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Abstract

Towards Reliable Causal Machine Learning for Macroeconomics

By

David A Bruns-Smith

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Avi Feller, Co-chair

Professor Jacob Steinhardt, Co-chair

The 21st century has seen an explosion in the availability of economic data, and machine
learning tools for making predictions from that data. Motivated by these developments, in
this dissertation, I consider the broad question of: what, if anything, can machine learning
contribute to macroeconomic policy-making? In Chapter 2, I begin with a case study of a pure
prediction problem in Icelandic tax data, and show that machine learning is quantitatively
and qualitatively useful for this problem. But in economic policy settings, we want to predict
the effect of an intervention, a much more challenging problem than the standard supervised
learning task. Therefore, the rest of my dissertation focuses on using machine learning for
observational causal inference. In Part 2, I consider the “no unobserved confounders” case,
where we assume that we observe all of the relevant covariates. In this setting, the causal
inference problem reduces to a prediction task under covariate shift, and we can debias
causal effect estimates using the density ratio - the object that measures how the covariate
distributions shift. In high dimensions, density ratios are typically not well behaved, and
I help make progress on this front in Chapter 3 by drawing connections between density
ratio estimation and so-called “balancing weights” estimators via a duality argument. Then
in Chapter 4, I apply these results to obtain a broad set of numerical equivalence results
for debiased machine learning estimators, which results in a number of implications for
undersmoothing and hyperparameter tuning in practice. In Part 3, I turn to the setting
where we do potentially have unobserved confounders, making unbiased recovery of the causal
effect impossible. Instead, we use “sensitivity analysis”, which measures how quickly the
estimated causal relationship degrades with hypothetical confounding. Of particular relevance
to macroeconomics, I develop algorithms for the dynamic setting where causal effects unroll
over time, adopting the Reinforcement Learning framework. Chapter 5 considers the tabular
setting, and Chapter 6 extends these results to function approximation with machine learning.
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Chapter 1

Introduction

1.1 Causal Inference and Machine Learning in

Macroeconomics

In order to achieve our various social and political goals, we would like to predict the effect of
economic policy interventions before rolling them out. Due to the tremendous complexity of
the economy (in the United States, over 300 million people and over 30 million businesses, for
example), it’s virtually impossible to reason out policy consequences from only first principles,
and so, increasingly, we turn to the empirical data on historical interventions, randomized
and otherwise, to further build our understanding of policy impacts.

The 21st century has brought a rapid expansion in the size, quality, and availability
of economic data, including both survey and large administrative datasets. There have
concurrently been two major developments in empirical economics. The first is the “Credibility
Revolution” - an emphasis on experimental design and the credibility of drawing causal
conclusions from historical data. This development highlights the fundamental gap between
predicting trends in historical data versus predicting the impact of an intervention. Causal
inference has seen wide adoption and development in applied microeconomics and labor
economics in particular. While the adoption in macroeconomics has been considered uneven
[8], there has been considerable progress on this front [251, 242, 286, 213]. Interestingly, in
macroeconomics, research has not typically involved using explicit causal inference machinery
like potential outcomes — although there are notable exceptions [241].

The second development is the incorporation of “machine learning” — a set of statistical
tools that leverage large amounts of data and computing power to predict an outcome given
various inputs without the practitioner having to precisely specify the (potentially very
complicated) relationship between the inputs and outcomes beforehand. As with causal
inference, machine learning is popular in applied microeconomics and labor economics —
especially in the burgeoning intersection of “causal ML.” One advantage of machine learning
methodologies in this context is the ability to explore heterogeneity by flexibly modelling
how treatment effects depend on covariates [16]. By contrast, in macroeconomics, machine
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learning has been nearly exclusively restricted to (1) fitting large-scale macroeconomic DSGE
models [93], and (2) macroeconomic forecasting [112].

1.2 Overview of this Dissertation

The content in this dissertation includes parts of previously-published papers that I co-
authored with Oliver Dukes, Avi Feller, Emi Nakamura, Betsy Ogburn, and Angela Zhou [41,
45, 43, 44, 42].

Predictions and Interventions

In this dissertation, I focus on developing the machine learning and causal ML toolkit for
macroeconomics applications (very broadly construed). In Chapter 2, before turning to causal
inference, I begin with a simple case study of a prediction problem in macroeconomics where
machine learning works out-of-the-box. In this application, we use an Icelandic administrative
tax dataset to predict future household labor income given current household information.
Crucially, the goal here is not to take this predictor and claim that we can forecast the future
income of any new household with high accuracy. This might be a fundamentally spurious
endeavor [263]. Instead, we are inspired by Milton Friedman’s work on the permanent income
hypothesis, i.e. that a core component of household behavior is expectations about future
income. Friedman explicitly conceptualized the core concept as a conditional expectations
of future income — see Figure 2 of the chapter “The Permanent Income Hypothesis” from
“A Theory of the Consumption Function” [99]. But when Friedman wrote Theory of the
Consumption Function, the statistical machinery of the time made estimation of the curve
of expected income over future periods very difficult; indeed, Friedman mostly sets aside
statistical questions, and remarks only that conditioning on coarse groups like age-year buckets
is undesirable. However, estimating the conditional expectation of future income is precisely
a prediction problem, which the machine learning toolbox can estimate flexibly even while
conditioning on a very large and granular information set. By solving this prediction problem,
we are able to give a descriptive quantitative analysis of income risk and its persistence over
time across an entire population.

However, our ultimate goal is to predict the effect of economic policies, and machine
learning prediction tools are not well-suited to this task when applied naively. Let’s say that
we are considering rolling out a jobs training program in Philadelphia, and we would like to
predict what impact it will have on participants’ future earnings. We have some data from a
jobs training program that happened recently in a very similar city — let’s say Baltimore. In
this dataset, we observe some people who participated in job training and some who did not.
It will not suffice to simply fit a machine learning model that predicts future earnings given
participation in job training plus other baseline characteristics. If in our dataset, those who
receive training have systematically less education and lower previous earnings, then it is
likely that their future earnings will be systematically lower than those who do not receive
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training, even if job training does in fact boost their future income. Machine learning is very
good at finding and exploiting complicated sources of correlation in data if they improve
prediction, and so a machine learning algorithm fit on this dataset will (accurately) infer
that those who received job training are more likely to have lower future earnings. But these
predictions do not reflect the underlying causal effect of the job training program.

The previous paragraph discussed the problem very informally. To formally reason about
causal effects, we will need to introduce some notion of counterfactuals. We will use the
“potential outcomes” framework [138], which posits that for each individual, there exist two
possible outcomes: future earnings with job training, Y (1), and future earnings without job
training, Y (0). The fundamental problem is that in our dataset, we necessarily only observe
one of these two outcomes for each individual; for those who do receive job training, we
cannot observe what would have happened in the hypothetical possible world in which they
never received job training, i.e. Y (0). In general, we need some assumptions to make it
possible to use the observed potential outcomes to infer something about the unobserved
potential outcomes.

Causal Inference with No Unobserved Confounders

One such assumption is to claim that we observe all relevant variables — sometimes called “no
unobserved confounding”, “conditional ignorability”, “conditional exogeneity”, among other
things. In the job training example, our problem was that job training participation might
be correlated with education or previous earnings, which we might erroneously attribute to
a causal effect of the training program if we fit a predictive model. However, if we observe
education and previous earnings, then we could correct for those differences. This is the
setting for Part 2 of my dissertation.

My contribution to the literature on causal inference with no unobserved confounding
begins by recognizing that this setting is formally equivalent to the problem of “covariate
shift” in machine learning — I am not the first to make this connection, but this viewpoint
leads to a number of useful insights. Consider our job training example, and assume (for the
moment) that the only important confounding factors are education and previous income.
If we fit a machine learning model to predict the observed Y (0) amongst those without job
training, we could then apply that model to predict the unobserved Y (0) for those who did
receive job training without having to worry about bias from confounding. Unfortunately,
the distribution of education and previous income are still systematically different between
the two groups, and the predictive capabilities of machine learning model depend on test
samples being drawn from the same distribution as the data used to train the model. In the
extreme case where everyone in the dataset who receives job training has very little education
and everyone in the dataset who does not receive job training has a extensive education, it is
simply not possible to transfer a useful predictive model from one population to the other.

It turns out that many fields, including survey sampling, econometrics, statistics, and
machine learning, have been studying this covariate shift problem for decades, but under
different names. The key object goes by many names but is always the same: the density
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ratio, the likelihood ratio, survey weights, importance weights, the inverse propensity score
weights, or the inverse probability weights. Different disciplines have developed various
ways of estimating the density ratio, and in Chapter 3, I demonstrate some surprising
numerical equivalences between seemingly unrelated algorithms. In particular, I show that a
class of modern methods in statistics called “balancing weights” and recent methods from
econometrics called “automatic estimators of the Riesz representer” are numerically equivalent.
But these methods are in turn exactly equivalent to an older estimator in computer science
called “direct density ratio estimation” (also “least squares density ratio estimation” or the
“convex surrogate loss for the likelihood ratio”). And these methods are a generalization
of an even older technique from survey sampling called “calibration weighting.” I develop
these equivalences in Chapter 3 using a fairly general duality argument. While doing so, we
produce some new insights: while we can view these different methods as estimating the
density ratio over some function class, we can alternatively view the estimand as a “tailored”
density ratio that is only sensitive to certain functions. The very surprising result is that
these two viewpoints arrive at the same answer.

Inspired by the results in Chapter 3, in Chapter 4 we consider a popular machine
learning framework for estimating causal effects with no unobserved confounders called
“automatic debiased machine learning” (AutoDML) — known in other literatures as “GREG”,
“augmented balancing weights”, “augmented minimax linear estimation”, or “approximate
residual balancing”. AutoDML uses the estimators for the density ratio from Chapter 3
and uses them to correct for the covariate shift problem when using machine learning in
causal inference. Recall that our goal is to predict what would have happened to those
who received job training in the counterfactual world where they instead had not received
training. We do this by fitting a machine learning predictor of Y (0) amongst those who never
received training and then applying it to those who did. The issue is that the predictor faces
a potentially different distribution of education and prior income which may threaten the
validity of the predictions. In AutoDML, we estimate the density ratio via balancing weights,
which measures how education and previous income has shifted, and then add a correction
term to the machine learning estimate using the density ratio estimate.

Our main result is that for linear models in some (potentially infinite-dimensional) basis,
this procedure of combining the machine learning predictive estimate with the density ratio
estimate, can be rewritten as a single predictive model that is a mixture of the original model
and the unregularized least squares estimate. That is, we shift our model toward one that
overfits in the training data, but in a principled way according to how the control and treated
populations differ. In the special case where both the predictive model and density ratio
model use ℓ2-norm regularization, we show that the result is exactly equivalent to making the
predictive model overfit more, and in particular this procedure is equivalent to boosting with
ridge regression. We connect these results to the broad literature on “undersmoothing” —
another word for overfitting — and develop some practical considerations for hyperparameter
tuning in AutoDML.
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Causal Inference with Unobserved Confounders

In our earlier job training example, we worried that the effect of factors like education or
previous income would be mistakenly attributed to the effect of the job training program.
The solution was to measure education and previous income and adjust for how they differ
between the control and treated populations. But what about other unobserved factors? If
education and prior income were systematically different, we might actively expect other
factors to differ as well. And while education and prior income might already be available,
either collected as part of the job training program or fused in from another administrative
dataset, by contrast consider childhood nutrition or childhood exposure to heightened cortisol
levels. These factors impact future earnings even conditional on education, are likely to
be different between treated and control populations if those who receive job training are
systematically more disadvantaged, and are very unlikely to be measured in an available
dataset. In this case, it is impossible to exactly recover the causal effect of job training. I
consider this setting in Part 3 of the dissertation.

As in Part 2, this setting is also a case of distribution shift. Importantly, however, it’s not
just the covariate distributions that shift, but also the relationship between the covariates and
the potential outcomes (“conditional shift”). The problem is severe — we train a predictor
between A and B1 and are then asked to use A to predict B2. If we don’t know anything
about B2 it’s relationship to A could be arbitrarily different and our predictor would be
useless. Without any further restrictions, it’s impossible to get a single unbiased point
estimate. Instead, we will assess the sensitivity of our results to potential differences between
B1 and B2. That is, let’s say we have a single measure of how different B1 is from B2 given
A, call it Λ. In Part 3, we will give a particular definition of Λ, but for now just assume
that when Λ = 1, then B1 and B2 have the same relationship given A. As Λ grows, B1
and B2 become more and more dissimilar. Even though we don’t know exactly how B1
and B2 differ, given a predictor of B1 given A, we can still build upper and lower bounds
on the best predictor of B2 given A for each value of Λ. If these upper and lower bounds
are not too far apart for a large range of Λ’s, then we have some evidence that our results
are not very sensitive to hypothetical unobserved factors — such factors would have to be
extremely strong to overturn our analysis. On the other hand, if even for very small values,
like Λ = 1.1, the upper and lower bounds become far apart, then our analysis is very sensitive
to confounding. Even a small violation of the “no unobserved confounding” assumption
would threaten the results, and it is necessary to go collect new data.

In Chapters 5 and 6, we show how to compute these upper and lower bounds on the
prediction function of interest for the popular “marginal sensitivity model” in the challenging
dynamic setting: i.e. we causal effects that unroll over time. Formally, we adopt a Markov
decision process (MDP) framework, which immediately connects our results to the large
literature on Reinforcement Learning. In Chapter 5 we consider discrete covariates (called
the “tabular” setting) and in Chapter 6, we generalize to continuous covariates with arbitrary
machine learning function approximation. In Chapter 6, we also extend our results to learning
a robust optimal policy under confounding.
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Finally, while this dissertation is largely technical and methodological in nature, much of
the work has had direct application in my empirical macroeconomics research. I will largely
leave these results for other publications, but in a concluding Chapter 7, I will discuss where
some of my results have been most useful, and also some future promising directions for
further development of causal inference and machine learning in macroeconomics.
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Chapter 2

Case Study: Income Prediction

2.1 Introduction

In this chapter, we introduce an application of pure prediction in economics. As motivation,
economic hardship and the dynamics of socioeconomic inequality depend crucially on the
income shocks that households face. Such shocks come in a variety of forms: positive shocks
include promotions and stimulus checks; negative shocks include job loss, illness, and lack of
available working hours. A large body of research shows that unexpected income shocks pass
through to changes in household spending and saving [262, 201, 233], with wide heterogeneity
in responses across household characteristics [164, 20, 178, 90, 104]. Households’ responses to
shocks are also key drivers of financial fragility [208, 2, 222], the effectiveness of fiscal policy
[163, 141, 18], and the evolution of wealth inequality [235, 74, 14].

To study the impacts of shocks on households and the corresponding implications for
subsidy allocation or macroeconomic policy, we first need to be able to measure them. While
we observe changes in income from one period to the next in many economic datasets, we
rarely observe what proportion of those changes were unexpected shocks, or whether those
shocks were temporary or will persist long into the future. Consider a household that makes
$60,000 dollars annually. In the next year, the household might simultaneously experience a
promotion to site manager — a persistent increase of $5,000 a year — and an especially-snowy
spring construction season — a temporary decrease of $20,000 a year — for a total observed
shock of -$15,000. Does this hypothetical household spend more because their expected
income will be higher into the future? Do they (or can they) spend less to weather the larger
but temporary negative shock? Do they have a savings buffer to draw upon, or does the
unexpected temporary loss of income cause them to miss their mortgage payments? These
various considerations are difficult to tease apart based on the observed, overall shock alone.

