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ARTICLE OPEN

Methylation risk scores are associated with a collection of
phenotypes within electronic health record systems
Mike Thompson1,7✉, Brian L. Hill1,7✉, Nadav Rakocz1, Jeffrey N. Chiang 2, Daniel Geschwind3, Sriram Sankararaman1,2,4, Ira Hofer5,
Maxime Cannesson5, Noah Zaitlen6 and Eran Halperin1,2,4,5✉

Inference of clinical phenotypes is a fundamental task in precision medicine, and has therefore been heavily investigated in recent
years in the context of electronic health records (EHR) using a large arsenal of machine learning techniques, as well as in the context
of genetics using polygenic risk scores (PRS). In this work, we considered the epigenetic analog of PRS, methylation risk scores
(MRS), a linear combination of methylation states. We measured methylation across a large cohort (n= 831) of diverse samples in
the UCLA Health biobank, for which both genetic and complete EHR data are available. We constructed MRS for 607 phenotypes
spanning diagnoses, clinical lab tests, and medication prescriptions. When added to a baseline set of predictive features, MRS
significantly improved the imputation of 139 outcomes, whereas the PRS improved only 22 (median improvement for methylation
10.74%, 141.52%, and 15.46% in medications, labs, and diagnosis codes, respectively, whereas genotypes only improved the labs at
a median increase of 18.42%). We added significant MRS to state-of-the-art EHR imputation methods that leverage the entire set of
medical records, and found that including MRS as a medical feature in the algorithm significantly improves EHR imputation in 37%
of lab tests examined (median R2 increase 47.6%). Finally, we replicated several MRS in multiple external studies of methylation
(minimum p-value of 2.72 × 10−7) and replicated 22 of 30 tested MRS internally in two separate cohorts of different ethnicity. Our
publicly available results and weights show promise for methylation risk scores as clinical and scientific tools.

npj Genomic Medicine            (2022) 7:50 ; https://doi.org/10.1038/s41525-022-00320-1

INTRODUCTION
Widespread adoption of electronic health record systems coupled
with an increasing interest in hospital biobanking systems has
spurred research efforts spanning machine learning and genomics
communities1–7. These efforts have produced increasingly accu-
rate imputation (current state) and prediction (future state) of
patient phenotypes from medical records8,9 and polygenic risk
scores1–3,10–14, and are already being investigated in translational
contexts15–18. For example, recent work has shown that machine
learning can leverage high-dimensional data to aid in the
prediction of a multitude of clinical phenotypes including cardiac
function and arrhythmia19–21, post-operative complications8,9,
sepsis22, breast cancer11,23, and prostate cancer24. Nonetheless, a
genetics-based predictor such as the polygenic risk score may be
limited in predictive utility as it does not account for changes in
disease risk—for example, due to age, or changes in environment
—throughout one’s lifespan13.
In this work, we examine the potential for epigenetic

information to improve phenotype inference in combined
biobank-EHR systems. As DNA methylation, henceforth referred
to as simply “methylation”, is affected by both genetics and
environment—such as lifestyle choices, diet, exercise, and
smoking status—it captures multi-factorial information about
predispositions to clinical conditions25–31. Moreover, methylation
is readily available for use in existing biobanks that collect DNA
samples, and recent advancements in methylation profiling
technologies have enabled an abundance of large-scale studies
of methylation and its role as a biomarker for a variety of

phenotypes and health-related outcomes25,31–37. It is therefore a
natural candidate for an extension of PRS, and we hypothesized
that methylation can be used to complement genetics as a clinical
prediction tool. To that end, we have generated and evaluated
methylation risk scores (MRS), which are linear combinations of
CpG methylation states25.
To comprehensively investigate the utility of MRS and

characterize its properties, we conducted a study of 607 EHR-
derived phenotypes spanning medications (e.g., vasopressers,
glucocorticosteroids, uoroquinolones), labs (e.g., creatinine, glu-
cose, prothrombin time), and diagnoses (e.g., T2D, bacterial
pneumonia, anemia) that were available for a sufficient number
of patients in the cohort. The cohort contained 831 patients—to
the best of our knowledge, the largest epigenetic biobank dataset
to date (including genetics, methylation, and EHR)—from the
UCLA Health ATLAS cohort across a wide range of ages (18–90),
racial and ethnic groups, and overall health (including patients
ascertained on kidney and heart disease, with matched controls),
with corresponding genetic and EHR data. This provides the
opportunity to study the potential contribution of methylation to
larger biobanks and in multiple clinical contexts. We find that the
MRS-based imputations were more informative compared to PRS
in 84 (92%) medications, 32 (94%) labs, and 123 (82%) diagnoses,
more than doubling the imputation accuracy in over half of the
outcomes considered. We also show that the MRS improves the
imputation accuracy over PRS for cases in which the PRS is trained
on very large external biobanks (roughly 3 orders of magnitude
larger), as opposed to 831 samples that are available in this study.
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We observe that MRS improves over PRS learned from large
biobanks in 40% of the tested phenotypes. Further, as our cohort
was ethnically diverse, we performed replicability analyses within
each racial and ethnic subset of our data. We broadly showed the
replicability of the five best-imputed (by MRS) medications, labs,
and diagnoses—46% and 100% of which replicated in (n= 118)
non-white Hispanic-Latino- and (n= 543) white non-Hispanic-
Latino-identifying individuals, respectively. Finally, we demon-
strate the ability of MRS to transfer between methylation arrays
and cohorts by conducting association studies of several MRS in
multiple external EWAS datasets, where the minimum replication
p-value 61 was 2.72 × 10−7.
These results provide evidence for the utility of methylation in

phenotype imputation in general, and in biobank settings in
particular. However, the promise of clinical translation of genomic
risk scores, including PRS or MRS, is highly dependent on the
clinical context of the patient. There is a large body of work
investigating phenotype imputation and prediction in clinical
settings using EHR data alone, typically with machine learning
techniques, without any genomic data. To the best of our
knowledge, the question of whether genomic data can be used
to complement such algorithms has not been studied. Since the
application of MRS or PRS to clinical data without taking into
account the EHR data provides a limited clinical utility, this is a
natural question.
Here, we demonstrate that MRS can be used in conjunction with

