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Organizing Metacognitive Tutoring Around Functional Roles of Teachers 
 

David A. Joyner (david.joyner@gatech.edu) 

Ashok K. Goel (goel@cc.gatech.edu) 
Design & Intelligence Laboratory, Georgia Institute of Technology, Atlanta, GA 30338 

 

Abstract 

Metacognitive skills are critical in learning but difficult to 
teach. Thus the question becomes how can we facilitate 
metacognitive tutoring? We present an exploratory learning 
environment called MILA-T with embedded metacognitive 
tutors imitating five functional roles of teachers in 
classrooms. We tested MILA–T in a controlled experiment 
with 237 middle school students.  We examine the impact of 
MILA–T on the models of a natural phenomenon constructed 
by the students. We find that students with access to MILA–T 
wrote better evidential justifications for their models, and 
thus, deliver better-justified models for the phenomenon. We 
also find that these improvements persisted during a transfer 
task.  These results lend support for organizing metacognitive 
tutoring around the functional roles of teachers for supporting 
inquiry-driven modeling. 

Keywords: Functional roles of teachers; intelligent tutoring 
systems, metacognition, metacognitive tutoring; scientific 
inquiry; scientific modeling. 

Introduction 

Both learning scientists and emerging educational 

standards assert the need to teach authentic science to 

students from an early age (e.g. National Research Council 

1996; Edelson 1997). Research in cognitive science 

describes scientific discovery as an iterative process 

entailing four related but distinct phases (Darden 1998; 

Nersessian 2008): model construction, use, evaluation, and 

revision. Thus, a model is first constructed to explain some 

observations of a phenomenon. The model is then used to 

make predictions about other aspects of the phenomenon. 

The model’s predictions next are evaluated against actual 

observations of the system. Finally, the model is revised 

based on the evaluations to correct errors and improve the 

model’s explanatory and predictive efficacy. Research in 

cognitive science also relates this process of scientific 

inquiry and modeling to metacognition (e.g. Clement 2008; 

Nersessian 2008; Schwarz et al. 2009; White & Frederiksen 

1998): scientific inquiry and modeling is the metacognitive 

ability to reason over one's own understanding of a 

scientific phenomenon, construct an evidence-backed model 

of one's understanding, and use that model to inform further 

investigation into the system. This suggests the use of 

metacognitive tutoring to scaffold learning about inquiry-

driven modeling. 

However, metacognitive skills are generally difficult to 

teach (Roll et al. 2007), and teaching inquiry-driven 

modeling is no different. In past, exploratory learning 

environments (e.g. van Joolingen et al. 2005) and intelligent 

tutoring systems (e.g. Azevedo et al. 2009, 2010) have been 

successful in enhancing students' metacognition at least to a 

limited degree, indicating that it is in principle feasible to 

help develop metacognitive skills. However, it is not yet 

clear how to facilitate metacognitive tutoring, especially in 

exploratory learning environments for open-ended tasks 

such as inquiry-driven modeling: we still need to identify 

organizing principles for metacognitive tutoring. 

One way to organize metacognitive tutoring is along the 

functional roles of teachers in science classrooms. Thus we 

developed a categorization of some of the functional roles of 

teachers: guide, critic, mentor, interviewer, and observer.  

Next, we developed an exploratory learning environment for 

inquiry-driven modeling (the Modeling & Inquiry Learning 

Application, or MILA), and a metacognitive tutoring system 

(MILA-T) consisting of metacognitive tutors imitating the 

roles of a guide, critic, mentor, interviewer, observer. Then, 

to evaluate if MILA-T scaffolded inquiry-driven modeling, 

we introduced the tutoring system to 237 middle school 

science students engaged in modeling a natural ecological 

phenomenon. We found that engagement with MILA–T led 

teams to developer better-justified models of scientific 

phenomena than teams without a metacognitive tutoring 

system. In addition we tested the efficacy of above learning 

on a transfer task. We also found that the improvements in 

model quality persisted even after the tutoring system has 

been disabled, showing that access to MILA–T actually 

improves students' inquiry-driven modeling and that those 

improvements transfer to a new task. 

