
UC Irvine
ICS Technical Reports

Title
An applicative computing language

Permalink
https://escholarship.org/uc/item/4gr2r5g0

Author
Minne, Joseph Paul

Publication Date
1983

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4gr2r5g0
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

UNIVERSITY OF CALIFORNIA

Irvine

An Applicative Computing Language

-Z.og'
A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in Information and Computer Science

by

Joseph Paul Minne_

Committee in charge;

Professor Lubomir Bic, Chair

Professor Fred M. Tonge

Professor George S. Lueker

Professor Kim P. Gostelow

1983

63

ho,

c 1983

JOSEPH PAUL MINNE

ALL RIGHTS RESERVED

The dissertation of Jos^ii Paul Minne is approved,

and is acceptable in quality and form for

publication on microfilm:

//]. \Sy^y,
6 L/ ^

Coimttee Qiair-

University of California, Irvine

1983

n

DEDICATION

This dissertation is dedicated to my family,

Wendi Anne Georges Minne,

Paul and Judith Minne,

and

Joseph and Magdalena Nagy.

Their love and support were invaluable.

Ill

CONTENTS

List of Figures vi

Acknowledgments viii

Vita ix

Abstract x

Chapter 1: Introduction 1

1.1 Weaknesses of von Neumann computation . . 1

1.2 Computing systems and
applicative computation 3

1.3 Closed applicative languages 5

1.4 Formal functional programming (FFP) ... 9

1.4.1 The elements of FFP 10

1.4.2 Programming in FFP 13

1.5 Computational properties of
CALs and other languages 17

Chapter 2: Approaches to applicative computing . 21

2.1 Origins 21

2.2 Similar research 26

2.3 Other related research ... 30

2.4 CAL architectures . 32

Chapter 3: Applications, processes,
and computing 33

3.1 Processes 33

3.2 Applications which compute 35

3.3 Streams 36

3.4 A more-defined semantics 38

IV

3.5 Sieve of Eratosthenes 45

Chapter 4: Complete computing systems 47

4.1 Process interactions . 47

4.2 Indeterminacy 49

4.3 Cycles . 52

4.4 CFFP 55

4.5 Formal properties 66

4.6 Interprocess communication 68

4.7 Resource managment in CFFP 69

4.7.1 Disk controller 69

4.7.2 File manager 74

Chapter 5; Conclusions and future
research directions 79

Bibliography 85

Appendix I; Primitive functions . 88

Appendix II: Formal properties 94

LIST OF FIGURES

Figure Page

1. CAL summary 9

2. Basic syntax for FFP 10

3. Complete FFP semantics 12

4. Notation for selected functional forms ... 14

5. An evaluation by the interacting semantics . 40

6. A partition of primitive atoms 41

7. Evaluation using partitioned
partial meaning 41

8. Partitioned partial meaning 42

9. A prime number generator 45

10. Transformation from Keller 53

11. Transformation with indeterminacy 54

12. Nested cycles 58

13. Well-formed dapps 60

14. Meaning function 60

15. Partial meaning function 60

16. Conversion function 61

17. Consistency function 61

18. Substitution function 61

19. Context function 61

20. Extraction function 61

21. Controller structure 71

22. Disk controller 72

VI

23. File manager

Vll

ACKNOWLEDGMENTS

I am indebted to my advisor, Kim P. Gostelow. Kis

patient guidance and helpful insight were valuable

contributions to this work. I also wish to thank Lubomir

Bic, Fred Tonge, and George Lueker for reviewing and

commenting upon drafts of this dissertation. Finally, I

wish to express my appreciation to Arvind, Wil Plouffe, Bob

Thomas, and Jim Neighbors, for their criticism and helpful

suggestions.

Vlll

VITA

1973 B.S. in Mathematics and Physics, University
of Southern California, Los Angeles

1973-1975 Teaching Assistant, University of California,
Irvine

1975-1976 Senior Mathematical Analyst, Manufacturing
and Consulting Services, Inc., Costa Mesa,
California

1976-1978 Research Assistant, University of California,
Irvine
Area; Dataflow Architecture

1978-1979 Instructor at University of California, Irvine

1980-1982 Assistant Professor of Mathematics and Computer
Science at The College of William and Mary,
Williamsburg, Virginia

1982-1983 Member of the Technical Staff, Hughes Aircraft
Company, Fullerton, California

1983 Ph.D. in Information and Computer Science,
University of California, Irvine
Dissertation: "An applicative computing
language"

IX

ABSTRACT OF THE DISSERTATION

An Applicative Computing Language

by

Joseph Paul Minne

Doctor of Philosophy in Information and Computer Science

University of California, Irvine, 1983

Professor Lubomir Bic, Chair

Closed applicative languages (CALs) are a highly

parallel and semantically appealing models of computation,

but they do not address process and resource related issues

in computing; i.e.;

- they do not express histories of computation.

- they cannot describe interprocess communication.

This dissertation defines a new model, CFFP, derived

from a CAL, FFP, which addresses these issues. In CFFP, the

semantics of FFP are relaxed to allow a computation to

persist over a series of actions, and explicit cycles are

added to allow bidirectional communication between loci of

computation. CFFP retains the appealing characteristics of

CALs, and addresses process and resource related computing

issues.

CHAPTER 1

Introduction

1.1 Weaknesses of von Neumann computation

John von Neumann [10] developed the model which

characterizes conventional computation over thirty years

ago. This model divides a computation into a series of

primitive instructions, and sequentially executes these

instructions in a central processing unit (CPU). A separate

memory unit holds the instructions and their data until

execution, and accepts the results afterward. Information

passes between these two units one element (instruction or

datum) at a time!.

Several persons have expressed dissatisfaction with

the von Neumann model, and advocate alternatives to it.2

Their objections arise from at least two factors:

1. The cost of fabricating processing elements^ has

This description essentially characterizes conventional
computation even though it may diverge from the specific
description of a particular computing machine.

''These persons include Arvind, Gostelow, and Plouffe
[1, 3], Backus [6], Berkling [9], Dennis [16], Frank
[17], Friedman and Wise [21], Keller, Lindstrom, and Patil
[25], Landin [26], Mago [27, 28], Tonge and Cowan [34],

and Turner [35] .

^Processing elements are devices capable of executing
a primitive instruction.

1.2 Computing systems and applicative computation

A computer must accomplish many tasks in addition to

computation. At the very least, we expect it to communicate

with us, and to manage a collection of associated devices

(e.g., card readers, line printers, and tape drives). In

general, it must coordinate the collection of concurrent

processses and logical resources typical of a modern

time-sharing environment. Any successful model of computing

must model these activities in addition to modelling

computation. In the remainder of this dissertation,

computation refers to the functional combination of values,

and computing refers to the full range of computations and

resource-sensitive activities.

A computing system might incorporate CALs (or close

CAL-variants) in several different ways. An ideal

incorporation would represent the entire system and each

process as a computation, and would embed each resource

within a supervising computation. This direct incorporation

system makes no distinction between computation and other

aspects of computing; thus, it preserves all desirable

properties of CALs.

The direct incorporation method cannot directly employ

the notion of computation expressed in CALs. Systems,

processes, and resource managers (specialized forms of

processes) constitute a set of asynchronously interacting

computing language.

- Chapter 5 concludes this work with some

suggestions for future study.

1.3 Closed applicative languages

Closed applicative languages (CALs) have four major

components: constructor syntax, distinguished constructors,

meaning functions, and representations. The basic meaning

function is identical for each CAL, but the other three

components may vary within the constraints described below.

- Constructor syntax.