EHR data to improve the imputation of clinical data of patients.
Critically, most machine learning approaches rely on imputation
because of the inability of such algorithms to process missing data,
making accurate imputation a crucial step. We found that the
combination of MRS with a gold standard imputation approach—
SoftImpute38—for clinical data imputation, provides improved
accuracy (R2) in 37.3% of the examined phenotypes with a median
increase of 47.6%. This result provides the potential to improve
machine learning algorithms that use the EHR data, by comple-
menting the data with methylation information for the patients.
In summary, our results quantify the contribution of methyla-

tion information in clinical settings, both in isolation and in
conjunction with the EHR data, and they demonstrate the
potential utility of epigenetic biobanks in clinical settings.

RESULTS
Risk model description
Analogous to the PRS39,40, we defined the MRS by a linear
combination of m CpG site beta values c and weights w:

MRS ¼
Xm

i¼1

wici (1)

To ensure the methylation risk score added predictive value over
commonly captured features (e.g., age and sex), we created a
baseline predictive model that included patients’ age, sex,
reference-based methylation cell-type composition estimates41,
self-reported race-ethnicity, self-reported smoking status, and the
first ten genetic principal components27 (see Supplementary Table
1 for cohort demographic data). We fit the baseline model using a
linear or logistic regression model depending on whether the
outcome was continuous or binary. We compared the baseline
model to models that included the baseline features as well as
either methylation or genotype data. For both the MRS and PRS,
we used regression with LASSO, elastic net, and ridge regulariza-
tion over the genomic features while treating the baseline
features as fixed covariates. We fit all models using 10-fold double
cross-validation, wherein each training set an additional cross-
validation was performed for hyperparameter selection, then this
training-set cross-validated model was used to predict the held-
out test set. We tested for significance using an association test

(via linear regression) between the cross-validated predicted
outcome (i.e., the concatenated predictor across all folds) and the
true outcome. For full details see “Methods”.

Methylation risk scores significantly outperform the baseline
and PRS models
From our EHR database, we extracted diagnosis codes, medication
orders, and the most recent lab results, all of which occurred
before the methylation samples were collected. We aggregated
the ICD codes into higher-level phenotypes according to the
phenotype code (Phecode) mapping proposed by Denny et al.42,43

and grouped individual medications by pharmaceutical subclass
to increase generalizability and power.
We trained penalized linear models to predict clinical pheno-

types for which there was a sufficient number of patient data
available, which included 168 medication subclasses, 69 lab
values, and 370 Phecodes. Using a Bonferroni-adjusted association
test, the baseline and MRS models significantly imputed the usage
of 69 and 88 medications, 18 and 33 labs, and 106 and 139
Phecodes, respectively (Supplementary Fig. 1). We compared the
performance of the MRS to a model that used both the PRS and
baseline features on the same set of individuals, which
significantly imputed the usage of 53 medications, 20 lab results,
and 93 Phecodes. Notably, the baseline model imputed a greater
number of medications and Phecodes than models that leveraged
a PRS, which suggests that including genomic features may either
add noise or our sample size may not have been sufficient to
discover their effects for certain outcomes. We also show in
Supplementary Fig. 2 that the baseline model gains some of its
predictive power from genomics-derived features like ancestry
PCs or estimated cell counts, and therefore a PRS or MRS may not
offer a substantial improvement over these features for certain
outcomes under the current sample sizes.
Next, we investigated outcomes for which genomics-based

predictors add predictive power to the baseline features and, in
such cases, the extent to which their inclusion improves predictive
accuracy. On the outcomes for which the genomics-based
predictors produced statistically significant imputations, we
conducted a likelihood ratio test comparing an association test
of the true outcome using the cross-validated baseline predictor
alone, to a model that included the cross-validated baseline
predictor as well as the cross-validated predictor that included
both baseline and genomic features (“Methods”). The methylation
significantly improved the baseline predictor for 54 medications,
29 labs, and 56 Phecodes, and led to a median increase of 10.74%,
141.52%, and 15.46% over the baseline predictor’s accuracy
(AUC, R2) in each outcome, respectively (Fig. 1). The genotypes
significantly improved the baseline predictor for 8 medications, 3
labs, and 11 Phecodes, and led to a median increase of 18.42%
over the baseline in the R2 of the labs, but a median decrease of
1.75% and 0.94% in AUC of the medications and Phecodes,
respectively (Fig. 1). We note that our internal sample size is likely
under-powered to discover small genetic effects and therefore
suggest the contributions made by the genotypes may be due to
additional ancestry signal that was not captured by the first few
genetic PCs.
The medications that improved the greatest using methylation

corresponded to drugs often prescribed to individuals with
neutropenia (hematopoeitic growth factors, AUC baseline 0.706
95% CI [0.661,0.748] to AUC methylation 0.840 [0.807,0.871]) or
chronic kidney disease (phosphate binder agents AUC from 0.731
[0.683,0.777] to 0.876 [0.842,0.907]). The lab panels best improved
with the addition of the methylation-based predictor included those
related to kidney function as well as cell counts (Urea nitrogen
baseline adjusted R2 0.032 [0.007,0.057] compared to 0.443
[0.377,0.509] with methylation, hemoglobin 0.107 [0.063,0.151] to
0.289 [0.232,0.346]). The addition of the genotype-based predictor
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improved the imputation of hematocrit (adjusted R2 from 0.077
[0.041,0.114] to 0.092 [0.052,0.132]) and total protein (adjusted R2

