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Abstract: There is growing recognition regarding the role of intracellular amyloid beta (Aβ) in the
Alzheimer’s disease process, which has been linked with aberrant signaling and the disruption of
protein degradation mechanisms. Most notably, intraneuronal Aβ likely underlies the oxidative stress
and mitochondrial dysfunction that have been identified as key elements of disease progression.
In this study, we employed fluorescence imaging to explore the ability of a bifunctional small
molecule to reduce aggregates of intracellular Aβ and attenuate oxidative stress. Structurally,
this small molecule is comprised of a nitroxide spin label linked to an amyloidophilic fluorene and is
known as spin-labeled fluorene (SLF). The effect of the SLF on intracellular Aβ accumulation and
oxidative stress was measured in MC65 cells, a human neuronal cell line with inducible expression
of the amyloid precursor protein and in the N2a neuronal cell line treated with exogenous Aβ.
Super-resolution microscopy imaging showed SLF decreases the accumulation of intracellular Aβ.
Confocal microscopy imaging of MC65 cells treated with a reactive oxygen species (ROS)-sensitive
dye demonstrated SLF significantly reduces the intracellular Aβ-induced ROS signal. In order to
determine the contributions of the separate SLF moieties to these protective activities, experiments
were also carried out on cells with nitroxides lacking the Aβ targeting domain or fluorene derivatives
lacking the nitroxide functionality. The findings support a synergistic effect of SLF in counteracting
both the conformational toxicity of both endogenous and exogenous Aβ, its promotion of ROS,
and Aβ metabolism. Furthermore, these studies demonstrate an intimate link between ROS
production and Aβ oligomer formation.

Keywords: amyloid beta; Alzheimer’s disease; bifunctional drug; Aβ oligomer; oxidative stress;
intraneuronal Aβ; intracellular Aβ; nitroxide antioxidant; spin label
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1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive and
irreversible cognitive decline. Hallmarks of AD pathology include the deposition of extracellular
insoluble amyloid beta (Aβ) plaques and hyper-phosphorylation of tau protein, which lead to
intracellular accumulation of neurofibrillary tangles (NFT). More recently, however, stronger
emphasis has been placed on two interdependent initiators of the neurodegenerative cascade in AD:
accumulation of small, soluble, intracellular Aβ oligomers (AβO) and the subsequent AβO-induced
neuro-inflammation that leads to the formation of reactive oxygen species (ROS) and cellular
damage [1–3].

Numerous mechanisms have been proposed to account for Aβ toxicity since the peptide has been
found to interact with and/or dysregulate a plethora of cellular systems. While most experimental and
clinical efforts have focused on extracellular Aβ, there is growing evidence supporting a significant
role for intracellular oligomeric AβO in the etiology of AD [4,5]. Intraneuronal Aβ precedes both
intracellular NFTs and extracellular amyloid deposits [6] and has profound effects on neuronal
health [7]. For example, intracellular Aβ was found to be considerably more toxic than extracellular
Aβ [5,8]. The two pools of Aβ seem to exist in a dynamic equilibrium [9], which means targeting
intracellular Aβ may also influence the levels of extracellular AβO.

Many studies report oxidative stress plays a major role in AD progression. Oxidative stress
occurs when there is a physiological imbalance between a high level of ROS and the body’s ability
to produce enough ROS scavengers to counteract the ROS [10–12]. While oxidative stress is a major
indicator of aging, increased levels of oxidative stress markers are present in the brains of patients
in different stages of AD. For example, lipid peroxidation marker levels are consistently elevated
during the early stages of AD when compared to patients with mild cognitive impairment (MCI), late
stage AD, or those with Parkinson’s disease [13]. In addition to the modification of lipids, proteins,
and DNA, lipid peroxidation byproducts produced during oxidative stress damage mitochondria
and up-regulate tau phosphorylation [14,15]. Although the mechanism of the ROS cascade in AD
is unclear, Aβ is an efficient generator of hydrogen peroxide [16], which can lead to mitochondrial
impairment and further generation of ROS [17]. Aβ may also interact directly with the respiration
chain of mitochondria, resulting in dysfunction and elevated ROS production [18]. This is consistent
with clinical observations correlating mitochondrial oxidative damage with disease progression in AD
patients [12,19].

We have, therefore, focused our efforts on designing targeted bifunctional compounds that convert
AβO into a nontoxic state and also block AβO-induced cellular oxidative damage. We have previously
described one such compound known as the spin-labeled fluorene (SLF, Figure 1) [20–22]. SLF is
comprised of a fluorene core that binds to Aβ with high affinity [22] and stabilizes AβO into small
nontoxic oligomers [20,23]. The bifunctionality of SLF arises from its nitroxide spin label moiety, which
provides catalytic antioxidant activity [24,25]. The ability of sterically hindered cyclic nitroxides to
serve as mimics of superoxide dismutase within cells has led to their consideration as anti-cancer [26],
radioprotective [27], and anti-aging [28] agents. In this study, we use confocal and super-resolution
microscopy to demonstrate that SLF blocks Aβ-induced ROS generation within cultured neurons,
inhibits intraneuronal oligomer formation, and facilitates clearance of intraneuronal Aβ. Furthermore,
by evaluating the functional components of SLF independently, we provide new insights on the
interdependence of oxidative stress and AβO toxicity.
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Figure 1. (A) The chemical structure of the spin-labeled fluorene (SLF). The amyloid-targeting domain
is shown in red and the nitroxide spin label moiety is shown in black. The diamagnetic form of
SLF (SLFdm) that lacks the nitroxyl antioxidant capacity is shown in (B). (C) The structure of the
antioxidant MitoTEMPO.

