys with very few duplicates (the tail part). Nevertheless,

statistically the peak in the Zipf dataset is lower than the peak in the Self-Similar dataset

and its long-tail part is higher than the long tail of the Self-Similar dataset. Since there

are more duplicates per key in the Zipf dataset, more hash comparisons are needed.

For the Zipf and Self-Similar datasets, the Hash-Sort algorithm is overall slower

than the hybrid-hash based algorithms because (1) these datasets are not sorted, so the

50



(a) 1M memory (b) 64M memory (c) 4G memory

Figure 2.17: Time to the first result as part of the total running time.

Hash-Sort algorithm needs to sort and merge the intermediate results, and (2) since

more grouping keys have duplicates, the same grouping key could be in multiple run files,

which further increases the run file size and the cost for merging. For these datasets,

the Pre-Partitioning algorithm has the best running time since it always fills up the

memory space reserved for the resident partition, so more groups can be collapsed into

the resident partition. This greatly reduces the total I/O cost for the Pre-Partitioning

algorithm compared with other hybrid-hash algorithms, leading to a lower running time.

It is interesting to note that this behavior is more apparent in the Self-Similar than the

Zipf dataset. This is because the tail part in the Self-Similar dataset is smaller, so the

size of the spilling partitions would be smaller when compared with the Zipf dataset.

This will reduce both the hash miss cost for checking the spilling records and the I/O

cost for spilling partitions.

For the Heavy-Hitter and the Uniform-Sorted datasets, the nature of their skew

is more significant compared with the uniform case, so their behaviors are quite different

than the uniform case. In particular, for the Heavy-Hitter data set, the Hash-Sort

algorithm has the best overall performance. The algorithm collapses many duplicates

in this data set in its early aggregation; moreover, its slot-based sorting strategy can

minimize the sorting cost for merging. The Original Hybrid-Hash algorithm performs

the worst in this case because the partition containing the heavy hitter key contains
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99% of the total records; this causes the algorithm to fallback to the Hash-Sort (because

it has more than 80% of the original input content as mentioned in Section 2.3.3). The

Dynamic Destaging algorithm also performs badly due to the fallback, but the fallback

is triggered by partition tuning. This is because partitions that do not contain the

heavy hitter key are underestimated on their grouping key cardinality, and partition

tuning merges them based on the underestimated cardinality. After merging is done,

the key cardinality is greater than the memory capacity so these partitions are spilled

again. Finally all spilled partitions are processed through the fallback algorithm (the

hybrid-hash level is deeper than a Sort-based algorithm), resulting in longer running

time. The Shared Hashing algorithm performs better when grace partitioning is not

needed because it collapses the partition containing the heavy hitter by maximizing the

in-memory aggregation through the shared hash table. A similar effect happens for the

Pre-Partitioning algorithm, but it performs better since it always guarantees that the

resident partition can be completely aggregated in memory.

For the uniform-sorted dataset, the Sort-based algorithm performs the best

since it only needs a single scan over the sorted data to finish the aggregation. The

Hash-Sort algorithm still shows good running times because it can aggregate each group

completely in the sorted run generation phase, utilizing the sort order. However it is

slightly slower than the Sort-based algorithm due to its higher I/O cost (because of the

overhead of the hash table) and the CPU cost (since hashing is more expensive than the

sequential match-and-scan procedure). The four hybrid-hash algorithms perform worse

because all partitions produced by grace partitioning (for the 2M and 4M memory) or

by the hybrid-hash algorithms (for 8M or larger memory) have to be processed by a

recursive hybrid-hash procedure. With 4M memory, the Original Hybrid-Hash performs

worse than the other hybrid-hash algorithms because they have better hash collapsing
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(a) Runing Time (4M) (b) CPU Comparisons (4M) (c) I/O (4M)

(d) Runing Time (16M) (e) CPU Comparisons (16M) (f) I/O (16M)

Figure 2.18: Sensitivity on input error for Hybrid-Hash algorithms

effect; as a result, they can finish the hybrid hash aggregation one level earlier than the

Original Hybrid-Hash algorithm using less I/O.

2.5.5 Time to First Result (Pipelining)

To check whether these algorithms can be pipelined effectively, we measure

the time needed to produce the first aggregation result as another aspect of their per-

formance. Figure 2.17 depicts the results using the 6.25% dataset in three different

memory configurations. The full bar height corresponds to the total running time (full

aggregation), while the bottom solid part corresponds to the time until the first aggre-

gation result is produced. The earlier the aggregation result is produced, the better the

algorithm can fit into a pipelined query stream.

For the hybrid-hash algorithms, the solid part in Figure 2.17 includes the time

for grace partition, and the time for processing the resident partition in memory, while

the gray part represents the time for recursive aggregation of the spilled partitions.
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Blocking in the hybrid-hash algorithms occurs mainly due to the aggregation of the

resident partition. For larger memory sizes, the resident partition is larger, so it takes

more time to aggregate all records of the resident partition, resulting in slightly longer

times to first result for the hybrid-hash algorithms. For very large memory (4G) there

is no grace partitioning, and since all records are in memory, they need to be fully

aggregated before the first result is produced; thus the time to first result is also the

time when the full aggregation is completed.

For both the Sort-based and the Hash-Sort algorithms, the solid part includes

the time for generating sorted runs plus the time for merging sorted runs until the final

merging round. The gray part indicates the time for the last merging phase, where

the aggregation results are produced progressively during merging. As the memory size

increases, the time to first result for the Sort-based algorithm increases because the time

for merging is longer. For very small memory (1M) the Hash-Sort algorithm experiences

a longer blocking time because it uses both hashing and sorting, while the hashing does

not collapse many records. As memory increases, the hashing becomes more effective

in collapsing which reduces both the sorting and merging time. For very large memory

(4G), the Hash-Sort aggregates all records in memory and thus the time to first result

is also the time to full aggregation (similarly to the hybrid-hash algorithms).

2.5.6 Input Error Sensitivity of Hybrid Hash

The performance of all hybrid-hash algorithms is closely related to the input

key cardinality G. Note that G serves as an exploit input of the hybrid-hash algorithm,

as it is used to compute the number of partitions P . In practice the input set is not

known in advance, so we estimate G. Since such estimation may not be accurate, we also

tested the performance of the hybrid-hash algorithms assuming that G is over/under-
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estimated. Using the dataset with cardinality ratio 0.02%, we ran experiments where P

was computed assuming various (incorrect) values for G. In particular, we varied G from

a far over-estimated ratio (4096 times the actual cardinality) to a quite underestimated

ratio (1/4096 of the actual cardinality). Figure 2.18 shows the experimental results for

two different memory budgets (4M and 16M). When the input parameter is correct (i.e.,

the ratio is 1), the first memory configuration causes spills whereas the second memory

configuration can be processed purely in memory. We also depict the running time of the

Hash-Sort algorithm for comparison (since Hash-Sort does not depend on the parameter

G).

Our experiments show that both overestimation and underestimation can affect

the performance of the hybrid-hash algorithms. Specifically, an overestimation will cause

unnecessary grace partitioning, and will thus increase the total I/O cost. In the worst

case all hybrid-hash algorithms do grace partitioning, causing slower running times than

the Hash-Sort algorithm. An underestimation will falsely process the aggregation earlier,

resulting in less collapsing in the hybrid-hash and further grace partitioning.

More specifically, the results in Figure 2.18 show that the Shared Hashing

algorithm and the Original Hybrid-Hash may fallback to the Hash-Sort algorithm if the

partition size is underestimated and turns out to be too large. The Dynamic Destaging

algorithm works well in the underestimation case, as it always uses at least 50% of the

available memory for partitioning. Among all hybrid-hash algorithms, Pre-Partitioning

achieves better tolerance to the error in the grouping key cardinality G; this is due to its

guarantee that the in-memory partition will be completely aggregated. Pre-Partitioning

has more robust performance for underestimated cases since it can still guarantee the

complete aggregation of the resident partition, and it can also gather some statistics

while aggregating the resident partition. It can then use the obtained statistics to guide
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the recursive processing of the spilled partitions.

2.5.7 Hash Implementation Issues

During the implementation of the hash-based algorithms (all four hybrid-hash

algorithms, and also the Hash-Sort algorithm) we faced several issues related to the

proper usage of hashing. Considering the quality of the hash function, we used Murmur

hashing [2]. We tried the multiplication method [35] (the default hashing strategy in

Java) in our experiments, but we found that its hash collision behavior deteriorated

greatly for the larger grouping key cardinalities in our test datasets. Another issue

related to the usage of the notion of hash function family for the hybrid-hash algorithms.

It is important to have non-correlated hash functions for the two adjacent hybrid-hash

levels. In our experiments we used Murmur hashing with different seeds for the different

hybrid-hash levels.

We also examined how the hash table size (slot table size, or the number of

slots in the slot table) affects performance. Given a fixed memory space, an in-memory

hash table with a larger number of slots (which could potentially reduce hash collisions)

in its slot table would have a smaller list storage area (so a smaller hash table capacity).

Thus, the number of slots should be properly picked to trade-off between the number

of hash collisions and the hash table capacity. In literature, it is often suggested to

use a slot table size that is around twice the number of unique groups that can be

maintained in the list storage area. Figure 2.19 depicts the running times of the hash-

based algorithms with varying slot table sizes (set to be 1x, 2x and 3x the number of

unique groups maintained). In the small memory case, different slot table sizes do not

affect the total running time significantly. In the larger memory case, all hash-based

algorithms can aggregate the data in-memory when the slot table size is 1x (equal to
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the number of unique keys). Most algorithms do in-memory aggregation except for the

Original Hybrid-Hash, which spills due to the larger slot table overhead. When the

slot table size is 3x, only the Pre-Partitioning algorithm can complete the aggregation

in-memory, because it always fills up the memory for resident partition before trying to

spill. (In all other experiments we picked 1x so that all hash-based algorithms can finish

in-memory for 4G memory).

(a) Hash table size (2M) (b) Hash table size (4G)

Figure 2.19: Running time with different hash table sizes (as the ratios of number of
slots over the hash table capacity).

(a) Fudge factor (2M) (b) Fudge factor (4G)

Figure 2.20: Running time with different fudge factors.

Finally, we also explored the importance of the fudge factor F in the hybrid-

hash algorithms. This factor accounts for the extra memory overhead including both

hash table overhead (denoted as o) caused by the slot table and the list data structure

other than the data itself, as well as extra overhead (denoted as f) because of possible

inaccurate estimations of the record size and memory page fragmentation. Here we define

the fudge factor as F = o ∗ f . Past literature has set the fudge factor to 1.2, but it
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is not clear whether they have considered both kinds of overhead. In our experiments,

the hash table overhead can be precisely computed based on the slot table structure;

since we are using a linked-list-based table structure, there are 8 bytes of overhead for

each slot table entry and 8 bytes of cost for each group in the list storage area. For

the extra overhead, we tried four different ratios: 1.0, 1.2, 1.4 and 1.6. Figure 2.20

shows the running times. We can see that clearly it is not wise to consider only the slot

table overhead (f = 1.0) since the running times of the Dynamic Destaging and Shared

Hashing algorithms increase in both memory configurations. This is because the smaller

fudge factor causes an underestimated partition size P , and thus there are partitions

that fail to be fit into the memory during the hybrid hash. From our experiments we

also observed that using slightly larger f values (> 1.2) has no significant influence on

performance.

2.6 Summary

In this chapter we have discussed our experiences when implementing efficient

local aggregation algorithms for Big Data processing. We revisited the implementa-

tion details of six aggregation algorithms assuming a strictly bounded memory, and we

explored their performance through precise cost models and extensive empirical experi-

ments. Among the six aggregation algorithms, we proposed two new algorithm variants,

the Hash-Sort algorithm and the Pre-Partitioning algorithm. In most cases, the four

hybrid-hash algorithms were the preferred choice for better running time performance.

The discussion in this paper guided our selection of the local aggregation algorithms in

the recent release of AsterixDB [1]: the Pre-Partitioning algorithm for its tolerance on

the estimation of the input grouping key cardinality, the Sort-based algorithm for its
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good performance when aggregating sorted data, and the Hash-Sort algorithm for its

tolerance for data skew. We hope that our experience can also help developers of other

Big Data platforms to build the solid local aggregation fundamental. In AsterixDB,

based on this work, we are now continuing our study of efficient aggregation imple-

mentations in a clustered environment, where more factors like per-machine workload

balancing and network costs must be further considered.
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3

Global Aggregation

Compared with the local aggregation problem we described before, a global ag-

gregation assumes that the input data may be partitioned and stored on different nodes.

As the data is not a disjointly partitioned based on the grouping keys, simply running

local aggregation algorithms on each of these partitions is not enough; intermediate

results need to be merged in order to compute the global aggregation result.

In this chapter we extend our local aggregation techniques to search for efficient

global aggregation plans. Specifically, we consider the global aggregation in a shared-

nothing architecture. A common characteristic of this architecture is that each node

has its own computation resource for independent data processing tasks, and nodes are

interconnected through a network for communicating their intermediate results. This

architecture provides very good scalability and failure recoverability and has thus been

widely adapted by popular big data systems like Hadoop[14], Dryad[60] and our parallel

platform Hyracks[8].

To process an aggregation query in a shared-nothing cluster, the most common

approach is a “map-and-reduce” approach, where in the “map” phase input data parti-
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tions are processed in parallel on the nodes containing these partitions, while the in the

“reduce” phase the results of the map phase will be redistributed and merged to create

the final global aggregation result. In a real scenario there could be multiple levels of

“reduce” phases so the whole aggregation structure resembles a tree-like structure: leaf

nodes contain the original input data partitions, while root nodes will get the final global

aggregation result.

Given a “group-by” query over several input data partitions, it is the job of

the query optimizer to assign proper local aggregation algorithms to each working node

in the aggregation tree structure, in order to reduce the total cost efficiently. However

this task is very challenging. First, as we have seen from the previous chapter, there are

multiple options for the local aggregation algorithms for each node, and each algorithm

behaves differently based on the CPU and I/O costs and the output data property

(whether the output is sorted). An efficient global aggregation plan should use the proper

algorithm according to the input data characteristics. Second, for global aggregation

there is another important cost factor, the network I/O cost. In this environment the

physical aggregation structure is also important, since different physical structures will

lead to different costs on these factors. Third, different hardware environments have very

different cost characteristics; the usage of advanced hardware, like SSD, Infiniband, has

provided very different hardware performance patterns, so an efficient global aggregation

plan in one environment may not be efficient anymore in another environment. It is

thus important to generically model the cost of a global aggregation plan in a hardware

independent way.

