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ABSTRACT OF THE DISSERTATION

An Applicative Computing Lahguage

by
~Joseph Paul Minne
boctor of Philosophy in Information and Coﬁputer Science
University of California, Irvine, 1983

‘Professor Lubomir Bic, Chair

Closed applicative languages (CALs) are a highly
parallel and semantically appealing models of computation,
but they do not address process and resource related issues
‘in computing; i.e.:

- they do not express histories of computation.

- they canhot describe interprocess communication.

This diséérﬁation defines aAnew model, CFFP, derived
from a CAL, FFP, which addresses these issues. In CFFP, the.
semantids of FFP are reiaxed to allow a computation to
persist over ‘a seriesipf actions, and explicit cycles are
added to allow bidirectional'comﬁunication betweeﬁ»loéi of
¢omputation. CfFP_reﬁains the appealing charécte:istics of
CALs, and addresses process and resource felated computihg

issues.




CHAPTER 1

Introduction

1.1 Weaknesses of von Neumann computation

John von Neumann [10] developed the model which
characterizes conventional computation over thirty years
ago. This model divides a computation into a series of
primitive instructions, and sequentially executes these
instructions in a central processing unit (CPU). A separate
ﬁemory unit holds the instructions and their data until
execution, and accepts the results afterward. Information
passes between these two units one element (instruction or
datum) at a timel,

Several persons have expressed dissatisfaction with
the von Neumann model, and advocate alternatives to it.2
Their objections arise from at least two factors:

1. The cost of fabricating processing elements3 has

lThis description essentially characterizes conventional
computation even though it may diverge from the specific
description of a particular computing machine.

2These persons include Arvind, Gostelow, and Plouffe

[1, 3], Backus [6], Berkling [9], Dennis [16], Frank

[17] , Friedman and Wise [21], Keller, Lindstrom, and Patil

[25], Landin [26], Mago [27, 28], Tonge and Cowan [34],
and Turner [35].

3 : .
Processing elements are devices capable of executing
a primitive instruction.

1




decreased substantially as time has passed. This
reduced cost urges exploitation of the
parallelism found in most problems, and decries

the sequentiality of the von Neumann model.

2. The semantics of von Neumann systems are
unwieldy. Functions and compositions of
functions acting on values directly represent
computations in the CPU, but shipping the values
to and from memory4 requires extra domains and
new functions (see Stoy [33]). These new
elements evoke hierarchies of functions and
complex computation rules.

These factors argue strongly for an alternative model.

The class of closed applicative languages (CALS) [5]
is such a model. 1In CALs, programs are expressions composed
of independent sub-expressions, computations (the 1loci of
activity in the program) are distinguished expressions
(applications), and a separate memory is not an integral
part of the system. The independence of sub-expressions
promotes parallelism, and the absence of non-computational

elements eliminates the need for complex semantics.

4

In higher-level programming languages, assignment

statements and variables often represent the shipping
mechanism.




1.2 Computing systems and applicative computation

A computer must accomplish many tasks in addition to

. computation. At the very least, we expect it to communicate

with us, and to manage a collection of associated devices
(e.g.[ card readers, 1line printers, and tape drives). In
general, it must coordinate the collection vof concurrent
processses ahd logical resources typical of a modern
time-sharing environment. Any successful model of compufing
must model these activities in addition to modelling
computation. In the remainderv of this dissertation,
computation refers to the functional combination of values,
and computing refers to the full range of computations and
resource-sensitive activities.

A computing system might 'incorporaté CALs (or close
CAL-variants) in several different ways. An ideal
incorporation would represent the entire system and each
process as a computation, and would embed each resource
within’a supervising computation. This direct iﬁcorporation
system makes no distinction between computation and other
aspects of computing; thus, it presefves all desirable-
properties of CALs.

The direcﬁ incorporation method cannbf'directly employ

the notion of computation " expressed in CALs. Systems,

processes, and resource managers (specialized forms of

processes) constitute a set of asynchrdnously interacting




entities executing a computation over time. In a closed
applicative language, computations interact in a strictly
hierarchical manner, and have no temporal persistence.
These restrictions are too severe for unmodified CALs to
serve as the computational basis in a direct incorporation
model of computing systems.

Other methods of incoporating CALs in a computing
system also seem fraught with difficulty. All strictly
computational methods must reconcile the restrictions of
CALs with the requirements of computing. Separating
computation from other aspects of computing results in
asymmetric systems which cannot address the interaction of
two or more ongoing processes without obscuring or ignoring
the nature of those processes. Careful alteration of the
basic computational model would seem to hold the greatest
promise for producing a satisfactory model of computing.

This dissertation produces a model of computing based
on CALs.

- The remainder of this chapter gives a detailed

description of CALs.

- Chapter 2 describes the origins of CALs and
surveys research related to that of this

dissertation.

- Chapters 3 and 4 modify a

CAL to produce a



computing language.

- Chapter 5 concludes this work with some

suggestions for future study.
1.3 Closed applicative lénguages

Closed appliéative languages' (CALs) have fbur major
components: constructor syntax, distinguished constructors,
meaning functions, and representations. The basic meaning
function is identical for each CAL, but the. other threei
components may vary within the constraints described below.

- Constructor syntax.

A cpnstructor syntax for a set of expressions, E,
consists of a set of atoms, A, and a set of
constructors, K, which together define E. The
atoms are the primitive expressions of E, and the
constfuctors map sequences of expressions into new
~expressions. Each constructor operates on
éequences of a specificn length, n>0, and is‘ a

function from some subset of E" into E.

Any expression, e, is either an atom or the result
|
of some constructor, k, acting on some sequence, |
|
[el,...,en}. If e is an atom, then it is not a

construct. If e 1is a construct, then its

construction is unique.




- The distinguished constructor.

A CAL distinguishes one constuctor in K for
special treatment by the meaning function. This
constructor must be a total function on EZ. "ap"
commonly denotes this constructor, and an
"application” is the result of ap acting on a pair
of expressions. Applications are the seat of

computation in CALs.

- The meaning function.

The value returned by the meaning (or semantic)
function, m, is the meaning of any meaningful
expression. (m is undefined for meaningless
expressions,) These meanings are also
expressions, and they evaluate to themselves. The
set of all meanings is also known as the set of

constants, C.

The meaning of an atom is itself. The first step
in evaluating a constructed expression is the
evaluation of its subexpressions. If the
construction is not an application, its meaning is
the original constructor applied to the sequence
of expressions resulting from the first step., If

the construction is an application, its further




evaluation requires the use of the representation

function.
- The representation function.

Each constant expression represents ‘a function
which maps éonstants into expressions. The
representation function, r, returns that function,
_i.e;,
L:C-->{C-->E} .

Given constant expressions f and x, the meaning of
their applicaﬁion, ap[f,x], is the meaning of the
expression resulting wheﬁ the function represented
by f acts on x. If f or x are not constants, the

meaning function must evaluate them as required

for any construction, before r or its result is

map[f,x] = m{{r{mf}}{mx}}
In addition to their basic elements, CALs also posses
a transition function, %, which maps E into E. In general,

|
|
|
applicabled
t implements p by defining a set of. executable

5Throughout the following discussion, the result of
applying a function to an expression will be denoted by
juxtaposition. Set-brackets "{ }" will often associate
a function with its argument expression, but this
notation has no syntactic or semantic significance
beyond clarifying the operational association.




subexpressions and allowing an arbitrary one of them (if any
exist) to act. If no such subexpression exists, the result
is the original expression. The executable set defines the
degree of parallelism in an expression, and repeated
applications of £ convert meaningful expressions into their
meanings.

For CALs, L takes a constant expression to that same
constant, and takes non-constant expressions to copies of
themselves with some one innermost application replaced by
its execution. An innermost application ap[f,x] contains no
sub-applications, and its execution is the action of the
function represented by the first subexpression of the
application rf on the second x. (We often call the first
subexpression the function-part, and the second the
argument-part.) A given transition may select any innermost
application for replacement.

The transition function complements the meaning
function. The semantic function defines the meaning of a
meaningful expression, and the transition function, acting
on all expressions, defines an alternate mechanism for
finding that meaning. For any meaningful expression e,
repeated application of it produces a unique constant, c,
which is the meaning of e. More formally,

VeeE: me=c <==> n>0:t"e=ceCc .

e-->e' denotes the transition of e into e', and e-->>e''




CAL == (E=(A,K) rapek,C/,m,L)

l. A=C<E
2. k€K => n>0,E'sE": k:E'~-->E
2,1 k#ap, cieC, e=k[cl,...,cnlJeE => el
2.2 ceC,céA => tk#Fap,cieg: c=k[cl,...,cn]
e€pA => V[k:E'-->E]€K,[el,...,en]eE': e#k[el,...,en]
ecE & ef€A '
=> 4.1 '}kéK,[el,...,en]: e=k[el,.'..,en]

4.2 h#k => ¥[xl,...,xm]: e#h[xl,...,xm)
. 4.3 [xl,...,xn}#[el,...en] => e#k[x1,...,xn]
+M<E: m:M-->C & CeM :
}+£:E-->E > {VeeE: me=c <==> $n>0:t"e=ce(}
vkeK,kfap: mklel,...,en] = k[mel,...,men]
r:C-->{C-->E}
maplf,x] = m{{r{mf}}{mx}}

> W
e e .

WO~ Wn
s e o o o

Figure l. CAL summary
denotes a sequence of transitions leading from e to e''.

Figure 1 summarizes our description of CALs. Axioms
one through fouf express lsyntactic constraints, and five
through nine semantic ones. These rules allow a choice of
A, K, and r to specify a particuiar CAL.

1.4 Formal functional ?rogramming (FFP)

Formal functional programming is the best known closed
applicative language. It embodies the principles of CALs in
a form which we can 'gse as the basis of a new language'
(developed in chapters 3 and  4) encdmpassing all the

elements of computing. This new language will not be 'a CAL,

but it will preserve the essential qualities of one.




10

1.4.1 The elements of FFP

A set of atoms, a set of constructors, and a

representation function specify FFP among the CALs.

1. The set of atoms consists of any
character-string. Some characters (e.g., "(",

")", blank, and ":") will not be used since such
use would conflict with the notation for
constructed expressions. The definition of K

will implicitly define these forbidden

characters.

2, The set of constructors consists of "ap" and
"bot" in union with an infinite set of sequence
constructors {sn:n>1l}. bot is a special
zero-place constructor which builds the formally
undefined expression. Each sn takes a sequence
of n expressions, not including bot[], to a
formal FFP sequence of length n. Figure 2 defines
our notation for these constructs.

f,x,eieE
apl[f,x] = (f:x)

bot[] = 1
sn(el,...,en] = <el,...,en> eif]

Figure 2. Basic syntax for FFP

3. The representation function maps any constant to

a function on constants. The effect of this




a, For |, r returns "U", the everywhere
undefined function, which returns | for any

argument expression,

function on constants is as follows:

b. For any constant sequence, r returns a

function which forms a new application.

The function-part of this new application

is the first element of the original

sequence, and the argument part is the
‘ pairing of the original sequence and the
|

| original argument.

{E<fYl,...,fn>}x == (fl:<<fl,...,En>,x>) fi,xeC

c. All atoms represent either primitive

functions (primitive atoms) or
programmer-defined functions (defined
atoms) . Initially, all atoms are

primitive, and most of them represent
‘ U. Appendix I 1lists a set of primitive
atoms which represent other functions

together with those functions.

In an FFP environment, the user may execute
the meta-expression

DEF a == ach,ceC

11
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to provide a new representation for a. This
meta-expression indicates that atom a now
represents the same function as expression
¢. This definition facility enhances the
clarity of FFP computations, but does not

alter their power.

For & primitive atom, r simply returns the
appropriate primitive function, For a
defined atom f, with definition g, rf is
the same function as rg.
FFP employs one additional meta-function, 4d. For any
primitive atom, 4 returns "4#", and for any defined atom, g

returns the appropriate defining construct.

Figure 3 expresses the semantic function of FFP in a
form by Backus [6] based on McCarthy's conditional
expressions [30].

e,ei,x,y,f,fi,geE

ne == eEA => e;

e=<el,...,en> => <mel,...,men>;
e=(f:x) => {fed => {df=#% => m{{rf}{mx}};
df=g => m(g:x)};

£=<£f1,...£k> => m(fl:<f,x>);
n(mf:x)};

Figure 3. Complete FFP semantics
This m invokes r only for primitive atoms. To distinguish
primitive from defined atoms, and to retrieve the defining

constructs of the latter, m invokes d. Figure 3 forms the
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semantic basis for the variations on FFP described in

chapters 3 and 4.