2. Results

2.1. In Cultured Neurons, the Bifunctional Activity of SLF Offers Superior Protection against the Toxicity of
both Exogenous Aβ and Aβ Peptide Generated Intracellularly

We have previously shown that SLF is a more potent protector against Aβ toxicity compared to
the parent fluorene molecule lacking the nitroxide spin label moiety [21]. Both SLF and the parent
fluorene bind AβO, reverse the peptide aggregation, and block Aβ toxicity [20–23]. In order to further
evaluate the significance of the antioxidant functionality in SLF protection, we compared the ability of
SLF, a diamagnetic version of SLF (SLFdm), and MitoTEMPO, which is a potent mitochondrial-targeted
nitroxide antioxidant, to counteract Aβ toxicity in cultured N2a neurons (Figure 2A). After reaching
80% confluence, the cultured cells were co-treated with Aβ and with either the vehicle (DMSO) or
the aforementioned compounds to a final concentration of 1 µM and 2 µM, respectively. The cultured
cells were incubated at 37 ◦C for 24 hours. The MTT assay was performed to measure cell survival
and one-way ANOVA data on the percentage survival of cells show that when SLF is added to N2a
cells treated with exogenous Aβ, there is about an eight-fold increase in cell survival (Figure 2A)
compared to cells treated with exogenous Aβ alone (Figure 2A). Comparatively, the SLFdm increases
cell survival by only about three-fold, which highlights the significance of the nitroxyl moiety in ROS
protection (Figure 2A). The MitoTEMPO compound that has an ROS scavenger moiety similar to SLF
also increases cell viability by about seven-fold (Figure 2A). Similarly, we compared the protection
of the SLF moieties in the human neuroblastoma MC65 cell line, which generates large amounts of
intraneuronal Aβ by overexpressing the amyloid precursor protein (APP) through Tet-Off transcriptional
regulation [29] (Figure 2B). Control cells were grown with tetracycline (+TC, Figure 2B) until the cells
reached 80% confluence, at which point the Aβ challenge was initiated by removing tetracycline from
the culture media. The compounds (SLF, SLFdm, and MitoTEMPO) were added to a final concentration
of 2 µM. The cells were incubated at 37 ◦C for 72 hours, which was followed by MTT analysis of cell
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survival. Statistical analysis shows SLF exerts maximum protection in cells overexpressing APP precursor
protein and has about a 14-fold increase in cell survival (Figure 2B) over APP-induced cells (Figure 2B).
SLFdm increases cell survival by about five-fold (Figure 2B) while the MitoTEMPO compound increases
cell survival by about 10-fold (Figure 2B). Overall, the cell survival assay showed a similar pattern for
protection against both exogenous and endogenous Aβ with SLF inducing the most protection, followed
by MitoTEMPO and SLFdm (Figures 2A and 2B). The effect of APP induction and compound treatment on
MC65 cell morphology is shown in Figure 2C. MC65 cells grown in the absence of APP induction (+TC)
maintain cell morphology at three days while MC65 cells induced for APP expression (−TC) exhibit
100% alteration of cell morphology. APP-induced cells in the presence of 2 µM SLF show unaltered cell
morphology, which is indicative of SLF’s ability to protect neurons from Aβ-induced cellular damage.
In contrast, both SLFdm and MitoTEMPO offer limited protection of neuronal morphology.
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Figure 2. Protection against Aβ toxicity by SLF compared to agents bearing only an antioxidant or
anti-amyloid activity. Neuronal viability by the MTT assay was determined for exogenous Aβ (N2a
cells) and endogenous Aβ (MC65 cells) after 72 hours. (A) 1 µM exogenous Aβ was added to cultured
N2a neurons and cell viability was compared to the +Aβ group. The effect of 2 µM SLF, SLFdm,
and MitoTEMPO co-addition on the survival of AβO-treated N2a cells is given by the green, orange,
and blue bars, respectively. The ability of SLF and its independent functionalities to protect against
Aβ toxicity in MC65 neurons containing Tet-Off inducible gene expression for the Aβ precursor (APP)
is shown in (B). The viability of the non-induced (+TC) cells is given by the red bar. The effect of
2 µM SLF, SLFdm and MitoTEMPO addition to the APP-induced (−TC) cell survival is given by the
green, orange, and blue bars, respectively, and is compared to the −TC group. For both (A) and (B),
compounds were added upon APP induction and cell survival was measured 72 hours later. Statistical
analyses of cell counts by one-way ANOVA gives * p < 0.01, ** p < 0.001, n = 9. Error bars represent
the standard error as described in the Methods section. Panel (C) shows light microscopy images of
MC65 cell cultures three days without APP induction (i), with APP induction (ii), with APP induction
in the presence of 2 µM SLF (iii), with APP induction in the presence of 2 µM SLFdm (iv), and with
APP induction in the presence of 2 µM MitoTEMPO (v).

2.2. SLF’s Nitroxide Component Plays a Key Role in Decreasing Aβ-Induced Oxidative Stress in a Human
Neuroblastoma Cell Line (MC65) Overexpressing the Amyloid Precursor Protein

The role of Aβ in increasing oxidative stress has been well-documented using various methods to
detect reactive oxidative species [30–32]. To determine if treatment with SLF attenuates Aβ-induced ROS
production, we cultured the MC65 neurons in the presence and absence of SLF upon induction of the Aβ

precursor, APP. Intracellular Aβ is known to start accumulating as early as 4 hours after TC removal in the
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MC65 cell line and most unprotected cells die after three days. In order to avoid the detection of oxidative
changes due to cell death toxicity, we imaged cells stained with the ROS-sensitive dye CellROX at the
24–hour time period [33]. As shown in Figure 3B, expression-induced cells show a clear red CellROX
signal, which indicates a high level of oxidative stress. When APP-expressing cells are treated with
SLF, ROS levels are significantly lowered (Figure 3C). In order to confirm the role of the nitroxide spin
label moiety in attenuating Aβ-induced oxidative stress, we also treated APP-expressing cells with the
diamagnetic version of SLF (SLFdm), which lacks the catalytic antioxidant functionality. As shown in
Figure 3D, SLFdm only partially lowers ROS levels relative to the vehicle control. The significance of
the nitroxide moiety alone is confirmed by the ability of the nitroxide-based antioxidant MitoTEMPO to
attenuate oxidative stress in Aβ-challenged neurons (Figure 3E). Quantification of CellROX intensities is
given in Figure 4. The superior performance of SLF (Figure 4) in lowering oxidative stress suggests its
ability to provide a targeted antioxidant activity that underlies its potency in protecting against Aβ toxicity.
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Figure 3. The nitroxide moiety of SLF has extensive ROS scavenging properties in cultured neuronal
cells induced to overexpress the amyloid precursor protein (APP). Confocal microscopy images show
Aβ-induced ROS signal reported by the fluorogenic dye CellRox Deep Red (red punctae in image) in
MC65 human neuroblastoma cells when APP expression is turned on (B) relative to the control (A).
In cells that are overexpressing APP, SLF greatly attenuates the ROS signal (C). SLF lacking the nitroxyl
moiety (D) and the MitoTEMPO antioxidant (E) provide lower ROS scavenging activity compared to
SLF. In addition to the CellROX images (left column), the DAPI nuclear stain (middle column) and the
merged DAPI-CellRox images (right column) are shown. Scale bar represents 20 µm.
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Figure 4. Quantification of mean fluorescence intensity signal of Aβ-induced ROS signal (see Figure 3)
in human neuronal cells overexpressing the amyloid precursor protein (APP). The effect on Aβ-induced
ROS signal of SLF, SLFdm, and MitoTEMPO addition to the APP-induced cells (−TC) is given by the
green, orange, and blue bars, respectively, and is compared to the −TC group. Statistical analyses of
fluorescence intensity by one-way ANOVA gives * p < 0.01, ** p < 0.001 for n = 3. Error bars represent
the standard error as described in the Methods section.