As a result, an efficient global aggregation plan is not a simple combination of

the best local aggregation on each participating node. An efficient global aggregation

strategy depends on both the input data statistics and the hardware characteristics.
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The new network I/O cost introduces a new tradeoff between the effort for local volume

reduction and the global data transferring cost, so picking the best local aggregation

algorithm may not necessarily lead to the optimal global aggregation strategy. For

example, depending on the input data statistics and the requirement of the output

data, it could be beneficial to choose a local algorithm with higher cost but maintaining

an interesting property like sorted order, or to do the “partial” local aggregation without

completely aggregating the partition to avoid the high local cost for low data volume

reduction (also known as “aggregation collapsing ratio”).

In the following sections of the chapter we will address these challenges through

a cost-model based approach. Our main contributions include:

• We extend our local aggregation study to include the optimization of partial lo-

cal aggregation, where the local data may not be completely aggregated and the

intermediate result will be merged globally for the final aggregation result.

• We discuss a hardware-independent cost model for global aggregation plans in a

shared-nothing environment, considering the CPU, disk I/O and network I/O. We

extended our local aggregation cost model to the global aggregation scenario to

precisely model the cost involving partial aggregation and network I/O.

• We propose a cost-model based algorithm to generate the non-dominated global

aggregation plan. A non-dominated global aggregation plan is a plan that will

not be worse than any other possible global aggregation plan. This algorithm also

supports user-defined weights on the cost factors, so that users can pick different

preferences over the existing cost factors.

The remaining of the chapter is organized as follows: Section 3.1 reviews the

literature about global aggregation. Section 3.2 provides the details about the global
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aggregation plan structure, and the hardware independent cost model. Section 3.3

summarizes the local aggregation algorithms and also the connects (intermediate data

redistribution strategies) that we will cover in this study. In the same section we also

show the implementation details on these local aggregations as software components to

maximize their reuse. We then describe a cost-model based plan searching algorithm

in Section 3.4 to find the global aggregation plans with non-dominated costs, which

supports weighted cost factors so it can be easily adapted to different hardware environ-

ment. Finally, Section 3.5 presents the experimental evaluation results for the global cost

models and our proposed algorithm. Conclusions for this chapter appear in Section 3.7.

3.1 Related Work

The basic map-combine-reduce approach for global aggregation has been dis-

cussed in the NoSQL community [15], [43]; however, in this thesis, we also allow for

the limited memory budget as well as the choice of different local aggregation algo-

rithms with different connectors and partial aggregation choices. Global aggregation

was also considered in the relational database research [50, 51],where several optimiza-

tion strategies for global aggregation plans, including the different global aggregation

network layouts and an adaptive local algorithm (hash-based) were presented no local

aggregation options were provided, neither the different input and output properties

were considered. In this thesis we also cover the hash-based local algorithm option (al-

though without the adaptivity), but in addition, other local aggregation options as well

as various input and output data properties are considered.

Aggregation trees have been discussed under many different scenarios like ag-

gregating data streams in a sensor network [36] and iterative parallel processing [54]
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[46]. In [46] an aggregation tree with different assumptions on the structure is discussed

in the context of parallel multiple-level aggregation. The main difference is that the tree

structure in this thesis assumes a fully hash partition between levels (while in [46] each

node sends to a single node for merging the data), and further, we consider different

local aggregation strategies.

[37] discussed a strategy similar to the PrePartitioning algorithm. The main

difference is that they did not use any optimization to reduce the hash miss cost, but

instead they used a dynamic strategy to spill the groups that have a low “absorb” ratio.

[27] studied the partial aggregation effects based on the clusterness of the input

data from both a theoretical perspective and implementation. In our study we assume

a random input dataset whose groups are uniformly distributed among the total input

records, so that in our cost model we simply use cardinality ratio and the memory size

to predict the partial aggregation effects.

3.2 Global Aggregation Model

Given a set of input data partitions and a set of nodes, the space of possible

global aggregation plans is very large, due to the multiple choices on the local aggregation

algorithms and also the different network topologies. In this section we describe our

global aggregation model, which captures a subset of this plan space but contains the

set of well-adapted global aggregation strategies used in the popular big data systems.

We first describe the physical structure for a global aggregation implementation, called

aggregation tree structure. Then we show the strategy that a query optimizer can use

to map a logical aggregation plan onto a physical aggregation tree structure. Finally

we discuss our hardware independent cost model framework for the aggregation tree
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structure.

3.2.1 Physical Aggregation Plan: Aggregation Tree

The physical structure of a global aggregation plan describes how to parallelize

the aggregation work over multiple nodes in a cluster environment. As our study of

global aggregation assumes that the aggregation is processed over a shared-nothing

cluster, the basic component of such a structure will be the standalone working node.

Since each node has its own computation resources, including CPU and storage, the

only way to share data between nodes is through the network connection between them.

We do not consider the case for multiple cores or multiple threads running on a single

node in our model described here, but the model can be extended to handle these cases

as far as there are no sharing resources between different threads.

In our study we focus on a specific DAG structure for global aggregation,

called aggregation tree. This structure divides the available working nodes into levels.

Nodes within the same level will not have data communication, while nodes in two

adjacent levels can send data from the lower level to the higher level (this is called

a data redistribution). The leaf level nodes contain the original input data partitions,

and the top-level nodes must produce the final aggregation results. Figure 3.1 thaws

an example aggregation tree structure consisting of 9 nodes, among which 4 leaf level

nodes contain the original input partitions. Note that nodes in the middle levels can also

produce final results; this will be discussed in detail later in the specific local aggregation

algorithms. We assume that the original input data in the leaf level nodes are randomly

partitioned. Range partitioned and hash partitioned cases are not discussed in our

study, as in both cases the final aggregation can be done by running a local aggregation

to completely aggregate the records on each node, requiring no extra network traffic.
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Specifically for the aggregation operation, each node in such a tree structure

works as a pipe. Data is streamed into a node through the network from lower level

nodes. Then the input data is processed internally in the node using some local aggre-

gation algorithm. Note that the data volume could be reduced after the processing due

to the aggregation operation. The result of the aggregation will then be sent and redis-

tributed through the network to the next upper level nodes, as illustrated in Figure 3.1

In this structure there could be multiple input data streams and multiple out-

put data streams for a single node. The connector defines the way of redistributing the

intermediate results, by partitioning the single output stream onto all receiving nodes,

and merging the multiple input streams into a single stream. From the view of a node

there is always just one single input stream and one single output stream. Between

levels, we assume the data redistribution strategy is global hash partition. This means

that each record from a lower level node will be hashed onto one of the higher-level

nodes. Nodes at the same level use the same hash function, so that the records of the

same group residing at different nodes will be sent to the same node for aggregation.

Although other data redistribution exist (e.g. range partitioning, and grouped hash

partition as described in [46]), in this thesis we focus on this redistribution strategy be-

cause this is the well-known default partition strategy for mainstream big data systems.

For example, in Hadoop by default the output of the mappers will be globally hashed

onto all reducers, which makes sure that the data with the same key can be merged on

the reducer side. Another reason for picking this redistribution strategy is that a global

hash partitioning can evenly redistribute the data from the sender level to the receiver

level, so that even the intermediate result in the sender level is not load balanced, after

the hash partitioning the load will be re-balanced over the receiver nodes.

In this thesis we consider both the flat tree structure (i.e., a tree with only
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two levels) and the deep tree structure (i.e., trees with more than two levels). A deep

tree structure could be beneficial if the number of available nodes is very high. In that

case the memory cost for building the global hash partitioning connections will be non

trivial (recall that each sender node will need as many output buffers as the number

of receivers; similarly, a receiver node needs as many input buffers as the number of

sender nodes). Using a deep tree could then effectively reduce memory buffer cost for

the redistribution.

Group-By

D′(R′, G)

Disk

Network

Network

D(R,G)

Figure 3.1: An 9-nodes aggregation tree (left) and the local node structure (right).

3.2.2 From Logical Aggregation Plan to Physical Aggregation Plan

Given an aggregation query with a set of input partitions and a set of available

nodes, it is query optimizer’s job to create an efficient physical parallel plan to utilize

all available resources. Specifically, the query optimizer can assign different local aggre-

gation algorithms to different nodes, in order to utilize the resource and minimize the

overall cost. In our study, we discuss a common strategy for generating physical global

aggregation plans in popular shared-nothing architectures, where a logical sequential

query plan will be mapped into a shared-nothing parallel plan. A logical sequential

plan consists of a series of local aggregation algorithms and the data redistribution

strategies, which specifies the aggregation strategy for each level of the aggregation tree.
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Then a query optimizer will map such a logical sequential plan into a physical logical

plan, according to the data partitions. In details, the leaf level of the logical sequential

plan will be mapped to the number of nodes that can handle all input data partitions.

For the non-leaf levels, the query optimizer needs to decide how to arrange the nodes

among these levels, in order to get the most cost-efficient physical plan. An example

of this mapping from a 2-level logical sequential plan to a 5-node cluster is showed in

Figure 3.2, where the leaf level of the logical sequential plan (using the disk-mode Sort-

based algorithm discussed later) is mapped onto three nodes containing the input data

partitions, while the root level is mapped to the remaining 2 nodes. Between the two

levels nodes are connected using the HashMerge connection (discussed later) strategy in

order to maintain the sorted order.

Based on this mapping strategy, for a physical aggregation plan, nodes on

the same level run the same local aggregation algorithm, and also use the same hash

redistribution strategy. Hence, nodes in the same level can be considered as “clones”

of a single node. Such a physical plan structure can also be found in current big data

systems. For example in Hadoop, the system will decide the copies of mappers based

on the data locality, so that each node containing the input data will have at least one

mapper instance cloned from the same mapper implementation. Then the number of

reducers is decided according to the available system resources, by creating copies of

reducers, each following the same reducer implementation.

3.2.3 Non-Dominated Global Aggregation Plans

In our study, we focus on the following three cost factors:
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Figure 3.2: An example of properties, and the mapping from a sequential (logical) plan
to a global (physical) plan.

• CPU cost denotes the sum of CPU cost from all nodes involved in the aggregation

plan. Similar to the local aggregation study, CPU cost includes the comparison

cost during sorting and hashing.

• Disk I/O cost denotes the total disk I/O on all nodes during the local aggrega-

tion. Many local aggregation algorithms, like the three algorithms discussed in the

local aggregation work (Sort-based, Hash-Sort, and Hash-based), require disk I/O

to completely aggregate the local records when the data cannot fit into memory.

• Network I/O cost denotes the total network transfer cost between levels during

the aggregation. This is a new cost factor compared with the local aggregation.

Basically network transfer is necessary as data of the same group but in different

nodes must be sent to the same node through the network for merging.

The cost of a global plan will be a vector of these three costs of all the nodes

and connections in the plan. The right part in Figure 3.1 illustrates the places where

these costs could happen. For a local node, the network cost happens when the data

is read in through the network, and when the result is sent through the network to the

next level. The CPU and the disk cost occur during the local aggregation processing.

Later we will show that the CPU cost will also appear when the input data needs to be

merged to maintain the sorted order through the network transfer.
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Note that all these three cost factors are hardware-independent, i.e. the same

global aggregation plan will get the same cost vectors of these three factors when running

on different clusters with different hardware configurations. By estimating these three

cost factors through our cost model, specific hardware environments can apply different

weights to these factors as the unit cost of these operations. For example, a magnetic

disk based cluster could have a higher per-disk-I/O cost compared with a SSD based

cluster.

Another important factor for searching the optimal global aggregation plans

refers to the output properties. There are aggregation algorithms that could produce

extra properties for the output. For example, Sort-based algorithm could produce sorted

aggregation results. Such “properties of interest” could be utilized by the query opti-

mizer if the properties are useful in the overall query plan, so plans generating results

with different properties should not be compared directly for dominance. Furthermore,

the output properties introduce the constraints on the combination of local aggregation

algorithms and the connectors. Basically a connector that could destroy the “properties

of interest” of the output of a node should not be used as the output connector for the

node. We will discuss more about this in Section 3.3.

Formally we can define the problem of searching the non-dominated global

aggregation physical plans as:

Definition 1 (Non-Dominated Global Aggregation Plan Searching Problem)

For an N -node shared-nothing cluster, given an input dataset D(n,m) (i.e., a dataset

with total number of records n and containing m unique grouping keys) partitioned over

NI ⊂ N nodes, this problem searches for the physical plans with the same output prop-

erties, so that each plan has at least one of the three cost factors (CC , CD and CN )
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having cost that is no worse than any other possible physical plans.

3.3 Components for Global Aggregation Plans

In this section we discuss the components that could be used in a global ag-

gregation plan. There are two main components for the global aggregation plans: con-

nectors and local aggregation algorithms. Local aggregation algorithms determine

the cost behavior of each local node, and connectors describe the data redistribution

strategy between two levels. An efficient global plan should properly choose these com-

ponents for each level of the aggregation tree, based on the system resources and the

input data statistics.

Except for the cost, another constraint for the choice of the local aggregations

and the connectors is the output data property. There are local algorithms that

will introduce special properties to its output, and such properties could be useful for

the remaining aggregation process, and even the operator after the aggregation in a

complex query plan. So it is important that the connector and also the downstream

local aggregations can utilize these properties properly, or just maintain such properties

for further operations.

Based on these observations, in our discussion of these components, we will

concentrate on the following aspects:

• Input Property Constraint: What is the requirement (if any) on the input data

property for this component?

• Cost Behavior: What are the costs for all the three cost factors for a given input

dataset?
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• Output Property Constraint: What is the output data property (if any) of the

output of this component?

For the cost behavior discussion, we use the symbols listed in Table 3.1; to save

space, we omit the details of some cost formulas that have been discussed in the Cost

Models section in Chapter 2.

