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ABSTRACT OF THE DISSERTATION

Bayesian State Space Models for Dynamic Functional Connectivity using fMRI Data

By
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Professor Veronica Berrocal, Chair

Dynamic Functional Connectivity (DFC) investigates how the interactions among brain re-

gions vary over the course of an fMRI experiment. A challenge in DFC inference is the

between-subject heterogeneity in both brain region interactions and the evolution of these

interactions over time. In this dissertation, I discuss three proposed state-space models

to address these challenges. (1) I propose a multi-subject DFC model where transitions be-

tween functional connectivity (FC) states are modeled by a non-homogenous Hidden Markov

Model: a state-space model where the transition distribution are informed by subject-specific

physiological readings. I discuss the results of this model applied to fMRI data where pupil

dilation is simultaneously tracked, suggesting FC stability is linked to attention and arousal.

(2) I propose an extension to the single subject Psychophysiological Interaction (PPI) model,

which seeks to estimate the effect modification of FC by a stimulus/task. The standard PPI

model assumes static FC when the subject is at rest. The proposed model allows for DFC

in absence of a stimuli, reducing bias in estimating PPI effects in DFC settings. This model

is applied to a predictive learning task, where increased unpredictability of a sequence of

images is estimated to be associated to tighter coupling in Anterior Cingulate and Caudate

regions. (3) Lastly, I propose a multi-subject bi-clustering model that dynamically clusters

brain regions based on their activation profile, then clusters subjects based on their regional

clustering behavior over time. This model is applied to a handgrip task-fMRI dataset.
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Chapter 1

Brain Imaging and Dynamic

Functional Connectivity

The brain is extraordinarily complicated. It is estimated that there are 86 billion neurons

in the average human brain, each functioning with the other in concert driving how we

survive. The brain is responsible for processing our bodily functions, as well as how we

perceive the world around us, through coordinating our cognitive functionality. (Herculano-

Houzel, 2009). What drives much of the complexity of the brain is how these neurons

work together by sending signals to and from each other in response to stimuli received

from bodily receptors. Understanding the connections between neuronal cells is critical to

understanding the brain and its functionality. Obtaining this understanding of the brain

is important especially in the context of neurological diseases such as Parkinson’s (Grafton

et al., 1994), Schizophrenia (Lynall et al., 2010; Anderson and Cohen, 2013), and Multiple

Sclerosis (Lowe et al., 2002). Through obtaining a greater understanding of the healthy

brain and the neurological connections within, we can better understand the effects of these

diseases and hopefully a path for therapies.

1



Broadly, the study of the connections within the brain can fall into 3 categories of connec-

tivity. The first is structural connectivity, the mapping of the physical white matter tracts

connecting cells within the brain. This is vital to understanding the physical mechanisms by

which signals traverse the brain. While structural connectivity is important to understand

the roads and highways that connect the brain, they do not explain the timing nor the fre-

quency with which information flows between neurons. Such information is the domain of

the second and third modes of connectivity: functional connectivity and effective connectiv-

ity. For a review of structural connectivity and its relationship to functional connectivity, I

refer to Babaeeghazvini et al. (2021).

Functional connectivity is defined by Friston (2011) as the undirected statistical dependencies

among remote neurophysiological events, while effective connectivity is the directed statis-

tical dependence between remote neurophysiological events. Contrasting the two, effective

connectivity takes on a more causal flavor than functional connectivity, seeking to make

inferences about which neuronal firing causes others to fire. The objective of effective con-

nectivity is to model the flow of information from stimulus to neural firing and speaks to

a more intuitive idea of neural coupling. Functional connectivity does not seek to make

these distinctions, instead seeking to form networks of neurons which tend to fire together

(connected) or tend to fire independently (disconnected), with no sense of causal direction.

While seemingly less informative on the surface, functional connectivity measures provide

useful summaries of brain organization, and remains to be one of the more popular forms of

analysis of brain imaging data (Friston, 2011). Differences in functional connectivity have

been shown to be associated with clinical depression (Craddock et al., 2009), intensity of

hallucinogenic symptoms in schizophrenia (Van Den Heuvel and Fornito, 2014; Anderson

and Cohen, 2013), and aging (Zhang et al., 2019).

All three modes of connectivity are objects of active and come with their unique experimental

and statistical challenges. The framework of interest for this thesis is solely within the realm

2



of functional connectivity. This thesis aims to present a compilation of statistical methods

which seek to address three challenges presented in trying to summarize brain imaging data

with functional connectivity:

• Capturing changes in functional connectivity over time and relating these dynamics to

simultaneously recorded physiological data, such as heart rate or pupil dilation. Func-

tional connectivity is established to vary over time, on the order of seconds (Chang

and Glover, 2011). At this regard, it has become increasingly popular to talk of Dy-

namic Functional Connectivity (DFC) (Hutchison et al., 2013). Less studied is what

drives these dynamics, whether they be fatigue, arousal, or even attentiveness. This is

important to gain an understanding of how physiological information correlates with

functional connectivity. In the second chapter, I introduce a model to quantify the

effects of covariates on functional connectivity dynamics.

• Estimating DFC in task-based settings. The typical DFC analysis estimates the ef-

fects of tasks on activation and then subtracts them from the measured signals. DFC

analysis is then performed on the residuals. This leads to the interpretation of DFC

as statistical dependence between brain regions after the stimulus has been accounted

for. Instead, in Chapter 3 I propose a model that estimates DFC as well as how it is

modified by the task.

• Account for between subject heterogeneity in the DFC summaries. It is understood

intuitively that different people’s brains behave in different ways. It has been shown

empirically that this too applies to between-person differences in DFC (Tewarie et al.,

2018; Lehmann et al., 2017). In Chapter 4 I discuss a multi-subject approach that

clusters brain images on two levels, simultaneously grouping together brain regions

based on the activation profiles as well as subjects based on their brain region clustering

behavior.

3



In the remainder of this chapter, I will give a brief background of the brain imaging mode we

consider in this thesis, i.e, functional Magnetic Resonance Imaging (fMRI), as well as other

approaches to DFC.

1.1 Functional Brain Imaging

Friston’s definition of functional connectivity as the set of undirected statistical dependencies

among remote neurophysiological events, while useful, must be contextualized on the basis

of the available imaging techniques. What exactly are we measuring in the brain regions

that we wish to characterize the statistical dependence of? Indeed, the ideal case would

be to have neuronal action potentials for all 86 billion neurons across continuous time be

our neurophysiological events of interests. Current technology limits the ability to map and

measure the activity of this many neurons. Even further, the in-feasibility of both of the

storage and processing of this data is quite clear. Thus the need for a proxy measure for

neuronal firing that compromises on the following two properties: first, the spatial resolution,

i.e, the degree of accuracy to which we can attribute the location in space of neural activity;

secondly the temporal resolution, i.e, the sampling frequency with which we can capture

neural events. There are a host of ways to measure brain activity and the difference lies

in the imaging modality. Electroencephalogram recordings measure electrical signals in the

brain; florescence imaging can track the spiking behavior of individual neuronal cells, and,

the focus of this thesis, Functional Magnetic Resonance Imaging (fMRI), measures blood

flow within the brain. All imaging modalities have their benefits and drawbacks concerning

their spatial and temporal resolution or their ability to serve as an adequate proxy for neural

activity. I refer to Markicevic et al. (2021) and the references within for a review of these

methods and their properties.
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1.1.1 Functional Magnetic Resonance Imaging (fMRI)

fMRI is a popular noninvasive imaging technique that detects brain activity in regions

throughout the course of an experiment. Brain activity is quantified by changes in relative

blood oxygenation. As brain activity increases within a region, localized oxygen consumption

also increases. Blood rushes in to meet the demand of the increased oxygen need, but often

over-compensates and delivers more oxygenated hemoglobin than the already present deoxy-

genated hemoglobin. The magnetic properties of oxygenated vs deoxygenated hemoglobin

can be detected by the MR scanner and registered as Blood Oxygenation Level Dependent

(BOLD) contrasts. The MR scanner scans a slice of the brain across a prespecified dimension

and repeats that process until a volume that contains the brain regions of interest has been

covered. Once a full tour of the brain has been measured, these slices are compiled into a

scan. Each scan is often arranged in an array in which each elementary volume element,

termed a voxel, contains a localized measure of BOLD signal (Bowman, 2014). Each scan

takes approximately 2-3 seconds to collect, limiting the time resolution of our measurements.

For each subject, these scans are collected repeatedly over the course of an experimental run

(typically over 500 scans) and sometimes over multiple runs. As a data object, one can store

the BOLD signal scans for a single subject as a four way array of dimension Vx×Vy×Vz×T ,

where V· is the number of voxels over the x, y, and z axis respectfully and T is the total

number of scans collected across time. It is easy to see that a single subject generates a truly

massive amount of data which can make inference challenging.

The typical fMRI experiment recruits subjects to lie in the scanner, having their brain

repeatedly imaged in various conditions. The goal of these experiments is to relate observed

brain activity, measured by the BOLD signal, to the presented conditions. Conditions can

vary across experiments and depend on the research question of interest. Some require less

active participation on behalf of the subject, such as laying at rest or passively observing

pictures. Others are more active, asking the subject to tap their fingers, or make decisions.
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The main mode of analysis in fMRI studies is to contrast the images obtained under each

condition and quantify the differences within.

There are two main experimental paradigms for the presentation of the conditions. The

first is the block design, which presents conditions in extended time intervals. For example,

subjects can alternate between a rest condition and a finger tapping task every 30 seconds.

In this way one can easily contrast the signals obtained in the finger-tapping images with

the signals obtained during the at-rest images. The second is the event-related design the

conditions are short discrete events, such as the presentation of a sound or image. In this

paradigm, one can contrast multiple conditions without much concern about subject fatigue

or boredom affecting the signals (Lindquist, 2008).

There are many challenges associated with fMRI data induced from data acquisition, pre-

processing, modeling, and computation. Firstly, there are some controversies with the in-

formation the MR scanner collects itself. (Bowman, 2007) It is an important distinction to

note that, while BOLD signal has been linked to neural activity, fMRI does not measure

neural activity directly. Rather, it tracks the flow of blood within the brain. Thus, when

studying brain response to stimuli using fMRI, it is essential to model the blood response

to neural activity. This model is captured by the hemodynamic response function (hrf)

(Lindquist, 2008). The hrf is known to vary greatly between brain regions and subjects,

thus requiring assumptions about its functional form. Aspects of data acquisition such as

hardware inconsistencies, head motion, and scanning time serve as sources of artifacts which

serve as signal distortions that must be removed prior to statistical analysis. The series of

steps where these artifacts are removed are known as the preprocessing pipeline; of which

there are many variations. These steps include items like correcting for head motion; re-

aligning slices in time so that each scan in total is associated with a single time point; and

spatial smoothing for signal boosting. Each step within the preprocessing pipeline, whether

it be motion correction or slice timing correction can have an effect on following analyses
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and must be chosen carefully. For an overview of fMRI experiments and common statistical

techniques, I refer to the summary work of Lindquist (2008).

Briefly revisiting the topic of the dimensionality of fMRI, considering our goal of quantify-

ing statistical dependence between remote neurophysiological events, we must consider how

to define sections of the brain. Different classification on where events are occurring obvi-

ously affect characterizations of the statistical dependence. fMRI measurements typically

parcellate the brain into 3mm3 cubes. With such a fine partition of the brain, there is an

expectation of spatial correlation among the measured signals: events happening close to

each other probably being related. On the other hand, these cubes can be aggregated into

larger functional regions, where immediate spatial dependence is of less interest than the

dependence between the larger regions. Additionally, when data are aggregated, the dimen-

sionality of the data are reduced, reducing the computational burden. For the work in this

thesis, I will discuss methods applied to fMRI data aggregated into larger functional Regions

of Interests (ROI). I refer to Tang et al. (2021) for a discussion about the dimensionality of

brain imaging data.

1.1.2 The General Linear Model

Single subject statistical analysis of fMRI data is primarily based upon the General Linear

Model (GLM) . In a GLM, the BOLD signal measured for ROI r at time t, Yr(t) is expressed

as a linear function of experimental conditions Xr(t). The model can be written as follows:

Yr(t) =
K∑
k=1

Xrk(t)βrk + εr(t) t = 1, · · · , T ; r = 1, · · ·R; k = 1, · · · , K, (1.1)

where Xrk(t) is represents the design matrix obtained as the convolution of the kth stimulus

of interest, here denoted by xk(t), with a pre-specified voxel-specific hrf, hr(t):

Xrk(t) =

∫ ∞
−∞

xk(τ)hr(a− t)dτ. (1.2)
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Lastly the vector βr = [βr1, · · · , βrK ]′ can be seen as the unknown amplitude of bold response

to the respective K stimuli and contains the main parameters of interest in activation-based

fMRI experiments. Inference for activation is typically performed in terms of contrasts,

where the typical form of the hypothesis test is H0 : c′βr = 0 and Ha : c′βr > 0. c is the

K-dimensional contrast vector which specifies the specific contrast of interest. For example,

when testing the activation for a voxel r comparing a rest period, Xr1 to a stimulus period,

Xr2. By setting c = [−1, 1, 0, · · · , 0]′, we can test the alternative hypothesis Ha : βr2 > βr1

or; whether the stimulus has a larger effect on BOLD response than during rest.

This model is important in the context of functional connectivity as the coefficients of the

General Linear Model, the βrk, present already some functional connectivity interpretation.

Thinking under the previous scenario, if βr2 > βr1 and βr′2 > βr′1 for two voxels r and r′, we

could say there is a marginal dependence between the two voxels in that they both respond

to a stimulus. However, there could be additional statistical dependence between the two

regions that is unaccounted for by the stimulus. This can be estimated by modeling the

distribution of the errors, εr(t); r = 1, · · · , R.

1.2 Functional Connectivity

Functional Connectivity (FC) has been defined by Friston (2011) as the undirected statistical

dependence between distinct regions. Statistical dependence can be assesed in practice

through various metrics by which FC can be quantified. In their review paper Li et al.

(2009), separate methods for estimating FC in the three types: linear correlation based,

decomposition based, and clustering based. I find these three broad categories encompass

many of the methods presently used. Each type characterizes FC in different ways but each

approach attempts to tackle the main goal in quantifying statistical dependence between

regions. As FC is defined as undirected, let S indicate the symmetric FC matrix for a
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specific metric, where the Srr′ entry is the FC between regions r and r′. I give a brief, but

not exhaustive listing of techniques under each type. For the sake of simplicity, I describe

these methods in the context of a resting state paradigm, where fMRI signal is measured

from subjects under no explicit task, thus requiring no modeling of task effects (Xrk(t) in

the context of Equation 1.1). This means that one can use these approaches on the BOLD

signal Y (t) itself. These approaches can usually be applied in the task-based setting simply

by applying them to the residuals from Equation 1.1, (Y(t)−
∑

kXk(t)β̂k), for some estimate

of the true stimulus response βk.

1.2.1 Linear correlation Based Metrics

The following measures give an intuitive measure of statistical dependence between two

regions r, r′ = 1, · · · , R with r′ 6= r. These measures are symmetric and bounded between

0 and 1. Magnitudes of 0 imply no linear relationship between the activities of regions r

and r′, while magnitudes of 1 imply activities in one region can be perfectly predicted by a

linear function of the other. These measures are widely used as they have straight-forward

interpretations and require minimal assumptions about the distribution of the data.

Pearson correlation: Let Yr(t) and Yr′(t) be the BOLD measurements at time t for regions

r and r′ respectively. The Pearson correlation between regions r and r′ is Corr(Yr(t), Yr′(t)) =

E((Yr(t)−E(Yr(t))(Yr′ (t)−E(Yr′ (t)))√
V ar(Yr(t))V ar(Yr′ (t))

. This metric measures the strength of the linear relationship be-

tween two regions and is bounded between -1 and 1. A positive Pearson correlation between

regions r and r′ implies the increase in the BOLD signal in region r is associated with an

increase in BOLD signal in region r′. A negative Pearson correlation implies that an in-

crease in r is associated with a decrease in r′. Thinking of the distributions of εr(t) and

εr′(t) from Equation 1.1, if we assume these error terms are jointly normally distributed,

then P (εr(t)|εr′(t)) = P (εr(t)) if and only if the Pearson correlation is 0 (Casella and Berger,
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2002). That is, if the true Pearson correlation is 0, than the activity in regions r and r′ are

statistically independent.

Partial correlation: Let Y(rr′)−(t) = [Ys(t)]s 6=r,r′ . Consider the models Yr(t) = Y(rr′)−(t)βr+

ηr(t) and Yr′(t) = Y(rr′)−(t)βr′ + ηr′(t) . The partial correlation between regions r and r′ is

Corr(ηr(t), ηr′(t)) =
Cov(ηr(t),ηr′ (t))√
V ar(ηr(t))V ar(ηr′ (t))

. This metric measures the strength of the linear

relationship between 2 regions after all others have been accounted for. Similar to the

relationship between pearson correlation and marginal independence under assumed joint

normality, there is a relationship between partial correlation and conditional independence

under joint normality assumptions.

Coherence: The above methods, while intuitive for measures of statistical dependence

across regions, have noted issues when applied to BOLD fmri data. Since the shape of the

hrf differs between regions, there could be correlation of the neural activities between regions

but it would not be reflected in the correlation (or partial correlation) between the BOLD

signals simply because the hemodynamic responses differ at two locations. Sun et al. (2004)

propose using coherence, the spectral analog to correlation, instead. Coherence between

two regions r and r′ at frequency λ, Crr′(λ) =
|frr′ (λ)|2

frr(λ)fr′r′ (λ)
, where frr is the power spectrum

of r and frr′ is the cross spectrum. This method has been shown in simulation to detect

dependence between regions reliably in low frequencies (0.01-0.1 Hz generally).

1.2.2 Decomposition based Metrics

These model-free data-approaches are dimension reduction techniques where the R observed

BOLD signals are decomposed into C latent signals, where C < R typically. One can then

analyze how the time series for each region is loaded on to the latent signals. If the two

regions r and r′ load heavily onto the same latent signal c ∈ 1, · · · , C, one can inform some

form of statistical dependence between the two. There are a variety of methods to perform
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this decomposition; here I focus on two popular ones below.

Principal Component Analysis: One can form the sample covariance Σ̂ = 1
n−1

∑T
t=1 Yt·Y

′
t·

where Yt· = [Yt1, · · · , YtR]. This sample covariance matrix can be decomposed into a product

of three matrices using singular value decomposition. Σ̂ = USV ′, where S is a diagonal

R×R matrix with the elements being the square root of the eigenvalues of Σ̂, called singular

values, sorted in descending order; U and V are the R × R orthonormal matrices forming

the principal components and the loading matrix respectively. Each principle component

column can be seen as a linear combination of the regional time series, the coefficients of

such can be found in the corresponding column of the loading matrix V . One can then

threshold the number of principle components considered by the relative magnitude of the

singular values, say S. This gives a lower dimensional representation of the BOLD data.

Since the decomposition was on the sample covariance matrix, regions that tend to load

highly on the same principal component can be seen as varying together in some sense. See

(Baumgartner et al., 2000; Worsley et al., 2005) for more details on the use of Principal

Component Analysis in fMRI.

Independent Component Analysis: Independent Component Analysis (ICA) seeks to

represent the observed signals among R regions as noisy observations from S statistically

independent sources. This assumes the model Yt = Abt + ηrt where bt is an S < R length

vector representing the unobserved signal strength and A ∈ RR×S is known as the mixing

matrix, indicating how the source signals sum together to form each of the observed signals.

By finding an estimate for the ”unmixing” matrix W ∈ RS×R such that b̂t = WYt, we can

find how the observed signals are loaded onto the latent source signals. Similar to principal

component analysis one can look at this loading matrix to see how to observed signals are

assigned to the S source signals and generate spatial maps. Regions that fall into the same

area of the spatial map are assumed to be generated by the same latent source signal, bs.

In this sense, regions are said to be statistically dependent and functionally connected. For

11



more details on ICA and it’s extensions as it’s applied to fMRI see (Beckmann et al., 2005;

Lukemire et al., 2018; Li et al., 2007).

1.2.3 Clustering based metrics

Rather than approaches with a more explainable interpretations of connectivity tied to un-

derstood concepts of statistical dependence, clustering based approaches seek to partition

brain regions into clusters which pass some threshold of similarity. Similarity is context

specific and the resulting clusters can change depending on the measure of similarity used.

There are three main types of clustering based analysis of FC. Distance-Based Clustering,

and Model-Based clustering.

Distance-Based Clustering: In this approach, a certain number of clusters are pre-

specified. Regions are then assigned to these clusters based on some measure of distance

from the cluster centroid: a measure of average among regions assigned to the cluster. Algo-

rithms generally proceed by initializing the clusters, computing the centroid, then reassign

the regions to clusters that minimize the distance to the centroids. Venkataraman et al.

(2009) proposed using K-Means clustering where the distance metric used was simple Eu-

clidean distance between the BOLD values i.e
∑T

t=1 (Yrt − Yr′t)2. This approach was found to

consistently cluster together motor regions as well as visual regions of the brain. Ramezani

et al. (2010) propose a spectral clustering approach, where the distance measure is based on

the eigenvalues of the Laplacian of a similarity matrix. In brief detail, they calculate a sym-

metric similarity matrix S ∈ RR×R where srr′ = exp(−Yr−Yr′
2σ2 ) for some kernel width σ2 > 0.

Then, they compute the Laplacian of this similarity matrix L = I −DSD where D is a R

sized diagonal matrix with entries Drr =
∑R

i=1

√
Sri, followed by computing the eigenvalues

of L and then performing k-means clustering on the rows of the matrix formed from the

associated eigenvectors. These form clusters of regions that tend to covary over time while
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avoiding limitations over the allowable shapes of the clusters as in Principle Component

Analysis. Golay et al. (1998) propose a fuzzy clustering approach using a transformation of

the Pearson Correlation coefficient as a distance metric:
(

1−CCrr′
1+CCrr′

)β
for some β > 0. This

approach differs from k-means clustering in that all regions are not given a single cluster

assignment but rather given a probability of membership to each cluster. This allows the

possibility of more complex FC maps as regions may have high probabilities of belonging to

more than one cluster.

Model Based Clustering: These approaches cluster on more distributional aspects of the

data rather than a concrete measure of similarity or distance. Here, I briefly discuss useful

applications of this clustering approach.

Amar et al. (2015) introduced a time series bi-clustering model to cluster brain regions along

with subjects based on whether the region was activated or not. They specify a hierarchical

model where regions are partitioned into ’modules’ where every region within the modules

is activated at the same time. In practice, this is enacted by letting each regional cluster be

jointly distributed from an ’active’ distribution F1, or a dormant distribution, F0. In their

fMRI case study, they specify F0 = N(0, σ0) and F1 = N(2, σ1) for 0 < σ0 ≤ σ1. More

specfically, let Y i
r (t) be the BOLD signal of subject i for ROI r at time t.

P (Y i
r (t)|HSir, Ci(t)) = HSirC

i(t)F1 + (1− Ci(t))F0

P (H i
r = 1|Hr) = Hrp1 + (1−Hr)p0,

where HSir is an indicator for region r belonging to the module set of subject i, or the

set of voxels that are allowed to activate.They pool together information across subjects by

allowing subjects to have shared modules H = [H1, · · · , HR], deemed core modules. Time

dependence is incorporated through module activations, Ci(t), determining when the module

of subject i is active, but not over assignments of clusters. A drawback of this is failing to

allow the brain regions to dynamically reconfigure their spatial dependencies, an important
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feature in brain imaging time-series (Chang and Glover, 2011; Calhoun et al., 2014).

Kim et al. (2010) propose a sort of second level analysis on the activation levels βr from the

GLM model 1.1. They assume a mixture of experts model, where the estimated activation

values for each region r is modeled as a mixture of Gaussian distributions where the influence

of each Gaussian is related to the distance of the region from the cluster center. The likelihood

of this model is written as

P (βr|xr, θ) =
∑
zi∈C

p(βr|ziθ)p(zi|xr, θ),

where zi denote the cluster membership labels, xr is the spatial location of the center of

region r in some coordinate system, and θ succinctly indicates the mean, covariance matrix,

and weights of the associated Gaussian distributions for each cluster i.e E(βr|zi = cm, θm) =

kmexp (−(xr − bm)′Σ−1
m (xr − bm)) for the likelihood of region r activation under cluster cm.

The weights on this mixture are spatially weighted, whereby clusters whose centers are

closer to the region are more likely to be selected to make the prediction. The values of θ

follow a Dirichlet process which induces the clustering mechanism (Ferguson, 1973). The

combination of the Dirichlet process and the spatial influence weights allow for both close

range and distant correlations in activation to be considered.