In the economics literature, the workhorse statistical model for analyzing shocks and
their persistence is a panel model where current income is the sum of a random transient
shock and unobserved permanent income that evolves according to an autoregressive process
[3, 202, 37]. Statistical estimands of interest, such as the size of transient and persistent
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shocks, are then defined with respect to the parameters of this model. Importantly, however,
this model embeds a series of assumptions about the income process that impose strong
homogeneity across households and over time, such as assuming that households across the
income distribution face shocks of the same size, severely limiting our ability to understand
critical sources of variation.

In this paper, we instead propose to directly estimate income shocks and their persistence
from income data. We first propose a non-parametric estimand for income shocks — defined
outside of any particular statistical model — in terms of the conditional expectation of future
income given the information known in the present. Estimating these conditional expectations
for a particular population requires finding the best mean-squared error predictors for data
drawn from that population, a task we can perform using off-the-shelf supervised learning
tools with strong uniform convergence guarantees. Our procedure outputs estimates of income
shocks associated with each income observation along with the persistence of those shocks at
several horizons into the future. These shocks can then be used in downstream tasks like
estimating households’ consumption/savings response, calibrating models for the evolution of
wealth inequality, or as real-world datasets for studying algorithmic fairness.

Contributions:

• We provide a nonparametric definition of income shocks that relaxes strong functional
form assumptions, and allows researchers to assess heterogeneity in the size and
persistence of income shocks across observed features.

• As a real-world application, we estimate income shocks in Iceland by predicting labor
income at various horizons into the future using a large administrative tax dataset.

• We document several features of the estimated shocks that are not captured by standard
economic parametric income models, including: a much larger magnitude of income risk
faced by individuals at the bottom of the income distribution; an exponential decay in
the persistence of shocks on average over time; wide hetereogeneity in the persistence
of shocks across household circumstances; and substantial asymmetry between positive
and negative shocks.

We hope to draw attention to an under-utilized role for prediction in the social sciences, where
supervised learning models are used as an approximation of a conditional expectation, rather
than used to predict future outcomes for new, potentially out-of-distribution observations.
We also hope to further connect the parallel research on income shocks in economics and
computer science. The large body of research on income uncertainty and household responses
in economics can bring valuable insight to the recent literature on algorithmic fairness and
inequality. Likewise, the powerful non-parametric modelling and optimization toolboxes from
computer science can shed new light on the dynamics of income.
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2.2 Related Work

Economics

A large literature on economic theory studies household responses to income shocks. The
permanent income hypothesis [99, 67] suggests that households will smooth consumption
over the lifecycle, and predicts very small responses to temporary shocks but large responses
to permanent shocks. A literature on precautionary savings explores why consumption seems
to track income so closely in the data with an emphasis on uninsurable idiosyncratic income
risk [50, 49, 134, 113, 163].

Most closely related to the current work is the literature on transient-persistent income
process models. Linear transient-persistent autoregressive models have been widely used [3,
202, 37], and we will compare these parametric models to our non-parametric estimands in
Section 2.3.

Several recent papers have critiqued these models for failing to match key stylized facts
documented in real income data. For example, Guvenen et al [118] emphasize the substantially
higher skewness and kurtosis exhibited by US income data that linear panel models have
difficulty reproducing. Other papers address the assumptions about the persistence of shocks
embedded in standard models. For example, De Nardi et al [75] discretize income into buckets,
and then non-parametrically estimates a first-order Markov chain for transitions between
these discrete states. They find evidence for heterogeneity in the persistence of shocks and
substantial deviations from the AR(1) process in [37]. Arellano et al [10, 11] propose a
Bayesian approach for estimating the posterior of permanent income (defined as a latent
variable) using expectation-maximization. Straub [288] creates proxies for permanent income
in real data by averaging together several past and future income observations — a procedure
that could be seen as a very simple version of predicting income at several future horizons.

Computer Science and Machine Learning

Recently, a growing literature in computer science and algorithmic fairness has also emphasized
the role of income shocks. This includes algorithm and mechanism design research for subsidy
allocation where the level of household income and wealth as well as their susceptibility to
shocks play central roles [2, 222, 231]. Other work studies the dynamics of income inequality
over time [127, 244], including their implications for policy interventions. In many ways, this
literature has close connections to the macroeconomic consumption and inequality literature.
In fact, Nokhiz et al [222] solves and simulates from a macroeconomic consumption model
with incomplete markets and precautionary savings motives in the style of Hubbard et al
[134] or Gourinchas and Parker [113].

Most of the related work in computer science has used simulated income data. For
example, Abebe et al [2] simulate shocks as arriving via a Poisson process. Nokhiz et al
simulate income with a first-order Markov chain over discretized income states. On the other
hand, D’Amour et al [71] have an implicit model for income shocks in their simulated model
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for loan repayment. In their model, the probability of repayment is a deterministic function
of credit score, embedding a number of assumptions about credit score calculations and the
income risk faced by households that necessarily partially determines their ability to repay.
Our work is complementary to the work above and provides an alternative to simulation,
measuring the degree of labor income risk directly in real-world data.

Reader et al [244] suggest modelling the evolution of income inequality as a linear dynamical
system, with policy interventions and feedback loops modelled as a PID controller. Our
method similarly has connections to the controls literature. As we will discuss, the transient-
persistent models for income can be formulated as partially-observed dynamical systems,
finite-sample estimation of which has featured in recent research on system identification
[276, 182, 204, 183].

An adjacent literature studies the dynamics of income between generations, mostly focused
on interventions in university admissions [127, 4]. This work complements a large body
of work on inter-generational mobility in economics [73, 68, 64]. Extending our predictive
estimands and the corresponding measures of income risk to an inter-generational context
would be an interesting direction for future work.

Limits of Prediction in Social Science

Another important literature emphasizes the limits of predictability of future life outcomes.
Narayanan [215] called predicting social outcomes “fundamentally dubious”. A large-scale
prediction competition, the Fragile Families Challenge, found that predictive accuracy across
a variety of social outcomes and algorithms was low across the board [263]. Flexible machine
learning models hardly performed better than linear regression on a handful of features.
More broadly, Liao et al [189] and Raji et al [240] outline a large taxonomy of basic ML
functionality failures in real-world deployments.

We instead emphasize a potentially under-utilized role for prediction in social science:
approximating a conditional expectation. This follows the exhortation in Lundberg et al
[197] regarding prediction in sociology: to clearly state the statistical estimand of interest.
We would like to characterize the distribution of prediction errors around the conditional
expectation of future income and how it evolves from one period to the next. If the absolute
size of these errors for the best possible predictor given the feature set is large, then this
is not a functionality failure, but an accurate statement of income risk in the population.
Likewise, if the model has substantially larger prediction errors for one sub-group compared
to another, then the relative distribution of these residuals tell us about the inequality in
income risk across groups.

Predicting Future Income

In this work, we solve prediction problems for income h periods into the future conditional
on current and past income and other covariates. Surprisingly, we have found very few
published papers that solve this kind of income forecasting problem. The only such example
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to our knowledge is Gerardi et al [106], who use unpenalized linear regression to predict
future income conditional on current income, housing wealth, and demographic variables.
See Section 2.4 for a discussion of the performance of linear regression in our setting.

A very large literature in machine learning considers income prediction problems framed
as classification tasks. Most of this work is centered on the Adult dataset [176], first used
to assess the performance of tree-based ensembles [22]. See Ding et al [80] for a review of
recent research using this dataset, especially on algorithmic fairness, and several associated
limitations. The standard task on Adult is classifying whether or not income falls below
or above $50,000. In contrast, we consider income prediction as a regression problem, and
introduce a dynamic dimension by forecasting future income conditional on current and past
income. Furthermore, the emphasis of our work is different but complementary to the fairness
literature using Adult — if our prediction algorithms have larger prediction errors for certain
sub-populations we interpret this as a substantive result about the relative income risk faced
by those sub-populations.

2.3 Defining Income Shocks

Let yit denote log income of individual i at time t and let xit denote covariates such as age,
education, calendar year, and wealth. We assume that we observe N i.i.d. samples of the
trajectories τi := {(yit, xit)}Ti

t=1 from the same joint distribution — we make no assumptions
within a trajectory on the relationship between yit and xit or their evolution over time. The
τi can either be interpreted as draws from an underlying joint distribution or as samples from
some finite population of individuals. In what follows, we omit the i subscripts when clear
from context. In practice, draws across individuals are unlikely to be entirely independent —
common violations might include individuals within the same household or firm, and we plan
to address these limitations in future work.

We define an income shock at time t to be the difference between observed income yt and
expected income given all information available before time t. Define the information set
It−1 = {yt−1, xt−1, yt−2, xt−2, ...}. Then the income shock at time t is:

∆t := yt − E[yt|It−1]. (2.1)

We define the persistence of the time t income shock as the change in expected future income
upon adding the new information (yt, xt) into the information set. We write the horizon-h
persistence of the shock ∆t for all h ≥ 1 as:

ϕt,h := E[yt+h|It]− E[yt+h−1|It−1]. (2.2)

As a concrete example, let E[yt|It−1] = 1.0 and realized income yt = 2.0. Then the total
shock at time t is ∆t = 1.0. Now we use the realized yt (and xt) to update the expectations
for the future to measure how long the shock lasts. If the updated conditional expectation
E[yt+1|It] = 1.5, then the portion of the total shock ∆t that is expected to remain after
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Figure 2.1: An illustration of our estimands. The black dots represent the conditioning set
It−1. The grey boxes represent the predictions one and two periods ahead. At time t, we
observe the new observation (shown as an open circle) yt. The difference between the new
observation and the previous prediction is ∆t as shown in the lefthand diagram. When we
add yt to the conditioning set and update the predictions, we get the persistence at each
horizon as shown in the righthand diagram.

one period is ϕt,1 = E[yt+1|It] − E[yt|It−1] = 0.5. If the original and updated 2-step-ahead
conditional expectations are E[yt+2−1|It−1] = 1.0 and E[yt+2|It] = 1.1, then the amount of the
total shock expected to persist two periods into the future is ϕt,2 = 0.1. So in this example,
while the time t unexpected change in income was large, only half of the shock is expected
to persist one period into the future, and only 10% of the shock is expected to persist two
periods into the future. See Figure 2.1 for an illustration.

The quantities ∆t and ϕt,h are our non-parametric estimands. They are not observed
directly, and we would like to estimate them from data. However, first we briefly justify our
choice of these quantities.

Theoretical justification

Simple theoretical models for household responses to income shocks usually imply that
consumption depends on the expected present value of future income, sometimes called
permanent income. Given a discount rate γ, permanent income at time t is:1

ypermt := E

[
∞∑
k=t

γk−tyk

∣∣∣∣∣It

]
. (2.3)

1Typically, permanent income would be discounted by 1/r, where r is the rate of return on assets and
therefore represents the relative value of money now versus money in the future. In the simplest models,
γ = 1/r in equilibrium.
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Then the unexpected change to permanent income at time t is

ypermt − E[ypermt |It−1] = ∆t +
∞∑
h=1

γhϕt,h. (2.4)

So in this sense, the objects ∆t and ϕt,h are precisely the relevant theoretical objects for
studying a household’s response to income shocks. Equation (2.4) suggests one way to
summarize these shocks in a single measurement. Indeed, the framework of updating
future expectations as new information arrives is exactly the motivation for the definition of
permanent income in Flavin 1981 [95].

More sophisticated economic models suggest that current consumption choices may depend
on the whole conditional distribution of P (yt+h|It−1) rather than just the conditional mean.
This suggests a straightforward extension of our procedure using conformalized quantile
regression [250] that we hope to pursue in future work.

Comparison to parametric estimands

It is helpful to compare our non-parametric estimands to the commonly used transient-
persistent model [37, 10]. This model imposes the following structural assumptions on the
income process:

yt = pt + ϵt,

pt = f(pt−1) + ηt,

for some measurable function f and where E[ϵ|pt] = 0 and E[ηt|pt−1] = 0. First, notice
that the expected system transitions in the implied autoregressive model, obtained via the
standard trick of re-writing the partially-observed non-linear system as an infinite-order
autoregressive model, is exactly the conditional expectation E[yt|It−1]. See for example [183]
for discussion in the controls setting.

The classical parametric model used in [37] makes the additional functional form assump-
tion:

pt = pt−1 + ηt.

where the variance of η and ϵ are independent of pt. Note that in this case, our non-parametric
definition for shock persistence exactly corresponds to the persistent shock in the model;
ϕt,h = pt − pt−1 because E[yt+h|pt] = pt. However, the classical model imposes several
additional testable implications: that households across the income distribution face shocks
of the same size; that there are no interactions between age, demographics and shock size or
persistence; that persistent shocks are perfectly-persistent into the future; and that there is
no asymmetry in the persistence of positive and negative shocks. Using our non-parametric
estimands that avoid making such strong assumptions, we will demonstrate substantial
deviations from this simple model for labor income in Iceland.
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Limitations of any particular estimator

The exact interpretation of our non-parametric estimand depends entirely on our dataset,
our definition of the relevant random variables, and the contents of the conditioning set, It.
For example, as we discuss in Section 2.4, we have to choose the definition of the periods t;
are these yearly or monthly shocks? Monthly shocks have to account for seasonal variation,
whereas for yearly shocks the business cycle becomes a central object of concern. Likewise,
we have to choose a definition of income; does yt represent labor income or total family
income? Any of these choices may not be inherently right or wrong, but will have different
implications for the relevant downstream economic analysis.

More generally, as commonly done in the economics literature [3, 37, 10, 74], we measure
shocks in terms of a statistical expectation. The relevant theoretical objects of interest
in Section 2.3, are household expectations because a household’s behavioral responses to
income risk depend on their own beliefs about the future. This can introduce substantial
measurement error along across at least two dimensions. First, we do not have access to
important private information — for example an individual’s plan to leave their job next
year to go back to school. Second, our predictions are formed using hundreds of thousands
of observations from across the entire population of Iceland, information that any given
individual might not have. This discrepancy must be kept in mind when performing any
later economic analysis using our estimated shocks. For example, we may try to impose
some structural assumptions on the nature of this measurement error, and partially identify
behavioral estimands to account for the additional uncertainty. Or otherwise, we have to
more narrowly interpret our estimated income shocks as a measure of aggregate labor income
risk across Iceland, capturing heterogeneity across observables in the tax data, rather than
the personal uncertainty about future income faced by any particular individual.

2.4 The Income Prediction Problem

Our non-parametric estimands for income shocks, ∆t, ϕt,h, can all be computed given the
conditional expectations E[yt+h|It] for all t and all h ≥ 1. The conditional expectation is
equivalent to the best mean-squared error predictor of yt+h over all possible functions of the
features in the set It. Therefore, we have reduced the problem of estimating income shocks
and their persistence to a series of prediction problems for which we can use off-the-shelf
supervised learning tools. In this section, we discuss how we solve these prediction problems
in practice with a large administrative tax record dataset from Iceland.