Symbol Description
b Tuple size in bytes
o Hash table space overhead factor (for its slot

table and references of linked list)
p Frame size in bytes
A Collection of sorted run files generated
D(n,m) Dataset with n records and m unique keys
G Output dataset size in frames
Gt Number of tuples in output dataset
H Number of slots in hash table
K Hash table capacity in number of unique groups
N Total number of nodes to be used in the global

aggregation plan
Ni Number of nodes in the i-th level of the

aggregation tree
M Memory capacity in frames
R Input dataset size in frames
Ri Input dataset size in frames for node i in

the aggregation tree
Rt Number of tuples in input dataset
RH Number of raw records inserted into a hash

table before it becomes full

Table 3.1: Symbols used in Cost behavior discussion.

In the following subsections, we first discuss the possible output properties.

Then we describe the connectors for different data redistribution strategies and the

local aggregation algorithms.

3.3.1 Data Properties

Data properties are the properties that could potentially benefit the future

query processing. In an aggregation tree, a property applies to the data partitions over
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all nodes in the same level. In our current study, we are interested in the following three

properties:

• Global Hash Partitioned: This property indicates that records of the same group

will be on the same node in this level. This implies that the data are full hash

partitioned over all nodes at the current level.

• Aggregated: This property indicates that the data on each node are completely

aggregated (so on each node there is at most one records for a given group).

• Sorted: This property implies that on each node the data is sorted on the grouping

condition.

Formally the data properties on a set of data partitions can be represented as

a triple (G,A, S) (where G stands for global hash partitioned, A for aggregated and S

for sorted). We use (−) if the corresponding property does not apply for a set of data

partitions.

Properties can be used to check whether a plan has reached the final result

and can be terminated. Clearly, if the output of a level is both global hash partitioned

and also aggregated, this output contains the final aggregation results. Hence, the

query optimizer can always use the property triple (G,A,−) to check whether the final

aggregation result has been reached. Properties can also be used to constraint the choice

of the operators and connectors. For example in Figure 3.2, since the output of the leaf

level has the “sorted” property, it constraints the query optimizer to only choose the

data redistribution strategy that could maintain the sorted order.
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3.3.2 Connectors

A connector in the physical global aggregation plan specifies the data redistri-

bution strategy from a set of sending nodes to a set of receiving nodes. A connector is

defined by a node map, a partition strategy and a merge strategy. The node map

is a map between the sending nodes and the receiving nodes and specifies the connections

through which a sending node can send data to a receiving node. Each sending node

can send data to multiple receiving nodes, and each receiving node could get data from

multiple sending nodes. Formally such a node map can be represented using a n ×m

bitmap for n sending nodes and m receiving nodes. The partition strategy specifies the

way how the data is partitioned if a sending node will send its data to multiple receiving

nodes (like random partition, range partition, hash partition, etc.) The merge strategy

describes how a receiving node would merge the multiple incoming data streams from

multiple sending nodes into a single data stream. When the input streams are already

sorted, a sort-merge strategy could be used to produce a single sorted stream.

For our implementation, in a connector, each sender will have an output buffer

for each receiver it will send data to, and each receiver will have an input buffer for

each sender it will receive data from. The partition strategy describes how the output

records of a sender are partitioned onto the output buffers, and the merging strategy

describes how the input records of the input buffers are merged.

Since in this study we assume a full hash partition redistribution strategy

between two levels of nodes, the node map for any connector has a connection from each

sending node to all receiving nodes. If the node map is represented using a bitmap,

then all bits in the bitmap will be set to 1 (true). The hash partition strategy will

also be the default partition strategy for all connectors. In the rest, we focus on the
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following two different connectors with different merge strategies, namely the Hash and

the HashMerge connectors.

• A Hash Connector has an on-demand, round-robin merge strategy. This strat-

egy scans the input buffers in a round-robin fashion, and loads the first full buffer

during the scan; it then releases the buffer to be filled up again by the input

stream. This strategy has a non-deterministic data loading behavior over all the

sending nodes.

• A HashMerge Connector uses a sorted merge for its merge strategy. This

strategy waits until all the input buffers are filled with data. Then it starts a

sorted merge to produce a sorted stream to the receiving node.

For the input data property, the Hash connector does not need any constraints

over the input data properties. The HashMerge connector requires the Sorted property

for the input data, so that it can guarantee the sorted order of its output data. This

means that the local aggregation algorithm of the sending nodes should provide the

sorted order on the output. For the output data property, clearly both connectors have

their data globally hash partitioned, due to the full hash partition strategy. The hash

merge connector further provides the Sorted property, so the local aggregation algorithm

of the receiving nodes should be able to utilize the sorted order for efficient processing.

Although for a given input data set the network I/O for these two connectors

is the same, their cost behavior differs. The main difference is that the HashMerge

connector needs extra CPU cost on merging the sorted input streams using merge sort.

For a connector from Ni sending nodes to Ni+1 receiving nodes, if totally Rt is the

total number of records that need to be sent through the connector, the total CPU

comparison cost for merging is estimated as Ccomp = Rt ∗ log2Ni.
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An important note about the implementation of these two connectors in a

global aggregation plan is about the hash functions. Since there could be multiple levels

in an aggregation tree, it is important to have different hash functions for the partitioning

in different levels. Using the same hash function in the connectors of different levels will

cause serious data skew during the redistribution, and thus downgrade the load balancing

and eventually the aggregation performance.

3.3.3 Local Aggregation Algorithms

The local aggregation study showed that different local aggregation algorithms

have varying cost characteristics. All three local algorithms are blocking in nature: in

order to completely aggregate all local data, if the unique groups cannot fit into memory,

intermediate data must be spilled and reloaded. However in a global aggregation plan,

the local aggregation on a node may not need to completely aggregate its input data.

Instead, the overflowing data can be directly streamed through the network to the next

level of aggregation nodes. Depending on the trade-off between network cost and disk

I/O, this strategy could potentially save disk I/O and utilize pipeline parallelism if the

number of unique groups is large and not much local aggregation can be achieved to

reduce the network cost.

Hence, for the global study we further extended the three local aggregation

algorithms with fine-grained local aggregation operations that can choose to be in either

the disk-mode, when it dumps the overflowing data onto disk (then reload it to con-

tinue the local aggregation for less network cost), or the partial-mode, when it streams

the overflowing data directly through the network to the next level of the aggregation

tree (thus avoiding disk I/O at the expense of increasing the network cost with incom-

pletely aggregated data). The details of these improved local aggregation algorithms
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are discussed below.

3.3.3.1 Improved Sort-Based Algorithm

When the memory is full and show be flushed, after sorting the data in memory,

the improved Sort-Based algorithm will do a running aggregation over the sorted data,

and then choose to send it through either network I/O or disk I/O. An special case

is when the input data can fit in memory: then the data is directly sent through the

network. Figure 3.3 illustrates this workflow. Specifically in the implementation, the

flushing option is controlled by a flag “isPartial”. The value of this flag is decided during

the query optimization.

Sort
Group

Network

Disk

isPartial
Y

N

Merge
Group

fitMem

Y
N

Figure 3.3: The Sort-Based Aggregation Algorithm Workflow.

Compared with the original Sort-based algorithm, this improved version intro-

duces the optimization to pre-aggregate during the flushing, which reduces the I/O cost

to either transfer the data through network or flush the data onto disk. In contrast, the

running aggregation during the sort and merge phase introduces more CPU cost.

Both partial-mode and disk-mode of the improved Sort-based algorithm have

no constraint on the input data property. The partial-mode algorithm produces results

without any interesting property, as it only sorts and aggregates each full memory chunk.

The disk-mode algorithm produces the results with aggregated and sorted property or
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formally (−, A, S).

The cost model of the improved Sort-Based algorithm includes the extra CPU

cost for the running the aggregation during the sorting; this corresponds to Rmem, the

number of raw records that can fit into the memory. Hence:

Ccomp =|A| ∗ (Csort(Rmem, Ikey(Rmem, Rt, Gt)) +Rmem) (3.1)

If then the algorithm chooses to flush the memory through network I/O (i.e.,

partial-mode), there will be no extra disk I/O cost or merge CPU cost. The new

network I/O cost will be the cost to send the |A| sorted runs (containing only unique

keys) through the network, namely:

Cnetwork =|A| ∗ Ikey(Rmem, Rt, Gt)) ∗ b/p (3.2)

If the algorithm is in its disk-mode (i.e., data is dumped into sorted runs on

the disk and the merge phase is required), during the merging phase, the number of

records to be merged will also be reduced to contain only keys in each run.

Cmerge.comp =CCPU.merge(A, Ikey(Rmem, Rt, Gt)) (3.3)

Note that for implementation, the merge phase can be separated into a stan-

dalone component, since it can be shared by the improved hash-sort algorithm we will

discuss below. The only difference for the merge phase between these two algorithms
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is the key: for a sort-based algorithm, the sorting key is the same as the grouping key,

while the hash-sort algorithm uses a combined key of (hash-id, keys).

3.3.3.2 Improved Hash-Sort Algorithm

The original Hash-Sort algorithm starts flushing when the in-memory hash

table is full, and the groups in memory are first sorted based on the (hash-id, keys).

In the improved version, at this point the algorithm can choose to either flush the result

to the disk as described (i.e., disk-mode), or directly send the result through the network

without first sorting it (i.e., partial-mode). Here the sorted order is not important when

flushing through the network, because originally the sorted order is needed for the merge

phase that follows it. If instead, the algorithm chooses to flush onto network, the global

redistribution will not maintain the order anymore, so when the data reaches the next

level, sorted order cannot be utilized based on the connectors we utilize in this thesis.

Figure 3.4 illustrates the workflow of this improved version. As the improved Sort-Based

algorithm showed in Figure 3.3; again the “isPartial” switch is used to control the data

flow between the network and the disk.

Hash
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Network

Disk

isPartial
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N

Merge
Group

fitMem

Y
N

Sort

Figure 3.4: The Hash-Sort-Hybrid Aggregation Algorithm Workflow.

The improved Hash-Sort algorithm has no require on its input data property.

For the output data property, the disk-mode produces aggregated data. Note that
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although the disk-mode operator generates data sorted on the combined key (hash-id,

group-key), the result is not total sorted on the grouping keys, so it does not have the

sorted property.

The cost of the improved Hash-Sort Algorithm is different from the original

version only in the partial mode, i.e. when the algorithm chooses to flush through

network. In this case, the CPU cost contains only the hash aggregation cost:

Ccomp =
Rt

|RH |
∗ Chash(|RH |, Gt,K,H) (3.4)

In its partial-mode, the algorithm produces no disk I/O. Instead all the results

will be directly flushed to the network, introducing the new network I/O as:

Cnetwork =
Rt

|RH |
∗ Kb
p

(3.5)

where RH is the number of raw records that can be hash-aggregated in the

in-memory table before the memory is full, and K is the number of unique keys that

can fit into the in-memory hash table.

3.3.3.3 Improved Hash-Based Algorithm

The improved Hash-based algorithm is based on the Pre-Partitioning algorithm

discussed in previous chapter. Recall that the original algorithm divides the memory

into two parts: one for an in-memory hash table to completely aggregate the resident

partition, while the rest of the available memory will be used as the flush buffers for
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the spilling partitions. Spilled partitions are processed in a recursive fashion. For the

improved version, the algorithm can choose to flush the spilled records directly to the

network in its partial-mode. However in this case it is unnecessary to create multiple

spilled partitions. The reason is that since the data will be flushed to the network

through full hash partitioned connectors, the spilled records will be re-partitioned by

the connectors anyway. Based on this observation, in the partial-mode of this algorithm

it always does Pre-Partitioning hybrid-hash with only one spilling buffer (so there is

only one spilled partition), and utilizes the rest of the memory space for the resident

partition. Moreover, there is no check on check whether a grace hash partition is needed.

Recall that a grace hash partition is needed only if the input data is too large to use

hybrid-hash algorithm, however in the partial-mode it does not need to guarantee that

the spilled partition can be loaded back into memory for in-memory aggregation.

Figure 3.5 depicts the decision flow for this improved Hash-based algorithm.

If the algorithm chooses to flush onto disk (i.e., disk-mode), it needs to check whether

the grace partition is needed, and also it performs a fallback using a disk-mode Hash-

Sort algorithm if the recursion level is too deep. If the algorithm chooses to flush onto

the network (i.e., partial-mode), data will be partitioned into the resident partition (for

aggregation) or the spilling partition (for spilling through the network).

When the improved Hash-based algorithm runs in the partial aggregation

mode, and its input data has been globally hash partitioned, the resident partition

will get the final aggregation results after all the input records are processed. In this

case there is no need to send the resident partition through the network (which will

increase the network cost and also the processing cost on the remaining levels), even if

the current node is not a root node of the aggregation tree. Because of this scenario in
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Figure 3.5: The Improved Hash-Based Aggregation Algorithm Workflow.

our aggregation tree model we allow non-root nodes of an aggregation tree to produce

the final results directly without flushing through the network to the next level.

No specific input data property is required for this algorithm. And its disk-

mode will produce aggregated results, but no other interesting properties. For the

cost model of the partial mode, the CPU cost consists of the cost for aggregating the

resident partition records, and the cost to identify the spilling records after the hash

table is full. Since there is only one spilling buffer in memory, the number of resident

groups is Gres = (M/F ∗ p/b) (the fudge factor is applied here to take the overhead cost

into consideration). For the hash miss cost for the spilling partition we again use the

bloom-filter based hash table with false-positive rate of α to reduce the hash miss:

Ccomp =Chash(
Rt ∗Gres

Gt
, Gres, Gres, H)

+ α(Rt ∗ (1− Rt ∗Gres

Gt
) ∗ K

H
) (3.6)

The new network I/O cost for flushing the spilling partition is:
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Ccomp =R ∗ (1− Rt ∗Gres

Gt
) (3.7)

3.3.3.4 PreCluster Algorithm

Here we introduce PreCluster, a new local aggregation algorithm utilizing the

sorted intermediate results. This algorithm assumes that the input data is already

sorted (i.e., with sorted property for input data) on the grouping key and it guarantees

that is output is also sorted, by simply performing a running aggregation on the input

data streams. The CPU cost of this algorithm is simply Ccomp = Rt, as the running

aggregation does only comparisons for each input record and produces no disk I/O cost.