1.2.4 Graph-based FC Summaries

In the section we have described various measures of FC. It is important to note that all

measure simply investigate the presence or strength of connection between only two regions

of the brain over the course of measurement of a single subject. Given the possibly massive

number of regions considered, it is important to describe these connections in a meaningful

way. A popular approach is through the lens of undirected graph theory, where a graph is

a collection of nodes and edges (Alderson-Day et al., 2016; Van Den Heuvel and Fornito,

14



2014; Fornito et al., 2013). In the case of fMRI data, each region can be considered a

node and the presence of FC, as measured by the methods above, can be represented as an

undirected edge between any two nodes. Once these graphs are constructed, one can further

summarize them using network properties like efficiency, clustering behavior, and degree

strength. Van Den Heuvel and Fornito (2014) found that in comparison to neurotypical

subjects, schizophrenic subject displayed functional connectivity characteristics of decreased

degree strength in the frontal lobe, lower overall efficiency (average path length) and increased

segregation. Houck et al. (2017) found higher degree strength in auditory cortex among

schizophrenic subjects compared to healthy controls. Those graph theoretical metrics are

useful for describing FC, which can in turn help characterize population FC differences.

Inline with discovering differences between populations, the study of FC has shown to be a

useful feature in classifying brain disease status. These classification approaches generally

take the form of letting X be an N × (R(R−1
2
− 1) where each row is a subject and each

column corresponds to the strength of the FC metric i.e an entry in the lower triangular of

the FC matrix S. y is a N length vector of each subject’s disease status. These classification

approaches seek to construct a classifying function f(Xi) that predicts subject i′s disease

status based on their FC. This approach has been applied to classifying mild cognitive im-

pairment (Meszlényi et al., 2017), depression (Craddock et al., 2009), autism (Nielsen et al.,

2013), and nicotine dependence (Pariyadath et al., 2014) using various machine learning

approaches.

1.3 Dynamic Functional Connectivity

All approaches described in the previous section assume static connectivity patterns through-

out the course of the fMRI experiment. Under such an assumption, functional brain connec-

tivity is represented by spatially and temporally constant relationships among the regions of
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the brain. However, in practice, the interactions among brain regions may vary during an

experiment. For example, different tasks, or fatigue, may trigger varying brain interactions.

Therefore, more recent work has pointed out that it is more appropriate to regard FC as

dynamic over time (Chang and Glover, 2010; Hutchison et al., 2013; Calhoun et al., 2014).

In particular, it has been shown that partial correlations between brain regions change on

the the order of seconds, creating a need for a dynamic estimate of correlations (Chang and

Glover, 2011; Vidaurre et al., 2017). This type of analysis is called time varying FC (TVFC).

Within this paradigm, the patterns of brain connectivity across the whole brain are assumed

to be time-varying and nonstationary, even within a single experiment. The term ”chron-

nectome” has been introduced to describe the growing focus on identifying time-varying, but

reoccurring, patterns of coupling among brain regions (Calhoun et al., 2014).

Methods for estimating the chronnectome can generally fall under three main categories.

Sliding Window approaches apply static FC techniques to smaller overlapping sections (win-

dows) of the BOLD time series, giving a sequence of connectivity summaries. Changepoint

Detection approaches seek to partition the time series into non-overlapping windows by

finding changepoints: an instance in the time series where the connectivity changes in some

meaningful way. Finally, I recognize state-space models, the approach of this thesis, where

the observed data are modeled as an emission of some dynamic latent process. In the next

subsection, I will discuss the three approaches. As in the previous section, I discuss them

under a single subject resting state paradigm for simplicity.

1.3.1 Sliding Window Analysis

In Sliding Window (SW) analyses, time windows are defined by their length, typically ranging

from 30 seconds to 240 seconds. In terms of data points in the time series, let us call the

length of the window w. A static metric of FC is then calculated on the first w time points,
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say f(Y (1), · · · , Y (w)) = Σ̂1 for some function f that takes in a time series of size w and

outputs a FC metric Σ̂. The window is then shifted over by a single time points and, again,

the FC metric of interest is computed, say f(Y (2), · · · , Y (w + 1)) = Σ̂2. This process is

repeated until a collection of FC metrics are computed, Σ̂1, · · · , Σ̂T−w. Popular metrics of

FC are generally correlation (Chang and Glover, 2010; Yu et al., 2015a; Damaraju et al.,

2014) and partial correlation (Allen et al., 2014), noted especially for their fast computation

time and interpretability.

It is usually assumed that this sequence of FC matrices Σ̂1, · · · , Σ̂T−w exhibit possibly re-

occurring patterns, especially so for temporally close windowed FC matrices due to the

overlapping windows using many of the same time points for the calculation of Σ̂t and Σ̂t+1.

To uncover the predominant patterns, k-means can be run on the sequence Σ̂1, · · · , Σ̂T−w,

typically using Frobenius distance as a distance (Hutchison et al., 2013). The resulting

output consists of both cluster centers, termed FC states, S1 · · · SK and cluster (state) as-

signments c1, · · · cT−w, ct = 1, · · · , K. Once these are obtained one can describe the cluster

centers as in the static case of Section 1.2.4, as well as describe the dynamics of the cluster

assignments.

There are benefits to using a SW approach, in that it requires few assumptions beyond what-

ever is required for the FC metric. The procedure for following a SW analysis is straight-

forward and easily adapted for different FC metrics. This simplicity produces interpretive

results, leading to the popularity of SW as a method for assessing TVFC. Using SW, Dama-

raju et al. (2014) expanded on results found by Van Den Heuvel and Fornito (2014) to show

that schizophrenic subjects do not solely exhibit decreased FC in the frontal lobe compared

to healthy controls but rather switch between low and high FC states, spending a longer

amount of time in the low FC state. Premi et al. (2020) showed increased fluidity between

states of professional chess players compared to beginner players of similar age.

However, those SW approaches also present a number of limitations. Most notably with
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choosing the window size w. Window sizes should be large enough to reliably estimate FC

as well as capture slower low frequency correlations between regions. However, if w is too

large, one runs the risk of averaging over the more rare transient states and missing key FC

dynamics (Hutchison et al., 2013). Lindquist et al. (2014) showed in simulations that short

window lengths may give rise to spurious connections even when the truth is the complete lack

of statistical relationship between regions. Outlying observations are even more influential

as the correlations are computed from a smaller set of time points. This is worsened due to

correlations between subsequent FC matrices Σ̂t and Σ̂t+1, so that if a spurious connection

is found at time t it is also likely to be found at time t + 1. Shakil et al. (2016) show that

the detection of state transitions and durations is most strongly influenced by the window

length and offset, leading to poor estimates of correlation for each brain state. Additionally

clustering based on the sliding window time course did not reliably reflect the underlying

state transitions. There is no current consensus on how to choose this window size beyond

the rule-of-thumb of choosing w larger than the longest BOLD wavelength (Leonardi and

Van De Ville, 2015).

1.3.2 Change point Detection

To partially address the issues induces by arbitrary window lengths, Cribben et al. (2012) and

Xu and Lindquist (2015) have investigated greedy algorithms, which automatically detect

change points in the dynamics of the functional networks. This approach partitions the time

series into contiguous blocks of time points where the FC is assumed to be constant at each

block. Let B be the total number of blocks, these approaches seek to find the changepoints

t2, · · · , tB where f(Y (1), · · · , Y (t2 − 1)) = Σ̂1, · · · , f(Y (B), · · · , Y (T )) = Σ̂B, for some FC

computing metric f . In an approach called Dynamic Connectivity Regression, Cribben et al.

(2012) uses the GLASSO of Friedman et al. (2008) to estimate the inverse covariance matrix,
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or precision matrix by minimizing a penalized loss function:

Σ̂b = fλ(Y (tb), · · · , Y (tb+1−1)) = arg min
Ω

(
tr

(
tb+1−1∑
t=tb

Y (t)Y (t)′Ω

)
− log|Ω|+ λ||Ω||1

)
,

where ||Ω||1 is the L1 matrix norm of Ω. Xu and Lindquist (2015) instead estimate a sparse

covariance matrix by using an adaptive thresholding technique and use that as their measure

of FC. Both approaches use a greedy algorithm which recursively evaluates all possible change

points and chooses the best split based on a likelihood function.

Kundu et al. (2018) extend this approach into the domain of a multi-subject analysis. They

operate on the sequence of vectors ρ1, · · · , ρT where each entry in ρt are the pairwise sample

correlations at timepoint t. The sample correlation between regions r and r′ at timepoint

t can be estimated by aggregating across subjects. Let Y i
rt be the BOLD signal of subject

i = 1, · · ·N , of region r at timepoint t. Then if the jth entry of ρt is the sample correlation

between regions r and r′ at timepoint t, ρjt =
∑N

i=1(Y i
rt−Ȳrt)(Y i

r′t−Ȳr′t)√∑N
i=1(Y i

rt−Ȳrt)2
∑N

i=1(Y i
r′t−

¯Yr′t)
2
, where Ȳr′t =

1
N

∑N
i=1 Y

i
rt. They then use a multivariate extension of the Fused Lasso of Tibshirani and

Wang (2008) to find the changepoints, tb in the mean behavior of the sequence of ρt. Once

the changepoints are found, the FC matrices are estimated using the GLASSO as in Cribben

et al. (2012). Importantly, this approach makes a critical assumption that the FC is the

same for all subjects at all timepoints, which may only be justifiable in a task-based setting.

The changepoint approach is powerful in that it avoids specifying a window size and au-

tomatically determines the FC states as they change through time by finding the change

points. However, this very structure requires estimating the FC matrices Σb for each state

separately whereas instead it may be desirable to borrow strength across similar connectivity

states in order to increase the accuracy of the estimation.
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1.3.3 The Hidden Markov Model

There are many approaches, including the novel ideas of this thesis, that use the modeling

paradigm of the state space model. The state space model is useful for modeling time series

dynamics. This technique relies on modeling two quantities in parallel: the observed data

Y (t), and an unobserved state S(t), which serves as the underlying latent driver of the

observed data. A discrete state space model, in which the latent state S(t) may only take

on one of Z values, is the Hidden Markov Model (HMM). In this set up, the observed data

is modeled through an emission distribution P (Y (t)|S(t), θS(t)) and the unobserved state

is assumed to follow a discrete Markov Chain of order k: P (S(t)|S(t − 1), · · ·S(t − k)) =

QS(t−1)···S(t−k) for some Z dimensional vector QS(t−1)···S(t−k) where the entries sum to 1. Usual

implementations of the HMM are of order k = 1, where the distribution of the of the state

at timepoint t depends only on the state at timepoint t− 1. In such a case, the conditional

distribution of the state transitions P (S(t)|S(t − 1)) can be fully represented by a Z × Z

matrix, Q where the (i, j) entry is P (S(t) = j|(S(t − 1) = i). The full likelihood for this

model is in Equation 1.3:

P (Y|θ1:Z) =
∑
S∈ZT

πS(1)P (Y (1)|S(1), θS(1))
T∏
t=2

QS(t−1),S(t)P (Y (t)|S(t), θS(t)), (1.3)

where the sum is taken over ZT : the set of T -dimensional vectors where the entries can take

values from 1− Z.

Of course, while physical phenomenon underpinning the states does not necessarily exist in

truth, it is useful for creating more interpretable models so that the states represent some

property of the the data. In the case of TVFC, the latent states of the HMM represent some

measure of FC that, paired with a likelihood, can be inferred through some parameter θz

for z = 1, · · · , Z. In the previous section, I discussed the sliding window technique and how

k-means clustering is commonly used to illuminate the prominent and reoccurring patterns

of FC. This process is automatic under the HMM as the FC at timepoint t is the equal to
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S(t+ 1)S(t) · · ·· · ·

Y (t) Y (t+ 1)

S(t) = z ∈ {1, . . . , Z}, t = 1, . . . , T

QS(t)S(t+1)QS(t−1)S(t) QS(t+11)S(t+2)

θS(t) θS(t+1)

Figure 1.1: Graphical representation of the a simple HMM. The unobserved states S(t)
dynamically tranisition between a finite amount of states

the FC at timepoint t′ if S(t) = S(t′). For specific HMM treatments of TVFC, we start with

the order 1 HMM implementation by Eavani et al. (2013) on resting state subjects. The

authors assume Z = 4 latent states, which parameterize the mean and covariance matrix of

a Gaussian distribution. The log-likelihood for the mean and covariance conditional on the

latent states can be written as

l({µz}Zz=1, {Σz}Zz=1) =
Z∑
z=1

Nz

(
log|Σ−1

z | − tr(SzΣ−1)
)

(1.4)

where Nz is the number of timepoints assigned to state z and Sz is the sample covariance

computed from the same points. The covariance matrix is approximated with a state de-

pendent mixture of K rank one matrices Σ̂z =
∑K

k=1 czkbkbk
T . All elements of the basis

vectors bk are constrained to both be sparse and lie in the interval (−1, 1), so that the outer

product bkbk
T produces a rank-one matrix that represents a measure of correlation between

regions. The authors call these matrices basis networks. The mixture components crk ≥ 0

change with the HMM states but importantly the basis components remain static. This set

up reflects a belief that relatively few ROI change their co-variance pattern, from state to

state, rather the prevalence of these basis networks as exhibited by the data fluctuate over

time. The log likelihood in Equation 1.4 is modified by adding two terms. The first is a term

for approximation error using the mixture of bases representation of the covariance matrix

Σz: log|Σ̂zΣ
−1| − tr(Σ̂zΣ

−1). The last encourages differences in the bases mixture across
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states by encouraging the inner product < ci, cj >, i < j ≤ Z to be small. The model is fit

by maximizing the modified log likelihood through a nested EM algorithm.

One of the important challenges for making inference on HMM models is the complex likeli-

hood of Equation 1.3. As the sum in Equation 1.3 is taken over ZT possible configurations

of the latent state sequence S, methods that rely on computing this likelihood, i.e maximum

likelihood estimation, quickly become infeasible for even moderately sized time series lengths

T . There are two important dynamic programming algorithms used in fitting this model that

help address this challenge: the forwards-backwards Baum-Welch algorithm (Baum et al.,

1970) for computing the state transition distribution Q and the Viterbi algorithm (Viterbi,

1967) for computing the optimal state sequence.

The Baum-Welch Algorithm

The Baum-Welch algorithm is a special case of the EM algorithm that is useful for estimating

the parameters of an HMM by way of maximum likelihood: namely the initial state distribu-

tion π = P (S(1) = z) and the state transition distribution Qzz′ = P (S(t) = z|S(t−1) = z′).

With a emission distribution Lz(Y (t)) = P (Y (t)|S(t) = z, θz), the Baum-Welch algorithm

updates π and Q by traversing two recursive procedures. The first is the forward filter-

ing procedure which computes alphaz(t) = P (Y (1), · · · , Y (t), S(t) = z). The second is the

backwards smoothing procedure computing βz(t) = P (Y (t+ 1), · · · , Y (T )|S(t)). Once these

two quantities are computed, Bayes Rule can be used to obtain γz(t) = P (S(t) = z|Y ) =

P (Y |S(t))P (S(t))
P (Y)

= αz(t)βz(t)∑Z
j=1 αj(t)βj(t)

, which is exactly the updated initial state distribution, π at t =

1. Additionally we can compute xizz′ = P (S(t)=z,S(t+1)=z′,Y)
P (Y )

=
Qzz′αz(t)βz′ (t+1)Lz′ (Y (t+1))∑Z

r=1

∑Z
s=1Qrsαr(t)βs(t+1)Ls(Y (t+1))

.

Lastly the state transition distribution can updated as P (S(t) = z′|S(t − 1) = z) =∑T−1
t=1 ξzz′ (t)∑T−1
t=1 γz(t)

. The algorithm for this procedure is Algorithm 1.
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Algorithm 1 The Baum-Welch Algorithm

Require: Y Initialize π,Q
for z = 1 : Z do . initialize forward procedure

αz(1)← πzLz(Y (1))
end for
for t = 2 : T do . Begin forward recursion

for z = 1 : Z do
αz(t)← Lz(Y (t))

∑Z
j=1 αj(t− 1) ∗Qjz

end for
end for
βz(T )← 1
for t = (T − 1) : 1 do . Begin backward recursion

for z = 1 : Z do
βz(t)←

∑Z
j=1 Qzj ∗ βj(t+ 1) ∗ Lj(Y (t+ 1))

γz(t)← αz(t)βz(t)∑Z
j=1 αj(t)βj(t)

for z′ = 1 : Z do
ξzz′(t)← Qzz′αz(t)βz′ (t+1)Lz′ (Y (t+1))∑Z

r=1

∑Z
s=1Qrsαr(t)βs(t+1)Ls(Y (t+1))

end for
end for

end for
π∗z ← γz(t) . update initial state distribution

Q∗zz′ ←
∑T−1

t=1 ξzz′ (t)∑T−1
t=1 γz(t)

. update state transition distribution
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The Viterbi Algorithm

Another useful inference to obtain from an HMM is the most likely sequence of states Ŝ(t)

given the observed data Y and the HMM parameters π and Q. This can be obtained

using the Viterbi algorithm, outputting a sequence of states called the Viterbi path. The

first step of the algorithm is similar to the forward filtering procedure of the Baum-Welch

algorithm. First, we compute αz(t) = P (Y (1), · · · , Y (t), S(1), · · · , S(t − 1), S(t) = z) =

maxjLz(Y (t))αj(t− 1) ∗Qjz. We additionally update the best path by keeping track of the

maximizing state of αz(t), i.e, we track a variable Vz(t) = arg maxj Lz(Y (t))αj(t− 1) ∗Qjz.

Once these two quantities are computed, we set Ŝ(T ) = arg maxz αz(T ) and recursively

update Ŝ(t) = VŜ(t+1)(t+ 1). An algorithm for this process is shown in Algorithm 2.

Algorithm 2 The Viterbi Algorithm

Require: Y πQ
for z = 1 : Z do . initialize forward procedure

αz(1)← πzLz(Y (1))
end for
for t = 2 : T do . Begin likelihood recursion

for z = 1 : Z do
αz(t)← maxjLz(Y (t))αj(t− 1) ∗Qjz

Vz(t)← arg maxj Lz(Y (t))αj(t− 1) ∗Qjz

end for
end for
Ŝ(T )← arg maxz αz(T ) . Most likely ending state
for t = (T − 1) : 1 do

Ŝ(t)← VŜ(t+1)(t+ 1) . compute Viterbi path
end for

Other HMM Approaches to TVFC

The Baum-Welch and Viterbi algrorithims are great tools for finding maximum likelihood

solution to Equation 1.3. However there are Bayesian approaches the HMM model, where

one defines a prior P (θ,Q, π, S(1 : T )) and then makes inferences on the encoding and

decoding tasks through the posterior distribution P (θ,Q, π, S(1 : T )|Y). An example of this
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is implemented by Vidaurre et al. (2017) where they describe whole brain resting state FC

using 12 state HMM. The authors assume a similar likelihood as in Equation 1.4 and place

conjugate Wishart and Normal priors on the inverse covariance matrix, Σ−1
z , and mean, µz,

respectively. The authors used a Variational Inference approach to speed up computation and

scale up analysis for 820 subjects. Interestingly, they perform clustering over the transition

kernel to identify 2 metastates, where transitions between states that share a metastate

is more probable. This model, as opposed to the one proposed by Eavani et al. (2013),

parameterize changes in FC through the progression of the inverse covariance matrix, Σ−1
z

also known as the precision matrix, as opposed to the (uninverted) covariance matrix Σz.

This reflects an interest in the progression of conditional independence between brain regions

over unconditioned independence.

Another Bayesian HMM approach that models the precision matrix is the Bayesian Dynamic

Functional Connectivity (BDFR) model by Warnick et al. (2018) which provides a basis for

our future development in the Chapter 2. BDFR helps introduce the concept of selection

when modeling TVFC through HMMs. They propose a principled, fully Bayesian approach

for studying TVFC. More specifically, they cast the problem of inferring time-varying func-

tional networks as a problem of dynamic model selection in a Bayesian framework. In their

model formulation, they capture spontaneous brain activity via Gaussian graphical mod-

els, also known as covariance selection models (Lauritzen, 1996), as a way of estimating

functional network connectivity. They do this by first adapting a proposal for inference on

multiple related graphs put forward by Peterson et al. (2015). This model formulation fur-

ther assumes that the connectivity states active at the individual time points may be related

within a super-graph and imposes a sparsity inducing Markov Random field (MRF) prior on

the presence of the edges in the super-graph. MRF priors have been used extensively in re-

cent literature to capture network structures, particularly in genomics (Li and Zhang, 2010;

Stingo et al., 2011, 2015) and in neuroimaging (Zhang et al., 2014; Smith and Fahrmeir,

2007; Lee et al., 2014). Finally, they embed a Hidden Markov Model on the space of the
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precision matrices.

The basic idea lies in the specification of the Graphical Wishart distribution on the precision

matrices:

P (Ωz|Gz, b,D) ∝ I(Ωz ∈ PGz)|Ω|
b
2 exp

(
tr(Ωz)D

2

)
P (gij|νij,Θ) ∝ exp

(
νij

Z∑
z=1

gijz + gij
′Θgij

)
,

where b > 2 is the degrees of freedom, D is a positive definite scaling matrix, and PGz

is the set of postive definite matrices with zero entries corresponding to zero entries in an

adjacency matrix Gz. The adjacency matrix entries gij = [gij1 · · · gijZ ]′ are 0 when ROI i and

ROI j are conditionally independent when FC state z is active. The prior on the super graph

P (gij|νij,Θ) can control how related the connectivity selection parameters gijz are between

states, z, through the off-diagonal entries in the Z×Z similarity matrix Θ. Θzz′ > 0 implies

stronger coupling between selection of connections in states z and z′. This approach is great

in that it gives a hard-selection solution, where off-diagonal entries in the precision matrix Ωz

are either 0 or not according to the graph parameterizing FC state z: Gz. This is opposed to

the models introduced above, which either performed no regularization of the FC matrices,

in the case of the HMMs of Eavani et al. (2013) and Vidaurre et al. (2017); or performed

shrinkage but not selection, in the case of the tapered sliding window (Allen et al., 2014) or

the Dynamic Connectivity Detection model (Cribben et al., 2012), which both rely on the

G-lasso (Tibshirani and Wang, 2008) to estimate Ω. However, one of the drawbacks of this

graph-based selection approach is the computation burden of updating the super graph G.

In chapter 2, I show taking a shrinkage approach can speed up inference without sacrificing

selection capabilities.

Further, all the above HMM approach assume a stationary transition distribution Q. How-

ever, there are increasing studies that highlight how subjects are more likely to experience

particular connectivity states when some underlying physiological conditions are present.
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For example, Chandra and Bhattacharya (2019) have investigated the association between

heart rate variations and functional connectivity. Similarly, in a sleep fMRI study, El-Baba

et al. (2019) have shown that transitions between connectivity states slow as subjects fall

into deeper sleep stages. As a further example, Kucyi et al. (2017) have described how

connectivity dynamics are associated with attentiveness in a pencil tapping task. These

studies, among others, have motivated the need for models that provide a better under-

standing of how the transitions between different brain connectivity states are modulated

by internal or external conditions measured during the course of an experiment. In chapter

2, I propose a non-homogenous extension to the HMM, where Q is modeled as a function

of time-varying physiological measurements. Working along the same trend, in Chapter 3 I

investigate the modification of FC by an explicit task or stimulus. I propose an extension to

the single subject Psychophysiological Interaction (PPI) model, which seeks to estimate the

effect modification of FC by a stimulus/task. The standard PPI model assumes static FC

when the subject is at rest, which recent work in TVFC has shown does not hold (Chang

and Glover, 2010; Calhoun et al., 2014; Chiang et al., 2018). The proposed model allows for

DFC in absence of a stimuli, reducing bias in estimating PPI effects in DFC settings. Lastly,

in Chapter 4, I conclude this dissertation by investigating subject-level heterogeneity in FC

evolution over time. Differences in TVFC have been associated with age (Chen et al., 2019),

cognitive imparirment (Yu et al., 2015b; Lombardo et al., 2020), and substance abuse sever-

ity (Preti et al., 2017). However, analysis of this heterogeneity has typically been ad-hoc,

clustering FC matrices accross subjects after TVFC estimation. I propose a more efficient

solution with a multi-subject bi-clustering model that dynamically clusters brain regions

based on their activation profile, then clusters subjects based on their regional clustering

behavior over time. Information can be shared among subjects in the same subject cluster

by sharing regional cluster assignment distributions.
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Chapter 2

Functional Connectivity Dynamics

modulated by Physiological Data

In this chapter, I introduce a multi-subject non-homogeneous HMM modeling framework

that allows the estimation of the effect of physiological factors on the transition probabilities

between states which are shared between subjects. More specifically, for each subject, the

state transition probabilities are assumed to vary over time and to depend on a set of time-

varying, subject-specific, physiological covariates that are simultaneously recorded during the

fMRI experiment. This setting allows the estimation of unique connectivity state transitions

for each subject and relates the heterogeneity to the physiological data in an interpretable

way. Furthermore, I also allow for recurring connectivity patterns and sharing of networks

among the subjects, thus allowing for group-based inferences. With respect to multi-step

inference strategies described above, in our approach both the dynamic connectivity states

and their association with the physiological measurements are estimated in a single model-

ing framework, accounting for all uncertainties. Kundu et al. (2018) have recently proposed

a two-step multi-subject fused-lasso approach for detecting change points in brain connec-

tivity. Differently than their proposal, our method does not assume that the experimental
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design and the timing of the change-points between connectivity states are shared among all

subjects, and therefore it can be applied to more general experimental designs. Indeed, our

approach allows for differing state transition behavior across multiple subjects by modeling

the state transition parameters hierarchically. Our modeling approach further assumes spar-

sity in the network structures, attenuating spurious or weak connections using a shrinkage

prior on the connectivity networks. Additionally, I propose a strategy for edge selection that

combines the posterior shrinkage informed thresholding approach of Carvalho et al. (2010)

with the Bayesian False Discovery Rate controlling method of Müller et al. (2006).