A constructor syntax for a set of expressions, £,

consists of a set of atoms, and a set of

constructors, K, which together define £. The

atoms are the primitive expressions of £, and the

constructors map sequences of expressions into new

expressions. Each constructor operates on

sequences of a specific length, n^O, and is a

function from some subset of JE" into £.

Any expression, e, is either an atom or the result

of some constructor, k, acting on some sequence,

[el,...,en]. if e is an atom, then it is not a

construct. If e is a construct, then its

construction is unique.

evaluation requires the use of the representation

function.

- The representation function.

Each constant expression represents a function

which maps constants into expressions. The

representation function, X/ returns that function,

i.e.,

i:£~> {£-->£} .

Given constant expressions f and x, the meaning of

their application, ap[f,x], is the meaning of the

expression resulting when the function represented

by f acts on x. If f or x are not constants, the

meaning function must evaluate them as required

for any construction, before x pr its result is

applicable^

inap[f,x] = in{ {x{iGf}} {mx}}

In addition to their basic elements, CALs also posses

a transition function, tf which maps £ into £. In general,

£ implements m by defining a set of. executable

5
Throughout the following discussion, the result of

applying a function to an expression will be denoted by
juxtaposition. Set-brackets "{ }" will often associate
a function with its argument expression, but this
notation has no syntactic or semantic significance
beyond clarifying the operational association.

CAL == (E=(A,K) fapejs;,£,jD,j:)

1.

2. ke£ => •}-n20,E'cE'^ ; k;E'—>£
2.1 k/^ap, ci6£, e=k [cl,... ,cn]€£ => ee£
2.2 c«=£,c^A => +kj«^ap,cie£: c=k[cl, ,cn]

3. 66^ => V[k:E*—>E]e£, [el,... ,en]eE': eA [el,... ,en]
4. ee£ & e^h

=> 4.1 tk^K,[el,...,en]: e=k[el,...,en]
4.2 h?^k => V[xl,... ,xni] : ej^hlxl,. .. ,xin]
4.3 [xl,... ,xn]/^[el,.. .en] => eA [xl,... ,xn]

5.]-£l££: ni:U—>£ &
6. ft:£—>E > {VefeE: ine=c <==> tn20:i'^e=c££}
7. Vk€£,k/4ap: ffik [el,... ,en] = k [mel,... ,iDen]
8. j:;E~> {£-->£}
9. inap[f,x] = m{ {j:{inf}} {mx}}

Figure 1. CAL summary

denotes a sequence of transitions leading from e to e''.

Figure 1 summarizes our description of CALs. Axioms

one through four express syntactic constraints, and five

through nine semantic ones. These rules allow a choice of

h, Kf and x to specify a particular CAL.

1.4 Formal functional programming (FFP)

Formal functional programming is the best known closed

applicative language. It embodies the principles of CALs in

a form which we can use as the basis of a new language

(developed in chapters 3 and 4) encompassing all the

elements of computing. This new language will not be a CAL,

but it will preserve the essential qualities of one.

11

function on constants is as follows;

a. For 1, L returns "U", the everywhere

undefined function, which returns 1 for any

argument expression.

b. For any constant sequence, n returns a

function which forms a new application.

The function-part of this new application

is the first element of the original

sequence, and the argument part is the

pairing of the original sequence and the

original argument,

{l.<f1 r. . . f f n> }x == (fl s <<f1,. .. ,fn> ,x>) fi,xe£

c. All atoms represent either primitive

functions (primitive atoms) or

programmer-defined functions (defined

atoms). Initially, all atoms are

primitive, and most of them represent

U. Appendix I lists a set of primitive

atoms which represent other functions

together with those functions.

In an FFP environment, the user may execute

the meta-expression

DEF a == c aeAfCe£

13

semantic basis for the variations on FFP described in

chapters 3 and 4.

1.4,2 Programming in FFP

Applications correspond to conventional programs.

Their function-parts correspond to program bodies, and their

argument-parts to program data. In the simplest case,

function-parts are primitive atoms representing some basic

operation (e.g., ADD), and the applications perform a

straightforward calculation (e.g., (ADD;<2,3>) —> 5). More

complex cases display a rich set of constructs for forming

programs.

Sequences can act as program structures. (In FFP, one

often refers to program structures as functional forms.)

For example, <WHILE,p,f> acts as a while-loop, and

<IF,p,f,g> serves as an if-then-else construction®; p stands

for a predicate, and f and g represent general functions.

In the while-loop, f serves as the loop-body, and in the

if-then-else, f is the then-clause, and g is the

else-clause. Another functional form is <CONS,fl,...,fn>

which indicates the parallel execution of the fi. Initial

^p, f, and g are arbitrary constant expressions. Lower
case letters denote unspecified expressions throughout this
dissertation.

15

produces

in(<IF,ATOM*l ,ADD, @ARBADD*TRANS>: <4,.5>)

by replacing ARBADD with its definition, and the FFP rule

for the representation of a sequence in turn produces

ID (IF : <<IF, <COMP, AT0M,1> ,ADD, <COMP, <AA, ARBADD> , TRANS> > ,
<4,5>>) .

IF is a primitive function, and the rule for primitive

functions results in

id{ {j:if}<<if,<comp, atom, 1 , add, <comp, <aa,arbadd> ,trans>> ,
<4,5>>}

where the evaluation of constant parts has been omitted.

Executing the representation of IF creates

in((ATOM* 1: <4 ,5 >) ; <<ADD, <4 ,5 >> , <<COMP, <AA, ARBADD> , TRANS> ,
<4,5>>>)

= IIl(m(ATOM*l:<4,5>) ; <<ADD, <4 ,5>> ,
<<COMP,<AA,ARBADD>,TRANS>,<4,5>>>)

Evaluating (AT0M*1:<4,5>) produces

id(COMP;<<COMP,ATOM,1>,<4,5>>) ,

and this results in

ni(ATOM: (1 : <4,5>)) .

(AS in the last derivations, we will henceforth omit

primitive executions of x in the interest of clarity and

brevity.) The evaluation of (AT0M*1:<4,5>) concludes with

ID(AT0M:id(1 : <4,5>)) = m(AT0M;4) = T ,

and the evaluation of (ARBADD:<4,5>) becomes

ID(ARBADD: <4,5>)

17

The final six instances of juCARBADD: . . .) indicate a

high degree of explicit parallelism; they are independent

evaluations. This parallelism reflects the independent

operations performed in adding matrices. Conventional

programming languages obscure and constrain such concurrency

while FFP naturally expresses it.

1.5 Computational properties of CALs and other languages

Backus [5] asserts that closed applicative languages

possess six important formal properties in addition to their

natural expression of parallelism.

1. I.d£mpptency q£ meaning. The meaning of an

expression is also an expression, and such

meanings always evaluate to themselves.

2. "aPi;!-quote" property. Constant expressions

represent themselves, and representing values

requires no special quoting mechanism.

3. Non-extensionality. The meaning of an expression

is not the function it represents. As such,

functional equality of expressions e and x does

not guarantee fe = fx for an arbitrary function

f.

4. ^inglc-typp functions. All allowable functions

are mappings from the same domain onto the same

19

it does not distinguish its applications from its sequences.

This ambiguity causes LISP to violate idempotency. In

addition, LISP expressions employ variables, thereby

violating the anti-quote property since variables stand for

other values and not for themselves.

The lambda-calculus and combinators are the

progenitors of both LISP and CALs. These older formal

languages analyze the concept of a function, and their

definitions of meaning rely on functional equivalence? i.e.,

they are extensional. In addition, the concept of reduction

in the lambda-calculus is more complex than that found in

CALs, which makes establishing and using the Church-Rosser

and reduction properties more difficult. Combinators also

suffer from this added complexity because they have multiple

function-types.

CALs rely on three critical features in satisfying the

six formal properties.