The network cost, if applicable, will be the cost to send the unique keys or formally

Cnetwork = Gt.

3.4 A Cost Model Based Algorithm for Non-dominated

Global Aggregation Plans

3.4.1 Rules for Efficient Global Aggregation Plans

So far we have discussed the components of building a global aggregation plan,

including the network structure of a plan, connectors and local aggregation algorithms.

Combining these components together leads to a huge number of possible aggregation

plans. However, not all of these plans are of interest. To generate the efficient plans,

we propose rules (when building the aggregation tree) to eliminate inferior plans. In

particular:

• Nodes used in an aggregation plan should perform some non-trivial data processing
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task. (That is, we want to avoid plans where nodes only pass their input data to

the output stream without doing any aggregation processing).

• Constraints from the data properties should be enforced when building the aggre-

gation tree, so that interesting properties can be utilized, and will not be destroyed

by the downstream operations.

The first rule will eliminate an aggregation tree having non-root levels with

only one node. Typically, this one-node level simply passes the input data onto the

next level without doing any meaningful aggregation work. This is because most of

our local algorithms the in-memory aggregation collapses the duplicates in each page

sending to the single node of the next level. For the local algorithms that will send

pages with duplicates, specifically the partial-mode Hash-based algorithm, the spilled

partitions will be sent to the single node level for aggregation. An extreme example

would be a chain of improved Hash-based nodes. We also prune this structure because

it is worse than a “fat tree” structure where the processing of the spilled partitions can

be paralleled among nodes. (Basically a deep tree utilizes the pipeline parallelism, while

a fat tree utilizes the partition parallelism.)

Furthermore, an aggregation tree with nodes having disk-mode local aggrega-

tion algorithms at the middle levels (i.e., not the leaf level or the root level) can also be

eliminated by the first rule. This is because our disk-model local aggregation algorithms

can completely aggregate the input records. Since the data streamed to such a middle

level node definitely has the property of globally hash partitioned, the aggregation result

of such a node will be the final result and need not to be processed again.

The second rule will enforce the sorted order to be properly utilized and main-

tained. Specifically we have:
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• Nodes in a level with disk-mode improved Sort-based algorithm must have a Hash-

Merge connector for their output.

• A HashMerge connector must send data to nodes with the PreCluster algorithm

in order to utilize the sorted order.

3.4.2 Cost Model Based Plan Searching Algorithm
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Figure 3.6: Number of candidate plans (a) and non-dominated plans (b) for different
nodes.

Unfortunately simply applying the rules discussed above will not eliminate

many inefficient candidate plans. Figure 3.6 shows the number of generated candidate

plans after considering the above two rules in a log-scale chart, for clusters from 8 nodes

to 17 nodes, where the input data partitions are stored in 4 nodes. Clearly, there is an

exponential increase for the number of plans.

To pick only the efficient plans, we propose the following algorithm that finds

the non-dominated plans, utilizing our cost models for the aggregation tree structures.

The pseudocode is shown in Algorithm 1. Using a dynamic programming approach,

we recursively search the non-dominated sub plans for a subset of available nodes, and

group the non-dominated sub plan candidates based on their output properties. During
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the search, sub plans using a specific number of nodes will be stored (to be used later

when sub plans with this number of nodes are requested). To speedup the search, we

also enable plan pruning, so that only non-dominated plans will be stored.

This algorithm can greatly reduce the number of plans to be considered for

efficient global aggregation. Figure 3.6 (b) shows the number of non-dominated plans for

the same cluster configurations as in Figure 3.6 (a) for three different data cardinalities:

high cardinality (> 90% unique groups), median cardinality (around 30% unique groups)

and low cardinality (< 1% unique groups). Although the number of candidate plans

increases exponentially with the number of nodes, the number of non-dominated plans

remains small (around 15).

Algorithm 1 Search-Plan(N, NI)

Require: L as a hash map of mapping candidate plans to the key as the number of
nodes used; N as all the available nodes; NI ⊂ N as the nodes containing the input
data partitions; and PD as the property of the data.

1: if L[N ] is not NULL then
2: RETURN L[N ]
3: end if
4: create a hash map HN of (property, plans) pairs, and insert it into L with key N
5: if N == NI then
6: generate the leaf level: for each local algorithms satisfying the constraints from

property PD, and generate the sub plans. Insert the non-dominated plans into
HN using the output property as the key.

7: else
8: for i = (1, ..., N −NI) do
9: Search-Plan(L, N − i, NI)

10: Retrieve the sub plans using N − i nodes, as a hash map HN−i
11: for all connector C that satisfies property P ′D do
12: for all local algorithm Al satisfying property of output of connector C do
13: generate sub plans by adding a new i-node level over the all sub plans

in HN−i using C and Al, and insert the non-dominated sub plans in HN

according to their output property.
14: end for
15: end for
16: end for
17: end if

This algorithm can be easily extended to include customized cost weights. De-
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pending on the actual application, such a cost weight can be the average time for each

unit of operations (CPU comparison, disk I/O or network I/O), or the energy consump-

tion of each unit of operations. By applying customized cost weights the algorithm will

return a single plan for each data property of interest. For accommodating cost weights,

we only need to change the logic on checking the domination relation (Line 6 and Line

13 in Algorithm 1).

We note that since we are considering three cost factors, the problem of finding

the non-dominated plan is actually a skyline problem. Several research works [57], [39]

consider how to efficiently reduce the number of skyline objects, while guaranteeing that

the remaining objects can represent the removed non-dominated plans.

3.5 Experimental Evaluation

We proceed with an experimental study on the global aggregation cost models

and the cost model based plan searching algorithm. We ran our experiments on a single

machine with Intel Core i7 2.2 GHz (4 cores with 8 threads) with 8GB 1333 MHz DDR3

main memory, and 750GB 5400 RPM hard drive. The software system is Mac OS X

10.9, and JDK 1.7.0 45. For these experiments we used 8 Hyracks instances running in

a virtual cluster on the single test machine. Note that since our cost model is hardware

independent, the results on the cost factors examined in this section will not be changed

if the same experiments are moved to another environment (this would only affect the

total running time ).

We used the same aggregation query considered for the local aggregation study,

but on a smaller uniform data set with total 10 million records (218 MB in size). Further,

we considered two different group cardinalities, a low-cardinality with 15k groups and
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a high-cardinality with 9.8 million groups. For this data set we created four partitions,

each with 2.5 million records. Our aim is to run all possible aggregation plans so as to

verify the model correctness, hence the reason for picking this small dataset. However

note that our global aggregation model can be easily ported to a larger scale system for

larger data sets.

For the given configuration, using the two rules described in Section 3.4.1 (i.e.,

no dominance checking), there are totally 106 candidate plans created. Among these

plans, there are two different output properties: 70 plans come with (G, A, -) (i.e. the

result is fully hash partitioned and aggregated) and 36 plans with (G, A, S) (i.e. the

result is fully hash partitioned, aggregated, and also sorted). Among the 70 unsorted

plans, there are 30 plans whose nodes in aggregation tree are in the form of 4-3-1 (i.e., 4

nodes in the leaf level, 3 in the middle level and 1 root), 30 plans with nodes following a

4-2-2 structure, and 10 plans with a 4-4 structure. For the 36 sorted plans, there are 15

plans with a 4-3-1 structure, 15 plans with a 4-2-2 structure, and finally 6 plans with a

4-4 structure. While varying the local aggregation strategies for the same tree structure,

we started from the root level to the leaf level, and used partial aggregation algorithms

first and disk-mode algorithms next.

3.5.1 Cost Model Validation

To validate the global cost model, we compared the cost model prediction with

the actual cost numbers from the real experiments. In order to cover both the in-

memory aggregation cases (i.e. the group cardinality of the dataset is small enough to

fit in memory) and the spilling cases (i.e., the group cardinality of the data set is larger

than the memory, so spilling is required), in the experiments we used a small memory

configuration (16MB), so that the low-cardinality dataset can be fully aggregated in
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memory, while the high-cardinality dataset will spill. In order to compare all possible

plans, we disabled the dominance check when generating the plans, so all valid candidates

for the two output properties, including 70 plans for unsorted results and 36 plans for

sorted results, are checked.

Figures 3.7, 3.8, 3.9 show the comparisons between the global cost models and

the real cost numbers from for all the 106 plans generated in the experiments. Overall

our cost model can precisely predict the actual costs for all three factors, for both the

low-cardinality case and the high-cardinality case. For the CPU cost, from Figure 3.7

(a) we can see that since the input data can fit into memory, most of the plans need very

limited CPU cost. There are plans using much higher CPU, because these plans use the

improved Sort-based algorithm in some of its nodes. For the high-cardinality dataset in

Figure 3.7 (b), the CPU cost varies a lot since in this case the high cardinality causes

many CPU comparisons for Hash-Sort algorithms (very little collapsing but frequent

sorting and flushing; also with high number of hash misses). In the same figure we

observe a higher CPU cost on average from plan 46 to plan 76. This is because all these

plans all have the Sorted output property, so their final levels always use the disk-mode

improved Sort-based algorithm, which causes a high CPU comparison cost.

0	  
2	  
4	  
6	  
8	  

10	  
12	  
14	  
16	  
18	  
20	  

0	   10	   20	   30	   40	   50	   60	   70	   80	   90	   100
	  
110

	  

CP
U
	  C
os
t	  

x	  
10
00
00
00
	  

Plan	  ID	  

Expr	  
Model	  

0	  

10	  

20	  

30	  

40	  

50	  

60	  

70	  

0	   10	   20	   30	   40	   50	   60	   70	   80	   90	   100
	  
110

	  

CP
U
	  C
os
t	  

x	  
10
00
00
00
	  

Plan	  ID	  

Expr	  
Model	  

(a)Low Cardinality (b)High Cardinality

Figure 3.7: Global CPU I/O cost model validation.
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Figure 3.8 shows the disk I/O cost for all the candidate plans. Again, the cost

model predictions match with the real cost numbers very well. In the low cardinality

case all the plans for unsorted results (plan 0 to plan 69) need no disk I/O at all. For

plans generating the sorted results (71 through 105), the only local algorithm that can

get the sorted order is the disk-mode Sort-based algorithm, which needs disk I/O for

flushing and merging sorted runs. The extreme case is plan 105, which is a two level

aggregation tree with the first level using the disk-mode Sort-based algorithm and the

second level using the PreCluster algorithm. Since the disk-mode Sort-based algorithm

has the least group collapsing effect, while it also needs flushing and merging I/O cost,

it uses a very high disk I/O when compared with other plans.

For the high cardinality case showed in Figure 3.8 (b), the disk I/O rises

regularly in the generated candidate plans. All plans having a spike in the disk I/O

have at least one disk-mode local algorithm. For example, the plans 18 through 23 in

the first level use the disk-mode Hash-Sort algorithm, while the first level in plans 24

through 29 uses the disk-mode Hash-Based algorithm. Due to the high cardinality, most

of the records will be flushed onto the disk in order to be fully aggregated locally.
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Figure 3.8: Global disk I/O cost model validation.

Figure 3.9 depicts the network I/O cost for the considered plans; the cost model
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closely predictsthe network cost as well. In the low cardinality case, the collapsing effects

of different local algorithms greatly affect the network I/O: since more records can be

aggregated on the local node, less records need to be sent through the network. Among

these algorithms, the partial Sort-based algorithm has the least collapsing effect as it

can only aggregate a full memory of records each time. The spikes in Figure 3.9 (a)

indicate the plans using partial Sort-based algorithms. On the contrary, the hash-

based algorithms can collapse the data during the insertions, so more records can be

aggregated, resulting in the low value regions between the spikes. The high-cardinality

case depicts a very interesting pattern, where for the plans with a given output property,

the last several plans always have a lower network I/O. This is because these plans only

have 2 levels in their aggregation tree structures (each level with four nodes). In the high

cardinality case, most of the records are unique so all unique groups will be transferred

between levels; thus more tree levels will cause larger network cost.
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Figure 3.9: Global network I/O cost model validation.

3.5.2 CPU, Disk, Network Cost Interaction

Our experiments depicted interesting interactions among the three cost factors.

Figure 3.10 draws the three cost factors into the same figure after normalization. In
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the low cardinality case (Figure 3.10 (a)), the CPU cost and the network cost exhibit

very similar behavior among most of the plans. This is because in the low cardinality

case, higher CPU cases always indicate plans using the Sort-based algorithm, which

has the least aggregation collapsing effect thus leading to a higher network cost. The

only exception is plan 105, where the disk I/O is high but the network I/O is low. As

mentioned above, this plan has only two levels with the first level using the disk-mode

Sort-based algorithm; this implies high CPU cost for the Sort-based aggregation and

also disk I/O for flushing and merging sorted runs.
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Figure 3.10: Normalized costs in the same chart.

In the high cardinality case (Figure 3.10 (b)), there is no clear pattern over

all plans. Nevertheless, plans using the Sort-based algorithm incur both higher CPU

and network I/O cost, since the sort operator is CPU expensive, and each time only

the records in the memory can be aggregated. The usage of hash-based algorithms,

especially the Hash-based algorithm can greatly reduce the CPU, disk and network

cost. In the two-level plans (plans 60 through 69 and 100 through 105), there are cases

where the disk I/O is very high (plans 64 through 69, and 102 through 105). This

is because in a two-level aggregation tree, both levels can choose the disk-mode local

algorithms. In the high cardinality case, not much collapsing can be achieved in the first
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level, so the disk cost for the second level is also high. Such large disk I/Os cannot be

found in the low cardinality case because the data can fit in memory without causing

disk flushing.

3.5.3 Non-dominated Global Aggregated Plans

Here we ran our proposed search algorithm to find the non-dominated plans

for both the low cardinality and the high cardinality cases. For our configuration using a

total of 8 nodes with 4 nodes having the input partitions, there will be 13 non-dominated

plans for the low cardinality case (5 for unsorted results, and 8 for sorted results) and

10 non-dominated plans for the high cardinality case (4 for unsorted results, and 6 for

sorted results). Table 3.2 and Table 3.3 show the non-dominated plans found by our

algorithm among the original set of 106 candidate plans. Since these plans achieve the

Pareto optimization, it is not necessary for them to have the best cost on all three factors;

instead some factors among these three are no worse than any other plans. This is also

illustrated in Figure 3.11 that depicts the the normalized costs for all non-dominated

plans.
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Figure 3.11: The normalized cost for non-dominated plans.