1l.4.2 Programming in FFP

Applications —correspond to conventional programs.
Their function-parts correspond to program bodies, and their
argument-parts to program data. In the simplest case,
function-parts are primitive atoms representing some basic
operation (e.g., ADD), and the applications perform a
straightforward calculation (e.g., (ADD:<2,3>) --> 5). More
complex cases display a rich set of constructs for forming
programs.

Sequences can act as program structures. (In FFP, one
often refers to program structures as functional forms.)
For example, {WHILE,p,f> acts as a while-loop, and
<IF,p,f;g> serves as an if-then-else constructions; p stands
for a predicate, and f and g represent general functions.
In the while-loop, f serves as the loop-body, and in the
if-then-else, f is the then-clause, and g is the
else-clause. Another functional form is <CONS,fl,...,fn>

which indicates the parallel execution of the fi. Initial

6p, f, and g are arbitrary constant expressions. Lower

case letters denote unspecified expressions throughout this
dissertation.
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primitive atoms’ determine a complete set of primitive FFP
program structures. Appendix I includes the set of
primitive atoms suggested by Backus [5, 6].

The use of certain notational conventions simplifies
FFP programming. Figure 4 provides an alternative notation

for five functional forms.

f,fieE

[fl,...,£n] <CONS,fl,...,fn>
fl1*,.,.*fn <COMP,fl,...,fn>
'f <CONST, £>

/£ <INSERT, £f>

ef <AA,f>

Figure 4, Notation for selected functional forms
In addition, three atoms have special significance.
Functions which deal with sequences use "¢" as the sequence
of zero length. Predicates and boolean functions regard "T"
and "F" as the traditional boolean values.

'ARBADD is a defined atom which demonstrates FFP
programming. ARBADD represents a function adding either two
numbers or two matrices of arbitrary congruent dimension.

DEF ARBADD == <IF,ATOM*1,ADD, QARBADD*TRANS>
Evaluation of (ARBADD:<4,5>) exemplifies the operation of
IARBADD on simple numbers.

m(ARBADD:<4,5>)

7Henceforth, the term primitive atom refers to a primitive
atom with function other than U.
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produces

m(<IF,ATOM*]1,ADD, @GARBADD*TRANS>:<4,5>)
by replacing ARBADD with its definition, and the FFP rule
for the representation of a sequence in turn produces
m(IF:<<IF,<COMP,ATOM,1>,ADD,<COMP,<AA,ARBADD>,TRANS>>,
<4,5>>)
IF is a primitive function, and the rule for primitive

functions results in

m{{;IF}((IF,<COMP,ATOM,1,ADD,<COMP,<AA,ARBADD>,TRANS>>,
<4,5>>}

where the evaluation of constant parts has been omitted.

Executing the representation of IF creates

m((ATOM*1:<4,5>):<<ADD,<4,5>>,<<COMP,<AA,ARBADD>,TRANS>,
<4,5>>>) :
= m(m(ATOM*1:<4,5>) :<<ADD,<4,5>>,
<<COMP, <AA,ARBADD> , TRANS> ,<4,5>>>)
Evaluating (ATOM*1:<4,5>) produces
m(COMP: <<COMP,ATOM,1>,<4,5>>) ,
and this results in
M(ATOM: (1:<4,5>)) .
(As in the last derivations, we will henceforth omit
primitive executions of r in the interest of clarity and
brevity.) The evaluation of (ATOM*1:<4,5>) concludes with

m(ATOM:m(1:<4,5>)) = m(ATOM:4) = T ,

and the evaluation of (ARBADD:<4,5>) becomes

m(ARBADD:<4,5>)
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m(T:<<ADD,<4,5>>,<<COMP, <AA,ARBADD>,TRANS>,<4,5>>>)
m(ADD:<4,5>)
9 .

On two congruent matrices,

3 4 5
<<3,4,5>,<6,7,8>> =
6 7 8
and
30 40 50
<<30,40,50>,<60,70,80>> = ’
60 70 80

m(ARBADD:<<<3,4,5>,<6,7,8>>,<<30,40,50>,<60,70,80>>>) acts
in essentially the same manner as m(ARBADD:<4,5>), until the
evaluation of m(ATOM*1:<<<3,4,5>,...>>) produces "F". This

means that the total evaluation becomes:

D(F:<<ADD,<<<3,4,5>,...>>>,
<<COMP,<AA,ARBADD> , TRANS>,<<<3,4,5>,...>>>>)

m(@ARBADD*TRANS:<<<3,4,5>,...>>)

m( @ARBADD : I (TRANS:<<<3,4,5>,...>>))

m(@ARBADD:<<<3,4,5>,<30,40,50>>,<<6,7,8>,<60,70,80>>>)

m(AA:<<AA,ARBADD>,<<<3,4,5>,<30,40,50>>,...>>)

m< (ARBADD:<<3,4,5>,<30,40,50>>),
(ARBADD:<<6,7,8>,<60,70,80>>)>

<m(ARBADD:<<3,4,5>,<30,40,50>>),

m(ARBADD:<<6,7,8>,<60,70,80>>)> .

The two sub-evaluations may proceed in parallel to produce

<<m{(ARBADD:<3,30>) ,m(ARBADD:<4,40>) ,m(ARBADD:<5,50>)>,
<m(ARBADD:<6,60>) ,m(ARBADD:<7,70>) ,m(ARBADD:<8,80>)>> ,

and the execution of these six evaluations results in

33 44 55
<<33,44,55>,<66,77,88>> = .
66 77 88
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The final six instances of m(ARBADD:...) indicate a

high degree of explicit parallelism; they are independent
evaluations. This parallelism reflects the independent
operations performed in adding matrices. Conventional
programming languages obscure and constrain such concurrency
while FFP naturally expresses it.
1.5 Computational properties of CALs and other languages
Backus [5] asserts that closed applicative languages
possess six important formal properties in addition to their
natural expression of parallelism.
1. Idempotency of meaning. The meaning of an
expression 1is also an expression, and such

meanings always evaluate to themselves.

2. The "anti-guote" property. Constant expressions
represent themselves, and representing values

‘requires no special quoting mechanism,

3. Non-extensjionality. The meaning of an expression
is not the function it represents. As such,
functional equality of expressions e and x does

not guarantee fe = fx for an arbitrary function

f.

4. Single-type functions. All allowable functions

are mappings from the same domain onto the same
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range, For CALs, these sets are constants and

expressions respectively.

5. The extended Church-Rosser property.

a. The basic property states that all
terminating sequences of reductions on a
given expression yield the same meaning.
In CALs, an execution of the transition

function corresponds to a reduction.

b. The extension requires that all reduction
sequences on a meaningful expression

terminate.

6. Ihe reduction property. All subexpressions of a
meaningful expression areAthemselves meaningful,
and if a given sub-expression is replaced by its
meaning, the meaning of the total expression
remains unchanged.
No other class of languages possesses all six of Backus'
formal properties. Most programming languages do not
possess any of them; although expression-oriented languages

have 1limited forms of the Church-Rosser and reduction

properties,
LISP is the most familiar expression-oriented

language. While it bears a superficial similarity to FFP,
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it does not distinguish its applications from its sequences.
This ambiguity causes LISP to violate idempotency. In
addition, LISP expressions employ variables, thereby
violating the anti-quote property since variables stand for
other values and not for themselves.

The lambda~calculus and combinators are the
progenitors of both LISP and CALSa These older formal
languages analyze the concept of a function, and their
definitions of meaning rely on functional equivalence; i.e.,
they are extensional. In addition, the concept of reduction
in the lambda-calculus is more complex than that found in
CALs, which makes establishing and using the Church-Rosser
and reduction properties more difficult. Combinators also
suffer from this added complexity because they have multiple
function-types.

CALs rely on three critical features in satisfying the
six formal properties.

1, Applications are clearly distinct from all other

constructs. Since applications correspond to
computations, this . feature guarantees
idempotency.

2. There are no variables. This negates any need

for a notion of quoting.

3. All expressions are based on a constructor
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syntax, and meanings reflect this basis.
By retaining these three features, the computing language

produced in chapters 3 and 4 preserves the fundamental

character of the six formal properties.




CHAPTER 2

Approaches to applicative computing

2.1 Origins
Closed applicative languages derive from two systems
of mathematical logic: the combinatory logic of Schonfinkel
[31] and Curry [13, 14], and the lamba-calculus of Church
[11]. The primitives of combinatory logic are an arbitrary
set of free variables and a specified set of combinators;
the free variables represent themselves, and the combinators
stand for functions which act on any objects in the logical
system. Combinatory logic forms new objects (combinétions)
by pairing (e.g., (A B) is a combination if A and B are
combinations); by convention,” A B C denotes the same
combination as ((A B) C), and parentheses are often omitted
when this precedence rule determines the intended
expression., J 1is a typical combinator, and represents a
function such that
JABCD-->AB (ADC) .
Systems of combinatory 1logic are not closed applicative
languages in the Backus sense since pairs may denote either
constants or applications; if u, v, x, and y are free
variables, (J x) denotes a combination which happens to be

the constant (J x) while ((((J u)v)x)y) denotes an

application with operator (((J u)v)x) and operand y; i.e.,
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J u v xy executes to formu v (uy x).

The lambda-calculus replaces combinators with new
constructs called lambda-expressions, formed by pairing a
variable with an expression; if x and A are a variable and
an expression, Mx.A is a lambda-expression with bound
variable x and body A. Ax.A represents a function such that
(MX.A)B returns A with all free occurences of x in A
replaced by B. We can say an occurence of v in C is free if
it is not part of a lambda-expresion contained in C with v
as bound variable. Av.B is well-formed only if B is
well-formed and contains at least one free occurrence of v,
an@ B is well-formed if it is a variable, a pair of
well-formed expressions, or a well-formed lambda
expressions,

We may now express J as

J = Aa.\b.Ac.Ad.ab(adc) .

The lambda-dénotation of functions avoids the ambiguity
found in the pairs of combinatory logic; now, any pair with
a lambda-expression in the operator position is an
application, and any expression with no such pair denotes a
constant. The denotation of functions by lambda-expressions
eliminates the lambda-calculus as a CAL since several
lambda-expressions may denote the same function,

AX.X AY.y ha.a Ab.b AZ.Z

and exactly one of them is the standard form. Thus, the
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others are not constants in the CAL sense, and their
evaluation violates the CAL 'rule that the meaning of a
non-application is found by evaluating its components.

Combinatoré ahd the lambda-calculus fOle'a basis for
McCarthy's LISP [30]. The atoms of LISP are Character
strings (DOG, CAT, 1, CAR, CDR, QUOTE, SURPRISE), and the
sole constructor is pair formation (A . B); list notation is
an abbreviation for pair notation in commonly occurring LISP
expressions; e.g., |

(x) = (x . NIL)
(x1 x2 x3 x4) = (x1 . (x2 . (x3 . (x4 . NIL))))
(x1 %2 x3 . x4) = (x1 . (x2 . (x3 . x4)))
LISP evaluates expressions as follows:
- If the expression 1is an- atoﬁ, the expression
associated with it on an auxiliary 1list is

evaluated.

- If the expfession is (£ . x), and £ is an atom,
one of three cases holds.

1. f‘represents a fundémental LISP combinator.8

The combinator éxecutes on the evaluation of

some portion of x.

8The atoms representing fundamental LISP combinators
are ATOM, EQ, CAR, CDR, and CONS.
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2. £ = QUOTE. (f . x) evaluates to the first

element of x.

3. In any other case, evaluation executes on
the pair of the expression associated (via
LABEL, see item 1 in the next point) with £
and the evaluation list from the elements of

X

- If the expression is (f . x), and f£ is not an
atom, there are two cases,

1. £f = (LABEL g h). Evaluation continues with

(h . x) as the expression, and the

association of g and f attached to the

auxiliary 1list. This is LISP's mechanism

for recursion.

2. f = (LAMBDA y g). Evaluation executes on g
with the elements of y associated (via the
auxilliary list) with the evaluations of the
elements of x. This is LISP's implementation

of lambda-expressions.

- Otherwise, evaluation is undefined.
Landin's applicative expressions [26] explore (among
other things) the wuse of the 1lambda~calculus and the

combinator Y ( ¥Yx == xXYx ) to define programs. Y is the
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basis for recursion; the factorial function
f(n) = if n=0 then 1 else n*f(n-1)
becomes |
Y(Af.An.{if n=0 thén 1 else n*f(n-1)}) .
Applicative expressions anticipate CALs; Landin defines
their structure through a precursor to constructor syntax9,
the meaning of an expression derives from the meanings of
.. its components, meanings are constants, and the evaluation
mechanism (SECD machine) uses an explicit ap-conStructor.
Landin's applicative expressions are not CALs because the
meaning of a lambda-expression is not an applicative
expression.
Backus introduced closed applicative languages in 1973
[5], and elaborated on them in 1978 [6] and 1981 [7].
- The 1973 paper presents CALs as the innermost
members of a four-level containment hierarchy,
[programming languages
[complete languages

[applicative languages
[CALSs]]]]

delineates the six formal properties given in
Chapter 1, and defines two CALs related to FFP and

one related to lambda-calculus.