I apply our modeling framework on a resting-state experiment where fMRI data have been

collected concurrently with pupillometry measurements, leading us to assess the heterogene-

ity of the effects of changes in pupil dilation on the subjects’ propensity to change connec-

tivity states. Changes in pupil diameter have been linked to attention and cognitive efforts

modulated by the activity of norepinephrine-containing neurons in the locus coeruleus (LC).

For example, Joshi et al. (2016) have shown that LC activation predicts changes in pupil

diameter that either occur naturally or are caused by external events during near fixation,

as in many experimental tasks. See also Joshi and Gold (2022). Therefore, pupil dilation

has been used as a proxy for a metric of a person’s willingness to exert more effort and

involve greater mental resources to complete a task. In our application, I demonstrate how

the model can recover expected change points in time-varying functional connectivity states,

as those states align quite well with the experimental events regulated by the behavioral

task. The rest of the paper is organized as follows. In section 2 I describe our proposed

method and edge selection procedure. I also give a brief synopsis of our Markov Chain

Monte Carlo (MCMC) approach to posterior inference. In section 3 I showcase our model

performance on simulated data and provide comparisons to sliding window and homogeneous

HMM approaches. Lastly, in Section 4, I apply our model to the LC handgrip data with

accompanying results and analysis. Section 5 concludes the paper with a discussion.
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2.1 Methods

In this section, I describe the proposed predictor-informed multi-subject model for dynamic

connectivity. This is a single-step fully Bayesian approach that explicitly models the het-

erogeneity in the dynamics of connectivity patterns across all subjects and at the same time

estimates the predictor effects on those dynamics. This is achieved by constructing a non-

homogeneous Hidden Markov Model (HMM) where the transition probabilities are functions

of time-varying covariates.

2.1.1 An HMM model for dynamic brain connectivity

Let Y i
t = (Y i

t1, · · · , Y i
tR)T denote the vector of fMRI BOLD responses measured at time t

in R regions of interests (ROIs), t = 1, · · · , T on subject i = 1, . . . , N . I adopt a Gaussian

graphical model framework, and assume multivariate normality of the bold signals, that is

Y i
t ∼ NR(µit,Ω

−1,i
t ), where µit is a mean regression term and Ωi

t indicates a time-varying

precision matrix, i.e. the inverse covariance matrix at each time point. In graphical mod-

els, the zeros of the precision matrix correspond to conditional independence; that is, if an

off-diagonal element ωjkt = 0, j, k = 1, . . . , R, j 6= k, then the signals Y i
tj and Y i

tk(j 6= k)

are conditionally independent. The mean term µit can be specified as a general linear model

(Friston, 1994) to capture activation patterns over time, as done for example in Warnick et al.

(2018). Here, however, since I am interested in capturing connectivity patterns through the

modeling of the time-varying precision matrix, I assume without loss of generality that the

BOLD signal has been mean-centered by removing any estimated trend and activation com-

ponent. This “detrending” is not uncommon for studying functional connectivity, especially

for task-based fMRI data, where the data are first mean-centered, to remove any systematic

task-induced variance, and the analysis is then conducted on the time series of the residuals

(see, e.g. Fair et al., 2007).
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I propose to model the dynamics of functional connectivity using an HMM framework with S

latent states characterizing functional connectivity and the brain transitions between during

the fMRI experiment. This formulation captures the heterogeneity of individual-specific

patterns of connectivity over time, since each subject’s fMRI data may be characterized

by specific change-points and evolution of the brain functional organization. However, I

assume that the connectivity patterns may also be re-occurring and they can possibly be

shared among the subjects, thus allowing for group-based inferences. Let (s1, . . . , sT ) be a

T -dimensional vector of categorical indicators st, such that st = s if state s is active at time

t, s = 1, . . . , S. Then, I assume the data follow a Gaussian graphical model at time t,

Y i
t |sit = s,Ωs ∼ NR(0,Ω−1,i

s ), s = 1, . . . , S (2.1)

that is, the connectivity networks may vary by subjects and at each time they are charac-

terized by the values of one among S precision matrices, identifying which state is active at

that time.

2.1.2 Modeling connectivity transitions as a function of observed

physiological factors

Many neuroscience experiments involve the simultaneous collection of fMRI data together

with physiological, kinematics and behavioral data (Wilson et al., 2020). For example, this

motivating application considers a handgrip task where pupillometry dilation data (i.e., mea-

surements of pupil dilation sizes) are concurrently recorded. Pupillary dilation is regarded as

a surrogate measure for activity in the locus coeruleus circuit, which plays a central role in

many cognitive processes involving attention and effort, and it is considered the main source

of the neurotransmitter noradrenaline, a chemical released in response to pain or stress.

Neuronal loss in the locus coeruleus is known to occur in neurodegenerative disorders such

as Alzheimer’s disease and related dementias as well as Parkinson’s disease dementia. It is
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therefore important to understand how brain dynamics may be differentially modulated as a

function of pupil dilation in different subjects. Recent methods for studying such association

use a multi-step approach, first identifying switches in subjects’ state sequences and then

calculating the difference between the normalized pupil size before and after the estimated

switch (see, e.g. Hussain et al., 2022).

Here, I propose to model the dynamics of functional connectivity using a non-homogeneous

HMM which assumes that switches between states are regulated by transition probabilities

that also vary over time (non-homogeneity). More in detail, the transition probabilities are

modeled as a function of time-varying covariates, e.g. physiological factors like the pupillary

data in our motivating application,

Qi
rst = P (st+1 = s |st = r) =

exp(ξirs + xi
T

t ρ
i
s)∑K

k=1 exp(ξ
i
rk + xi

T

t ρ
i
k)
, r, s = 1, . . . , S, (2.2)

where xit denotes a B × 1 vector of covariate values for subject i at time t, and ρis is

the corresponding B × 1 vector encoding the effect of each covariate on the probability

of transitioning to state s for subject i. The parameter ξirs defines a baseline transition

probability from state r to state s for subject i, that is the transition probability without

any covariate effect. To ensure identifiability, I define a state as reference. Without loss of

generality I set s = 1 as the reference state, and also set ρi1 and ξi1k· = 0, i = 1, . . . N . Thus,

the state transition coefficients are interpreted with respect to the reference state, and I can

rewrite model (2.1) –(2.2) in terms of the log-relative odds of the transition from state r to

state s compared to the transition from state r to the reference state 1,

log(
Qi
rst

Qi
r1t

) = ξirs + xitρ
i
r, r, s = 1, . . . , S (2.3)

In this formulation, the transition coefficients exp(ξirs) and exp(ρirb) are more naturally in-

terpreted, respectively, as the expected odds of transitioning from state r to s compared to

transitioning from state r to 1, when the time varying covariates, xit, are 0 (or at a base-

line/average value), and the relative change in odds of transitioning to state s compared to
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transitioning to state 1, after a one unit change in xitb holding all other covariates constant.

I assume independent Gaussian priors for the transition parameters ρ and ξ. I further

allow for sharing of information in estimating the state transition structure across subjects,

by employing a hierarchical modeling formulation for the state transition parameters. More

specifically, I assume that the individual coefficients ξirs and ρirs vary around population-level

means, Zrs and ηs, as follows:

sit+1|sit = r ∼Multi(Qi
r,·,t) t = 1, . . . , T,

ξirs ∼ N(Zrs, σξ)

ρis ∼ N(ηs, σρ)

Zrs ∼ N(z0
rs, σz)

ηs ∼ N(0, ση),

(2.4)

where Qi
r,·,t = (Qi

r,1,t, . . . , Q
i
r,S,t)

T , and r, s = 1, . . . , S. By allowing each subject to have their

own transition parameters the model allows for unique subject-level transition behavior but

is also able to capture population-level estimates through the group level parameters. The

interpretation of the group level parameters, η and Z, are similar as their single subject

counter parts. The prior means Zsr are usually set to 0 except for the diagonal elements z0
rr,

r 6= 1, which is set to be positive to encourage state persistence over time (self-transitions)

and thus more stable estimated state sequences. Keeping in mind that these state transition

parameters operate on the log odds of transition relative to state 1, and that interpretation

of the parameters require exponentiation, a small shift in value for the state transition

parameters can result in rather large changes in state transition behavior. To this end, I

recommend setting the variance parameters of the priors for ξ, ρ, Zsr and ηr to some small

positive value on the order of 0.1.
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2.1.3 Modeling sparsity through a graphical horseshoe prior

Functional networks are thought to exhibit so-called small world behavior, indicating a high

degree of clustering and high efficiency in the estimated networks (Alderson-Day et al., 2016;

Essen and Tononi, 2016). This leads to an expectation of sparsity within functional networks

and the associated precision matrices. In a Bayesian framework, sparsity can be enforced

by postulating either selection- or shrinkage-inducing priors. Selection involves inferring

which off-diagonal elements of the precision matrix should be suppressed to exaxt zeros.

Warnick et al. (2018) achieve such a selection by using a G-Wishart prior to sample pos-

itive definite matrices according to estimated adjacency matrices that corresponds to the

functional connectivity networks. This selection approach is intuitive and leads to straight-

forward inferences via the posterior probabilities of inclusion of the elements of the precision

matrix. However, it is computationally challenging and doesn’t scale well to relatively large

dimensions of the networks. Here, instead, I take a shrinkage based approach and model

the off-diagonal entries of the state-specific precision matrices Ωs, s = 1, . . . , S in (2.1) by

employing a Graphical Horseshoe prior (Li et al., 2019). Thus, I set

p(Ωs|τ,Λ) ∝
∏
j<k

N(ωjks|λ2
jk τ

2)
∏
j<k

C+(λjk|0, 1)I(Ωs ∈ SR), s = 1, . . . , S (2.5)

where I(Ωs ∈ SR) is an indicator function to ensure that samples of Ωs belong to the space

of positive definite R × R matrices and C+(·;µ, σ) denotes a half-cauchy distribution with

location parameter µ and scale σ. In (2.5), I further assume a non-informative flat prior for

the diagonal elements, i.e. ωjjt ∝ 1. The shrinkage of the off-diagonal elements is obtained

through the combined effect of the variance components λ2
jk and tau2 in the normal priors

for ωjkt, j = 1, . . . , k − 1, k = 1, . . . , R. The parameter τ is a global shrinkage parameter,

that controls how sparse the precision matrix is in its entirety. The parameter λjk:j<k defines

instead a local shrinkage parameter, since it allows to shrink each individual off-diagonal entry

ωjk towards zero, whereas it maintains the magnitude of non-zero entries and thus reduces
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Figure 2.1: For each value of τ0, I simulate 1000 undirected 100 × 100 graphs under the
graphical horseshoe prior. Plotted above are the 2.5, 50, and 97.5 percentiles of the edge
density as a function of τ0. A value of τ0 = 1 leads to approximately a 50% expected edge
density, albeit with high variability, in the sampled graphs.

biases. Following Li et al. (2019), I assume a half-Cauchy prior on τ , τ ∼ C+(·; 0, τ0), with

τ0 indicating an a priori belief about the global sparsity of the estimated graph. In order

to specify τ0 one can simulate graphs under the informal selection rule of Carvalho et al.

(2010), where an edge j,k is selected if E( 1
1+λjkτ

) < 0.5. I demonstrate such a process in

Figure 2.1 by simulating 1,000 undirected graphs from the model, a larger τ0 is associated

with higher expected edge densities a priori. Additionally, I find that a τ0 = 1 gives an

expected edge density of approximately 50% while having the largest spread. Figure 2.2

provides a graphical representation of the proposed predictor-informed Bayesian dynamic

functional connectivity model (PIBDFC).
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sit ∈ {1, . . . , S}, t = 1, . . . , T , i = 1, . . . , N

xit

Ωsit Ωsit+1

Figure 2.2: Graphical representation of the proposed PIBDFC. The data yit are emissions
from a distribution that is parameterized by a precision matrix Ωsit

, which encodes the

functional connectivity and is determined by the state active at time t: sit ∈ {1, . . . , S,
t = 1, . . . , T , i = 1, . . . , N . The probabilities of transitions from sit to sit+1 are given by the
(sit, s

i
t+1) entry of the S × S matrix Qi

·,·,t. This entry is modeled according to Equation 2.3.

2.1.4 Posterior Inference

The posterior distribution for the parameters in the proposed model is not available in

closed form. Hence, I rever to Markov Chain Monte Carlo (MCMC) techniques for posterior

inferences. In particular, I follow Holsclaw et al. (2017) and employ Polya Gamma auxiliary

variables (Polson et al., 2013) to sample the state transition parameters. Based on the

sampled Qi
·,·,t, I can construct a sequence of transition matrices based on equation (2.3).

After normalizing each row Qi
s,·,t so that it sums to 1, I use a stochastic forward backward

algorithm to sample the state sequence (Scott, 2002). Then, conditioned upon the estimated

state sequence, it is possible to sample the precision matrix parameters using the blocked

Gibbs algorithm presented in Li et al. (2019). Other parameters in the hierarchical model

for the states’ transitions (2.4) are sampled via simple Gibbs steps. By iterating through the

steps above, I obtain samples from the posterior. I provide a brief summary below:
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1. Sample Qi
···, ξ

i
··, ρ

i
·: I can rewrite the likelihood for ξirs according to Holmes and Held

(2006) to be in the form of Equation 2.6.

L(ξirs) ∝
∏

t:sit−1=r

exp(ξirs − cirst)I(s
i
t=s)

1 + exp(ξirs − cirst)
(2.6)

where cirst = log
∑

m6=s exp(ξ
i
rm + xitρ

i
m − xitρis). Using the Polya-Gamma augmented

logistic regression technique of Polson et al. (2013), we get the posterior of ξirs to be

conditionally Gaussian.

ξirs|· ∼ N

Zrs/σξ + nrsi −Nri + 2
∑

t:sit−1=r ω
i
rstc

i
rst∑

t:sit−1=r ω
i
rst + 1/σξ

, (
∑

t:sit−1=r

ωirst + 1/σξ)
−1


where nrsi is the count of transitions from state r to state s during the timecourse of

subject i and Nri is the number of times subject i visited state r. ωirst is a Polya-Gamma

random variable distributed PG(1, ξirs − cirst). I use a similar strategy to update ρirb,

the logistic component for subject i for state r and covariate b, achieving the posterior:

ξirb|· ∼ N

(
ηrb/σρ +

∑Ti
t=1 x

i
tb(I(st+1 = r)− 1/2 + ωirbtc

i
strb

)∑Ti
t=1(xitb)

2ωirbt + 1/σρ
, (

Ti∑
t=1

(xitb)
2ωirbt + 1/σρ)

−1

)

where cirst = log
∑

m6=s exp(ξ
i
rm + xitρ

i
m − xitρis).

2. Sample ~st: I sample the sequence of states adapting the stochastic forward backwards

algorithm presented by (Scott, 2002).

3. Sample the matrices Ωi
s, s = 1, . . . , S: The conditional posterior for Ωs is as follows:

P (Ωs|Y, s··, λ··s, τs) ∝
∏

{i,t:sit=s}

NR(Y i
t |0,Ω−1

s )
R∏
j=2

j∏
i=1

N(ωijs|0, λijsτs)
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For MCMC inference purposes, Li et al adopt auxiliary variables νλ and ξτ , in order

to modify the gibbs sampling procedure presented by Makalic and Schmidt (2016a).

This procedure is performed for a column wise update in a fashion similar to Wang

(2012). For each state, I update Ωs by following the Graphical Horseshoe algorithm

letting S = ns ∗ Σ̂s where ns and Σ̂s are the sizes and sample covariance matrices of

observations assigned to state s.

4. Sample Z, η: These conditional posteriors follow the typical normal-normal update:

Zrs|· ∼ N

(
(

1

σz
+
n

σξ
)−1(

z0
rs

σz
+

∑
i ξ
i
rs

σξ
), (

1

σz
+
n

σξ
)−1

)
,

ηb|· ∼ N

(
(

1

ση
+
n

σρ
)−1(

η0
b

ση
+

∑
i ρ

i
b

σρ
), (

1

ση
+
n

σρ
)−1

)
,

2.1.5 Graph Selection

Our model achieves sparsity of the estimated functional network thanks to the shrinkage of

the off-diagonal elements of Ω provided by the graphical horseshoe prior. However, shrinkage

priors do not lead to exact zeros. Hence, non-relevant connectivities need to be identified

through post-MCMC inference. For example, Li et al. (2019) suggest using 50% posterior

credible intervals of the inverse-covariance elements, and then thresholding the off-diagonal

element to zero if the interval contains 0, reporting the posterior mean otherwise. However,

the resulting selection may be too liberal, as it does not provide a multiplicity control for

false discoveries.

I follow a decision theoretic approach and formulate the graph selection problem as a testing

problem based on the posterior evidence of shrinkage for each off-diagonal element of the

precision matrix Ωs. Since I consider the posterior estimates of Ωs for each state s = 1, . . . , S

separately, in the following, I drop the superscript s for notational simplicity, unless needed
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for clarity. For any given state s = 1, . . . , S, the j, k off-diagonal element ωjk (j < k; k =

2, · · · , R) provides a measure of the connectivity level, with ωjk = 0 indicating that the

connectivity is truly zero, and |ωjk| 6= 0 otherwise. Let δjk indicate the decision (action)

in the testing problem, that is δjk = 1 corresponds to rejecting the null hypothesis of no-

connectivity and δjk = 0 failure to reject (acceptance). Let D =
∑

j<k δjk indicate the total

number of positive (significant) decisions taken. Following Müller et al. (see 2007), for real

numbers c1, c2 > 0, I can then determine the optimal set of decisions δ = {δ12, δ13, . . . , δR−1R}

by minimizing the following loss function:

LΩs(Ωs, δ,Y ) = −
∑
j<k

δjk |ωjk|+ c1

∑
j<k

(1− δjk) |ωjk|+ c2D.

The loss function compounds a reward for correct decisions (true positives), provided by the

first addend, −
∑

j<k δjk |ωjk|, where each correct decision is proportional to |ωjk|’s, and a

penalty for false negative discoveries, represented by the second addend,
∑

(1− δjk) |ωjk|.

The last term encourages parsimony, by increasing the penalty as the number of significant

elements increases. The optimal decision is obtained by minimizing the posterior expected

loss,

E(LΩs|Y , τ) = −
∑
j<k

δjk E(|ωjk||Y , τ) + c1

∑
(1− δjk) E(|ωjk||Y , τ) + c2D,

where E(ωjk|Y , τ) is the posterior mean of the off-diagonal elements of the inverse matrix

Ω. The minimizer corresponds to a threshold of the posterior means to identify the non-zero

elements of the precision matrix,

δ∗jk = I {E(|ωjk||Y ) ≥ c2/(1 + c1)} .

Li et al. (2019) show that the posterior mean is unbiased and it can be represented as a

linear function of a shrinkage factor defined by the expected value of the random variable

κjk = 1
1+λ2jkτ

2 , which has a Compound Confluent Hypergeometric distribution (Gordy, 1998).

More in detail, E(ωjk|Y , τ) = (1− E (κjk|Y , τ)) ω̂′jk with ω̂′jk representing the least square
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estimate of ωjk, j < k. See Theorem 4.1 in Li et al. (2019), and related discussions in Bhadra

et al. (2019). The result extends trivially to the folded normal distribution characterizing

|ωjk|. Note that κjk ∈ (0, 1), and larger values of E(κjk) indicate stronger shrinkage of the

posterior estimates toward zero.

Therefore, graph selection can be conducted by thresholding an estimate κ̂jk of the shrinkage

factor κjk, i.e.

δ̂∗i = I {κ̂jk ≤ η} ,

for some threshold η ∈ (0, 1). For example, in the simple regression case, Carvalho et al.

(2010) have previously recommended an informal decision rule thresholding ωjk to 0 if 1 −

κ̂jk < 0.5 where κ̂jk is the posterior median of κjk. However, such a rule does not take into

account the multiplicity problem induced by the selection of the off-diagonal elements of the

precision matrix. The posterior medians κ̂jk provide a measure of the evidence in favor of

the null hypothesis, H0 : ωjk = 0.

Hence, a threshold η could be set by controlling a measure of the Bayesian False discovery

rate (BFDR, Newton et al., 2004) at a certain level q∗, that is to satisfy the equation

BFDR(η) =

∑
jk κ̂jk I(κ̂jk ≤ η)∑
jk I(κ̂jk ≤ η)

< q∗.

For a related but different solution to the problem of graph selection, see also Chandra et al.

(2021), who consider inference on the partial correlation matrix derived from Ω.

2.2 Simulation Study

In this Section, I present three sets of simulation studies that aim at measuring the perfor-

mance of our model with respect to the detection of non-zero connectivities and the estima-

tion of the latent state trajectories over time. More specifically, in the first two simulation
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Figure 2.3: Simulation Study 1: Top: The true partial correlation matrices for each state
responsible for generating the simulation data in the Simulation Study 1. Bottom: The
estimated partial correlation matrix from the proposed PIBDFC from a single repetition of
the simulation. Each estimated partial correlation is the posterior mean of their respective
distributions. Cells are set to 0 in post-hoc MCMC by controlling the BFDR at the 0.2 level.
See Sections 2.1.5 and 3.3 for details.

studies, I compare the proposed predictor-informed Bayesian dynamic functional connectiv-

ity (PIBDFC) model with two alternative models: a widely-used tapered sliding window

(Tapered SW) approach, first outlined by Allen et al. (2014), and the Bayesian Dynamic

Functional Connectivity (BDFC) model developed by Warnick et al. (2018). The Tapered

SW represents a standard approach in the functional connectivity literature, whereas BDFC

uses a homogeneous HMM to model latent connectivity state dynamics. However, BDFC

provides a model-based estimation of exact zeros in the functional networks at the cost of

computational scalability and speed, as opposed to our computationally faster soft-shrinkage

based approach. Furthermore, the BDFC does not incorporate any predictor information

in the latent state dynamics. Both competing approaches are developed for single-subject

inference. I compare to our multi-subject model by concatenating the multi-subject data

along the time axis for input into the respective algorithms. All models are run on a Linux

computer with an Intel Xeon Gold processor (2x 3.10 GHz) and 4 GB of RAM. For both the

41



PIBDFC and BDFC, I simulated 5,000 posterior samples after 5,000 burn-in draws. When

fitting PIBDFC, I set the hyperparameters τ0 = 1, σξ = σρ = σz = ση = 0.1, following the

motivations of Section 2.1.2.

I assess the performance for our model as far as states’ reconstruction by computing a set

of metrics for each latent state separately. Let rjk, j < k; k = 2, · · · , R, denote the binary

indicator of a non-zero connection between two regions j and k. Following the discussion

in Section 2.1.5, let δjk indicate the decision after model fit. Then I define the edge true

positive rate (tpr) as
∑
rjkδjk/

∑
rjk. Similarly, the edge true negative rate (tnr) is defined as∑

(1− rjk) (1− δjk)/
∑

(1− rjk). The Edge F1 score (F1) is the product of the tnr and tpr,

and serves as a measure of the overall performance in graph estimation, balancing between

the tpr and tnr. Analogously, I define a metric to assess the performance of the model in

the estimation of the states’ sequences. Let sit indicate the true latent state active at time

t for subject i and let ŝit indicate its model estimate. Then, the state sequence accuracy for

state s is defined as
∑
{I(sit = s)I(ŝit = s)}/

∑
I(sit = s).