MILA: Modeling & Inquiry Learning 

Application 

MILA is an exploratory learning environment in which 

students working in small teams can participate in an 

authentic process of scientific modeling and inquiry. Teams 

investigate a natural phenomenon, posing multiple 

hypotheses that could explain the phenomenon, constructing 

models to provide mechanisms to those explanations, and 

supplying evidence to support those hypotheses and 

mechanisms. The MILA window is illustrated in Figure 1. 

Models in MILA are made of nodes and edges. Each node 

in a MILA model represents a changing trend: for example, 

the first node in the chain shown in Figure 1 is that the 

Quantity of Fertilizer is Increasing, a trend in the system. 

These nodes are then linked together in a causal chain that 

explains some phenomenon: in Figure 1, the increasing 

fertilizer quantity leads to an increase in the quantity of 

phosphorus in the system. This leads to an increase in the 

population of algae, which leads to an increased 

concentration of oxygen, which leads to a decreased 

population of fish. Note that this model is incomplete: 

further mechanism is needed to show how the increased 

quantity of oxygen leads to a decreased fish population. 
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In constructing these models, teams are asked to supply 

evidence in support of their claims. Evidence annotates the 

individual connections in the model. The box in the top 

right of Figure 1 shows the evidence that the team is 

supplying in support of the claim that the increased fertilizer 

quantity leads to an increase in phosphorus concentration. 

Justifying this connection demands three ideas: showing 

that fertilizer did increase, showing that phosphorus did 

increase, and showing that the two increases are causally 

linked. Evidential justifications are further annotated with 

categories: teams can choose from one of seven categories 

that describe their evidence derived from the epistemic 

cognition community and our prior research: logical 

explanations, expert information, non-expert information, 

direct observations, controlled experiments, simulation 

observations, and similar system observations (the first five 

derived from Goldin, Renken, Galyardt & Litkowski 2014, 

the remaining two added based on our activities). These 

evidence categories are associated with scores to reflect the 

desirability of different types of evidence in defending a 

hypothesis: it is, for example, preferable to rely on 

established scientific theories and observations from similar 

systems than to rely on logical explanations and novice 

information. These scores lead to the calculation of the 

evidence strength metrics described under data analysis later 

in this paper. (Joyner 2015 provides more details of MILA.) 

 

MILA–T: Metacognitive Tutoring 

MILA is augmented with a metacognitive tutoring system 

that is the primary object of analysis for this paper. The 

metacognitive tutoring system, MILA–T, is comprised of 

five distinct agents: a Guide, a Critic, an Interviewer, a 

Mentor, and an Observer. Each of these tutors is defined by 

a functional role that a teacher typically plays in the 

classroom, tied in part to Grasha's (1996) model of teaching 

styles, and based partly on our observations of teaching and 

learning in science classrooms (Goel et al. 2013). This 

differentiates MILA–T from other metacognitive tutoring 

initiatives; whereas systems like MetaTutor define the 

functional roles of the agents with respect to the target skill 

(Azevedo et al. 2009, 2010), MILA–T defines the functional 

roles according to the pattern of interaction between the 

student and the agent.  

The five tutors are classified into two broad categories: 

proactive and reactive. The proactive tutors (the Mentor, the 

Interviewer, and the Observer) continuously monitor the 

team's modeling process and intervene where necessary. 

The reactive tutors (the Guide and the Critic) wait for the 

team to solicit feedback. In this way, the proactive tutors 

mimic a teacher moving around the classroom, observing 

teams' progress, and intervening where necessary. The 

 
Figure 1: MILA and MILA–T. In MILA, teams describe a phenomenon (top left), pose multiple hypotheses (middle left), and 

construct models that explain how a hypothesis could have actually caused a particular phenomenon (the causal chain in the 

middle). Within these models, teams provide evidence in support of their model (top right). Teams in the Experimental group 

receive feedback from MILA–T, a metacognitive tutoring system. Here, the Interviewer is waiting to give feedback in the 

bottom left (as indicated by the light bulb), and the Guide (bottom right) is currently giving feedback in the bottom right. 
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reactive tutors mimic a teacher sitting at the front of the 

room waiting for teams to approach him or her for approval 

or guidance about how to proceed. These functional roles 

are further differentiated by the specific type of interactions 

that each tutor facilitates; the Critic, for example, critiques 

the current status of the team's explanation, while the Guide 

anticipates and answers the team's questions. Similarly, the 

Mentor monitors for mistakes or increasing aptitude, while 

the Interviewer waits for critical moments and asks students 

to reflect on their thought process. 

