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Abstract

The Laplace transform is applied to solve the groundwater flow equation with a bound-

ary that is initially fixed but that starts to move at a constant rate after some fixed time.

This problem arises in the study of pore water pressures due to erosional unloading

where the aquifer lies underneath an unsaturated zone. We derive an analytic solution

and examine the predicted pressure profiles and boundary fluxes. We calculate the neg-

ative pore water pressure in the aquifer induced by the initial erosion of the unsaturated

zone and subsequent erosion of the aquifer.

Keywords: Groundwater flow; erosional unloading; Laplace transform; boost

theorem.

1. Introduction

Erosional unloading is the process whereby surface rocks and soil are removed by

external processes, resulting in changes to water pressure within the underlying aquifer

[1]. [2] used vertical one-dimensional numerical models to investigate abnormal fluid
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pressures in geologic formations caused by gravitational loading or unloading due to

deposition or erosion in sedimentary basins.

We consider a mathematical model of changes in excess pore water pressure as

a result of erosional unloading. An equivalent porous medium description is used to

model the resulting flow [3]. This approach has been shown to be a good model of

flow in aquifers [4]. [5] studied this process in the case where the water table initially

coincides with the surface. We generalize this case to an ideal aquifer which is initially

separated from the ground surface by an unsaturated zone. Rates of erosion are dis-

cussed in [6, 7], but in terms of representative values and without addressing temporal

variability. In the absence of further information, we consider steady erosion here as a

first step.

The problem is solved using the Laplace transform in conjunction with the boost

operator derived by [8]. The boost operator is used to boost the solution in the Laplace

domain into a frame of reference moving at constant velocity with respect to the origi-

nal frame. This allows one to solve the the erosional unloading problem in which one

boundary moves.

We use our solution to analyze the evolution of the pressure during erosion of the

aquifer for small and large erosion rates. We examine the flux at the boundaries a

function of time and derive a quasi-steady approximation valid for very small erosion

rates in the appendix.

2. Problem formulation

The model studied by [5] consists of a single layer of saturated aquifer where the

water table is near the surface. This layer is bounded at the bottom by an impermeable

layer.

Our model does not assume that the water table is next to the surface; instead we

take the unsaturated zone to have non-negligible thickness (see Figure 1). The capillary

and soilwater zones are taken to have negligible thickness and are not considered. The

underlying layer below is taken to be impermeable [1]. While both the permeable

and impermeable cases are mentioned in [5] and both can be treated using the present

approach, the latter is more relevant to applications and is hence considered here.
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Figure 1: System configuration.

[5] analyzed the following inhomogeneous equation for groundwater flow:

c
∂2 p′

∂z2 =
∂p′

∂t
− ρsg

∂l
∂t
. (1)

This equation comes from Darcy’s Law and conservation of mass applied to volume

elements within the aquifer. Our source term differs from that of Neuzil and Pollock

in the time interval before erosion and in the time interval during erosion. The rate of

erosion ∂l/∂t = b will be assumed to be constant, and the aquifer is homogeneous.

Let the unsaturated zone and the aquifer have initial thicknesses of H and L respec-

tively. It follows that the permeable layer is at an initial depth of H + L from the ground

surface. The coordinate system is chosen so that the origin coincides with the initial

depth of the water table. The z-coordinate will be taken to point down (see Figure 1).
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2.1. Governing Equations

For the period before erosion, the governing equation is

∂p
∂t
− c

∂2 p
∂z2 = −γρmgb. (2)

Here p is the excess pore water pressure, c = K/S with hydraulic conductivity K and

specific storage S , ρm is the moist density of the unsaturated zone, γ is the loading

efficiency and g is gravity.

The initial condition is p = 0 at t = 0, while the boundary conditions are p = 0 at

z = 0 and ∂p/∂z = 0 at z = L. Erosion starts at t = H/b, and during erosion the field

equation is
∂p
∂t
− c

∂2 p
∂z2 = −γ(ρs − ρ f )gb. (3)

Here ρs is the saturated density of the aquifer and ρ f is the groundwater density. The

boundary condition at the bottom of the aquifer remains p = 0, but now the upper

boundary moves, so that p = 0 at z = bt − H.