0.094 [0.047,0.141] to 0.111 [0.060,0.162]), both of which are
influenced by ancestry44,45. In the context of Phecodes, methylation
greatly increased the imputation of advanced renal disease over the
baseline and genotype models (for example, AUC baseline 0.720
[0.673,0.762] to 0.898 [0.867,0.927] with methylation), and the
genotype model increased the imputation of actinic keratosis (AUC
from 0.694 [0.631,0.747] to 0.728 [0.672,0.784]).
Overall, when looking at the intersection of medications

significantly imputed by either the methylation and genotypes or
methylation and baseline, 92% were better imputed by methylation
sites than genotypes (median 9.13% increase) and 78% were better
imputed by methylation compared to the baseline (median 6.81%
increase). Methylation improved the baseline imputation accuracy
by over 15% for 14 medications. In the context of significantly
imputed lab values, methylation explained more variability than the
baseline (median 398% increase) and genotype (median 274%
increase) predictors in 97% and 94% of the respective union of
significantly imputed labs. For 22 labs, the percent increase of
imputation accuracy was greater than 15% over the baseline model.
Methylation was more accurate than the baseline (median 3.48%

increase) or genotypes (median 6.58% increase) for 70% and 83% of
each respective union of Phecodes. For 29 Phecodes, the
methylation offered over a 15% increase in predictive accuracy
compared to the baseline model. For a substantial proportion of
outcomes, the MRS predictor added statistically significant pre-
dictive value over the PRS predictor (Supplementary Fig. 3). This was
generally not true when comparing whether the PRS added
predictive value over the MRS. For the imputation performance on
the full list of phenotypes, see Supplementary Tables 2, 3, and 4. To
see the number of CpGs selected for each MRS, see Supplementary
Tables 5, 6, and 7.
Importantly, cell-type composition, age, sex, BMI, smoking

status, and ancestry provide sufficient power for the imputation
of many EHR outcomes. We show explicitly in Supplementary Fig.
4 that genomics-derived features such as cell-type composition
and ancestry PCs likely contribute to accurate imputation of
several outcomes. In our analyses, we directly compared the
power gained by methylation over the aforementioned set of
baseline features. However, we note that obtaining these baseline
features may be unnecessary as the methylation alone may
capture their signal27,30,32,46,47. Further, previous reports have
suggested that approaches that fit all methylation probes

Fig. 1 MRS increases imputation accuracy on a variety of outcomes. a–c The performance of the PRS (blue) and MRS (green) imputations on
the y-axis with the baseline model performance on the x-axis. The performance of binary phenotypes (Phecodes (a), medications (b)) is
measured using area under the ROC curve (AUC) and the performance of continuous phenotypes (lab results (c)) is measured using
proportion of variance explained (R2). Shown is the performance on the union of outcomes that were significantly improved over the baseline
model by either the MRS or PRS and that were significantly imputed by their corresponding predictor (72 Phecodes, 59 medications, and 31
labs). d–f The disease incidence as a function of the PRS (blue) and MRS (green) binned by deciles (d, e); and the observed Urea Nitrogen lab
result value plotted against its imputed value (f).
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simultaneously with regularization may perform better when
excluding latent confounders, such as cell-type composition48. We
therefore suggest that using the methylation alone is sufficient to
replicate a substantial proportion of the associations generated
from the baseline features.

Using methylation risk scores improves imputation
approaches
Due to significant heterogeneity in patient populations, the
diagnosis and treatment process can vary widely between
patients, causing many variables to be left unobserved. This
sparse structure in the data must be reconciled before performing
many downstream analyses, and the imputation accuracy of these
unobserved variables is therefore crucial to subsequent steps. A
commonly-used approach for imputation is matrix completion, for
example, SoftImpute38, where the data matrix is reconstructed
from a low-rank representation. Often, one would jointly use
demographic information, diagnosis codes, lab results, and
medications to generate an estimate of the unobserved EHR
values using an imputation method such as SoftImpute, and
therefore we used this as our baseline imputation estimate49.
To investigate whether methylation can add additional useful

information to the imputation, we included the MRS values as part
of the imputation procedure and compared the performance to
the estimates that do not take methylation data into account (see
“Methods”). Specifically, we included cross-validated MRS values
for diagnosis codes, lab results, medications, and demographics
that were significantly imputed as 261 additional features (i.e.,
columns of the input matrix) in the imputation procedure. We
randomly removed a subset of the observed lab results, as well as
other labs that are ordered as part of the same lab panel(s), and
imputed the masked values using the remaining observed values.
The imputed values were then compared to the held-out, masked
values to assess the quality of the imputation. In Fig. 2, we show
the imputation accuracy (R2 between the masked true and
imputed values) for labs where the addition of cross-validated

MRS to the baseline SoftImpute procedure explained significantly
more variability. Of the 67 lab results considered, 25 (37.3%) were
significantly better imputed by including the MRS values.
Including the MRS values led to a median increase of 47.6%
(95% CI 17.3–90.9%) in the imputation R2 values.

Methylation risk scores will improve with larger sample sizes. In this
study, our analyses of imputation accuracy were performed on
831 individuals’ methylation and genetic features. For many
phenotypes, the genetic effects are relatively small and require
large sample sizes to identify associations between genomic
features and the outcome of interest. Consequently, in many
biobanks the number of individuals with measured genomic
features is several orders of magnitude larger than our sample
size1–3. While the methylation data provided sufficient power to
significantly impute numerous outcomes, there may remain much
power to be gained by increasing the number of methylation
samples to numbers approaching biobank-scale.
To determine the role of sample size in our imputation

accuracy, we performed an experiment in which we downsampled
the number of individuals in our data and trained models on the
subsampled data. From the set of outcomes most accurately
imputed by methylation and that also significantly improved the
baseline’s imputation, we chose 10 medications, labs, and
Phecodes on which to perform 10-fold cross-validation. For each
sample size, we repeated the procedure 20 times to attempt to
mitigate variance due to ascertainment effect. Though we
selected features that had high accuracy using the full set of
data, our results suggest that our models may become more
accurate as the sample size increases (Fig. 3; Supplementary Figs.
6, 7, 8). We further posit that there may be additional outcomes
that will be significantly imputed as the number of methylation
samples increases.