Data and sample selection

We use income measurements from Icelandic income tax data, made available to us through
collaboration with Statistics Iceland. In our Icelandic tax data, the period t is measured in
years, and for every individual in every year from 1981-2018 we observe (log) labor income
yt and a collection of other demographic and financial variables. We transform all income
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observations to 2018 US dollars, adjusting for Icelandic CPI [135] and the exchange rate
between the dollar and the Icelandic Króna [225]. While we observe nearly the entire popula-
tion of Iceland during this timeframe, we restrict our sample to reflect in-employment labor
income risk. This involves three sample selection steps: (1) we only include individual-year
observations with labor income strictly greater than zero; (2) we only include those individual-
year observations for which we observe non-zero income for at least six consecutive periods
before and at least twelve consecutive periods after; and (3) we only include observations for
individuals aged thirty and older (to avoid income changes due to switching in and out of
higher education). This leaves 508,235 individual-year observations across 62,387 individuals.

Note that the choice to study in-employment labor risk and unemployment risk separately
is common [76, 287, 37, 212]. Our choice to focus on in-employment risk is mostly for
purposes of presentation and for comparison with [37]. Unemployment risk is also of central
interest, and re-estimating income shocks with unemployment will be the object of future
work. Furthermore, the particular choice of zero for the minimum threshold might include
individuals who are unemployed for part of the year; for discussions on alternative choices of
the minimum threshold see Nakajima and Smirnyagin [212]. Likewise, the choice to study
labor income as opposed to total income after taxes and transfers has consequences for
the interpretation of our estimand. In general, these choices for sample selection and the
definition of income do not change the non-parametric estimands outlined in Section 2.3 but
are enormously important for substantive economic analysis of the results.

For covariates xt, we include age, education, gender, total assets (net of debt), and housing
wealth.2 Education is binned into five categories: incomplete compulsory education, compul-
sory education only, upper secondary only, undergraduate only, and beyond undergraduate.
With no essential loss of generality, instead of fitting a separate model for each t, we will fit
a single predictor, but additionally condition on calendar year. Thus our complete feature
set includes dummies for calender year t, current income and covariates (yt, xt), and six lags
of income and covariates, {(yt−ℓ, xt−ℓ)}6ℓ=1. Note that this is only an approximation of the
information set It, which should include as many lags as are available. However, we can
justify this theoretically with relatively mild assumptions on the mixing of the stochastic
process for income. In practice, we also found that including more lags does not improve
mean-squared error in cross-validation.

Training

As we would like to use highly-flexible regularized function classes for prediction, we leverage
both sample-splitting and cross-validation to prevent over-fitting. Note that while each
training sample corresponds to an individual-year observation, the observations within an
individual trajectory are highly-correlated. Therefore, we perform all sample-splitting and
cross-validation at the individual level. First, we randomly divide the full population of

2Notably missing from the tax data is information on race or ethnicity, presumably due to extremely low
rates of immigration. During the timeframe of our dataset, more than 92% of the population were ethnically
Icelandic.
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individuals into two halves. Within each half, we train models predicting yt+h for h =
{1, ..., 12}, using the feature set described above. Prior to training, all features were shifted
and scaled to have mean zero and standard deviation one. We considered a variety of
regularized linear models, random forests, and gradient-boosted tree regressors, over a range
of hyperparameter values. We chose the best performing model using 5-fold cross-validation.
Gradient-boosted trees consistently performed the best in cross-validation across all horizons.

The output of this process is our best approximation of the conditional expectations
E[yt+h|It] for all h from each of the two halves. We then compute the estimated income shocks
∆t and persistence profiles ϕth by applying the models trained in one half to the individual-
year observations in the opposite half. This way, the income shock for each observation is
estimated using a model that was never previously trained using that observation.

Remark: We claim that this process gives the best approximation of the conditional
expectation in the population. This does not mean that our trained models are the best
predictors of future income on never-before-seen observations from a different population.
Applying the predictors outside our dataset could face significant distribution shift, perhaps
most notably the massive impact of COVID-19 in 2020 and onward. Instead, we rely on
the fact that we randomly split individuals into two halves from a known population. This
means the strong uniform convergence guarantees that come from the i.i.d. assumption in
supervised learning apply exactly. As a result, however, any insights about income risk from
our procedure are only guaranteed to describe the population of Iceland during the timeframe
of our sample — extrapolating outside this population would require additional statistical
assumptions.

Model assessment

Before presenting our results on income shocks, we first assess our models’ predictive perfor-
mance. First, we emphasize the advantage of using a highly flexible model class by comparing
our final gradient-boosted tree models to two simpler benchmarks: a simple random-walk
baseline that always outputs most-recent income and ordinary-least-squares linear regression.
We are inspired to include the random-walk baseline by a famous macroeconomics result that
a random walk beat existing models for predicting exchange rate out-of-sample [200], and the
linear regression model due to its strong performance in the Fragile Families Challenge [263].

Figure 2.2 compares the mean-squared error of the best performing gradient-boosting
model and the two baselines. In particular, we plot the MSE of predictions on data points
that were not used in training; for each data point, we make predictions for all horizons h,
using the models trained in the opposite split. The gradient-boosted trees model perform
much better than the random walk, and modestly better than the linear model, achieving
between 7 to 19% reduction in MSE. Note that the magnitude of the average prediction
errors across the whole population is quite large. For one year ahead, the MSE suggests that
the average magnitude of prediction errors is around 0.2 in logs. In levels, this corresponds
to an error of about 22% of income. For twelve years ahead, even the best performing model
has average prediction errors of around 40% of income. Recall that prediction error one
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Figure 2.2: Mean-squared error of hold-out predictions. The top diagram plots the mean
squared error of the gradient-boosted trees model, the linear model, and the random walk
baseline for horizons 1 to 12. The bottom diagramplots the percent reduction in mean-squared
error achieved by the flexible gradient-boosted tree model relative to the linear model and
random walk baseline.

period ahead is exactly the definition of the income shock ∆t and so, assuming that we have
a good approximation of the conditional expectation, the large absolute mean-squared error
indicates a fairly substantial amount of income risk. However, the average squared-error can
be misleading, and we will show later that the largest prediction errors are concentrated at
the bottom of the income distribution.

Figure 2.3: Percentage reduction in mean-squared error for predictions h = 1 year ahead
across bins of current income. The top and bottom plots compare the gradient-boosted model
to the random walk baseline and linear model respectively.

The importance of flexible models becomes more clear in Figures 2.3 and 2.4. These
figures plot the relative improvement of our gradient-boosted model against the linear and
random walk baselines across the distribution of current income. We proceed by binning:
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Figure 2.4: Percentage reduction in mean-squared error for predictions h = 10 year ahead
across bins of current income. The top and bottom plots compare the gradient-boosted model
to the random walk baseline and linear model respectively.

we split the observations into 20 equally-sized bins based on quantiles (from 5% to 95%) of
log current income. Each dot in these figures corresponds to one of these bins. The x-axis
is average current income within bins, with values in levels — recall that this represents
inflation-adjusted income in 2018 US dollars. Figure 2.3 plots the reduction in MSE achieved
by the gradient-boosted model compared to the two baselines for predictions h = 1 year ahead.
Figure 2.4 plots the reduction in MSE achieved by the gradient-boosted model compared
to the two baselines for predictions h = 10 years ahead. Note that the flexible model is
especially important when predicting future income for houses at the bottom of the income
distribution. The flexible model achieves nearly 20% improvement versus the linear model
for individuals who make less than $20,000 (2018 US dollars) a year.

By definition, conditional on any value of the features, our prediction errors should be
mean-zero if we have achieved a good approximation of the conditional expectation.3 We
explore this in Figure 2.5, where we compare the distribution of prediction errors across
current income for both the linear and gradient-boosted trees models. We use the same
buckets of current income, but the y-axis now plots the deciles and mean of prediction error
within each bucket. Note that the distribution of prediction errors for the linear model in
the upper plot is asymmetric with non-zero mean, and with the most substantial deviation
for households with current income less than $20,000. The 90-10 interquantile range is only
slightly smaller in the lower plot, but most importantly the distribution has approximately
mean-zero everywhere, further validating our approximation of the conditional expectation.

3To see this, note that E[yt − E[yt|It−1]|It−1] = E[yt|It−1]− E[yt|It−1] = 0. Or more intuitively: if the
prediction errors were not mean-zero conditional on a particular input, we could always improve the MSE by
shifting all predictions for that input.
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Figure 2.5: Deciles and mean of the distribution of prediction errors within bins of current
income. The upper and lower diagrams plot the distribution of errors for the linear model
and gradient-boosted model respectively.

2.5 Shocks

With our approximations of the conditional expectations E[yt+h|It] in hand for all h and t,
we can estimate the shocks ∆t := yt − E[yt|It−1] and their persistence ϕt,h := E[yt+h|It] −
E[yt+h−1|It−1] for every individual in every year of our sample. This produces a concrete
artifact as output: income shock estimates attached to every observation that can be used in
downstream economic research tasks. In this section, we use the shock data to provide an
initial characterization of labor income risk in Iceland.

The distribution of total shocks ∆t, is exactly equal to the distribution of prediction
errors, but now we analyze them substantively instead of as a diagnostic tool for model fitting.
From the bottom diagram in Figure 2.5, we can see that low-income households face a much
wider distribution of shocks. The 10-30% quantile shocks and the 70-90% quantile shocks are
all at least twice as large for individuals at the bottom of the income distribution compared
to the middle and top. This is a substantial deviation from the classical autoregressive model
discussed in Section 2.3 that predicts an equal amount of income risk across the income
distribution. Furthermore, notice that if we had used linear regression for prediction, then
from the upper diagram in Figure 2.5 we would have incorrectly concluded that low income
individuals face much larger positive shocks than negative shocks.

Using our methodology, we can also assess how these shocks persist over time. Figure 2.6
plots the persistent shocks ϕt,h as a function of the total income shock ∆t. The upper diagram
shows the results for h = 1, and the lower for h = 10. We begin by summarizing some
observations for the h = 1 case. First, notice the asymmetry between positive and negative
income shocks, a result that mirrors recent findings of asymmetry in consumption responses
[66]. For positive total income shocks, there is a clear and roughly linear relationship between
the total shock size and the persistence one period ahead. A substantial and fairly consistent
proportion of total income shocks are persistent. Negative income shocks, on the other hand,
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Figure 2.6: The upper and lower diagrams compare ∆t and ϕt,h for the estimated income
shocks computed using the predictions from our model on held-out samples for h = 1 and
h = 10 respectively. We divide the obvservations into 50 bins according to ∆t; the x-axis
plots the mean value within each of these bins. The y-axis gives the 10% through 90% deciles
of ϕt,h within these bins, each as a different line. We plot y = x as a dashed line for reference
to indicate perfect persistence.

are typically less persistent on average and the heterogeneity in persistence for negative
shocks (e.g. as represented by 90-10 interquantile range) also appears to be much larger.
That is, the degree of persistence of negative income shocks varies more — especially for the
lowest income individuals. Furthermore, as the total income shock becomes more negative,
the relationship between the shock size and persistence appears less linear.

The degree of persistence drops off rapidly at longer horizons. The lower diagram of
Figure 2.6 plots the deciles for h = 10 case; the y-axis now corresponds to the change in
expected income 10 years into the future upon receiving the shock, ϕt,10 = E[yt+10|It] −
E[yt+10−1|It−1]. Notice that the relationship between the total shock size and persistence 10
years into the future is much flatter, although still noticeably asymmetric.

These results contrast sharply with the AR(1) income process specification from Section 2.3,
in which permanent income is perfectly persistent and so we should not see any drop over
time. The classical model also does not predict a gap in persistence between positive and
negative income shocks, nor does it predict any heterogeneity in the degree of persistence
across the distribution of shocks. Each of these features of our shock series is a substantively
interesting fact about labor income risk in Iceland that cannot be explained by income
processes predominantly adopted in macroeconomic structural models.
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2.6 Discussion

Roles for Prediction in Social Science

Our work emphasizes an under-utilized role for prediction in the social sciences. While
machine learning models cannot predict future life outcomes with high accuracy [215, 263],
they can instead be used to approximate conditional expectations, and the distribution of
prediction errors can be of scientific interest in its own right. In this sense, we join Lundberg
et al [197] in stressing the importance of clearly defining a statistical estimand.

To estimate a conditional expectation, we need to select the best predictor relatively from
among all functions of the input features, a task for which supervised learning algorithms
together with sample-splitting and cross-validation are well-suited. We can at least partially
validate our model by checking for conditionally mean-zero prediction errors in held out
data. Here flexible regressors like gradient-boosted trees play an important role, as simpler
prediction models like linear regressions are observably mis-specified in our setting, as we
illustrated in Figure 2.5. Our narrowly-scoped usage of these predictors contrasts with typical
applied settings, where a predictor is trained from historical data, and then deployed in
real-time on newly collected data that will not generally be drawn from the same distribution
as the training data. We hope to have demonstrated the utility of our methodology by
illustrating the substantial inequality in the size and persistence of labor income shocks in
Iceland, especially for low income individuals.

What can we do with this shock series?

One benefit of our procedure is that we produce a concrete research artifact: a series of
income shocks and their persistence for every individual in every year of our sample. These
shocks are interesting in their own right for studying labor income risk, see our discussion
above about the distribution of shocks over quantiles of current income, and the asymmetry
and heterogeneity of shock persistence. However, the principle goal is to use these shocks in
downstream scientific tasks. In this section, we briefly highlight directions for future work.

First, there is a large literature on scarring during business cycles. In the United States,
individuals who first entered the labor market during or immediately before the Great
Recession faced worse outcomes that persisted even after the economy recovered [257].
Because we condition on both age and year, we can directly assess the size and persistence
profile of shocks that occur in the Great Recession in Iceland, which could provide valuable
additional evidence on scarring.

Second, we can estimate the response of household consumption to these shocks. One
approach to studying the consumption response would be to estimate the average derivative
of consumption with respect to these shocks and their persistence over time. Furthermore,
since our shocks are computed using the full heterogeneity across observables, we would be
able to break down how these consumption responses differ across income, age, education,
assets, etc.
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Finally, structural macroeconomic models typically use a simple autoregressive model or
first-order discrete Markov chain for the income process when modelling household behavior.
Typically, the parameters of this income process are estimated separately, and then the
macroeconomic model is calibrated using simulated draws. Our estimates of expected future
income give us a way to potentially test these macroeconomic models directly with data,
subject to the limitations described above on the difference between our predictions formed
with tax data, and the private future expectations of individuals.
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Part II

Causal Inference with No Unobserved
Confounders
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Chapter 3

Duality for Balancing Weights

In Part 2, I transition from discussing pure prediction using machine learning to considering
causal inference. We begin by assuming that there are no unobserved confounders, making
it possible to use machine learning on observables to perform causal inference. The core
issue is that the distributions of observables under the treated and control populations will
generally be different, invalidating the critical assupmtion for prediction: that the train and
test distributions be the same.