We non-dimensionalize using L for length, c−1L2 for time and γρmgbc−1L2 for

pressure. The non-dimensional equations are then

∂p
∂t
−
∂2 p
∂z2 =


−1 for t < t0,

−r for t > t0,
(4)

where t0 = Hc/bL2 and r = (ρs − ρ f )/ρm. We keep the same variable names as before.

The initial condition is p = 0 at t = 0. The fixed boundary condition is ∂p/∂z = 0 at

z = 1. The other boundary condition is p = 0 at z = 0 for t < t0 and at z = β(t − t0) for

t > t0 with β = bL/c. The model is thus completely characterized by three parameters

r, β, and t0 = H/βL.

The erosion of the unsaturated zone and the aquifer ends after a time tm = β−1 + t0.

In particular, erosion of the aquifer takes place in the time interval t0 ≤ t ≤ tm.

3. Solution

3.1. Boost Theorem

We first review the Laplace transform boost and present a theorem derived by [8].

Let p(z, t) be the solution in a frame O, and let q(z − βt, t) be the solution in a frame O′
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which is moving at a constant speed β with respect to O. Their Laplace transforms are

related by the boost operator:

p̃(z, s) = exp
(
β
∂

∂z
∂

∂s

)
q̃(z, s) (5)

or equivalently

exp
(
−β

∂

∂z
∂

∂s

)
p̃(z, s) = q̃(z, s). (6)

Theorem 1. [8] If p̃(z, s) = A(
√

s)e−z
√

s + B(
√

s)ez
√

s tends to zero sufficiently fast for

large s, and the two functions A(
√

s) and B(
√

s) are analytic in the complex plane with

at most a countable number of singularities, then

exp
(
−β

∂

∂z
∂

∂s

)
A(
√

s)e−z
√

s =

1 +
β√

β2 + 4s

 A

β2 +

√
β2

4
+ s

 e−(β/2+
√
β2/4+s)z

and

exp
(
−β

∂

∂z
∂

∂s

)
B(
√

s)ez
√

s =

1 − β√
β2 + 4s

 B

−β2 +

√
β2

4
+ s

 e(−β/2+
√
β2/4+s)z.

3.2. Before Erosion

By expanding in a Fourier series, we find the solution for t < t0 in the form

p0(z, t) = −
2
π3

∞∑
n=1

1
(n − 1/2)3

(
1 − e−(n−1/2)2π2t

)
sin [(n − 1/2)πz]. (7)

Define λn = −2/[π(n − 1/2)]3(1 − e−(n−1/2)2π2t0 ). The pressure at t = t0 can hence be

written as

p0(z, t0) =

∞∑
n=1

λn sin µπz (8)

where µ = n − 1/2.

3.3. During Erosion

For t > t0, define the time variable τ = t − t0, and the Laplace Transform

p̃(z, s) =

∫ ∞

0
p(z, τ)e−sτdτ. (9)

The Laplace transform of (4) is

sp̃ −
∂2 p̃
∂z2 =

∞∑
n=1

λn sin µπz −
r
s
. (10)
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This has solution

p̃ = A(
√

s)e−z
√

s + B(
√

s)ez
√

s −
r
s2 +

∞∑
n=1

λn

s + (µπ)2 sin µπz. (11)

The boundary condition at z = 1 gives

−A(
√

s)e−
√

s + B(
√

s)e
√

s = 0. (12)

To account for the moving boundary, we consider the solution in a frame in which

this boundary is at rest. Consider the boost to the variable y = z − βτ, so that the

second boundary condition is at y = 0. Writing p(z, τ) = q(y, τ) leads to the governing

equation
∂q
∂τ
−
∂2q
∂y2 − β

∂q
∂y

= −r. (13)

For this initial condition, we have q(y, 0) = p(y, 0) = p0(y, t0). Hence the Laplace

transform of (13) gives

sq̃ −
∂2q̃
∂y2 − β

∂q̃
∂y

=

∞∑
n=1

λn sin µπy −
r
s
, (14)

since at τ = 0 we have y = z. We obtain

q̃ = Ce−(β/2+
√
β2/4+s)y + De(−β/2+

√
β2/4+s)y −

r
s2 +

∞∑
n=1

[sn sin µπy + cn cos µπy]. (15)