For the low cardinality case, shown in Figure 3.11 (a), there are groups of
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plans (like plans 0 through 4, 5 through 8 and 9 through 12) that have relatively, very

similar behavior. For example, all plans from 0 to 4 appear to have the same three costs.

This is because in low cardinality, different local algorithms typically aggregate the local

data in main memory, resulting in similar behavior. The plan searching algorithm still

provides all these plans as non-dominated because the actual costs are slightly different

(but cannot be depicted in the figure).

PlanID Level 0 (# nodes) Level 1 (# nodes) Level 2 (# nodes)
62 HashSort[P](4) HashSort[D](4) -
64 HashBased[P](4) HashSort[D](4) -
66 HashSort[D](4) HashSort[D](4) -
68 HashBased[D](4) HashSort[D](4) -
69 HashBased[D](4) HashBased[D](4) -
81 HashSort[D](4) HashBased[P](3) SortBased[D](1)
84 HashBased[D](4) HashBased[P](3) SortBased[D](1)
96 HashSort[D](4) HashBased[P](2) SortBased[D](2)
99 HashBased[D](4) HashBased[P](2) SortBased[D](2)
101 HashSort[P](4) SortBased[D](4) -
102 HashBased[P](4) SortBased[D](4) -
103 HashSort[D](4) SortBased[D](4) -
104 HashBased[D](4) SortBased[D](4) -

Table 3.2: List of non-dominated plans for low cardinality dataset.

The high cardinality case in Figure 3.11 (b) shows a variation of the cost

factors for different non-dominated plans, however each plan cannot be dominated since

at least one of its cost factors is better when compared with other non-dominated plans.

In the unsorted plans, although the last two unsorted plans have high disk I/O cost

but just slightly better network I/O, they are returned as non-dominated plans since in

our experiments we treat all the three cost factors evenly. In reality when disk I/O is

considered to be very expensive compared with the CPU and network I/O costs, these

plans could be pruned by applying a higher weight to the disk I/O factor (which means

that the cost of a unit disk I/O operation is more expensive). In the sorted plans, we
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observed a similar trade-off between disk I/O and network I/O, where for the last two

plans the high disk I/O is from the disk-mode local algorithms on the leaf level, and the

low network I/O is because there are only two levels in these plans.

PlanID Level 0 (# nodes) Level 1 (# nodes) Level 2 (# nodes)
62 HashSort[P](4) HashSort[D](4) -
63 HashSort[P](4) HashBased[D](4) -
68 HashBased[D](4) HashSort[D](4) -
69 HashBased[D](4) HashBased[D](4) -
75 HashSort[P](4) HashBased[P](3) SortBased[D](1)
89 HashSort[P](4) HashSort[P](2) SortBased[D](2)
90 HashSort[P](4) HashBased[P](2) SortBased[D](2)
101 HashSort[P](4) SortBased[D](4) -
104 HashBased[D](4) SortBased[D](4) -
105 SortBased[D](4) PreCluster(4) -

Table 3.3: List of non-dominated plans for high cardinality dataset.

3.6 Discussions

While the proposed plan searching algorithm is able to identify the relatively

few non-dominated plans, its running time depends on the cost model computation

for each plan examined. Among the different algorithms the hash-based cost model

component is computationally expensive because we simulate the hash table look-up

procedure. During the simulation we compute the hash cost for each insertion until the

hash table is full; this depends on the input size and the hash table capacity. We suggest

two approaches to deal with this issue. First, we could precompute this simulation for

many common input and hash table parameters. Then, during the plan search, the

algorithm could look up the precomputed cost. This of course implies an extra cost for

storing these pre-computations and requires an estimation procedure in case the exact

parameters have not been precomputed already. Another approach is to use a faster but
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less precise cost model for hash-based algorithms. Both cases are interesting to pursue

and we leave them for further research.

Note that the proposed algorithm follows a top-down recursion approach, so

the subplans (i.e., plans not using all available nodes) are built before any full plans (i.e.,

plans using all available nodes). From our experiments we made two observations: (i)

most non-dominated plans contain no more than three levels in their aggregation tree

structure, and (ii) there are very few three level plans (most of the three level plans are

pruned). This is because a higher aggregation tree will potentially increase the network

cost, while it could bring limited benefits on the CPU and disk I/O cost.

Based on this observation, an improved plan searching algorithm can be pro-

posed using a bottom-up strategy. Instead of building the incomplete subplans first, the

algorithm can start to build the completed plans from the minimum number of levels

(2 levels in our model). By iterating the possible numbers of nodes in the second level,

both the completed plan (using all remaining nodes in the second level) and the in-

complete 2-level subplans (there will be nodes left unused for more levels) can be built.

Then the algorithm continues recursively to build higher trees based on these existing

2-level subplans. Each such subplan will be maintained in a seed subplan list, and once

it is used to expand into higher subplans, it will be removed from the list and the new

generated subplans will be added into the list. The algorithm terminates when the list

is empty.

Note that if the no dominance relation is checked for the seed subplans, all

possible subplans will be checked. To maximize the pruning over the subplans, the

following two strategies can be used to prune the subplans that would be inserted into

the list: (1) only the subplans that will not be dominated by any completed non-

dominated plans will be inserted into the seed list, and (2) to handle the subplans
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with no disk I/O cost (i.e. there is no disk-mode algorithms used in the subplan), the

algorithm estimates their possible disk I/O using the best disk I/O from the completed

non-dominated plans so far. Note that the second strategy could potentially prune the

subplans that could lead to a lower disk I/O, however in practice we notice that this is

rare, because the completed 2-level non-dominated plans always contain the plan with

the best disk I/O, which has fully utilized the in-memory aggregation in all available

nodes. This technique can be used to speed up the plan searching procedure, but not

necessarily guaranteeing that all the original non-dominated plans will be returned.

Furthermore, we also observed the following behaviors on choosing the local

algorithms for a global aggregation plan (under the assumption that we do global hash

partitioning between levels):

• If the input data is already sorted, the PreCluster algorithm can be directly applied

to completely aggregate the data without extra disk I/O cost.

• When the group cardinality of the input is low, it is beneficial to pick the partial-

mode HybridHash-based local algorithm to achieve good aggregation collapsing.

Partial-mode Hash-Sort algorithm is the same good if the data can fit in memory,

but may have a lower aggregation collapsing effect if the data needs to spill. The

partial-mode Sort-based algorithm would be good if the whole input dataset (not

aggregated) can fit in memory.

• When the group cardinality of the input is high, the partial-mode Hash-Sort local

algorithm is a good choice as it could aggregate the input records using hashing

(so its CPU cost is low), while it avoids the high hash miss cost of the partial-

mode HybridHash-based local algorithm. Partial-mode Sort-based algorithm is

not recommended because it has high sorting cost, and also the latest aggregation
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collapsing effect.

3.7 Summary

In this chapter we discussed global aggregation strategies in a shared-nothing

environment. A global aggregation plan can be physically represented as an aggregation

tree, where a tree node represents the local aggregation strategy and an edge indicates

the data redistribution strategy. Since the aggregation result is generated by the root

level nodes in an aggregation tree, it is also possible to use partial local aggregation

algorithms. However given the different aggregation tree structures, different local ag-

gregation algorithms and different data redistribution strategies there is an exponential

number of physical aggregation plans. In order to identify the efficient global aggre-

gation plans, we extended our local aggregation cost models to predict the cost of the

global aggregation plans. Our cost model uses three hardware independent cost fac-

tors: CPU cost, disk I/O cost and network I/O cost. Through this cost model, we also

proposed an algorithm to find the global aggregation plans with non-dominated costs.

From our experiments we have showed that our extended global aggregation cost model

can precisely predict the global aggregation plan cost, while our algorithm can find the

typical small number of non-dominated aggregation plans without searching the whole

candidate plan space.
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4

Continuous Top-k Objects with

Relational Group-By

4.1 Introduction

Nowadays most of big data applications need to handle the large volume

datasets with spatial and temporal information enriched. Such data are very com-

mon in various areas, like the social network, log information, business transaction, etc.

Most of the traditional data processing tasks, like join and aggregation, do not directly

address these enriched information, so there have been a burst increase on research top-

ics about handling spatial and temporal enriched big data. Specifically, traditional data

processing tasks may be extended to cover the new requirement from these new infor-

mation. Efficient algorithms could be devised based on the properties of these spatial

and temporal information, which is not possible for the tradition data set without such

information.

In this chapter we will discuss a new aggregation problem, focusing on the

spatial and temporal information enriched dataset. Compared with the aggregation
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problems we have discussed in previous chapters, the main difference of this new aggre-

gation problem is that the grouping information is position and time related, and it is

unknown before the the related data is collected and processed. In this new aggregation

problem, the group of an object is subject to the other objects around it in the scope

of both position and time.

Formally, we call this new aggregation relational group-by. The definition

of such a relational group-by is an input dataset, an aggregate function, and a relational

group function. For the aggregation function, it is the same as what we have discussed in

the previous chapters, like SUM, COUNT, MIN, MAX, AVG, etc. The main difference

here is the relational group function, defined as below:

Definition 2 Relational Group Function: A relational group function, FG, accepts the

input of two data tuples r0 and rg, and returns a boolean value illustrating whether rg

will be involved into the score calculation of r0. That is, FG : r0 × r →BOOL.

Basically this relational group function defines the groups. For any two records,

we can check whether they are in the same group or not by applying the relational group

function over them. The traditional aggregation algorithm can be considered as a special

case, where the relational group function simply checks whether the two records have

the same grouping key value.

This chapter we will discuss this new aggregation problem in a spatial and

temporal context. An example application for this specific problem is like this: For

ensuring public safety, objects (or protectees) like cash transport vans and bank branches,

should be properly protected by police forces (or protectors) patrolling around. Crimes

can be prevented if all protectees are protected well and offenders cannot find any

weak point to attack. However, since there is a limit on available protectors and some
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objects are moving, it is important to recognize protectees without enough protection

for potential attacks. Monitoring such unsafe objects is also important for the efficient

arrangement of protectors, where additional protection force should be placed to protect

unsafe objects instead of strengthening the safe ones.

In our framework, different protectees have different safety requirements, while

different protectors can provide different amounts of protection (safety supply). Some

protectees, like cash transport vans and vehicles of foreign dignitaries, need more pro-

tection than others. Different types of protectors, like police helicopters, motor cruisers,

mounted officers, and walking patrols, have different protection capability and different

size of protection regions. More importantly, both safety requirement and supply may

change over time since some objects are moving, and at different time or places the

safety requirement/supply varies (e.g. some places may have higher crime rate, the con-

figuration of police force may change, etc.). In order to handle these dynamic changes,

continuous monitoring is necessary on the most unsafe objects to be protected.

This chapter proposes a novel continuous top-k query, called continuous top-k

unsafe moving object query or CTUO. Each object, either a protectee or a protector,

is modeled as a record with spatial and temporal information and safety weight (safety

requirement for protectees, safety supply for protectors). The unsafety weight of a

protectee, which works as the score in the top-k query, is defined as the difference

between its safety requirement and the protection it can obtain from protectors around

it.

CTUO is a novel continuous top-k query on location-based data. In order to

calculate the unsafety weight, both protectees and protectors should be considered in a

“join-group-sort” procedure. Given a protectee and a protector, CTUO needs to decide

whether the protection relationship exists. Then for all protectors protecting a given
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protectee, an aggregate should be processed to obtain the unsafety weight. Finally all

protectees are sorted on their unsafety weights and the top-k unsafe objects can be

decided.

The computational challenge introduced by CTUO cannot be handled by exist-

ing methods. Since CTUO describes the significance of relationships between protectees

and protectors, traditional top-k algorithms with scores as the characteristics of ob-

jects cannot be applied here. Two similar queries are rank-join and rank-aggregate.

However, rank-join queries only consider the score of each join result individually, and

rank-aggregate works on groups in a single relation. CTUO discusses the ranking query

combining these two queries, which cannot be solved efficiently by solutions for either

of them.

This chapter proposes two algorithms, GridPrune and GridPrune-Pro, to effi-

ciently solve CTUO queries. Both these algorithms use the basic prune strategy, Bound-

Prune, which is also widely applied in many top-k algorithms. Although BoundPrune

can be used for more generic CTUO queries where arbitrary join condition and any dis-

tributive aggregate are allowed, its performance is quite limited due to the loose pruning

bounds. The two algorithms we propose improve this by utilizing a grid index to boost

the prune power.

Our contributions in this chapter can be summarized as follows:

• We propose the continuous top-k unsafe moving object query or CTUO. This

introduces a novel type of continuous top-k queries describing the significance of

protection relationships between protectees and protectors. It is also important to

many real applications to monitor public safety and arrange safety enforcement.

• We discuss the prune strategy using bounds of scores and a basic pruning algorithm
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BoundPrune, which is a generic algorithm working for arbitrary join and score

conditions defined in CTUO.

• We propose two algorithms by improving the prune strategy using a grid index

structure: GridPrune for top-k unsafe object query on both static and continuous

(efficient for batch updates), and GridPrune-Pro for continuous top-k unsafe ob-

ject query. Our experiments show great I/O performance improvement from the

proposed algorithms compared with the naive approach.

• We evaluate our proposed algorithms in both memory-based and disk-based im-

plementations, and discuss the performance gains under different parameters.

The rest of the chapter is organized as follows. Section 4.2 reviews existing

works related to CTUO, and Section 4.3 formally defines the CTUO. In Section 4.4

we introduce the prune strategy by bounding and pruning the unseen objects, and in

Section 4.5 and 4.6 we present two efficient algorithms to solve CTUO queries, GridPrune

and GridPrune-Pro. Section 4.7 describes the experimental evaluation while Section 4.8

concludes the chapter.