In Chapter 3, I will begin by estimating the difference between the train and test
distributions in terms of the density ratio. In particular, we consider so-called “balancing
weights” estimators, connect them to estimation of the density ratio through a duality
argument. This has implications for our underlying statistical assumptions: assumptions on
the density ratio versus assumptions on the outcome function end up producing identical
estimates. In Chapter 4, we apply the estimates for the density ratio to causal inference using
machine learning, and show that correcting for covariate shift is equivalent to “undersmoothing”
— that is we would like to overfit in the training data to reduce bias, but in a principled way
based on how the treated and control populations differ.
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3.1 Introduction

Using covariates to transfer outcome information from one setting to another is a central task
in domain adaptation, observational causal inference, and missing data imputation. These
tasks share a common structure: we observe covariates and outcomes for a source data set
and want to predict outcomes given covariates in a target data set, which might have a
different covariate distribution than the source. One standard approach is to reweight the
source distribution to have a similar covariate distribution to the target. When the source
and target distributions have common support, using the density ratio for weights leads to
unbiased estimation, known as importance weighting for domain adaptation under covariate
shift [289] and inverse propensity score weighting (IPW) for observational causal inference
[255].

Importance weighting has several drawbacks. First, using the density ratio for weights can
lead to extremely large variance and unstable estimation [162, 69]. Second, the density ratio
is notoriously difficult to estimate, and simple plug-in estimates do not guarantee covariate
balance between the reweighted source distribution and target distributions [see 29].

Due to these drawbacks, in practice we would like to use weights with smaller variance
than the density ratio that directly target a specified level of covariate balance [e.g., 117,
136]. In general, such a bias-variance trade-off only exists if we assume restrictions on the
outcome model; without restrictions, only the density ratio can guarantee finite bias. This
motivates the so-called minimax balancing weights estimators, which we study in this paper.
These estimators find the minimum dispersion weights that constrain the worst-case bias
between groups over an outcome function class [see 329, 130, 323, 152].

Summary of Contributions

We begin by reviewing existing balancing weights estimators, which achieve a smaller mean
squared error than importance weighting by introducing an assumption on the outcome
model. We argue that the outcome assumption implies two new results.

First, we use convex duality to show that the minimax optimization problem for balancing
weights can be replaced with a simple convex loss over the outcome function class. Our
dual formulation in Section 3.4 shows that the minimax weights are always a (rescaled
and recentered) function from that class. For example, if the outcomes are bounded, the
corresponding weights will be bounded. If the outcome function belongs to an RKHS with
some kernel, the corresponding weights will belong to an RKHS with the same kernel. The
outcome assumption pins down the shape of the balancing weights.

Second, we show that after making an outcome assumption, we do not need the density
ratio to exist, i.e., we do not need to make the additional “overlap” assumption that is
common in causal inference. Instead, there is an explicit quantity, the minimum achievable
bias, which depends on the outcome function class, and which acts as a quantitative measure
of the degree of overlap violations. We show that this measure can be more appropriate
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than an overlap assumption in finite samples for quantifying the underlying difficulty of the
reweighting problem.

Finally, given the central role of restrictions on the outcome model in both of the previous
results, we briefly consider the setting in which this assumption is incorrect. In particular,
we provide simple moment conditions under which we can retain a finite bound on the error
when the true outcome model is not in the assumed class.

Related work

Estimators that target balance. Many reweighting estimators in causal inference explicitly
target the discrepancy between source and target distribution, also known as balance [120,
329, 17, 130, 323, 294, 126, 9]. See [29] for a summary. The literature on domain adaptation
also uses worst-case discrepancy between distributions [199, 117, 320, 70]. Some approaches
learn representations that minimize these discrepancies [103, 272, 15]. Closely related are
estimators that target the density ratio between two groups through a surrogate loss [291,
219, 290].

Overlap in causal inference and adversarial training. Many existing theoretical
treatments of balancing weights require the density ratio to exist (called overlap in causal
inference), which is typically used for proving asymptotic consistency [see 130, 152]. This
assumption, however, can be highly restrictive especially in high-dimensions, as illustrated
by [72]. See also [169] for a discussion of the implications of overlap violations for causal
inference. The same topic arises in adversarial training. See, for example, [87, 36], who
generalize ϕ-divergences to distributions that do not have common support. This idea is
applied to GANs in [283, 108].

Domain adaptation and causal inference. We emphasize that domain adaptation
and causal inference are both special cases of the same problem setup. Related work combines
ideas from these two literatures. For example, [269, 147] use integral probability metrics to
estimate causal effects without the need for an overlap assumption. The same idea is used
in [152] for matching estimators in causal inference. Other work has made the connection
between causal inference and adversarial training [319, 228].

3.2 Problem Setup

Let X ∈ X denote covariates, and Y ∈ R denote outcomes. We study the general class of
problems with source and target populations, P and Q, with different joint distributions over
X and Y . We observe X in both populations, but only observe the outcomes, Y , for the
source population, P . The goal is to estimate the missing mean in the target population,
EQ[Y ]. Many important problems share this structure, including causal inference and domain
adaptation.

Problem Setting 1 (Causal Inference). Consider the causal inference setting with a binary
treatment status variable, T , and potential outcomes Y (0) and Y (1). For the control group,
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we observe covariates X and the potential outcome Y (0). In the treated group, we still
observe X but do not observe Y (0). Therefore, finding the average treatment effect on the
treated is equivalent to solving the problem setup described above, where P corresponds to
the T = 0 population, Q corresponds to the T = 1 population, and Y corresponds to Y (0).

Problem Setting 2 (Domain Adaptation). Consider a classification task with features X,
labels Z, and loss function ℓ. In a source environment where we observe both X and Z, we
train a model h for predicting Z given X. We would like to estimate the average risk of our
classifier in a new environment where we observe X but not Z. This problem is equivalent
to the setup above, where P corresponds to the source environment, Q corresponds to the
target environment, and Y corresponds to the loss, ℓ(h(X), Z).

Ignorability and Overlap

To estimate the mean of Y in Q using the outcomes from P , we require some kind of regularity
between the source and target populations. A common assumption is the ignorability
assumption (also called the covariate shift assumption, or selection on observables), which
requires the relationship between covariates and outcomes to be the same across the two
groups:

Assumption 1 (Ignorability). For all x ∈ X ,

P (Y |X = x) = Q(Y |X = x).

Notice that in the causal inference setting described above, Assumption 1 is equivalent to
the standard conditional independence assumption, Y (0) ⊥⊥ T |X.

Typically, Assumption 1 is paired with a requirement that the density ratio dQ/dP exists,
also known as overlap or continuity in different literatures:

Definition (Overlap). We say that overlap holds if Q is absolutely continuous with respect
to P .

Importance Weighting

In the special case where Assumption 1 and overlap hold, we can estimate the mean of the
missing outcomes by reweighting the observed outcomes with the density ratio. This estimator
is called importance weighting or inverse probability weighting (IPW) and is unbiased:

EP

[
dQ

dP
(X) Y

]
= EP

[
dQ

dP
(X) EP [Y |X]

]
= EQ[EP [Y |X]] = EQ[Y ],

where we use ignorability for the last equality.
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Importance weighting has two main drawbacks. First, the overlap assumption is very
strong, especially in high dimensions [72]. But even if overlap holds in the super-population, in
finite samples there are usually so-called practical overlap violations: regions of the covariate
space that are well-represented in the target population, but very rare in the source population,
leading to large importance weights.

Mean Squared Error

Large weights lead to large mean squared error. Consider arbitrary weights w(X). We
will expand the mean squared error (MSE) of EP [w(X)Y ] for estimating EQ[Y ] using the
standard bias-variance decomposition. Define the outcome function, f0(x) := EP [Y |X = x] =
EQ[Y |X = x] and likewise, let σ2

0(x) be the conditional variance of Y . Then,

MSE(w) = EP [(w(X)Y − EQ[Y ])2]

= (EP [w(X)Y ]− EQ[Y ])2 +VarP [w(X)Y ]

= (EP [w(X)f0(X)]− EQ[f0(X)])2 (3.1)

+ EP [w(X)2σ2
0(X)]. (3.2)

The MSE depends on two quantities: (1) the imbalance of the mean of the outcome function
f0 between the re-weighted source distribution and the target distribution; and (2) the
variability of the weights under the source distribution, which amplifies the noise in the
outcomes. With practical overlap violations in high dimensional problems, w = dQ/dP
can be enormous, and (3.2) will result in a large MSE [see, for example, 162]. Balancing
weights, introduced in Section 3.3, explicitly target the trade-off between bias and variance,
as discussed extensively in [152].

Notation

We now introduce formal notation used for the remainder of the paper. Let (X ,S) be a
measurable space.1 Let P and Q be given probability measures on (X ,S). Let f0 be a
real-valued measurable function on X . Denote M(X ) the space of signed finite measures on
(X ,S) and M(P ) those absolutely continuous with respect to P . Denote P(X ) the space of
probability measures on (X ,S) and P(P ) those absolutely continuous with respect to P .

With a slight abuse of notation, for measurable f : X → R and both M ∈ M(X )
and M ∈ P(X ), we will write EM [f ] :=

∫
X f(x)dM(x). We assume EP [|f0|] < ∞ and

EQ[|f0|] <∞.
While our setting is quite general, it may be helpful for the reader to keep in mind the

case where X is finite and discrete with cardinality n. In this case, P and Q are probability
vectors of length n and measurable functions are simply vectors in Rn. Likewise, M(X ) is
just Rn.

1To side-step topological issues, we assume that X is a separable Banach space.
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3.3 Balancing Weights

In this section, we briefly review the existing work on balancing weights estimators and
then introduce our main contributions. Balancing weights estimators find weights w(X)
with minimum dispersion, subject to a balance constraint between the target covariate
distribution and the reweighted source distribution. In general, we will consider weights
such that EP [w(X)] = 1, i.e., we always end up with the same “size” population that we
started with. The problem of choosing weights can be reformulated as finding a measure
R ∈ M(P ) such that

∫
X dR(x) = 1, with w := dR/dP . This corresponds to the intuition

behind reweighting as creating a “pseudo-population” based on P intended to match Q. We
will therefore often use w and R interchangably.

A simple balancing weights estimator might constrain the mean of the covariates to match
within tolerance δ, similarly to [329]. For example, let X = Rd. We could find the minimum
variance w such that

∥ER[X]− EQ[X]∥2 ≤ δ, (3.3)

where, as a reminder, w = dR/dP . If the outcome function f0(X) is linear with bounded
coefficients, then this constraint will bound the bias term (3.2) and the tuning parameter δ
lets us trade-off bias and variance to achieve a smaller MSE than the importance weights.

Assumptions on the Outcome Function

More generally, we may not want to assume that f0 is linear. But this presents a difficulty:
without any further restrictions, for any w ̸= dQ/dP , there always exists an adversarial
f0 that can make the bias term (3.1) arbitrarily large. Only the density ratio guarantees
bounded bias for any f0, but often at the cost of high variance.

Therefore, in practical settings, we instead restrict the outcome function in order to
control the error. To make progress, we assume that f0 belongs to some function class F :

Assumption 2. The outcome function f0 belongs to F where F is a closed and convex set
of measurable real-valued functions such that for all f ∈ F , EP [|f |] <∞,EQ[|f |] <∞, and
−f ∈ F .

For the causal inference problem setting, Assumption 2 requires making an assumption
about the relation of the potential outcome Y (0) to the covariates. For the domain adaptation
problem setting, the assumption is about the relationship between the accuracy of a predictor,
ℓ(h(X), Z), to its input features, X.

Many choices of F in Assumption 2 are quite general and justifiable with domain knowledge.
Some examples for 0 < B <∞ are:

Bounded functions: F∞ := {f : ∥f∥∞ ≤ B}
Lipschitz functions: FLip(c) := {f : ∥f∥Lip(c) ≤ B}

RKHS functions: FH := {f : ∥f∥H ≤ B},
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where ∥ · ∥Lip(c) denotes the Lipschitz constant with respect to a metric c and ∥ · ∥H denotes
the norm in some Reproducing Kernel Hilbert Space (RKHS), H.

Under Assumption 2, the bias is bounded by the worst-case discrepancy in means over F .
This quantity is called an integral probability metric (IPM), defined for any set of functions,
G, and any M,N ∈ M(X ) as:2

IPMG(M,N) := sup
g∈G

{
|EM [g]− EN [g]|

}
. (3.4)

The bias term (1) for a re-weighted population R under Assumption 2 is upper-bounded by:

|EQ[f0]− ER[f0]| ≤ IPMF(Q,R). (3.5)

This value is always finite by our assumptions on F and we can trade it off against the
variance of the weights.

Before introducing the general form of balancing weights in Section 3.3, we define two
quantities that will be useful in our discussion below, the maximum and minimum bias.

Definition (Maximum and minimum bias). The maximum bias, δmax, is the bias under
uniform weights (when R = P ). The minimum bias, δmin, is the smallest bias achieveable by
reweighting P .

δmax := IPMF(Q,P ) (3.6)

δmin := inf
R∈M(P )
ER[1]=1

{
IPMF(Q,R)

}
. (3.7)

Since R = P is feasible for (3.7), δmin ≤ δmax. In the special case where overlap holds,
R = Q is also feasible, which implies δmin = 0.

Minimax Balancing Weights

Assumption 2 and the resulting IPM bound on the bias (3.5) lead to a generalized balancing
weights estimator as discussed in [152] and [29]. Define σ2 := supx∈X σ

2
0(x), where we assume

0 < σ2 <∞. We can plug these bounds into the MSE to arrive at the following optimization
problem:

inf
R∈M(P )
ER[1]=1

{
IPMF(Q,R)

2 + σ2EP

[(
dR

dP

)2
]}

(3.8)

A solution always exists because the objective is finite for R = P , which is feasible. For
σ2 > 0, the problem is strongly convex in R and has a unique solution. Since the IPM term
is itself a supremum, this estimator is sometimes referred to as minimax balancing weights.

2If g ∈ G =⇒ −g ∈ G then the absolute value can be omitted.
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Furthermore, ∃δ > 0 such that (3.8) has the same minimizer as:

inf
R∈M(P )
ER[1]=1

EP

[(
dR

dP

)2
]

(3.9)

such that IPMF(Q,R) ≤ δ.

We view σ2 and δ as exchangeable tuning parameters: σ2 represents the importance of
reducing the variance of the weights; δ represents the level of acceptable bias. For σ2 ∈ (0,∞),
the corresponding δ lies in (δmin, δmax).

Our Contributions

In this paper, we start from the premise that Assumption 2 is necessary to achieve a reasonable
MSE in high dimensions leading to estimators (3.8) and (3.9). Our main argument is that
Assumption 2 immediately implies two additional results.

First, we derive a general duality result that lets us rewrite problems (3.8) and (3.9) as a
single convex optimization problem over F . Therefore, we can solve the minimax balancing
weights problem by optimizing a simple convex loss over a function class. Furthermore, this
reformulation shows that the optimal weights are always a rescaled and recentered member
of F .

Second, we no longer need an overlap assumption. Before restricting f0, we saw that
only w = dQ/dP could guarantee finite bias. Therefore, to bound the MSE we needed the
density ratio to exist. But once we assume that f0 ∈ F , we no longer need the density ratio
to exist, and we can simply minimize our bound on the MSE directly. Moreover, we argue
that Assumption 2 provides us with a more appropriate quantitative measure of overlap —
the minimum bias, δmin — that precisely characterizes the difficulty of translating results
from one distribution to another.