Simulation Study 1: In our first study, I investigate the performance of our model in an

ideal setting where the data generation process matches the model closely. I set T = 300

time points, R = 16 ROIs, N = 30 subjects, and S = 3 connectivity states. In this setting, I

simulate data Y i
t ∼ N16(0,Ω−1

sit
) with Ωsit

encoding the individual conditional independence

structure at time t, identified by the value of the state indicator variables sit ∈ {1, 2, 3}

and the prespecified graphs in the first row of Figure 2.3. In order to study the effect of

a predictor information on the estimation of the transition probabilities and the functional

connectivity dynamics, I introduce a single binary time-varying predictor variable, xt, which

transitions from 0 to 1 when t = T
2
. For each value of the exogenous variable, I set the

transition probabilities for the latent state trajectories as follows
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Figure 2.4: Simulation Study 1: True Positive Rate, True Negative Rate, F1 Score, and
state accuracy metrics for the PIBDFC, BDFC, and Tapered SW approaches over different
assumptions for the signal-to-noise ratio in the correlation structure. Along each horizontal
axis is the average strength of the non-zero partial correlations for each state.

Qt =


0.98 0.02 0

0.1 0.9 0

0 0.5 0.5

 when xt = 0 ; Qt =


0 0.5 0.5

0 0.7 0.3

0 0.02 0.98

 when xt = 1.

Therefore, for each subject, the state sequence enforces transitions between states 1 and 2

for the first half of the time series, whereas it enforces transitions between states 2 and 3

for the second half. I then simulate different state sequences for each subject using equation

(2.3), and replicated the process over 30 independent simulation data sets. In order to assess

the performance of the methods for different levels of signal-to-noise ration, I repeated the

simulation experiment using different precision matrices Ωs, s = 1, 2, 3 of the same structure

of the top row of Figure 2.3 but allowing for different values of the non-zero entries. This

is done by using the sprandsym function from the Mathematics toolbox of Matlab. This

function takes in an adjacency matrix representation of a graph, As ∈ RR×R where Aijs =

I(ωijs 6= 0), and outputs a positive definite matrix with the same placement of 0’s but
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Figure 2.5: Simulation Study 1: Top: The true state transition path for each subject (vertical
axis) across each time point (horizontal axis). The color in each cell identifies which precision
matrix in Figure 2.3 generated the simulated the data for each subject-time point pairs.
Bottom: The maximum a posteriori estimated state trajectories from PIBDFC.

random non-zero entries. This output matrix is then normalized to a partial correlation

matrix. Thus, I obtained a total of six sets of precision matrices to learn the structure of. I

show the aggregated results in Figure 2.4. The horizontal axis reports the average strength of

the non-zero partial correlations for each of the six sets of precision matrices, indicating a level

of signal strength. The PIBDFC consistently performs better in connectivity estimation with

regards to F1 score, displaying the best balance of finding true non-zero partial correlations

while controlling for false positives. A table representing the results with standard deviations

computed over the replicated experiments is shown in the Appendix.

In the following, I illustrate the inferential analyses enabled by the proposed PIBDFC ap-

proach by showcasing a single replicate. In Figure 2.3 (bottom row) I show how the PIBDFC

is able to recover the true conditional independence structure underlying the data genera-

tion process by estimating the partial correlations between regions and enforcing the true

0’s through the BDFR approach devised in Section 2.1.5. The model is also able to recover

the most likely state transition sequence for each subject, as determined by the maximum a
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Figure 2.6: Simulation Study 1: Estimation of the connectivity change points in a represen-
tative subject. The horizontal axis indicates the time-points while the vertical axis reports
the posterior probability P (s1

t 6= s1
t−1|Y i

1:T ). The posterior probabilities of a change point
are in red, whereas the black spikes represent the true change points for the subject. I also
display a horizontal dotted line at 0.95 to reflect the informal rule of declaring a change-point
if P (s1

t 6= s1
t−1|Y i

1:T ) > 0.95.

posteriori state estimate at each time point. See Figure 2.5. It is also important to assess the

ability of the method to identify true change points in the connectivity structure. Figure 2.6

reports the estimated connectivity change points for a representative subject. PIBDFC is

able to estimate the state sequence well while tying together the increased rate of appearance

of state 3 when the stimulus changes from 0 to 1 halfway through the simulated experiment.

All models were compared in terms of computation time as reported in Table A.2. PIBDFC

is also able to draw as many posterior draws in a third of the computation time.

Simulation Study 2: In this second simulation study, I measure the performance of our

approach with synthetic data that are similar to real fMRI data. More specifically, I use the

simulation toolbox of Erhardt et al. (2012) and follow the simulation approach of Warnick

et al. (2018). The SimTB toolbox implements a canonical hemodynamic response function

(Lindquist et al., 2009), defined as a linear combination of two gamma functions, to simulate

fMRI time series. This function is then convolved with a box stimulus function where

gaussian noise with variance = 0.01 is added. Functional connectivity is then obtained by
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predefining cliques, i.e. clusters of regions, that have signal (here, 0.5) added to or subtracted

from all regions in the clique simultaneously at random time points within a connectivity

state. This induces correlation while having non-gaussian errors. I then simulate the state

sequence over T = 150 time points with xt being 0 for the first 75 timepoints and 1 for the

last 75 among all subjects. Similar to Simulation Study 1, I use the exact same Qt among

all subjects. I repeat this process for N = 30 subjects over 30 simulation replicates.

Metric Method State 1 State 2 State 3

Edge TPR

PIBDFC 1 (0) 0.8290 (0.032) 0.7652 (0.039)

Tapered SW 1 (0) 1 (0) 1 (0)

BDFC 0.9769 (0.070) 0.9014 (0.156) 0.7203 (0.189)

Edge TNR

PIBDFC 0.9278 (0.004) 0.8604 (0.041) 0.9250 (0.040)

Tapered SW 0.3286 (0.109) 0.4583 (0.165) 0.2500 (0.157)

BDFC 0.8294 (0.150) 0.8552 (0.148) 0.9531 (0.088)

Edge F1 Score

PIBDFC 0.9278 (0.004) 0.7134 (0.045) 0.7083 (0.055)

Tapered SW 0.3286 (0.109) 0.4583 (0.165) 0.2500 (0.157)

BDFC 0.8063 (0.138) 0.7717 (0.192) 0.6822 (0.176)

State Acc

PIBDFC 0.8526 (0.029) 0.7507 (0.022) 0.7727 (0.022)

Tapered SW 0.7199 (0.175) 0.4133 (0.100) 0.6342 (0.108)

BDFC 0.6110 (0.43) 0.7181 (0.11) 0.5541 (0.37)

Comp Time (min)

PIBDFC 161.23 (29.493)

Tapered SW 1.9241 (0.31)

BDFC 500.57 (18.11)

Table 2.1: Simulation Study 2: results over 30 repetitions. I report sensitivity and speci-
ficity metrics for the estimated graphs of the corresponding states, together with the overall
accuracy of the estimated state sequences. Standard deviations across the 30 simulations are
showed in brackets. The proposed method maintains the best balance between sensitivity
and specificity as well as latent state estimation accuracy.
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In Table 2.1 I show the results to the application on the SimTB data. The PIBDFC still well

detects the connectivities between the simulated regions despite a mis-specified likelihood.

The performance in both graph estimation and state estimation slightly appears to decline

slightly in comparison to the Gaussian Simulation 1 setting, which is ecpected. The Tapered

SW approach suffers from low specificity. Compared to the standard HMM of BDFC, the

proposed PIBDFC is slightly more capable at detecting changes in state transitions, thus

improving graph estimation performance as a result. This result is likely due to the distortion

of changes to the partial correlation by the convolution with the hemodynamic response

function. In this setting, the covariate information becomes more relevant in helping the

model identify changes in the state transition behavior. The computational time is also

quite favorable compated to approach of Warnick et al. (2018), despite allowing for individual

differences in state dynamics among the 30 subjects.

Simulation Study 3: In this simulation study, I compare the performances of our model

and the Connectivity Change Point Detection (CCPD) model of Kundu et al. (2018), on the

basis of edge- and change-point detection. Contrary to our model, the CCPD model employs

a two-stage approach for estimating dynamic functional connectivity. In the first stage, the

model learns the number and locations of the change points from all available subjects’ data.

In the second stage, a graphical lasso approach is applied independently to the time scans

between two change points. Since the CCPD model assumes that every change point occurs

at the same time for each subject, in order to fairly compare the two methods, I simulate

data under the CCPD assumption of common change points. More specifically, I set T = 300

and generate Y i
t ∼ N(0,Ωst) where st varies across the following sequence of states:{1, 2, 3,

1} switching at t = 75, 150, 225, for a total of 3 change-points overall. I use the same true

partial correlation matrices to generate the data as in Simulation study 1. For the PIBDFC,

a time point t for subject i was judged to be a change point if P (sit 6= sit−1|Y i
1:T ) > 0.95.

PIBDFC does not assume common change points and as a result, will not output common
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change points across individuals; therefore, I report the average the number of change points

across all subjects.

Method PIBDFC CCPD

State 1 2 3 1 2 3

Edge TPR 0.9650 (0.02) 1.0000 (0) 0.9867 (0.01) 0.9333 (0.02) 1.0000 0.9800 (0.02)

Edge TNR 0.9674 (0.01) 0.9719 (0.01) 0.9615 (0.02) 0.9733 (0.09) 0.9978 (0.01) 0.7719 (0.06)

Edge F1 Score 0.9336 (0.02) 0.9719 (0.01) 0.9486 (0.02) 0.9078 (0.08) 0.9978 (0.01) 0.7564 (0.06)

Num ChgPts (3) 3.8 (0.97) 3.1 (0.38)

Table 2.2: Simulation Study 3: Results over 30 repetitions. I show the entry wise true postive
and true negative rates for the estimated graphs for the corresponding states. I also show
estimated number of the estimated number of change points.PIBDFC performs comparably
to CCPD in the setting where changepoints are common among subjects despite no explicit
assumption of this being the case.

In Table 2.2, I show the results of the comparison between PIBDFC and CCPD under a

shared change point model. CCPD is indeed able to accurately detect the number of change

points and the resulting graph structure in each partition well. By thresholding the posterior

probability of a change point, our model tends to over-estimate the number of change points

on average, a result of the model sometimes estimating very sudden changes of state for

a brief collection of time points in some subjects. As a contrast, in simulation studies 1

and 2, the change points are generated from a process that truly followed a hidden Markov

model, leading to more accurate estimates of the occurred change points. By leveraging on

the assumption of common change points, the two-stage CCPD model can achieve increased

accuracy, while our model allows for the incorporation of individual transitions and covariates

in the transition probabilities.
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2.3 Case Study

I apply the proposed PIBDFC model to the motivating dataset, where fMRI data have been

collected concurrently with pupillometry measurements. In our application, I demonstrate

how the model can recover expected change points in time-varying functional connectivity

states, as those states align quite well with the experimental events regulated by the behav-

ioral task. I am also able to estimate the effect of pupil dilation on the subjects’ propensity

to change states.

2.3.1 Experimental design and data collection

In this experiment, subjects performed a handgrip task adapted from Mather et al. (2020).

Thirty-one participants (18 females, mean age 25 years ± 4 years) enrolled in this study at

the University of California, Riverside Center for Advanced Neuroimaging, but one was ex-

cluded due to a history of attention deficit hyperactive disorder and consumption of related

medication resulting in a total N = 30. All subjects provided written informed consent to

participate, and received monetary compensation for their participation. The study protocol

was approved by the University of California, Riverside Institutional Review Board (IRB).

Magnetic resonance imaging (MRI) data were collected on a Siemens 3T Prisma MRI scan-

ner (Prisma, Siemens Healthineers, Malvern, PA) with a 64 channel receive-only head coil.

fMRI data were collected using a 2D echo planar imaging sequence (echo time (TE) = 32

ms, repetition time (TR) = 2000 ms, flip angle = 77◦, and voxel size = 2 × 2 × 3mm3

, slices=52) while pupillometry data were collected concurrently with a TrackPixx system

(VPixx, Montreal, Canada).

All subjects underwent a 12.8-minute experiment in which they alternated between six resting

state blocks and five squeeze blocks. In the squeeze blocks, they brought their dominant hand
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to their chest while holding a squeeze-ball (Mather et al., 2020). The five squeeze blocks

lasted 18 seconds while the interspersed six resting state blocks had durations of five-, two-,

two-, five-, one-, and one-minute, respectively.

All subjects underwent two sessions: one where they executed the squeeze at maximum

grip strength (active session), and one where they still brought their arm up to their chest

but were instructed simply to touch the ball and not to squeeze it (sham session). The

functional data underwent a standard preprocessing pipeline in the fMRI module of the brain

software library (FSL). The pipeline consisted of slice time correction, motion correction,

susceptibility distortion correction, and spatial smoothing using a kernel Gaussian smoothing

factor set at a full width half maximum of 0.8475 (Smith et al., 2004; Woolrich et al.,

2009). Finally, all data were transformed from the individual subject space to the Montreal

Neurological Institute (MNI) standard space using standard procedure in FSL (Smith et al.,

2004; Woolrich et al., 2009).

Pupillometry data were collected during the scans, using a sampling rate of 2kHz, pre-

processed using the ET-remove artifacts toolbox (github.com/EmotionCognitionLab/ET-

remove-artifacts), and downsampled to match the temporal resolution of the fMRI data

(Mather et al., 2020). To measure pupil dilations relative to baseline, the dataset was nor-

malized by dividing by subject-specific means of the first five-minute resting state block

(prior to any squeeze or hand-raising), leading to percent signal changes. Three subjects’

data were discarded due to technical difficulties during acquisition of pupil dilation mea-

surements, resulting in N = 27 for all cuncurrent pupillometry and functional data related

analyses.

Since I used a pseudo-resting state paradigm, our interest was focused on five networks of

interest that have all been associated with resting state and have been related to attention in

some manner. Default mode network (DMN; a resting state network) and dorsal attention

network (DAN; an attention network) were selected because squeezing ought to invoke a
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transition from the resting state into a task-positive state (Greicius et al., 2004). The fronto-

parietal control network (FPCN) was chosen because it is linked to DAN and regulates

perceptual attention (Dixon et al., 2018). Salience network (SN) was selected because it

determines which stimuli in our environment are most deserving of attention (Mather et al.,

2020; Menon and Uddin, 2010). Talariach coordinates for regions of interest (ROIs) within

DMN, FPCN, and DAN were taken from Deshpande et al. (2011) and converted to MNI

coordinates while SN MNI coordinates were taken directly from Raichle (2011) (Deshpande

et al., 2011; Laird et al., 2005; Lancaster et al., 2007; Raichle, 2011). Two ROIs from FPCN

(dorsal anterior cingulate cortex and left dorsolateral prefrontal cortex) were excluded due

to their close location to other ROIs. The locus coeruleus (LC) was localized using the

probabilistic atlas described in Langley et al. (2020). Blood oxygen level dependent (BOLD)

signal from each voxel within an ROI were extracted and averaged to represent the overall

signal for an ROI. I eventually considered 31 total ROIs: 9 from DMN, 7 from FPCN, 6 from

DAN, 7 from SN, and 2 from LC. The MNI anatomical coordinates for the four attention

networks and LC were used to center a 5 mm3 isotopic sphere (Deshpande et al., 2009; Stilla

et al., 2007). See the Appendix for a list of the ROIs and corresponding MNI stereotaxic

space coordinates and networks.

2.3.2 Model fitting

The 31 ROIs described above formed the vectors of BOLD responses Y i
t = (Y i

t1, · · · , Y i
t31)

measured on subject i = 1, . . . , 27 at time t, for t = 1, · · · , 1050. I also included concurrently

recorded pupillometry data as a proxy for the quantify the effect of LC engagement on the

dynamics of functional connectivity (Joshi and Gold, 2022).

I fit our model considering several assumptions for the total number of states, S = 3, 4, 5, 6.

However, when assuming more than 3 states, the fit simply degenerated to 3 states in the
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Figure 2.7: Real Data Analysis: the estimated connectivity networks for the ROIs. Nodes
represent ROIs and the edges denote the partial correlations between the connected nodes.
The edge colors correspond to the directionality of the partial correlations and the width
corresponds to the magnitude. Node colors identify clusters of regions into a priori defined
networks. See Section 2.3.3 and Table A.1 in the Appendix

posterior inference, with no observations assigned to additional states. Thus, I present the

model specification for 3 states with the following settings for the hyperparmeters in (2.2).

I set the group level baseline relative transition prior means z0
rr = 2 for r = 2, 3 while all

other elements of z0
·cdot are set to 0. I also set the prior spread of the baseline transitions

and pupillary effects σz, ση = 0.05. This combination of setting is used to encourage self

transitions, as they correspond to preferring smoother state sequences a priori among all

subjects. I set the prior variability of the subject-level transition parameters around the

group-level transition parameters, by choosing σξ, σρ = 0.1, therefore capturing individual

differences between subjects on the log-odds of transitioning between states. Lastly, τ0, the

hyperparamter informing prior knowledge of connectivity network sparsity, is set to 1, as

this value corresponds to a prior distribution with a high spread over edge densities, as seen

in Figure 2.1.
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2.3.3 Inference results

Figure 2.7 plots the estimated connectivity networks for each of the three states. Nodes

represent ROIs and the edges identify the non-zero partial correlations between the connected

nodes. The edge colors correspond to the directionality of the partial correlations and the

width corresponds to the magnitude. The dotted colors in the nodes identify clusters of

regions within a a priori, knowledge-based, neuroscientific networks (from the top right

section in counter-clockwise order): Default Mode Network (DMN), Frontal Parietal Control

Network (FPCN), Dorsal Attention Network (DAN), Salience Network (SN), and Locus

Coeruleus (LC).

Figure 2.8 shows the maximum a posteriori (MAP) estimated state sequences from our

model for all 27 subjects. The subjects’ rows are ordered by similarity of the estimated state

trajectories as captured by a hierarchical clustering using Euclidean distance.

By inspecting Figure 2.7, it is apparent that state 1 shows relatively sparser connectivity than

the other two states. In state 1, I can see strong bilateral connectivity among homologous

regions in the left and right hemispheres, as well as several nodes in FPCN (dark blue)

showing strong connectivity with multiple nodes in SN (light red); likewise, several nodes in

DMN (dark red) show connectivity with SN (light red) nodes. There is almost no presence of

anti-correlation. The dominance of SN connectivities together with both DMN and FPCN

suggests that arousal may be up-regulated in this state. Indeed, Figure 2.8 suggests that state

1 occurs predominantly during the ’squeeze’ periods of the behavioral task, when subjects

either squeezed the squeeze ball or held it to their chest. This observation suggests that

our model was able to detect those objectively-definable events in the time-series of this

experimental dataset.

In state 2, I see a quite different pattern: weaker average connectivity when compared to

state 1, but also many more of these weaker connections both within-network and between
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networks. In addition to relatively ubiquitous within-network connections within FPCN

(dark blue) and DMN (dark red), state 2 is characterized by cross-network connectivity –

and anti-connectivity – between DMN and FPCN. Interestingly, these parallel some of the

strongest connectivities from state 1. The relatively occupancy in state 2 appears higher in

the active condition (Figure 2.8, right half) than the sham condition (Figure 2.8, left half),

suggesting subjects tended to occupy this relatively strong, broadly-connected state more

often when periodically engaging in actively squeezing the squeeze ball.

The strongest connections in state 3 deviate from those identified in states 1 and 2. There

is weaker overall connectivity than state 1, but the connections are stronger and sparser

(fewer connections) than state 2. I do again see many within-network connections, as well

as relatively strong connections between nodes in FPCN (dark blue) and SN (light red), and

also again between DMN (dark red) and SN (light red). However, I also see many more

connections with SN from DAN (light blue) than in either of the other two states. I can

therefore characterize this state as more sparsely connected than state 2 but still with broad

connectivity, which is also consistent with the differences visually apparent in this state

between active and sham conditions (right and left halves of Figure 2.8): this state traded

off with state 2 for relative percentage occupancy across the subjects.

Finally, I investigate how pupillary dilation modulates state transitions. Figure 2.9 provides

the posterior distribution of the group (eη, left) and individual (eρ) effects of pupil dilation

on state dynamics. I start by assessing the relationship between between pupil dilation

and state transitions for the group. Based on our findings, a 1% increase in pupil dilation

relative to baseline is associated with a 31.4% (95%CI : 29.7% − 32.9%) decrease in the

odds of transitioning to state 2 and a 34.9% (95%CI : 33.3%− 36.4%) decrease in the odds

of transitioning to state 3, in comparison to remaining in the baseline state (state 1). This

result is coherent with the findings outlined above, since increased pupil dilation (a proxy

for increased arousal/effort) appears associated with transitioning toward the less densely
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Figure 2.8: Real Data Analysis: Estimated states’ transition path for each subject. The
horizontal axis indicates the TR with vertical dotted lines indicating portions where the
subject raises their arm. Subject sequences are aligned so that the left half of the plot
shows sequences from the sham condition and the right half shows sequences from the active
condition. The vertical axis display the subject indices, ordered by similarity in state trajec-
tory according to a hierarchical Euclidean distance based clustering of their MAP transition
behavior.

connected connectivity structure of state 1, dominated by edges between SN and both DMN

and FPCN. I should note the causal direction of the associations between arousal, pupil

dilation, and the connectivity structure of state 1 can not be investigated by this model.

Further inspection of the right column of Figure 2.9 shows that the posterior distributions

of the individual effects of pupil dilation eρ·· is decidedly below 1 for all subjects, i.e. the

association between increased pupil dilation and state 1 holds for all subjects measured.

Subjects are ordered along the horizontal axis according to their similarity in state trajecto-

ries obtained from a hierarchical Euclidean distance based clustering (similarly as in Figure

2.8. The horizontal dashed line represents the posterior mean from the group estimate in

the right panel. It is interesting to note the differing clusters when comparing the posterior

distributions of eρ2· to eρ2· : trending downwards and upwards respectively. Combining Fig-

ure 2.9 with Figure 2.8, it appears that differences in state trajectories between subjects lie
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Figure 2.9: Real Data Analysis: The posterior distribution of the group effect of pupillary
dilation eη (left), and individual effects of pupillary dilation eρ. Rows indicate the propensity
for transitioning into states 2 and 3 respectively. For the individual effects, subjects are
identically ordered as in Figure 2.8. The horizontal dotted line is the posterior mean for the
group level effects, η2 = 0.687 and η3 = 0.651 respectively.

in state occupancy when pupil dilation is not higher than the reference, despite all subjects

tending to transition to state 1 during when raising their arm.

More specifically, subjects clustered in the first half of Figure 2.9 (right) tend to occupy

state 3 during non-squeeze sections and so are even more likely to transition away from

state 2 during periods of high pupil dilation. Similarly, subjects in the second half of the

the Figure tend to occupy state 2 during non-squeeze sections, and are thus very likely to

transition away from state 3. This heterogeneity is important as it provides a more thorough

understanding of the relationship between increased pupil dilation and transitions toward

different cognitive states.
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2.4 Discussion

I have proposed a multi-subject Bayesian approach for estimating time varying functional

connectivity where the brain network state transitions are dynamically informed by concurrently-

recorded subject specific covariates. The proposed method allows for group level and subject

level inferences on the heterogeneous effects on the connectivity dynamics of the recorded

time-varying covariates. I have applied our model to multi-subject resting state fMRI data

with pupillary physiological data and I have shown associations between pupil dilation and

strengthened connectivity between the SN brain regions with both the FPCN and DMN. This

association coinciding with subject arm-raising/squeezing suggests SN connections with both

FPCN and DMN are associated with subject arousal.

While I focused here on covariates that were concurrently recorded on each subject, our model

can also incorporate covariates that are subject-specific and not time-varying. For example,

demographic information may be added to the regression terms in (2.2)–(2.3) and inform

subject-specific transition probabilities to describe individual variability over the entire fMRI

experiment.

Our model assumes a maximum number of states S to be pre-specified a priori. In our

application, only a subset of the S available states was visited. However, more in general,

the number of states could be learned by assuming a Bayesian-nonparametric specification

where the number of functional connectivity states is learned directly from the data (see,

for example, Beal et al., 2002; Fox et al., 2011). However, the computational complexity of

the inferential algorithm would increase considerably. Variational Bayes approaches could

be implemented to obtain approximate inference on the network connections.