1. Applications are clearly distinct from all other

constructs. Since applications correspond to

computations, this feature guarantees

idempotency.

2. There are no variables. This negates any need

for a notion of quoting.

3. All expressions are based on a constructor

CHAPTER 2

Approaches to applicative computing

2.1 Origins

Closed applicative languages derive from two systems

of mathematical logic: the combinatory logic of Schonfinkel

[31] and Curry [13, 14], and the lamba-calculus of Church

[11]. The primitives of combinatory logic are an arbitrary

set of free variables and a specified set of combinators;

the free variables represent themselves, and the combinators

stand for functions which act on any objects in the logical

system. Combinatory logic forms new objects (combinations)

by pairing (e.g., (A B) is a combination if A and B are

combinations); by co.nvention, ABC denotes the same

combination as ((A B) C), and parentheses are often omitted

when this precedence rule determines the intended

expression. J is a typical combinator, and represents a

function such that

J A B C D ~> A B (A D C) .

Systems of combinatory logic are not closed applicative

languages in the Backus sense since pairs may denote either

constants or applications; if u, v, x, and y are free

variables, (J x) denotes a combination which happens to be

the constant (J x) while ((((J u)v)x)y) denotes an

application with operator (((J u)v)x) and operand y; i.e..

21

23

others are not constants in the CAL sense, and their

evaluation violates the CAL rule that the meaning of a

non-application is found by evaluating its components.

Combinators and the lambda-calculus form a basis for

McCarthy's LISP [30]. The atoms of LISP are character

strings (DOG, CAT, 1, CAR, CDR, QUOTE, SURPRISE), and the

sole constructor is pair formation (A . B); list notation is

an abbreviation for pair notation in commonly occurring LISP

expressions? e.g.,

(x) = (x . NIL)

(xl x2 x3 x4) = (xl , (x2 . (x3 . (x4 , NIL))))

(xl x2 x3 . x4) = (xl . (x2 . (x3 . x4)))

LISP evaluates expressions as follows:

- If the expression is an atom, the expression

associated with it on an auxiliary list is

evaluated.

- If the expression is (f . x) , and f is an atom,

one of three cases holds.

1. f represents a fundamental LISP combinator.®

The combinator executes on the evaluation of

some portion of x.

Q

°The atoms representing fundamental LISP combinators
are ATOM, EQ, CAR, CDR, and CONS.

25

basis for recursion; the factorial function

f(n) = if n=0 then 1 else n*f(n-l,)

becomes

Y(Af.Xno{if n=0 then 1 else n*f(n-l)}) .

Applicative expressions anticipate CALs; Landin defines

their structure through a precursor to constructor syntax^,

the meaning of an expression derives from the meanings of

its components, meanings are constants, and the evaluation

mechanism (SECD machine) uses an explicit ap-constructor.

Landin's applicative expressions are not CALs because the

meaning of a lambda-expression is not an applicative

expression.

Backus introduced closed applicative languages in 1973

[5], and elaborated on them in 1978 [6] and 1981 [7].

- The 1973 paper presents CALs as the innermost

members of a four-level containment hierarchy,

[programming languages
[complete languages

[applicative languages
[CALS]]]]

delineates the six formal properties given in

Chapter 1, and defines two CALs related to FFP and

one related to lambda-calculus.

9 Expressions are either an identifier or a construction of
independent components, and require no detailed syntax.

27

part of the computation might require it; e.g., standard

LISP evaluates

(CAR (CDR (CDR
((LABEL FF (LAMBDA (X)

(CONS X (FF (PLUS X (QUOTE 1)))))) (QUOTE 1)))))

forever^®, but both more-defined LISPS produce 3 as their

result. The principal difference between the two systems is

that Henderson and Morris provide a complete new evaluation

mechanism while Friedman and Wise concentrate on suspended

evaluation of CONS (the construction operation). Suspended

evaluation in LISP is similar to partial evaluation in

more-defined FFP (section 3.4).

Friedman and Wise [20, 21] address the issue of

indeterminacy in LISP through the new constructor FRONS.

FRONS constructs a list which suspends both the evaluation

of elements and the definition of their order; e.g., (FRONS

X (FRONS y (FRONS z NIL))) produces a pseudo-list^^ {x y z}

whose elements are x, y, and z in no special order. A FRONS

structure gains order as selectors require it, and the

structure retains this order through all subsequent probes;

(LAMBDA (X) (CAR (CDR (CDR X)))) denotes the selector of
the third element in a list, and (LABEL FF (LAMBDA (X) (CONS
X (FF (PLUS X (QUOTE 1)))))) represents a function which
infinitely computes the list of integer beginning with a
seed value.

^^This pseudo-list is called a multiset.

29

(co>M£) (car') (c dk)

FGL is a valuable tool in analyzing LISP-like languages, and

the tree architecture can execute a wide variety of loosely

related languages.

Berkling [8, 9] describes a variation on the

lambda-calculus and a conventional stack-oriented

implementation of it. Berkling's language uses three

explicit application constructors to indicate distinct

computation rules; if (f:x) is an application with

lambda-expression f, the three computation rules are;13

1. m(f:x) == m{{xf}x}

2. IE!(f:x) == m{ {if Hffix} }

3. in(f;x) == ffi{ {x{inf} }x}

Berkling's language also eliminates the need for a set of

13The description of computation rules uses the notation
of section 1.3.

CFFP (section 4,4) achieves a similar result

through a combination of serial and parallel

construction.^^

S(P(S(P(first,producer_process),select),rest),apply)

FIRST

SELECT Cf—<

applx PRODiACER_pRO(:ei6

Rest

31

2. They exclude cycles, and achieve cyclic results

through a form of recursion. CFFP retains cycles

to deal with issues developed in chapter 4.

Lucid [4] is an assertion-oriented programming

language. In Lucid, equality assertions replace assignment

statements, programs are an unordered set of such

assertions, and the fundamental data concept is an infinite

stream (history of values in a variable) . These

characteristics facilitate a system for proving properties

denotes serial process construction, and P
denotes parallel construction.

CHAPTER 3

Applications, processes, and computing

A computation is a self-contained activity, but an

activity in a computing system (e.g., an operating system)

may depend on the states of other independent elements

within the overall system. These elements may be resources

(card readers, line printers, files, etc.), other

activities, or the system itself. Since the states of these

elements cannot be predicted in advance, a computing

activity is inately history-sensitive, and requires some

mechanism for communicating with the other elements of its

environment. Operators in such a system should be

non—strict since the activities they represent generally

depend only on the instantaneous presence of a small part of

their input. Computing activities are called processes.

3.1 Processes

A process is the basic activity in computing systems.

It executes computations which may depend on external

factors. A process may also represent resources or the

entire computing system.

Processes represent resources by acting as reson rcp

managers. Line printers and files are typical resources.

- The manager of a line printer might accept tagged

output requests for printing. The tags indicate a

33

35

3.2 Applications which compute

Processes are the activities in computing systems, and

applications are the activities in CALs. With this

parallel, using applications as processes seems natural;

however, unmodified applications cannot serve as processes

for two reasons;

1. Applications view computations as isolated

events. With this outlook, they cannot be

history-sensitive.

2. Applications are completely self-contained. This

restricts an application to communication with

only those applications which are "above" it

(i.e., those which syntactically contain it).

History-sensitive, fully-communicating applications could

serve as processes in a CAL-like computing system.

If applications required only enough information to

begin a computation, they could execute on a stream of

inputs. This is exactly the form of history-sensitive

behavior required of processes. Allowing applications to

execute on less than completely specified arguments requires

changes in the meaning function of a CAL. Section 3.4

presents such a modification to a in FFP.