The coefficients sn and cn are given by

sn =
s + (µπ)2

[s + (µπ)2]2 + (βµπ)2 λn, cn =
βµπ

[s + (µπ)2]2 + (βµπ)2 λn. (16)

The boundary condition at y = 0 leads to

C + D −
r
s2 +

∞∑
n=1

cn = 0. (17)

We now apply Theorem 1 to write C and D in terms of A and B. This gives

C =

1 +
β√

β2 + 4s

 A

β2 +

√
β2

4
+ s

 , D =

1 − β√
β2 + 4s

 B

−β2 +

√
β2

4
+ s

 .
(18)

Define the new variable σ by

√
σ =

β

2
+

√
β2

4
+ s. (19)
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Then s = σ−β
√
σ. The two boundary conditions (with σ in (12) rather than s) become

−A(
√
σ)e−

√
σ + B(

√
σ)e

√
σ = 0, (20)

√
σ

√
σ − β/2

A(
√
σ) +

√
σ − β

√
σ − β/2

B(
√
σ − β) −

r
(σ − β

√
σ)2

+

∞∑
n=1

cn = 0, (21)

where cn is expressed in terms of σ as

cn =
βµπ

[σ − β
√
σ + (µπ)2]2 + (βµπ)2

λn. (22)

Following [8], we define ξ =
√
σ and A(ξ) = ξ−1H(ξ). Then the lower boundary

condition gives

B(ξ) = ξ−1H(ξ)e−2ξ. (23)

The upper (moving) boundary condition leads to

H(ξ)+e−2(ξ−β)H(ξ−β)+ (ξ−β/2)

− r
ξ2(ξ − β)2 +

∞∑
n=1

λnβµπ

[ξ2 − βξ + (µπ)2]2 + (βµπ)2

 = 0.

(24)

Decomposing into partial fractions, this may be rewritten as

H(ξ)+e−2(ξ−β)H(ξ − β) =
r

2β(ξ − β)2 −
r

2βξ2 −

∞∑
n=1

4∑
j=1

s j

ξ − b j
, (25)

where the s j and b j depend implicitly on n and are defined by

b j = iµπ,−iµπ, β + iµπ, β − iµπ, s j = iλn/4,−iλn/4,−iλn/4, iλn/4. (26)

The relation (25) is a linear functional equation for H(ξ). We can treat the terms on the

right-hand side separately. It can be verified that the solution to

H(ξ)+e−2(ξ−β)H(ξ − β) =
1

(ξ − α)ν
(27)

is
∞∑

m=0

(−1)m

(ξ − mβ − α)ν
e−2mξ+m(m+1)β = F(ν, α, ξ). (28)

While ν is arbitrary, we will only require ν = 1 and 2, . Hence

H(ξ) =
r

2β
F(2, β, ξ) −

r
2β

F(2, 0, ξ) −
∞∑

n=1

4∑
j=1

s jF(1, b j, ξ). (29)
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Note that the sum in (29) does not converge for β > 0, as in [8]. However, the resulting

solution in the time variable does converge.

The solution p̃, with B written in terms of A from (11) and (12), is

p̃(z, s) = A(
√

s)e−z
√

s+A(
√

s)e−(2−z)
√

s −
r
s2 +

∞∑
n=1

λn

s + (µπ)2 sin µπz. (30)

The third and fourth terms in (30) have inverse transform

− rτ +

∞∑
n=1

λne−µ
2π2τ sin µπz. (31)

The terms in A in (30) are

1
√

s

 +
r

2β
F(2, β,

√
s) −

r
2β

F(2, 0,
√

s) −
∞∑

n=1

4∑
j=1

s jF(1, b j,
√

s)

 e−ζ
√

s, (32)

with ζ = z and ζ = 2 − z successively. We define the inverse transform of each term

to be a sum of functions f νm(d, α, t, ζ). Expressions for these functions, including the

simple forms for ν = 1 and 2 , are given in Appendix A.