MILA–T is defined as a metacognitive tutoring system, 

rather than a cognitive tutoring system, because the target of 

MILA–T is students' internal inquiry-driven modeling 

process. Thus, MILA–T is metacognitive in two ways: first, 

it itself reasons over students' thought processes, meaning 

that MILA–T thinks about students' thinking; and second, 

the skill it attempts to teach students is metacognitive. 

Inquiry-driven modeling is a metacognitive skill that 

operates on the learner's current understanding of a system, 

and thus the target of inquiry-driven modeling is the 

learner's own knowledge and understanding, meeting the 

common definition of a metacognitive skill (e.g., Veenman, 

Hout-Wolters & Aflerbach 2006).  

The tutors of MILA–T take a three-prong approach to 

teaching metacognition: emphasize, instruct, and 

demonstrate. First, the tutors anticipate that students will 

deemphasize metacognition, and thus anticipate questions 

that students might ask; they then take those opportunities to 

turn students' attention toward the metacognitive skill. For 

example, the Guide anticipates students may ask what the 

right answer to the system is, and reacts to that question by 

describing to students how the "right" answer in science is 

an explanation they construct rather than an answer they 

receive. Second, the tutors attempt to explicitly instruct 

metacognition in their feedback. The Critic, for example, 

gives students feedback on what kind of evidence they rely 

on in their explanations, but augments this feedback with 

notes on why certain kinds of evidence are considered 

preferable and how one ought to evaluate an argument 

grounded in certain types of evidence. Third, the tutoring 

system, especially the Mentor and the Interviewer, attempt 

to demonstrate proper metacognition to the students. The 

Interviewer, for example, will react to certain critical 

decisions that students make by asking students to explain 

the reasoning that led to their decision, and then respond 

with an example of the reasoning she would have used to 

arrive at the same decision, thus demonstrating the desirable 

metacognitive process. (Joyner 2015 provides more details 

of MILA-T.) 

Experimental Design 

The experiment with MILA-T was conducted with two 

middle school science teachers together teaching ten total 

classes. Participation in the experiment took place during 

nine consecutive regular school days, with each class 

participating for 45 minutes per day. The first and last days 

of this nine-day unit were spent on content and attitude 

testing; the third and sixth days were spent on laboratory 

exercises. The remaining five days of the unit were spent 

interacting with the exploratory learning environment MILA 

in teams of two or three. Throughout the first four days of 

interaction with MILA, teams of students were asked to 

develop an explanation of a massive fish kill that occurred 

in a nearby lake a few years earlier; this is dubbed the 

"Learning" project because it is during this time that teams 

are learning the skills associated with scientific modeling 

and inquiry. On the fifth day of interaction with MILA (the 

eighth day of the unit overall), teams are asked to develop 

an explanation of the record-high temperatures taking place 

in Atlanta over the past decade; this is dubbed the 

"Transfer" project because students are transferring the 

skills they learned to a new phenomenon. At the conclusion 

of each project, students submit their final explanation of 

the phenomenon. Thus, each team submits two models 

during the unit: a model of the fish kill and a model of 

Atlanta's high temperatures. 

The controlled variable in this study is access to MILA–T. 

Both the Control and Experimental groups interact with 

MILA and complete the nine-day curriculum described 

above. The Control group never sees MILA–T. The 

Experimental group receives MILA–T during the Learning 

project online; MILA–T is disabled during the Transfer 

project. In this way, we may analyze whether students 

improve in their inquiry-driven modeling while receiving 

feedback from MILA–T by comparing the Control and 

Experimental during the Learning project, and we may also 

analyze whether any improvements persisted after the 

feedback from MILA–T was disabled by comparing the 

groups during the Transfer project. 