2.3. The Nitroxide Group of the SLF Compound Plays a Key Role in Decreasing Exogenous Aβ-Induced
Oxidative Stress

To determine the ability of SLF to attenuate oxidative stress from exogenous Aβ, we first measured
AβO-induced oxidative stress in N2a cultured neurons (Figure 5). We then evaluated the abilities
of SLF, MitoTEMPO, and SLFdm to attenuate the oxidative stress resulting from an exogenous AβO
challenge. We co-treated N2a cells with the compounds (2 µM final concentration) and exogenous
Aβ (1 µM final concentration), incubated the cultures for 24 hours at 37 ◦C, and then imaged the
CellROX signal. Both SLF and MitoTEMPO strongly inhibit ROS generation in Aβ-challenged neurons
(Figures 5C and 5E). SLFdm offers partial protection against ROS generation, which suggests that
conformational modulation of Aβ by the fluorene moiety can regulate the ability of Aβ to promote
oxidative stress. A quantification of ROS signal in the N2a cells is given in Figure 6.

2.4. SLF Attenuates the Cytoplasmic Accumulation of Intracellular Aβ in a Human Neuroblastoma Cell Line
Overexpressing the Amyloid Precursor Protein Shown by Super-Resolution Structured Illumination Imaging

To investigate the specific sub-cellular localization of Aβ deposition and SLF’s role in modulating
this process, we cultured MC65 neurons expressing the APP protein without TC for 24 hours in the
presence of SLF or vehicle. We assessed Aβ deposits by super-resolution microscopy using the FSB
stain, which is a known amyloid dye (Figure 7) [34,35]. Cells grown in the presence of TC served
as controls (Figure 7A). In cells overexpressing the APP protein, there is significant FSB staining of
accumulated intracellular Aβ (green staining, Figure 7B). The bulk of the deposits surround the nucleus
and appear to distort and protrude into the nuclear membrane (Figure 7B). As shown in Figure 7C,
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there is a greatly reduced FSB signal in cells treated with SLF, which indicates that SLF effectively
blocks intracellular Aβ accumulation in cells overexpressing APP.
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Figure 5. The nitroxide moiety of SLF has extensive ROS scavenging properties in N2a cells treated
with 1 µM exogenous Aβ. ROS levels were imaged by confocal microscopy for the fluorogenic dye
CellRox Deep Red (red punctae in image). A slight generation of ROS is evident with the vehicle control
(A). Addition of Aβ elicits a strong ROS response (B). Images show decreased levels of the Aβ-induced
ROS signal in the presence of SLF (C) while moderately high levels of ROS are evident in cells treated
with the SLF lacking the nitroxyl moiety (D). The strong antioxidant activity of MitoTEMPO is evident
in (E). In addition to the CellROX images (left column), the DAPI nuclear stain (middle column) and
merged DAPI-CellRox images (right column) are shown. Scale bar represents 20 µm.
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the Amyloid Precursor Protein Detected by the Oligomer-Specific Antibody 

The oligomer-specific antibody A11 provides a powerful tool to detect the presence of Aβ in its 

toxic, oligomeric state [36,37]. A11 also reacts with oligomeric forms of other amyloidogenic peptides 

such that it recognizes a conformation specific to pathogenic misfolded proteins. To specifically probe 

the effect of SLF on oligomeric Aβ (AβO), MC65 neurons overexpressing the APP protein were 

cultured for 24 hours in the presence of SLF or vehicle, stained with A11 antibody, and examined by 

confocal microscopy (Figure 8). In the absence of APP induction, no A11 signal is detected (Figure 

8A). Upon induction of the Aβ precursor, a clear perinuclear signal for the A11 antibody is evident 

(green staining, Figure 8B), which shows that much of the accumulated intracellular Aβ is in the 

Figure 6. Quantification of mean fluorescence intensity signal from Aβ-induced ROS signal (see
Figure 5) in N2a neuronal cells treated with 1 µM exogenous Aβ. The effect of SLF, SLFdm,
and MitoTEMPO co-addition on the Aβ-induced ROS signal of Aβ-treated N2a cells is given by
the green, orange, and blue bars, respectively, and is compared to the +Aβ group. Statistical analysis of
fluorescence intensity by one-way ANOVA gives * p < 0.01, ** p < 0.001, n = 3. Error bars represent the
standard error as described in the Methods section.

Molecules 2018, 23, x FOR PEER REVIEW  8 of 21 

 

 

Figure 6. Quantification of mean fluorescence intensity signal from Aβ-induced ROS signal (see 

Figure 5) in N2a neuronal cells treated with 1 μM exogenous Aβ. The effect of SLF, SLFdm, and 

MitoTEMPO co-addition on the Aβ-induced ROS signal of Aβ-treated N2a cells is given by the green, 

orange, and blue bars, respectively, and is compared to the +Aβ group. Statistical analysis of 

fluorescence intensity by one-way ANOVA gives * p < 0.01, ** p < 0.001, n = 3. Error bars represent the 

standard error as described in the Methods section. 

 

Figure 7. Super-resolution structured illumination (SIM) images of intraneuronal Aβ stained with the 

amyloid dye FSB (green). In all images, MC65 neuronal cells were stained with propidium iodide 

(red). No FSB signal is observed for cells grown in the absence of APP induction (+TC, panel A). For 

cells induced for APP expression, a large intracellular Aβ accumulation is apparent (green signal, 

panel B), which leads to a distortion of the nuclear membrane (yellow arrow). When SLF is included 

in the APP-induced MC65 culture, the Aβ stain signal is greatly reduced (C). Scale bar represents 1 

μm. 