Finally, the individual connectivity patterns could be associated with clinical or behavioral

outcomes, e.g., to examine the individual heterogeneity of responses to treatments. A two-

stage scalar-on-image approach can be devised where the posterior means of the precision
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matrices are obtained from our model in the first stage and then used as predictors to

investigate the association with the outcome in the second stage. These directions of research

will be the object of future investigations.
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Chapter 3

Time-Varying Psychophysiological

Interactions

Psychophysiological interaction (PPI) models have been proposed by Friston et al. (1997)

to study task modulated seed-based brain connectivity in fMRI studies. More in detail, in

task based fMRI, it is of interest to investigate the effect modification of external stimuli

(called psychological variables of the task design) onto the association between a seed region

and other regions of interest (ROI; also called physiological variable). From a statistical

perspective, the PPI model typically takes the form of a linear regression model, where the

BOLD signal of the seed region is assumed to be an additive linear function of the BOLD

time series of other ROIs plus an interaction term, which captures the effect modification of

the task via a product of the ROI times series and the stimulus function. If the coefficient

of an interaction term is significantly different from zero, after taking into account the main

effects of all the psychological and physiological variables, then it implies a task-dependent

connectivity between the two brain regions. The original model by Friston et al. (1997)

considered a single task condition. More recently, (McLaren et al., 2012) have proposed

a generalized PPI approach that includes interaction effects for more than two conditions.
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Their framework directly models each task condition with respect to all other conditions

in the regression framework. The PPI effects are then compared between the conditions of

interest after the fit, rather than as in the original formulation by Friston et al. (1997), where

the contrast information was used to define a psychological regressor.

In this manuscript, we propose a Bayesian characterization of the generalized PPI model in

McLaren et al. (2012) and we further extend it in two important directions. On the one

hand, popular implementations of the PPI model assume that the partial correlation be-

tween the seed region and the ROIs is static in the absence of a stimulus. However, current

developments in neuroimaging suggest that functional connectivity is dynamic, that is the

coupling between brain regions may be better characterized by possibly time-varying levels of

correlated or mutually informed activity (Iraji et al., 2019; Calhoun et al., 2014). Therefore,

our first contribution is to extend the generalized PPI model to include a dynamic process

which allows for estimating task-modulated time-varying background functional connectiv-

ity during the course of an fMRI experiment. Since in our model the proposed time-varying

background effect is present during either the resting-state and task conditions, our frame-

work effectively allows to characterize time-varying functional connectivity due to both task

and spontaneous fluctuations of neural activity over time. To model the dynamics of the

background regression coefficients, we leverage a time-varying scale-mixture shrinkage prior

recently proposed for variable selection in sparse Bayesian state-space models (Cadonna

et al., 2020).

Seed-based FC analysis investigates the association of the fMRI signal from specific regions

and the fMRI signals from any other region in the brain. The seed region is often selected

based on the available prior literature or a testable research hypothesis. The primary benefit

of seed analysis is that typically both the calculation and the interpretation of the neuro-

scientific findings are straightforward. However, if the seed region changes, the results will

likely vary; hence, the dependence on the choice of seed regions can impact the reproducibil-
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ity and generalizability of the findings (Lv et al., 2018). A possible solution is to rotate the

seed regions across the brain and implement separate PPI models for each seed. However,

testing for non-zero PPI effects in this circumstance is guaranteed to find spurious non-zero

PPI effects as the false positive rate is greatly inflated. Also, a Bonferroni correction will be

much too conservative, decreasing the ability to detect true correlations and PPI effects.

The second contribution of our manuscript is to propose a viable multicomparison procedure

for identifying significant associations between brain regions independently of the choice of

the seed region. First, separate PPI models are run, with each ROI serving as the seed

region. Since it can be parallelized among numerous computer nodes, this task is computa-

tionally efficient. Then, we aggregate findings from each model and identify significant partial

correlations, by adapting a non-marginal decision-theory-based multicomparison framework

recently developed by Chandra and Bhattacharya (2019). This multiple testing procedure

allows to control the rate of false positive decisions while maintaining the ability of the model

to detect true non-zero correlations between regions.

The rest of the manuscript proceeds as follows. In Section 3.1, we introduce the proposed

dynamic PPI model, with the shrinkage-inducing priors for the dynamic coefficients described

in Section 3.1.1. Section 3.2 describes how to obtain posterior inference from the Bayesian

model, with Section 3.2.2 detailing the proposed multicomparison procedure to combine

inference across different seed-based analyses. Sections 3.3 and 3.4 illustrate the properties

of the model in a simulation analysis and an application to data from a serial reaction

time experiment. Finally, Section 3.5 concludes with some discussion of the advantages and

limitations of our proposal, together with plans for future investigation.

61



3.1 A Time-Varying PPI Model.

In this Section, we introduce the proposed Bayesian dynamic PPI model, which considers

as outcome the fMRI signal of a specific time-series for a region of interest, assumed as the

seed region. In our application, we run the model varying the choice of seed region across

all the ROIs in the whole brain, and then we synthesize the results of the inference via the

multicomparison procedure described in Section 3.2.2. Here, we illustrate the model for the

BOLD signal of a generic seed ROI. More specifically, we assume that we have available

fMRI time-series from R ROIs across the whole brain, and we let Yr(t) be the BOLD signal

for a seed ROI, r ∈ {1, · · · , R}, observed at time points t = 1, · · · , T . Following the general

PPI framework, we collect the BOLD signals of every other ROI, except for the seed region

r, into a vector Zr
t = {Yd(t)}d6=r, of dimension R − 1. Let stk indicate a stimulus function

(more generally, a psychological variable of the task design) at time t, with k = 1, · · · , K,

K ≥ 1. The observed BOLD signal Ytr can be written as a noisy realization of a convolution

of the underlying neural signal ytr and its hemodynamic response function (hrf), that is,

Yr(t) =

∫ t

−∞
hr(t) yr(t− τ) dτ, (3.1)

where hr(t) represents the value of the hrf in the ROI r at time t. It is well established

in the neurosciences that the shape of the hrf can vary between regions and subjects, and

that inaccurate estimation of the shape of the hrf can lead to spurious non-zero correlations

between ROIs (Gitelman et al., 2003). Consistent and efficient estimation of the hrf is an

on-going challenge within the context of PPI analysis. For the purpose of this manuscript, we

assume a canonical hemodynamic response function, i.e. the hrf is defined as the difference

of two gamma functions (Lindquist et al., 2009). The latent neural signals y can be obtained

from the deconvolution of the observed BOLD signal with the assumed hrf, using either

the Weiner deconvolution (Wu et al., 2013) or latent feature encoding (Bush and Cisler,

2013). The proposed dynamic psychophysiological interaction (dPPI) model posits that the
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observed BOLD signal in region r is a function of dynamically changing associations with

all the other ROIs, which can in turn be modified by the observed stimulus,

Yr(t) = Zr(t)T βr(t) +
K∑
k=1

{
Sk(t)α

r
k +Xk(t)

T γrk
}

+ εr(t), (3.2)

where Zr(t) denotes the (R− 1)-dimensional vector of the BOLD signals recorded at time t

in all the ROIs, excluding ROI r; the scalar valued time-series Sk(t) =
∫ t
−∞ h(t) sk(t− τ) dτ

is the convolution of the stimulus k with the canonical hrf, k = 1, . . . , K; and each entry of

the (R− 1)-dimensional vector of time-series Xk(t) is obtained as Xkd(t) =
∫ t
−∞ h(t) sk(t−

τ) yd(t − τ) dτ , i.e. as the product of the neural signal (deconvolved BOLD signal) of each

ROI d, d = 1, . . . ,, d 6= r, with the stimulus k convolved with the canonical hrf (Di et al.,

2021). The scalar αrk ∈ R and the vector γrk ∈ RR−1, respectively, denote the psychological

and psychophysiological interaction effects for stimulus k, k = 1, , K. Lastly, the (R −

1)-dimensional vector βr(t) indicates the time-varying physiological effect capturing the

functional connectivity with the seed region independently of any stimulus effect. Using the

terminology employed in the Introduction, this effect can be regarded as capturing time-

varying background functional connectivity. For simplicity, in the following, we will refer to

(3.2) as the time-varying Psychophysiological interaction (tvPPI) model.

The proposed model effectively extends the Generalized PPI model of McLaren et al. (2012)

by allowing the physiological effects, i.e the correlation between ROIs, to change over time.

Indeed, if βr(t) = β, i.e. if the elements of βr(t) are constant over time, then the proposed

tvPPI model reduces to the Generalized PPI model. Figure 3.1 provides an illustrative

example of the type of dynamic relationship between two time series that the proposed model

can help capturing. More specifically, we generate data from a centered bi-variate gaussian

process with marginal variance 1, and we assume that the correlation between the realizations

at each time t varies over time, according to the function ρ(t) = 0.2 ∗ sin(t/10) + st γ, where

the task stimulus indicator st switches between 0 and 1 every 25 seconds and γ = 0.6 is the

coefficient capturing the stimulus effect.
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Figure 3.1: Illustration of the proposed time-varying PPI paradigm: similarly to the Gener-
alized PPI model, the proposed model allows to capture stronger dependence between two
realized time-series due to stimulus effects (top). In addition, it allows to capture smooth
changes in the correlation over time, independent of the stimulus effect (bottom). For more
details, see Section 3.1.

The two simulated time series in the displayed realization of Figure 3.1 (top) are only weakly

dependent when st, the task indicator, is equal to 0. The dependence increases and the time

series are more strongly coupled when st = 1. The PPI γ effect of the simulated stimulus

st is shown by the sudden jump when the stimulus becomes active in Figure 3.1 (bottom).

However, the correlation between the two time series changes over time and slowly weakens

the longer the block remains active. The smooth changes of the correlation over time are

modeled by βt. The existing non-dynamic versions of PPI models are incapable of capturing

the subtle fluctuations in the strength of connectivity between the two time-series.

For a given seed-region r, we can employ the partial correlation between region r and any

other ROI d = 1, , R, d 6= r, as a measure of functional connectivity. Based on model (3.2),

the partial correlation is proportional to ρ(r, d, t) ∝ βrd(t) +
∑K

k=1 Sk(t) γ
r
kd. By allowing

the seed region r to vary, r = 1, . . . , R, we can fit R versions of model (3.2), and obtain

partial correlations for any pair (r, d), r, d = 1, . . . , R, at each time point t = 1, . . . , T .
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Correspondingly, with the seed regions indicating the row number, at each time point we

can form functional connectivity matrices, say Pt ∈ RR×R, t = 1, · · · , T , where the diagonal

elements are ones and each off-diagonal term is the partial correlation for the associated seed

region-ROI pair. The resulting functional connectivity matrices are not necessarily symmet-

ric. More importantly, a significant partial correlation ρ(r, d, t) when ROI r is assumed as

seed region does not guarantee that the partial correlation ρ(d, r, t) is also significant, when

ROI d is assumed as seed region. In Section 3.2.2, we describe a multi-comparison procedure

to control the rate of false positive connectivities and regularize the inference across model

fits.

3.1.1 Shrinkage Prior for the Dynamic Physiological Effects

The time-varying coefficients in the vector βr(t) capture the relevant psychological effects

between the seed region r and any other ROI d, d = 1, . . . , R, d 6= r. It is reasonable to

expect that only a subset of the ROIs will be associated with the seed region at any time

t = 1, . . . , T . Hence, we employ variable selection priors to enforce regularization of the

inference problem and identify relevant associations between the BOLD signals. Recently,

there have been a few proposals for dynamic variable selection priors in sparse state-space

models and time-varying models in the Bayesian literature (Rockova and McAlinn, 2020;

Kowal et al., 2019). Here, we use the double gamma prior recently proposed by Bitto and

Frühwirth-Schnatter (2019) and Cadonna et al. (2020). This prior generalizes the popular

Horseshoe prior (Carvalho et al., 2010) to the time-varying modeling framework. In our

practical experience, this choice of prior is computationally efficient, avoids overfitting by

effectively shrinking the process variances of the dynamic coefficients to zero, and can flexibly

adapt to varying degrees of sparsity in the data.

More in detail, the prior assumes that the psychological effect between a seed region r and
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an ROI d, βrd(t), d = 1, . . . , R, d 6= r, changes over time according to a discrete random walk,

βd(t) = βd(t− 1) + wd(t), (3.3)

where we have dropped the superscript of the seed region, r, on the parameters for ease of

notation. The step size wd(t) is a random variable following a scale-mixture normal-gamma-

gamma shrinkage prior on the variance components,

wd(t) ∼ N(0, θd),

θd|ζd ∼ G(
1

2
,

1

2ζd
),

ζd|aζκB ∼ G(aζ ,
aζκB

2
).

(3.4)

The model specification requires an initial condition, which assumes that at time t = 0,

β(0)d ∼ N(0, θd). This construction emphasizes the role of θd in both the identification of

significant connections and whether or not the connections vary over time. A very small

value of θd encourages smooth transitions over time and shrinking of the coefficients to static

(i.e., not time-varying) values. In particular, if β(0)d is close to 0, the coefficient should

remain in close proximity of 0 over the entire time domain due to the small step size of

the random walk process. The process prior (3.4) is an example of a global-local shrinkage

prior: the parameter κB is a global shrinkage parameter as it controls the overall level of

sparsity among all the θd’s, d = 1, . . . , R, d 6= r. On the other hand, the parameter ζd is a

local shrinkage parameter, since it allows shrinking the corresponding θd to 0 as necessary,

with the result that non-zero θd’s do not correspondingly decrease toward 0. The prior

specification (3.3)–(3.4) depends on two hyperparameters: aζ and κB. We follow Cadonna

et al. (2020) and use a default of aζ = 0.1, while we let κB be user-defined. A simulation

from the distribution of the double gamma prior for specific values of κB can be informative

toward specifying an a priori level of global shrinkage. Figure 3.2 shows such a simulation.

The conditional distribution of θ|ζ is heteroskedastic with both increasing mean and variance
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Figure 3.2: Choice of the global shrinkage parameter κB: Simulations from P (θ|ζ) where the
blue line is a smoother estimating E(θ|ξ) (left) and from P (ζ|κB, aζ = 0.1) (right) in (3.4).
The conditional distribution of θ|ζ is heteroskedastic with increasing mean and variance as
a function of ζ. Larger and more varying values of ζ are associated with smaller values of
κB.

as a function of ζ. Larger and more varying ζ are associated with smaller values of κB. Thus

setting κB to to be large (> 10) leads to more sparse solutions, characterized by less dynamic

changes in the coefficients. Intead, setting κB to be small would correspond to prefer less

sparse solutions a priori. Recently, Knaus et al. (2021) have suggested κB = 20 as a default

setting, which has been shown to exhibit good simulation performance.

3.1.2 Shrinkage Prior for the PPI Effects.

Model (3.2) includesK×(R−1) static psychophysiological interaction vectors, γrk = {γdk}d6=r,

and K psychological effects, αk. We expect that only a sparse subset of the parameters will

identify significant associations between the fMRI BOLD signal in the seed region and either

the psychological or the PPI factors. Thus, we adopt the horseshoe prior of Carvalho et al.

(2010) to shrink the irrelevant PPI and psychological effects to zero. More specifically, for
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notational simplicity, we introduce the vector ηk = [γ1k, · · · γR−1,k, αk] to indicate the R

dimensional vector concatenating the PPI and psychological effects of each stimulus k, and

we let ηkh denote the generic element of such vector, k = 1, . . . , K, h = 1, . . . , R. Then, we

assume the global-local shrinkage prior,

ηkh|τ 2, λ2
kh ∼ N(0, τ 2λ2

kh) h = 1, . . . , R

τ 2 ∼ C+(0, 1)

λ2
kh ∼ind C+(0, 1) h = 1, · · · , R.

(3.5)

where the parameters τ and λ induce global and local shrinkage, respectively, of the coeffi-

cients toward zero. Here, the interest is in identifying the main effects and the interaction

effects of psychophysiological factor on brain activity. These effects are assumed as static,

i.e. not-time varying to ensure identifiability of all the model parameters. Indeed, if the

stimuli are k are blocked indicators – as is often the case – it would be challenging to learn

the dependence structure between time-varying interaction parameters, say γkdt and γkd(t+1),

when skt = sk(t+1) = 0. In the lack of substantive prior information about how the modifi-

cation of the connection between seed region r and region d by stimulus k were modified by

successive exposures to stimulus k, the choice of a static specification of these parameters

allows clearly interpretable inferences and reduced computational complexity.

3.2 Posterior Inference

In this Section, we outline how to obtain inference on the parameters of model (3.2). First, we

discuss the computational algorithm for drawing posterior samples of our parameters of in-

terest, namely αk, βdk(t), and γdk. The use of continuous global-local shrinkage priors for the

model parameters does not lead to a positive probability mass to exact zero’s in the posterior

distribution of irrelevant parameters. Therefore, we propose a selection procedure inspired

by the work of Chandra and Bhattacharya (2019) on testing the related hypotheses. Quite
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notably, by casting the selection problem in a non-marginal multi-comparison framework,

our approach is able to combine inferences across models that assume different seed-regions,

and obtain unique connection graphs across models. Lastly. we discuss constructing point

estimates for the time varying partial correlation matrices Pt ∈ RR×R, t = 1, · · · , T .

3.2.1 Markov Chain Monte Carlo Algorithm

For every choice of the seed region, posterior inference is conducted for each seed-region

in parallel through Markov Chain Monte Carlo (MCMC). In the following, we discuss the

implementation for a single region, say r ∈ {1, . . . , R, as in equation (3.2). The prior setup

allows simulation from the joint posterior of the parameters by combining the collapsed

sampler employed by Cadonna et al. (2020) for the time-varying regression coefficients βd(t)

and the auxiliary variable augmented Gibbs sampler of Makalic and Schmidt (2016a) for

the static regression coefficients ηk. The general procedure for sampling the parameters for

each regional model is straightforward and computationally efficient. Once all parameters

are initialized, once can simply iterate between the following two steps:

1. Update β, θ, ζ, σ : Let Ytβ = Yt −
∑K

k=1 stkγ
′
kXt,∀t. Then follow steps A-D of Algo-

rithm 1 in Cadonna et al. (2020).

2. Update η, τ, λ : Let Ytγ = Yt − β′tXt,∀t. Use the conditional distributions in Makalic

and Schmidt (2016a) equations 7 and 8, by substituting η for β in their notation.

The first step is efficiently implemented in R using the shrinkTVP package by Knaus et al.

(2021). Once again, it is worth noting that since the model specified in Equations 3.2–3.5 is

independent across each seed region, we can fit each of the R models in parallel leading to

a sizeable computational gain.
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3.2.2 Selection of Non-Zero Components

In the Bayesian literature, variable selection is often implemented either by using continuous

shrinkage priors or discrete selection models, e.g. through a spike-and-slab prior specifica-

tion (George and McCulloch, 1993, 1997). The latter approach explicitly allows computing

the posterior probability that a coefficient is exactly zero, but imposes additional computa-

tional complexity. Continuous shrinkage priors result in increased speed of implementation;

however, they lack generally accepted straight-forward selection criteria and require care-

ful posterior assessment of the inference. For example, Carvalho et al. (2010) as well as

Cadonna et al. (2020) prescribe using a thresholding approach on the estimated values of a

latent shrinkage factor to identify relevant coefficients.

Our problem presents two sets of challenges to the direct applicability of the conventional

thresholding approaches described above. On the one hand, at each time point t = 1, . . . , T ,

lack of connectivity between the seed region r and any other region d should be assessed by

testing the statement: H0rdt : βrtd+
∑K

k=1 stkγ
r
kd = 0, which encodes conditional independence

between the two regions by setting the corresponding partial correlations to zero. Therefore,

any formal post-MCMC selection procedure should take into account the combination of

the inference on the static and dynamic coefficients of the model. Indeed, Cadonna et al.

(2020) apply a thresholding rule on a local shrinkage factor which tests the relevance of the

coefficient
√
θd in (3.4). However, this solution does not apply to our hypothesis of interest

due to the dual role of θd informing not just variable inclusion but also in determining

whether βtd is time-varying or static.

A second important consideration is that decisions based on a model studying the association

between seed region d and all the other brain regions should take into account also the

inference for models that assume any other brain region as seed region. In other words,

for any pairs of regions (r, d), inference assessing evidence for the null hypothesis H0rdt :
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βrtd +
∑K

k=1 stkγ
r
kd = 0 when r is assumed as seed-region is inherently related to inference

on the corresponding hypothesis H0drt when d is assumed as seed region, in that it would

be desirable for inference on H0rdt to agree with inference on H0drt, t = 1, . . . , T . This

consistency would maintain the non-directed property of functional connectivity. In other

words, once we consider the combined results of all models obtained by rotating the seed-

regions, we are facing a multi-comparison problem with dependent hypotheses.

To identify relevant functional brain connectivity associations, we adapt the non-marginal de-

cision theoretic approach recently developed by Chandra and Bhattacharya (2019). Here, the

word non-marginal means that the decision theoretical framework does not rely solely upon

marginal decision rules, e.g., marginal distributions of the test statistics, marginal p-values

or marginal posterior probabilities, as it is often the case for standard multi-comparison pro-

cedures. On the contrary, the non-marginal decision theory framework proposed by Chandra

and Bhattacharya (2019) allows to incorporate the joint structure inherent in the hypotheses

and the dependence between parameters directly in the error measures, leading to a modified

false discovery rate (mFDR) criterion.

More in detail, let Grdt = {H0rdt, H1rdt, H0drt, H1drt} denote the collection of null and al-

ternative hypotheses statements for identifying the association between regions r and d,

where H1rdt : βrtd +
∑K

k=1 stkγ
r
kd 6= 0 (similarly for H1drt) and d < r, d, r = 1, . . . , R. Let

Drdt = I(H1rdt is accepted) indicate the decision in favor of conditional dependence (non-

null functional connectivity association) between regions r and d at time t, when region r

is assumed as the seed ROI. Correspondingly, let zrdt = I(H1drt is accepted ) indicate the

decision made in support of conditional independence between d and r at time t when region

d is assumed as the seed ROI. Lastly, let hrdt = I(H1rdt is true ) indicate the a true asso-

ciation (true state of nature). Following Chandra and Bhattacharya (2019), at each time

t = 1, . . . , T , a non-marginal decision rule will aim at maximizing the posterior expectation
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of true positive decisions (TP):

TP =
rdt∑
i=1

Drdt hrdt zi

while controlling for possible decision errors. In the context of non-marginal decision rules,

errors also derive from the fact that related hypotheses are wrongly accepted, wrongly re-

jected, or are not coherent with each other. Chandra and Bhattacharya (2019) show that

these errors add up to the following cumulative sum,

E =
∑
rdt

Drdt (1− hrdt zrdt). (3.6)

The resulting loss function can be seen as a constrained maximization of the posterior ex-

pectation of true decisions penalized by both making false positive decisions as well as

non-symmetric decisions. The objective function can be also rewritten as a function of the

admissible decisions in the set of all possible decision configurations, under some penalization

constant η ∈ R+:

fη(D) =
∑
rdt

Drdt(wrdt(D)− η), (3.7)

where wrdt(D) = P (H1rdt ∩H1drt|Y ) denote the posterior joint probability of the alternative

hypotheses related to regions r and d. Since all the models are fit separately across all seed

regions, we compute wrdt(D) as the product of the two probabilities,

wrdt(D) = P

(
|βrtd +

K∑
k=1

stkγ
r
kd| ≥ cσr

)
P

(
|βdtr +

K∑
k=1

stkγ
d
kd| ≥ cσd

)

for some small c ∈ R. In the following implementations, we have used c = 0.1.

Following Chandra and Bhattacharya (2019), the objective function (3.7) can be initially

maximized by assuming β = 1 − mFDRx, where mFDRx ∈ (0, 1) indicates the posterior
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modified false discovery rate, defined as

mFDRx =
∑
D∈D

∑
rdtDrdt(1− wrdt(D))∑

rdtDrdt

δ(D|Y), (3.8)

where D denotes the space of all possible decision configurations, and the indicator variable

δ (d |Xn) is equal to one when we consider the decision configuration chosen to be the final

decision rule according to the associated multiple testing procedure.

