Lawrence Berkeley National Laboratory

LBL Publications

Title

D7H-Test Results

Permalink https://escholarship.org/uc/item/4gr9f8w9

Author

Caspi, S

Publication Date

1982-07-01

LBL-14796 UC-20b c.~

-BL-14796

Lawrence Berkeley Laboratory

UNIVERSITY OF CALIFORNIA

Accelerator & Fusion Research Division

LAWRENCE

BERKELEY LABORATORY

SEP 30 1982

LIBRARY AND DOCUMENTS SECTION

D7H-TEST RESULTS

S. Caspi

July 1982

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 6782.

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

SUMAG-70 LBL-14796 2

D7H-Test Results*

S. Caspi

Accelerator and Fusion Research Division Lawrence Berkeley Laboratory University of California Berkeley, California 94720

July 30, 1982

*This work was supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, High Energy Physics Div., U.S. Dept. of Energy, under Contract No. DE-ACO3-76SF00098.

SUMAG-70 LBL-14796

D7H-Test Results*

S. Caspi

Data was reduced from the voltage-time relations stored in files D7H001 to D7H090 on HP1000. The I-B calibration curve is included in Fig. 1. The data base is shown in Table 1 and can be used by the 9845B. The data include the quench location, Q_2 layer 1 top, Q_3 layer 1 bottom and the quench current and its normalized value with respect to short sample, $I_c =$ 4920A at 4.4 K, $I_c = 6710$ A at 1.8 K. The resistance (Ω /cm) was calculated using the propogation time according to the voltage change across the measured sections. The conductor potential length are $L_{5,9} = 48.6$ cm, $L_{6,10} = 17.9$ cm, $L_{7, 11} = 40.6$ cm (Fig. 8). The turn to turn velocity V_t was calculated dividing the nominal turn to turn distance (58 mil) by the propagation time (Trans. Time). The quench time T_q was measured from the time the resistive rise starts until the energy extraction system fires. Figures 2-6 are plots of the data base. The time to energy extracton can be estimated as:

$$T_q = \frac{Vo}{2IR V}$$

where:

Vo = trip voltage
R' = resistance per unit length
V = velocity
I = current

For a propagation which is axial only. The discontinity in T_q (Fig. 4) is due to a drop in the propagation velocity when the temperature was

*This work was supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, High Energy Physics Div., U.S. Dept. of Energy, under Contract No. DE-AC03-76SF00098.

(1)

lowered from 4.4 K to 1.8 K. Assuming Vo = .25 volt and using I, R', V values from the data base, equation 1 is plotted in Fig 5.

Resistivity

The resistance per unit length at the normal state is plotted in Fig. 6. The values at the magnet ends vary from .9 to $1.3 \mu\Omega/cm$ between 4000A and 7000 A and the straight section values are about 15 percent higher. For a 23 strand cable at 27 mil strand diameter and 1.8/1 S.C/copper ratio the total copper cross section area is 5.46×10^{-2} cm². Assuming all the current had been switched to the copper the resistivity is 4.9×10^{-8} – 7.1×10^{-8} (Ω cm) and the corresponding resistivity ratio is therefore RRR = 35 to 20.

The alteration of the quench location between the halves of the inner shell is plotted in Fig.7 and the quench origin around the first inner turn is plotted in Fig. 8. <u>All</u> quenches occured around the first turn! (The only exceptions were very fast ramp rates).

Temperature Rise

After the normal zone propagates through a measured section, its resistance keeps increasing due to a temperature increase. The resistance rise with respect to time is observed to be linear (Fig. 9) in the time scale before the energy extraction. Converting this values to a resistivity rise the results are given in Table 2. A simplified energy balance result in an approximate temperature-time relation.

$$MC\frac{dT}{dt} = I^{2}R$$

$$M = P_{d} \ 1A \qquad (P_{d} = density, 1 = length, A = crossection area)$$

$$R = P_{r} I/A \qquad (P_{r} = resistivity)$$

2

(2)

The total mass assumes copper only (e.g. no liquid participation).