Entire classes were assigned to either the Control or 

Experimental group in order to prevent Control group teams 

from being aware of the existence of MILA–T. Given the 

significant differences in teaching style between the two 

teachers, classes were assigned to one group or the other 

within the teacher; thus, each teacher taught three classes in 

the Experimental group and two classes in the Control 

group. As a result, 84 total teams completed the Learning 

project with 50 teams in the Experimental group and 34 

teams in the Control group. 81 teams completed the 

Transfer project with 47 teams in the Experimental group 

and 34 teams in the Control group. Teachers assigned 

students to teams without any direction from the 

researchers. Researchers were present in the classroom to 

provide technical support, but avoided interacting with 

students on the project itself. Teachers taught identical 

material to classes in the Control and Experimental groups 

with no direction from the researchers to interact differently 

with the two groups of classes. 

Data Analysis 

This data analysis focuses on the models that teams of 

students constructed to explain the two phenomena; other 

analyses have examined the impact on students’ dispositions 

toward science (Joyner & Goel 2014), process of model 
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construction (Joyner & Goel 2015), and content knowledge 

(Joyner 2015), As described previously, while constructing 

models in MILA, teams annotate their models with 

evidential justifications for their explanation. These 

evidential justifications are the primary target for analysis 

here: how well do teams justify their explanations? To 

answer this, we performed two analyses: coded evidence 

analysis and quantitative model analysis. 

Coded Evidence Analysis 

1301 total pieces of evidence were supplied in support of 

the 165 models. First, a subset of these pieces of evidence 

was randomly drawn and subjected to grounded analysis. 

Notes were taken on whether each piece of evidence was 

acceptable as a justification for the explanation, and if not, 

for what reason the piece of evidence was unacceptable. 

These notes were then processed into a coding scheme with 

seven categories: Acceptable, Miscategorized, Redundant, 

Gibberish, Irrelevant, Insufficient, and Not Evidence. The 

first two categories are generally noted as 'Acceptable' 

evidence (as Miscategorized evidence still supports the 

explanation, but simply is annotated with the wrong 

category), and the last five categories are noted as 

'Unacceptable' evidence. 

After establishing this coding scheme, all 1301 pieces of 

evidence were run through three rounds of coding by a 

single rater with three weeks between coding sessions. 

Intrarater reliability was established as very good between 

every pair of rounds of coding (Cohen's Kappa of 0.890 

between the two most similar coding rounds). The results of 

this coding process were then tested using a Χ² analysis to 

examine whether the results were different between the 

Control and Experimental conditions. This was performed 

separately on the results of the Learning and Transfer 

projects. 

Model Analysis 

Given the results of that evidence coding process, five 

metrics were calculated for each model. Each model's "total 

evidence strength" was calculated by summing the strengths 

of all pieces of evidence supplied in support of the model; 

strengths were assigned on a scale of 1 (weak) to 3 (strong) 

based on the category given to the evidence by the student. 

Each model's "average model strength" was calculated by 

dividing the total strength by the size of the model to 

analyze how well the team justified each individual claim of 

the model. Each model's "average evidence strength" was 

calculated by dividing the total strength of the model by the 

number of pieces of evidence to analyze the strength of the 

individual pieces of evidence supplied by the team. Each 

model's "total evidence" was calculated simply by counting 

the number of pieces of evidence without regard to strength. 

Each model's "model complexity" was calculated by 

counting the number of nodes and edges in the model. 

All of these metrics were calculated with the evidence 

that resulted from the coded evidence analysis. Any piece of 

evidence that was coded as Unacceptable were not counted. 

Any pieces of evidence that were coded as Miscategorized 

were scored with the category assigned to them during the 

evidence coding process. These metrics were then analyzed 

using a multivariate analysis of variance to determine 

whether any differences existed in any of the metrics based 

on the experimental condition. 

Results 

Both these analyses demonstrate the same conclusion: teams 

in the Experimental group outperformed teams in the 

Control group in both the Learning and Transfer projects. 

Coded Evidence Analysis Results 

In order to examine the difference between the Control and 

Experimental groups as a result of this evidence coding 

process, a Χ² analysis was performed to determine whether 

the distributions of two samples were identical. Χ² analysis 

of the results of the coding process for the Learning project 

demonstrated a statistically significant difference between 

the Control and Experimental groups (χ² = 52.423, p ≈ 0.0). 