For each given η, the maximization of fη(D) employs the simulated annealing method in

Algorithm 2 of Chandra and Bhattacharya (2019). However, Chandra and Bhattacharya

(2019) show how setting β = mFDRx may be overly conservative due to the additional

penalty for incorrect decisions encoded in the posterior mFDRx criterion, particularly when

the weights wrdt are small. As a way around the problem, they suggest to run the simulated

annealing algorithm multiple times, decreasing η each time until the realized mFDRx is at

the desired level – a strategy that is computationally intensive for large datasets. Here, we

follow an alternate strategy, motivated by the following observation. In our experiments, the

achieved mFDRx is often below the nominal false discovery rate when the initial run of the

simulated annealing algorithm leads to optimal decision pairs of decision that are discordand,

that is of the type Drdt 6= &Ddrt, r, d = 1, . . . D. Subsequent runs of the annealing algorithms

appear to relax these inconsistencies. Therefore, in order to gain computational speed, after

the run of the simulated annealing algorithm, all the decisions are inspected we conclude

that two regions are not associated only if the optimal solution identified by the simulated

annealing requires both Drdt & Ddrt = 0. This simple modification appears to perform well

in our investigations.
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3.2.3 Inference on Partial Correlations

Based on the associations estimated from the non-marginal decision rules and our modified

algorithm, we can then proceed to estimate the degrees of association between pairs of

regions. More specifically, we employ the posterior samples from the MCMC algorithm to

estimate the physiological and PPI effects, and construct the time varying precision matrices:

Ωrt ∈ RR×R, t = 1, . . . , T , with the subscript r indicating that region r is assumed as seed,

r = 1, . . . , R

Since model (3.2)) assumes gaussianity, conditional independence can be assessed by consid-

ering the distribution of Yr(t) conditioned on all other regions Zr(t),

Yr(t)|Zr(t) ∼ N

(
−Ωrzrt

Ω′rrt
Zr(t),Ω−1

rrt

)
, (3.9)

where Ωrzrt denotes the rth row of Ωt, excluding the entry on the diagonal, and Ωrrt is the

rth diagonal entry of Ωt. Comparing with (3.2), it follows that Ωrrt = V ar(εt)
−1, whereas the

vector of partial correlations Ωrzrt can be approximated by Ωrzrt ≈ βr(t) +
∑K

k=1 Sk(t)γ
r
k,

after subtracting the psychological effects. Here, we assume that although the elements

Xkd(t) =
∫ t
−∞ h(t)sk(t−τ) yd(t−τ) dτ ofXk(t) do not coincide with Sk(t)Z

r
d(t), d = 1, . . . , R,

d 6= r, their values should be similar in a small neighborhood of each time point. Thus, using

Equation (3.9) and the non-marginal decision theoretic approach outlined in Section 3.2.2,

we can estimate the partial correlations from each fitted seed-based model, say Ω̃rt, from the

posterior samples of βt, γk and σrt . Then, we can combine the results across runs and obtain

a final estimate of the time-varying precision matrix Ω̂t by setting each off-diagonal entry as

follows:

Ω̂rdt =


0 if Drdt & Ddrt = 0

Ω̃rdt+Ω̃drt

2
otherwise

r, d = 1, . . . , R (3.10)

where – for any two regions r and d – the decisions Drdt and Ddrt are the optimal decisions
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obtained by the simulated annealing algorithm of Chandra and Bhattacharya (2019) in the

models fitted assuming seed region r and d, respectively. See Section 3.2.2.

3.3 Simulation

In this section we compare our proposed dPPI model with the more standard generalized

PPI (gPPI) of McLaren et al. (2012). In this setting we show how the model perform

estimating PPI effects under an assumption of resting state dynamic functional connectivity.

We simulate from a gaussian distribution with a dynamic covariance matrix where PPI effects

are known explicitly. In this way we can compare the bias and standard errors for the PPI

effects of interest.

We show the appropriateness of our model in estimating PPI effects under time-varying

functional connectivity data generating mechanism. We simulate a response time course for

R = 12 over T = 600 in an event related design with K = 2 stimuli. We simulate the

dynamic partial correlations through a mixture of two covariance processes.

The first is a stimulus linked process Ω1
s(t) where s(t) = 0, · · ·K is the stimulus sequence. Ω1

0

is the precision matrix during rest and is block diagonal consisting of 4 3× 3 matrices. Ω1
1,

the precision matrix when s(t) = 1, is equal to Ω1
0 for the first and last 3× 3 matrix entries,

while the middle 6 × 6 entries are changed to create a PPI effect with stimulus 1. Similar

is done for Ω1
2, but now the middle 6 × 6 are equal to Ω1

0 and the first and last 3 × 3 block

matrices are changed. In this way, there are no PPI effects for the first 3 regions, while other

regions have their connectivity modified by at least one stimulus.

The second covariance process Ω2
t is dynamic precision matrix equal to the identity matrix

except for the (1,2)-(2,1) entries and the (14,15)-(15,14) entries. We set Ω2
t (1, 2) = Ω2

t (2, 1) =

0.43sin(0.01πt
2

+ 2.2) and Ω2
t (10, 11) = Ω2

t (11, 10) = 0.47sin(0.017πt
2
− 1.3). This process
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simulates the partial correlation between the above pairs fluctuating regardless of the active

stimulus. With these two process defined we simulate Y (t) ∼ N12(0, (Ω1
S(t))

−1 + (Ω2
t )
−1). We

use this process to create 60 simulation datasets to fit the dPPI and generalized PPI models.

We then construct partial correlation matrices Ωdppi
t and Ωgppi

t using the method outlined in

Section 3.2.3.

We compare the bias and standard errors of three PPI effects of interest, which we note using

the notation of Equation 3.2. γ1
21, which is the PPI between regions 1 and 2 under stimulus

1. Since Ω1
0(1, 2) = Ω1

1(1, 2), γ1
21 = 0 even though there is a dynamic correlation between the

two regions. Secondly we look at γ4
51 as the (4,5) pair has a constant resting state correlation

and a non-zero PPI with stimulus 1. Lastly we look at γ10
11,2 as the (10,11) pair exhibits both

a dynamic resting state correlation and a non-zero PPI with stimulus 2. Lastly we compute

the mean squared error defined as MSE =
∑T

t=1

∑R
r=2

∑r
d=1(Ωrdt− ˆΩrdt)

2 for the true partial

correlation matrix at time t Ωt. The results are compiled in Table 3.1. The dPPI and gPPI

rows are simply the mean and standard deviations across simulation datasets for the PPI

effects, γ, of interest. The dPPI w/ selection row computes the PPI effects after selection by

computing the difference in partial correlation when the simulated subject transitions from

the rest condition to the stimulus condition of interest after the dPPI selection procedure

has been applied. dPPI exhibits less bias in estimating partial correlation under a resting

state dynamic functional connectivity model. This is especially true when considering the

region pair (10,11) which has both a dynamic resting state partial correlation and a non-zero

PPI with stimulus 2. dPPI also acheives lower MSE when estimating the partial correlation

trajectories between all regions, since gPPI fails to capture changes in partial correlation that

are independent of the stimuli considered. Selection is shown to have additional benefits by

reducing both bias for the PPI effects and MSE for the partial correlation path among all

regions.

The rows in Figure 3.4 are the paths of the estimated partial correlations for the (1,2), (4,5),
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Method γ1
2,1 = 0 γ4

5,1 = −0.055 γ10
11,2 = 0.269 MSE

dPPI 0.090 (0.097) -0.062 (0.088) 0.210 (0.100) 188.546 (27.169)
dPPI w/ selection 0.073 (0.099) -0.041 (0.125) 0.238 (0.122) 147.557 (26.033)
gPPI 0.170 (0.088) -0.076 (0.106) 0.101 (0.106) 240.231 (29.471)

Table 3.1: The results of dPPI and gPPI under simulation setting 1. Each column entry is
the mean and standard deviation of the estimates of the chosen effect modifications across all
simulations. dPPI achieves less bias under a setting where physiological effects are dynamic.
Overall

and (10,11) pairs from a single simulation dataset. dPPI is able to recover the underlying

dynamic partial correlations while also accommodating the effects of stimulus 2 modifying

the partial correlations in the (1,2) and (10,11) pairs. With the (4,5) row, we show dPPI

is also able to perform similarly to gPPI in the absence of resting state dynamic partial

correlations, showing the benefits of the shrinkage prior on βd(t). Figure 3.3 averages the

partial correlation over each rest/stimulus block for a single simulation dataset, outputting a

form of static functional connectivity matrix. We see that our proposed selection procedure

is able to recover the changes in the structure of the partial correlation matrix under each

stimulus block.

3.4 Case Study

A topic of continuing interest in cognitive neuroscience is the manner in which individuals

learn predictive associative relationships that can be used to support decision-making and

planning for rewards Daw and Shohamy (2008). It has been shown that the brain learns

multiple sets of such relationships, simultaneously, and that these transition probabilities are

reflected in the activity of distinct neural structures. Our interest lies in the modification

of functional connectivity by learning in a predictive learning task. We consider a task

where where a probabilistic sequence of 4 images were shown to 20 participants. Data from

eight of the participants are analyzed here Bornstein and Daw (2012). Participants were
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Figure 3.3: The average partial correlation matrices across each condition for a single sim-
ulation dataset. (Top row) The average estimated partial correlation matrices across the
rest, stimulus 1, and stimulus 2 conditions respectively. (Bottom row) The average data-
generating partial correlation matrices across the rest, stimulus 1, and stimulus 2 conditions
respectively. We see there are some false positive connections among the 4,5,6 block where
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Figure 3.4: The paths of the estimated partial correlations for the (1,2), (4,5), and (10,11)
pairs from a single simulation dataset. The solid black line shows the true partial correlations
for the respective region pairs over time. The dashed and dotted lines are the estimates from
dppi and gppi respectively, constructed using the method outline in Section 3.2.3. dppi is
able to recover the underlying dynamic correlations while also accommodating the effects of
stimulus 2 modifying the partial correlations in the (1,2) and (10,11) pairs. With the (4,5)
row, we show dppi is also able to perform similarly to gppi in the absence of resting state
dynamic partial correlations, showing the benefits of the shrinkage prior on θd(t).
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tasked with responding to the shown image with a matched pre-trained button press. The

sequence of images were randomly generated (unknown to the participants) according to a

first order Markov process, where the probability a picture is shown in trial e = 1, · · · 999

depends solely on the picture shown in trial e− 1. The full conditional distribution can be

fully represented by a 4 × 4 matrix, where the (i, j) specifying the probability the picture

represented by the jth column entry is shown on trial e given that the picture represented by

the ith row is shown on trial e− 1. To encourage continual learning, the Markov transition

kernels were changed twice at trials e = 334 and e = 667. Participant reaction times (RTs)

were measured as a proximity for predictive learning, where faster RTs were indicative of

learning the conditional distribution of the image sequence. The transition matrices were

generated anew for each subject, and selected to minimize mixing time so that first-order

dependencies were the sole consistent source of information about the identity of the next

stimulus and thus could be used as the primary predictor of behavior.

Consistent with the experiment design and previous findings using a similar task, response

times matched the first-order conditional distribution, suggesting that participants implicitly

learned the probabilities incrementally, via trial-by-trial experience. Further, the relation-

ship between RTs and the underlying stimulus probabilities evolved over learning, with

recent experiences providing exponentially more influence on subsequent predictions. This

phenomenon is measured in delta rule learning by the learning rate: the weight a system

places on new information relative to previous experience. Following previous work on the

division of learning into multiple systems Poldrack et al. (2001); Doll et al. (2015), we fit two

Rescorla-Wagner learning rules under both a slow and fast learning rate: P s, P f ∈ R4×4×999.

These represent the participants’learned conditional distribution of the images according to

each learning rate. Let I(e) ∈ {1, 2, 3, 4} be the label of the image shown at trial e. We
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compute the learning rules as in Equation 3.11.

P z
i,j,e =


P z
i,j,e−1 + αz(1− P z

i,j,e−1) j = I(e)

P z
i,j,e−1 + αz(0− P z

i,j,e−1) j 6= I(e)

z = s, f ; e = 1, · · · , 999, (3.11)

with αs = 0.0138 and αf = 0.5499 as median parameter values across the population esti-

mated in the previous analysis (Bornstein and Daw, 2012). We then use these learning rules

to compute the forward entropy of the system under the different learning rates: Hs(e) and

Hf (e) for the slow and fast rates respectively. The forward entropy is computed in Equa-

tion 3.12 and represents a measure of expected surprise for the subsequent image given the

participant’s experience under the respective learning rate and the currently shown image.

Hz(e+ 1) = −
4∑
j=1

log(P z
I(e),j,e)P

z
I(e),j,e z = s, f (3.12)

This quantity is designed to index the amount of “lookahead” activity to be expected in an-

ticipation of the upcoming stimulus Johnson and Redish (2007); Bornstein and Daw (2013).

Lookahead activity has been identified in multiple regions associated with learning and mem-

ory Johnson and Redish (2007); Johnson et al. (2007), thus implicating these regions in

prediction as well. Given that each region learns a distinct representation of sequential

structure, and that behavior reflects a mixture of the predictions generated by each of these

representations, a critical open question in the field is where and how these predictions are

integrated Daw and Shohamy (2008). A key candidate structure is the Anterior Cingulate

Cortex (ACC), a region that has the necessary anatomical connectivity to combine inputs

from the hippocampal formation with those from the striatum, and which has itself been

strongly associated with conflict between, and control of, competing motivational drives

Shenhav et al. (2013). Indeed, ACC is a key overlapping region correlated with forward

entropy from both processes in the original analysis Bornstein and Daw (2012). Intuitively,

if the brain represents sets of two or more competing predictions that can drive behavior,
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these predictions should be weighted according to their relative precision Wang et al. (2022)

– here, the inverse of their entropy. Therefore, by this model, as the two transition matrix

representations change with learning, the more predictive representation should be more

tightly coupled with ACC. Here, we test a question that was unapproachable using previ-

ous methods: Namely, does the relationship between ACC and each ‘source’ region (here,

hippocampus and caudate) change as a function of the difficulty of lookahead (entropy) in

each process? In other words, the goal of this analysis is to estimate the PPI effect of the

two forward entropy timeseries across the brain, with particular interest in the relationship

between the two learning structures and ACC.

Imaging was performed on the 3T Siemens Allegra head only scanner with time resolution

of 2.0 seconds per acquisition, across four sessions of 300 acquisitions each. Images were

normalized into a template and resampled into 2× 2× 2-mm voxels in the normalized tem-

plate space (MNI). These voxels were then further combined into R = 18 ROI by taking the

mean BOLD of all voxel time series attributed to each ROI. ROI were defined anatomically

according to a standard atlas (AAL). The regions selected were structures previously associ-

ated with learning, memory, and decision-making, along with several “control” regions, and

separated bilaterally.

There are K = 4 covariates of interest included the model:

• An indicator for the participant seeing an image

• An indicator for the participant pressing a button

• The forward entropy under the slow learning rate: Hs

• The forward entropy under the fast learning rate: Hf

Each covariate was convolved with the canonical hrf (the default in SPM) to create the

psychological regressors. To lessen the effect of false positive PPI effects, PPI regressors

82



were formed by first deconvolving the ROI time series into latent neural signals using the

method of Bush and Cisler (2013). We then take the product of the deconvolved time series

with the above covariates, before scaling and convolving once again with the canonical hrf

(Di et al., 2017).

Consistent with the above-described neural circuit model, we observed a consistent pattern

of entropy-modulated time-varying PPI between each source region and ACC. Specifically,

we found that functional connectivity between ACC and Caudate increases when the oppos-

ing (slow, hippocampally-linked) process becomes more uncertain (Fig. 3.5). This suggests

that when hippocampus has greater difficulty predicting the next stimulus in the sequence,

Caudate is more tightly coupled with activity in the putative output structure, ACC. No-

tably, the observation that the predominance of Caudate depends on the predictiveness of

the hippocampal representation, independent of the predictiveness of the Caudate represen-

tation itself, is consistent with an inductive bias towards the former structure, perhaps due

to its faster neural dynamics and reflecting its more recency-weighted predictions Wang et al.

(2022).

Further, we observed time-varying PPI that supported the role of each region in performing

“lookahead” to support behavior. Specifically, as prediction becomes more difficult in the

fast LR process, we find greater coupling between Caudate and Putamen (Fig. 3.6), a struc-

ture widely observed to represent the action sequences upon which the Caudate transition

matrix may draw during lookahead Smith and Graybiel (2013). Paralleling the fast entropy-

mediated Caudate-Putamen relationship, greater entropy in the slow (hippocampal) process

was associated with stronger connectivity between hipocampus and parahippocampal cor-

tex (Fig. 3.7). The latter region is widely referred to as the “parahippocampal place area”

(PPA; Epstein and Kanwisher 1998) due to its sensitivity to the presentation and prospec-

tive imagination of complex “scene” images. Given that the stimuli in this experiment were

images of natural scenes, this finding is consistent with the idea that, during lookahead,
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Figure 3.5: The estimated partial correlation between right side Caudate and ACC by the
entropy of the slow learning rate process.

hippocampus is orchestrating reinstatements of scene images – as entropy increases, so does

the number of potential next-step scene images that may be reinstated (see Bornstein and

Daw (2013); Bornstein and Norman (2017) for corresponding findings in sequential decision-

making tasks).

3.5 Discussion

We introduced model able to estimate PPI effects in the presence of background possibly

non-linear dynamic functional connectivity. In simulation, dPPI exhibited less bias in esti-

mating PPI effects when there is dynamic functional connectivity not predicted by stimuli,

and performs similar to gPPI in estimating PPI effects of non-dynamically correlating re-

gional pairs. We introduced a method to combine inference across regions through combining

the results of multiple related linear models into a precision matrix and performing selection
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Figure 3.6: The estimated partial correlation between right side Caudate and Putaman by
the entropy of the slow learning rate process.

Figure 3.7: The estimated partial correlation between right side Parahippacampus and the
Hippocampus by the entropy of the slow learning rate process.
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on the precision matrix entries. There is still work to be done in overcoming the assumptions

inherent in combining posterior distributions from fitting the dynamic linear model in 3.1

across all regions. Firstly, there is no sharing of information between the models when pro-

ceeding through the MCMC scheme to sample from the posterior distributions of βtd, αk, and

γdk. While this allows the sampling for each region’s parameters in parallel, a computational

benefit, we then must pay by assume wrdt = P (H1rdt ∩ H1drt|Y ) = P (H1rdt|Y )P (H1drt|Y ),

implying independence in the posterior distributions between related hypotheses. While this

assumption does not hurt in simulation, there is clear further work to be done to allow

computation of wrdt without this restriction.
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Chapter 4

Dynamic Bi-Clustering of fMRI Data

Data are increasingly large and complex, requiring sophisticated methods to reveal patterns

while also respecting heterogeneity across samples as more data are collected. Bi-clustering is

a well established unsupervised technique for grouping observations across two axes of infor-

mation, which can be collected within rows and columns within a matrix. In gene-expression

data, observations are collected on thousands of genes in possibly hundreds of conditions.

Bi-clustering can be used to group together conditions which exhibit similar gene clusters

while simultaneously grouping together genes with similar expression profiles (Madeira and

Oliveira, 2004). In text mining, documents are collected each with an abundance of dif-

ferent words. Bi-clustering is used to group together documents based on their patterns of

word usage (Dhillon, 2001). Further examples of this are in brain imaging, where subjects

can be grouped-together based on the clustering behavior of their respective brain regions

(Ambrosen et al., 2014)

However, the patterns revealed by bi-clustering may not be stable over time, changing as

successive samples are collected. This situation calls for a more flexible technique that allows

for clusters to change over time. There are some approaches within this realm that simply
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add time as a third mode to cluster with: so called tri-clustering approaches. Guigourès et al.

(2018) analyzed short term bike rental data in London, where information was collected on

bike pick-up locations and bike drop-off locations. They used a graph-based tri-clustering

approach to simultaneously cluster pick-up and drop-off locations as well as the pick-up

time stamps over a 9 month period. They found the bi-clustering between pick-up and drop

locations changed heavily depending on the type of day. Wu et al. (2018) used a deterministic

tri-clustering algorithm to cluster temperature data across three modes: station location in

the Netherlands, days of the year, and across years itself. Through this they can describe

reoccurring spatial temperature patterns over the course of a year while grouping similar

years together.

While the above approaches indeed describe bi-clustering behavior changing over time, there

is little temporal dependence assumed across successive cluster assignments. This is im-

portant when collecting data across time scales where one would apriori expect clustering

behavior to be similar for time points that are closer together. Within fMRI brain imaging

data, Amar et al. (2015) used a time series bi-clustering model to cluster brain regions along

with subjects based on whether the region was activated or not. They specify a hierarchical

model where regions are partitioned into ’modules’ where every region within the modules

is activated at the same time. They then pool together information across subjects by al-

lowing subjects to have shared modules, deemed core modules, and then allowing further

subject specific modules. Time dependence is incorporated through module activations but

not over assignments of clusters. A drawback of this is failing to allow the brain regions to

dynamically reconfigure their spatial dependencies, an important feature in brain imaging

time-series (Chang and Glover, 2011; Calhoun et al., 2014).

We propose the dynamic bi-clustering (dbc) model for separate exchangable matrix valued

data collected over time. Rows (signal sources) are clustered within column (unit) clusters

such that, all columns within a column cluster share the exact same partitioning of the rows
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across all time points. Each row is then clustered together based on their similarity to other

rows within the same column cluster. We incorporate time dependence using the approach of

Page et al. (2021) where a row specific latent variable is introduced determining whether row

cluster assignments of successive timepoints are the same. If this latent variable determines

the assignment is to be different across successive timepoints, the model will assign the

row a new cluster assignment. As not all rows are reassigned simultaneously, this allows

cluster configurations between successive timepoints to be relatively similar. We also do not

require the number of clusters to be specified apriori. Through the sparse specification of

the dirichlet process, we allow for a user-specified upper limit on the number of clusters.

The model will then automatically determine the number of unit clusters and signal source

clusters visited over time (Frühwirth-Schnatter and Malsiner-Walli, 2019).

Additionally, we discuss an extension of the dbc model where units assigned to the same

unit cluster are not forced to share the exact same sequence of signal source clusterings, but

share distributions over potential signal sources clusters. Further, we allow for signal source

cluster assignment changepoints to be informed by simultaneously collected covariates. This

is motivated by task-based fMRI experiments where subjects are introduced to a stimulus,

say looking at a picture, with possibly differing timings. In this setting, there is a reasonable

expectation of cluster assignments changing as brain regions respond to the stimulus in

differing ways.

In Section 4.3 we show the results of a simulation study, indicating the importance of ac-

counting for the unit-level heterogeneity in signal source clustering. Finally, in Section 4.4,

we apply the dbc model to an behavioral task fMRI experiment conducted on 24 subjects.

We demonstrate the ability of the model to detect expected differences in FC configurations

when subjects undergo differing conditions in a hand-grip task.
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4.1 DBC Model

4.1.1 Motivation

Let us begin by considering the type of data and the objective that this work is motivated

by. Suppose that we observe realizations of some random signal

Y
(i)
rt , for


i = 1, . . . , N units

r = 1, . . . , R signal sources

t = 1, . . . , T time points

Such data may be organized in a length-T time series of N × R dimensional matrices. In

practice, Y
(i)
rt could represent the blood oxygenation level dependant (BOLD) signal - that

is a measure of neuron activation - for subject i in brain region r at time t as illustrated in

Figure 4.1a. In microbiome analysis, Y
(i)
rt may represent the abundance of microbe taxa r

for subject i at time t, in music analysis Y
(i)
rt may be the pitch of the sound played in song i

by musical instrument r at time t, and so on.

From the data, we would like to learn what signal sources produce similar signals at given

time points and what units tend to behave similarly over time. Specifically, our objectives

are (i) clustering signal sources based on observed signals, allowing for such clusters to

change over time; and (ii) simultaneously clustering units whose signal sources exhibit a

homogeneous clustering behavior across time (see Figure 4.1b for an illustration). More

formally, let c̃
(i)
rt ∈ {1, . . . , K} be the cluster to which signal source r belongs at time t for

unit i and let si ∈ {1, . . . , Z} be the static cluster to which unit i belongs. We are interested

in the case in which clusters of signal sources differ across unit clusters but are homogeneous

within unit clusters, that is c̃
(i)
rt = c

(si)
rt , where c

(si)
rt is the cluster to which signal source r

belongs at time t for all units in unit-cluster si.
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(a) Data (b) Objective

Figure 4.1: Toy example of data and objectives considered by our model, with 4 units, 4 signal
sources and 3 time points (i.e. N = 4, R = 4, T = 3). (a) BOLD signals (represented by blue
bars) recorded in multiple units (in this case subjects, represented by rows) at multiple sources
(in this case brain regions, represented by the location of a bar) and time points (represented by
columns). (b) The objectives of the model are (i) to identify time-specific clusters of signal sources
that generate similar signals in a given time point (here 3 clusters, represented by the color orange,

green or magenta of a bar, i.e. c
(si)
rt ∈ {1, 2, 3}); and (ii) to learn time-invariant clusters of units

that exhibit the same clustering of signal sources across time points (here 2 clusters, represented
by the color red or blue of a row label, i.e. si ∈ {1, 2}).