9Expressions are'either an identifier or a construction of
independent components, and require no detailed syntax.
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- The 1978 paper specifies FFP, provides a mechanism
underlying the definition of functions, describes
a simple system of tranformations between
functions, and defines Applicative State
Transition Systems (AST systems) as a CAL-based
complete computing system. AST systems execute
FFP expressions with respect to an internal state
including function definitions, and may modify
this state after a successfully completed
execution. AST systems are weak in at least two
respects:

1. Computations do not persist over a stream of

inputs; instead, a state containing possible

computations does.

2. There is no mechanism for communication

between modules.

- The 1981 paper continues the study of function
transformation begun in 1978.
2.2 Similar research
Friedman and Wise {18, 19], and Henderson and Morris
[22] independently develop more-defined LISPs. Both of
these systems delay the evaluation of an expression until

the result of that evaluation is required by an entire

computation, and retain the resulting value as long as a
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part of the computation might require it; e.g., standard
LISP evaluates |
(CAR (CDR (CDR

((LABEL FF (LAMBDA (X)

(CONS X (FF (PLUS X (QUOTE 1)))))) (QUOTE 1)))))
foreverlo, but both moré?defined LISPs produce 3 as their
result. The principal difference between the two systems is
that Henderson and Morris provide a complete new evaluation
- mechanism while Friedman and Wise concentrate on suspended
evaluation of CONS (the construction operation). ‘Suspended
evaluation ‘in LISP is similar to partial evaluation in
more-defined FFf (section 3.45.

Friedman and Wise [20, 21] address the issue of
indeterminacy in LISP through the new constructor FRONS.
FRONS constructs a list which éuspends both the evaluation
of elements and the definition of their order; e.g., (FRONS
x (FRONS y (FRONS z NIL))) produces a pseudo-listll [x y.z}
whose elements are #, Y, and z in no special order. A FRONS
structure gains order as selectors require it, and the

structure retains this order through all subsequent probes;

10(LaMBDA (X) (CAR (CDR (CDR X)))) denotes the selector of
the third element in a list, and (LABEL FF (LAMBDA (X) (CONS
X (FF (PLUS X (QUOTE 1)))))) represents a function which

infinitely computes the list of integer beginning w1th a
seed value.

llphis pseudo-list is called a multiset.
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e.g., if any occurence of (FIRST {x y 2z}) in a computation
evaluates to y, then so do all occurrences of (FIRST {x y
z}), and all occurences of (REST {x y z}) evaluate to {x
z}12, This retention of order resembles the pairing of
intrinsic determinacy with extrinsic indeterminacy in CFFP
(section 4.4).

Keller, Lindstrom, and Patil [24, 25] propose an
architecture to execute a language based on more-defined
LISP., Their language (FGL) is a graphical version of LISP
with operations residing at the nodes, and their
architecture is a tree structure with computation and 1/0
processors at the leaves and communication units at the
internal nodes; e.g., FGL depicts (LAMBDA (X Y) (CONS (CAR

X) (CDR Y))) as

and the tree aarchitecture may distribute the expression's

execution on some unspecified argument as

12Friedman and Wise use FIRST instead of CAR and REST
instead of CDR.
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(Ei?hJéj) (;EJk§i>( CDR )

FGL is a valuable tool in analyzing LISP-like languages, and
the tree architecture can execute a wide variety of loosely

related languages.

Berkling [8, 9] describes a variation on the
lambda-calculus and a conventional stack-oriented
implementation of it, Berkling's 1language uses three

explicit application constructors to indicate distinct
computation rules; if (f:x) is an application with
lambda-expression f, the three computation rules are:13

1. m(f:x) == m{{rfix}
2. m(f£:x) == m{{rf}{mx}}

3. m(f:x) == m{{x{mf}}ix}

Berkling's language also eliminates the need for a set of

13The description of computation rules uses the notation
of section 1.3.
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bound variables by using a correspondence constructor on a
single bound variable; if w is the variable, and / is the
correspondence constuctor, both Xalbab and MxMyxy become
M/ww. This use of a correspondence constructor parallels
the technique for finding the association between holes and
dapps in CFFP (section 4.4).

2.3 Other related research

Dataflow languages [3, 16] address many of the same
issues as CALs. The fundamental model of these languages is
a directed graph with operators at the nodes; computations
occur as tokens representing instances of data flow along
the arcs, and trigger execution of the operators by arriving
at nodes. Dataflow streams [2, 36] are orderings over
tokens, and inspired the notion of streams in more-defined
FFP (section 3.3). Dataflow resource managers [2] provide
controlled access to shared information, and strongly
resemble CFFP resource supervisors (section 4.7).

Tonge and Cowan [34] examine the ways that two or
more processes might cooperate, and propose a set of process
constuctors similar to those of section 4.1. The two sets
diverge at two points:

1. Tonge and Cowan include a case-like alternative
constuction which routes its input through one of
its component sub-processes based on a selector.

The selector is the first element of the input.
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CFFP (section 4.4) achieves a similar result
through a combination of serial and parallel

construction.14

S(P(S(P(first,producer_process) ,select),rest) ,apply)

FIRST
L

4 APPLY PRODUCER_PROCESS

SELECT

REsT K+

2. They exclude cycles, and achieve cyclic results
through a form of recursion., CFFP retains cycles
to deal with issues developed in chapter 4.

Lucid [4] is an assertion-oriented programming
language. In Lucid, equality. assertions replace assignment
statements, programs are an unordered set of such
assertions, and the fundamental data concept is an infinite
stréam (history of wvalues in a variable). These

characteristics facilitate a system for proving properties

145 denotes serial process construction, and P

denotes parallel construction.
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of Lucid programs, and the success of streams in such a
system suggests their value as a programming tool.

2.4 CAL architectures

Mago [27, 28] proposes a tree-structured architecture
for an FFP machine. The leaves of the tree are processors
which hold the representation of an expression on a
symbol-by-symbol basis; each leaf 1is connected to its
parent, and to its left and right neighbor leaves. The
internal nodes are also processors, and form a full binary
tree over the leaves. The machine executes by repeatedly
transforming all innermost applications until none remain.
Leaves perform the actual transformations; the internal
nodes partition the expression into its subexpressions,
determine the innermost applications, and coordinate the
actions of the leaves.

Frank [17] addresses a potential problem in the Mago
machine: manipulating large data blocks often entails
significant, unnecessary processsing overhead. The Frank
machine avoids this problem by representing large static
data blocks with a pointer to a secondary memory. In this
scheme, the machine often only manipulates the pointer
rather than the entire data block. Frank shows that
machines employing such a secondary memory mechanism are

correct implementations of CALs, and that such mechanisms

result in improved performance for some programs.



CHAPTER 3

Applications, processes, and computing

A computation is a self-contained activity, but an
activity in a computing system (e.g.;, an operating system)
may depend on the states of other independent elements
within the overall system. These elements may be resources
(card readers, line printers, files, etc.), other
activities, or the system itself. Since the states of these
elements cannot be predicted in advance, a computing
activity is inately history-sensitive, and requires some
mechanism for communicating with the other elements of its
environment., Operators in such a system should be
non-strict since the activities they represent generally
depend only on the instantaneous presence of a small part of
their input. Computing activities are called processes.

3.1 Processes

A process is the basic activity in computing systems.
It executes computations which may depend on external
factors. A process may also represent resources or the
entire computing system.

Processes represent resources by acting as resource
mapagers. Line printers and files are typical resources.

- The manager of a line printer might accept tagged

output requests for printing. The tags indicate a
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process of origin. When the 1line printer is
quiescent, its manager selects a request and
commences a print-job (activating the printer).
While the printer is active, the output manager
sends requests which bear the tag of the current
job to the printer, and holds all other requests

for future processing.

- A file manager accepts requests to read from or
write to a file. Any number of readers may access
a file ~concurrently, but writers must have
exclusive access. The file manager must implement
a scheduling algorithm which enforces these
restrictions.
Independent processes form a computing system when

they cooperate in some activity.

- If an input manager, an output manager, and some

executing user-programs interact, they form a

system.

- A file manager forms a system with those processes
which wish to read from or write to the file.
Cooperation between various activities implies some form of
communication among them, A process can be a computing

system by containing sub-processes and providing them with a

communication mechanism.
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3.2 Applications which compute

Processes are the activities in computing systems, and
applications are the activities in CALs. With this
parallel, using applications as processes seems natural;
however, unmodified applications cannot serve as processes
for two reasons:

1. Applications view computations as isolated

events. With this outlook, they cannot be

history-sensitive.

2. Applications are completely self-contained. This
restricts an application to communication with
only those applications which are "above" . it
(i.e., those which syntactically contain it).
History-sensitive, fully—communicating applications could
serve as processes in a CAL-like computing system.

If applications required only enough information to
begin a computation, they qould execute on a stream of
inputs., This is exactly the form of history-sensitive
behavior required of processes. Allowing applications to
execute on less than completely specified arguments requires
changes in the meaning function of a CAL. Section 3.4
presents such a modification to m in FFP.

As CALs are currently defined, an application

communicates only to those which contain it. This results
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in purely progeny-to-parent communication, and coordinate
communication is impossible. Such directional constraints
do not exist if we introduce a new construct which
represents applications inside themselves. Chapter 4 adds
this construct and its associated semantics to the
more-defined semantics for FFP developed in section 3.4.
3.3 Streams

History-sensitive behavior requires a construction
representing the history of inputs to and outputs from a
function. Streams may serve this purpose just as they do in
dataflow languages [3, 2, 36]. Dataflow languages are

Closely related to CALs; most programs written in one class
are easily translated into the other, and their descriptions
of computation correspond.

A stream is a potentially infinite sequence of
information packets with a distinct termination for any
finite case. A packet (information packet) is a structured
or unstructured value which is the input to or output from a
computation. Packets must be unique parts of a particular
stream, and their order in an argument to a function can
define a history of inputs to that function. Some dataflow
systems express streams as an ordering of packets on an
input or output line.

I define FFP-streams through three constructions:

1. The principal expression of a stream is a pair
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<x,y>, where x represents the first packet in the
stream, and y (a stream) denotes the rest of the

stream.

2. The null atom ¢ expresses the distinct
termination of a finite stream; €.9.,

<A,<B,<C,$>>> is a three element stream.

3. A stream (generator is represented Dby an
application. If GEN acting on an integer
produces the pairing of that integer with the
application of GEN to the integer's successor
(e.g., (GEN:4) -->> <4,(GEN:5)>), then
<1,<2,(GEN:3)>> 1is one possible denotation for
the stream of positive integers.

The expression
<21,<22,(£:<y1,<y2,<y3,(g:<x1,<x2,0>>)>>>)>>
depicts a history-sensitive computation. f and g represent
history-sensitive functions. g is a stream generating
function, acts on a finite stream of inputs (of which x1 and
X2 remain), and sends its stream of results (represented by
yl, y2, and y3) to £. f is also a stream generating function

and acts on g's output to produce the ultimate stream of

outputs (zl and z2).
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3.4 A more-defined semantics

We want an application to treat a stream as a constant
argument whenever that stream's first element is a constant,
but the meaning function does not allow such behavior. For
example, if we formally define GEN by

DEF GEN == [ID,GEN*ADD*[ID,'l]] ,
and form the application
(ADD* [ADD*[1,1*2] ,1*2*2] *GEN:1)

to add the first three poéitive integers, evaluation never
terminates even though a result of 6 is reasonable. This
situation results from trying to totally evaluate (GEN:1),
which represents an infinite structure.

Friedman and Wise [18], and Henderson and Morris

[22] address a similar situation in LISP through
evaluation-by-demand schemes. In such schemes, the semantic
mechanism begins at the outermost level of an expression,
and evaluates inner sub-expressions only to the extent
required for determining the meaning of that outermost
level. That is, the above example (GEN:1) would evaluate
.only to
<1,<2,<3,(GEN*ADD*[ID,'1]:3)>>> .

We define a partial meaning function p that supports

demand-evaluation in FFP. Given any expression, p returns

the least-evaluated non-application derived from it. For

example,
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P(GEN:1) = <(ID:1),(GEN*ADD*[ID,'1]:1)>
since the right-hand side expresses the form of the result
without evaluating either of the internal applications, and
P(1*GEN:1) =1
since any less-evaluated result is still an épplication.
The partial meaniné of any non-application is itself.
| We can define the meaning function to use p to

evaluate applicatidnsu

mx == X€j => Xx; '
X = <xl,cc.,xn> => <pxl,...,0xXn>;
x = (f:2) => m{px};
1

P returns a non-application, and m continues its evaluation

if necessary.