Comparing MRS to UKBiobank PRS
As expected, due to a small sample size and the likely small
effects of SNPs on phenotypes, the PRS developed using the
UCLA cohort did not add substantial predictive power over the
baseline features. Studies leveraging biobanks with sample sizes
several magnitudes larger than the cohort at UCLA however,
have shown non-zero heritability for a variety of pheno-
types1,50–52. Therefore, we sought to compare the MRS and
PRS generated with the UCLA data to a polygenic risk score
created using the UKBiobank data1. To do so, we obtained the
genotype weights corresponding to 10 polygenic risk scores
trained on the UKBiobank (Supplementary Table 10)1,51–53 data
and imputed the external risk scores into our health record
system using PLINK54. We included in the comparison labs that
were significantly imputed by the baseline model and excluded
labs that corresponded to cell counts or labs for which the
internal PRS outperformed the external PRS (indicating a
mismatch in the phenotypes or cryptic population structure
that was unaccounted for by principal components). While the
external polygenic risk score improved substantially the
imputation performance relative to the internal polygenic risk
score, it did not significantly outperform the methylation for any
of the tested phenotypes (Fig. 4). The methylation remained the
best predictor in general—even when trained on fewer than
1000 samples—significantly outperforming the other models in
the imputation of urea nitrogen, creatinine, hemoglobin,
hematocrit, and albumin. The externally-derived polygenic risk
score greatly outperformed both the internally-derived PRS and
the MRS when predicting glycated hemoglobin (HGBA1C) and
HDL levels, however, the improvement was not significant. For
detailed information on the external PRS and accession
numbers, see Supplementary Table 10.

Fig. 2 Improvement in lab result imputation performance by
including MRS. For lab results that were significantly better imputed
using a matrix completion imputation procedure that included the
MRS values, we compare the quality of the imputed values (R2) using
only the EHR data (SoftImpute) to the values generated when
including the MRS values in addition to the EHR data (SoftImpute
+MRS).
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Similarly to the analyses in which we examined whether
predictors that leverage genomics offered predictive value over
the baseline predictor, we examined whether our internal MRS
and the externally trained PRS offer information that is
complementary to the other. To do so, we measured the accuracy
when using the MRS, external PRS, both risk scores, and as well as
both risk scores and their interaction on the same set of labs as
our original analysis. None of the models significantly out-
performed the MRS alone (Supplementary Fig. 10). However,
there was a significant interaction effect between the MRS and
external PRS on creatinine (p= 9.16e−05), as well as a nominally
significant interaction effect on mean corpuscular hemoglobin
(p= 1.45e−02). As the interaction terms improved the accuracy
for both outcomes, there may be added value in leveraging both
MRS and PRS for imputation tasks, especially those that take
advantage of non-linear effects.

Evaluation of methylation risk scores across ancestral
populations
Previous reports have suggested that a significant confounder to
the application and versatility of polygenic risk scores is
population structure, where a population-specific bias is induced
that affects generalizability of PRS to different ancestries55–57. The
collection of samples analyzed throughout this study is ethnically
heterogeneous—individuals were self-identified as non-Hispanic/
Latino European, Hispanic/Latino, Black, or Asian. Methylation data
is also influenced by differences in population58, and in particular
the first several methylation principal components sufficiently
capture population structure in European and African groups59,60).
Consequently, we examined the performance of the methylation
risk scores within and across ancestral populations.
Primarily, after training the models on the entire heterogeneous

set of samples, we examined the predictive performance within
each ancestral population. When we examined the top 10 best-
imputed (by MRS across the entire set of individuals) lab panels,
medications, and Phecodes, only 10 of the entire 180 possible
comparisons ( 4

2

� �
comparisons across 30 outcomes) displayed

significant differences between the predictive performance within
each population separately (Fig. 5, Supplementary Figs. 11, 12).
In a second replication analysis we trained predictive models

within ancestral groupings separately. As the individuals self-
identified as either Black or Asian comprised <100 individuals in
both groupings, we focused our analyses on Hispanic/Latino- and
white-non-Hispanic/Latino-identifying individuals. We re-trained
models for the top 5 best-imputed (by MRS) medications, lab
panels, and unique Phecodes on the Hispanic/Latino individuals
and white non-Hispanic/Latino individuals alone and treated a
prediction as significant if its association p-value was lower than
0.01. Creatinine, hemoglobin, and urea nitrogen replicated across
both groupings, however, hematocrit and mean corpuscular
hemoglobin did not replicate in the Latino/Hispanic grouping
(Table 1). In the context of medications, CMV agents, osmotic
diuretics, phosphate binder agents, hematopoietic growth factors,
and immunosuppressive agents replicated within the white non-
Hispanic/Latino population but only CMV and immunosuppressive
agents replicated within the Hispanic/Latino population (Table 1).
Finally, Phecodes corresponding to immunity deficiency, hyper-
tensive renal disease, and end-stage renal failure replicated within
both groupings, however, neutropenia and anemia replicated only
within the white non-Hispanic/Latino set of individuals (Table 1).

Fig. 3 Imputation accuracy may improve with additional samples. We downsampled the number of individuals to evaluate the imputation
performance as a function of sample size using a well-imputed Phecode (a), medication (b), and lab value (c). The performance is significantly
affected by the number of individuals, suggesting that there is additional power to be gained with the addition of more methylation samples.
Error bars indicate 95% confidence intervals.