4.1.2 Dynamic bi-clustering

We specify a normal likelihood where the mean of the distribution depends on the unit and

signal source clusters and where the variance is specific to the signal source:

Y
(i)
rt |si = z, c

(z)
rt = k ∼ N(µk, σ

2
r) (4.1)

µk ∼ N(µ0, σ
2
0) σ2

r ∼ IG(ασ, βσ), (4.2)

for µ0 ∈ R and σ2
0, ασ, βσ > 0. Equation 4.1 illuminates the meaning of unit and signal source

clusters. If two units i and i′ are clustered together, i.e si = si′ , then the corresponding signal

sources will share the exact same clustering behavior over the entire time series, as in Figure

4.1b. That is, for any fixed r ∈ {1, . . . , R}, si = si′ implies Y
(i)
rt has the same distribution as

91



Y
(i′)
rt for every t = 1, . . . , T .

Let πz ∈ [0, 1] be the probability that a unit belongs to cluster z = 1, . . . , Z and let ωzk ∈ [0, 1]

be the probability that at time 1 a signal source of a unit in unit-cluster z belongs to signal-

source cluster k = 1, . . . , K. Then, let π = (π1, . . . , πZ) with
∑Z

z=1 πz = 1 and similarly

for every z = 1, . . . , Z let ωz = (ωz1, . . . , ωzK) with
∑K

k=1 ωzk = 1. We seek to place prior

distributions on π and on each of ω1, . . . , ωZ that both allow us to learn the number of

necessary (i.e. nonempty) clusters and are amenable to tractable posterior inference. One

such choice is the finite stick breaking prior of Frühwirth-Schnatter and Wagner (2010). The

probability vector π follows a finite stick breaking prior of dimension Z with concentration

parameter α > 0, in formulas π ∼ SBZ(α), if it can be constructed in the following manner:

ν1, . . . , νZ−1
iid∼ Beta(1, α), νZ = 1 (4.3)

π1 = ν1, πh = νh

h−1∏
j=1

(1− νj), h = 1, . . . , Z − 1. (4.4)

Similarly, we assume ω1, . . . , ωZ
iid∼ SBZ(β) with β > 0. By constraining the concentration

parameters α and β to a small value, e.g. 0.01, the model from Equations 4.3-4.4 favors

sparse probability vectors (Malsiner-Walli et al., 2016), i.e. those where some entries are

approximately zero, representing empty clusters. Thus, if we set α and β small and the

dimensions Z and K to be an upper bound to the number of unit and signal-source cluster

respectively, this choice of priors allows learning the number of inhabited unit clusters Z+ <

Z and signal source clusters K+ < K. In practice, we can let Z be equal to the total number

of units N and K equal the number of signal sources R times the number of time points T .

This modeling choice on unit and signal source clusters can be summarized as follows:
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π ∼ SBZ(α), (4.5)

si | π
iid∼ Categorical(π), i = 1, . . . , N (4.6)

ωz
iid∼ SBK(β), z = 1, . . . , Z (4.7)

c
(si)
r1 | ωsi

iid∼ Categorical(ωsi) r = 1, . . . , R, i = 1, . . . , N (4.8)

There are additional considerations concerning setting the concentration parameters α and

β. Frühwirth-Schnatter and Malsiner-Walli (2019) discuss placing on the concentration

parameters a Gamma hyperprior with expected value equal to 0.5 to allow for the appropriate

level of sparsity in the number of inhabited clusters. In our experience, however, setting

α = β = 0.01 worked well in simulation studies for recovering the true number of both unit

and signal source clusters.

Equation 4.8 describes the distribution of only the initial signal-source cluster assignment.

To describe the evolution of signal-source cluster assignments as time progresses, we would

like a model complying with the a-priori expectation that sources that are clustered together

(co-clustered) at time t are more likely to also be co-clustered at time t′ when t is closer to

t′ and less so when t and t′ are further apart. For units in cluster si, let the set of indices

of signal sources in cluster k at time t be S
(si)
kt = {r ∈ {1, . . . , R} : c

(si)
rt = k}, so that the

clusters (c
(si)
1t , . . . , c

(si)
Rt ) define a partition ρ

(si)
t = {S(si)

1t , . . . , S
(si)
Kt } of signal sources of units

in cluster si at time t. The a-priori expected similarity between the partition ρ
(si)
t of signal

sources of units in cluster si at time t and the partition ρ
(si)
t+δ of the same signal sources at

time t + δ, δ > 0, should be decreasing in δ. Page et al. (2021) argued that for partitions

to have this property, one should not rely on partitions induced by Bayesian nonparametric

models but rather model the partition evolution directly, as we detail in Section 4.1.2.
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Temporal random partitions

We describe the evolution of c
(si)
rt through the temporal random partition model proposed

by Page et al. (2021). This is done by introducing an indicator γ
(si)
rt for the signal sources

of units in cluster si being reassigned from time t − 1 to t. When γ
(si)
rt = 1, c

(si)
rt equals the

previous cluster assignment c
(si)
r(t−1). Otherwise, when γ

(si)
rt = 0, a cluster c∗ is re-sampled

for signal source r among units in cluster si using the same distribution ωsi used to draw

the initial cluster assignment (Equations 4.7 and 4.8). The following equations outline the

evolution of cluster assignments of signal sources over time:

c
(si)
rt

d
= γ

(si)
rt c

(si)
r(t−1) + (1− γ(si)

rt )c∗ (4.9)

c∗|ωsi ∼ Categorical(ωsi) (4.10)

γ
(si)
rt ∼ Bernoulli(a

(si)
t ) (4.11)

a
(si)
t

iid∼ Beta(αa, βa), (4.12)

where αa, βa > 0. The time-varying change-point parameter a
(si)
t controls the dependence

among successive partitions within the same unit cluster: ρ
(si)
t and ρ

(si)
t+1. As a

(si)
t approaches

1, cluster assignments are more likely to remain unchanged between successive timepoints,

increasing the dependence between ρ
(si)
t and ρ

(si)
t+1. It is important to note that γ

(si)
rt = 0

does not imply c
(si)
r(t−1) 6= c

(si)
r(t). The new cluster assignment drawn, c∗, may in fact match the

previous cluster assignment: c
(si)
r(t−1). Figure 4.2 shows simulated data with T = 100 time

points and 2 change points common to all of R = 20 signal sources and all of Z = 3 clusters

of N = 10 units. Specifically, for all i = 1, . . . , 10 and all r = 1, . . . , 20, γ
(si)
r,33 = γ

(si)
r,66 = 0

while, for t = {2, . . . , 100}\{33, 66}, γ(si)
r,t = 1. Figure 4.2 illustrates that observations from

signal sources that are in the same cluster at consecutive time points before the change

points t = 33 and t = 66 are assumed to be generated from the same gaussian distributions.
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The model described in Equations 4.1-4.12 accounts for the three dimensions of the data

(multiple units, signal sources and time points) and achieves our objective of simultaneously

clustering units and signal sources. Figure 4.3 summarizes the model visually by means of a

directed graphical model and illustrates the (conditional) dependencies between its variables.

Covariate-Informed Changepoints

A property of the dynamic bi-clustering model is that units that are clustered together

share the exact same clustering pattern among all signal sources at every timepoint. This is

plausible in the case where all units are likely to experience the same phenomenon over the

measured timecourse. An example could be in a block-designed experiments in fMRI, where

subjects are presented with a stimulus, say a photo in a visual setting, in a synchronous

fashion. In this way, there could be a reasonable expectation of similar timing of activations,

and resulting clustering behavior, of brain regions (signal sources) within unit (subject)

clusters. However, there may be circumstances where there is no synchronization of events

across units. Subjects may be presented photos at different timepoints across each subject’s

respective scanning sessions. Further still, there may differing number of fMRI scans per

subject, say Ti. In these task-based scenarios, we can leverage the timing of these stimuli

as covariates to infer the changes in the clustering behavior. Consider the indicator of a

changepoint at timepoint ti : γirti . We model the log odds of this indicator via a logistic

regression model using a set of p covariates for subject i: X i
t = [X i

t1, · · ·X i
tp]. The covariate-

informed changepoint dynamic bi-clustering (cic-dbc) variant of the model is outlined in
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4.13.

Y
(i)
rt |cirt = k ∼ N(µk, σ

2
r) γirt ∼ Bern(ait)

µk ∼ N(µ0, σ
2
0) σ2

r ∼ IG(ασ, βσ) log(
ait

1− ait
) = X i

tβsi

P (cir1 = k|si = z) = ωzk βz ∼ N(µβ,Σβ) (4.13)

c
(si)
rt = γ

(si)
rt c

(si)
r(t−1) + (1− γ(si)

rt )c∗ ωz ∼ SB(βω)

c∗|ωsi ∼ Categorical(ωsi,1, · · · , ωsi,K) π ∼ SB(απ)

We draw attention to the differing properties of the subject-level clustering. In the cic-

dbc model outlined in Equations 4.9-4.12, all subjects assigned to the same subject cluster

shared the exact same regional clusters at all timepoints. In this version of the model,

subjects assigned to the same cluster share only the distribution of the proposed clusters,

ωz, and the effects of the covariates on the changepoints, βz.

When considering the model for log(
ait

1−ait
) = X i

tβsi , it is important to note the covariates are

modifying the probability of a changepoint and the not clustering behavior itself. It may be

useful to use the absolute first difference of a covariate, Di
tj = |X i

tj−X i
(t−1)j|, rather than the

raw value itself, as there is more of an expectation of changes in clustering behavior when

conditions change in the covariates.

4.2 Posterior Inference

We present a Markov Chain Monte Carlo (MCMC) algorithm for sampling from the posterior

distribution: P (s1:N , c
1:Z
1:R,1:T , γ

1:Z
1:R,1:T , π, ω1:Z , µ1:K , σ

2
1:R|Y ). Many of the priors outlined in

our model are conjugate, allowing very simple Gibbs sampling updates. The non-standard

update lies in sampling from the conditional distribution of γzrt. We rely on the independence

between γzrt and (czru, γ
z
rv) for u < v < t conditioned the current and previous regional cluster
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assignments: czrt, c
z
r,t−1. This allows us to compute the conditional distribution up to a

proportionality constant by iteration through t = 1, · · · , T . Equation 4.14 gives us the form

of the conditional distribution.

P (γzrt|czrt, czr,t−1, a
z
t , ωz) =P (γzrt|czr,1:t, γ

z
r,1:(t−1), a

z
t , ωz) ∝

P (γzrt|azt )P (czr,1:t|γzr,1:t, a
z
t , ωz) ∝

P (γzrt|azt )
t∏

u=1

P (czr,u|γzr,u, czr,u−1, ωz), (4.14)

where P (czr,u|γzr,u, ωz) = γzr,uI(czr,u = czr,u−1) + (1 − γzr,u)ωz,czr,u . Notice that for successive

t, the product can be recurrently computed by setting Lt−1 =
∏t−1

u=1 P (czr,u|γzr,u, czr,u−1, ωz).

Equation 4.14 can then be simplified to

P (γzrt|czrt, czr,t−1, a
z
t , ωz) ∝ P (γzrt|azt )P (czr,t|γzr,t, czr,t−1, ωz)Lt−1,

with γzr1 = 0 by construction, giving us the beginning of our procedure. The γzr,2:T are then

updated through the following steps:

1. Sample γzr2 from a Bernoulli with success probability:
azt 2ωz,czr2

az2ωz,czr2
+(1−azt 2)I(czr2=czr,1)

2. Set L2 = P (czr2|γzr2, czr1)ωz1

3. Sample γzr3 by computing P (γzr3|−) ∝ P (γzr3|az3)P (czr3|cr2, γzr3) ∗ L2 for γzr3 = 1 and

γzr3 = 0, then normalizing.

4. Set L3 = P (czr3|cr2, γzr3) ∗ L2

... Proceed by iterating between steps t1 and t2.

t1 Sample γzrt by computing P (γzrt|−) ∝ P (γzrt|azt )P (czrt|cr,t−1, γ
z
rt) ∗ Lt−1 for γzrt = 1 and

γzrt = 0, then normalizing.

t2 Set Lt = P (czrt|cr,t−1, γ
z
rt) ∗ Lt−1
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This procedure would be repeated over differing regions r and subject clusters z.

All other parameters are updated through standard Gibbs updates using the conditionally

conjugate priors. We outline a brief summary of the steps below:

• Update µk: We sample from P (µk|−) = N(µ∗k, σ
∗2
k ) where µ∗k = σ∗2k

(∑
{i,t:csirt=k}

Y i
rt

σ2
r

+ µ0
σ2
0

)
and

σ∗2k =
(∑

{i,t:csirt=k}
1
σ2
r

+ 1
σ2
0

)−1

. Repeat for k = 1, · · · , K

• Update σ2
r : Sample from P (σ2

r |−) =

IG
(
aσ + T×N

2
, bσ +

∑T
t=1

∑N
i=1(Y i

rt − µcirt)
)

. Repeat for r = 1, · · · , R

• Update π: Let Mz =
∑

i I(si = z). Sample νz from B(1 + Mz, N −
∑Z

j=z+1 Mj) for

z = 1, · · · , Z − 1. Set π1 = ν1 and πz = πz
∏z−1

j=1 νz.

• Update si: Sample from the discrete distribution P (si = z|−) ∝
∏

r

∏
t πzN(Y i

rt|µczrt , σ
2
r).

Repeat for z = 1, · · · , Z

• Update cz
rt, γ

z
rt: Similar to sampling si, sample czrt from the discrete distribution

P (czrt = k|−) ∝
∏

i:si=z
ωzkN(Y i

rt|µk, σ2
r). Then update γzrt by sampling from the dis-

crete distribution given in Equation 4.14. Repeat for t = 1, · · · , T , then for r =

1, · · · , R and z = 1, · · · , Z.

• Update ωz·: Let Nzk =
∑

r

∑
t I(γzrt = 0)I(czrt = 0). Sample νzk from B(1 +

Nzk,
∑K

k=1Nzk−
∑K

j=k+1Nzj for k = 1, · · · , K−1. Set π1 = ν1 and ωzk = νzk
∏k−1

j=1 νzj.

Repeat for k = 1, · · ·K.

4.2.1 Updating the Covariate-Informed Model

For the Covariate Informed Changepoint model outlined in 4.13, all Gibbs updates are un-

changed except for the conditional distribution of si, which is now conditionally independent
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of Y , and the newly introduced changepoint regression coefficients βz. We sample βz using

the Polya-Gamma augmentation introduced by Polson et al. (2013). For the sake of nota-

tional simplicitity, we assume all unit time series are the same lengths, i.e Ti = T for all units

i. Let Nz be the number of units assigned to unit cluster z. Let Xz = [X1
2:T , · · · , XNz

2:T ]′ be

the Nz(T − 1)× p vertical concatenation of the covariates for units belonging to unit cluster

z. We construct a working response gzit =
∑R

r=1 γ
i
rt for i ∈ {i : si = z} and t = 2, · · ·T .

We ignore the first time point since γir1 is assumed constant at 0, and is not modeled as a

result. Under this construction gzit ∼ Bin(R, 1
1+exp(−Xi

tβz)
), where Bin(R, p) is distribution

of a Binomial experiment with R trials and probability of success p. We then sample from

the conditional distributions:

wit|βz ∼ PG(R,Xz
itβz) βz|~g, w ∼ N(mw, Vw)

Vw = (Xz′ΩXz + Σβ)−1 mw = Vw(X ′(~g − R

2
)),

where Ω is a Nz(T −1)×Nz(T −1) diagonal matrix with diagonal entries ~w = [w12, · · ·wNzT ,

and PG(R,Xz
itβz) is the Polya-Gamma distribution which can be efficiently sampled using

the pgdraw package in R (Makalic and Schmidt, 2016b).

The other changed component is the discrete full conditional distribution for the unit cluster

indicators: si.

P (si|ci1:R,1:T , γ
i
1:R,1:T , βz) ∝ P (si)P (ci1:R,1:T |γi1:R,1:T , si)P (γi1:R,1:T |βz, si)

∝ πsi
∏

r,t:γirt=0

ωsi,cirt

T∏
t=1

R∏
r=1

(ait)
γirt(1− ait)1−γirt ,

which can be evaluated for si = 1, · · · , Z then normalized and sampled from.
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4.3 Simulation

We compare the clustering capabilities of our model to that of the Dependent Random Parti-

tion Model (drpm) of Page et al. (2021) and the partitions induced by the standard Dirchlet

Process Mixture Model (dp). In our first setting we simulate data that exhibits dynamic

bi-clustering characteristics. N = 10 subjects are assigned to Z = 3 unit-clusters. For each

unit-cluster z = 1, 2, 3, we draw with replacement 8 out of 15 a set of inhabitable signal

source clusters, inducing a unit-cluster distribution ωz over the signal source clusters. Each

signal source cluster is paired with a mean µk sampled from a centered gaussian with stan-

dard deviation 3. We then assign the initial signal-source cluster assignments czr1 according

to ωz. We then allow the regional clusters to change over time according to the temporal

random partition model in 4.9. Once the cluster assignments are completed, our simulation

dataset is generated by Y i
rt ∼ N(µcsirt , 1).

We evaluate the clustering performance by casting the clustering task as a classification

problem. We create a co-clustering indicator Erjit = I(cirt = cijt) for j < r = 1, · · · , R; t =

1, · · · , T ; i = 1, · · · , N . We then consider the classifiers P (cirt = cijt|Y ) for each method

mentioned above. Then, like evaluating any binary classifier, we can compute the Reciever

Oppurtator Curve (ROC) and accompanying Area-Under-the-Curve (AUC), to evaluate the

model’s ability to cluster regions together that were generated from the same distribution.

Secondly we measure the Mean Squared Error in estimating the means of the time series as

MSE = 1
RNT

∑
r,i,t(µcirt − µ̂ĉirt)

2.

In Table 4.1 we show the results of the models as applied to 60 simulation datasets under the

first setting. Each entry shows the average and standard error for each metric across the sim-

ulation repetitions. This highlights the progressive importance of incorporating dependence

across axes when such structure is present in the data. A large jump in recovering the true

partition structure occurs when assuming dependence in the partitions across time, as shown
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by the improvement from dp to drpm. Further improvement is gained by incorporating unit-

level dependence, evidenced by the improvement by dbc and dbc-cic. An interesting point

to note is that dbc-cic performs just as well as dbc despite the lack of covariates informing

the changepoints. This could suggest the assumption of common changepoints across units

in the same unit-cluster that is explicit in dbc may be stronger than needed, even when the

data are generated under such an assumption.

dbc dbc-cic drpm dp
AUC 0.99 (0.01) 0.99 (0.01) 0.93 (0.04) 0.85 (0.02)
MSE 0.03 (0.04) 0.18 (0.42) 1.29 (0.88) 0.51 (1.575)

Table 4.1: The clustering AUC and MSE from Simulation 1.

4.3.1 Simulation Setting 2

We simulate from a simplified model of neural connectivity. Our goal is to simulate BOLD

timecourses for N = 9 subjects and R = 10 regions over T = 200 timepoints in a block

design setting with K = 2 stimuli. Broadly, we specify subject cluster assignments and then

we group the regions r = 1, · · · , R into clusters. We then simulate the neural activity for

each region where regions assigned to the same cluster will tend to fire together. We then

convolve the neural activity with the canonical hemodynamic response function h(t), the

default in SPM, and add Gaussian noise to create our simulated BOLD dataset for input

into our procedure. We outline the data generating model in Model 4.15.

Y i
rt =

∫ t

−∞
h(t)ysir (t− τ)dτ + εirt

ysir (t)|qC(t), Ci
rk = C, xt = k ∼ qC(t)Bern(0.95) + (1− qC(t))Bern(0.05)

qC(t)|xt ∼ (I(xt = C)δ(1) + (1− I(xt = C))Bern(0.3))

εirt ∼ N(0, 0.5),

(4.15)
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Our first step is to simulate underlying neural firing under three conditions for x(t) = 0, 1, 2,

where s(t) = 0 is our rest condition being active at time time t and x(t) = k implies

stimulus k = 1, 2 is active at time t. We do so by assigning each region to one of five

clusters, where this cluster assignment is allowed to change according to the current active

stimulus. We denote such an assignment by Crk = 1, 2, 3, being the currently assigned cluster

of region r when stimulus k is active. We then generate a binary cluster firing sequence

qC(t) ∼ (I(x(t) = C)δ(1) + (1− I(xt = C))Bern(0.3)). This essentially generates a cluster-

stimulus connection that induces a positive psychological effect αrk in the regions r where

Crk = k. Additionally, the regional changing of the clusters, i.e Cr0 6= Crk, k = 1, 2′ implies

a PPI with stimulus k. Next we simulate the regional stimulus sequence, yr(t) conditional

on the cluster firing sequence qC(t). If the cluster firing indicator is 1, each regional neuron

will fire with 95% probability, otherwise firing with 0.05% probability. As this applies to all

regions clustered together, this induces a dependence across all regions. Once these neural

signals are generated, they are convolved with the canonical hrf before adding Gaussian noise

with a standard deviation of 0.1. All subjects that are clustered together share the same

neural firing patterns: ysir (t), differing only in their white noise component εirt.

dbc dbc-cic drpm dp
AUC 0.86 (0.04) 0.82 (0.04) 0.78 (0.03) 0.74 (0.02)
MSE 1.14 (0.22) 1.19 (0.22) 1.51 (0.83) 1.02 (0.2)

Table 4.2: The clustering AUC and MSE from Simulation 2.

4.4 Case Study

We apply the DBC model to the handgrip task data from Chapter 2. As a reminder, there

are 31 apriori specified ROI measured across 26 participants. Each participant lies in rest in

the scanner before being presented with a prompt to raise their arm to the chest. A prompt

appears shortly after instructing them to lower their arms. As prompts appear with similar
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timings to each subject, there is an expectation of similar change points actoss subjects,

encouraging more grouping. For more detail concerning the experimental design, I refer

back to Section 2.3.

4.4.1 Model Specification

We fit the dbc model setting a maximum of Z = 26 unit (subject) clusters and K = 16

signal source (ROI) clusters. Addition we set απ = βω = 10−3 to encourage spasitiy in the

number of visited subject and ROI clusters. We set the priors on the cluster means µk ∼

N(0, 3), regional variances σ2
r ∼ IG(15, 2), and the unit-cluster intercepts β0z ∼ N(2, 0.5) to

encourage strong correlations among successive partitions in the absence of a stimulus. We

use the dbc model to as opposed to the dbc-cic as subjects perform similar tasks at similar

times

4.4.2 Results

The subject clustering is shown in Figure 4.5. There seems to be a strong cluster filled with

most subjects with 3 more smaller clusters. Interestingly the clusters seem to be rather

insular, exhibiting near 0 posterior probabilities of co-clustering outside of the established

cliques. Within the largest cluster, subject cluster 4, ROI clustering results fit within ex-

pectations. The ROI clustering is shown in Figure 4.6. Assignments are stable during the

rest sections before re-configuring when the raise-arm prompt appears. This is further ev-

idenced by the posterior distribution of γrt shown in Figure 4.7. The strong vertical black

lines, indicating likely cluster assignment re-configurations align with the appearance of the

prompts.

Considering the partitions of ROIs during the rest and active portions, we investigate pat-
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terns of co-clustering using the Rand Index, a measure of cluster similarity. Let P ·ru =

Rand(cr·, cu·), where cr· is the collection of cluster assignments for the time points corre-

sponding to either the ’rest’ or ’active’ portions of the experiment. P rest and P active are

shown in Figure 4.8. We see during the rest portions there is tighter coupling among sec-

tions in the Default Mode Network. During the active sections the co-clustering are more

prevalent among the Salience and Frontal Parietal Control networks.

ROI Cluster µk
1 0.36 (0.33,0.4)
2 -0.38 (-0.42,-0.34)
3 -0.35 (-0.38,-0.31)
4 1.45 (1.33,1.56)
5 -2.14 (-2.32,-1.98)
6 -4.99 (-5.26,-4.74)
7 -1.18 (-1.25,-1.1)
8 0.98 (0.9,1.06)
9 0.1 (0.09,0.12)

10 -2.57 (-3.53,1.16)
11 2.8 (-1.95,4.7)
12 -0.09 (-3.56,4.44)
13 0.28 (-3.64,4.51)
14 -10.38 (-11.05,-9.73)

Table 4.3: The cluster means for each region level cluster crt.