One specification of p is

PxX == X€j => X;
X = <X1,...,%n> => x;
x = (f:z) => {fep => {df=#% => p{{rflz};

df=g => p(g:z)};
£ = <El,...,£3> => p(fl:<f,z>);
p(pf:2)};

This p does not evaluate the argument parts of applications;
instead, it passes this responsibility to the primitive
functions. These revised functionsld invoke b to produce

the required form of argument; e.g.,

15Appendix I provides a list of primitive functions.
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<xl,...,Xn> => x1;
(£:2) => {rl}{px}:

[}

I call the evaluation mechanism based on this p the
"interacting semantics". Under it, (1l:(GEN:1)) evaluates as

shown in figure 5.

m(1:(GEN:1)) = m{p(l:(GEN:1))}

= m{p{{rl} (GEN:1)}}
m{p{{rl}{p(GEN:1)}}}
p{p{{rl}{p([ID,GEN*ADD*[ID,'1]1]:1)}}
m{p{{rl} {p(CONS:<[ID,GEN*ADD*[ID,'1]
m{p{{rl}{p{{LCONS}<[ID,GEN*ADD*[ID,"'
m{p{{r1}{p<(ID:1), (GEN*ADD*[ID,'1]:1
m{p{{rl}<(ID:1), (GEN*ADD*[ID,'1]:1)>
m{p(ID:1)}
m{p{{rIip}l}}
m{pl}
ml
1

L T | O Y L (IO T O |

Figure 5. An evaluation by the interacting semantics
Another version of partial meaning partitions the
standard primitive atoms [5, 6] into six setsl6 according
to their least-defined useful arguments. Figure 6
enumerates the partition and its corresponding sets of
useful arguments. The Pi define the partition, and the Ai
describe the corresponding useful arguments.

The new version of partial meaning [figure 8] uses the

16other sets of primitive atoms could require different
partitions.
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Pl = {AA,AL,AR,CN,EQAT,FSTl;INSERT,AND,OR,
ADD,SUB,MUL,DIV,LT,LE,GT,GE}

Al = {<x,y>| x,y#(f:2)}

P2 = {TRANS}

A2 = {<x1l,...,xn>| xi=<yl,...,yj> or xi=¢}

P3 = {APNDL,DISTL}

A3 = {<x,y>| y#(f:2)}

P4 = {APNDR,DISTR,COMP,CONS,CONST,IF,WHILE,BU}

A4 = {<x,y>| x#(f:2)}

P5 = {APPLY,ATOM, LENGTH,NOT, NULL, REVERSE, ROTL,
ROTR, SEPL, SEPR, TL,TLR, s, SR, T,F}

A5 = {x| X#(f Z)}

P6 = {DBL,ID}

A6 = E

Figure 6. A partition of primitive atoms

partition to determine an appropriate depth of evaluation.

This "partitionedAsemantics" requires no interaction between
b and the primitive functions. Figure 7 evaluates
(1: (GEN:1)) using the new p.

m(l (GEN:1)) = m{p(l:(GEN:1))}

= m{p(l:p(GEN:1))}
m{p(l:p([ID,GEN*ADD*[ID,'1]]:1))}
B{R(1:p(CONS:<[ID,GEN*ADD*[ID,'1]
B{p(l:p{{rCONS:<[ID, GEN*ADD*[ID '
n{p(1l:p<(ID:1), (GEN*ADD*[ID," 1] 1
m{p{{rl}<(ID: 1) , (GEN*ADD*[ID, '1] :
m{p(ID:1)}

n{p{{rID}1}}

m{pl}

ml

1

Figure 7. Evaluation using partitioned partial meaning

The two versions of partial meaning differ only in

minor details. The interacting p blurs the distinction
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<X1l,...,%n> => Xx;
(£:2) =>
{fep =>
{df=% =>
{fePl => {zepl => p{{rflz};
z=<21,22> => p(f:<pzl,pz2>);
p(f:pz) };
fep2 => {zep2 => p{{rflz};
Z2=<Z) ;000 s (Q2Y) reesrZnD
=> p(f:<pzl,...,pP2n>);
p(f:pz)};
fepP3 => {zeA3 => p{{rflz};
z=<u, (g:y)> => p(f:<u,p(g:y)>);
p(f:pz)};
fepd => {zepd => p{{rflz};
z=<(g:y) ,u> => p(f:<p(g:y),u>);
p(f:pz)};
feps5 => {zeA5 => p{{rflz};
‘ p(f:pz)};
{{rf}z};
df=g => p(g:z)};
f =<fl,.v.,£n> => p(£fl:<Kf,2>);
p(pf:z)};

M N
mn
non b
]
AV4
Y]

Figure 8. Partitioned partial meaning
between primitive represented functions and the underlying
semantic functions, and the partitioned p introduces a very
weak typing of functions.17 Both compute the same results in
the same history-sensitive manner, and choosing between them
is a matter of momentary convenience. We will call
semantics based on the revised m and either p more-defined.

The more-defined semantics change the nature of five

177his typing does not introduce a hierarchy of functions,
and thus does not violate the spirit of the single-type
functions property.
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primitive functions. = EQ cannot represent a primitive
function since an appropriate depth of evaluation cannot be
predetermined. T can result only from a totally evaluated
argument, but F can reasonably result from less thah total
evaluation. IF, WHILE, T, and F should represent more

Vasyhchronous and evocative functions.
EQ's function»becomes
DEF EQ == <IF,AND*@ATOM, EQAT,
<IF,OR*@ATOM,'F,
<IF, EQAT*QLENGTH,/AND*@EQ*TRANS, 'F>>>
This new definition of EQ produces results whenever the old
one does so, and also produces some results when the
original primitive definition does not. With the
more-defined semantics and new EQ,
(EQ:<(TPL:1), (2PL:1)>)
returns.F'when

[TPL, TPL,TPL]
{2PL,2PL] ,

DEF TPL
DEF 2PL

but evalﬁation under basic FfP never terminates. ﬁoth TPL
and 2PL recurse infinitely, but under one execution of
partial meaning (TPL:1) producee
Q(TPL:l),(TPL:l),(TPL:l)>
and (2PL:1) produces
| <(2PL:1),(2PL:1)> .

With this structural information, application of the new EQ
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returns F based on a difference in 1length between two
sequences, rather than insisting that (TPL:1) and (2PL:1) be
fully evaluated.

Under the more~defined semantics, primitive functions
can use applications more freely in their definitions, and
an application can indicate potential computations as well

as essential ones. IF, WHILE, T, and F become

{LIF}x == x = <<z,p,£,9>,y>
=> ((p:y):<(f:y),(g:y)>);
1
{IWHILE}x == x = <<Kz,p,f>,y>
1 => ((p:y) :<(KWHILE,p,£f>: (f:y)),¥>):
{gT}x == x = <y,2> => y; 1
{EF}x == X = <y,2> => z; |

under the partitioned semantics.l8 fThese new functions
denote the structure of their computations more clearly and
concisely than the original functions, even though an
application using either version produces the same ultimate
result.

The revised transition function £ transforms a broader
range of applications under the more-defined semantics.

Instead of replacing innermost applications, L replaces

18See Appendix I for the interacting semantics.
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applications whose function and argument parts are in
corresponding sets under the partitioned semantics. t could
substitute for any of the applications in

(1:<(ADD:<4,5>), (APNDL:<(ID:9),4>)>) ,
with the outermost as a direct route to the meaning19 In

general, defiped applications denotes the class for which t

canh substitute.
3.5 Sieve of Eratosthenes

A prime number generator based on the Sieve of
Eratosthenes demonstrates the history-~sensitive behavior now:
possesséd by applications. Figure 9 defines the necessary
functions: |

DEF PRIMES == PASS*[ID,SIEVE*GEN*'2]

DEF PASS == <IF,EQAT*[1,'0],'d,
[1*2,PASS*[SUB*[1,'1],2*2]]>

DEF SIEVE == [1,SIEVE*DIVBY*[[1,1],2]]
DEF DIVBY == <IF,EQAT*[2*1,1%2],DIVBY*[1,2*2],
<IF,LT#*[2*]1,1*2] ,DIVBY*[[1*1,ADD*1],2],
[1%2,DIVBY*[1,2%2]]>>
DEF GEN == [ID,GEN*ADD*[ID,'1]]
Figure 9. A prime number generator

- (PRIMES:n) generates a stream consisting of the

first n prime numbers.

197he semantics do not specify this route, but do allow
it.
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- (PASS:<n,x>) passes the first n elements of stream

X.

- (SIEVE:x) passes those elements of stream x which
are not divisible by their predecessors. It

expects an infinite input stream.

- (DIVBY:<<n,n>,x>) passes those elements of stream

X which are not divisible by n.

- (GEN:2) generates an infinite stream of numbers
begining with 2.
m(PRIMES:5) =  <2<,3,45,<7,<11,4>>>>>, and (SIEVE*GEN:2)
would try to produce the entire infinite set of primes
(until the physical 1limits of the executing machine were
reached). PASS, SIEVE, and DiVBY act on a sequence of
inputs rather than expecting totally evaluated arguments; in
fact, the stream produced by SIEVE would terminate with | if

its input stream were finite. Only history-sensitive

functions can manifest such behavior.




. CHAPTER ¢

Complete computing systems

4.1 Process interactions

Two or more processes may cooperate in pérforming some
opefation° In doing so, they form a new composite process.
The following three stfuctural forms specify the nature of
this cooperation.

1. Serial execution. Two processes, Pl and P2, form

a composite process, S(P1,P2), such that the

composite's input is the input to Pl, the

composite's output is that of P2, and the output

of Pl is the input of P2,

S(PL,P2)
< P2 f—— Pl p7—
2. Parallel execution. Pl and P2 act independently

on a common input, and combine20 their outputs

20Any information-preserving combination may be used
since a following operator can produce an alternate
combination, .

47
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into a common output. This forms P(Pl,P2).

P(P1,P2)

Pl

P2

Cveclic execution. Pl produces a stream of outputs
which are input to P2, and P2's output forms part
of the input to Pl. The composite output is the

output of Pl. This creates C(P1l,P2).

C(P1,P2)

Pl —

P2

P2 may be the identity process, and we will often

omit it and write C(Pl).

c(P

T
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These constructions easily expand to' include an arbitrary

number of processes; e.g.,

S(Pl,P2,P3) == S(P1l,S(P2,P3))
P(P1,P2,P3) == P(P1l,P(P2,P3))
C(P1,P2,P3) == C(P1,S(P2,P3))

Tonge and Cowan [34] also examine the ways that two or more
processes might cooperate; they propose a slightly different
set of constuctors as described in section 2.3.
More defined FFP easily expresses serial and paréllel
executions. Function composition indicates the same flow of
informationr from Pl to P2 as does the serial procéss
structure,
S(P1,P2) == PpP2*p]

and functional constuction describes parallel execution.
P(Pl,P2) == [P1l,P2]

Sections 4.3 aﬁd 4.4 address cyclic execution.

4.2 Indeterminacy

Processes in a real computing system (e.g., .an
operating system [32]) interact in fundamentally
indeterminate ways. A file managei FM might interact with
three other processes (A B C) by granting requests to read
from or write to a file; typically the processes might
produce the followiﬁg input streams to FM.

A: <read,<read,<write, (fA:sA)>>>

B: <write,(fB:sB)>
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C: <read,<write,<read,<write, (fC:sC)>>>>

fp is the current action, and sp is the current state of
p. The first input to FM will be either the leading read
from A, the write from B, or the initial read from C; but we
cannot determine which until FM receives it. Thus, A, B and
C interact to form an indeterminate input to FM.

A model of a real computing system must provide a
mechanism for combining the outputs of processes in the
above indeterminate way. Indeterminate merge, denoted &, is
an operator which performs the required combination. R
operates on two (or more) streams of values by arbitrarily
selecting the first element of either argument as the first
element of its output, and then recurring on its other
inputs and the rest of the selected parameter. The
primitive operator NEXT is the basis for R in more-defined
FFP.

{INEXT}x == X
X

¢ => ¢;

<X1l,¢.07%Xn>

> {{¥xi:pxi=<yl,y2>} => i;
{¥xi:pxi=¢} => ¢; 1}; 1

Since there may be many possible i's to return, NEXT is
indeterminate. We may now define B in a set of definitions.