4.2 Related Work

Continuous Top-k Unsafe Place: This chapter extends and generalizes the

continuous top-k unsafe place query or CTUP proposed in [62]. Given a set of places

with different safety weights and moving protection forces, a CTUP query monitors the

most k unsafe places over updates of the protection forces. Two I/O efficient algorithms,

BasicCTUP and OptCTUP, are proposed. These algorithms use a grid index to maintain

the safety bounds of cells, and to update the top-k results by scanning the cells in the
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descending order of the safety bounds. Algorithms can be terminated when the lower-

bound score of the k-th candidate the higher than the upper bound score of all the other

cells not scanned yet. The two algorithms are I/O efficient by maintaining the estimated

bounds of cells in main memory instead of loading the contents of cells from the disk.

The CTUO query discussed in this chapter is more general, since objects to

be protected can be either static or movable. Moreover, the safety weight of both

protectors and protectees can be changed over the time. The two algorithms proposed

in [62] cannot handle these generic situations, while algorithms proposed in this chapter

work for both CTUP and CTUO queries.

Top-k Queries: Given a d-dimensional data set and a scoring function, a

top-k query [30] returns the k records with the highest scores. The score of each record

is related to the attributes of the record itself, so it describes the significance of charac-

teristics of objects and only one relation is involved. Instead the CTUO query focuses

on the relationship between two relations.

Many algorithms, like the Threshold Algorithm and the Non-Random-Access

Algorithm [19] using bounds information, Onion [11] using convex hull, and PREFER

[28] using materialized functions on partial scores, have been proposed. The same prune

strategy used in the TA and NRA algorithms can be applied directly to the CTUO

query, but it is quite inefficient, which is showed in Section 4.7.1

Continuous answering a top-k query can be processed by checking each update

with the existing top-k objects and updating the top-k list accordingly. However this

does not work when the main memory is limited and not all scored records can be

maintained in main memory. [42] proposed an I/O efficient solution on monitoring top-

k query results over a sliding window. Data are indexed using an axis-parallel grid and

cells can be pruned during the top-k searching if the upper bound score of a cell is less
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than the score of the k-th candidate.

Ranking Queries: There are also other variants of top-k queries related to

the CTUO query, like rank-join [29] and rank-aggregate [38][59]. Both of them deal

with scoring functions on multiple records instead of one record in the traditional top-k

query. In these cases each record provides a partial score since it only contributes part

of the final score. Rank-join returns the top-k join results for two given relations and a

join condition. Rank-aggregate returns the top-k groups with highest aggregate values

for a given relation and a grouping function. The CTUO algorithm proposed is novel

since it combines both the join and aggregate into the same query, so existing algorithms

working for rank-join and rank-aggregate cannot be applied directly to the CTUO query.

Continuous Location-based Queries: Many continuous location-based queries

have been proposed, such as continuous k-means [63] and continuous k-NN [32]. Given

a set of moving objects, a continuous k-means query monitors the k groups of objects by

minimizing the total cost. The continuous nearest neighbor query returns the nearest

neighbors of given objects when the locations of objects are changed over time.

The CTUO query proposed in this chapter cannot be solved by the algorithms

proposed for existing continuous location-based queries. Queries mentioned above have

a common property that the region of interest for each object is limited by the closeness

on location. For example, in k-means the center assigned to an object should be closest

to that object compared with other candidate centers, and in k-NN the relationship

between the query point and the answer points should be “nearest”. However in CTUO,

since the protection region of a protector can be arbitrary, the processing region for each

protectee is the whole data set instead of only the regions nearby. As a result, to maintain

the answer of a CTUO query we need to process the whole space for every update.
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4.3 Problem Definition

In this section we formally define the problem of continuously monitoring top-k

unsafe moving objects (CTUO), and discuss its challenges.

4.3.1 Monitoring Top-k Unsafe Moving Objects

In monitoring top-k unsafe moving objects, two different categories of objects

are involved: one is for objects to be protected (protectees), the other is for objects

providing protection (protectors). To simplify the description, we use RPR where “PR”

is for “protection requirement” to represent the protectees, and RPS where “PS” as

“protection supply” for protectors. Data from the two classes have the schema as follows:

• If r ∈ RPR, then r contains the following attributes: ID, timestamp, x location,

y location, and safety requirement. Here location represents the location at the

given timestamp, and safety requirement is a numerical value that specifies the

requirement on protection.

• If r ∈ RPS , then r contains the following attributes: ID, timestamp, x location,

y location, safety supply, and coverage. The safety supply is the protection the

protector can provide to protectees within its coverage, defined by the radius of

the region it can protect around it.

So given r0 ∈ RPR and r1 ∈ RPS , if the distance between r0 and r1 is not

greater than r1.coverage, then we say that r1 is protecting r0. The Euclidean distance

is used throughout the chapter.

We use safety weight, or “sw” for short, to notate either the safety requirement

for a protectee or safety supply for a protector. We use unsafety weight to represent the

actual protection obtained by a protectee. Given an object r0 from RPR, its unsafety
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weight is defined as the difference between its safety requirement and all protection

provided by protectors covering it. Formally,

unsafetyr0 = r0.sw−
∑

r protects r0

r.sw

where the protection relation between r ∈ RPS and r0 ∈ RPR is established as

{r protects r0} : Dist(r, r0) ≤ r.coverage

Note that in CTUO each protectee covered by a protector will get the protection equal

to the maximum safety provided by the protector. This means that more protectees

within the coverage region of a protector will not decrease the protection obtained by

each protectee. We make this assumption since CTUO is aimed at preventing potential

attacks instead of managing on-going multiple attacks. Therefore, we are interested in

the case of a single attack in our framework. To deal with multiple concurrent attacks,

the safety provided by a protector can be evenly distributed over protectees covered,

and our proposed solutions are still feasible. However more complex cases, for example

the case where the protection is distributed based on the distance between the protectee

and the protector, are not covered in the chapter.

Thus our goal is to query the k most unsafe objects, which is equivalent to find

the k objects with the highest unsafety weights. Now we define the top-k query on the

most unsafe objects as follows, and an example on top-1 unsafe object query is showed

in Figure 4.1.

Definition 3 Top-k Unsafe Objects: Given two datasets, RPR for protectees and RPS

for protectors, a top-k query on most unsafe objects returns the k objects having the
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highest unsafety weights.

Figure 4.1: An example of the CTUO query.

Figure 4.2: The query model for CTUO.

4.3.2 Continuous Processing Model

We extend Definition 3 into the continuous scenario, allowing dynamic updates

to both the protectees and protectors data sets. A change has a timestamp, and all

changes happen in increasing timestamp order. A change can be one of the following

three cases.

• Create: A new object is created. This is triggered by an update coming with an

id not in the two data sets. An object can be created only if it has never been

seen in data sets or it has been deleted at some previous timestamp.
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• Update: Attributes of an existing object are updated. Such an update may change

the location, the safety weight, or the coverage.

• Delete: An existing object is deleted. Any further update with the same object id

will be considered as a creation of a new instance of the object.

We say that an early version of an object is invalidated by either an update or a delete.

Answers to top-k queries should be objects valid at the querying time, so the answer to

the top-k query should be updated when the data set is updated.

Figure 4.2 shows the processing model for continuous monitoring top-k unsafe

moving objects. Updates are implemented as a data stream fed into the system and

stored on disk. The CTUO query engine loads data from disk for processing and returns

the top-k results. In our framework we are interested in the disk I/O, since accessing

data through disk I/O is the performance bottleneck in this model. So our goal is to

reduce the disk I/O as much as possible.

4.3.3 Challenges of CTUO

There are three stages required to answer a CTUO query: join, aggregate and

sort. In the join stage, for each protectee from RPR, all protectors protecting it are

retrieved to form a group. The join condition is defined by whether a protector can

protect the given protectee within its protection coverage. In the aggregate stage, safety

weights from protectors in the same group are aggregated and scores for groups are

calculated. Finally in the sort stage, all protectees are sorted on their unsafety weights

and the k highest ones are returned.

In order to get the unsafety weights for each protectee, each tuple in RPR

should be accessed at least once in order to identify the corresponding group. More
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accesses to RPS are necessary to maintain the scores of groups, because each tuple from

RPS may belong to several groups. This leads to a Cartesian product over the two

relations for scores of all groups. Due to this reason we also refer the protectee relation

to target relation and the protector relation as support relation for the analysis below.

There are more challenges when the CTUO query is processed in the continuous

scenario. In order to maintain the correctness of the top-k results, every time when an

update comes, intensive computation is required to update the groups influenced. In

particular,

• The update is on RPR: If such an update creates a new group or updates an

existing group, maintaining the precise score of this group requires accesses to

all tuples from RPS to check the protection relationship. If any top-k group is

influenced by the update, non-top-k groups may be processed to replace groups

influenced, so an additional sort is necessary.

• The update is on RPS : Groups influenced by this update should be updated, and

the top-k list should be updated as well.

These challenges are amplified when the data sets to be processed are stored

on disk. When disk accesses are necessary, a sort on all groups is computationally

prohibited, while scans over data sets for join results cost even more. A naive approach

requires a complete join every time an update arrives. The cost of the sort stage can

be reduced by maintaining a top-k candidate list and sorting on only k objects at each

update. However the join stage still costs large number of I/Os and makes the algorithm

quite inefficient. To devise efficient algorithms, the number of joins and sorts should be

controlled.
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4.4 BoundPrune

One obvious approach to solve the CTUO query is to directly adapt the TA al-

gorithm [19]. We call this approach BoundPrune and it is described below. Nevertheless,

this approach has various disadvantages (as described in Section 4.5.1).

If we consider the safety weights of relations RPR and RPS in CTUO as the two

scoring attributes, the TA algorithm works for CTUO too. Since the unsafety weight is

positive related to the protector’s safety weight while negative related to the protectee’s

safety weight, RPR is sorted on the descending order of the safety requirement, while

RPS is sorted on the ascending order of the safety supply. Then the algorithm loads

tuples from the two relations in the same way as the TA algorithm. We use r̄PR and

r̄PS to representing the latest loaded tuple in RPR and RPS .

We still use the same idea to define the lower-bound and upper-bound in

CTUO. Note that since the safety of a protectee is defined as the difference between

its requirement and the protection supplies it can get, the lower-bound score of a pro-

tectee corresponds to the upper-bound safety weight provided by the protectors. So the

upper-bound unsafety weight of a protectee can be calculated by the loaded protectors

protecting the given protectee. Formally, for a given protectee r0, for all r1 ∈ RPS that

Dist(r0, r1) ≤ r1.coverage,

ubr0 = r0.sw −
∑

r1 is loaded

r1.sw

In order to define the lower-bound of a score, we need to estimate upper bound of the

protection from unknown protectors. However in CTUO, there may be many tuples

from RRS matching a single tuple from RPR so the number of protectors from RPS

protecting a given protectee is unknown when RPS is not fully processed. Without any
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pre-knowledge about the group and the unloaded tuples in RPS , we have to assume that

all unloaded tuples in RPS may protect the given protectee. If the depth of the latest

loaded tuple in RPS is dPS , thus the lower-bound score of a given protectee r0 can be

formally defined as

lbr0 = ubr0 − (|RPS | − dPS) ∗ r̄PS .sw

Algorithm 2 BoundPrune

Require: Two data sets RPR and RPS , k, FG and FS

Ensure: Return k groups with the highest scores
1: Sort the two data sets based on their partial score.
2: Initialize the top-k candidate list to be empty.
3: for each tuple r0 ∈ RPR do
4: Initialize the lower bound and the upper bound of the group identified by r0 as 0.
5: end for
6: for each tuple r1j ∈ RPS where j is the index of the tuple in the sorted order. do
7: for each group gi identified by r0i ∈ RPR do
8: if FG(r0i, r1) is TRUE then
9: Update the lower-bound of gi with the partial score of r1.

10: end if
11: Update the upper-bound of gi to be (gi.lb+ FS(r

|RPS |−j
1j )).

12: if G.score is larger than the score of the k-th candidate (0 if the candidate list
has less than k groups) then

13: Insert G into the top-k candidate list in order. Remove the groups with lowest
scores to maintain only k candidates in the list.

14: end if
15: end for
16: Remove groups outside of the candidate list has upper-bound larger than the

lower-bound of the k-th group in the candidate list
17: if no groups left outside of the candidate list then
18: Return the candidate list as the final result.
19: end if
20: end for
21: Return the top-k candidate list as the final result.

Algorithm 2 utilizes the bound pruning technique above. We use FG to repre-

sent the join condition and FS for the score function. Note that at Line 16 a protectee

can be pruned if its upper bound score is no more than the lower bound score of the k-th

candidate, which enables early termination if no other protectees are left for processing.
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This is backed by the following lemma.

Lemma 4 In the BoundPrune algorithm, for every protectee, its lower bound score will

never be decreased, while its upper bound score will never be increased.

Proof. Consider two timestamps t1 and t2 during the running time of the BoundPrune

algorithm satisfying t1 < t2. The non-increasing upper-bound is easy to prove, since

as the algorithm is processing, protectors already joined with the protectee will not be

removed from the group, while there will at least 0 protector being added into the group.

That is, for a given protectee r0, for all r1 ∈ RPS that Dist(r0, r1) ≤ r1.coverage,

∑
r1 is loaded at t1

r1.sw ≤
∑

r1 is loaded at t2

r1.sw

which means ubr0(t1) ≥ ubr0(t2). The non-decreasing lower bound is based on the facts

that as the algorithm is processing, 1) if the current processing protector does not cover

the given protectee, then lbr0(t1) ≤ lbr0(t2) since its upper bound is not changed but

the number of unloaded tuples in RPS , which is (|RPS − dPS|), will decrease; 2) if the

current processing protector covers the given protectee, the new lower bound score will

remain the same as follows.

lbr0(t2) = ubr0(t1)− r̄PS .sw − (|RPS | − dPS − 1) ∗ r̄PS .sw

= ubr0(t1)− (|RPS | − dPS) ∗ r̄PS .sw

= lbr0(t1)

Based on the non-decreasing lower bound, we can deduce that the lower bound

score of the k-th candidate is also non-decreasing. Since for a protectee outside of the

candidate list, its upper bound score will never be increased, it can be pruned safely if
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its upper-bound score is no more than the lower-bound score of the k-th candidate.