3.4 Duality Theory for Balancing Weights

In this section, we derive a dual characterization of the solution, R∗, to problems (3.8) and
(3.9) and the corresponding minimax weights w∗ = dR∗/dP .

The Variance of the Weights

Our dual derivation uses the fact that the variance term can be written as a special case of a
class of information-theoretic divergences called ϕ-divergences [285]. These have a variational
representation that will allow us to simplify the minimax problems (3.8) and (3.9) into a
single convex loss.
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Definition (ϕ-Divergence). For any convex function ϕ with ϕ(1) = 0, the ϕ-divergence
between M ∈ M(X ) and N ∈ P(X ) is:

Dϕ(M ||N) := EN [ϕ (dM/dN)] ,

where Dϕ(M ||N) = ∞ if M is not absolutely continuous with respect to N .

Notice that we can subtract off a constant to re-center our variance term in (3.9) without
affecting the minimizer over R. We can then rewrite the objective as the divergence between
R and P with ϕ(x) = x2 − 1. This is known as the χ2 divergence, and we denote it D2(R||P ):

EP

[(
dR

dP

)2

− 1

]
= D2(R||P ).

Variational representations. It is possible to express ϕ-divergences in a dual form, called
a variational representation, as a supremum over measurable functions. Let M ∈ M(X ) and
let N ∈ P(X ). Let ϕ∗ denote the convex conjugate of ϕ. Then [168] and [220] show that:

Dϕ(M ||N) = sup
f

{
EM [f ]− EN [ϕ

∗(f)]
}
, (3.10)

where the supremum is over all real-valued measurable functions on X . If we additionally
assume, as we do for R, that EM [1] = 1, then we have the tighter representation,

Dϕ(M ||N) = sup
f

{
EM [f ]− Λϕ

N [f ]
}

(3.11)

where Λϕ
N [f ] := inf

λ∈R
{λ+ EN [ϕ

∗(f − λ)]}.

This result, using the infimum over λ in the spirit of [260], appears to have been independently
proposed by [7] and [35]. Under minimal conditions on ϕ, the suprema in (3.10) and (3.11)
are achieved by ϕ′(dM/dN).

Dual Formulation

We now present our main duality result under Assumption 2 where f0 ∈ F .

Theorem 3.4.1. Under Assumptions 1 and 2, for δ > δmin, the optimization problem (3.9)
has a unique solution,

dR∗

dP
= 1 +

(
EQ[f

∗]− EP [f
∗]− δ

VarP [f ∗]

)
(f ∗ − EP [f

∗]) ,

where, for a unique µ ≥ 0 corresponding to δ, f ∗ achieves the following supremum:

sup
f∈F

{
EQ[f ]− EP [f ]−

µ

4
VarP [f ]

}
. (3.12)
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The resulting MSE is:

MSE(R∗) ≤ δ2 + σ2 (EQ[f
∗]− EP [f

∗]− δ)2

Varp[f ∗]
. (3.13)

Proof Sketch. The full proof is available in the Appendix. Here we provide a brief
outline. In the first step, we show that problem (3.9) is equivalent to:

sup
f∈F

{
EQ[f ] + inf

R∈M(P )
ER[1]=1

{(1/µ)D2(R||P )− ER[f ]}
}

for some µ > 0 corresponding to δ. In the second step, we apply (3.11) for the χ2 divergence
to show that the inner subproblem has an explicit solution:

inf
R∈M(P )
ER[1]=1

{(1/µ)D2(R||P )− ER[f ]} = −EP [f ]−
µ

4
VarP [f ].

The theorem then follows from standard convex duality results.

Remark 3.4.1 (The Shape of the Weights). The weights dR∗/dP are equal to f ∗ multiplied
by some scalar s1 and then shifted by some scalar s2:

dR∗

dP
= s1 + s2f

∗,

where s1 and s2 depend on both δ and f ∗. Therefore, if we assume F is the set of quadratic
functions, then the balancing weights will also be quadratic, and if we assume F is an RKHS
with a certain kernel, then the balancing weights will belong to an RKHS with that same
kernel.

Remark 3.4.2 (Other ϕ-Divergences). We can replace the χ2 divergence in the balancing
weight problems (3.8) and (3.9) with other ϕ-divergences. A duality result corresponding to
Theorem 3.4.1 will hold for any convex function ϕ such that ϕ(1) = 0 with convex conjugate ϕ∗

such that {ϕ∗ <∞} = R. See the Appendix for details. We can use this general formulation
to derive corresponding duality results for entropy balancing [120] or other measures of
dispersion [see 29].

Remark 3.4.3 (Tuning Parameters). For every δ there is a unique corresponding µ. Therefore,
we can treat µ as a tuning parameter instead of δ and solve (3.12) directly. In terms of µ,
the solution to (3.9) is:

dR∗

dP
= 1 +

µ

2
(f ∗ − EP [f

∗]) (3.14)

and there is a closed form relationship between µ and δ given by:

δ = EQ[f
∗]− EP [f

∗]− µ

2
VarP [f

∗].

Going forward, we will often use δ and µ interchangeably.
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The Full Information Case

To help illustrate Theorem 3.4.1, consider the simplified setting where we know f0 exactly.
This corresponds to a special case of Assumption 2 where F is the convex hull of {f0,−f0}.
Assume without loss of generality that EQ[f0] ≥ EP [f0]. Then, applying Theorem 3.4.1, we
get f ∗ = f0, and

dR∗

dP
= 1 +

(
EQ[f0]− EP [f0]− δ

VarP [f0]

)
(f0 − EP [f0]) .

The optimal weights are always a rescaled and recentered version of f0. In this special case,
the dual optimal f ∗ does not depend on δ; only the scaling factor does. Therefore, the MSE
bound (3.13) becomes a quadratic in δ and we can solve for the optimal bias:

δ∗ =

(
σ2

VarP [f0] + σ2

)
|EQ[f0]− EP [f0]|,

which gives

MSE(w∗) ≤
(

σ2

VarP [f0] + σ2

)
(EQ[f0]− EP [f0])

2.

This is an independently interesting result. With complete information, we can analytically
find the optimal bias-variance trade-off. Under homoskedasticity, these weights have the
smallest possible MSE over all w such that EP [w] = 1.

The Linear Case

For a second simple example, we return to the linear problem in (3.3). In this case, duality
shows that balancing weights are equivalent to fitting a linear model. In fact, for a certain
choice of linear F , problem (3.12) is identical to linear regression.

Let g : X → Rd be some feature map. Assume that our balance constraint is:

∥ER[g(X)]− EQ[g(X)]∥2 ≤ δ.

This is equivalent to problem (3.9) using the following linear function class:

f0 ∈ Flin =
{
βTg(X) : ∥β∥2 ≤ 1

}
.

Applying Theorem 3.4.1, we know f ∗ = (β∗)Tg(X) ∈ Flin and therefore the optimal weights
will be linear. Solving (3.12) via calculus, we get:

β∗ = c1(CovP [g(X)] + c2I)
−1(EQ[g(X)]− EP [g(X)])

for some scalars c1 and c1 that depend on µ. Notice the dependence on the inverse of the
covariance of the features plus a regularization term. This is another way of deriving a
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well-known result: for Flin, problem (3.9) is identical to estimating EQ[Y ] by fitting a ridge
regression in the P population and then applying it to the Q population. See [152] for a
direct proof. If we replace the ℓ2-norm with the ℓ1-norm, we obtain a similar equivalence for
Lasso. When the regularization term is 0, we obtain linear regression as a special case.

Several other papers have recognized the duality between linear regression and balancing
weights estimators for a linear function class; see [324, 323, 310, 294, 29]. Theorem 3.4.1
generalizes these existing duality results for linear function classes to general function classes
F .

3.5 Outcome Assumptions and Overlap

In this section, we discuss the implications of the outcome assumption for overlap. First,
we show that if overlap holds, then under conditions on F , as δ → 0, the balancing weights
converge to the importance weights dQ/dP .

However, when overlap is violated, the only impact on the balancing weights estimator is
that the minimum bias (which depends on our function class F) is greater than zero. Due to
Assumption 2, for any δ > δmin there still exists a solution to (3.9) that bounds the MSE. If
the variance of the outcomes is large, then we naturally want to choose δ larger than δmin

and the failure of overlap has no impact on our estimator.
Instead, we argue that we should use the minimum bias, δmin, directly as a measure of

practical overlap violations. We illustrate that in finite samples, δmin can be large even when
overlap holds in the super population, and likewise that δmin can be small even when overlap
is violated in the super population. Therefore, under Assumption 2, δmin is a more precise
summary of the underlying difficulty of the reweighting problem.

Convergence to Importance Weights

We begin with an example. Let X = R. Let P be Gaussian with mean 1 and variance 1,
let Q be Gaussian with mean 2 and variance 1, and let p and q denote their densities. Let
F = {f : ∥f∥∞ ≤ 1} so that the outcome function is bounded between −1 and 1. The
solution to the dual problem, f ∗, and the corresponding optimal weights are illustrated in
Figure 3.1.

The weights have a distinctive form. When δ = δmax, the optimal weights are uniform.
As the allowed bias δ decreases, the optimal weights trace out the density ratio dQ/dP
but truncated above and below. This is the form of a well-known estimator in the causal
inference literature, IPW with a trimmed propensity score [316]: under Assumption 2 with
bounded functions, the balancing weights formulation provides formal justification for using
the truncated density ratio for weights. As δ → 0, the optimal weights converge to dQ/dP .

In general, convergence to the importance weights will always occur as δ → 0 under
certain conditions on F .
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Figure 3.1: The optimal weights and corresponding dual optimal function for the Gaussian
example, with δ starting at δmax and shrinking towards zero.

Definition (Distribution-defining). F is distribution-defining if ∀M,N ∈ P(X ),

IPMF(M,N) = 0 ⇐⇒ M = N.

For example, F∞ and FLip(c) are distribution-defining, as is FH for a universal kernel.
When F is distribution-defining then only dQ/dP can achieve worst-case bias zero. Therefore,
when overlap holds and F is distribution-defining, the optimal weights, w∗ → dQ/dP as
δ → 0.

This connection between balancing weights and the density ratio is not new: among
others, [323] makes a similar point.

Balancing Weights Without Overlap

What if overlap does not hold? Then if F is distribution-defining, by definition, δmin > 0. In
this case, problem (3.9) still has a solution that bounds the MSE for any δ ≥ δmin, but the
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failure of overlap precludes us from using δ = 0. However, the motivation behind balancing
weights is to avoid using an unbiased estimator: if the variance of the outcomes is sufficiently
high, we might still prefer to use δ > δmin.

Consider a simple example in which we reweight P = Uniform(1, 2) to target Q =
Uniform(1.01, 2.01). While Q is not absolutely continuous with respect to P , intuitively, we
should be able to find w that achieves small error because the distributions are close to each
other. The function class F provides a formal definition of “close to each other” for the
purposes of reweighting.

For these uniform P and Q, there is an irreducible bias, δmin, for any possible weights:

δmin = sup
f∈F

∫ 1.01

1

f(x)dx+ sup
f∈F

∫ 2.01

2

f(x)dx

If F is unrestricted, then f could take on arbitrarily large values on the intervals [1, 1.01] and
[2, 2.01]. Therefore, the bias is unbounded without Assumption 2, which typically justifies
imposing an overlap assumption. However, if we assume F ∈ {f : ∥f∥∞ ≤ B}, for example,
then we have δmin = 0.02B which may be quite small.

The parameter δ > δmin in problem (3.9) is a tuning parameter that trades off bias and
variance. If the variance of the outcomes is very large, then we may prefer to use a value
of δ larger than δmin. In this case, the overlap violation would not have any impact on our
estimator at all. On the other hand, if the variance of the outcomes is small relative to δmin,
we may prefer to use a value of δ close to 0. The best we could do would be to set δ = δmin;
without overlap, the best achievable lower bound for the MSE is δ2min.

Quantitative Overlap

In finite samples, we argue that δmin will often be a more useful measure of overlap than
the existence of the density ratio in a super-population. For example, let Psuper = N (100, 1)
and Qsuper = N (−100, 1). Technically, overlap holds and the density ratio exists over all of
R. For concreteness, let F = FH be an RKHS with a Gaussian kernel. Then for Psuper and
Qsuper, δmin = 0, because w = dQ/dP will perfectly balance the RKHS. However, any finite
dataset will have severe practical overlap violations. Let P be a sample of n data points from
Psuper and likewise for Q. With high probability, the points in P and the points in Q will be
far apart, and as a result, δmin over the RKHS will be large.

On the other hand, if we let Psuper = Uniform(1, 2) and Qsuper = Uniform(1.01, 2.01),
overlap does not hold and δmin will be non-zero for the super-population. But, for corre-
sponding finite samples P and Q, δmin is still likely to be very small. In these examples,
super-population overlap is misleading, whereas δmin is a precise quantitative summary of the
difficulty of the reweighting problem for function class F .
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3.6 IHDP Example

In this section, we walk through an example on a real dataset to make the previous two
sections more concrete. We apply balancing weights to the Infant Health and Development
Program (IHDP) using an RKHS function class.

The IHDP Dataset and Setup

The Infant Health and Development Program (IHDP) data set is a standard observational
causal inference benchmark from [129], based on data from a randomized control trial of
an intensive home visiting and childcare intervention for low birth weight infants born in
1985. We consider a non-experimental subset of the original data with n0 = 608 children
assigned to control, n1 = 139 children assigned to treatment, and n = 747 total children. For
all children, we have a range of baseline covariates, including both categorical covariates, like
the mother’s educational attainment, and continuous covariates, like the child’s birth weight.
Our goal is to estimate the average outcome (a standardized test score) in the absence of the
intensive intervention. We observe this outcome for the 608 control children, and want to
re-weight these observations to estimate the missing mean for the 139 treated children.

To do so, we use an RKHS as a flexible but tractable functional form for f0. In particular,
we assume that F = FB

H := {f : ∥f∥H ≤ B} for B <∞, where H is the RKHS induced by
the Gaussian kernel,

K(x1, x2) = exp

(
−1

2
∥x1 − x2∥22

)
.

Define K ∈ Rn×n with Kij = K(Xi, Xj). Then for any f ∈ F , there exists an α ∈ Rn such
that αTKα ≤ B and f(Xj) =

∑n
i=1 αiKij,∀j.

Solving the Dual Problem

We compute the minimax balancing weights by solving the dual problem (3.12) directly for
many values of the tuning parameter µ > 0. The dual problem can be written as a quadratic
optimization problem over the vectors α that characterize the f ∈ F . See the Appendix
for details. We obtain the corresponding optimal weights by plugging the resulting f ∗ into
(3.14).

The balancing weights interpolate between two extremes. See Figure 3.2 for an illustration.
At one extreme are the weights with maximum bias and minimum variance. This is achieved
at µ = 0, which results in uniform weights and corresponding bias δ = δmax.