As CALs are currently defined, an application

communicates only to those which contain it. This results

37

<x,y>, where x represents the first packet in the

stream, and y (a stream) denotes the rest of the

stream.

2. The null atom tj) expresses the distinct

termination of a finite stream; e.g.,

<A, <B, <C, (t)>>> is a three, element stream.

3o A stream generator is represented by an

application. If GEN acting on an integer

produces the pairing of that integer with the

application of GEN to the integer's successor

(e.g.f (GEN;4) —>> <4,(GEN;5)>), then

<1,<2,(GEN;3)>> is one possible denotation for

the stream of positive integers.

The expression

<zl ,<z2, (f ;<yl,<y2,<y3, (g;<xl,<x2,(j)>>) >>>)>>

depicts a history—sensitive computation, f and g represent

history-sensitive functions. g is a stream generating

function, acts on a finite stream of inputs (of which xl and

x2 remain), and sends its stream of results (represented by

yl, y2, and y3) to f. f is also a stream generating function

and acts on g's output to produce the ultimate stream of

outputs (zl and z2) .

39

P(GEN:1) = <(ID;1),(GEN*ADD*[ID,'l]:1)>

since the right-hand side expresses the form of the result

without evaluating either of the internal applications, and

£(1*GEN:1) = 1

since any less-evaluated result is still an application.

The partial meaning of any non-application is itself.

We can define the meaning function to use p to

evaluate applications.

IDx == xe^ => x;

X = <xl,...,xn> => <inxl,. .. ,jnxn>;
X = (f :z) => in{fix} ;
1

p returns a non-application, and js continues its evaluation

if necessary.

One specification of p is

px == xe^ => x;
X = <xl,...,xn> => x;
X = (f;z) => {fe^ => {df=# => E{{i:f}2};

df=g => p(g;z)};
f = <fl,...,fj> => p(fl;<f,z>);
p(pf:2)};

1

This p does not evaluate the argument parts of applications;

instead, it passes this responsibility to the primitive

functions. These revised functions^S invoke p to produce

the required form of argument; e.g.,

^^Appendix I provides a list of primitive functions.

41

£1 = {AA,AL,AR,CN,EQAT,FST1,INSERT,AND,OR,
ADD,SUB,MUL,DIV,LT,LE,GT,GE}

A1 = {<x,y> I x,y7« (f :z) }

£2 = {TRANS}
A2 = {<xl,... ,xn> I xi=<yl,. .. ,yj> or xi=<t)}

£3 = {APNDL,DISTL}
A3 = {<x,y> I

£4 = {APNDR,DISTR,COMP,CONS,CONST,IF,WHILE,BU}
A4 = { <x, y> I x;^ (f ; 2) }

£5 = {APPLY,ATOM,LENGTH,NOT,NULL,REVERSE,ROTL,
ROTR,SEPL,SEPR,TL,TLR,S,SR,T,F}

A5 = {X I x/ (f : 2) }

£6 = {DBL,ID}
A6 = £

Figure 6. A partition of primitive atoms

partition to determine an appropriate depth of evaluation.

This "partitioned semantics" requires no interaction between

p and the primitive functions. Figure 7 evaluates

(1;(GEN;1)) using the new p.

in(l; (GEN:1)) = m{p(l; (GEN: 1)) }
= in{p(l:p(GEN:l)) }
= in{p(l;p([ID,GEN*ADD*[ID, '1]] :1)) }
= Ill{p(l:p(CONS;<[ID,GEN*ADD*[ID, '1]] ,1>)) }
= ID{E(l:p{{xCONS:<[ID,GEN*ADD*[ID, '1]] ,1>}>}
= in{£(l:£<(ID:l) , (GEN*ADD*[ID,'1] :1) >) }
= m{p{{xl}<(ID:l),(GEN*ADD*[ID,*1]:1)>}}
=m{p(ID:l)}
= lD{p{ {XID}1} }
= in{pi}
= ml
= 1

Figure 7. Evaluation using partitioned partial meaning

The two versions of partial meaning differ only in

minor details. The interacting p blurs the distinction

43

primitive functions. EQ cannot represent a primitive

function since an appropriate depth of evaluation cannot be

predetermined. T can result only from a totally evaluated

argument, but F can reasonably result from less than total

evaluation. IF, WHILE, T, and F should represent more

asynchronous and evocative functions.

EQ's function becomes

DEF EQ == <IF,AND*@ATOM,EQAT,
<IF,OR*@ATOM,'F,
<IF,EQAT*(aLENGTH,/AND*@EQ*TRANS, 'F>>>

This new definition of EQ produces results whenever the old

one does so, and also produces some results when the

original primitive definition does not. With the

more-defined semantics and new EQ,

(EQ;<(TPL:1),(2PL:1)>)

returns F when

DEF TPL == [TPL,TPL,TPL]
DEF 2PL == [2PL,2PL] ,

but evaluation under basic FFP never terminates. Both TPL

and 2PL recurse infinitely, but under one execution of

partial meaning (TPL:1) produces

<(TPL:1),(TPL:1),(TPL:1)>

and (2PL:1) produces

<(2PL:1),(2PL:1)> .

With this structural information, application of the new EQ

45

applications whose function and argument parts are in

corresponding sets under the partitioned semantics, t could

substitute for any of the applications in

(1;<(ADD;<4,5>) , (APNDL: < (ID; 9) ,<^>)» ,

with the outermost as a direct route to the meaning^^ in

general, de£in^<3 Qppiications denotes the class for which i.

can substitute.

3.5 Sieve of Eratosthenes

A prime number generator based on the Sieve of

Eratosthenes demonstrates the history-sensitive behavior now

possessed by applications. Figure 9 defines the necessary

functions:

DEF PRIMES == PASS*[ID,SIEVE*GEN*'2]

DEF PASS == <IF,EQAT*[1,'0] ,'(J>,

[1*2,PASS*[SUB*[l,'l] ,2*2]]>

DEF SIEVE == [1,SIEVE*DIVBY*[[1,1],2]]

DEF DIVBY == <IF,EQAT*[2*1,1*2],DIVBY*[1,2*2],
<IF,LT*[2*1,1*2] ,DIVBY*[[1*1,ADD*1] ,2] ,

[1*2,DIVBY*[1,2*2]]>>

DEF GEN == [ID,GEN*ADD*[ID,'1]]

Figure 9. A prime number generator

- (PRIMES:n) generates a stream consisting of the

first n prime numbers.

^®The semantics do not specify this route, but do allow
it.

CHAPTER 4

Complete computing systems

4,1 Process interactions

Two or more processes may cooperate in performing some

operation. In doing so, they form a new composite process.

The following three structural forms specify the nature of

this cooperation.

1. Serial execution^ Two processes, PI and P2, form

a composite process, S(P1,P2), such that the

composite's input is the input to PI, the

composite's output is that of P2, and the output

of PI is the input of P2.

1

5(Pl,P2)

K2 PI Q •

2. Parallel execution. PI and P2 act independently

on a common input, and combine^^ their outputs

20 Any information-preserving combination may be used
since a following operator can produce an alternate
combination.

47

49

These constructions easily expand to ' include an arbitrary

number of processes; e.g.,

S(P1,P2,P3) == S(P1,S(P2,P3))

P(P1,P2,P3) == P(P1,P(P2,P3))

C{P1,P2,P3) == C(P1,S(P2,P3))

Tonge and Cowan [34] also examine the ways that two or more

processes might cooperate; they propose a slightly different

set of constuctors as described in section 2.3.

More defined FFP easily expresses serial and parallel

executions. Function composition indicates the same flow of

information from PI to P2 as does the serial process

structure,

S(P1,P2) == P2*P1

and functional constuction describes parallel execution.