2.5. SLF Decreases the Formation of Intracellular AβO in a Human Neuroblastoma Cell Line Overexpressing 

the Amyloid Precursor Protein Detected by the Oligomer-Specific Antibody 

The oligomer-specific antibody A11 provides a powerful tool to detect the presence of Aβ in its 

toxic, oligomeric state [36,37]. A11 also reacts with oligomeric forms of other amyloidogenic peptides 

such that it recognizes a conformation specific to pathogenic misfolded proteins. To specifically probe 

the effect of SLF on oligomeric Aβ (AβO), MC65 neurons overexpressing the APP protein were 

cultured for 24 hours in the presence of SLF or vehicle, stained with A11 antibody, and examined by 

confocal microscopy (Figure 8). In the absence of APP induction, no A11 signal is detected (Figure 

8A). Upon induction of the Aβ precursor, a clear perinuclear signal for the A11 antibody is evident 

(green staining, Figure 8B), which shows that much of the accumulated intracellular Aβ is in the 

Figure 7. Super-resolution structured illumination (SIM) images of intraneuronal Aβ stained with the
amyloid dye FSB (green). In all images, MC65 neuronal cells were stained with propidium iodide (red).
No FSB signal is observed for cells grown in the absence of APP induction (+TC, panel A). For cells
induced for APP expression, a large intracellular Aβ accumulation is apparent (green signal, panel B),
which leads to a distortion of the nuclear membrane (yellow arrow). When SLF is included in the
APP-induced MC65 culture, the Aβ stain signal is greatly reduced (C). Scale bar represents 1 µm.

2.5. SLF Decreases the Formation of Intracellular AβO in a Human Neuroblastoma Cell Line Overexpressing
the Amyloid Precursor Protein Detected by the Oligomer-Specific Antibody

The oligomer-specific antibody A11 provides a powerful tool to detect the presence of Aβ in its
toxic, oligomeric state [36,37]. A11 also reacts with oligomeric forms of other amyloidogenic peptides
such that it recognizes a conformation specific to pathogenic misfolded proteins. To specifically
probe the effect of SLF on oligomeric Aβ (AβO), MC65 neurons overexpressing the APP protein were
cultured for 24 hours in the presence of SLF or vehicle, stained with A11 antibody, and examined
by confocal microscopy (Figure 8). In the absence of APP induction, no A11 signal is detected
(Figure 8A). Upon induction of the Aβ precursor, a clear perinuclear signal for the A11 antibody is
evident (green staining, Figure 8B), which shows that much of the accumulated intracellular Aβ is in
the oligomeric state. As shown in Figure 8C, SLF treatment of APP-induced MC65 cells effectively
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removes all A11 staining relative to the non-induced control. SLF lacking its catalytic antioxidant
functionality (SLFdm) is less efficient in blocking AβO accumulation (Figure 8D), although it performs
better than the nitroxide antioxidant alone (Figure 8E). Quantification of the green fluorescent signal
of the anti-AβO antibody from confocal images of cultured cells is shown in Figure 9A. SLF shows a
large decrease (about seven-fold) in fluorescence intensity from the anti-AβO antibody versus cells
treated with vehicle. SLFdm and MitoTEMPO showed approximately a three-fold decrease and about
a five-fold decrease in A11 intensity versus treatment with the vehicle alone, respectively (Figure 9A).
The intensity of Aβ staining in APP-induced cells without protective treatment was highly variable,
which is indicated by the error bars in Figure 9. This can be attributed to uneven localization and
aggregation and trafficking patterns of Aβ within the highly stressed cells.
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Figure 8. SLF greatly reduces the presence of intraneuronal oligomeric Aβ (AβO) in MC65 cells
overexpressing APP. The presence of AβO was detected by the oligomer-specific antibody A11
(indicated by green Cy2 signal) in MC65 cells examined by confocal microscopy. In the absence
of APP induction, there is no detection of intraneuronal AβO (A). With overexpression of APP, AβO
staining is clearly evident (B). Addition of SLF to MC65 cells overexpressing APP results in a dramatic
decrease in AβO (C). Relative to SLF, the ability of diamagnetic SLF to reduce AβO is markedly less
(D), which suggests that ROS promotes Aβ generation and/or AβO formation. Row (E) shows that
MitoTEMPO attenuates AβO only partially, which is consistent with the notion of the synergistic action
of SLF (conformational effects and targeted antioxidant). In addition to the Cy2 images (left column),
images for the DAPI nuclear stain (middle column) and merged DAPI-Cy2 images (right column) are
shown. The scale bar represents 20 µm.
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Figure 9. Quantification of the mean fluorescence intensity signal in confocal images of MC65 cells
stained with the anti-AβO antibody A11 (panel A, see Figure 8) or the generic anti-Aβ antibody 4G8
(for total Aβ, panel B, see Figure 10). The effect of SLF, SLFdm, and MitoTEMPO co-addition on the
intracellular accumulation of Aβ in APP-induced MC65 cells is given by the green, orange, and blue
bars, respectively, and is compared to the −TC vehicle control. Statistical analysis of fluorescence
intensity by one-way ANOVA gives * p < 0.01, ** p < 0.001, n = 3. Error bars represent the standard
error, which is described in the Methods section.

2.6. SLF Decreases Accumulation of Total Intracellular Aβ in a Human Neuroblastoma Cell Line
Overexpressing the Amyloid Precursor Protein

Intracellular Aβ exists as a dynamic mix of soluble oligomers of various sizes with the small
intracellular soluble oligomers considered the most toxic form of Aβ [38]. In order to test whether SLF
decreases the total Aβ load within the cells, MC65 neurons expressing APP protein were stained with
the 4G8 antibody, which recognizes all conformational states of the peptide. Induced (−TC) cells were
treated with vehicle or SLF for 24 hours, stained with the 4G8 antibody for total Aβ levels, and imaged
by confocal microscopy (Figure 10). As shown in Figure 10C, SLF substantially lowers total Aβ relative
to the vehicle control (Figure 10B). Therefore, the ability of SLF to lower AβO levels (Figure 8) can,
in part, be attributed to improved cellular clearance of the peptide generated by APP overexpression.
Similarly to their effects on AβO levels, SLFdm and MitoTEMPO treatment also lower total Aβ levels,
but to a lesser extent than the bifunctional SLF. Quantification of 4G8 intensity (Figure 8, green signal) is
shown in Figure 9B. Regarding their effects on total Aβ, SLFdm outperforms MitoTEMPO, which may
indicate that antioxidant functionality is more significant in modulating the formation of AβO while
the clearance of total Aβ benefits more from the conformational effects caused by the docking moiety
of SLF.