HGBA1C
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Mean
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UKBB PRS
Methylation
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Fig. 4 Labs as imputed by methylation, genotypes, and an
externally-trained polygenic risk score. The cross-validated R2

between the true and imputed lab value on 541 unrelated patients
of non-Hispanic-Latino white-identifying individuals using a base-
line predictor as well as a baseline predictor with methylation,
genotypes, and a PRS externally-trained from UKBiobank summary
statistics. HDL corresponds to high-density lipoprotein cholesterol
and HGBA1C to glycated hemoglobin. Error bars indicate 95%
confidence intervals.
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Replication of methylation risk scores across external datasets
To evaluate the transferability of the MRS to a different
population, we performed several experiments in which we
imputed the MRS into external datasets. Primarily, we focused on
imputation of kidney-related outcomes as they were the most
accurately imputed in our own cohort. To do so, we leveraged a
dataset that used the HumanMethylation27k array to measure the
methylation of 194 individuals who had Type 1 Diabetes, 49.7% of
whom had nephropathy (cases)61. We re-trained the models for a
Phecode corresponding to chronic renal disease as well as labs
corresponding to creatinine and urea nitrogen on our in-house
data, limiting our analysis to the 27,000 sites that belonged to the
external dataset. The imputed chronic renal disease was
significantly associated with nephropathy in the external dataset
(p= 8.32e−05, AUC= 0.684 [0.615,0.758]. Further, both of the

imputed values for creatinine and urea nitrogen were significantly
associated with nephropathy (p= 5.11e−07, AUC=0.739
[0.670,0.808] and p= 3.71e−05, AUC= 0.693 [0.619,0.767], respec-
tively). Importantly, when limiting our internal analysis to sites
only on the 27k array, the association signal decreased (for chronic
renal disease from p= 6.81e−51 to p= 3.13e−29, creatinine
p= 1.27e−95 to p= 3.14e−62, and urea nitrogen p= 2.50e−87
to p= 8.44e−34). However, likely due to correlation between
CpGs, the association tests for outcomes trained on the smaller set
of sites were still significant.
Second, we expanded our replication analyses to include

phenotypes that were unrelated to kidney function. In these
analyses, we revisited epigenome-wide association studies (EWAS)
of Schizophrenia62 and Rheumatoid Arthritis63 and imputed
commonly prescribed medications for each dataset—for Schizo-
phrenia we used phenothiazines, and for Rheumatoid Arthritis we
used glucocorticosteroids. To ensure our MRS captured medica-
tion intake status and were not merely serving as proxies for the
disease, we re-trained our models while conditioning on the trait
of interest. The imputed phenothiazine intake was significantly
associated with Schizophrenia case-control status (p= 8.71e−04,
AUC= 0.568 [0.527,0.611]) and the imputed glucocorticosteroids
usage was significantly associated with Rheumatoid Arthritis case-
control status (p= 2.72e−07, AUC= 0.626 [0.584,0.669]. Weights
for both medications were trained on CpGs corresponding to
those present on the HumanMethylation450k array and also
included their corresponding disease in the baseline set of
covariates. Accordingly, the association signal of phenothiazines
dropped from 1.14e−07 to 3.99e−05 and the performance of
glucocorticoids dropped from 1.35e−16 to 1.82e−15 when
compared to the MRS trained on the set of EPIC array CpGs and
with the baseline features as covariates.

DISCUSSION
In this study, we provide a comprehensive investigation of the
utility of methylation risk scores in a clinical setting. We used (to
our knowledge) the largest methylation biobank cohort produced
to date, which includes methylation, genotype, and comprehen-
sive EHR data for all patients. We find that the MRS improved
imputation performance over a baseline model by 10.65%,

Fig. 5 Best methylation-imputed Phecodes within ancestral
populations. After training a model on the entire heterogeneous
population of individuals, we evaluated the predictive performance
within each population separately. We observed only 6 (of 60)
significant differences between self-reported ancestral groupings.
Error bars indicate 95% confidence intervals.

Table 1. Replication statistics within ethnic groupings.

Outcome Metric Accuracy, p-value Hispanic/Latino
(n= 118)

Accuracy, p-value white, non-Hispanic/
Latino (n= 543)

Accuracy, p-value all ethnicities
(n= 833)

Creatinine R2 0.217, 4.63e−07 0.356, 7.47e−46 0.457, 1.27e−95

Hematocrit R2 0.045, 2.91e−02 0.188, 1.87e−21 0.246, 1.14e−42

Hemoglobin R2 0.096, 1.21e−03 0.204, 2.54e−23 0.283, 3.02e−50

Mean corpuscular hemoglobin R2 0.050, 2.12e−02 0.122, 9.70e−14 0.208, 7.04e−35

Urea nitrogen R2 0.289, 2.97e−09 0.349, 7.61e−44 0.435, 2.50e−87

CMV Agents AUC 0.874, 9.27e−07 0.875, 3.47e−16 0.905, 1.72e−38

Osmotic Diuretics AUC 0.530, 0.841 0.842, 2.27e−12 848, 6.37e−34

Phosphate binder agents AUC 0.608, 0.321 0.819, 7.76e−17 0.876, 1.11e−50

Hematopoietic growth factors AUC 0.567, 0.476 0.780, 1.51e−19 0.840, 1.75e−45

Immunosuppressive agents AUC 0.721, 1.43e−04 0.823, 6.36e−22 0.828, 9.44e−41

Neutropenia AUC 0.689, 5.60e−02 0.800, 7.68e−10 0.836, 1.11e−19

Immunity deficiency AUC 0.889, 4.06e−09 0.818, 3.26e−19 0.821, 9.74e−33

Anemia AUC 0.637, 9.75e−02 0.698, 3.13e−08 0.789, 1.40e−32

Hypertensive renal disease AUC 0.715, 1.35e−04 0.688, 6.74e−10 0.801,1.45e−42

End-stage renal failure AUC 0.677, 1.80e−03 0.868, 2.51e−29 0.898, 5.46e−72

Predictive accuracy (R2 and AUC) for MRS trained within only Latino/Hispanic- or white-non-Latino/Hispanic-identifying individuals compared to the accuracy
trained on the entire, cross-ethnic cohort.
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156.31%, and 14.59% when predicting medication usage, lab
panel values, and diagnosis codes, respectively. These contribu-
tions are significantly more substantial than those obtained
by PRS.
The vision of genomic biobanks is that the genomic data will be