P(P1,P2) == [P1,P2]

Sections 4.3 and 4.4 address cyclic execution.

4,2 Indeterminacy

Processes in a real computing system (e.g., an

operating system [32]) interact in fundamentally

indeterminate ways. A file manager FM might interact with

three other processes (A B C) by granting requests to read

from or write to a file; typically the processes might

produce the following input streams to FM.

A; <read,<read,<write,(fA;sA)>>>

B: <write,(fB;sB)>

51

DEF PRED == SUB*[ID,'1]

DEE NONULLS == <IF, NULL, ' (j),
<IF, NULL*1, NONULLS*TL,

APNDL*[1,NONULLS*TL]>>

NEXT returns an index, and H uses the first element at that

index as the next output element. In addition, IS recurs on

its input with the indexed value replaced by the second

element found there, and all null values removed.

At first glance, the above definition for

indeterminate merge may appear erroneous; if the expression

indexed by NEXT is indeterminate, the output from B could be

inconsistent with the recursion. That is

{ia:<(S:<<l, <2, <})>>, <3, ([)>>) ,<4, <[)>>)

might produce

<1,<4,<1,<2,([)>>>>

even though this stream is not a legal possibility. If an

expression x in ([f,g]sx) is indeterminate, we must assert

that X in (fsx) has the same value as x in (g:x). This form

of determinacy is assured if all expressions and functions

are intrinsically determinate, and all indeterminacy is

extrinsic. Under this restriction, all copies of the same

expression have the same meaning, and represent the same

determinate function. All apparent indeterminacy resolves

once a meaning or action is determined for any copy.

Friedman and Wise [20, 21] use a notion similar to

X

y'

y =q(x,Z])

z=^CO
=h(x>h'(x^)

Figure 10. Transformation from Keller

DEE CYCLE == g*[ID,H]

DEE H == h*[ID,H] .

H corresponds to h'.

Unfortunately, Keller's transformation does

53

not

55

first value it produces is f(xj. The transformed cycle,

however, is indeterminate, and can produce results different

from the one produced by the cycle; for example, instance

one of f produces f(x), instance two produces f(f(x)), and

instance three produces f(f(f(x))) as a possible first value

from the transformed cycle„

The inconsistent behavior does not resolve when we

express the transformation in FFP,

DBF CYCLE == f *(8* [ID, CYCLE]

The recursive application of CYCLE will repeatedly

instantiate H, and it is the distinct instances of

indeterminacy which cause the problem. Intrinsic

determinacy does not help either since any two instances of

B will act on distinct expressions rather than copies of a

single common expression.

While Keller's transformation does not seem to be the

solution for integrating cycles with indeterminacy, we must

develop some such solution. Cyclic FFP (CFFP) is that

solution.

4.4 CFFP

A cycle is a part of a function's result which is also

a part of the same function's argument. In FFP, the results

of functions are the meanings of applications, and we must

express cycles as some representation of an application

^f^hin itself. Recursion is the conventional approach for

57

(f 1<x, (g ;<(!)>),) denotes

-X

and (f 1 (0: <x,«(!>>>)) denotes

CFFP uses an infinite set of holes iJ

ii == {«}>>} U {<h>| hefl}

in representing nested cycles such as those depicted in

figure 12. A hole indicates its unique dapp by the nesting

level of 4);

<4*^ refers to the immediately surrounding dapp.

<h> (h^4i) refers to that dapp which immediately

59

surrounds the dapp to which h refers.

The formal specification of CFFP requires two

additional constructs:

1. ^ indicates a hole which references no dapp.

The semantic functions (14 through 20) form

instances of X, and their descriptions explain

the circumstances which produce

2. iz represents ill-formed. The semantic functions

instantiate \d as (a) the meaning of a hole22^

the meaning or partial meaning of JC, or (c) the

partial meaning (which then becomes the meaning)

of a dapp which does not produce a stream of

well-formed packets. If any constructed

expression contains the entire expression

denotes jz (i.e., ¥k6£,ei6£: k (el,... ... ,en] ==

H) •

The semantic functions also use the set of well-formed

dapps Z as defined in figure 13. If (f|x) is well-formed,

it produces a stream, the packets in that stream all have

^®H~fotmed meanings^S^ either the stream properly

2 2 A hole cannot have a meaning since any well-formed
dapp either produces an infinite stream, or becomes ()•
(in which case the hole no longer exists).

23 •If an expression has a well-formed meaning, it does not
denote

61

== e = (t> => 4);
e = <u,v> =>

{v = <x,z> =>
V = (f:z) => <{a-^(|)»}u, ({{s{ {3«l»}u} }«j)>}f I

{{£{ }<<t»>}z) >;
V = 4) => <{a'^4'^}u,4>>?
m};

Figure 16. Conversion function

{ah}x == X = <xl,.,.,xn> => <{ah}xl,..,,{£h}xn>;
X = => {x<h => x; J^};
X = (fsz) => ({ah}fs{ah}z);
X = (f|z) => ({a<h»}fI{3<h»}z);
X

Figure 17. Consistency function

{{£z}h}x == X = h => <z,h>;
X = <xl,...,xn> => <{{£z}h}xl,...,{{sz}h}xn>;
X = (fry) => ({{sz}h}f:{{£z}h}y);
X = (fly) => ({{sz}«h»}f I{{£zHh>}y) ;
X

Figure 18. Substitution function

{e<h»}x == X = s => J?;
h = 4» =>

{}-(f |z)=glb{ (gjy) |x£(g|y);^x} => (f jz) ; S};
h€ij => {eh}{{e«4>^}x}

Figure 19. Context function

{Jth}x == X = (fjz) => {h€(f|z) => h; 12};
X = <y,z> => <y,{j£.h}z>;
12

Figure 20. Extraction function

form of application. 12, JC, and all holes denote

ill-formed:

* An ill-formed expression cannot have a

well-formed meaning.

J? represents an incomplete cyclic structure.

6.3

part. p determines the partial meaning of

the function-part and recurs on the revised

application.

* The primitive functions returned by x treat a

hole or a dapp as if it were an application.

The conversion function y (figure 16) transforms

the partial meaning of a stream-producing

application (f:z) into the partial meaning of the

corresponding dapp (fiz); e.g., with no holes or

dapps in x, x', y, or g;

p(f: <<<i>^,x>) = <y, (f :<«<j)^,x'>)>
=> iL{p(f x>) } = <y, (f |<<y,«<j)^>,x'>)>

p(f s<«t)^,x>) = (f :«(j)^,x'>) >
=> :<«))>,x>) } = (f |<<g,<(|)^>,x'>)>

P(f: <x,«<t)>,«<(|)»>)
= <<y, , (f: <x ' >

= <<y,»>, (f|<x'.,<<y,JC>,«t)^>,««{)»>)>

P(f (g i <x,«l»,«<(|)>») >)
= < (g I <X/<(|>^,«(!)>>>),(f; >

=> iL{p(f: (g I<x,<(|>»,««(t)^^>) >)}
= < (g I<X,-^(1)>,S>) , (f I< (g i >

* For each packet produced, y invokes two

additional functions:

1. The consistency function p (17)

converts all free holes24 i^to Such

hole <h> is free within a packet if the packet
does not contain the dapp to which •^h^ refers.

65

2. The substitution function ^ (18) feeds

packets converted by 3 to holes which

reference the producing dapp. {{az}h}x

can be loosely read as substitute z for

h in X.25

* When y encounters a terminal application, y

converts the application to a dapp.