Unfortunately the BoundPrune algorithm is not very efficient. Our experiments

in Section 4.7 show that when considering the loading depth of each relation, its I/O

performance is almost the same as the naive algorithm. We will discuss this problem

and our solutions to it in the next section.

4.5 GridPrune Algorithm

We propose an I/O efficient algorithm, called GridPrune, that utilizes the

bound prune strategy mentioned above, and provides much tighter bounds compared

with the BoundPrune algorithm. We firstly discuss the drawbacks of the BoundPrune

algorithm, and then fix them in our proposed algorithm.

4.5.1 Drawbacks of BoundPrune

The reason for the poor performance of the BoundPrune algorithm is on the

loose lower bound scores estimated. Recall that we define the lower bound score of

a protectee using all the unloaded protectors and the maximum known safety weight

from RPS , which provides a safe but inefficient lower bound. In real applications, only

a small part of the unloaded protectors from RPS have protection relationship with a

given protectee, so the size of the group is over-estimated. Moreover, the safety weights

for unloaded protectors are over-estimated by the maximum safety weight seen so far.

So during most of the running time the lower-bound score of the k-th candidate is too

low to prune any groups outside of the candidate list.

Another problem for the BoundPrune algorithm is that all objects from RPR

must be accessed at least once. In the CTUO queries, we have the assumption that
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the number of protectees is much greater than the protectors, so possible early prune

can only happen on RPS . Without being pruned before the termination, the cost to

maintain the bounds information of the groups is huge.

BoundPrune is not I/O efficient either. Sorted accesses require more I/Os when

the data sets are stored on disk. The algorithm requires data being sorted on partial

scores, so location-based index structure cannot be used, and location information can-

not be utilized. In particular, there are two kinds of reference locality when processing

a CTUO query.

• Coverage Locality: Given a protector, within its coverage there may be more than

one protectee that can be protected by it. I/O will be saved if these protectees can

be loaded together from the disk storage into the main memory since they may be

processed together if the protector is loaded.

• Update Locality: Given an update to a protector, its new location will be not very

far away from its previous location given its movement is realistic over a map, thus

there may be protectees covered by this protector in both timestamps. Again, I/O

will be saved by keeping these protectees in main memory during the update.

4.5.2 GridPrune

The common property shared by the two locality optimization in CTUO is

the location closeness. As a location based continuous query, CTUO has the property

that the protection relationship between a protectee and a protector establishes based

on their closeness, which is defined by the coverage attribute of a protector. Based on

this property, protectees having similar locations (or close to each other) may also have

similar bounds information, since the region containing these protectees may be covered
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by the same group of protectors. So if the bounds information about this region is

known, we can use them to estimate the bounds information of protectees inside.

The usage of region bounds can improve the BoundPrune algorithm with better

pruning power. By grouping protectees on their locations, tighter bounds for their scores

can be obtained compared with the BoundPrune algorithm. This is much tighter than

considering all protectors not loaded in the whole data domain in the BoundPrune

algorithm. Furthermore, a region can be pruned if its upper-bound score is lower than

the k-th candidate, without loading and checking all protectees inside.

The BoundPrune algorithm can be further improved by accessing sorted cells

instead of protectees. Since the bounds information of a cell can represent the bounds

of protectees inside, cells with higher upper bounds of unsafety weight contain top-k

unsafe protectees more probably.

Based on the observations above, we use the same grid to index both protectees

and protectors. Protectees within the same cell have the similar location information

and their bounds information can be estimated by the bounds of the cell. There are two

advantages using such an index structure. First, since protectees with similar locations

within a cell can be loaded together into the memory, I/O can be reduced by precaching.

Second, the bounds information of a cell can be calculated without reading its content

from the disk, so protectees in some cell can be pruned based on the cell bounds, which

reduces the I/O by not loading the content of the cell.

In our implementation, for each cell in the grid, the following additional infor-

mation is maintained in main memory:

• Protection Supply Lower-Bound: The minimum possible protection on this cell

provided by protectors around it. This is measured as the sum of safety supply
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Algorithm 3 GridPrune

Require: A grid index containing the valid objects from the two data sets RPR and
RPS .

Ensure: Return k objects in RPR with the highest safety weights.
1: Initialize three bounds values for each cell ci: protection supply lower-bound slbi,

and protection requirement upper-bound rubi.
2: Initialize influence cell list ICLi for each cell ci in the grid.
3: for each cell ci in the grid do
4: for each object o in ci do
5: if o ∈ RPR then
6: Update rubi if the safety requirement of o is higher than rubi.
7: else
8: for each cell cj in the grid do
9: Update cj .slb if cj is fully covered by o.

10: end for
11: end if
12: end for
13: end for
14: for each cell ci in the grid in the descending order of the value (rubi − slbi). do
15: if the unsafety weight of the k-th candidate is higher than the value of (rubi−slbi)

then
16: Terminate the algorithm and return the candidate list as the top-k result.
17: end if
18: Load the cells in ICLi.
19: for each object o ∈ RPR in ci do
20: Calculate its precise unsafety weight by loading objects from the influencing

cells
21: end for
22: Insert o into the candidate list in the descending order of the unsafety weight, if

its unsafety weight is higher than the unsafety weight of the k-th candidate (0 if
there are less than k candidates).

23: end for
24: Return the top-k candidate list as the final result.
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from protectors whose coverage regions contain the whole cell.

• Protection Requirement Upper-Bound: The maximum protection requirement

from protectees inside of this cell. This is measured as the sum of safety sup-

ply from protectors whose coverage regions at least intersect the cell.

• Influencing Cell List: A list of references pointing to cells containing protectors

whose coverage regions intersect or cover this cell. This enables efficient calculation

of unsafety weights of protectees in this cell without scanning all cells in the grid.

For a given cell, its protection supply lower-bound and influencing cell list can

be calculated without inspecting its contents. Figure 4.3 shows the spatial relationships

between a protection region and a cell. A protection region covers a cell if and only

if all the four corners of the cell are covered by the protection region (Figure 4.3 A).

A protection region intersects a cell if (i) at least one of the four corners of the cell is

covered by the protection region (Figure 4.3 B), or (ii) none of the four corners is covered

and at least one edge of the cell intersects with the protection region (Figure 4.3 C).

Figure 4.3: Spatial relationship between a coverage region and a cell: (A) Fully Cover;
(B, C) Intersect.

Algorithm 3 shows the GridPrune algorithm. The whole algorithm consists

of two stages. The first stage (Line 1 - 14) initializes the bounds information and

the influence cell list for each cell, during which each cell is only scanned once. Then
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the second stage (Line 15 - 24) accesses cells in the descending order of their unsafety

weight upper-bound. When accessing a cell, protectees contained are loaded and their

unsafety weights are calculated by loading the influence cells of this cell. Protectees

whose unsafety weights are larger than the score of the k-th candidate are inserted into

the candidate list. The algorithm can be terminated if the next visiting cell has its

score upper-bound no more than the score of the k-th candidate, or all cells have been

inspected. Finally the candidate list is returned as the top-k result.

Although the GridPrune algorithm mainly works for a static query, it can

also be applied to the continuous environment where batch updates are allowed, while

reserving its efficiency. That is, before another top-k query is issued, there are many

updates streamed into the system. In such case, the cost of re-calculating the bounds

information and also updating the top-k candidate list can be amortized to multiple

updates, which will decrease the total I/O cost. In Section 4.7 the comparison between

GridPrune and another proposed algorithm, GridPrune-Pro, will discuss this point in

more detail.

Compared with the CTUP algorithm proposed in [62], the GridPrune algorithm

maintains the exact bounds information of each cell instead of the estimated ones. This

increases the memory requirement on the influence cell lists, however it avoids the “flash-

ing cell problem” in CTUP [62] where the bounds information of a cell may be updated

(increased or decreased) unnecessarily. Although the OptCTUP algorithm proposed in

[62] solves this problem by using hash functions to record the protectors counted already,

theoretically the cost of maintaining a hash over influencing objects is the same as the

cost for keeping these influence cell lists, or even worse (multiple protectors in the same

cell can be maintained by a single cell in GridPrune instead of one hash key for each).
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4.6 GridPrune-Pro Algorithm

The GridPrune algorithm proposed in the previous section does not work ef-

ficiently for the continuous situation. To handle an update, recalculating the bounds

information of each cell is still I/O expensive. Furthermore, the update may not change

the top-k result from the previous timestamp so the second stage of the GridPrune al-

gorithm is not always necessary. According to the update locality, the unsafety weight

of a protectee may not change if the protector covers it in both two timestamps, and

the safety provided by the protector is not changed either.

We now propose a progressive algorithm of GridPrune, called GridPrune-Pro,

to handle the dynamic updates on both protectees and protectors. The main algorithm

is divided into two parts, one is to update the bounds information and the other is

to update the top-k list. The second part can be invoked any time a top-k result is

needed, and it is calculated based on the previous top-k results and the updated bounds

information, so it is much more efficient than re-running the GridPrune algorithm.

Once an update is issued, depending on whether it is for a protector or a

protectee, different strategies are used to maintain the updated bounds information for

influenced cells as follows (implemented in Algorithm 4).

• Update a protector: The protection supply lower-bounds of cells influenced by

the update are adjusted based on the spatial relationship described in previous

section. Cells influenced by the previous version of the protector but not the new

one should remove the corresponding cell (the cell containing the previous version

of the protector) from their influence cell lists.

• Update a protectee: If the protectee stays in the same cell after update, disk access

is necessary only if the update changes the protection requirement upper bound
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of the cell. If the protectee is not in the same cell after update, the protection

requirement upper bounds of the two cells need to be updated if they are changed

due to the update. The protection requirement upper bound of a cell may be

changed if the protectee with the highest safety requirement is updated to a lower

safety requirement, or a new protectee with a higher safety requirement than the

safety requirement upper bound of the cell is inserted.

Algorithm 4 GridPrunePro: Bounds Update

Require: A grid index containing the valid objects from the two data sets RPR and
RPS , an update u

Ensure: Update the grid index, and also bounds information maintained for top-k
processing.

1: Insert u in the grid index and invalidate the previous version of object o where
o.id = u.id.

2: Load the previous version of o, and let it be op
3: if u is an update on an object o ∈ RPS then
4: for each cell c in the grid do
5: if op ∈ c.ICL then
6: Adjust c.slb and c.sub by removing op from the corresponding list.
7: end if
8: end for
9: Calculate the cell c′ containing u

10: Update c.slb if c is fully covered by o.
11: Update c.sub if c is at least partial covered by o. Add c′ into the influence cell list

ICL of c.
12: Adjust scores of the top-k candidates using op and u.
13: else
14: Adjust rub of the cell containing op.
15: Adjust rub of the cell containing u.
16: Update top-k candidate list, if u is contained in the candidate list.
17: end if

The top-k list is then updated on demand when Algorithm 5 is invoked. In-

tuitively, the top-k candidate list will be updated only if there are cells whose score

upper-bounds are higher than the score of the k-th candidate. In details, this may hap-

pen if (i) the score upper-bound of a cell is increased after update, or (ii) the update has

influence to the top-k candidate list so that the score of the k-th candidate is decreased,

121



or some top-k candidate is removed from the top-k list (which will decrease the score of

the k-th candidate to 0).

Notice that Algorithm 5 does the same job as the second stage of the GridPrune

algorithm. However in GridPrune-Pro, previous top-k results are reused so cells with

their score upper-bounds lower than the score of the k-th candidate can be pruned earlier

than the GridPrune algorithm.

Algorithm 5 GridPrunePro: Top-k Update

Require: A grid index containing the valid objects from the two data sets RPR and
RPS , an update u

Ensure: Update the top-k list from the current bounds information
1: for each cell ci in the grid in the descending order of the value (rubi − slbi). do
2: if the unsafety weight of the k-th candidate is higher than the value of (rubi−slbi)

then
3: Terminate the algorithm and return the candidate list as the top-k result.
4: end if
5: Load the cells in ICLi.
6: for each object o ∈ RPR in ci do
7: Calculate its precise unsafety weight by loading objects from the influencing

cells
8: end for
9: Insert o into the candidate list in the descending order of the unsafety weight, if

its unsafety weight is higher than the unsafety weight of the k-th candidate (0 if
there are less than k candidates).

10: end for
11: Return the top-k candidate list as the final result.

4.7 Performance Analysis

We implement the proposed algorithms in Java running on Mac OS X 10.6.3

(Snow Leopard), on a MacBook Pro with a Intel 2.2 GHz Core 2 Duo processor and

4 GB memory. For the disk-based grid index structure, we use the NEUStore package

[61] to simulate the disk and buffer activities during the query processing.

We use two synthetic data sets in our tests, one is only for static query, and
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the other is for both static and continuous cases. For the first data set, we generate

objects with randomly selected types (protectee or protector), location, safety weight

and coverage (only for protector). For the second data set, we use the Network-based

Generator of Moving Objects [9] to generate simulating objects moving along the road

network of Oldenburg.

4.7.1 Naive v.s. BoundPrune

Firstly we measure the prune power from the BoundPrune algorithm compared

with the naive implementation (join-and-sort approach). Two important factors are

measured in an in-memory simulation, the depth of data loaded for each relation, and

the size of data loaded before the algorithm is terminated. Figure 4.4 shows the prune

power of the BoundPrune algorithm, where the maximum upper-bound (blue curve)

and the lower-bound of the k-th candidate (red curve) are plotted on the size of the

data loaded. Two different data loading strategies are tested. When the target relation

(protectee set) is loaded at first, the bounds of groups are not changed until the support

relation starts loading. When the two data sets are loaded in a round-robin fashion,

the difference between bounds is shrinking as the size of the data loaded is increasing,

however the speed is slower than the “group-first” strategy after loading the target

relation. Both cases take a long time before the early termination is satisfied.

Figure 4.5 shows the percentage of data loaded and join operations in the

BoundPrune algorithm compared with the naive algorithm where all data should be

loaded. Different size of the two relations are used (|R0| >> |R1|, |R0| = |R1| and

|R0| << |R1|). In all three cases the save on the data loaded is no more than 2%,

since the algorithm cannot be terminated earlier with loose bounds. So the I/O cost
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Figure 4.4: Changes on bounds in the BoundPrune algorithm: The score of the k-th
candidate (red curve), and the maximum upper-bound score of groups outside of the
candidate (blue curve).

of the BoundPrune algorithm is almost the same as the one using the naive algorithm.