translated into improved clinical diagnoses and treatment
decisions12,13,64. In practice, clinical decisions are not expected
to be based solely on genomic information, but rather on the
combination of the genomic, medical, and demographic informa-
tion of the patient. While previous studies have used a limited
number of key features as a baseline for imputation of a
phenotype (e.g., age, sex, and major comorbidities)49,65–67, to
the best of our knowledge, these studies did not take into account
the entire familial-genetic or environmental history of the patients.
Thus, the question of whether genomic data (methylation or
genetics) can be used to improve imputation over the EHR data is
critical in order to claim clinical relevance. Our results demonstrate
that adding MRS to existing EHR-based imputation frameworks
improve imputation accuracy by over 47% in a clinical context.
It is well appreciated that PRS are sensitive to the studied

population, and it is often the case that a PRS developed for one
ethnic group performs poorly on others55,57. It is therefore
important to evaluate the population effect on MRS performance.
For this reason, we measured the transferability of our results
across different populations, and we observe that the accuracy of
the MRS was robust to population structure. This is likely driven by
the diversity of the training cohort used, but also due to the fact
that we are under-powered to discover subtle differences in
imputation accuracy due to our sample sizes. Nonetheless, since
we observed very few large differences in accuracy across
populations, we are hopeful that our results will inspire future
investigations to continue to recruit diverse cohorts and to
examine these differences at length with greater sample sizes.
While our study was focused on methylation, there are many

other possibilities for the introduction of genomic data in clinical
settings. First and foremost, genetic data has been heavily studied
by others and large biobanks including genetic data of patients
already exist. However, other measurements such as RNA,
microbiome, metabolomics, or proteomics may also be relevant.
Some of these have logistic and cost considerations at scale. One
of the advantages of methylation is that DNA biobanks already
exist in large numbers, and the cost of measuring methylation is
close to that of measuring genetic data. Moreover, different
genomic measurements may provide different snapshots of the
patient’s data, risk, or health status. Methylation, for example, is
known to capture one’s smoking status26, and may therefore be
particularly useful for cases in which researchers intend to use self-
reported features that may suffer from patient recall bias or
honesty. Tangentially, while polygenic risk scores provide a
lifetime risk for a patient, methylation risk scores may provide
the current risk of the patient over the last few months68–70, and
other genomic information may provide risk with the resolution of
days or hours (e.g., RNA or certain metabolomics71–74). None-
theless, owing to the dynamic nature of methylation, it is currently
unclear what the range or duration of the methylation risk scores
are. Furthermore, while methylation patterns are associated with
outcomes, it is generally unknown if they cause a disease or are a
response to a disease75.
To assist the research community in investigating methylation

in the context of disease, we provide the MRS predictors for all
significantly predicted outcomes at https://github.com/cozygene/
EHR_MRS_UCLA. While our samples were ascertained on kidney
and heart disease, we show that our weights successfully
replicated across three external datasets, including studies of
Rheumatoid Arthritis and Schizophrenia. Consequently, our
weights may be used by researchers and clinicians in different
ways. For example, in many epigenome-wide association studies
(EWAS), in which associations between specific methylation CpG

sites and a phenotype are studied, one may wish to account for
patients’ comorbidities and medications, which are often not
available to the study. Using the MRS database, the researchers
leveraging EWAS will be able to incorporate such covariates into
their model.
There are multiple potential next steps for the examination of

methylation in clinical contexts. First, in this work, we focused our
attention on the imputation of the phenotypes, or in other words,
the inference as to whether the patient is currently diagnosed
with a disease. We hope that our findings will be able to be
translated to the inference of future clinical events, i.e., prediction
of future deterioration or disease occurrence. Second, our analyses
did not focus on generating models for a specific patient
demographic (e.g., only senior patients) and we were limited to
methylation collected from blood samples. As methylation is
known to vary across age and tissue type, models may be
improved by focusing on individuals of a specific demographic, or
by assaying a tissue relevant for a given phenotype (e.g., liver
tissue for metabolic disorders). Third, although our evaluation is
across the largest dataset which includes EHR, methylation, and
genotype data, the sample size of our study is still moderate
compared to genetic studies that are performed on biobanks.
Indeed, we demonstrate that for some of the phenotypes, an
increase in sample size will likely lead to a substantially improved
imputation accuracy (Fig. 3; Supplementary Figs. 6–8). Moreover,
larger sample size data may be able to reveal the quantity or
contribution of genetics verses methylation to the MRS imputation
accuracy48. In light of our results, as well as the fact that many
biobanks have already obtained blood or DNA samples, we
recommend that future biobanks consider measuring methylation
in addition to the genotypes across a large number of patients.

METHODS
Electronic health record data
De-identified electronic health record data for this study was extracted
from the perioperative data warehouse (PDW), a custom-built, robust data
warehouse containing all patients who have undergone surgery at UCLA
Health since the implementation of UCLA’s EMR (EPIC Systems, Madison,
WI, USA) in March 2013. The PDW, which has been described previously76,
has a two-stage design. First, data are extracted from EPIC’s Clarity
database into 29 tables organized around three distinct concepts: patients,
surgical procedures, and health system encounters. Then, these data are
used to populate a series of 4000 distinct measures and metrics such as
procedure duration, admission ICD codes, lab results, and medication
orders.