- The context function © (figure 19) evokes the dapp

to which a given hole refers. For the second

occurence of in (f I (g l<y,«(j)^,««j>^^>) >) ^

{0«<i)>}«(J» returns (g l<y,<(|»,«(!»») . The

resulting expression is not a copy of the dapp;

instead, it is the specific instance of the dapp

which contains the given hole. For expressions x

and e, xee indicates that a particular instance of

X is found in a specific instance of e. gib

denotes the greatest lower bound ordered by

syntactic containment (e.g., (f|x)i(g|z) iff

(flx)e(glz)).

The extraction function (figure 20) returns the

stream produced at a hole. Jj. does this by copying

25This is imprecise because each dapp encountered
deepens the nesting of h by one.

67

2. The "anti-quote" proDerty. This property must

allow holes and dapps as non-constant expressions

in the same sense as applications. With this in

mind, constant expressions still represent

themselves, and representing values still

requires no special quoting mechanism.

3. Non-extensionality. CFFP implies no identity

between the meaning of an expression and the

function it represents. As such,

non-extensionality holds.

4. Singl^-typ^ functions. The details of this

property have changed, but the substance remains

the same. Functions are now mappings from

expressions into expressions, rather than

constants into expressions, but they still map

from a single common domain onto a single common

range.

5. extended Cburch-Rosser oropertv. This

property no longer possesses its original

extension since some reduction sequences could

try to evaluate a non-terminating sub-expression;

however, all terminating sequences of reductions,

on a given expression, still yield the same

69

message, and m is the message. If f1, f2, and f3 represent

the processes, the complete system is

(Bl|<(fl:<xl, (GDARDl ;«(!>>)>) ,
(f2: <x2, (GUARD2:«<t>») >) ,
{f 3 ; <x3 , (GUARD3 : <(j)» >) >)

xi represents the internal state of process i, and GUARDi

passes exactly those messages destined for Pi; e.g.,

DBF GUARD2 == <IF, EQ* [1*1, ' P2] , [2*1 ,GUARD2*^2] , GUARD2*2>

The entire system produces a history of the messages passed.

The next section provides some more detailed examples.

4.7 Resource managment in CFFP

CFFP needs no additional constructs for resource

managment; instead, some processes serve as supervisors for

specific resources. These supervisory processes are similar

to the dataflow resource managers of Arvind, Gostelow, and

Plouffe [2] . Any external process wishing to access a

resource must send a message to the appropriate supervisor

which then services the request in some manner. A disk

controller and a file manager demonstrate CFFP resource

supervisors.

4,7.1 Disk controller

A process retrieves a physical record from a disk by

broadcasting a message of the form

<DISK,<ACQUIRE,pname,cylinder,data>> .

DISK indicates that the message is destined for the disk

gate

controller

unite

ACQlAlRe

ACCESS

IN-USE 9
NO

r

y£s

UP

Qlow

Q HIG H

UP_DOWN-EMPTy
?

DOV/M

=3—

YES

NO

Figure 21. Controller structure

QHIGH and QLOW are queueing mechanisnis for

requests to a busy controller. When the current

access completes, one of them will be triggered to

send an enqueued request to ACCESS.

The remaining operations route messages and

triggers to the appropriate activity based on the

type of message (ACQUIRE/RELEASE), the current

state of disk activity (IN_USE), the relative

positions of the new request and the arm (ABOVE),

and the current direction of travel

71

. 73

of CFFP functions^ CONTROLLER acts on an argument of the

form

<direction, position, current-process,
above-queue, below-queue, signals> ,

and accepts two kinds of signals external requests to

access the disk (ACQUIRE), and internal completion

indicators from the current access (RELEASE). If the disk

is free, requests-are satisfied immediately (GRANT), but if

it is in use, the requests are appended to the appropriate

waiting queue (QHIGH or QLOW). On a completion, the

response is passed out to the appropriate process, and the

next waiting request, if any, is serviced (UP-DOWN-EMPTY).

If, pl,...,pn represent processes wishing to access the

disk, and GATE is defined as

DEF GATE == <IF, EQ*[1,1*1*2],
[2*1*2,GATE*[1,2*2]],
GATE*[1,2*2]> ,

then

(H I< (CONTROLLER: <UP, 1 ,<j),<i>,<J), (GATE: <DISK,) >) ,
pi, ,pn>)

instantiates a complete system using our disk controller.

Cycles appear in this system soley as part of the

mechanism for interprocess communication. The dapp produces

the stream of sH messages, and the explicit instance of

GATE passes those messages directed to the disk controller.

75

DEF MANAGER

== <IF, EQ* [EN,TRY_TYPE,'READ] ,
<IF, OK_TO_READ, NEW_READ, HOLD_READ>,

<IF, EQ*[ENTRY_TYPE,'WRITE],
<IF, OK_TO_WRITE, NEW_WRITE, HOLD_WRITE>,

<IF, EQ*[ENTRY_TYPE,'REXIT],
<IF, CAN_WRITE, OLD_WRITE, READ_DONE>,

, <IF, EQ*[ENTRY_TYPE,'WEXIT],
<IF, READERS_WAITING, READ_FROM_Q,
<IF, WRITERS_WAITING,

WRITE_FROM_Q, WRITE_DONE>>,
CONTINUE>>>>

DEF ENTRY_TYPE ==1*1*6
DEF OK_TO_READ == AND*[NOT*5,NULL*3]
DEF OK_TO_WRITE == AND*[EQ*[4,'0],N0T*5]
DEF CAN_WRITE == AND*[EQ*[4,'1],N0T*NULL*3]
DEF READERS_WAITING == N0T*NULL*2
DEF WRITERS_WAITING == N0T*NULL*3
DEF CONTINUE == MANAGER*[1,2,3,4,5,2*6]

DEF NEW_READ == [['CREATE,XR*[1,2*1*6]],
MANAGER*[1,2,3,ADD*[4,'1],5,2*6]]

. DEF HOLD_READ == MANAGER*[1,APNDR*[2,2*1*6],3,4,5,2*6]

DEF NEW_WRITE == [['CREATE,XW*[1,2*1*6]],
MANAGER*[1,2,3,4,'T,2*6]]

DEF HOLD_WRITE == MANAGER*[1,2,APNDR*[3,2*1*6],4,5,2*6]

DEF OLD_WRITE ==[['CREATE,XW*[1,1*3]],
MANAGER*[1,2,TL*3,'0,'T,2*6]]

DEF READ_DONE == MANAGER*[1,2,3,SUB*[4,'1],5,2*6]

DEF READ_FROM_Q
== <IF, NULL*2, MANAGER*[2*1*6,'<1),3,4,'F,2*6] ,

[['CREATE,XR*[2*1*6,1*2]] ,
READ_FROM_Q*[l,TL*2,3,ADD*[4,'1],5,6]]>

DEF WRITE_FROM_Q == [['CREATE,XW*[2*1*6,1*3]],
MANAGER*[2*1*6,2,TL*3,'0,'T,2*6]]

DEF WRITE_DONE == MANAGER*[2*1*6,2,3,4,'F,2*6]

Figure 23. File manager

of waiting readers (rq=2), and a queue of waiting writers

(wq=3). In addition, MANAGER maintains a copy of the file

(file=l) and an entry point for messages (entry=6), Thus,

MANAGER continuously acts on an argument of the form

inactive and enqueued otherwise. MANAGER honors

write requests with the subsidiary process

(XW:<file,<source,data>>) which evaluates to

<<FILE,<WEXIT,new-file>>,
<<source,write-result ,<j)>>>

New-file is the file as modified by the write.

When writing, wa is set to "T".

3. <REXIT> indicates the completion of a read

operation. If no other readers are active^

MANAGER honors the request of the first waiting

writer.

77

4. <WEXIT,new—file> denotes the end of writing;

.new-file replaces the internal copy of the file.