At the other extreme are the weights with maximum variance and minimum bias. Since
some of the covariates are continuous, the data points for the control and treated groups
have disjoint support. Therefore, there are no weights that achieve zero bias. Instead, we
find weights that achieve the smallest possible bias over FB

H , δmin, which will correspond to
some µ = µmax < ∞. We find µmax by increasing µ until the bias stops decreasing. The
corresponding weights are shown in black in Figure 3.2.
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The function class FB
H has the nice property that the worst-case bias scales with the

norm bound B, IPMFB
H
(R,Q) = B · IPMF1

H
(R,Q). Furthermore, regardless of B, the optimal

weights remain identical. Therefore, we can report the bias as a fraction of the size of functions
in F . For the IHDP data, δmax = 0.102B and δmin = 0.089B with corresponding variances σ2

(with uniform weights) and 1.7σ2. For this particular problem, we achieve most of the bias
reduction with smaller weights: the intermediate weights in Figure 3.2 have δ = 0.090B with
variance 1.35σ2, highlighting the relevance of the bias-variance trade-off.

In any real data set with continuous covariates, two finite samples will typically have
disjoint support like we have here. The standard approach in causal inference is to assume
that overlap holds in the super-populations from which the samples were drawn. In this
case, we could approximate the density ratio asymptotically. However, as we emphasized in
Section 3.5, the implications of overlap for balancing weights are entirely summarized by δmin

so we do not need to make such an assumption.

Figure 3.2: The optimal weights and corresponding dual optimal function for the IHDP
example for the extreme values of µ and one intermediate value.

Remark 3.6.1 (Computational Advantages of the Dual). For an RKHS, there is a closed
form of the IPM, which makes the primal and dual problems equally easy to solve. But
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in some situations, it is computationally easier to solve the dual problem (3.12) directly
instead of the primal problem (3.9). Consider a class of neural networks parameterized
by bounded network weights θ. Then handling the IPM constraint in the primal problem
requires adversarial training, as in [151], which can be quite computationally challenging. On
the other hand, (3.12) requires training a neural network once with a convex loss function
which can be accomplished with off-the-shelf SGD.

3.7 Robustness

Balancing weights rely heavily on the function class in Assumption 2. In this section, we
show that with minimal moment conditions we can still retain a bound on the bias even
if we have misspecified the function class F . We consider two functions classes. First, a
misspecified F for which we solve (3.9) to find R∗ such that IPMF(Q,R

∗) ≤ δ. Second, the
true function class, G such that f0 ∈ G and f0 /∈ F . To bound the bias, we need to show that

IPMF(Q,R
∗) ≤ δ =⇒ IPMG(Q,R

∗) ≤ ρ(δ) (3.15)

for some ρ <∞ which has good scaling with δ. Without further assumptions, (3.15) will not
hold for any G.

IPMs correspond to common perturbations in the robust statistics literature. For example,
IPMF∞ and IPMFLip(c)

are equivalent to the total variation (TV) distance and Wasserstein
distance respectively. For F = F∞, we can apply Lemma E.2 from [328] to achieve (3.15)
for any G. We require an Orlicz norm bound under Q and R∗ on g(X) for all g ∈ G. For a
simple example, let G be linear. Then we get the following result:

Proposition 3.7.1. Let TV (Q,R∗) ≤ δ and let f0 ∈ {βTx : ∥β∥ ≤ 1}. If R∗ and Q have
bounded covariance, then we have the following upper bound on the bias:

|EQ[f0]− ER∗ [f0]| ≤ ρ1(δ),

where ρ1(δ) = O(
√
δ).

If instead R∗ and Q are sub-Gaussian, then we have the following upper bound on the
bias:

|EQ[f0]− ER∗ [f0]| ≤ ρ2(δ),

where ρ2(δ) = O(δ
√
log(1/δ)).

For general G, the rate of ρ in terms of δ is similar, but the moment conditions on X
become stronger. In practice, these robust statistics results mean that we can make a best
guess about F and as long as Q is sufficiently “nice”, the true bias will not be much larger
than δ.
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Chapter 4

Augmented Balancing Weights as
Undersmoothing

4.1 Introduction

Next, we demonstrate the implications of Chapter 3, when applied to machine learning
for causal inference. Combining outcome modeling and weighting, as in augmented inverse
propensity score weighting (AIPW) and other doubly robust (DR) or double machine learning
(DML) estimators, is a core strategy for estimating causal effects using observational data.
A growing body of literature finds weights by solving a “balancing weights” optimization
problem to estimate weights directly, rather than by first estimating the propensity score and
then inverting. DR versions of these estimators are referred to by a number of terms, including
augmented balancing weights [17, 131], automatic debiased machine learning (AutoDML) [55],
and generalized regression estimators (GREG) [79]; see [30] for a review. Moreover, this
strategy has been applied to a wide range of linear estimands via the Riesz representation
theorem [131, 56]. In this paper, we consider augmented balancing weights in which the
estimators for both the outcome model and the balancing weights are based on penalized
linear regressions in some possibly infinite basis; in addition to all high-dimensional linear
models, this broad class includes popular nonparametric models such as kernel regression
and certain forms of random forests and neural networks.

We first show that, somewhat surprisingly, augmenting any regularized linear outcome
regression (the “base learner”) with linear balancing weights is numerically equivalent to
a single linear outcome regression applied to the target covariate profile. The resulting
coefficients are an affine (and often convex) combination of the base learner model coefficients
and unregularized OLS coefficients; the hyperparameter for the balancing weights estimator
directly controls the regularization path defining the affine combination. In the extreme
case where the weighting hyperparameter is set to zero — which we show can easily occur
in practice — the entire procedure is equivalent to estimating a single, unregularized OLS
regression.
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We specialize these results to ridge and lasso regularization (ℓ2 and ℓ∞ balancing, respec-
tively) and show that augmenting an outcome regression estimator with balancing weights
generally corresponds to a form of undersmoothing. Most notably, we show that an augmented
balancing weight estimator that use (kernel) ridge regression for both outcome and weighting
models — which we refer to as “double ridge” — collapses to a single, undersmoothed (kernel)
ridge regression estimator.

We leverage these results to prove novel statistical results for double ridge estimators and
to make progress towards practical hyperparameter tuning, which remains an open problem
in this area. We first make explicit the connection between asymptotic results for double
kernel ridge estimators [281] and prior results on optimal undersmoothing for a single kernel
ridge outcome model [209], showing that the latter is also semiparametrically efficient. This
generalizes the argument in [245] that “OLS is doubly robust” to a much broader class of
penalized parametric and non-parametric regression estimators. As a complementary analysis,
we next adapt existing finite sample error analysis results for single ridge regression [83]
to derive the finite-sample-exact bias and variance of double ridge estimators. Using these
expressions, we can compute oracle hyperparameters for any given data-generating process.

Finally, we illustrate our results with several numerical examples. We first explore
hyperparameter tuning for double ridge regression in an extensive simulation study on 36 data-
generating processes, and compare three practical methods to the optimal hyperparameter
computed using our finite sample analysis. Surprisingly, asymptotic theory and our simulation
results suggest equating the hyperparameters for the outcome and weighting models. We
caution against the naive application of hyperparameter tuning based solely on cross-validating
the weighting model, forms of which have been suggested previously. This approach can
lead to setting the weighting hyperparameter to exactly zero — and therefore recovering
standard OLS — even in scenarios where OLS is far from optimal. We emphasize this
point by applying our results to the canonical [184] study, highlighting that researchers can
inadvertently recover OLS in practice.

Broadly, our results provide important insights into the nexus of causal inference and
machine learning. First, these results open the black box on the growing number of methods
based on augmented balancing weights and AutoDML — methods that can sometimes be
difficult to taxonomize or understand. We show that, under linearity, these estimators all share
an underlying and very simple structure. Our results further highlight that estimation choices
for augmented balancing weights can lead to potentially unexpected behavior. At a high
level, as causal inference moves towards incorporating machine learning and automation, our
work highlights how the traditional lines between weighting and regression-based approaches
are becoming increasingly blurred.

Second, our results connect two approaches to “automate” semiparametric causal inference.
AutoDML and related methods exploit the fact that we can estimate a Riesz representer
without a closed form expression for a wide class of functionals. The estimated Riesz
representer then augments a base learner by bias correcting a plug-in estimator of the
functional. Older approaches, such as undersmoothing [109, 217], twicing kernels [218], and
sieve estimation [216, 273], avoid estimation of the Riesz representer, tuning the base learner



CHAPTER 4. AUGMENTED BALANCING WEIGHTS AS UNDERSMOOTHING 44

regression fit such that an additional bias correction is not required. Achieving this optimal
tuning in practice has long been a hurdle for the implementation of these methods. Subject
to certain conditions, both approaches can yield estimators that are asymptotically efficient.
We show that if all required tuning parameters are defined in terms of an ℓ2-norm constraint,
then these approaches can be numerically identical even in finite samples. We use these
equivalences to make progress toward practical hyperparameter selection and find promising
directions for new theoretical analysis.

In Section 4.2 we introduce the problem setup, identification assumptions, and common
estimation methods; we also review balancing weights and previous results linking balancing
weights to outcome regression models. In Section 4.3 we present our new numerical results,
and in Sections 4.4 and 4.5 we cache out the implications for ℓ2 and ℓ∞ balancing weights
specifically. Building on our numerical results, Section 4.6 explores both asymptotic and
finite sample statistical results for kernel ridge regression. Section 4.7 illustrates our results
with a simulation study and application to canonical data sets. Section 4.8 offers some other
directions for future research. The appendix includes extensive additional technical discussion
and extensions.

Related work

Balancing weights and AutoDML. With deep roots in survey calibration methods
and the generalized regression estimator [GREG; see 79, 196, 105], a large and growing
causal inference literature uses balancing weights estimation in place of traditional inverse
propensity score weighting (IPW). [30] provide a recent review; we discuss specific examples
at length in Section 4.2 below. This approach typically balances features of the covariate
distributions in the different treatment groups, with the aim of minimising the maximal
design-conditional mean squared error of the treatment effect estimator. Of particular
interest here are augmented balancing weights estimators that combine balancing weights
with outcome regression; see, for example, [17, 131, 28].

A parallel literature in econometrics instead focuses on so-called automatic estimation
of the Riesz representer, of which IPW are a special case, where “automatic” refers to the
fact that we can estimate the Riesz representer without obtaining a closed form expression.
Estimating the Riesz representer directly, under the assumption that it is linear in some
basis, dates back at least to [246]; see also [245]. The corresponding augmented estimation
framework has more recently come to be known as Automatic Debiased Machine Learning, or
AutoDML; see, among others, [61], [63], [55], and [56]. This approach has also been applied
in a range of settings, including to corrupted data [6], to dynamic treatment regimes [58],
and to address noncompliance [279].

Numerical equivalences for balancing weights. Many seminal papers highlight con-
nections between weighting approaches, such as balancing weights and IPW, and outcome
modeling; see [45] for discussion. Most relevant are a series of papers that show numerical
equivalences between linear regression and (exact) balancing weights, especially [245, 173,



CHAPTER 4. AUGMENTED BALANCING WEIGHTS AS UNDERSMOOTHING 45

52], and between kernel ridge regression and forms of kernel weighting [152, 130]. We discuss
these equivalences at length in Appendix B.1.

4.2 Problem setup and background

Setup and motivation

The core results in our paper are numeric equivalences for existing estimation procedures, and
as such these results hold absent any causal assumptions or statistical model. Nonetheless, a
primary motivation for this work is the task of estimating unobserved counterfactual means
in causal inference, as well as estimating the broad class of linear functionals described in [57].
We briefly review the corresponding setup, emphasizing that this is purely for interpretation.

Example: Estimating counterfactual means

Let X, Y, Z be random variables defined on X ,R,Z with joint probability distribution p. To
begin, consider the example of a binary treatment, Z = {0, 1} and covariates X. Define
potential or counterfactual outcomes Y (1) and Y (0) under assignment to treatment and
control, respectively. Under SUTVA [259], we observe outcomes Y = ZY (1) + (1− Z)Y (0).
To estimate the average treatment effect, E[Y (1)− Y (0)], we first estimate the means of the
partially observed potential outcomes. We initially focus on estimating E[Y (1)]; a symmetric
argument holds for E[Y (0)].

Let m(x, z) := E[Y | X = x, Z = z] be the outcome model, e(x) := P[Z = 1 | X = x] be
the propensity score, and α(x, z) = z/e(x) be the inverse propensity score weights (IPW).
Under the additional assumptions of conditional ignorability, Y (1) ⊥⊥ Z | X, and overlap,
E[α(X,Z)2] <∞, we have that E[Y (1)] is identified by E[m(X, 1)], a linear functional of the
observed data distribution.

There are three broad strategies for estimating E[Y (1)]. First, the identifying func-
tional above suggests estimating the outcome model, m(x, 1) among those units with
Z = 1, and plugging this into the regression functional, E[m(X, 1)]. Second, the equal-
ity E[m(X, 1)] = E[Z/e(X)Y ] = E[α(X,Z)Y ] suggests estimating the inverse propensity
score weights, α(x, z) = z/e(x), and plugging these into the weighting functional. Finally, we
can combine these two via the doubly robust functional [248]:

E[m(X, 1) + α(X,Z)(Y −m(X, 1)].

This functional has the attractive property of being equal to E[m(X, 1)] even if either one of
α or m is replaced with an arbitrary function of X and Z, hence the term “doubly robust.”
Doubly robust estimators have been studied extensively in semiparametric theory; note that
m(X, 1) + α(X,Z)(Y −m(X,Z))− ψ(m) coincides with the efficient influence function for
ψ(m) under a nonparametric model (see Kennedy 2022 [167] for a review of the relevant
theory). See [60, 167] for recent overviews of the active literature in causal inference and
machine learning focused on estimating versions of this functional.
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General class of functionals via the Riesz representer

Our results apply well beyond the example above. In particular, they apply to any functional
of the form

ψ(m) = E[h(Xi, Zi,m)], (4.1)

where Z is an arbitrary set; Z a random variable with support Z; and h is a real-valued,
mean-squared continuous linear functional of m [57, 131, 55]. Following [55, 56], we can
generalize the weighting functional to this general class of estimands via the Riesz representer,
which is a function α(X,Z) ∈ L2(p) such that, for all square-integrable functions f ∈ L2(p):

E[h(X,Z, f)] = E[α(X,Z)f(X,Z)]. (4.2)

As in the counterfactual mean example, we can identify the more general target functional
in (4.2) via the outcome regression functional in (4.1), via the Riesz representer functional in
(4.2) with f = m, or via the doubly robust functional

E[h(X,Z,m) + α(X,Z)(Y −m(X,Z))]. (4.3)

Estimators of this DR functional are augmented in the sense that they augment the “plug-
in,” “outcome regression,” or “base learner” estimator of E[h(X,Z,m)] with appropriately
weighted residuals; or, equivalently, that augment the weighting estimator with an appropriate
outcome regression. This is the class of estimators to which our results apply. In future work
we will explore whether we can extend our results to a different class of functionals that
admit DR functional forms, first introduced by [246], and to the superset of such functionals
characterized by [258].

Balancing weights: Background and general form

The core idea behind balancing weights is to estimate the Riesz representer directly — rather
than via an analytic functional form (e.g., by estimating the propensity score and inverting it).
As a result, balancing weights do not require a known analytic form for the Riesz representer
[56], are often much more stable [329], and offer improved control of finite sample covariate
imbalance [323]. We briefly describe two primary motivations for this approach.