2.7. SLF Decreases Uptake of Aβ in Cultured Neurons Treated with Exogenous Aβ

We sought to investigate whether SLF can attenuate intracellular aggregation of exogenous Aβ

in N2a neuronal cultures grown in the presence of 1 µM Aβ. We assessed intracellular uptake of
exogenous Aβ by measuring the fluorescence intensity of FSB in N2a cells treated with Aβ. As shown
in Figure 11, confocal imaging clearly shows a cytoplasmic uptake of exogenous Aβ as evident by
the bright green dots around the nucleus and in the cytoplasmic space (Figure 11A). The cytoplasmic
distribution of the exogenous Aβ after uptake into the cell matches that of the endogenous Aβ of
the MC65 cells post-APP overexpression (green accumulation protruding into the nuclear membrane
shown by super-resolution imaging, Figure 7B). The effect of SLF on Aβ uptake was determined by
including 2 µM of SLF in the culture medium at the time of the addition of 1 µm Aβ. As shown in
Figure 11B, SLF decreases the FSB staining in N2a cells treated with Aβ, which suggests that SLF either
inhibits Aβ uptake and/or promotes the peptide’s metabolism within the cell.
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Figure 10. SLF reduces the presence of total intraneuronal Aβ in MC65 cells overexpressing APP.
The presence of Aβ was detected by the conformational-independent antibody 4G8, which recognizes
all forms of Aβ. Bound 4G8 antibody is indicated by the green Cy2 signal in the MC65 cells examined
by confocal microscopy. In the absence of APP induction, there is only slight staining by 4G8 (A).
With overexpression of APP, Aβ staining is clearly evident (B). Addition of SLF to MC65 cells
overexpressing APP results in a dramatic decrease in the total Aβ (C). Relative to SLF, the ability
of diamagnetic SLF to reduce total Aβ is markedly less (D), which suggests that ROS promotes Aβ

generation and/or inhibits Aβ clearance. Row (E) shows that MitoTEMPO attenuates total Aβ slightly
better than SLFdm, which supports the notion that ROS levels significantly affect Aβ metabolism.
The left column is the Cy2 stain, the middle column is the DAPI nuclear stain, and the right column is
a merging of the first two columns. Scale bar represents 20 µm.
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Figure 11. Confocal microscopy of N2a cells stained with the amyloid dye FSB with exogenous Aβ

treatment. Panel (A) shows cells stained with FSB 24 hours after the addition of 1 µM Aβ. Panel (B)
shows cells that were treated with 1 µM Aβ + 2 µM SLF and stained with FSB 24 hours later. Bright
green dots in (A) show a cytoplasmic, perinuclear distribution indicative of intracellular uptake of
exogenous Aβ. Scale bars represent 10 µm.

2.8. SLF Decreases the Presence of AβO in Cultured Neurons Treated with Exogenous Aβ

The ability of SLF to specifically reduce oligomeric Aβ in N2a neurons treated with exogenous
Aβ was assessed by measuring the fluorescence intensity of the A11 antibody in cells with and without
SLF treatment. Significantly elevated fluorescence intensity is indicative of the formation of Aβ

oligomers and is noted in the neurons treated with Aβ in the absence of SLF (Figure 12A) while the
fluorescence intensity was significantly reduced in neuronal cultures treated with Aβ in the presence
of SLF (Figure 12B). To further explore the role of the two moieties of the SLF compound, we compared
the isolated effect of the nitroxide component (MitoTEMPO) versus the fluorene component (SLFdm)
on intracellular AβO levels resulting from exogenous Aβ addition. Although neuronal cells treated
with SLFdm (Figure 12D) or MitoTEMPO (Figure 12E) display a reduction in AβO accumulation,
the effect is not as pronounced as that of the SLF treatment. Quantification of the fluorescence intensity
shows SLF reduces intracellular Aβ aggregation at about seven-fold compared to untreated cells, about
two-fold compared to cells treated with MitoTEMPO, and about three-fold compared to cells treated
with a diamagnetic version of the fluorene compound (Figure 13).



Molecules 2018, 23, 2010 13 of 22

1 

 

 

Figure 12. SLF blocks AβO formation of exogenous Aβ added to cultured N2a neurons. Shown are
confocal images of N2a cells stained with the oligomer-specific antibody A11 (green signal). A control
with only the DMSO vehicle added (no Aβ) is shown in row (A). Row (B) demonstrates that exogenous
Aβ is readily taken up by neurons and adopts the oligomer-specific conformation. Row (C) shows
the accumulation of imported AβO is blocked by SLF. The significance of the nitroxyl antioxidant
functionality in blocking oligomer formation is demonstrated by the diminished ability of SLFdm to
inhibit intracellular AβO accumulation (row D). Similarly, the antioxidant activity of MitoTEMPO
lowers AβO accumulation (row E), but not as effectively as the Aβ-targeted SLF compound. The left
column is the Cy2 stain, the middle column is the DAPI nuclear stain, and the right column is the
merging of the first two columns. Scale bar represents 20 µm.
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Figure 13. Quantification of mean fluorescence intensity signal in N2a neuronal cells (see Figure 12)
treated with exogenous Aβ (1 µM in culture) and stained with anti-AβO antibodies (A11). The effect
of SLF, SLFdm, and MitoTEMPO co-addition on intracellular accumulation of Aβ is given by the
green, orange, and blue bars, respectively, and is compared to the +Aβ group. Statistical analysis of
fluorescence intensity by one-way ANOVA gives * p < 0.01, ** p < 0.001, n = 3. Error bars represent the
standard error, which is described in the Methods section.

3. Discussion

The amyloid beta (Aβ) peptide is well known for its intrinsically disordered secondary structure
and high propensity to form aggregates of various sizes [39–41]. While the monomeric form of
Aβ is generally considered an antioxidant, metal chelator, and synaptic plasticity enhancer, it is
well accepted that the oligomerization of Aβ leads to toxic effects [42,43]. Generated first as a
monomer, the oligomerization of Aβ starts intracellularly, which leads to early pathologic oligomeric
Aβ species that disrupt neuronal function and lead to decreased cognition and a decline in memory [44].
Disrupting the formation of AβO at the intracellular level is, therefore, crucial for targeting AD
pathology during the early stages before permanent damage occurs.