: MANAGER grants access to .all waiting readerSy^^^ 6

if there are no waiting readers, it instantiates •

the first waiting writer.

B cannot supervise the entire system since MANAGER is

constantly creating subsidiary processes; instead, we define

a new SYSTEM operation.

DEF SYSTEM == <IF, NULL*1, '<|),
<IF, EQ*[1*1*APPLY, 'CREATE],

SYSTEM*APNDL*[2*1*APPLY,N0NULLS*REST],
[1*APPLY,SYSTEM*NONULLS*REST]>>

*[NEXT,ID]

SYSTEM acts just like IS except that "messages" with

destination CREATE are held as internal processes. If

CHAPTER 5

Conclusions and future research directions

CFFP is an applicative computing language derived from

FFP through three major alterations.

1. Applications may execute as soon as they are

minimally defined. For example,

(1:<(ADD;<3,5>),7) may execute to produce

(ADD:<3,5>). Such an application may persist

over possibly infinite streams of inputs by

performing a calculation on the heads of the

streams, and then reinstantiating itself on their

tails. This persistence is precisely the

behavior we require from history-sensitive

processes. In addition, CFFP is more

asynchronous than FFP since dependent

applications may often act in parallel.

2. An indeterminate operation, xNEXT, joins the list

of primitive functions. This operation often

represents the random order of message production

and reception between cooperating processes, and

our descriptions of systems of communicating

processes rely on this new primitive and cycles

(the third alteration). The assertion that all

79

81

applications and denotes a process, and no complete

representation exists for a system made up of two or more

communicating processes.

Two modifications would improve CFFP.

1. Some form of cycle-forming operation (similar to

the function represented by APPLY) would allow

dynamic creation of general subsystems. With any

such operation, we must also develop a notion of

well-formed cycle-formation to accompany the

concept of well-formed dapp.

2. Holes should behave more like applications.

Currently, the partial meaning of a hole is the

result at the hole when p finds the partial

meaning of the hole's dapp; i.e.,

p<h> == {Js.<h>} {£{ {0«h»}<h»}} .

Ideally, p"<h> should affect only «h» and not the

entire context of <h» (i.e., {e«h»}<h>).

In addition, three elaborations would enhance CFFP:

1) a set of formal conditions guaranteeing that a dapp is

(or is not) well-formed; 2) an algebra of programs similar

to that of Backus for FP programs [6, 7]; 3) an alternate

notion of meaning which would include such non-terminating

computations as well-formed dapps.

CFFP is a fundamental model of computing, and can

83

should occur in any program. Other

pseudo-algorithmic, expression-oriented

languages (Id [3] and Lucid [4]) have

successfully used this single-assignment

system.

- With such variables, We may borrow some

notation from Landin [26] to specify

complex applications.

u*(u+1)-V*(v+1)
where u := 2*p+q;

V ;= p-2*q;
p I — 3 3 ;
q ;= 21

(SUB*[TIMES*[1,ADD*[1,•1]],
TIMES*[2,ADD*[2,'l]]]

[ADD[TIMES*['2,1] ,2] ,
SUB*[1,TIMES*['2,2]]]:<33,21>)

A higher-level language should also contain a

function-defining facility

- A special assignment statement could form a

definition.

fun absdif(a,b) := if a<b then b-a else a-b

DEF ABSDIF == <IF,LT,SUB*[2,1],SUB>

- An expression could directly use such a

definition.

Bibliography

1. Arvind, and Gostelow, K.P. Microelectronics and
computer science. Proc. Second IEEE (G-PHP)/ISHM
University/Industry/Government Microelectronics Symp., U. of
New Mexico, Albuquerque, January, 1977.
2. Arvind, Gostelow, K.P., and Plouffe, W. Indeterminacy,
Monitors, and Dataflow. Proc. Sixth ACM Symp. on Operating
Systems Principles, Purdue U., November, 1977, pp. 159-169.
3. Arvind, Gostelow, K.P., and Plouffe, W. An asynchronous
programming language and computing machine. Tech. Rep. No.
114, Dept. Info, and Comptr. Sci., U. of California, Irvine,
May, 1978.
4. Ashcroft, E.A., and Wadge, W.W. Lucid--A formal system
for writing and proving programs. SIAM jl. Comout. 5., 3
(September 1976), 336-354.
5. Backus, J. Programming language semantics and closed
applicative languages. Conf. Record ACM Symp. on Principles
of Programming Languages, Boston, October, 1973, pp. 71-86.
6. Backus, J. Can programming be liberated from the von
Neumann style? A functional style and its algebra of
programs. Comm. 2if 8 (August 1978), 613-641.
7. Backus, J. Function level programs as mathematical
objects. Proc. 1981 conf. on Functional Programming
Languages and Computer Architecture, Portsmouth, NH,
October, 1981, pp. 1-10.
8. Berkling, K.J. A symetric complement to the lambda
calculus. Interner Bericht ISF-76-7, Gesellschaft fur
Mathematik und Datenverarbeitung MBH, September, 1976.
9. Berkling, K.J. Reduction languages for reduction
machines. Interner Bericht ISF-76-8, Gesellschaft fur
Mathematik und Datenverarbeitung MBH, September, 1976.
10. Burks, A.W., Goldstine, H.H., and von Neumann,
J. Preliminary discussion of the logical design of an
electronic computing instrument. In Collected works of John
YOU Neumann. Volume 5, A.H. Taub, Ed., 1963, pp. 34-79.
Taken from report to U.S. Army Ordinance Department, 1946
11. Church, A. Annals of Mathematics Studies. Volume 6: The
Cfllguli Lambda-conversion. Princeton University Press,
Princeton, 1941.
12. Courtois, P.J., Heymans R., and Parnas, D.L.
Concurrent control with "readers" and "writers". Comm. ACM
11, 10 (October 1971) , 667-668.
13. Curry, H.B., and Feys, R. Combinatory Looic. Volume l.
North-Holland, Amsterdam, 1958.
14. Curry, H.B., Hindley, J.R., and Seldin, J.P.
CfllffbinatQCy Lggig^ volume u. North-Holland, Amsterdam,
1972.

85

87

31. Schonfinkel, M. Uber di Bausteine der mathematischen
Logik. Mathematical Annals 92 (1924), 305-316. English
translation in FrPiP Frggg iP Godel: ^ Source-Book in
Mathematical Logic. Harvard U. Press. 1967
32. Shaw, A.C. The Design nf Operating Systems.
Prentice-Hall, Englewood Cliffs, NJ, 1974.
33. Stoy, J.E. DenPtational semantics: lii£ Scott-Strachey
Approach ip Programming Language Theory. MIT Press,
Cambridge, MA, 1977.
34. Tonge, F.M., and Cowan, R.M. Structured process
description. Tech. Rep. No. 130, Dept. Info, and Comptr.
Sci., U. of California, Irvine, May, 1980.
35. Turner, D.A. A new implementation technique for
applicative languages. Software—Practice nM Experience £
(1979), 31-49.
36. Weng, K.-S. Stream-oriented computation in recursive
data flow schemas. Master Th., M.I.T., October 1975.

APPENDIX I

Primitive functions

The following list of primitive operations includes

all those of Backus [5, 6] and this dissertation. In

general, the representation is given in terms of the

interacting semantics. These representations become

appropriate to standard FFP when internal evaluations are

disallowed, and to CFFP when evaluations for component dapps

and holes are added. EQ is not valid under the interacting

semantics or CFFP, and its representation is under standard

FFP. F, IF, T and WHILE significantly change from standard

to more-defined FFP and we also provide the standard FFP

representation for each of them. U is the set of numbers.