Compared with the data loaded, join operations saved in the BoundPrune algorithm are

at most 15%, and the most save happens when the support relation is smaller than the

target relation, because it leads to a tighter bounds when we consider the size of the

unloaded data in the bounds information.

4.7.2 GridPrune v.s Naive

Since the BoundPrune algorithm is not suitable for a grid index, and its I/O

performance is almost the same as the naive algorithm, we run experiments to compare

the performance between the naive algorithm and the GridPrune algorithm. In the

naive algorithm, all cells are scanned and a complete Cartesian product is processed

every time an update comes. For an update in the GridPrune algorithm, the top-k

candidate list will be cleared and generated from the latest bound information again.

Figure 4.6 shows the experimental results. Two measurements are used to

represent the I/O performance. Disk Reads shows the count on the disk read requests
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Figure 4.5: Performance gains using BoundPrune compared with the Naive algorithm
on load depths and join counts.

issued by the program, while Buffer Reads is an counter for the buffer read requests.

Buffer reads should be always larger than disk reads since not every buffer read corre-

spond to a disk read. The write I/O is omitted since only the reads are important for

queries. From the figures clearly the GridPrune algorithm outperforms on both the two

measurements. We can also see that with the increase of updates over the time, the disk

read I/O and also the buffer read requests in naive algorithm increases very fast.

Figure 4.6: Disk reads (A) and buffer reads (B) in Naive and GridPrune algorithms.

The number of the grid cells also has influence on the performance of Grid-
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Prune. From Figure 4.9 we can see that when the number of cells is small (e.g. each

cell is large, 30 × 40 in Figure 4.9), the cost can be reduced by increasing the number

of cells (60 × 80 and 120 × 160 in Figure 4.9) in order to have better prune capability.

However when the size of a cell is too small (300× 400 in Figure 4.9), the cost increases

again for more I/O cost to maintain the bounds during updates. The GridPrunePro

algorithm also has the same property.

4.7.3 GridPrune-Pro v.s. GridPrune

Figure 4.7 shows the I/O performance comparison between GridPrune and

GridPrune-Pro when the grid size is 300×400. GridPrune-Pro shows better performance

on both disk reads and buffer reads, since it progressively maintains the candidate list

when updates are streamed in. GridPrune-Pro is much better in a long time running

as showed in Figure 4.8, where the disk reads are increased faster in GridPrune than

GridPrune-Pro.

Figure 4.7: Disk reads (A) and buffer reads (B) in GridPrune and GridPrune-Pro algo-
rithms.

The I/O performance of the GridPrune-Pro algorithm is not always better
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Figure 4.8: Disk reads in GridPrune and GridPrune-Pro algorithms in long-time running
example (large number of cells).

than the GridPrune algorithm. Recall that GridPrune-Pro is working by updating only

necessary cells influenced by updates. When the number of cells is small, it is possible

that most of the cells are influenced by updates so its I/O cost should be more, so in

order to maintain the correct bounds information for each cell, the I/O cost for each

update is high. On the contrary GridPrune can be used to handle updates in bundle

so the I/O cost for a total rerun can be amortized to multiple updates. Figure 4.9

illustrates this phenomena. Figure 4.10 shows that in a long-time running example, the

disk read cost of the GridPrunePro algorithm increases faster, due to its overheads on

maintaining the bounds information for every cell when the number of cells is small.

4.8 Summary

In this chapter we discussed the continuous top-k query on most unsafe moving

objects or CTUO. The basic prune strategy using bounds information is discussed. Two

I/O efficient algorithms, GridPrune and GridPrune-Pro, are proposed to utilize the

prune strategy using grid index. Experimental results show the good I/O performance of
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Figure 4.9: Disk reads in GridPrune and GridPrunePro when the grid size varies.

Figure 4.10: Disk reads in GridPrune and GridPrune-Pro algorithms in long time run-
ning example (small number of cells).

128



the proposed algorithms compared with the naive algorithm. Furthermore, GridPrune is

efficient when the number of grid cells is small, or in dynamic case where batch updates

are required. GridPrunePro shows good I/O performance in dynamic case when the

number of grid cells is large.

There are several future topics inspired by the CTUO query. Firstly, the two

proposed algorithms are based on the grid index to utilize the prune capability on

bounds of cells. If the same idea can be applied to other spatial index structures like

R-trees, the bound prune strategy can be easily applied to existing database systems

no matter what kind of index structures they are using. Secondly, it is interesting to

think about its generic query form, where the join condition and the aggregate function

may be arbitrary but not only on the location closeness. This generic query is attractive

because it tries to measure the top-k significant relationships between data sets, and

there should be a big application area on this query.
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5

Conclusions

In this thesis we revisited and discussed the aggregation operation in a big data

environment. The important requirements for an aggregation implementation from the

big data include: (1) the widely usage of the commodity cluster (like Hadoop) require

that an aggregation algorithm implementation should be robust for very strict resource

budget; (2) various kinds of data could be streamed into the system for aggregation,

and it is important for the aggregation processing to be adaptive for different input

data; (3) to utilize the multiple node resource for parallel aggregation, the physical plan

should be properly picked in order to maximize the resource utilization; (4) aggregation

processing for specific applications should consider the characteristics of the application

and the data for efficient processing techniques.

We have addressed these issues separately in the chapters of this thesis. We

first discussed the implementation details and also a generic but precise cost model

for some popular local aggregation algorithms. Then this local aggregation cost model

is further extended to predicate the global aggregation cost. Through this hardware

independent cost models, we provide the opportunity for the query optimizer of a big
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data system to pick the most efficient plans based on the cost model. We verified our

models and algorithms through extensive experiments. Finally we have discussed a

new aggregation problem over the spatial and temporal information enriched data set,

and proposed the efficient algorithms utilizing indexing structures with the spatial and

temporal information.

Although we have managed to cover as much as possible for the aggregation

works, there are still lot of space to approach for the aggregation study. What we

have described here would be able to provide a generic framework as a starting point

for more advanced aggregation processing techniques. Also, we were focusing on only

the shared-nothing environment, however it will be very interesting to study whether

the assumptions for a shared-nothing environment still holds for other environment like

the multi-core environment, cloud environment (heterogeneous network structures). we

sincerely hope that the work discussed in this thesis will be helpful for the future research

in the aggregation field.
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Appendix A

Cost Model Components

This appendix describes the details of the basic component models used in the

cost model analysis. We use the symbols shown in Table A.1.

Symbol Description
n Number of raw records
m Number of unique groups
A A set of run files {A[1], ..., A[|A|]}
D(n,m) An input dataset of n records and m unique

groups
H Hash table slots count
K Hash table capacity in number of unique groups
M Memory capacity in frames
U Number of unique keys, so that the dataset

D(n,m) can be generated through with-
replacement draws from this key set.

Table A.1: Symbols For Input Parameters

A.1 Input Component

There are two important quantities we will use in the algorithms’ cost mod-

els. (1) Due to a restricted memory budget, a dataset D(n,m) will be processed in

‘chunks’. When considering a chunk of r records (r ≤ n), an important quantity is the
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number of unique keys that this chunk contains - denoted as Ikey(r, n,m) - assuming

that the records are randomly picked from D(n,m). (2) Given a memory budget for k

groups (records of the form (key, aggregated value)), another important quantity is

the number of records - denoted as Iraw(k, n,m) - that we should pick randomly from

D(n,m) in order to fill up the memory with k unique keys (k ≤ m). Assuming draws

without replacement, both quantities can be computed through direct application of

Yao’s formula [20]. In particular:

Ikey(r, n,m) = m ∗ (1− (1− r

n
)

n
m ) (A.1)

Iraw(k, n,m) = n ∗ (1− (1− k

m
)
m
n ) (A.2)

A.2 Sort Component

When sorting the dataset D(n,m), we assume a 3-way-partition-quicksort [47].

The required number of comparisons Csort(n,m) can be computed through a divide-

and-conquer procedure by randomly choosing a split key and recursively sorting on the

two sub-partitions:

Csort(n,m) =
n

m
∗m− 1

+
1

m

m∑
i=1

(Csort(
n

m
∗ (m− i),m− i) +

Csort(
n

m
∗ (i− 1), i− 1)) (A.3)

Solving this recurrence we get the following formula:

138



Csort(n,m) = 2
n

m
(m− 1)ln(m− 2) + (

n

m
− 1)(2m− 3) (A.4)

A.3 Merge Component

Consider a collection A of sorted run files. Let A[i] denote the size of the i-th

file. Algorithm 6 computes the cost for merging the collection A using M input buffer

frames and the loser-tree based merging method [35]. By setting the cost function

F (A′)(A′ ⊆ A) to be the CPU comparisons in merging (F (A′) = log2(|A′|)) or the

flushing I/O in merging (F (A′) =
∑|A′|

i=1A
′[i]), the same algorithm can be used for either

CPU comparison cost or the I/O cost.

Algorithm 6 Algorithm for Merge Cost

Require: A: files to be merged; M : available memory in frames; F : cost function.
while |A| > 1 do

if |A| ≤M : all files can be merged in a single round. Add F (A) to cost, and stop.
if M < |A| < 2M : merge the first (|A| −M + 1) files to produce a single run;
remove the merged files from A and add the new run at the end of A (|A| is thus
reduced to M files). Add F ({A[1], ..., A[|A| −M + 1]}) to Cmerge(A,M)
if |A| ≥ 2M : merge the first M files into a new run. Remove the merged files from
A and add the new run at the end of A. Add F ({A[1], ..., A[M ]}) to Cmerge(A,M)

end while

A.4 Hash Component

Consider a hash table with H slots in the slot table; LetK denote the maximum

number of group records that can be stored in the list storage area. Note that duplicates

are aggregated within group records, so filling up the list storage area would imply

encountering K unique groups. The number of records drawn randomly from D(n,m)

to fill up the list storage area (i.e., to get K unique keys) is thus Iraw(K,n,m).

Let Chash(n,m,K,H) denote the number of comparisons needed to fill up the
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list storage area. This accounts for both hash hits (denoted as csucc; these are records

that have been seen already and are thus aggregated) and hash misses (denoted by

cunsucc; these are records that have not been seen before). For the i-th insertion to be a

hash hit, it must correspond to a key which has already been inserted in the hash table.

Using Equation A.1, at the i-th insertion the number of unique keys already in the hash

table is

ki = Ikey(i, n,m)

Note that the no-replacement assumption of Yao’s formula implies that after each inser-

tion, the distribution of the remaining keys in the input set changes; this distribution

is thus difficult to re-estimate after each insertion. Instead, we will assume here that

the dataset D(n,m) is generated by randomly drawing keys with replacement from a

‘generator’ set with U unique keys. Then each insertion can be considered as a random

pick from the U unique keys with replacement, and the probability for a hash hit for

the i-th insertion becomes:

PrhashHit =
ki
U

We note that the average number of unique keys m̃ in n random draws is given

by:

m̃ = U ∗ (1− (1− 1

U )n) (A.5)

We can then estimate U by substituting the expected value m̃ with m in the

above equation.

To compute the number of comparisons during a hash hit we need the expected

number of groups contained in a non-empty slot, assuming the probability of finding a
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match at any group along the slot’s linked list is the same. The number of non-empty

slots in the hash table at the i-th insertion can be calculated using the urn model [41]

as

Hu(i,H, n,m) = H ∗ (1− (1− 1

H
)ki) (A.6)

Then the expected number of groups in a non-empty slot would be

Lslot =
ki

Hu(i,H, n,m)

The expected comparison cost for a hash hit becomes:

csucc(i, n,m,H) = PrhashHit ∗
Lslot + 1

2
(A.7)

A hash miss happens when a record is hashed either into a previously empty

slot (this does not require a comparison) or into a non-empty slot but where no match is

found (this case will incur comparisons until the end of the linked list is reached). The

probability that it is inserted into a non-empty slot is:

Prnonempty =
Hu(i,H, n,m)

H

and thus the hash miss comparison cost then becomes:

cunsucc(i, n,m,H) = (1− PrhashHit)

∗ Lslot ∗ Prnonempty (A.8)

Finally, the total comparison cost is given by:
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Chash(n,m,K,H) =

Iraw(K,n,m)∑
i=0

(csucc(i, n,m,H) +

cunsucc(i, n,m,H)) (A.9)

For some hybrid-hash algorithms a spilled partition may contain both aggre-

gated groups and non-aggregated records. To insert such a “mixed” dataset into a hash

table, the cost model should be adjusted. Let u denote the number of aggregated groups

(which are thus unique) and n the number of ‘raw’ (not yet aggregated) records. To

insert the u unique groups the comparisons arise only from hash misses:

cunique(n,m,H, u) =

u∑
i=1

(
Hu(i− 1, H, n,m)

H

∗ i− 1

Hu(i− 1, H, n,m)
) (A.10)

For calculating the number of comparisons from the insertion of the raw records

after inserting the u unique groups, we first note that the probability for a hash hit is:

Pr′hashHit =
ki + u

U

The expected number of groups in a non-empty slot for the i-th insertion is

given by:

L′slot =
ki + u

Hu(i,H, n,m)

So the hash comparison cost if the i-th insertion is a hash hit is:
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csucc(i, n,m,H, u) = Pr′hashHit ∗
L′slot + 1

2
(A.11)

To calculate the hash miss cost, we note that the probability that the insertion

is to a non-empty slot is adjusted as:

Pr′nonempty =
Hu(i+ u,H, n,m)

H

Hence the comparison cost for the hash miss of the i-th insertion becomes:

cunsucc(i, n,m,H, u) = L′slot ∗ Pr′nonempty ∗ (1− Pr′hashHit) (A.12)

The overall cost for the ‘mixed’ input case, denoted by Chash(n,m,K,H, u) is thus:

Chash(n,m,K,H, u) = cunique(n,m,H, u)

+

Iraw(K−u,n,m)∑
i=1

(csucc(i, n,m,H, u)

+cunsucc(i, n,m,H, u)) (A.13)
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