Oxidative stress remains a common factor connecting several markers for AD pathology both at
the onset and during the progression of disease. Therefore, antioxidant activity provides an attractive
component for multi-target anti-AD candidates [12]. The role of Aβ in increasing oxidative stress,
especially due to its metal binding sites (particularly for Cu2+), and its ability to reduce Cu2+ and Fe3+

to Cu+ and Fe2+ (generating superoxide anions) have been amply documented using various methods
to detect reactive oxidative species [30–32]. Therefore, agents capable of localizing anti-ROS activity
at Aβ can greatly increase potency. In order to minimize interference with cellular ROS-dependent
signaling and endogenous ROS protection pathways, it is becoming increasingly clear that high
potency compounds will be especially beneficial to antioxidant approaches [45]. In addition to
localizing antioxidant activity at Aβ, the nitroxide is a highly efficient ROS scavenger that can perform
in a catalytic fashion [24,25].

We have previously reported on the bifunctional ability of SLF to scavenge ROS, decrease
Aβ aggregation, and alter the conformation of oligomeric Aβ in vitro [20–22,46]. In this study,
we investigate how the bifunctionality of SLF can both affect the aggregation dynamics of Aβ and,
through the SLF’s nitroxide moiety, maintain ROS homeostasis in cultured neurons. We sought to
investigate to what extent the rescued cell survival afforded by SLF is due to its nitroxide antioxidant,
fluorene conformational modulator, or the combination of both. The two functional components
were evaluated independently by employing a diamagnetic version of SLF (SLFdm) that lacks the
nitroxyl functional group as well as a potent nitroxyl-based antioxidant (MitoTEMPO) that lacks the
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ability to engage Aβ and modulate its structure/oligomerization. In neurons challenged by either the
overproduction of Aβ (MC65 cells) or by exogenous Aβ addition (N2a cells), SLF provides superior
protection compared to SLFdm and MitoTEMPO. With regard to cellular protection, the nitroxide
component (represented by the MitoTEMPO treatment) affords greater protection against Aβ addition
when compared to SLFdm. We propose SLF has the unique capacity to increase neuronal survival in the
face of an Aβ challenge by simultaneously decreasing Aβ oligomerization and Aβ-induced oxidative
stress. There is ample evidence supporting the presence of a positive feedback cascade between Aβ

oligomer formation, ROS generation, and Aβ production with any one of these processes stimulating
the rates of the other two, which results in a highly injurious cycle that ultimately leads to neuronal
death [16,47,48]. While the two SLF moieties separately act on the specific tasks of oligomerization
and ROS scavenging, their results affect each other in the sense that decreased ROS leads to less AβO
production and less Aβ results in less oxidative stress.

We then probed the distinct functionalities of SLF by separately investigating its effects on Aβ

levels and ROS scavenging. First, we used super resolution microscopy to image the intracellular Aβ

load in MC65 cells with and without SLF treatment. The FSB-stained cells show a large accumulation
of Aβ. This should be evaluated as total Aβ since FSB stains various forms of amyloid assembly.
The high-resolution image reveals a clear perinuclear distribution of Aβ with an apparent distortion
of the nuclear membrane. The significance of this distribution in the etiology of AD remains to be
investigated. When the APP-induced MC65 cells are treated with SLF, the FSB signal is dramatically
reduced. This indicates that SLF not only protects against Aβ toxicity but also affects Aβ metabolism
within the cell by decreasing amyloidogenic processing and/or increasing Aβ clearance. Our previous
studies [20–22] showing that SLF converts AβO into smaller, more stable oligomers may provide
a thermodynamic explanation for the enhanced peptide clearance. In this regard, further imaging
studies directed towards candidate pathways for SLF-enhanced clearance will be very useful.

To address whether SLF affects the levels of oligomeric Aβ specifically, we carried out confocal
analyses of MC65 cells stained with the oligomer-specific antibody A11 as well as the 4G8 antibody,
which recognizes all forms of Aβ. Similar to the FSB results described above, untreated MC65
cells induced to overexpress APP reveal a high level of Aβ that appears to outline the nuclear
envelope within the cytoplasm. SLF decreases the levels of intracellular AβO as well as total Aβ

significantly more than either SLFdm or MitoTEMPO. Similarly, treatment with MitoTEMPO also
decreases intracellular AβO content, albeit to a lesser extent. Therefore, while overall protection
correlates strongly with the nitroxyl ROS scavenging, the conformational targeting by SLF and SLFdm

enhances Aβ clearance over antioxidant activity alone. Nevertheless, the decreased Aβ levels found
in MC65 cells with MitoTEMPO treatment align with previous studies showing that oxidative stress
promotes intracellular accumulation of Aβ [49–51]. A less aggressive amyloid model was also used to
evaluate the differential effect of the agents on intracellular AβO accumulation by treating N2a neurons
with exogenous Aβ and then staining with the A11 antibody. Confocal images show Aβ is imported
into the neurons. However, the amount is substantially less in the presence of SLF. The question of
whether SLF is inhibiting Aβ uptake and/or enhancing its clearance remains to be studied.

With respect to the ROS scavenging ability of SLF, our measurements show SLF is a much more
efficient scavenger compared to either of its two components taken separately. While SLF containing
both the fluorene and nitroxide components significantly decreases oxidative stress, SLFdm has only a
mild effect in both the endogenous and exogenous Aβ models. However, the MitoTEMPO treatment
shows differing results depending on the situation. Although MitoTEMPO affords less protection than
SLF in both cases, it more efficiently protects N2a cells from exogenous Aβ-induced ROS. This might
indicate that under a milder Aβ insult, the ROS levels can be strongly attenuated without structural
engagement of the Aβ.

These findings support a synergistic effect of the two components of SLF in counteracting both
the conformational toxicity of Aβ and its promotion of ROS scavenging, propelling SLF forward as a
potential therapeutic candidate for further studies on early progression of AD. Previous findings
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indicate that the accumulation of Aβ induces oxidative stress and oxidative stress induces the
accumulation of Aβ [49]. In light of this link, we postulate the unique bifunctionality of SLF makes it an
ideal candidate to pursue as a potentially effective therapy against AD development and progression.