DEF ® == <IF, NULL*1l, '¢,
[1*APPLY, R*NONULLS*REST] >* [NEXT, ID]

DEF REST == <IF, EQ*[1,'l], APNDL*[2*1%*2,TL*2],
APNDL*[1*2,REST* [PRED*1,TL*2] ]>
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DEF PRED == SUB*[ID,'l]
DEF NONULLS == <IF, NULL, '¢,

<IF, NULL*1, NONULLS*TL,
APNDL*[1,NONULLS*TL] >>

NEXT returns an index, and ® uses the first element at that
indek as the next output element. 1In addition, B recurs on
its input with the indexed value replaced by the second
element found there, and all null values rembved.

At first glance, the above definition for
indeterminate merge may appear erroneous; if the expression
indexed by NEXT is indeterminate, the output from ® could be
inconsistent with the recursion. That is

(B:<(@:<<L1,<2,;0>>,<3,6¢>>) ,<4,0>>)
might produce
<1,<4,<1,<2,¢>>>>

even though this stream is not a legal possibility. 1If an
expression x in ([f,g]l:x) is indeterminate, we must assert
that x in (f:x) has the same value as x in (g:x). This form
of determinacy is assured if éll expressions and functions
are intrinsically determinate, and all indeterminacy is
extrinsic. Under this restriction, all copies of the same
expression have the same meaning, and represent the same
determinate function. All apparent indetefminacy resolves
once a meaning or action is determined for any copy.

Friedman and Wise {20, 21] use a notion similar to
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intrinsic determinacy in selecting elements from a multiset.
Since indeterminate merge is a possible operation (and
hence, a possible process), indeterminate combination of
processes I(Pl1,P2) is not a new construction. Instead,
I(P1,P2) becomes a composite of serial and ©parallel
executions,
I1(pl,P2) == S(P(P1,P2),R) = B*[Pl,P2]
4.3 Cycles
Explicit cycles are not required, provided we deal
exclusively with continuous functions [29, 33] as
processes., Keller [24] describes a transformation of
cycles into recursion which 1is illustrated in figure 10.
For a continuous function £ with input x, output y, and
cycle z, the transformation operates as follows:
- Cut the cycle, and divide the function into two
parts, g and h, g produces the result of the

original function, and h produces the cycle.

- Recognize that z is just another function h' of

X

- Convert the cycle to a structure written as
y = g(x,2) = g(x,h'(x))
z = h'(x) = h(x,h'(x))

In FFP, with representations rather than functions, we may

express the transformation as
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X
Ne
X N
m 1
h
£
| ~
<y2>=F(x2) l \‘f
y v "
= q(x,2)
! 7 o
g Z=h()
=hx,h (X))

Figure 10. Transformation from Keller ‘
DEF CYCLE == g*[ID,H]
DEF H == h*[ID,H] .

H corresponds to h'.

Unfortunately, Keller's transformation does not
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succeed for cycles which include non-continuous functions
like indeterminate merge. Figure 11 illustrates the

transformation of a cycle which employs &.

<X, e >>

X, <o >>

. J<‘?(x),<~-->>

+ K

£ 2

<§C), <> <SRRG, <>

<FEECM), < >>

Figure 11. Transformation with indeterminacy

The cycle 1is determinate even though R appears, and the
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first ?élue it produces is f(x). ‘The transformed cycle,
however, is indeterminate, and can produce reéults different
from the one produced by the cyéle; for example, instance
one of f produces f(x), instance two produces.f(f(i)), énd
instance three produces f(f(f(x))) as a possible first value
from the transformed cycle. —

The inconsistent hehavior- does not resolve when we
express the transformation in FFP,

DEF CYCLE == £*®*[ID,CYCLE] |

The .recursive application of CYCLE will repeatedly
instantiate ®, and it is the distinct inétances_ of
indeterminacy which cause the problem. Intrinsic
determinacy does not help either since any two instances of -
B will act on distihct expressions rather than copies of a
single common expression.

While Keller's trénsformation.does not seem to be the
solution for integrating cycles with‘indeterminacy,-we must
devélop some such solution. - Cyclic FFP (CFFP) is that

solution.

4.4 CFFP

A cycle is a part of a function's result which is also

‘a part bfvthe same function's argument., In FFP, the results

of functions are the meanings of applications, and we must
express cycles as some representation of an’ application

within itself. Recursion is the conventional approach for
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achieving this representation, but section 4.3 indicated
that it is inappropriate when indeterminacy is considered.
CFFP explicitly represents cycles by pairing two new
constructs, distinguished applications (or dapps) and holes.
A dapp is a stream~-producing application which feeds its
results into itself as well as producing them. If f and x
are expressions, (f|x) is a dapp. A hole is an expression
which copies the output stream of a surrounding dapp. If

<¢> denotes a hole2l, then (f|<x,<¢>>) denotes the cycle

g

s

(f£1<x, (g:€¢>)>) denotes

21€¢> could be any unique symbol.
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C(£1<x, (g:<€¢>) ,€¢>>) denotes

P ——

i

and (f|(B:<x,<¢>>)) denotes

T

CFFP uses an infinite set of holes H

H == {<¢>} U {<h>| heH}

in representing nested cycles such as those depicted in’

figure 12. A hole indicates its unique dapp by thé nesting ;

" level of ¢:

- <¢> refers to the immediately surrounding dapp.

- <h> (h#¢) refers to that dapp which immediately
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4—‘}6?> < P>

(E1<(g:<x,€0>>) ,<€d>>)

Nl '
N
<p>
<<P>>
. 5
(fl<x,(g|<<<¢>>,€¢>>)>)
< " I B N g
<p>
éﬁ{;—b
=T J
L .

(£1<x,€0>, (g]|<€d>,<€d>>>)>)

Figure 12, Nested cycles
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surrounds the dapp to which h refers.
The formal specification of CFFP requires two
additional constructs:
i. ¥ indicates a hole which references no dapp.
The semantic functions (14 through 20) form
instances of X, and their descriptions explain

the circumstances which produce x.

2. ¥ represents ill-formed. ' The semantic functions
instantiate w as (a) the meaning of a hole22, (b)
the meaning or partial meaning of ¥, or (c) the
partial meaning (which then becomes the meaning)
of a dapp which does not produce a stream of
well-formed packets. If any constructed
expression contains w, £he entire expression
denotes w (i.e., VkeK,ei€¢E: klel,...,Ws... ,€n] ==

¥) .

The semantic functions also use the set of well-formed
dapps Z as defined in figure 13. If (f|x) is well-formed,
it produces a stream, the packets in that stream all have

well-formed meaningSZ3, and either the stream properly

22A hole cannot have a meaning since any well-formed
dapp either produces an infinite stream, or becomes ¢
(in which case the hole no longer exists).

231f an expression has a well-formed meaning, it does not
denote y. '
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[x)=<y,z>,y¢¥,2€2"'}
fx) | p(flx)=¢}

Z2' == {<y,2>| ye¥,2z€¢2'} U 2 U {¢}

Z == {(fix)| p(f
{(£f

¥ == {yl| my#w}
Figure 13. Well-formed dapps

terminates in ¢, or there always exists a well-formed dapp
which continues to generate the stream. m and p are the
meaning and partial meaning functions for CFFP expressions
as defined in the following paragraphs.

Figures 14 through 20 define the semantics of CFFP by
adding dapps and holes to the more-defined semantics of
section 3.4.

nx == € => X

<xXl,...,xn> => <mpxl,...,mxn>;
(f:2) => m{px}:;

(f£l1z) => m{px};

1L =>1;

onunp

T

Figure 14. Meaning function

=> X3
<Xl,...,Xn> => x;
(f£:2) => {felp => {df=# => p{{rflz};
df=g => p(g:2)};
<£l,...,En> => p(fl:<£,2>);
(g:y) => p(pf:z);
(gly) => p(pf:z);
=> p(pf:z);
1l => 1;

¥
(flz)eZ => y{p(£f:2z)};
=> {kx}{p{{ex}x}};
1L =>1;

m
Wonp

ER ]

H Hh Hh Hh Hh

— m
tEnonon

I % % %
m
([ -]

Figure 15. Partial meaning function

- The meaning function m (14) adds dapps as another
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¢_> d)r
<u,v> =>
<x,z> => <{g<¢>}u,¥{{{5{{g<¢>}u}}<¢>}v}>°
(£:2) => <{g<¢>}u, ({{s{{g<d>}ul}<d>}f|
' {{a{{g<¢>}u}}<¢>}2)>-

-
®
]
]
™o
-~
<<

<
]

0 => <{g<ds}u, é>;
w};

Figure 16. Conversion function
{gh}lx == <xl;...,xn> => <{gh}xl,...,{gh}xn>;
€y> => {x<h => x; x};
(f:2) => ({gh}f:{gh}z);
(£1z) => ({g<h>}f[{g<h>}z);

Mo MK N
nmamnn

Figure 17. Consistency function
{{sz}lhlx == h => <z,h>;
<xl,...,xn> => <{{§z}h}x1,.g.,{{gz}h}xn>,
(f:y) => ({{szlh}f:{{gz}hl}ly);
(£ly) => ({{sz}<h>}f|{{sz}<h>}y);

LI

Figure 18. Substitution function

{6<h>}x == > %3
: >

X
¢ ' A
{i(flz)-glb{(gly)lxe(gly)#x} => (flz); ¥};
hél => {6h}{{6<¢>}x}

X
h

Figure 19. Context function

{kh}x == (£lz) => {he(fl|z) => h; ﬂ},

<y,z> => <y,{kh}z>;

X
X
¥
Figure 20. Extraction function
form of application. ¥, ¥, and all holes denote
ill-formed:
* An  ill-formed expression cannot have a

well-formed meaning.

* oy represents an incomplete cyclic structure.
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* A hole cannot receive a terminal value from a
well-formed dapp. Either the dapp produces
an infinite stream with no terminal value, or
it terminates in ¢ (which is an atom with no
component subexpressions), and the hole no

longer exists.

- The partial meaning function p (15) adds dapps and
holes at various points.

* The partial meaning of a well-formed dapp

(£lz) is the conversion function y applied to

the partial meaning of the application (f:z)

corresponding to the dapp. y makes the

changes necessary to feed the results of

(f:2) into the holes of (flz).

* The partial meaning of a hole only exists as
part of the partial meaning of the dapp it
referencés. If <h> 1is the hole, then
{e<h>}<h> evokes its dapp, and if z is the
partial meaning of that dapp, then {k<h>}z

extracts the partial meaning of <h> from z.

* When an application has a dapp or hole as its

function part, p treats that application as

if it had another application as function
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part. p determines the partial meaning of
the function-part and recurs on the revised

~ application.

* The primitive functions returned by r treat a

hole or a dapp as if it were an application.

- The conversion function y (figure 16) transforms
the partial meaning of a stream-producing
application (f:z) into the partial meaning of the
correspbnding dapp (flz); e.g., with no holes or
dapps in x, x', y, or g:

D(£:<<9>,x>) = <y, (f:<<0>,x'>)>
=> ¥{p(£:<<0>,x>)} = <y, (F1<<y,€$>>,x'>)>

R(£:<<9>,x>) = <<b>, (£:<<4>,x'>)>
=> Y{p(£:<€¢>,x>)} = <%, (£|<<X,€03>,x'>)>

p(f:<x, €d>,<<d>>>)
= <<y,<<¢>>>,(f:<x',<¢>,€<¢>>>)>
=> y{g(f:<x,<¢>,6<¢>>>)}
= <<y,§>,(fl<x“,<<y,§>,<¢>>,<€¢>>>)>
B(£:<<9>, (gl<x,€d>,€<d>>>)>)
= <(gl<x,€0>,<<€0>>>) , (£:¢d>) >
=> y{p(f:<<d>, (gl<x, 0>, €<>>>)>)}
= <(9|<XI<¢>r§>)p(f|<(9|<r<¢>:§>) r<¢>>)>
* For each packet produced, Y invokes two

additional functions:
1. The consistency function a (17)

converts all free holes?4 into %¥. Such

24, hole <h> is free within a packet if the packet
does not contain the dapp to which <h> refers.




holes refer to either the dapp which
produced them or a dapp which contains
that dapp. In the first case, the
holes have lost their context, and in
the second, they represent a change in
the cyclic structure of the overall

expression; e.g.,

{? KX

]

becomes

Tt

]

This change is disallowed because it
originates inside the cycle (at g) and
not outside (at f or some expression
which contains f and g). The set of

holes H is ordered by nesting; thus,

¥x,yel: y<<€y>, and <€y><<¢x> iff y<x.

64
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2. The substitution function g (18) feeds
packets converted by g to holes which
reference the producing dapp. {{gz}h}x
Can be loosely read as substitute z for

h in x.25

g When y encounters a terminal application, y
~converts the application to a dapp.