{jlAAIx == x=<<z,f>,<yl,. .. ,yn>> => <(f :yl) ,... , (f ;yn) >;
x=<(f:z),y> => {£AA}<p(f;z),y>;
x=<<z,f>, (g;u) > => {£AA}<<z,f>,p(g:u)>;
x=(f:z) => {j:AA}{px}

{l.ADD}x == x=<nl,n2>, nl,n26ii => nl+n2;
x=< (f ;z) ,n> => {j:ADD}<p(f :z) ,n>;

,x =<n, (f :z) > => {j:ADD}<n,p(f ;z) >;
x=(fsz) => {j:ADD}{px}

{j:AND}x == x=<T,T> => T;
x=<y,z>, y,z€{T,F} => F;
X=<(f;z),y> => {j!:AND}<p(f ;z) ,y>;
x=<y,(f:z)> => {i:AND}<y,p(f ;z) >;
x=(f:z) => {j:AND}{px}

88

{jlCONSIx == <<z,fl,. . . ,fn>,y> => <(fl:y), ,(fn;y)>;
x=<(f;z),y> => {£CONS}<p(f:z)^y>;
x={f;z) => {x.CONS}{ex}

{jlCONST} == <<z,c>,y> => c;
x=<(f:z),y> => {iCONST}<E(f;z),y>;
x=(f:z) => {X.CONST} {£x}

{x.DBL}x == <x,x>

{iJ)ISTL}x == x=<y,4i> => (|);
x=<y,<xll,...,xn>> => <<y,xl>,...,<y,xn>>;
x=<y, (f!z)> => {i:DISTL}<y,p(f :z) >;
X=(f;z) => {iDISTL}{Ex}

{£.DISTR}x == x=<<j),y> => <j);
x=<<xl,...,xn>,y> => <<xl,y>,...,<xn,y>>;
x=<(f:z),y> => {j:DISTR}<E(f ;z) ,y>;
x=(f:z) => {ildistr}{ex}

{j:DIV}x == x=<nl,n2>, nl,n261i => nl/n2;
x=<(f:z),n> => {j:DIV}<p{f;z) ,n>;
x=<n,(f:z)> => {j:DIV}<n,p(f ;z) >;
x=(f:z) => {iDIV}{Ex}

{l.EQ}x == <Y,Y>, y^l => T; standard FFP only
X= <U,V>, UfVT^J. => F

{jlEQAT}x == x=<y,y>, ye^ => T;
x=<y,z>, y,z€^ => F;
x=<(f:z),y> => {iEQAT}<p(f:z),y>;
x =<y,(f:z)> => {l.EQAT}<y,p(f :z) >;
x=(f:z) => {rEQAT}{px}

{X.F}x == x=<y,z> => z;
X=(f!Z) => {XF}

standard FFP:

{iF}x == x-<y,<f,z>> => (f:z)

90

{jlREVERSE}x == x=4> => <i»;
x=<xl,...,xn> => <xn,...,xl>;
x = (f:z) => {rREVERSEXpx}

{j:ROTL}x == x=(j) =>(!>;
x=<y> => <y>;
x=<xl,...,xn> => <x2,...,xn,xl>;
x=(f:z) => {jlROTLKex}

{ILROTR}x == x=4» => <i);
x=<y> => <y>;
X—̂ xlf«o«fXn^y^ ~^ ^yfXlfa*«fXn^7
x=(f:z) => {j:ROTR}{ex}

{j:SEPL}x == x=<y> => <y,(j>>;
x=<xl,...,xn> => <xl,<x2,...,xn>>;
x=(f:z) => {j:SEPL}{ex}

{l.SEPR}x == x=<y> => <({i,y>;
x=<xl,..,,xn,y> => <<xl,...,xn>,y>;
x=(f:z) => {jLSEPR}{px}

{rSUBjx == x=<nl,n2>, nl,n2eK => nl-n2;
x =<(f;z),n> => {j:SUB}<|i(f :z) rn>;
x =<n,(f;z)> => {j:SUB}<n,p(f ;z) >;
x=(f:z) => {j:SUB}{px}

{j:T}x == x=<y,z> => y;
x=(f;z) => {j:T}{ex}

standard FPP:

{j:T}x == «f,Y>,z> => (f;y)

{xTIMES}x == x=<nl,n2>, nl,n26H => nl*n2;
x=<{f ;z) ,n> => {j:TIMES}<£i(f :z) ,n>;
x=<n,(f:z)> => {rTIMES}<n,p(f:z)>;
x=(f;z) => {xTIMES}{£x}

{j:TL}x == x=<y> => (|);
x=<xl,...,xn> => <x2,...,xn>;
x = (f:z) => {l.TL}{px}

92

APPENDIX II

Formal properties

Three of Backus six formal properties [5] are

observations; these are the "anti-quote" property,

non-extensionality, and single-type functions. We prove the

remaining three properties for CFFP as follows.

1. idempotencv. jDQ{iDx} = mx.
We enumerate the possible forms of x.

case 1j xe^ => mx = x => mlmx] = mx

case 2; x=i => mx = x => m{inx} = mx

case 3: x=si => mx = x => m{ffix} = mx

case 4; xefl => mx = s => mflQx} = mM = H = ffix

case 5; X = <xl, . . . ,xn>
=> mx = <mxi, . . . ,mxn>
=> m{inx} = <m{Exi}, . . . ,m{iDxn}>

= <mxl, . . . ,mxn>
by structural induction

= mx

case 6: x = (f;y) => mx = m{px}

px e A U {<xl,...,xn>} U {1} U {m}
=> m{ffix} = miffiCpx}} = ffilpx} = mx

case 7: X = (f|y) => mx = m{px}

px e {(J.} u {<xl,... ,xn>} U {»}
=> mimx} = m{m{px}} = m{px} = mx

2. ili£ Church-RPSSer property.

a. X—>>y; X—>>z; y,ze£ => y=z

b. X—>>y => y—>>mx

94

Lemma 1. = px

There are nine valid cases

case 1. x=(f;y), fe^^,
px = E{{£f}y} = p{xx}

case 2. x=(f;y) , fe£^,
px = p(g:y) = p{ix}

case 3. x=(f:y), f=<fl, . . . ,fn>
px = p(fl;<f,y>) = £){xx}

caSe 4. x=(J.:y)
px = 1 = p{xx}

case 5. x=(f|y), fe^, df=#, {j:f}y=(g:z)
px = y{p(f:y)} = y{p{g:z)} = p(g|z)

= p{xx}

case 6. x=(f|y), fe^, df=#, {£f}y=(J)
px = iL{p(f!y)} = y(|> = <|) = p(t.

= p{xx}

case 7. x=(f|y), fe^, df=#, {j:f}y=<g,z>
px = y{p(f;y)} = y{p<z,g>} = y<z,g>

- <z',g'> = p<z',g'> = p{y<z,g>}
= p{xx}

case 8. x=(f|y), df=g/^#
px = y{p(f;y)} = y{p(g:y)}

= P(gly) = p{zx}

case 9. x=(f|y)/ f=<f1,... ,fn>
px = y{p(fl:<f ,y>) }

= p(fi I <f fy>) = p{xx}

As a corollary we show that whenever x has no

partial meaning, neither does its execution (M'

is the set of expressions with partial meanings).

96

Lemma 3 immediately results in the Church-Rosser

property since

X—>>y, X—>>z => my = iiiz = inx

by induction on the number of transitions, and

y = iDy» z = mz => y=z=ffix

Part b follows since y—>>iiiy by replacing each

execution step in my by a transition.

3. iJ3£ reduction property. m{[iny/y]x} = mx .

This is essentially a corollary to Church-Rosser.

By providing a transition for each execution in

my we have

X—>>[my/y]x

and

mx = m{[iny/y]x} by lemma 3.

98