We arrive at the inverse Laplace transform of p̃(z, s) in the form

p(z, τ) = −rτ +

∞∑
λne−n2π2τ sin µπz +

∞∑
m=0

(
r

2β
[ f 2

m(β, τ, z) + f 2
m(β, τ, 2 − z)]

−
r

2β
[ f 2

m(0, τ, z) + f 2
m(0, τ, 2 − z)] −

∞∑
n=1

4∑
j=1

s j[ f 1
m(b j, τ, z) + f 1

m(b j, τ, 2 − z)]

 .
(33)

Its derivative with respect to z is

dp
dz

=

∞∑
n=1

µπλne−n2π2τ cos µπz +

∞∑
m=0

(
r

2β
[ f
′2
m (β, τ, z) − f

′2
m (β, τ, 2 − z)]

−
r

2β
[ f
′2
m (0, τ, z) − f

′2
m (0, τ, 2 − z)] −

∞∑
n=1

4∑
j=1

s j[ f
′1
m (b j, τ, z) − f

′1
m (b j, τ, 2 − z)]

 ,
(34)

where the derivatives f
′ν
m are given in Appendix A.

4. Results

The values used in this section are l = H = 10, c = 30, γρmg = 1, and γ(ρs−ρ f )g =

0.5. We vary b and hence t0. Since pressure is nondimensionalized with γρmgbc−1L2,

8
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Figure 2: Pressure at t0. From right to left, the erosion rates are β = 1, 10, 25, 100, 250, 1000.

it suffices to scale by this number to recover the physical values of pressure. For this

choice of values, this is equivalent to scaling by 10β.

Erosion of the unsaturated zone induces an initial increase in negative pore water

pressure throughout the aquifer. The magnitude of the pressure change peaks at the

base of the aquifer. Large erosion rates cause a greater increase in negative pressure at

the base of the aquifer . This is shown in Figure 2. Since l and H are fixed, increasing

β corresponds to decreasing t0 = H/βL.

A plot of pressure vs. depth (with the origin set at the top of the aquifer) is given

in Figure 3. Each curve represents a different stage of erosion. The first curve at time

τ = 0 is the initial pressure at the beginning of aquifer erosion. Figure 4 shows a similar

plot with a higher erosion rate.

For low erosion rates, the greatest pressure remains localized at the base of the

aquifer. In addition, the magnitude of the pressure at any given depth decreases during

erosion. For large erosion rates, the pressure increases most rapidly at the base, leading

to a rapid variation in pressure near the surface and more uniform pressure near the base
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Figure 3: Pressure vs. depth for an erosion rate of β = 1/3.
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Figure 5: Boundary fluxes for β = 1/3.

for times close to the end of erosion. In contrast with the case of low erosion rates, the

magnitude of the pressure increases for a short time at certain depths. Figures 5

and 6 show the flux at each boundary as a function of time. Appendix B presents an

approximate calculation for the fluxes.

Next, we examine pressure as a function of the erosion rate. Figure 7 shows the

pressure halfway through the remaining depth of the aquifer after 25, 50 and 75%

erosion. The dependence is strikingly linear.

5. Conclusion

The analysis of the erosional unloading problem studied by [5] has been extended

to the case of a subsurface boundary. An analytic solution was obtained through use of

the Laplace transform. While standard Laplace transform methods are insufficient for

handling most moving boundary value problems, we showed that the Laplace Trans-

form boost theorem derived by King may be readily applied to such problems.

The initial pressure profile as a function of erosion rate was calculated. The subse-

quent time evolution of pressure in the aquifer was obtained and its dependence on the

11



0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

t

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

d
p

/d
z

Top

Figure 6: Boundary fluxes for β = 50.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-45

-40

-35

-30

-25

-20

-15

-10

-5

0

p
(0

.5
)

25%

50%

75%

Figure 7: Pressure vs. erosion rate.

12



parameters of the problem was examined. It is possible to obtain approximate solutions

for the boundary fluxes for small erosion rates.

These results can be used to compare to more complex calculations of erosional

unloading. The boost theorem can be used when both boundaries move, although it is

limited to the case when the boundaries move with constant speed.