4.5 Discussion

We have introduced a dynamic bi-clustering approach to account for subject-level hetero-

geneity in the patterns of brain activation and functional connectivity. We further account

for dynamic re-configurations of the clustering partitions through a latent time-varying bi-

nary process, capturing change points in the persistence of partitions over time within the

same unit cluster. An important property of the proposed model is that subjects are clus-

tered together based on the distribution of latent regional clusters over time. In the case

study discussed in Section 4.4, we have obtained a clustering of the ROIs informed by the
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average activation in the BOLD signal at any given time. Under this paradigm, two regions

who may be functionally connected according to traditional measures of co-variation like

correlation and conditional independence patterns may be not grouped together under this

model. However, as the time-varying regional clusters are grouped based on a first order

basis, the mean, this approach can capture sudden and transient configurations of partitions.

The investigation of time-varying clustering methods for FC, sh

Lastly, the scalability of the provided MCMC inference approach is a good opportunity for

further improvements. The benefit of clustering approaches to define partitions of the brain

is attractive. However, the scale of the thousands of voxels measured in fMRI served as

a computational barrier, requiring dimension reduction into ROIs. Allowing the model to

operate on the voxel space, rather than the ROI space will allow dbc to form more precise

spatial clusters in the brain. This requires a much more scalable inference algorithm than

MCMC. A future direction for research could involve using Variational Inference to speed

up computation (Blei and Jordan, 2006).
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Figure 4.2: Illustration of the dynamic biclustering model with data simulated with 3 (time
invariant) unit clusters, 20 (time varying) signal-source clusters and 2 change points of signal-
source clusters. The plot shows simulated observations (colored dots) and the gaussian densities
from which they are sampled, according to the cluster of the signal source corresponding to the
observation. The data is grouped by unit clusters and time intervals with no re-sampling of signal-
source clusters. Here, for simplicity, σr = 0.5 for every signal source r = 1, . . . , R.
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Figure 4.3: Directed graphical representation of our dynamic biclustering model. The distribution

of observed signals y
(i)
rt (gray circles) at time t = 1, . . . , T depends on the cluster si of unit i =

1, . . . , N and on the cluster c
(si)
rt of the signal source r = 1, . . . , R among units in cluster si. When

si = z, for z ∈ {1, . . . , Z} and c
(z)
rt = k ∈ {1, . . . ,K}, then y

(i)
rt has a Normal distribution with

mean µk and variance σ2
r . Unit clusters are sampled according to finite stick-breaking distribution

π and are invariant over time. For units in cluster si = z, the cluster of signal source r at time

t is the same as that at time t − 1 when γ
(z)
rt = 1 or is re-sampled according to the finite stick-

breaking distribution ωz when γ
(z)
rt = 0. For every r and z, γ

(z)
rt = 1 with probability at. Yellow,

diamond-shaped nodes denote hyperparameters with fixed, pre-specified values.
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Figure 4.4: ROC for regional co-clustering across time in Simulation setting 2.
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Figure 4.5: The posterior probabilities of subject level co-clustering. Each each i,j entry in
this heatmap is given by P (si = sj|Y ). Subjects generally fall into either the larger subject
cluster 4, or cluster with a single other subject.

109



Figure 4.6: The regional cluster assignments for subject cluster 4. The color denotes the
cluster assignment corresponding to the means in Table 4.3. The vertical dotted line in-
dicates the raising and lowering of the subject’s arm respectively. We see the clusters are
stable during the rest sections before reconfiguring during the active portions, aligning with
inferences found in Section 2.3.
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Figure 4.7: The change points for subject cluster 4. Time is along the horizontal and the
ROI are along the vertical axis. Each entry is P (γrt = 0|Y ). The vertical dotted lines are
when the subjects are raising and lowering their arms. We see the model is able to capture
the expected change points corresponding to the arm movements.
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Figure 4.8: Clustering Similarity for each ROI during the rest and active portions of the time
series. Each entry is the Rand Index comparing the row and column ROI cluster assignment
agreement. We see during the rest portions there is tighter coupling among sections in
the Default Mode Network. During the active sections the co-clustering are more prevalent
among the Salience and Frontal Parietal Control networks.
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Chapter 5

Future Directions

In the neurosciences, there has been a surge in interest in studying Dynamic functional

connectivity in recent years. Diverse neuroimaging techniques and experimental settings

have been used to develop approaches for investigating Dynamic functional connectivity.

The projects developed in this Thesis can be expanded in new directions, some of which I

outline below.

5.1 Further Data Fusion

In this thesis I introduced 3 state-space models to estimate time-varying FC, connecting FC

dynamics in the state-space to observed information; physiological in Chapter 2 and experi-

mental settings in Chapters 3 and 4. This approach opens the door to other forms of data

fusion as well. Principle among them is the so-called Microbiota-Gut-Brain axis , the inter-

action between the diversity of the gut-microbiome and brain health (Cryan et al., 2019).

There have been observed differences in FC comparing normally colonized mice and mice

raised in a germ-free environment after ischemic stroke. Namely, the germ-free mice exhib-

113



ited stronger, denser, more global FC networks, indicating less local structural organization

(Aswendt et al., 2021). Results like these suggest there are non-dynamic factors that play

a role in the FC configurations that the brain can cycle through. An interesting extension

to the PIBDFC model of chapter 2 could be to utilize subject level characteristics such as

their gut microbiome (Aswendt et al., 2021) or even their gene expression (Arnatkeviciute

et al., 2021) to describe between-subject FC heterogeneity. Hoff and Niu (2012) describes a

model for the regression of a covariance matrix on covariates, which could be a way to pair

together observed gut-microbiome or genetic information with Functional Connectivity.

5.2 Neural Dynamic Connectivity Modeling

The principle interest in studying FC is in gaining an understanding of the patterns of neural

coupling among remote regions. One critical assumption that is made throughout this work

is that the hemodynamic response function (hrf) is either known or takes a standard form.

For example, in the PIBDFC of Chapter 2, I assume either the activation components of

the BOLD time series have been removed by fitting the GLM, or the time series has been

deconvolved in some form. Both approaches require an assumption about the shape of

the hrf. The effects of assuming the incorrect shape can result in improper deconvolutions

and resulting TVFC estimates (Lindquist et al., 2009; Gitelman et al., 2003). Similarly,

the shape of the hrf is unknown for most regions and is highly variable across regions and

people. This uncertainty is completely lost either by assuming the form of the hrf, or treating

hemodynamic deconvolution as a pre-processing step. This can be alleviated by having a

fully Bayesian process modeling both the shape of the hrf as well as the underlying FC.

Such a process would have all uncertainty about the shape of the hrf propagate through to

the estimated FC metrics. Some work has been done in Bayesian modeling the of the hrf

in activation fMRI studies, most notably the work of Marrelec (2003), where the authors
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specify a non-parametric basis representation of the hrf. A future direction involves utilizing

a prior on the hrf and in-turn modeling FC as a function of the deconvolved neural activities

of interest.

5.3 Scalability

Lastly, I discuss the scalability of the proposed methods. The models were fit using MCMC

methods on the order of 30 ROI rather than on the thousands of voxel time series that

is measured in fMRI. While this allows this allows gross statements about broad patterns

of FC in defined regions of the brain, it does not take advantage of the spatial resolution

allowed by fMRI. To allow for more precise modeling of spatial patterns of connectivity, I

propose investigating variational inference for state space models as a source for a potentially

massive speed-up in computation (Ghahramani and Hinton, 2000). Loaiza-Maya et al. (2022)

propose a variational inference approach for non-linear state space models, applying their

work to an economics data set of millions of sales over 20,000 customers. Leveraging such

a computational approach would be useful for estimating TVFC among the thousands of

voxels available.
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Pólya-Gamma latent variables. Journal of the American Statistical Association, 108(504):
1339–1349, 2013. ISSN 1537274X. doi: 10.1080/01621459.2013.829001.

E. Premi, S. Gazzina, M. Diano, A. Girelli, V. D. Calhoun, A. Iraji, Q. Gong, K. Li, F. Cauda,
R. Gasparotti, A. Padovani, B. Borroni, and M. Magoni. Enhanced dynamic functional
connectivity (whole-brain chronnectome) in chess experts. Scientific Reports, 10(1):1–8,

126

http://journal.frontiersin.org/article/10.3389/fninf.2017.00061/full
http://journal.frontiersin.org/article/10.3389/fninf.2017.00061/full
https://doi.org/10.1080/10618600.2021.1987255
https://doi.org/10.1080/10618600.2021.1987255


2020. ISSN 20452322. doi: 10.1038/s41598-020-63984-8. URL http://dx.doi.org/10.

1038/s41598-020-63984-8.

M. G. Preti, T. A. Bolton, and D. Van De Ville. The dynamic functional connectome:
State-of-the-art and perspectives. NeuroImage, 2017. ISSN 10959572. doi: 10.1016/j.
neuroimage.2016.12.061.

M. E. Raichle. The {Restless} {Brain}. Brain Connectivity, 1(1):3–12, 1 2011.

M. Ramezani, A. Heidari, E. Fatemizadeh, and H. Soltanian-Zadeh. Spectral clustering
approach with sparsifying technique for functional connectivity detection in the resting
brain. In 2010 International Conference on Intelligent and Advanced Systems, pages 1–5.
IEEE, 6 2010. ISBN 978-1-4244-6623-8. doi: 10.1109/ICIAS.2010.5716164.

V. Rockova and K. McAlinn. Dynamic Variable Selection with Spike-and-Slab Process Priors.
Bayesian Analysis, 16(1):233–269, 2020. ISSN 19316690. doi: 10.1214/20-BA1199.

S. L. Scott. Bayesian Methods for Hidden Markov Models: Recursive Computing in the 21st
Century. Journal of the American Statistical Association, 97(457):337–351, 2002.

S. Shakil, C. H. Lee, and S. D. Keilholz. Evaluation of sliding window correlation performance
for characterizing dynamic functional connectivity and brain states. NeuroImage, 133:111–
128, 6 2016. ISSN 1053-8119. doi: 10.1016/J.NEUROIMAGE.2016.02.074.

A. Shenhav, M. M. Botvinick, and J. D. Cohen. The expected value of control: an integrative
theory of anterior cingulate cortex function. Neuron, 79(2):217–240, 2013.

K. S. Smith and A. M. Graybiel. A dual operator view of habitual behavior reflecting cortical
and striatal dynamics. Neuron, 79(2):361–374, 2013.

M. Smith and L. Fahrmeir. Spatial Bayesian variable selection with application to functional
magnetic resonance imaging. Journal of the American Statistical Association, 102(478):
417–431, 2007. ISSN 01621459. doi: 10.1198/016214506000001031.

S. M. Smith, M. Jenkinson, M. W. Woolrich, C. F. Beckmann, T. E. J. Behrens, H. Johansen-
Berg, P. R. Bannister, M. De Luca, I. Drobnjak, D. E. Flitney, R. K. Niazy, J. Saunders,
J. Vickers, Y. Zhang, N. De Stefano, J. M. Brady, and P. M. Matthews. Advances in func-
tional and structural {MR} image analysis and implementation as {FSL}. NeuroImage,
23:S208–S219, 1 2004.

R. Stilla, G. Deshpande, S. LaConte, X. Hu, and K. Sathian. Posteromedial {Parietal}
{Cortical} {Activity} and {Inputs} {Predict} {Tactile} {Spatial} {Acuity}. Journal of
Neuroscience, 27(41):11091–11102, 10 2007.

F. C. Stingo, Y. A. Chen, M. G. Tadesse, and M. Vannucci. Incorporating biologi-
cal information into linear models: A Bayesian approach to the selection of pathways
and genes. Annals of Applied Statistics, 5(3):1978–2002, 2011. ISSN 19326157. doi:
10.1214/11-AOAS463.

127

http://dx.doi.org/10.1038/s41598-020-63984-8
http://dx.doi.org/10.1038/s41598-020-63984-8


F. C. Stingo, M. D. Swartz, and M. Vannucci. A Bayesian approach to identify
genes and gene-level SNP aggregates in a genetic analysis of cancer data. Statis-
tics and Its Interface, 8(2):137–151, 2015. ISSN 19387989. doi: 10.4310/SII.2015.
v8.n2.a2. URL http://www.intlpress.com/site/pub/pages/journals/items/sii/

content/vols/0008/0002/a002/.

F. T. Sun, L. M. Miller, and M. D’Esposito. Measuring interregional functional connectivity
using coherence and partial coherence analyses of fMRI data. NeuroImage, 21(2):647–658,
2004. ISSN 10538119. doi: 10.1016/j.neuroimage.2003.09.056.

Y. Tang, D. Chen, and X. Li. Dimensionality reduction methods for brain imaging data
analysis. ACM Computing Surveys, 54(4), 2021. ISSN 15577341. doi: 10.1145/3448302.

P. Tewarie, M. D. Steenwijk, M. J. Brookes, B. M. J. Uitdehaag, J. J. G. Geurts, C. J.
Stam, and M. M. Schoonheim. Explaining the heterogeneity of functional connectivity
findings in multiple sclerosis: An empirically informed modeling study. Human Brain
Mapping, 39(6):2541–2548, 6 2018. ISSN 1065-9471. doi: 10.1002/hbm.24020. URL
https://onlinelibrary.wiley.com/doi/10.1002/hbm.24020.

R. Tibshirani and P. Wang. Spatial smoothing and hot spot detection for CGH data using
the fused lasso. Biostatistics, 9(1):18–29, 2008. doi: 10.1093/biostatistics/kxm013. URL
https://academic.oup.com/biostatistics/article/9/1/18/253824.

M. P. Van Den Heuvel and A. Fornito. Brain networks in schizophrenia. Neuropsychology
Review, 24(1):32–48, 2014.

A. Venkataraman, K. R. Van Dijk, R. L. Buckner, and P. Golland. Exploring functional
connectivity in fMRI via clustering. In 2009 IEEE International Conference on Acous-
tics, Speech and Signal Processing, pages 441–444. IEEE, 4 2009. ISBN 978-1-4244-2353-
8. doi: 10.1109/ICASSP.2009.4959615. URL http://ieeexplore.ieee.org/document/

4959615/.

D. Vidaurre, S. M. Smith, and M. W. Woolrich. Brain network dynamics are hierarchically
organized in time. Proceedings of the National Academy of Sciences, 114(48):201705120,
2017. ISSN 0027-8424. doi: 10.1073/pnas.1705120114. URL http://www.pnas.org/

lookup/doi/10.1073/pnas.1705120114.

A. Viterbi. Error bounds for convolutional codes and an asymptotically optimum decoding
algorithm. IEEE Transactions on Information Theory, 13(2):260–269, 4 1967. ISSN 0018-
9448. doi: 10.1109/TIT.1967.1054010. URL http://ieeexplore.ieee.org/document/

1054010/.

H. Wang. Bayesian graphical lasso models and eficient posterior computation. Bayesian
Analysis, 7(4):867–886, 2012.

S. Wang, S. F. Feng, and A. M. Bornstein. Mixing memory and desire: How memory reacti-
vation supports deliberative decision-making. Wiley Interdisciplinary Reviews: Cognitive
Science, 13(2):e1581, 2022.

128

http://www.intlpress.com/site/pub/pages/journals/items/sii/content/vols/0008/0002/a002/
http://www.intlpress.com/site/pub/pages/journals/items/sii/content/vols/0008/0002/a002/
https://onlinelibrary.wiley.com/doi/10.1002/hbm.24020
https://academic.oup.com/biostatistics/article/9/1/18/253824
http://ieeexplore.ieee.org/document/4959615/
http://ieeexplore.ieee.org/document/4959615/
http://www.pnas.org/lookup/doi/10.1073/pnas.1705120114
http://www.pnas.org/lookup/doi/10.1073/pnas.1705120114
http://ieeexplore.ieee.org/document/1054010/
http://ieeexplore.ieee.org/document/1054010/


R. Warnick, M. Guindani, E. Erhardt, E. Allen, V. Calhoun, and M. Vannucci. A Bayesian
Approach for Estimating Dynamic Functional Network Connectivity in fMRI Data. Jour-
nal of the American Statistical Association, 113(521):134–151, 2018.

K. A. Wilson, G. A. James, C. D. Kilts, and K. A. Bush. Combining Physiological and
Neuroimaging Measures to Predict Affect Processing Induced by Affectively Valent Image
Stimuli. Scientific Reports, 10(1):9298, 2020.

M. W. Woolrich, S. Jbabdi, B. Patenaude, M. Chappell, S. Makni, T. Behrens, C. Beck-
mann, M. Jenkinson, and S. M. Smith. Bayesian analysis of neuroimaging data in {FSL}.
NeuroImage, 45(1):S173–S186, 3 2009.

K. J. Worsley, J. I. Chen, J. Lerch, and A. C. Evans. Comparing functional connectivity
via thresholding correlations and singular value decomposition. Philosophical transactions
of the Royal Society of London. Series B, Biological sciences, 360(1457):913–920, 2005.
ISSN 0962-8436. doi: 10.1098/RSTB.2005.1637. URL https://pubmed.ncbi.nlm.nih.

gov/16087436/.

G. R. Wu, W. Liao, S. Stramaglia, J. R. Ding, H. Chen, and D. Marinazzo. A blind
deconvolution approach to recover effective connectivity brain networks from resting state
fMRI data. Medical Image Analysis, 17(3):365–374, 2013. ISSN 13618415. doi: 10.1016/
j.media.2013.01.003. URL http://dx.doi.org/10.1016/j.media.2013.01.003.

X. Wu, R. Zurita-Milla, E. Izquierdo Verdiguier, and M. J. Kraak. Triclustering Georef-
erenced Time Series for Analyzing Patterns of Intra-Annual Variability in Temperature.
Annals of the American Association of Geographers, 108(1):71–87, 1 2018. ISSN 24694460.
doi: 10.1080/24694452.2017.1325725.

Y. Xu and M. A. Lindquist. Dynamic Connectivity Detection: An algorithm for determining
functional connectivity change points in fMRI data. Frontiers in Neuroscience, 9(JUL),
2015. ISSN 1662453X. doi: 10.3389/fnins.2015.00285.

Q. Yu, E. B. Erhardt, J. Sui, Y. Du, H. He, D. Hjelm, M. S. Cetin, S. Rachakonda, R. L.
Miller, G. Pearlson, and V. D. Calhoun. Assessing dynamic brain graphs of time-varying
connectivity in fMRI data: Application to healthy controls and patients with schizophre-
nia. NeuroImage, 107:345–355, 2015a.

Y. Yu, X. Zhou, H. Wang, X. Hu, X. Zhu, L. Xu, C. Zhang, and Z. Sun. Small-world
brain network and dynamic functional distribution in patients with subcortical vascular
cognitive impairment. PLoS ONE, 10(7):1–14, 2015b. ISSN 19326203. doi: 10.1371/
journal.pone.0131893.

G. Zhang, B. Cai, A. Zhang, J. M. Stephen, T. W. Wilson, V. D. Calhoun, and Y.-P. W.
Wang. Estimating Dynamic Functional Brain Connectivity with a Sparse Hidden Markov
Model. IEEE Transactions on Medical Imaging, 0062(c):1–1, 2019. ISSN 0278-0062. doi:
10.1109/tmi.2019.2929959.

129

https://pubmed.ncbi.nlm.nih.gov/16087436/
https://pubmed.ncbi.nlm.nih.gov/16087436/
http://dx.doi.org/10.1016/j.media.2013.01.003


L. Zhang, M. Guindani, F. Versace, and M. Vannucci. A spatio-temporal nonparametric
Bayesian variable selection model of fMRI data for clustering correlated time courses.
NeuroImage, 95:162–175, 2014. ISSN 10959572. doi: 10.1016/j.neuroimage.2014.03.024.
URL http://dx.doi.org/10.1016/j.neuroimage.2014.03.024.

130

http://dx.doi.org/10.1016/j.neuroimage.2014.03.024


Appendix A

Appendix

Appendix 1

The following table reports the list of ROIs employed in the case study along with cor-

responding MNI stereotaxic space coordinates and their classification in a priori defined

networks. See Section 2.3.3 for details.
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Network Abbreviation Full Name MNI Coordinates
D

ef
au

lt

M
o
d

e

N
et

w
or

k

PCC Posterior Cingulate Cortex (2, 54, 16)

L pIPL Left Posterior Inferior Parietal Lobule (-46, -72, 28)

R pIPL Right Posterior Inferior Parietal Lobule (50, -64, 26)

PFC/vACC Orbitofrontal Cortex/Ventral Anterior Cingulate Cortex (4, 30, 26)

dMPFC BA 8 Dorsomedial Prefrontal Cortex Broadmann Area 8 (-14, 54, 34)

dMPFC BA 9 Dosomedial Prefrontal Cortex Brodmann Area 9 (22, 58, 26)

L DLPFC Dorsolateral Prefrotnal Cortex (-50, 20, 34)

L PHG Parahippocampal Gyrus (-10, -38, -2)

L ITC Inferolateral Temporal Cortex (-60, -20, -18)

F
ro

n
to

-

P
ar

ie
ta

l

C
on

tr
ol

N
et

w
or

k

L aPFC Left Anterior Prefrontal Cortex (-36, 56, 10)

R aPFC Right Anterior Prefrontal Cortex (34, 52, 10)

dACC Dorsal Anterior Cingulate Cortex N/A

L DLPFC Left Dorsolateral Prefrontal Cortex N/A

R DLPFC Right Dorsolateral Prefrontal Cortex (46, 14, 42)

L aINS Left Anterior Insula (-30, 20, -2)

R aINS Right Anterior Insula (32, 22, -2)

L aIPL Left Anterior Inferior parietal Lobule (-52, -50, 46)

R aIPL Right Anterior Inferior Parietal Lobule (52, -46, 46)

D
or

sa
l

A
tt

en
ti

on

N
et

w
or

k

L MT Left MidThalamus (-44, -64, -2)

R MT Right MidThalamus (50, -70, -4)

L FEF Left Frontal Eye Field (-24, -8, 50)

R FEF Right Frontal Eye Field (28, -10, 50)

L SPL Left Superior Parietal Lobule (-26, -52, 56)

R SPL Right Superior Parietal Lobule (24, -56, 54)

S
al

ie
n

ce

N
et

w
or

k

DAC Dorsal Anterior Cingulate (0, -22, 36)

L aPFC Left Anterior PFC (-34, 44, 30)

R aPFC Right Anterior PFC (32, 44, 30)

L Insula Left Insula (-40, 2, 6)

R Insula Right Insula (42, 2, 6)

L LP Left Lateral Parietal (-62, -46, 30)

R LP Right Lateral Parietal (62, -46, 30)

Locus Coeruleus
R LC Rostral Locus Coeruleus Probabilistic Atlas

C LC Caudal Locus Coeruleus Probabilistic Atlas

Table A.1: The ROIs used in the case study along with apriori defined networks.
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Method PIBDFC Tapered SW BDFC (Warnick)

State 1 2 3 1 2 3 1 2 3

Edge TPR 0.9814 (0.015) 1.0000 (0) 0.9806 (0.010) 0.9779 (0.018) 0.9676 (0.077) 0.9776 (0.015) 0.9221 (0.064) 0.9435 (0.082) 0.8326 (0.093)

Edge TNR 0.9672 (0.007) 0.9585 (0.007) 0.9351 (0.013) 0.7623 (0.074) 0.700 (0.107) 0.7034 (0.104) 0.9737 (0.039) 0.9835 (0.031) 0.9822 (0.034)

Edge F1 Score 0.9493 (0.019) 0.9585 (0.007) 0.9170 (0.020) 0.7459 (0.072) 0.6839 (0.141) 0.6888 (0.105) 0.9020 (0.090) 0.9330 (0.101) 0.8242 (0.108)

State Seq. Acc 0.9967 (0.001) 0.9880 (0.002) 0.9959 (0.001) 0.9340 (0.084) 0.7496 (0.323) 0.9538 (0.113) 0.9993 (0.001) 0.9871 (0.005) 0.9980 (0.001)

Comp Time (min) 197.57 (24.788) 0.6573 (0.085) 1015.5 (58.922)

Table A.2: Simulation Study 1: results over 30 repetitions. I report sensitivity and speci-
ficity metrics for the estimated graphs of the corresponding states, together with the overall
accuracy of the estimated state sequences. Standard deviations across the 30 simulations are
showed in brackets. The proposed method maintains the best balance between sensitivity
and specificity as well as latent state estimation accuracy.
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