Equation (2) reduces to

$$C \frac{dT}{dt} = \frac{\rho_r}{\rho_d} \frac{I^2}{A^2}$$
$$\int C dT = \frac{I^2}{A^2} \frac{1}{\rho_d} \int \rho_r dt$$

The experiment shows that $P_r = P_r(t) = \alpha t$

therefore,

$$\int CdT = \frac{\alpha}{2\rho_{\rm d}} \left(\frac{\mathrm{It}}{\mathrm{A}}\right)^2$$

Equation (3) was solved for 2 nominal cases using A = 5.46 x $^{-10}$ cm²; $P_d = 8.94 (gr/cm^3)$ (3)

1. File = D7H008 (4.4 K)
I = 4220 A;

$$\alpha = 1.1 \times 10^{-6} \Omega - cm/sec$$

 $\int CdT = 3.675 \times 10^{-4} \cdot t^2$ (t = msec)

2. File = D7H061 (2.0 K)
I = 6340 A;

$$\alpha$$
 = 2.46 x 10⁻⁶ Ω -cm/sec
 $\int CdT = 1.855 \times 10^{-3} \cdot t^2$ (t = msec)

The result from the two cases using integral values of specific heat for copper are shown in Fig. 10.

Magnet Rate Dependance and Losses

The magnet was ramped at various rates and the quench field recorded. Repeating the test both in the He I and He II result in the relations shown in Fig. 11. The normalized field data were then fitted to a parabolic relation and plotted in Fig. 12.

Using our standard procedure in He II to determine energy losses the average heat flux generated during a cycle is plotted in Fig. 13 for a number of different field rates.

Axial Velocity Fig. 2

(~

—

N.).

 $\langle \gamma \rangle$

Ų

Ų

Ŋ

 $\langle \rangle$

う い

Fig. 8 Quench location in upper and lower inner shell.

Fig. 9 Normal zone propagation and resistive rise prior to energy extraction.

 $\langle \mathbf{c} \rangle$

12

Ĵ

9

PI

()

Fig. 10 Temperature history prior to energy extraction based on equation 3.

۲.

1

ŗ.,

IJ

Fig. 11 Maximum field as a function of ramp rate.

1

3

45

Â

e)

Fig. 12 Normalized maximum field as a function of ramp rate. The lines are a least fit to the data.

۲.

y

Ľ,

Fig. 13 Magnet loss during cycling around 0-3.85 (T).

Table I. Data base on the 9845B desktop; I_q = quench current; T_q = time from quench detection to energy extraction; I_q/I_c = normalized quench current; Microhm/cm = resistive rise from S.C. state to normal state per unit length; V_i = propagation velocity for section i; V_t = turn to turn velocity; Trans. time = turn to turn propagation time.