- The context function € (figure 19) evokes the dapp
to which a given hole refers. For the second
occurence of <¢> in (£1<x,€¢>, (g<y, €d>,<<d>>>)>),
{6<d>} <o> returns (gl<y,€d>,<<03>>>) ., The
resulting expression is not a copy of the dapp;
instead, it is the specific instance of the dapp
which contains the given hdle. For expressions x
and e, xee indicates that a particular instance of
X is found in a specific instance of e. glb
denotes the greatest lower bound ordered by
syntactic containment (e.g., (f£ix)<(glz) iff

(Elx)e(glz) ). |

- The extraction function k (figure 20) returns the

Stream produced at a hole, k does this by copying

25rhig is imprecise because each dapp encountered
deepens the nesting of h by one. :
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each packet produced by the hole's dapp, and

replacing that dapp with the given hole. k also

checks to see if the hole continues to exist in

the dapp, and returns w if it does not.

A CFFP transition function % augments the semantic
functions. This t is that of the more-defined semantics
with dapps and holes added as additional forms of
application. A dapp (flx) is defined (subject to execution)
whenever its corresponding application (f:x) is defined, and
a hole is never defined.26 Defined computations
(applications and dapps) seem closely related to live
processes, and studies of CFFP-based computing systems may
profit from any such relationship.

4.5 Formal properties

Backus' six formal properties for CALs [5] hold for
CFFP with minor modifications,

1. Idempotency of meaning. This property holds
without modification. A meaningful expression
still evaluates to a constant expression, and
constant expressions always evaluate to

themselves.

26Alternatively, a hole may be defined together with the
dapp it represents. In this case, a transition on a hole is
the same as a transition on the corresponding dapp.
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The "anti-quote" property. This property must

allow holes and dapps as non-constant expressions

in the same sense as applications. With this in

ming, constant expressions still represent
themselves, - and representing values still

requires no special quoting mechanism.

Non-extensionality. CFFP implies no identity
between ‘the meaning of an expression and the
function it represents. As such,

‘noh—extensionality holds.

bﬁinglﬁ-txgﬁ functions. The details of this

property have changed, but the substance remains
the same. Functions are now mappings from
expressions into e#pressions, rather than
constants into expressions, but they still map
from a single common domain onto a single coﬁmon

range.,

The = extended Church-Rosser property.  This

property no longer possesses its original

extension' since some reduction sequences could

try to evaluate a non-terminating sub-expression;

however, all terminating sequences of reductions,

on a given expreSsion, still yield the same

67
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meaning for it. The extension is replaced by

Every finite sequence of reductions on a
meaningful expression forms the prefix of
some terminating reduction sequence.
6. The reduction propertv. Some sub-expressions of a
meaningful expression may be meaningless (i.e.,

they may represent non-terminating computations).

With this in mind, the reduction property becomes

If a given meaningful sub-expression is
replaced by its meaning, The meaning of
the parent expression remains unchanged.

Appendix II formally addresses these properties.
4.6 Interprocess communication
CFFP can describe interprocess communication,

Consider a system with three processes and message-oriented

communication.

P2
P X

P33

If one process wishes to send a message to another, it

produces a pair <d,m> where d is the destination of the
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message, and m is the message. If fl, f2, and £3 represent
the processes, the complete system is' |
(B]<(£1:<x1l, (GUARDL:<$3)>),
(£2:<x2, (GUARD2:<6>) >),
(£3:<x3, (GUARD3:<¢>)>)>)
X1 represents thé internal state of process i, aﬁd GUARDi
passes exactly those messages destined for Pi; e.q.,
DEF GUARD2 == <IF, EQ*[1*1,'P2], [2*1,GUARD2*;2] » GUARD2*2>
The entire system produces a history of the messages passed,
The hext section provides some more detailed examples.

4.7 Resource managment in CFFP

CFFP needs no additional constructs for resource
managment; instead, some processes serve as supervisors for
specific resources. 'These supervisory processes are similar
to the dataflow resource managers 6f Arvind, Gostelow, and
Plouffe [2]. Any external process wishing to access a
resoufée must send a message to the appropriate supervisor
which then services the requést in some manner. A disk
controller and a file‘ manager demonstrate CFFP resource
supervisors.

4.7.1 Disk controller

A process retrieves a physical record from a disk by

broadcasting a meSSage of the form

<DISK,<ACQUIRE, pname,cylinder,data>> .

DISK indicates that the message 1is destined for the disk
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controller27, ACQUIRE indicates that this is a request for
access to a specific location, pname is the name of the
requesting process, and cylinder and data define the access.
Data contains track and sector specifications, read/write
indicators, allocated buffers, and any other required
information. The disk controller broadcasts a reply of the
form <pname,response> at some later time. This is
interprocess communication with the disk controller as one
of the communicating processes.

The disk controller executes access requests according
to the SCAN algorithm [15]. Conceptually, the arm sweeps
in and out across the cylinders, and the controller honors
requests as the arm arrives at the cylinder to which a
request refers. Figure 21 illustrates a structural
algorithm for scan disk control.

- GATE passes only those messages destined for the

controller.

- UNITE combines the stream of input messages with

the output of the access routine.

- ACCESS is an otherwise  unspecified, device

specific, physical access procedure.

277he controller's gate intercepts all messages, and
passes only those directed to the controller.
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GATE

CONTROLLER

N

UNITEKR——— ACCESS

"

— QHIGH

L I o NO yES
ACQUIRE A ’ N-USE [YES ABOVE : /
/RELEASE v NG

R UP_DOWN.EMpTy 22 J J
y |

DOwN

Figure 21. Controller structure.

- QHIGH and QLOW are queueing mechanisms for

requests to a busy controller. When the current
access completes, one of them will be triggered to

send an enqueued request to ACCESS.

The remaining operations route messages and
triggers to the appropriate activity based on the
type of message (ACQUIRE/RELEASE), the current
state of disk activity (IN_USE), the relative
positions of the new request and the arm (ABOVE),

and the current direction of travel

71
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(UP_DOWN_EMPTY) .

These mechanisms allow at most one execution of ACCESS at

any time.
DEF CONTROLLER == <IF, EQ*[1*1%*6,'ACQUIRE], REQUESTS_IN,
<IF, EQ*[1*1*6,'RELEASE], RESPONSE_OUT,
CONTROLLER*[1,2,3,4,5,2*%6]>>
DEF REQUESTS_IN == <IF, IN_USE,
<IF, ABOVE, QHIGH, QLOW>,
GRANT>

DEF IN_USE == NOT*NULL*3
DEF ABOVE
== OR*[LT*[2,3*1*6] ,AND*[EQ*[2,3*1%6] ,EQ*[1,'DOWN]]]
DEF QHIGH == CONTROLLER*[1,2,3,UPENQ*[TL*1%*6,4],5,2%6]
DEF QLOW == CONTROLLER*[1,2,3,4,DOWNENQ*[TL*1%*6,5],2%6]
DEF GRANT == CONTROLLER
*[1,3*1*6,2*1*6,4,5,
UNITE* [ACCESS*TL*TL*1%*6,2*6] ]
DEF UPENQ == <IF, NULL*2, APNDL,
<IF, LT*[2*1,2*1*2], APNDL,
APNDL*[1*2,UPENQ*[1,TL*2]]>>
DEF DOWNENQ == <IF, NULL*2, APNDL,
<IF, GT*[2*]1,2*1*2], APNDL,
APNDL* [1*2,DOWNENQ*[1,TL*2]]>>
DEF UNITE == <IF, EQ*[1,'l], 2,
[1*2*%2 ,UNITE*[1%2,2*%2%2] ] >* [NEXT, ID]

DEF RESPONSE_OUT == [[3,2*1*6] ,UP~DOWN-EMPTY]

DEF UP-DOWN-EMPTY == <IF, EQ*[1,'UP],
<IF, NULL%*4,
<IF, NULL*5, RESET, GO_DOWN>,
GO_UP>,
<IF, NULL*S5,
<IF, NULL*4, RESET, GO_UP>,
GO_DOWN>>

DEF RESET == CONTROLLER*[1,2,'¢,'d,'d,2%6]
DEF GO_UP == CONTROLLER
*['UP,2*1%*4,1*%1%4,TL*4,5,UNITE* [ACCESS*TL*1%*4,2%*6] ]
DEF GO_DOWN == CONTROLLER
*['DOWN,2*1%*5,1%1%5,4,TL*5,UNITE* [ACCESS*TL*1%*5,2%6] ]

Figure 22, Disk controller

Figure 22 defines the operation of CONTROLLER as a set
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of CFFP functions. CONTROLLER acts on ‘an arguméﬁt'of-ﬁhe_‘

form
<direction, position, current-process,
above~queue, below-queue, signals> ,
and accepts -two kinds of signal: external requests to

access the disk (ACQUIRE), and internal completion
indicators from the’current access (RELEASE). If the disk
is free, requests. are satisfied immediately (GRANT), but if
it is in use, the requests are appended to the appropriéte
waiting queue (QHIGH or QLOW). On a complefioh, the
response is passed out to the appropriate process, and the
next waiting request, if any, is serviced (UP-DOWN-EMPTY) .
1f, pl,...,pn represent processes wishing to access the
disk, and GATE ié defined as |
DEF GATE == (IF, EQ*[1,1*1%*2],

[2*%1*2,GATE*[1,2*2]],
GATE*[1,2*2]> ’

then

(8| <(CONTROLLER:<UP,1,¢,d,¢, (GATE: <DISK, <d>>)>),
Pl,....,pn>)

instantiates a complete system using our disk controller.

Cycles appear in this system soley as part of the

mechanism for interprocess communication. The dapp produces

the stream of all messages, and the explicit instance of

GATE passes those messages directed to the disk controller.
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Instances of GATE within the pi pass those messages directed
to each pi. This pattern of communication derives from the
interprocess communication mechanism of section 4.6 and

generalizes to a hierarchy of communication (i.e., nested

dapps of the form (B] oo ) passing messages to
corresponding holes within GATE-applications). Rewriting
GATE as

DEF GATE == <IF, EQ*['ALL,1*1*2],

[2*1*2,GATE*[1,2*2}],
<IF, EQ*[1,1*1*2],
[2%¥1*2,GATE*[1,2*2]],
GATE*[1,2*2]>>
adds a form of broadcast message (a message directed to ALL)

to the system.

4.7.2 File manager

A file manager should solve the readers/writers
problem (12, 23]. This problem envisions an arbitrary
combination of readers and writers attempting concurrent
access to a common file. Any number of readers may have
simultaneous access, but a writer must exclude all other
processes when it is active., In addition, the solution must
guarantee eventual access to all readers and all writers.

Figure 23 defines a file manager which satisfies the
readers/writers requirements. The state of the scheduling

algorithm is represented by the number of active readers

(ra=item#4), an indicator for active writing (wa=5), a queue
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DEF MANAGER
== <IF, EQ*[ENTRY_ TYPE,'READ], .
<IF, OK_TO_READ, NEW_READ, HOLD_READ>,
<IF, EQ*[ENTRY_TYPE, 'WRITE], : :
<IF, OK_TO_WRITE, NEW_WRITE, HOLD_WRITE>,
<IF, EQ*[ENTRY_TYPE,'REXIT], :
- <IF, CAN_WRITE, OLD_WRITE, READ_DONE>,
. <IF, EQ*[ENTRY_TYPE, 'WEXIT],
<IF, READERS_WAITING, READ_FROM_Q,
<IF, WRITERS_WAITING,
WRITE_FROM_Q, WRITE_DONE>>,
CONTINUE>>>>

DEF ENTRY_TYPE == 1*1%¢ ‘

DEF OK_TO_RE == AND*[NOT*S,NULL*3]

DEF OK_TO_WRITE == AND*[EQ*[4,'0],NOT*5]
DEF CAN_WRITE == AND*[EQ*[4,'l] NOT*NULL*3]
DEF READERS_WAITING == NOT*NULL*Z

DEF WRITERS_WAITING == NOT*NULL*3

DEF CONTINUE == MANAGER*[1,2,3,4,5,2%6]
'DEF NEW_READ == [['CREATE,XR*[1,2*1*6]],
| - MANAGER*[1,2,3,ADD*[4,'1],5 2*6]]
. DEF HOLD_RE == MANAGER*[l APNDR*[2 2*1*6] 5,2%6)
DEF NEW_WRITE == [[° CREATE,XW*[1,2*1*6]],

MANAGER*[1,2,3,4,'T,2%6]] o
DEF HOLD_WRITE == MANAGER*[1,2,APNDR*[3,2%1*6],4,5,2%6]

DEF OLD_WRITE

=[['CREATE,XW*[1,1*3]],
MANAGER*[1,2,TL*3,'0,'T,2%6]]
DEF READ_DONE == MANAGER*[1,2,3,SUB*[4,'l1],5,2*6]

DEF READ_FROM_Q
== <IF, NULL*2, MANAGER*[2*1*6,'¢,3, 4 'F, 2*6],
[ CREATE XR*[2*1%6,1%2]], : |
READ_ FROM _Q*[1,TL*2,3,ADD*[4,'1],5,6]]1> ’ *
DEF WRITE_FROM_Q == [['CREATE,XW*[2*1*6,1*3]],
) ) MANAGER*[2*1*6,2,TL*3,'0,'T,2*6‘]]
DEF WRITE_DONE == MANAGER*[2*1*6,2,3,4,'F,2%6]
Figure 23. File manager
of waifing readers (rg=2), and a queue of waiting writers
(wg=3). In addition, MANAGER maintains a copy of the file
(fi1e=l) and an entry point for messages (entry=6). Thus,

MANAGER continuously acts on an argument of the form




76

<file, rgq, wq, ra, wa, entry>
As in the disk controller, the entry point is the result of
gating a global hole, (GATE:<FILE,<é¢,>>).
MANAGER accepts four message classes, services them,
and changes its state as appropriate.