First, a central property of the Riesz representer is that the corresponding weights,
w(X,Z) = α(X,Z), are the unique weights that satisfy the population balance property
property in Equation (4.2) for all square-integrable functions f ∈ L2(p). For our target
estimand ψ(m) we only need to satisfy the condition in Equation (4.2) for the special case of
f = m. If we are willing to assume that m lies in a model class F ⊂ L2(p), then it suffices to
balance functions in that class. This is achieved by minimizing the imbalance over F :

ImbalanceF(w) := sup
f∈F

{
E[w(X,Z)f(X,Z)]− E[h(X,Z, f)]

}
. (4.4)
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As we discuss next, balancing weights minimize a (penalized) sample analog of Equation
(4.4).

Alternatively, [55] consider finding weights f that minimize the mean-squared error for
α(X,Z):

min
f∈F

{
E
[
(f(X,Z)− α(X,Z))2

]}
. (4.5)

Automatic estimation of the Riesz representer, also known as Riesz regression [59], minimizes
a sample analog of Equation (4.5). When F is convex, then up to choice of hyperparameters
(see (4.6) below), the solutions to Equations (4.4) and (4.5) are equivalent.

Linear balancing weights

In this paper, we consider the special case in which the outcome models are linear in some
basis expansion of X and Z. This is an extremely broad class that encompasses linear and
polynomial models of arbitrary functions of X and Z and with dimension possibly larger
than the sample size, as well as non-parametric models such as reproducing kernel Hilbert
spaces [RKHSs; 116], the Highly-Adaptive Lasso [31], the neural tangent kernel space of
infinite-width neural networks [140], and “honest” random forests [5]. However, this class
excludes models for m that are fundamentally non-linear in their parameters, like general
neural networks or generalized linear models with a non-linear link function.

Under linearity, the imbalance over all f ∈ F has a simple closed form. Because our results
concern numeric equivalences, we will focus on the finite sample version of the linear balancing
weights problem. Let F = {f(x, z) = θ⊤ϕ(x, z) : ∥θ∥ ≤ 1} where ∥ · ∥ can be any norm on
Rd. The general setup constrains ∥θ∥ ≤ r; we set r = 1 without loss of generality, which
simplifies exposition below. Let ∥ · ∥∗ be the dual norm of ∥ · ∥; that is, ∥v∥∗ := sup∥u∥≤1 u

⊤v.
Many common vector norms have familiar, closed-form, dual norms, e.g., the dual norm of
the ℓ2-norm is the ℓ2-norm; and the dual norm of the ℓ1-norm is the ℓ∞-norm. Let Xp, Yp, Zp

be n i.i.d. samples from the distribution p of the observed data. Define the feature map
ϕ : X × Z → Rd and let ϕj : X × Z → R denote the mapping for the jth feature. Define

Φp := ϕ(Xp, Zp) and let Φq := h(Xp, Zp, ϕ) denote the target features. We will write Ê for

sample averages; define Φp := Ê[Φp] and Φq := Ê[Φq]. For exposition, we assume that d < n
and that Φp has rank d. We emphasize that this is not necessary for our results — one can
replace Rd with an infinite-dimensional Hilbert space H and relax the rank restriction. See
Appendix B.2 for a formal presentation of the high-dimensional (d > n) setting.

In what follows we write w for the 1× n vector w(Φp), to highlight the fact that we will
estimate w directly rather than as an explicit function of X or Φp. Using the derivation
above, we can directly calculate the finite sample imbalance as:

̂ImbalanceF(w) = ∥ 1
n
wΦp − Φ̄q∥∗.
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Now we can write the penalized sample analog of balancing weights optimization problem
in (4.4) equivalently as either:

Penalized form: min
w∈Rn

{
∥ 1
n
wΦp − Φ̄q∥2∗ + δ1∥w∥22

}
Constrained form: min

w∈Rn
∥w∥22

such that ∥ 1
n
wΦp − Φ̄q∥∗ ≤ δ2.

Furthermore, we can write the equivalent problem in (4.5) as:

Riesz regression form: min
θ∈Rd

{
1
n
θ⊤(Φ⊤

p Φp)θ − 1
n
2θ⊤Φ̄q + δ3∥θ∥

}
, (4.6)

where we use the terminology “Riesz regression” from [59]. For any parameter δ2 > 0 and
corresponding constrained problem solution ŵ, there exists a parameter δ3 > 0 such that
ŵ = δ3Φpθ̂, where θ̂ is the solution to the Riesz regression form. As a result, for any norm
∥ · ∥, the penalized and constrained forms will always produce weights that are linear in Φp

[see 30, Section 9]. Therefore, since the problems are equivalent, we typically use a generic δ
to denote the regularization parameter, and will specify the particular form only if necessary.
In Appendix B.1 we illustrate several concrete examples for this problem.

Remark 4.2.1 (Intercept). An important constraint in practice is to normalize the weights,
1
n

∑n
i=1wi = 1. This corresponds to replacing Φp and Φq with their centered forms, Φp − Φ̄p

and Φq − Φ̄p, in the dual form of the balancing weights problem. This is also equivalent
to adding a column of 1s to Φp. Appropriately accounting for this normalization, however,
unnecessarily complicates the notation. Therefore, without loss of generality, we will assume
that the features are centered throughout, that is, Φ̄p = 0.

Remark 4.2.2 (Equivalence with kernel ridge regression). For the special case of ℓ2 balancing
(as in Appendix B.1) the balancing weights problem is numerically equivalent to directly
estimating the conditional expectation E[Yp|Φp] via (kernel) ridge regression and applying
the estimated coefficients to Φq. Moreover, the solution to the balancing weights problem has
a closed form that is always linear in Φq; we provide further details in Appendix B.1. For
exact balance with δ = 0, the balancing weights problem is equivalent to fitting unregularized
OLS; see, for example, [245], [173], and [51].

4.3 Novel equivalence results for (augmented)

balancing weights and outcome regression models

Our first main result demonstrates that any linear balancing weights estimator is equivalent
to applying OLS to the re-weighted features. Our second result provides a novel analysis of
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augmented balancing weights, demonstrating that augmenting any linear balancing weights
estimator with a linear outcome regression estimator is equivalent to a plug-in estimator
of a new linear model with coefficients that are a weighted combination of estimated OLS
coefficients and the coefficients of the original linear outcome model.

Weighting alone

Our first result is that estimating ψ(m) with any linear balancing weights is equivalent
to fitting OLS for the regression of Yp on Φp and then applying those coefficients to the
re-weighted target feature profile. The key idea for this result begins with the simple
unregularized regression prediction for ψ(m), Φqβ̂ols.

Proposition 4.3.1. Let ŵδ := θ̂δΦ⊤
p , θ̂

δ ∈ Rd, be any linear balancing weights, with corre-

sponding weighted features Φ̂δ
q :=

1
n
ŵδΦp. Let β̂ols = (Φ⊤

p Φp)
†Φ⊤

p Yp be the OLS coefficients of
the regression of Yp on Φp. Then:

Ê
[
ŵδ ◦ Yp

]
= Φ̂δ

qβ̂ols

=
(
Φ̄p + ∆̂δ

)
β̂ols,

where ∆̂δ = Φ̂δ
q − Φ̄p is the mean feature shift implied by the balancing weights and where

superscript δ indicates possible dependence on a hyperparameter. We have assumed without
loss of generality that Φ̄p = 0, but we sometimes use ∆̂ notation to demonstrate the role
of mean feature shift in various expressions. We use the symbol ◦ to denote element-wise
multiplication.

Note that here we have written the OLS coefficients using the pseudo-inverse †. For clarity
in the main text, we focus on the full rank setting, where (Φ⊤

p Φp)
† = (Φ⊤

p Φp)
−1; we provide a

proof for the general setting in Appendix B.2.
We can interpret this result via a contrast with standard regularization. Regularized

regression models navigate a bias-variance trade-off by regularizing estimated coefficients
β̂reg relative to β̂ols, leading to Φqβ̂reg. The balancing weights approach instead keeps β̂ols
fixed and regularizes the target feature distribution by penalizing the implied feature shift,
∆̂δ = Φ̂δ

q − Φp.
We emphasize that this is a new and quite general result. As we discuss in Appendix B.1,

it has been shown previously that for exact balancing weights, Ê[ŵexactYp] = Φqβ̂ols. However,
Proposition 4.3.1 holds for any weights of the form w = θΦ⊤

p with arbitrary θ ∈ Rd. In Sections

4.4 and 4.5, we consider the particular form of Φ̂δ
q for ℓ2 and ℓ∞ balancing, respectively.

Augmented balancing weights

We can immediately extend this to augmented balancing weights, which regularize both the
coefficients and the feature shift. Let β̂λ

reg be the coefficients of any regularized linear model
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for the relationship between Yp and Φp, where the superscript λ indicates dependence on
a hyperparameter (e.g., estimated by regularized least squares). We consider augmenting
Ê
[
ŵδ ◦ Yp

]
with β̂λ

reg using the doubly robust functional representation in Equation (4.3).
The augmented estimator is:

Ê[Φqβ̂
λ
reg] + Ê[ŵδ ◦ (Yp − Φpβ̂

λ
reg)] = Ê[ŵδ ◦ Yp] + Ê

[(
Φq − Φ̂δ

q

)
β̂λ
reg

]
. (4.7)

Many recently proposed estimators have this form; see e.g., [17, 30]. If the weighting model
and outcome model have different bases, our result applies to a shared basis by either
combining the dictionaries as in [55] or by applying an appropriate projection as in [131].

We apply Proposition 4.3.1 to the first term of the right-hand side of (4.7) to yield the
following result. As this result is purely numerical, it applies to arbitrary vectors β̂λ

reg ∈ Rd,

but substantively we think of β̂λ
reg as the estimated coefficients from an outcome model.

Proposition 4.3.2. For any β̂λ
reg ∈ Rd, and any linear balancing weights estimator with

estimated coefficients θ̂δ ∈ Rd, and with ŵδ := θ̂δΦ⊤
p and Φ̂δ

q :=
1
n
ŵδΦp, the resulting augmented

estimator

Ê[ŵδ ◦ Yp] + Ê
[(

Φq − Φ̂δ
q

)
β̂λ
reg

]
= Ê

[
Φ̂δ

qβ̂ols +
(
Φq − Φ̂δ

q

)
β̂λ
reg

]
= Ê[Φqβ̂aug],

where the jth element of β̂aug is:

β̂aug,j :=
(
1− aδj

)
β̂λ
reg,j + aδj β̂ols,j

aδj :=
∆̂δ

j

∆j

,

where ∆j = Φq,j − Φp,j is the observed mean feature shift for feature j; and ∆̂δ
j = Φ̂δ

q,j − Φp,j

is the feature shift for feature j implied by the balancing weights model. Finally, aδ ∈ [0, 1]d

when the covariance matrix is diagonal, (Φ⊤
p Φp) = diag(σ2

1, σ
2
2, ..., σ

2
d), with σ

2
j > 0.

This is our central numerical result for augmented balancing weights: when both the
outcome and weighting models are linear, the augmented estimator is equivalent to a
linear model applied to the target features Φq, with coefficients that are element-wise

affine combinations of the base learner coefficients, β̂λ
reg, and the coefficients β̂ols from an

OLS regression of Yp on Φp. (The coefficients are additionally convex combinations of β̂λ
reg

and β̂ols when the covariance matrix is diagonal.) In Sections 4.4 and 4.5 below, we analyze
some of the properties of the augmented estimator for ℓ2 and ℓ∞ balancing weights problems
respectively.
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The regularization parameter for the balancing weights problem, δ, parameterizes the
path between β̂λ

reg and β̂ols. To see this, consider the cases where δ → 0 and δ → ∞. As δ → 0
the balancing weights problem prioritizes minimizing balance over controlling variance, and
∆̂δ

j → ∆j for all j. (Recall that we assume Φp,j = 0 for all j. Thus, ∆j = Φq,j and ∆̂δ
j = Φ̂δ

q,j .

So ∆̂δ
j → ∆j is equivalent to Φ̂δ

q → Φq,j .) In this case, aδj = ∆̂δ
j/∆j → 1, and the weights fully

“de-bias” the original outcome model by recovering unregularized regression, β̂aug → β̂ols. In
Section 4.7, we will see that when chosen by cross-validation, δ sometimes equals exactly
0 in applied problems; thus even when β̂λ

reg is a sophisticated regularized estimator, the
final augmented point estimate can nonetheless be numerically equivalent to the simple
OLS plug-in estimate. Conversely, as δ → ∞, the balancing weights problem prioritizes
controlling variance, leading to uniform weights and ∆̂j → 0. In this case, aδj = ∆̂δ

j/∆j → 0,

the weighting model does very little, and β̂aug → β̂λ
reg.

It is also instructive to consider two other extremes: unregularized outcome model and
unregularized balancing weights. First, consider the special case of fitting an unregularized
linear regression outcome model, i.e., β̂λ

reg = β̂ols. Then Proposition 4.3.2 reproduces the
result, originally due to [245], that “OLS is doubly robust” [see also 173]. This is because
β̂aug = β̂ols for arbitrary linear weights θ̂δ ∈ Rd. Thus, OLS augmented by any choice of
linear balancing weights collapses to OLS alone. Equivalently, we can view OLS alone as an
augmented estimator that combines an OLS base learner with linear balancing weights.

A similar result holds for unregularized balancing weights, i.e., exact balancing weights.
Let ŵexact be the solution to a balancing weights problem in Section 4.2 with hyperparameter
δ = 0, and let β̂λ

reg ∈ Rd be arbitrary coefficients. Then from the balance condition, Φ̂q = Φq,

aδj = 1 for all j, and we have that β̂aug = β̂ols. Thus, the augmented exact balancing weights
estimator also collapses to the OLS regression estimator. Equivalently, the augmented exact
balancing weights estimator collapses to the unaugmented exact balancing weights estimator.
[324] use a very similar result to argue that entropy balancing, a form of exact balancing
weights, is doubly robust.

4.4 Augmented ℓ2 Balancing Weights

In this section, we study ℓ2 balancing weights estimators, which are commonly used in the
context of kernel balancing [116, 130, 152, 27] and for panel data methods [1, 28]. We first
show that the regularization path aδj from Proposition 4.3.2 follows typical ridge regression
shrinkage, with a smooth decay. Moreover, augmenting with ℓ2 balancing weights is equivalent
to boosting with ridge regression, and always overfits relative to the unaugmented outcome
model alone. We then show that when the outcome model used to augment ℓ2 balancing
weights is also a ridge regression (which we refer to as “double ridge”), the augmented
estimator is itself equivalent to a single, generalized ridge regression, albeit undersmoothed
relative to the base learner. These results extend immediately to the RKHS setting of “double
kernel ridge” estimation, combining kernel balancing weights and kernel ridge regression. In
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Section 4.6, we show the implications of these numeric results for undersmoothing in the
statistical sense.

While the following results hold for arbitrary covariance matrices, in the main text we sim-
plify the presentation by assuming that Φ⊤

p Φp is diagonal; that is, (Φ
⊤
p Φp) = diag(σ2

1, σ
2
2, ..., σ

2
d),

with σ2
j > 0. This is without loss of generality for ℓ2 balancing since the ℓ2-norm is rotation

invariant.

General linear outcome model

Following Remark 4.2.2 above, ℓ2 balancing weights, including kernel balancing weights,
have a closed form that is always linear in Φq. Our next result applies this closed form to
Proposition 4.3.2 to derive the regularization path that results from augmenting an arbitrary
linear outcome model with ℓ2 balancing weights. Although this is an immediate consequence
of Proposition 4.3.2, the resulting form of the augmented estimator has unique structure that
warrants a new result.