37H003	63	3683	44.8	4.48	.732	0.00	9.00	0.0	ė. ė		ė.ė	8.8	0.0	.842	35.8	
37H885	62	3821	46.9	4.48	. 776	. 95	0.00	. .	9.2			.		. 877	19.0	
37H886	82	3959	36.8	4.48	. 884	. 98	9.88	A. A	12.3					.113	13.0	
374867	92	4188	34.8	4.48	. 833				13.4					. 113	13.0	
374868	92	4228	38.5	4.48	.857	. 89	1.17	15.2	12.6	18.6				. 122	12.0	
374889	62	4351	31.0	4.48	. 894	. 96	1.13	18.2	19.9	28.3				1.478	1.	
074618	02	4453	33.5	4.48	. 945	. 92	1.17	21 8	15.2	24 4				. 185	14.0	
57M611	02	4561	31.5	4.40	927		1 1	28.4	16.7	20.0				185	14.0	
874812		4650	26 2		847		1 · 1 Ø	22.0	26.6	20.0				147		
874013		4743	27.2					47.4	33.0	30.0					12.5	
074014	0.0	4823	25.0	4 4				38.0	26.2	34.3				148	14 5	
B71014		4033		4.44	. 786			33.4	20.3	37.7						
B14010	43	4713					1.03				46.0	33.0	43.4	1.130	***	
97M016	LA	4888	13.0	4.44	. 771		1.44					477	41.0	3.000		
B7H017	83	4871	15.0	4.40	. 994	1.09	1.03				42.0	. 30.9	41.4	3.000		
D7H018	. 93	4885	17.0	4.40	. 992	.99 -	1.06				. 60.7	32.0	59.7	- 147	10.0	
B7H019	63	4857	18.4	4.40	. 987	1.09	1.00				40.8	47.0		- 267	5.3	
D7H028	03	4658	22.5	4.48	. 945	0.09	1.09				36.8	42.6		.180		
D7H021	63	4559	24.5	4.40	. 926	. 82	1.14		8.8	8.8	36.8	39.7		. 154	7.3	
37H822	63	4564	21.5	4,48	. 927	8.89	1.03				34.4	38.8		. 196	7.5	
97H823	83	4378	24.0	4.48	. \$89	.91	1.25	0.0	8.8		29.6	33.1		. 173	8.5	
D7H848	83	4988	23.3	1.05	.743	1.19				8.8,	8.8	11.4		.884	17.5	
D7H842	02 · ·	5182	23.0	1.85	.761	0.00	1.23	16.9		8.8	8.8	8.8		. 898	15.0	
D7H843	63	5248	29.5	1.87	.793		. 98				22.6		8.8	. 189	13.5	
D7H844	92	5388	29.5	1.90	.818	8.86	1.26	18.3		8.8	8.0	8.0		.122	12.0	
B7H845	65	5484	25.7	1.90	.828	1.14	· •.••		16.2		8.8	8.8		.140	18.5	
97H046	92	5597	26.7	1.90	.844	1.02	8.98		18.0					. 163	9.8	
37H847	92	5682	23.8	1.99	. 958	1.14			59.6					.218	7.8	
37H848	92	5769	26.5	1.95	. 874	1.26	0.00	8.8	15.1	8.8	8.8			. 122	12.8	
37H849	92	5847	21.3	1.85	. 877	1.30	8.88	0.0	32.0					. 267	5.5	
37H858	92	5917	18.7	1.89	. 992	8.98	0.00	8.8	99.8		8.8	8.8		. 267	5.5	
D7H852	92	5973	19.3	1.91	. 988	1.07	0.00	6.6 -	28.3	8.8			ė.e	.478	3.1	
87H#53	82	6851	21.7	1.83	. 984	1.25	1.41		17.2			8.8		. 137	10.7	
376854	92	6122	28.5	1.89	. 923	1.21	1.39	.	18.6	27.0		8.8	8.8	.147	10.0	
374855	82	6194	19.1	1.99	942	1.31	1.41		19.9	29.8				. 163	9.8	
37H658	92	6236	15.8	2.68	. 952	1.25	1.37		24.8	34.7		8.8		204	7.2	
D7H868	02	\$279	15.0	1.88	.958	8.80			24.5			A. A		.598	2.5	
874861	62	6348	17.0	2.88	968	1.17	1.48	A A	22 1	22 8				123	8.5	
B7M862	02	6395	17.2	1.00	966	1.20	1 20		21 5	32 6				173	8.5	
874863	02	6453		2 84	999	1 11	1 9 9		24 6	36.0				.218	7.4	
374864	02	6485	16.0	1 05	074		1.35		27.0	36.3				179		
374865	02	6880		1	804	1.86	1.50		27.4	45.8				226	6.5	
57H065		6507		2.00		1.22	1.10		41.0	43.0		20.0		3 888		
BINDE	43	6387		2.03	. 778	1.32	1.10					27.0	62.8	3.000		
978997	83	6680	10.5	4.14	. 770	1.00						36.3	64.3	3.000		
D/11000	WJ OD	8832	12.8	1		1.30	1.17					29.9			r. 3	
. DIMUGY	W 3	8364	10.5	2.63	. 770	1.00	1.10					33.8		3.999		
U/H878 .	93	6789	15.0	1.01	. 790		0.08						34.0	. 176	7.5	
87H071	83	6675	10.3	1.89	. 998	1.10	9.00					36.6	62.0	3,600		
37H072	63	6679	15.5		. 998	8.60	1.28	8.8	0.0		• •			.210	7.0	
97H073	63	6328	18.5	8.68	. 990	8.88	0.00			• • •			8.8	.103		
												-				

LE NAME LOCATION IN (B) TA (BA) T (K) IN/IC MICEOUM/CM (and) MICEOUM/CM (atraint) VS (B/A) VS (B/A) VS (B/A) VIS (B/

0,98 0,98

E -30

97H981 97H882 Ś

8.8

38.8

File name	Resistiv micro_c end	vity rise Dhm-cm/s straight					
He I							
D7H005 D7H006 D7H007 D7H008 D7H009 D7H010 D7H011 D7H012 D7H013 D7H014 D7H015 D7H016 D7H017 D7H018	1.00 1.2 0.97 1.06 1.21 1.40 1.27 1.40 1.31 1.40 1.34 1.13 1.21 1.10	- 1.13 0.99 1.13 1.23 1.18 1.36 1.33 - - 1.04 1.15					
He-II							
D7H040 D7H045 D7H045 D7H047 D7H048 D7H049 D7H050 D7H052 D7H053 D7H053 D7H054 D7H055 D7H058 D7H060 D7H061 D7H062 D7H063 D7H064	1.43 1.52 2.12 2.65 2.31 2.13 1.67 2.53 2.71 2.56 2.02 2.34 2.46 2.78 3.11 3.05						

Table 2 Resistivity per second prior to energy extraction due to temperature rise only.

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

7

グ ワ Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable. TECHNICAL INFORMATION DEPARTMENT LAWRENCE BERKELEY LABORATORY UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA 94720