Appendix A. Calculation of f νm(α, τ, ζ)

The function f νm(α, τ, ζ) is the inverse Laplace transform of

(−1)m e−(2m+ζ)
√

s+m(m+1)β

√
s(
√

s − mβ − α)ν
=

∆e−k
√

s

√
s(
√

s + a)ν
, (A.1)

where we have defined ∆ = (−1)mem(m+1)β, k = 2m + ζ and a = −mβ− α. Note that ν is

an integer. For ν = 0, the inverse transform is

f 0
m =

∆e−k2/4τ

√
πτ

. (A.2)

For other ν, we see that (
a −

d
dk

)ν
f νm = f 0

m, (A.3)

with f νm → 0 as k → ∞. This ordinary differential equation has the solution

f νm =
∆

(ν − 1)!
√
πτ

∫ ∞

k
(w − k)ν−1ea(k−w)e−w2/4τdw

=
∆eak+a2τ

(ν − 1)!
√
π

∫ ∞

η2
(2
√

uτ − k − 2at)ν−1e−u du
√

u

=
∆eak+a2τ

(ν − 1)!
√
π

ν−1∑
l=0

(
ν − 1

l

)
(2
√
τ)l(−k − 2aτ)ν−1−lΓ

(
l + 1

2
, η2

)
, (A.4)

where η = a
√
τ + k/(2

√
τ). Here Γ(a, x) is the incomplete Gamma function, which

satisfies Γ(a+1, x) = xae−x +aΓ(a, x). In addition Γ( 1
2 , x

2) =
√
π erfc x, Γ(1, x2) = e−x2

,

and Γ( 3
2 , x

2) = xe−x2
+ 1

2

√
π erfc x.

This implies that

f 1
m = ∆eak+a2τ erfc η, (A.5)

f 2
m =

∆eak+a2τ

√
π

[(−k − 2aτ)
√
π erfc η + 2

√
τe−η

2
]. (A.6)

(A.7)
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The convergence of the integral in (A.4) requires that a, and hence η, be non-negative.

It can be shown that these three functions are in fact the inverse Laplace transforms for

arbitrary a and η by analytic continuation.

The required derivatives with respect to z are

f
′1
m = ∆eak+a2τ

(
a erfc η −

1
√
πτ

e−η
2
)
, (A.8)

f
′2
m =

∆eak+a2τ

√
π

[2a
√
τe−η

2
− (1 + ak + 2a2τ)

√
π erfc η]. (A.9)

(A.10)

Appendix B. Quasi-Steady State Approximation

Suppose that the erosion rate is small (β � 1) and also that the initial time is large

(t0 � 1). We also assume that the ratio H/L is not too large. Then

λn ≈ −
2

(πµ)3 . (B.1)

The governing equation (4) for t > t0 becomes

∂2 p
∂z2 = −r, (B.2)

with boundary conditions p = 0 at z = βτ and ∂p/∂z = 0 at z = 1. This has the solution

p(z, t) =
r
2

(z + βτ − 2)(z − βτ). (B.3)

The derivative evaluated at each boundary is

∂p
∂z

= r


(βτ − 1) at z = βτ,

0 at z = 1.
(B.4)

Figure Appendix B demonstrates the approximation for small β.

It also shows that the approximation breaks down for very small times. To explain

this rapid adjustment, consider the boundaries to be fixed (a good approximation when

β � 1) so that the solution can be written as the series

p(z, t) =

∞∑
n=1

bn(τ)sin µπz. (B.5)
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Figure B.8: Flux at each boundary for β = 1/10.

The governing equation (now keeping the time derivative term) yields the ODEs

ḃn + (µπ)2bn = −
2r
µπ
. (B.6)

With the initial condition bn(0) = λn from (B.1), the coefficients are

bn = (1 − r)λne−(µπ)2τ + rλn (B.7)

for n odd and 0 for n even. The rapid adjustment is explained by the presence of the

transient term. For a sufficiently large time (which is still small compared to whole

erosion time), the transient term disappears and the series converges to

p(z) =
r
2

z(z − 2), (B.8)

which is precisely equation (B.3) with τ = 0.
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