The Experimental group outperformed the Control group: 

59.00% of the pieces of evidence written by the Control 

group teams were coded as Acceptable, while 72.83% of the 

pieces of evidence written by the Experimental group teams 

received that positive designation. This improvement results 

in significantly lower proportions of the Experimental 

group's evidence falling into several negative categories, as 

documented in Table 1. 

Table 1: Observed and Expected counts of evidence coded 

into each category in the Experimental group during the 

Learning project, as predicted by the percentages of 

evidence coded into each category in the Control group. 

Column labels show the seven categories assigned in 

coding: Acceptable, Miscategorized, Redundant, Gibberish, 

Irrelevant, Insufficient, Not Evidence. 

 A M G I N R S 

Control 59.0% 12.6% 5.8% 8.4% 6.1% 5.3% 2.6% 

Expected 271 27 39 58 28 25 12 

Observed 335 9 25 58 9 21 3 

Experi-

mental 
72.8% 12.6% 2.0% 5.4% 2.0% 4.5% 0.6% 

Χ² analysis of the results of the coding process for the 

Transfer project also demonstrated a statistically significant 

difference between the Control and Experimental groups (χ² 

= 42.720, p ≈ 0.0). The Experimental group again 

outperformed the Control group: 55.41% of the pieces of 

evidence written by the Control group teams were coded as 

Acceptable, while 67.91% of the pieces of evidence written 

by the Experimental group teams received that positive 

designation. This improvement results significantly lower 

proportions of the Experimental group's evidence falling 

into several negative categories, as documented by Table 2. 
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Table 2: Observed and Expected counts of evidence coded 

into each category in the Experimental group during the 

Transfer project, as predicted by the percentages of evidence 

coded into each category in the Control group. 

 A M G I N R S 

Control 55.4% 11.7% 5.2% 8.2% 7.8% 10.9% 0.9% 

Expected 193 18 29 41 27 38 3 

Observed 237 10 17 43 18 16 8 

Experi-

mental 
67.9% 12.3% 2.9% 4.9% 5.2% 4.6% 2.3% 

Between the Learning and the Transfer project, both the 

Control and the Experimental groups experienced a slight 

but statistically significant decrease in the overall 

acceptability of their evidence (χ² = 15.62, p < 0.05 for the 

Control group; χ² = 37.94, p ≈ 0.0 for the Experimental 

group), likely based on the reduced time available for the 

Transfer project. The Experimental group experienced a 

larger decrease than the Control group, however, suggesting 

that the tutoring system had played a role in improving the 

Experimental group's models during the Learning project. 

Despite this larger decrease in evidence acceptability, 

however, the Experimental group teams still outperformed 

the Control group teams in the Transfer project. 

In terms of the learning goals for the project, these results 

show that teams in the Experimental group have an 

improved ability to use evidence in support of their 

arguments and explanations compared to teams in the 

Control group. It is thus reasonable to say that participation 

with MILA–T during the unit improved teams' inquiry-

driven modeling by improving their ability to use evidence 

in support of their claims. 

Model Analysis Results 

The results of this evidence coding process were used to 

score teams' models according to the five metrics described 

previously. A multivariate analysis of variance was then 

performed for the Learning and Transfer projects to discern 

whether there was a difference in teams' performance along 

these metrics based on participation in the Experimental 

condition. If the multivariate analysis of variance revealed 

an effect of the condition, a follow-up univariate analysis 

was conducted on each of the five variables to discern 

which variables were impacted. 

During the Learning project, there existed a statistically 

significant effect of the experimental condition (F = 3.3, p < 

0.01). Follow-up univariate analysis showed a statistically 

significant influence of Condition on three variables during 

the Learning project: total model strength (F = 10.9, p < 

0.01), average model strength (F = 7.5, p < 0.01), and total 

evidence (F = 5.9, p < 0.05). This means that teams in the 

Experimental group constructed better-justified models in 

terms of both the overall strength of the justification and the 

average strength of the justification supplied for each 

individual claim in the model. The improvement was 

approximately 50% across each of the three metrics, 

meaning that the models that the models produced by teams 

in the Experimental group were approximately 50% 

stronger (as measured by these metrics) than models 

produced by teams in the Control group. Thus, during the 

Learning project, teams in the Experimental group 

constructed better-justified models than teams in the Control 

group. 