4. Materials and Methods

4.1. Materials

Spin-labeled fluorene (SLF) and diamagnetic spin-labeled fluorene (SLFdm) were synthesized
as previously described [52]. Amyloid beta (Aβ) peptide (1–40) was purchased from EZBiolab Inc.,
Carmel, IN, USA. Hoechst Blue 3342 nuclear stain was purchased from Thermo Fisher, Waltham, MA,
USA. CellRox (Deep Red; λex/λem 640/665 nm) was purchased from Life Technologies, Waltham,
MA, USA. (E,E)1-Fluoro-2,5-bis-(3-hydroxycarbonyl-4-hydroxy)styrylbenzene (FSB) amyloid stain
was purchased from Calbiochem, MilliporeSigma, Burlington, MA, USA. Oligomer A11 polyclonal
antibody was purchased from Thermo Fisher, Waltham, MA, USA. The 4G8 anti β-Amyloid
17–24 antibody was purchased from BioLegend, San Diego, CA, USA. The cyanine conjugate (Cy2)
donkey anti-goat, secondary antibody was purchased from Jackson Immuno Research, West Grove,
PA, USA. The Opti-Minimal Essential Medium (OPTIMEM) was purchased from Invitrogen/Life
Technologies. PBS pH 7.4 (-Calcium Chloride, -Magnesium Chloride), Opti-MEM® I Reduced Serum
Medium (no phenol red), DMEM (Dulbecco’s modified Eagle’s medium +4.5 g/L Glucose, L-Glutamine,
and 110 mg/L Sodium Pyruvate), and Fetal Bovine Serum (FBS) were purchased from Gibco (Carlsbad,
CA, USA). 35 mm Glass Bottom Dishes (No. 1.5) were purchased from MatTek, Ashland, MA, USA.
Trypan Blue Solution (0.4%) was purchased from Sigma-Aldrich, St. Louis, MO, USA.

4.2. Cell Line Model Over-Expressing Intracellular Aβ

We used MC65 cells, a neuronal cell culture line that shows intracellular accumulation of
Aβ [29,33,53,54]. The MC65 cells are derived from a human neuroblastoma line with conditional
expression of the carboxyl-terminal 99 residues of the amyloid-β precursor protein (APP-C99) under
the negative regulation of the suppressor tetracycline (TC) in the culture medium. Proteolysis of
APP-C99 by the cellular γ and β secretases generates Aβ. Intracellular Aβ is known to start to
accumulate as early as 4 h after TC removal with maximal levels at 24 h. While cell death 3 days
after removal of TC was shown to be due to the intracellular accumulation of AβO rather than to
the small amounts of secreted Aβ [33], fluorescence microscopy analyses of cells was done at 24 h
so that effects of oxidative stress can be acutely attributed to Aβ. However, the MTT assay for cell
viability was done at 3 days to allow for the observation of changes in cell morphology. The MC65
cells were cultured in a 75 mL flask in a culture medium composed of a mixture of 50% Dulbecco’s
Modified Eagle Medium supplemented with 4.5 mg/mL D-glucose, non-essential amino acids, 1 mM
sodium pyruvate, and 10% (v/v) heat-inactivated fetal bovine serum, supplemented with 0.1 mg/mL
tetracycline, 50 IU/mL penicillin, and 50 µg/mL streptomycin. The cultures reached 80% confluence
after 24 h. At this point, the cells were harvested and the trypan blue exclusion test was used to
determine the count of viable cells for calculations of cell density. Cells were then seeded at a density
of 2.5 × 105 cells/well in 96-well plates for the MTT viability assay and in glass bottom culture dishes
for the other experiments. Expression of APPC99 in MC65 cells was induced by removing TC from
cell culture medium and cells were treated with various treatments described for each experiment.
To examine the effects of SLF on exogenous Aβ, we used the Neuro-2a mouse neuroblastoma cell
line (N2a). The N2a cells were cultured in the same culture media as the MC65 cells (only without
TC in the culture media) in a 75 mL culture flask and reached 80% confluence after 12 h. They were
then harvested and processed similarly to MC65 cells. Exogenous Aβ was prepared as described in
Section 4.3 and was added to a final concentration of 1 µM in +/− for the same treatments as those
of the MC65 cells. For both cell lines, we cultured cells from three different passages on different
days. For the fluorescence intensity quantification, we selected three clusters of 30 cells from each
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image to normalize for the cell number and background intensity. We then used Image J to quantify
fluorescence intensity for the CellRox and Cy2 channels.

4.3. Preparation of Amyloid-Beta Peptide Solution

Aβ solution was prepared as previously described [20,21,23]. The Aβ peptide was reconstituted
in hexa-fluoro-isopropanol (HFIP) and incubated at room temperature on a shaker for 48–72 h until it
became clear. Aliquots of 0.1 mg Aβ were placed in a SpeedVac to remove the HFIP and the resulting
monomeric peptide film was stored at −80 ◦C. Immediately before use, the Aβ peptide film was
reconstituted in 10 µL fresh DMSO for a stock solution of 1 mM Aβ. The Aβ solution diluted to a
final concentration of 1 µM was co-added to the N2a cultured cells treated with either vehicle or 2 µM
final concentration of SLF, mitoTEMPO, or diamagnetic fluorene (SLFdm). Since Aβ starts to aggregate
almost immediately after the addition to the culture media, we introduced the Aβ solution to the N2a
cell culture simultaneously with the compounds and incubated at 37 ◦C for 24 h to let Aβ oligomerize
in situ. Although the concentration of the intracellular Aβ is not known, it is likely higher than that
of the 1 µM Aβ added to the culture media. We choose the 1:2 Aβ:SLF molar ratio since, at these
concentrations, Aβ is expected to be fully saturated with SLF [21,22].

4.4. Cell Viability Assay

Cytotoxicity in N2a and MC65 cells cultured and treated as described in Section 4.2 was
determined using counts of viable cells 72 h after treatment based on the MTT assay (tetrazolium dye
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), which was described previously
by Maezawa et al., 2007. Both N2a and MC65 cells were plated at a density of 2.5 × 105 cells/well
in a 96-well plate in 200 µL in the same medium described in Section 4.2. The Aβ solution was
prepared in phenol red-free (OPTIMEM) and fetal bovine serum-free media as described in Section 4.3,
then added to the N2a cell cultures at final concentrations of 1 µM for Aβ and 2 µM for SLF, SLFdm,
and MitoTEMPO. The MC65 cells were cultured in the same conditions in the presence and absence of
TC at 1 µg/mL. The compounds were added to the cultures at 2 µM for SLF, SLFdm, and MitoTEMPO
for 9 wells and 3 rows. After 24 h of incubation, 150 µL media was removed and 5.5 µL of 2.5 mg/mL
MTT (thyazolyl blue compound) was added to each well to a final concentration of 0.25 mg/mL.
After 2 h incubation at 37 ◦C, 100 µL of solubilization buffer (0.1 N HCL in isopropanol) was added to
each well and the plates were placed on a shaker at room temperature until blue crystals are dissolved.
The plate was read on the plate reader at 560 nm for MTT and 630 nm for baseline subtraction. Cell
viability was expressed as the percentage of viable cells.