Patient ascertainment
Methylation and genotype samples were collected using blood from 831
patients as part of the UCLA ATLAS precision health initiative between
October 26, 2016 and December 10, 201877. We include the following
statements from ref. 77 detailing IRB approval. Retrospective data collection
and analysis was approved by the UCLA IRB. Patient Recruitment and
Sample Collection for Precision Health Activities at UCLA is an approved
study by the UCLA Institutional Review Board (UCLA IRB). IRB17-001013. All
necessary patient/participant consent has been obtained and the
appropriate institutional forms have been archived.
The samples were collected from patients before undergoing surgery

with general anesthesia at UCLA Health, and the patients had not
undergone surgery in the 30 days prior to blood sample collection. Of
these patients, 302 were selected for inclusion based on the presence of
acute kidney injury (AKI), defined as an Acute Kidney Injury Network (AKIN)
classification of one or greater, after undergoing surgery. An additional 348
patients were risk-matched controls, with either glomerular filtration rate
(GFR) less than or equal to 38 (210 patients), or GFR >38 and a propensity
risk score that matched case patients (348 patients). The propensity score
was created using available EHR features such as age, weight, BMI, and
other preoperative features that were measured in the hospital. Within the
control group, we also performed a similar procedure ascertained on
whether individuals were a heart attack case. Controls for heart attack
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patients were also selected using propensity scoring. Demographics of the
patient population are further described in Supplementary Table 1.

Medication usage
For each medication, a patient was labeled as using a medication if the
electronic health record contained a medication order that occurred
before the methylation sample collection date. Medications were grouped
by pharmaceutical subclass using the Generic Product Identifier (GPI)
hierarchical classification system codes. Any medications that were
ordered in fewer than 5% of the patients were excluded from the analysis.
In total, 168 pharmaceutical subclasses were considered in our analysis.
The number of patients using medications from each subclass is shown in
Supplementary Table 8. In Supplementary Table 9, we show for each
pharmaceutical subclass the specific medication that patients in our cohort
received.

Lab results
The most recent lab result prior to the methylation sample collection was
extracted from the PDW for each patient. Any labs with a result date that
occurred more than 365 days before the methylation sample collection
date were excluded from the analyses. In addition, labs for which there
were <50 patients with valid results were excluded. We were left with a
total of 69 lab values on which to run our models.

Diagnosis codes
International Classification of Diseases, Ninth Revision (ICD-9) and
International Classification of Diseases, Tenth Revision (ICD-10) codes are
a standard set of diagnosis codes, primarily used for billing purposes. While
these codes provide a standardized methodology for describing a
diagnosis, they are very specific. To map these specific diagnosis codes
into meaningful, distinct diseases/traits, Denny et al. aggregated the ICD
codes into phenotype codes (Phecodes)42,43. Specifically, for each patient,
we queried all diagnoses prior to the methylation sample collection date,
and used the Phecode (version 1.2) mapping to aggregate ICD-9 and ICD-
10 codes to unique, meaningful phenotypes. If a patient’s diagnosis record
had both ICD-9 and ICD-10 labels, the ICD-10 to Phecode mapping was
used instead of the ICD-9 to Phecode mapping. Each Phecode was treated
as a binary variable, indicating the presence or absence of a relevant
diagnosis code at any point in time before sample collection. We excluded
rare Phecodes (occurrence in <5% of the patients) and, in total, our cohort
contained 370 unique Phecode phenotypes.

Preprocessing of genotype data for cross-validation
We measured the genotypes for 831 individuals based on their DNA
sampled from whole blood using the ATLAS genotype array. We
preprocessed the genotype data using Beagle (d20)78, PLINK (1.07)54,
and GCTA (1.93.2)79. We restricted the genotypes to autosomal variants,
removed rare variants (MAF <0.05), and filtered for variants that met Hardy-
Weinberg equilibrium with p-value threshold 10−6. We also removed
individuals and variants with more than 1% missing values. For the
purpose of running cross-validation, we used Beagle to impute only any
remaining missing values, but did not impute to an external dataset. We
show that with our sample size and phenotypes evaluated, using
genotypes imputed to an external reference does not significantly improve
our results (Supplementary Fig. 14). In total we were left with 292,808 SNPs.
To obtain principal components, we ran PCA using plink on the chipped
genotypes.

Preprocessing and imputation of genotype data for
comparison to external models
We used a version of the ATLAS genotype data that was imputed to an
external dataset, as detailed in ref. 77. Briefly, after performing quality
control, genotypes were uploaded to the Michigan Imputation Server80.
The server phases the genotype data using Eagle v2.481 and performs
imputation using the TOPMed Freeze5 imputation panel82 using
minimac483. We applied the same quality control and filters to the
imputed genotypes as we did the chipped genotypes, and we were left
with a total of 5,574,956 SNPs.

Preprocessing of methylation array data
We measured methylation data for 831 individuals based on their DNA
sampled from whole blood using the EPIC Illumina array. To generate beta-
normalized methylation levels at each CpG, we ran the default pipeline of
ENmix (1.22.0)84 on the raw probe data (IDAT files), which performs
background correction, RELIC dye bias correction, and RCP probe-type bias
adjustment. We removed from our analysis CpGs that coincided with SNP
loci as well as CpGs on the sex chromosomes. We also filtered out outlier
samples, defined as having a PC score more than 4 standard deviations
away from the average PC score in the first two principal components. In
the imputation tasks, we removed sites with low variability (standard
deviation < 0.02) leading to a total of 269,471 sites.