1. <READ,<source,data>>. A request by an
independent process to read from the file.
Source is the origin of the request, and data
gives the details of the request. If no writers
are active or waiting, OK_TO_READ, the request is
immediately honored, NEW_READ; otherwise, the
request is appended to the end of the waiting
readers queue, HOLD_READ. MANAGER honors read
requests by spawning a subsidiary - process,
(XR:<file,<source,data>>), and incrementing the
count of "active readers. XR is an unspecified
operation which reads the file and evaluates to

<<FILE,<REXIT>>,<<source,read-result>,¢>>
This result is a message to the file manager
indicating that the read is done, followed by a
message to the original process with the results

of the read, and a proper termination (¢).

2. <WRITE,<source,data>> is a request to write to

the file. The request is honored if the file is
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inactive and’énqueued.otherwisea MANAGERthonors
write requests with the subsidiary process
(XW£<file,<source,data>>) which evaluates to

<<KFILE, <WEXIT,new-file>>,
{<{source,write-result,¢>>> .
New-file is the file as modified by the write.

When writing, wa is set to "T",

3. <REXIT> indicates the completion of a read:
operation.  If no other readers. are actlve,j'l
MANAGER honors the request of ‘the flrst waltlng}'f

wrlter.

4. <WEXIT,new-file> denotes the end of Qriting;
Eﬁﬂnew—flle replaces the 1nterna1 copy of ‘the file.
"f??MANAGER grants access to all waltlng readers,-ofirl'
if there are no waiting readers,:lt 1nstant1ates?;};ff
the flrst wa1t1ng writer. b
B cannot supervise the entire system since MANAGER is"

constantly creating subsidiary processes; instead, we define

a new SYSTEM operation.

- DEF SYSTEM == <IF, NULL*1, '¢,

: <IF, EQ*[1*1*APPLY, 'CREATE], .
SYSTEM*APNDL* [2*1*APPLY, NONULLS*REST],

[1*APPLY, SYSTEM*NONULLS*REST]>>
* [NEXT, ID]

SYSTEM acts just like ® except that ‘"messages" with

destination CREATE are held as internal _processes. If
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pl,...,pn are processes which access a common file through
MANAGER, the complete system begins as

(SYSTEM| < (MANAGER:<¢,¢,9,0,F, (GATE:<FILE,<$>>)>),

pPl,...,pn>)

The above file manager (based on [23]) prevents
starvation of both readers and writers. As with dataflow
resource managers, this supervisory process models two other
solutions with only minor modifications.

1. Readers have priority provided no writer is
active [12]. To implement this constraint, only
OK_TO_READ needs modification.

DEF OK_TO_READ == NOT*5
The resulting manager may indefinitely postpone

writers.

2. Writers have priority if no reader 1is active
[12). The solution now requires exchanging the
positions in MANAGER of READERS_WAITING with
WRITERS_WAITING, and of READ_FROM_Q with
WRITE_FROM_Q. This solution allows readers to
starve.
The disk controller and file manager indicate a way of
writing modules for CFFP-based systems, and the versatility

of the file manager suggests that such systems are

relatively easy to modify.




CHAPTER 5

Conclusions and future research directions

CFFP . is an applicative computing ianguage derived from
FFP through three major alterations, |

1. Applications may execute as soon as they are
minimally defined. For' example,
(1:<(ADD:<3,5>),7) may execute to produce
(ADD:<3,5>). Such an application may persist
over possibly infinite streams of inputs by
performing a calculation on the heads of the
streams, and then reinstantiating itself on their
tails. This persistence is precisely the
behavior we require from history-senéitive
processes. | In addition, CFFP is more
asynchronous than FFP since dependent

applications may often act in parallel.

2. An indeterminate operation, rNEXT, joins the list
of primitive functions. This operation often
represents the random order of mesSage production
and reception between cooperating processes, énd
our descriptions of systems of communicating
processes rely on this new primitive and cycles

(the third alteration). The assertion that all
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copies of the same expression have the same
meaning and partial meanings allows the
consistent use of NEXT in our history-sensitive
system. In the history-sensitive system, several
copies of the same application may exist, and
should have the same meaning; to retain this
quality, we limit the indeterminacy of NEXT by
insisting that all copies of the same expression
continue to produce the same results. This form
of indeterminacy only represents an external view

of the operation and not its internal nature.

3. Distinguished applications and holes represent
explicit cycles. Since recursion produces new
instances and not copies, we must rely on this
structure to provide consistent, controlled
cyclic communication.

With these alterations, an application can serve as a
history-sensitive process such as a resource manager (e.g.,
file manager) or an entire system in which independent
processes act. In this way, CFFP provides a homogeneous
representation for simple computations, processes, and
systems. This homogeneous representation contrasts sharply

with AST systems [6] where applications only represent

computations, a state-changing mechanism activates
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aépiications and denotes a process, and no coﬁplete
representation exists for a system madé'up of two or moré
communicating proéesses.

Two modifications would imprové‘CFFP.

l. Some form of cyclé-formihg operation (similar to
the function rep;esenﬁed by APPLY) would allow
dynamic creation of general subsYstems. With any
such operation, Qe must also develop.a‘notibn oﬁ
wéll?formed cycle-formation to accompany the

concept of well-formed dapp. .

2. Holes should behave- more like aéplications.'
Currently, the partial meaning of a hole is the
reéultv at the hole when p finds the partial

 meaning of the hole's dapp} i.e.,
p<h> == {k<h>}{p{{e<h>}<h>}} .
Ideaily, p<h> should affect only <h>land not the

entire context of <h> (i.e., {©<¢h>}<h>).

In additioh,» three elaboratipns would enhanée éFFP:.
1)‘a set of formal conditions guaranteeing that a dapp is
(or is not) well-formed; 2) an algebra of programs similar
’tq that of Backus_for FP programs [6, 7]; 3) an alternate
notion of meaning which would include such non-terminating.
computations as wéll—formed dapps.

CFFP is a fundamental model of computing, and can
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serve as the basis for research in at least two directions:

1.

It supports new approaches to computer
architecture. Either Mago's machine [27, 28] or
Frank's machine [17] could serve as a starting

point in this direction.

A higher-level, user-oriented language could use
CFFP as its target. Conventional expressions

could denote applications:

3+4 (ADD:<3,4>)
2*8+7 (ADD: <(TIMES:<2,8>),7>)
7*%(6+13) (TIMES:<7, (ADD:<6,13>)>)

if 12<17 then 17-12 else 12-17
(<IF,LT,SUB*[2,1],SUB>:<12,17>)
A variable could represent one expression within
others.
- An assignment statement could form the

association between the variable and the
expression.

x 1= 3 + 8
This assignment would not represent storage
of a value in a location; instead, it would
specify that x represents 3+8 in other
expressions.

x*5==(3+8)*5

Only one assignment to a particular variable




should occur 'in any program. Other

pseudo-algorithmic, expression-oriented

-+ languages (Id [3] and Lucid [4]) have .

successfully used this- single-assignment

system.

- With suéh variabléé;' we may borrow some
notation from Landin  [26] to = ‘specify
complex applications.,

u* (u+l) ~v*(v+l)
where u := 2%*p+q;

vV = p-2*q;
p := 33;
g := 21

(SUB* [TIMES*[1,ADD*[1,'1]],
TIMES*[2,ADD*[2,'1]]]
* [ADD* [TIMES*['2,1],2],
SUB*[l,TIMES*['Z,Z]]]:<33,21>)
A higher-levei language should also contain >a
function-defining facility

~ A special assignment statement couldvarm a

definition.

fun absdif(a,b) := if a<b then b-a else a-b

DEF ABSDIF == <IF,LT,SUB*[2,1],SUB>

= An expression could directly use such a

definition,
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subr (u) ~subr (V)

where fun subr(x) := x*(x+l1);
u := 2*p+q;
v 1= p-2%qQ;
p := 33;
g := 21

and/or the definition could become part of
the evaluation mechanism.
Expressions, pseudo-variables, and definitions
are only a starting point toward building a
higher—level language, but they do suggest an

approach that might yield such a language.

Backus [7] argues that function level programs
are easier to understand and analyze than are
object level programs. A function level program
is a primitive function or a combination over
functions and function-valued variables, and an
object level program includes data-valued
objects. Any higher-level derivative of CFFP
should be a function 1level language or should
have a simple direct translation to the function

level. Backus' 1lift mapping [7] describes an

object level to function level transformation.
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APPENDIX I

Primitive functions

The following 1list of pr1m1t1ve operations includes
all those of Backus [5, 6] and this dissertation. In
Qeneral, the representation is given in terms of the
interaCtiﬁg semantics. These representations become
appropriate_to standard FFP when interhai evaluationsrare
disallowed, and to CFFP when evaluations fot CQmponentAdapps
andlholeé are added. EQ is not valid uhder the iﬁteracting
semantics or CFFP} énd its represehtation is uﬁder standafd'
FFP. F, IF, T and WHILE significantly chénge from standard
Eo'moré-defined FFP and we also provide the standard'FFP
represéntation for each of them.. N is the set of numbe;s.-
{ZAAIX == x=¢<z, £5,<yl, ... yn>> => <(f: Y1) yue s (E2 tyn) >;

x=<(f:2),y> => {fAA}<p(£f:2),y>;

x=<<z,£>,(g:u)> => {rAA}<<z,f>,p(g: u)>,
x=(f: z) => {rAA}{px}

{rADD}x == x=<nl,n2>, nl,n2eéN => nl+n2;
x=<(f:2),n> => {rADD}<p(f:2) ,n>;
,Xx=<n, (f:2)> => {rADD}<n,p(f: z)>,
x=(f:2) => {rADD}{px}

{LAND}x == x=<T,T> => T; .
x=<y,2>, Y,2¢{T,F} => F;
x=<(f:2) ,¥> => {rAND}<p(f:2z) ,y>;
x=<y,(f:2)> => {IAND}<y,p(£f:2)>;
x=(f:z) => {LAND}{QX} :




{IAPNDL}x == x=<y,¢> => <y>;
X=<Y,<X1l,...,XNn>> => <Y,%X1l,...,Xn>;
Xx=<y,(f:2)> => {LAPNDL}<y,p(f:2)>;
x=(f:2) => {LAPNDL} {px}

{LAPNDR}x == x=<¢,y> => <y>;
x=<<xl,...,xn>,y> => <xl,...,Xn,y>;
x=<(f:2) ,y> => {LAPNDR}<p(f:z),y>;
x=(f:2) => {LAPNDR}{px}

{LAPPLY}x == x=<f,y> => (f:y);
x=(g:z) => {fAPPLY}{px}

{EAL}x == x=<<z,f>,<yl,...,yn>> => <(f:¥1),¥2,...,yn>;
x=<(f:2),y> => {rAL}<p(f:z),y>;
x=<<z,£>,(g:u)> => {rAL}<<z,£>,p(g:u)>;
x=(f:2) => {rAL}{px}

{IAR}x == x=<<z,f>,<yl,...,yn,u>> => <yl,...,yn,(f:u)>;
x=<(f:2),y> => {rAR}<p(f:z),y>;
x=<<2,£>,(g:u)> => {rAR}<<z,£>,p(g:u)>;
x=(f:2) => {rAR}{px}

{LATOM}x == x€A => T;
x=<xl,...,xn> => F;
x=(f:2) => {rATOM}{px}

{rBU}lx == x=<<z,f,u>,v> => (f:<u,v>);
x=<(f:2) ,y> => {rBU}<p(£f:2),y>;
x=(f:2) => {rBU}{px}