During the Transfer project, there again existed a 

statistically significant effect of the experimental condition 

(F = 4.2, p < 0.01). Follow-up univariate analysis showed a 

statistically significant influence of Condition on all five 

variables during the Transfer project: total model strength (F 

= 12.0, p < 0.001), average model strength (F = 6.0, p < 

0.05), total evidence (F = 4.2, p < 0.05), average evidence 

strength (F = 12.2, p < 0.001), and model complexity (F = 

4.9, p < 0.05). This means that the Experimental group 

teams outperformed the Control group teams in several 

ways: they supplied more evidence, the individual pieces of 

evidence they supplied were stronger, and the combination 

of these strengths led to stronger justifications of each claim 

in their models and their models as a whole. This 

improvement was approximately 70% across each of these 

metrics; thus, teams in the Experimental group produced 

models that were approximately 70% stronger than models 

produced by teams in the Control group. 

In terms of the learning goals for this project, these results 

show that the previously documented increased ability to 

use evidence in support of arguments and explanations has 

increased the strength of the final arguments that these 

teams produce. It is thus reasonable to say that participation 

with MILA–T during the unit improved teams' inquiry-

driven modeling as demonstrated by improvements seen in 

the strength of the models that these teams produced. 

These analyses were also run on the raw evidence prior to 

the coding process, and while the results differed, the 

Experimental group teams outperformed the Control group 

teams in similar ways. 

Conclusions 

The above results indicate that the teams who received the 

metacognitive tutoring system MILA–T outperformed teams 

that did not receive the tutoring system during the same 

activity. More significantly, however, this superior 

performance also carried through to a new activity where 

MILA–T was no longer available, demonstrating that the 

feedback that teams received from MILA–T was 

internalized and transferred to a new task. This suggests that 

access to MILA–T improved teams' inquiry-driven 

modeling, and thus improved the quality of the models the 

teams generated. These improvements were seen both in the 

individual evidence that teams provided and in the total 

strength of the justifications for the teams' models as a 

whole. 
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However, it is important to note that some of these 

improvements are difficult to attribute directly and solely to 

the metacognitive tutoring system. During both the Learning 

and Transfer projects, teams in the Experimental group 

demonstrated a decreased propensity to supply unacceptable 

evidence. The acceptability of evidence is determined solely 

by the text that the team provides, and MILA–T is unable to 

read this text; it can only give feedback on the categories 

that teams choose for their evidence. Thus, despite MILA–

T's inability to give feedback on the actual text of the 

justifications that teams provide, the text nonetheless 

improved. 

So how can one explain this improvement among teams 

receiving MILA–T without MILA–T giving direct feedback 

on the quality of this text? One explanation is that MILA–T 

supplied information on what makes a good justification, 

and this information was internalized by teams even without 

receiving feedback on their own present justifications; this 

explanation, however, relies on very significant 

improvement without any targeted feedback. Another 

explanation is that teams in the experimental group felt 

observed given the visual presence of the tutoring system 

and thus were more likely to engage more earnestly, leading 

to better justifications; this explanation relies on teams 

carrying over these good habits into the Transfer project 

even after the tutoring system has been disabled. 

The third, and we posit the most likely, explanation is 

corroborated by teacher feedback. In exit interviews, 

teachers in the experiment reflected that in Experimental 

classrooms, they were not needed as often to answer basic 

low-level questions because the tutoring system took care of 

these simple feedback opportunities; they, then, were able to 

focus on high-level and complex feedback that went beyond 

the scope of what the tutoring system could provide. This 

reflects aninterplay between individual- or team-level 

tutoring systems and classrooms as a whole; in many ways, 

intelligent tutoring systems can be seen as approaches to 

offloading responsibilities from the teacher to allow the 

teacher to more effectively direct their time toward feedback 

that only a human can provide.  

This also lends evidence in support of our proposal for 

organizing metacognitive tutoring for inquiry-driven 

modeling around the functional roles of teachers in science 

classrooms. We plan to conduct additional research to 

examine whether the more and the better the metacognitive 

tutors can imitate the functional roles of teachers, (1) the 

higher is the efficacy of scaffolding learning about inquiry-

driven modeling, and (2) larger is the offloading of 

responsibilities from the science teacher to the 

metacognitive tutors.  
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