4.5. Cell Culture for the Detection of Intracellular Aβ by Super-Resolution Structured Illumination Imaging

The MC65 neuronal cells were washed extensively and plated at a density of 3.5 × 105 cells/well
over 18/18 mm #1.5 Fisherbrand Microscope Cover Glasses in OPTIMEM containing 50 IU/mL
penicillin and 50 µg/mL streptomycin without serum and without TC. The neuronal cells were
treated with 10 µM SLF or with the vehicle. The control cells were plated in OPTIMEM with
TC. After 24 h of incubation at 37 ◦C, the cultures were washed in PBS pH 7.4 for 15 min × 3 to
discard any extracellular Aβ, fixed in 4% paraformaldehyde, and stained for 10 min in 5 µM
(E,E)1-fluoro-2,5-bis-(3-hydroxycarbonyl-4-hydroxy)styrylbenzene (FSB) amyloid stain. After washing
in PBS pH 7.4 for 1 h × 3, the cover glasses were mounted with Vectashield Mounting Medium with
Propidium Iodide (PI) over microscope slides [34].

4.6. Super-Resolution Structured Illumination Imaging of FSB-Stained Intracellular Aβ

Super-resolution structured illumination (SIM) imaging was used to obtain images of FSB-stained
Aβ inclusions (green) in MC65 cells overexpressing APP protein, which were grown in the presence
(+TC) and absence (−TC) of an inducible repressor. Images were taken using a Deltavision OMX v2.0,
(Applied Precision, LLC, Issaquah, WA, USA) super-resolution, wide-field, Structured-Illumination
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fluorescence Microscope (SIM) that uses a 60× magnification and 1.40 NA objective lens immersed
in 1.514 refractive index oil. The FSB/PI staining was viewed using excitation lasers at λex = 405 nm
and 488 nm, respectively. The Z-stacked images were reconstructed using the deconvolution software
SoftWoRx version 4.1 (GE Healthcare, Marlborough, MA, USA). Reconstructed images were processed
using Volocity 5.5.1 (Perkin Elmer Inc., Waltham, MA, USA) to generate 3-D images.

4.7. Immunofluorescence Staining for the Accumulation of Intracellular Aβ

MC65 and N2a neurons were cultured on cover slips, treated as described in Section 4.3, incubated
at 37 ◦C for 24 h, washed in untreated culture media for 15 min × 3 to discard any extracellular
Aβ, and fixed in 4% paraformaldehyde. To detect the accumulation of intracellular Aβ oligomers,
the MC65 and N2a cells were then stained with anti-Aβ oligomer A11 antibodies (1:2000) overnight
at 4 ◦C, and then with Cy2 fluorescent secondary antibodies for 3 h at room temperature. To detect
the accumulation of total intracellular Aβ, the MC65 cells were stained with anti-Aβ antibodies
4G8 (1:1000) overnight at 4 ◦C followed by Cy2 fluorescent secondary antibodies for 3 h at room
temperature. Additionally, to detect intracellular uptake of Aβ, the N2a cells treated with exogenous
Aβ (1 µM) in the presence and/or absence of SLF (2 µM) for 24 h were stained for 10 min in 5 µM
amyloid dye FSB ((E,E)1-fluoro-2,5-bis-(3-hydroxycarbonyl-4-hydroxy)styrylbenzene). After staining,
cells were washed extensively in culture media ×3, fixed in 4% paraformaldehyde for 10 min and
imaged [34,35,54].

4.8. Detection of Intracellular Aβ Oligomers, Total Aβ, and Intracellular Uptake of Aβ by Confocal Microscopy

Fixed cells were imaged with an Olympus Fluoview FV1000 spectrum confocal microscope (Life
Science Solutions, Center Valley, PA, USA). Each individual field was imaged using an ×40 objective.
Single plane confocal scans of the cultured MC65 neuronal cells and N2a cells areas were taken via
sequential scanning mode. Fluorescence intensity comparison was then used to determine differences
between the accumulations of intracellular Aβ under various treatments.

4.9. Detection of the Intracellular Oxidative Stress Signal by Confocal Microscopy

Treated and control MC65 and N2a cells were gently washed with untreated culture medium and
incubated for 30 min with the ROS detection reagent CellROX, which is a fluorogenic probe that when
oxidized develops a red fluorescent signal seen around the nuclei of unprotected cells. At 20 min,
the cells were treated for the remaining 10 min with a Hoechst Blue 3342 nuclear stain, gently washed
for 15 min × 3 with untreated culture medium, and imaged immediately. The images of CellROX
staining were collected on an Olympus FV1000 spectrum confocal microscope. Each individual field
was imaged using an ×40 objective. Single plane confocal scans of the cultured neuronal cell areas
were taken through the sequential scanning mode using diode excitation lasers of 653 nm for CellROX
Deep Red (λexe/λem = 640/665 nm) and 559 nm excitation laser for Cy2 (λexe/λem = 492/510 nm).
Intensity comparison of the ROS signal was then performed to compare Aβ-induced oxidative stress.

4.10. Statistical Analysis and Quantification of Immunohistochemical Staining

Statistical significance between groups of cells under different treatments was determined by an
ordinary one-way ANOVA test using GraphPad Prism version 7.0c for MAC OS X, GraphPad Software,
La Jolla, CA, USA, where p value from the ANOVA is reported as a result of the Brown-Forsythe test
and is considered significant if <0.05. All data were expressed as the mean ± SEM from multiple
measurements. For each measured condition in MTT assays, n = 12. For fluorescence intensity
measurements, n = 3, and multiple ROIs were measured from groups of 30 cells with 3 areas of each
image obtained from 3 different dishes of cells for each group. Each dish was cultured from a different
stock of a different passage (12–14).

The images of the CellRox and Aβ-stained cells were transformed to 8-bit gray scale and
fluorescence intensity was analyzed with Image J, FIJI (version 2.0.0-rc-68/1.52e, open-source platform
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for biological image analysis) for MAC OS X, using the particle analysis function [55]. One-way
ANOVA followed by a Tukey multiple comparisons test was performed to compare mean fluorescence
intensity between the treatment groups using the GraphPad Prism version 7.0c for MAC OS X,
GraphPad Software, La Jolla, CA, USA. Triplicate measurements were done in 3 randomly selected
areas of each of the cell culture fields with a background correction. All data were expressed as the
mean ± SEM.
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