Imputation using baseline medical features
To establish a baseline level of imputation performance, we constructed a
set of features derived from basic patient information. We trained a simple
linear (or logistic) model with 10-fold cross validation using an intercept
and patients’ age, sex, BMI, methylation-based cell-type proportions (from
the reference-based method of Houseman et al.41), self-reported ancestry,
first ten genetic principal components, and smoking status (never, former
or current). Importantly, we wished to establish how well an outcome
(medication, Phecode, or lab value) could be imputed by using covariates
(e.g., ancestry, age, smoking status) that are known to be captured by
genomics.

Imputation using a single penalized linear model
After establishing a baseline level of imputation performance, we
performed penalized logistic and linear regression using either individuals’
methylation or genotypes. More concretely, we fit 10-fold cross-validation
using LASSO, elastic net and ridge regularization under the following two
models:

y ¼ αG þ GβG þ CβC þ εG (2)

y ¼ αM þMβM þ CβC þ εM (3)

where y corresponds to the outcome, α the model-specific intercept, G the
n × s genotypes, M the n × cmethylation data, β the vector of length-s or -c
effect sizes for the given explanatory variable, C and βC the covariates from
the baseline model and their corresponding effect sizes, and ε the length n
noise vector. We refer to models (2) and (3) as the PRS and MRS,
respectively, and note that they also include the baseline features. After
fitting all three penalized linear models (LASSO, elastic net, and ridge) for a
given datatype and outcome, we selected a final model as determined by
the model with the highest cross-validated metric (AUC or R2 if the
outcome was binary or continuous, respectively). We fit all penalized
models using package bigstatsr40. We share MRS weights for outcomes
that were significantly imputed at https://github.com/cozygene/
EHR_MRS_UCLA. We also include details on the number of CpGs selected
for each MRS in these analyses in Supplementary Tables 5, 6, and 7.

Imputing lab results using EHR data and MRS values with
softImpute
Imputing a partially-observed matrix of values is often formulated as a
matrix-completion problem. In a matrix completion problem, the observed
values of the matrix are used to estimate the values of the unobserved
values by assuming that there is some underlying structure that is
responsible for generating the data. For example, in the popular
SoftImpute method38, the data is assumed to be well-approximated by a
low-rank representation, and the error between the observed values and
the reconstructed values is minimized through a convex optimization
procedure. However, since the unobserved values are, by definition, not
observed, and therefore cannot be used to assess the imputation
performance, the primary method for measuring the performance involves
masking (removing) observed values and comparing the imputed values to
these held-out, true values.
The EHR data used in the imputation procedure included demographic

information, diagnosis codes, medication usage, and lab results, which
were extracted from the EHR database using the previously described
criteria. In addition to the EHR data, we also ran the imputation procedure
while including relevant MRS values. Specifically, we included the MRS
values for demographics, diagnosis codes, medication usage, and lab
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results that were imputed at a statistically significant level. These MRS
values were added as additional observed features to the EHR matrix.
To estimate the imputation performance, we randomly masked 10% of the

observed lab result values, and performed the imputation procedure
(SoftImpute matrix completion) to generate estimates of the missing values.
However, since labs are most often ordered in panels, for example a
metabolic panel, if a lab is missing then typically other labs that are part of
the same panel are also missing. We simulated a more realistic missingness
scenario by, instead of masking out values only from a specific lab l, masking
out all labs that are ordered as a panel that include lab l. This masking
procedure was done per lab, using 10-fold cross-validation, such that 10% of
the non-missing values of a particular lab result (and its associated lab panels)
were masked (removed), and the remaining 90% of the observed values
were used to complete the matrix. Matrix completion was performed using
the SoftImpute algorithm, as implemented in the fancyimpute85 python
package (version 0.5.5). The proportion of variance explained (R2) of the true
lab values by the imputed lab values was used to measure the imputation
performance. Confidence intervals were derived using bootstrapping.

Hypothesis testing
To determine whether an imputation was significant or whether one
predictor offered significant additional explanatory signal, we conducted
our hypothesis tests using a linear (logistic) regression framework.
Primarily, after running cross-validation or generating a single predictor
ŷ for an outcome y, we would test whether the imputation was significant
by comparing it to y:

y ¼ αþ ŷβþ ε (4)

Where Eq. (4) corresponded to linear regression when the outcome was
continuous, and logistic regression when the outcome was binary, α was
the intercept, and β was an effect size indicating association of the
predictor with the outcome. Notably, by building our testing framework as
a linear model, we can easily extend it to include additional predictors in
order to test whether the additional predictors significantly improve the fit
of the regression—or more simply, whether predictor ŷj offers additional
predictive power over ŷi by conducting a likelihood ratio test of the
following nested models:

y ¼ αi þ ŷiβi þ εi (5)

y ¼ αij þ ŷiβi þ ŷjβj þ εij (6)

Where i and j index either the baseline, MRS, or PRS models. We corrected
for multiple hypothesis tests within each outcome and genomic risk score
by using a Bonferroni adjustment at α level 0.05.

Imputing external polygenic risk scores into the ATLAS cohort
We compared our in-house built risk scores to risk scores learned in the
UKBiobank dataset50,52. In both50,52, the authors construct their PRS using
penalized regression akin to as we have done in our analyses. Notably,
using penalized regression on individual-level genotypes allows one to
automatically, optimally control for shrinkage and variable selection at the
step of model generation40,86. This is in contrast with many commonly
used polygenic risk score tools such as LDPred87 or PRSCS88, that attempt
to perform shrinkage or variable selection post hoc on the level of
summary statistics. After downloading the PRS from the PGS catalog53

listed in Supplementary Table 10, we imputed PRS into our cohort using
our imputed genotypes using the score function of plink. To account for
population structure, we limited our analysis to individuals who self-
identified as white, and passed filtering using manual inspection of
principal components (Supplementary Fig. 9).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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