{rCN}x == x=<T,<u,v>> => u;
x=<F,<u,v>> => v;
x=<(f:2),y> => {rCNI<p(f:z),y>;
x=<b, (£f:2)> => {LCN}<b,p(f:2)>;
x=(f:2) => {xCN}{px}

{rCOMP}x == <<z,fl,...,fn>,y> => (fl: (...} (fnsy)eed));
x=<(f:2),y> => {rCOMP}<p(f:z),y>;
x=(f:2z) => {rCOMP}{px}

89



{LCONS}X == <<Z fl,...,fn>,y> -> <(f1 Y),---,(fn:y)>;

X= <(f Z),y> => {LCONS}(Q(f z),Y>,
(f z) => {rCONS}{px}

{LCONST} == <<z,c>,y> => c;
x=<(f:2) ,y> => {LCONST}<p(f:z),y>;
x=(f:2) => {LCONST}{px}

"{LDBL}X == <X,x>

{LDISTL}x == x=<y,¢> => ¢;
©OX=KY <L 00 XNDD> =D KLKY,X1D 000 <Y, XDDD]
X=<y,(f:2)> => {IDISTL}<y,p(f:2)>; :
x=(f:2) => {rDISTL}{px}

{IDISTR}x == x=<0,y> => ¢; ' '
X=<<X1 000 ,X0>,¥> => <KLKX1,¥Y>,004,<XN,¥>>;
x=<(£f:2) ,y> => {rDISTR}<p(f: z),Y>,
x=(f:z) => {LDISTR}{Ex}

{rDIV}x == x=<nl,n2>, nl,n2éN => nl/n2;
x=<(f:2) ,n> => {DIV}I<p(f:2) ,nd>;
x=<n, (f:2)> => {rDIVi<n,p(f:z)>;
x=(£f:2) => {rDIV}{px}

{LEQ}x == <y,y>, y#lL => T; standard FFP only
x=<u,v>, u,vél => F

{LEQAT}x == x=<y,y>, Y€A => T;
X=<y,2>, Y,2€A => F;
x=<(£f:2),y> => {LEQAT}<p(f:z),y>;
x=<y, (£:2)> => {rEQAT}<y,p(f: Z)>.
x=(f:z) => {LEQAT}{RX} ' ‘

{LF}x == x=<y,z>‘=> zZ;
x=(f:2) => {rF}

standard,FFP: - C
{LFlx == x=<y,<f,2>> => (f;z)

90
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{LFST1}x == x=<<u,v>,<y,z>> => <(v:y),2>;
x=<(f:2),y> => {FST1}<p(f:2),Y>;
x=<y,(f:2)> => {FST1}<y,p(f:2)>;
x=(f:2) => {LFST1}{px}

{rID}x

]
"
»

{LIF}x == x=<<z,p,£,9>,¥y> => ((p:y)}<(£:y),(g:y)>);
x=<(f:2),y> => {rIF}<p(f:2z),y>;
x=(£f:2) => {rIF}{px}

standard FFP:
{LIF}x == x=<<z,p,£,9>,y> => ((p:y)}<<£f,y>,<g:y>>)

{LINSERT}x == x=<<Kz,£>,<y>> => y;
X=<<2,£>,<yl,¢..,yn>> => (£:(<KINSERT,f>:<y2,...,yn>));
x=<(f:2) ,y> => {LINSERT}<p(f:2),y>;
x=<<z,£>,(g:u)> => {LINSERT}<<z,£f>,p(g:u)>;
x=(f:2) => {LINSERT}{px}

{LLENGTH}x == x=¢ => 0;
x=<x1,...,Xn> => n;
x=(f:2) => {LLENGTH}{px}

{ENEXT}x == x=¢ => ¢;
X=<x1,...,xn> => {{Fxi}pxi=<yl,y2>} => i;
{Vxilpxi=¢} => ¢; L1l}:
x=(f:2) => {LNEXT}{px}

{ENOT}x == x=T => F; x=F => T; x=(f:z) => {LNOT}{px}

{ENULL}x == x=¢ => T;
X=<X1l,¢..,Xn> => F;
X€A => F;

x=(f:2) => {INULL}{px}

{IOR}x == x=<F,F> => F;
x=<y,2>, y,z€{T,F} => T;
x=<(f:2),y> => {LOR}<p(f:z),y>;
Xx=<y,(f:2)> => {LOR}<y,p(f:z)>;
x=(f:z) => {rOR}{px}
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{IREVERSE}x == x=¢ => ¢;
- x=<X1,...,XN> => <XN,...,xX1>;
x=(f:2z) => {LREVERSE}{px}

{XROTL}x == x=¢ => ¢;
x=<y> => <y>;
X=<X1,e0.,XN> => <X2,...,Xn,X1>;
x=(f:2) => {LROTL}{px}

{LROTR}x == x=¢ => ¢;
x=<y> => <y>;
X=<X1l,eccrxn,;y> => <y,X1l,...,%Xn>;
x=(f:2) => {LROTR}{px}

{LSEPL}xXx == x=<y> => <y,¢>:
X=<X1,...,Xn> => <X1,<X2,.4¢,XN>>;
x=(f:2) => {LSEPL}{px}

v

{ZSEPR}x == x=<y> => <¢,y>; ‘
 X=<X1,...,%X0,Y> => <<X1,...,X0N>,¥>;
x=(f:z) => {rSEPR}{px}

{rSUB}x == x=<nl,n2>, nl,n2eN => nl-n2;
x=<(£f:z),n> => {rSUB}<p(£f:z),n>;
x=<n, (f:2)> => {rSUBl<n,p(f:z)>;
x=(f:2) => {rSUB}{px}

{LT}x == x=<y,2> => ¥;
x=(f:2) => {rT}{px}

standard FFP:
{LTlx == <<E,y>,2> => (f:y)

{ITIMES}x == x=<nl,n2>, nl,n2eN => nl*n2;
x=<(f:2),n> => {LTIMES}<p(f:z) ,n>;
x=<n,(f:2)> => {LTIMES}<n,p(f:2)>;
x=(f:z) => {LTIMES}{px}

{LTL}X == x=<y> => ¢;
X=<xX1l,...,Xn> => <X2,...,;%¥n>;
x=(f:2) => {rTL}{px}
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{LTLR}x == x=<y> => ¢;
X=<X1l,.0.,Xn,y> => <xl,...,Xn>;
x=(f:2) => {LTLR}{px}

{LTRANS}xX == x=<b,...,0> => ¢;
Xx=<xX1l,...,Xn>
=> {¥isxi=<yil,...,yim>
=> <2l,...r2Mm> zj=<ylj, ..., yni>;
ti:xi=(£f:2) => {LTRANS}<pxl,...,pxn>; 1};
x=(f:2) => {LTRANS}{px}

{IWHILE}x == x=<<z,p,£f>,y>

=> ((p:y) }<(<WHILE,p,£>}(£f:y)),¥>);
(f:2) ,y> => {LWHILE}<p(f:2),y>;
f:2) => {fWHILE}{px}

x=<
x=(
standard FFP:
{IWHILE}x
== x=<Lz,p,£>,y>

=> ((p:y) }<<<COMP,<WHILE,p,£>,£>,y>,<ID,y>>)

{ES}Xx == X=<X),.0e/,XS,00.,XN> => XS;
x=(f:2) => {rs}{px}

{L8R}X == X=<XN,¢0ee;XS,.0.,X1> => Xx5;
x=(f:2) => {rsR}{px}




APPENDIX II .

Formal properties

_Tﬁree of Backus six formal properties [5] are
observations; these are the ,"aﬁti-quote" property,
nbn-exténsionality; and single-type functions. We prove the
remaining’three properties for CFFP és follows.

1. idempotency. n{mx} = mx.

We enumerate the possible forms of x.

case l: x€A => mx = x => m{mx} = mx
case 2: x=] => mx = x => m{mx} = mx
~case 3: x=y => mx = x => m{mx} = mx
case 4: x€H => mx = ¥ => m{mx} - W = ¥ = X

case 5: x =<x1, . . . ,%Xnd>
' => mx = <mxl, . . . ,;mxn>
=> m{mx} = <m{mx1}, . . . ,m{mxn}>
= <mxl, . . . OXN>
by structural induction
case 6: x = (f:y) => mx = m{px}

px € AU {<xl,...,xn>} U {1} U {w}.
=> nimx} = m{mp{px}} = m{px} = mx

case 7: x = (fly) => mx = m{px]
px € {d¢} U {<kl,...,xn>}iU {u}
=> ni{mx} = mi{m{px}} = m{px} = mx
2. the chuxgh-Bstgx-pxgnngxy'

a. X==>>y; X-->>z; y,z€C => y=z

b, x-=>>y => y-->>mx




We begin by formalizing the notion of transition
(reduction), and observe that any transition is
the substitution of the execution of a component
application or dapp for that application or dapp.
The set X denotes executable applications and
dapps.
Definition 1.
X == {(f:x)|fep,df=#,fePi, xepi}
U {(£:x) [feh,df=gF#} U {(L:x)}
U {(f:x)|f=<£f1,...,£fn>}
U {(flx)eZ] (£:x)eX}
where the sets Pi and Ai are those of figure 6.
[x/y}z denotes the substitution of x for a
particular y in 2z, and x:X-->E is the execution
function,
Definition 2.
Xx == x=(f:y)
=> {feld => {df=#% => {rfly;

df=g => (g:y)};
£=<£f1,...,£n> => (£fl:<£,y>);

f=1 => 1};
x=(fly)eZ
=> {fep => {df=#% => { {rfly=(g:z)

=> (glz);
yi{{rfiy} };
df=g => (gly) }:
f=<f1,...,En> => (£f1I<E,y>)}

We next establish a lemma which asserts that

execution does not change partial meaning.
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' Lemma 1.
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pi{xx} = px

There are nine valid cases

';ase
casg
case
: cage

case

case

case

case

case

1.

DX

x=(£f:y), f€p, df=#
px = p{{rfly} = p{xx}

x=(f:y), fep, df=g##
Rx = p(g:y) = p{xx}

x=(f:y), f=<f1, . . . ,fn>
px = p(fl:<f,y>) = p{xx}

x=(l:y)
px = | = p{xx}

x=(fly), fep, df=#, {rfly=(g:z)
px = y{p(f:y)} = yi{p(g:2)} = n(glz)

pi{xx}

x=(fly), fep, df=#, {rfly=¢
px = y{p(f:y)} = y6 = ¢ = po
pixx}

x=(fIY)l fea, daf=4, {If}y=<giz>
yip(f:y)l = y{p<z,9>} = y<z,9>
<z',g9'> = p<z',9'> = p{y<z,g>}
p{xx} '

x=(f|y), fea, df=g##
px = y{p(f:y)} = yi{p(g:y)}
pl(gly) = p{xx}

x=(fly), £=<£fl;...,fn>

px = y{p(fl:<f,y>)}

= R(flI<Ef,y>) = p{xx}

As a corollary we show that whenever x has no

partial méaning} neither does its execution (M’

isxthe'set of expressions with partial meanings).




Corollary 1. =x¢gM' => xXxe¢M'
proof: Xxe€M' => px=p{xx} => xeM'

We now need an ordering on expressions, and
choose the partial meaning as the basis for this
ordering. Any expression is less defined than or
equal to ( £ ) its partial meaning, and any
expression with components <€ all those of a
second expression is also <€ that second
expression; formally,

Vxe {W}UE: w€x
VxeE: |€x, x<£px
VYkeK: xj€xj' => k([x1,...,Xj,e0e,%n]
€ k[xl,eeer/xj',e..rxn]

Under this ordering, m, p, and all primitive

functions are continuous, and this leads directly

to lemma 2.

Lemma 2. xeM, yeM' => mx = m{lpy/ylx} .

Yy £py => mx € mn{lpy/ylx}
mx # m{[py/ylx} => ¥cel: c#pc
contradiction

Based on lemmma 2, we prove lemma 3.

Lemma 3. x-->x' => mx=px'
L]

X
ox'

-—
-

[xy/ylx

n{[xy/ylx}

n{[p{xy}l/xy] {[xy/ylx}} (lemma 2)
n{(p{xy}/ylx}

n{lpy/ylx} (lemma 1)
mx (lemma 2)
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Lemma 3 immediately results in the Church-Rosser
property since

X==>>y, Xx-=>>z => Ny = bz = IX
by induction on the number of transitions, and

y = my, zZ = Iz => y:z:mx

Part b follows since y-->>my by replacing each

execution step in my by a transition.

3. the reduction QIQQEILX. n{lmy/ylx} = mx .

This is essentially a corollary to Church-Rosser.
By prqviding a transition for each execution in
my we have

x==>>[my/y]lx
and

mx = n{[my/ylx} by lemma 3.