Proposition 4.4.1. Let ŵδ
ℓ2

be (penalized) linear balancing weights with regularization

parameter δ and F = {f(x) = θ⊤ϕ(x) : ∥θ∥2 ≤ 1}. Then 1
n
ŵδ

ℓ2
= Φq(Φ

⊤
p Φp + δI)−1Φ⊤

p .

Therefore, the augmented ℓ2 balancing weights estimator with outcome model β̂λ
reg ∈ Rd has

the form

Ê[Φqβ̂
λ
reg] + Ê[ŵδ

ℓ2
(Yp − Φpβ̂

λ
reg)] = Ê[Φqβ̂ℓ2 ],

where the jth coefficient of β̂ℓ2 is given by

β̂ℓ2,j :=
(
1− aδj

)
β̂λ
reg,j + aδj β̂ols,j (4.8)

aδj :=
σ2
j

σ2
j + δ

.

In this case, the aδj are exactly equal to the standard regularization path of ridge regression.

To see this, recall that ridge regression with penalty δ shrinks the β̂ols coefficients as follows:

β̂δ
ridge,j =

(
σ2
j

σ2
j + δ

)
β̂ols,j = aδj β̂ols,j. (4.9)

This is identical to the expression in (4.8) but with β̂λ
reg set to 0: Ridge regression shrinks

β̂ols towards 0 with regularization path aδj , while ℓ2 augmenting shrinks β̂ols towards β̂
λ
reg with

the same regularization path.
As an illustration, the right panel of Figure 4.1 shows β̂ℓ2 (on the y-axis) for ten covariates,

with δ increasing from 0 (on the x-axis). The dots on the left pick out β̂ols; when δ = 0, then
a0j = 1 and β̂ℓ2 = β̂ols. The limit on the right shows β̂λ

reg. The smooth regularization path is
characteristic of ridge regression shrinkage.
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(a) Outcome model (b) Weighting model (c) Augmented model

Figure 4.1: Regularization paths for “double ridge” augmented ℓ2 balancing weights. Panel
(a) shows the coefficients β̂λ

reg of a ridge regression of Yp on Φp with hyperparameter λ. The
black dots on the left are the OLS coefficients, with λ = 0. The red dots at λ = 5 illustrate the
coefficients at a plausible hyperparameter value, β̂5

reg. Panel (b) shows re-weighted covariates,

Φ̂δ
q, for the ℓ2 balancing weights problem with hyperparameter δ; the black dots show exact

balance, which corresponds to OLS. As δ increases, the weights converge to uniform weights
and Φ̂δ

q converges to Φp, which we have centered at zero. Panel (c) shows the augmented

coefficients, β̂ℓ2 as a function of the weight regularization parameter δ. The black dots on
the left are the OLS coefficients. As δ → ∞, the coefficients converge to β̂5

reg. All three
regularization paths have essentially identical qualitative behavior.

We can also view β̂ℓ2 as the output of a single iteration of a ridge boosting procedure,
fit using Yp and Φp alone. See [46] and [232] for detailed discussion; [218] makes a similar
connection in the context of twicing kernels.

Proposition 4.4.2. Let Y̌p = Yp − Φpβ̂
λ
reg be the residuals from the base learner. Let β̂δ

boost

be the coefficients from the ridge regression of Y̌p on Φp with hyperparameter δ. Then,

β̂ℓ2 = β̂λ
reg + β̂δ

boost, and ∥Yp − Φpβ̂ℓ2∥22 ≤ ∥Yp − Φpβ̂
λ
reg∥22.

So for a fixed δ, the augmented ℓ2 balancing estimator is equivalent to estimating a new
outcome model coefficient estimator β̂ℓ2 that overfits relative to β̂λ

reg (in the sense of having
smaller in-sample training error), and then applying that model to Φq.

Surprisingly — and in contrast to the general result in Proposition 4.3.2 — the augmented
coefficients β̂ℓ2 are the same for every target covariate profile Φq. To see this, note that
Proposition 4.4.1 shows that ℓ2 balancing weights are always linear in Φq. Therefore, the
corresponding regularization path aδj does not depend on the target profile Φq; it depends only
on δ and the source distribution variances σ2

j . This property is closely related to universal
adaptability in the computer science literature on multi-group fairness [172]. The particular Φq

may nonetheless impact the choice of δ in hyperparameter selection, e.g., via cross-validating
imbalance, which in turn influences the degree of overfitting; we do find this to be the case
theoretically in Section 4.6.
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Ridge regression outcome model

Proposition 4.4.1 holds for arbitrary linear outcome model coefficient estimators β̂λ
reg ∈ Rd;

we now state the corresponding result for a “double ridge” estimator, where the base learner
outcome model is itself fit via ridge regression. The key takeaway is that the implied
augmented coefficients are undersmoothed relative to the base learner ridge coefficients.

For this section, we will consider the following generalized ridge regression, sometimes
known as “adaptive” ridge regression [115]. Let Λ ∈ Rd×d be a diagonal matrix with jth
diagonal entry λj ≥ 0. Then the generalized ridge coefficients are:

β̂Λ
ridge := argmin

β∈Rd

∥Φpβ − Yp∥22 + β⊤Λβ

= (Φ⊤
p Φp + Λ)−1Φ⊤

p Yp.

Standard ridge regression is the special case where the λj all take the same value and so
Λ = λI. As above, the generalized ridge coefficients can be rewritten as shrinking the OLS
coefficients:

β̂Λ
ridge,j =

(
σ2
j

σ2
j + λj

)
β̂ols,j. (4.10)

We now demonstrate that the augmented ℓ2 balancing weights estimator with base learner
β̂Λ
ridge is equivalent to a plug-in estimator using generalized ridge with smaller hyperparameters,

β̂Γ
ridge, where Γ is a diagonal matrix with jth diagonal entry γj ∈ [0, λj].

Proposition 4.4.3. Let β̂Λ
ridge denote the coefficients of a generalized ridge regression of Yp

on Φp with hyperparameters Λ, and let ŵδ
ℓ2

denote ℓ2 balancing weights with hyperparameter δ
defined in Section 4.2. Define the diagonal matrix Γ with jth diagonal entry:

γj :=
δλj

σ2
j + λj + δ

≤ λj.

Then:

Ê[Φqβ̂
Λ
ridge] + Ê[ŵδ

ℓ2
(Yp − Φpβ̂

Λ
ridge)] = Ê[Φqβ̂

Γ
ridge].

Furthermore, β̂Γ
ridge are standard ridge regression coefficients (i.e., γj is a constant for all j)

when λj = λ and σj = σ for all j.

The same result holds for kernel ridge regression; see Appendix B.2.
In this setting, augmenting with balancing weights is equivalent to undersmoothing the

original outcome model fit. In particular, we can use the expansion in Equation (4.10) to see
the undersmoothing in β̂Γ

ridge explicitly:

σ2
j

σ2
j + γj

=

(
σ2
j

σ2
j + λj

)
︸ ︷︷ ︸
outcome model

(
σ2
j + λj + δ

σ2
j + δ

)
︸ ︷︷ ︸

augmentation

,
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where the first term is the shrinkage from the original generalized ridge model alone, and the
second term is due to augmenting with ℓ2 balancing weights. Importantly, the second term is

in [1,
σ2
j+λj

σ2
j

] and therefore partially reverses the shrinkage of the original estimate. In Section

4.6, we connect this to undersmoothing in the statistical sense.

4.5 Augmented ℓ∞ balancing weights

In this section, we study ℓ∞ balancing weights estimators, which are widely used in the
balancing weights literature [329, 17] and in the AutoDML literature [55]. In the main
text, we consider the special case where the covariance matrix Φ⊤

p Φp is diagonal; that is,
(Φ⊤

p Φp) = diag(σ2
1, σ

2
2, ..., σ

2
d), with σ

2
j > 0. Unlike with ℓ2 balancing, this is no longer without

loss of generality.
For diagonal covariance, we first show that ℓ∞ balancing has a closed form: it is equivalent

to applying a soft-thresholding operator to the feature shift from Φp to Φq. We then write the

resulting augmented estimator as applying coefficients β̂ℓ∞ to Φq and show that β̂ℓ∞ is a sparse,
element-wise convex combination of the base learner coefficients and OLS coefficients. When
the outcome model is also fit via the lasso, we use the resulting representation to demonstrate
a familiar “double selection” phenomenon [26], where β̂ℓ∞ inherits the non-zero coefficients of
both the base learner and the weighting model. This is a form of undersmoothing in the ℓ0
“norm,” in the sense that β̂ℓ∞ always has at least as many non-zero coefficients as the base
learner, β̂reg.

Weighting alone

We first define the soft-thresholding operator and show that the ℓ∞ balancing problem has a
closed form solution.

Definition (Soft-thresholding operator). For t > 0, define the soft-thresholding operator,

Tt(z) :=


0 if |z| < t

z − t if z > t

z + t if z < −t
.

Proposition 4.5.1 (ℓ∞ Balancing). If Φ⊤
p Φp is diagonal, the solution wδ

ℓ∞
to the ℓ∞ opti-

mization problem (B.3) is:

1
n
wδ

ℓ∞ = Φp(Φ
⊤
p Φp)

−1
[
Φp + Tδ(Φq − Φp)

]
= Φp(Φ

⊤
p Φp)

−1
[
Φp + Tδ(∆)

]
where ∆ = Φq − Φp, where we include Φp (equal to 0 by assumption) to emphasize the

dependence on feature shift, and with corresponding reweighted features, Φ̂δ
q = Φp+Tδ(Φq−Φp).
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For intuition, compare the (un-augmented) ℓ∞ balancing weights estimator to the lasso-
based coefficient estimates [125]:

Ê[wδ
ℓ∞ ◦ Yp] = Tδ(Φq)

⊤β̂ols

Ê[Φqβ̂
λ
lasso] = Φ⊤

q Tλ(β̂ols),

where we simplify Φ̂δ
q here to emphasize the connections between the methods. Whereas lasso

performs soft-thresholding on the OLS coefficients (regularizing the outcome regression), ℓ∞
balancing performs soft-thresholding on the implied feature shift to the target features.

General linear outcome model

We can then plug the closed-form solution for the weights into Proposition 4.3.2.

Proposition 4.5.2. Let ŵδ
ℓ∞

be defined as above. Then the augmented ℓ∞ balancing weights

estimator with outcome model fit β̂λ
reg ∈ Rd has the form,

Ê[Φqβ̂
λ
reg] + Ê[ŵδ

ℓ∞(Yp − Φpβ̂
λ
reg)] = Ê[Φqβ̂ℓ∞ ],

where the jth coefficient of β̂ℓ∞ equals:

β̂ℓ∞,j =

β̂
λ
reg,j if |∆j| < δ∣∣∣ δ
∆j

∣∣∣ β̂λ
reg,j +

(
1−

∣∣∣ δ
∆j

∣∣∣) β̂ols,j otherwise
,

where ∆j = Φq,j − Φp,j.

The augmented coefficients β̂ℓ∞ are an element-wise convex combination of β̂λ
reg and β̂ols.

For features where the mean feature shift ∆j is small (relative to δ), β̂ℓ∞ is equivalent to the

base learner coefficient β̂λ
reg. The remaining coefficients are interpolated linearly toward the

β̂ols coefficients.
Figure 4.2 summarizes these results and their implications for the augmented estimator.

As with Figure 4.1, we generate simple simulated data with d = 10. In the left panel, we
plot the coefficients from lasso regression of Yp on Φp as a function of the lasso regularization
parameter. The regularization path begins with the black dots, which represent the OLS
coefficients. Each lasso coefficient (represented by a colored line) then shrinks linearly to
exactly zero, due to the soft-thresholding operator. The middle panel plots the reweighted
covariates using ℓ∞ balancing weights between Φp and Φq solved in the constrained form. The
black dots represent Φq, corresponding to exact balance. Then as the weight regularization
parameter increases, the reweighted covariates shrink linearly to exactly zero, just as in
lasso. The right panel plots coefficients for the augmented estimator that combines a baseline
outcome model fit β̂λ

reg with ℓ∞ balancing weights. The lines correspond to β̂ℓ∞ as defined
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(a) Outcome model (b) Weighting model (c) Augmented model

Figure 4.2: Regularization paths for “double lasso” augmented ℓ∞ balancing weights. Panel
(a) shows the coefficients β̂λ

reg of a lasso regression of Yp on Φp with hyperparameter λ. The
black dots on the left are the OLS coefficients, with λ = 0. The red dots at λ = 0.2 illustrate
the coefficients at a plausible hyperparameter value, β̂0.2

reg. Panel (b) shows re-weighted

covariates, Φ̂δ
q, for the ℓ∞ balancing weights problem with hyperparameter δ; the black dots

show exact balance, which corresponds to OLS. As δ increases, the weights converge to
uniform weights and Φ̂δ

q converges to Φp, which we have centered at zero. Panel (c) shows

the augmented coefficients, β̂ℓ∞ as a function of the weight regularization parameter δ. The
black dots on the left are the OLS coefficients. As δ → ∞, the coefficients converge to
β̂0.2
reg. All three regularization paths show the typical lasso “soft thresholding” behavior. The

regularization path for the augmented estimator also shows “double selection” behavior.

in Proposition 4.5.2. The regularization path begins at the black dots, where β̂ℓ∞ = β̂ols,
and eventually converges to β̂λ

reg, showing the usual soft-thresholding behavior. The order

at which the coefficients go to zero reflects the size of Φq, because the regularization path
depends on the weight coefficients from the middle panel. Thus, the augmented estimator
shrinks β̂ols toward β̂

λ
reg but via a soft-thresholding operator applied to the feature shift, ∆j.

Lasso outcome model

In the case where β̂λ
reg is itself fit via lasso, as studied in [55], then we recover a familiar

double selection phenomenon [26].

Proposition 4.5.3 (Double Selection). Let β̂λ
lasso denote the coefficients of lasso regression of

Yp on Φp with regularization parameter λ. Denote the indices of the non-zero coefficients as
Iλ. Let ŵδ

ℓ∞
be ℓ∞ balancing weights with parameter δ as in Proposition 4.5.1. Let Iδ denote

the non-zero entries of the reweighted covariates Φ̂q. Assume that β̂ols is dense. Then the

indices of the non-zero entries of the augmented coefficients β̂ℓ∞ are Iaug = Iλ ∪ Iδ.

The lasso coefficients have a sparsity pattern generated by soft-thresholding the OLS
coefficients. The augmented estimator then shrinks from OLS toward β̂λ

reg by soft-thresholding
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the implied feature shift to the target features. As a result, wherever the lasso coefficients
are non-zero or the weight coefficients are non-zero, the final augmented coefficients are
also non-zero. The “included coefficients” for the final estimator are then the union of the
coefficients included in either individual model. Therefore, augmenting a lasso outcome model
with ℓ∞ balancing also exhibits a form of undersmoothing in the ℓ0 “norm”, ∥β̂ℓ∞∥0, in the
sense that there are always at least as many non-zero coefficients as for the unaugmented
lasso outcome model. However, this will not correspond to undersmoothing the base learner
in the traditional sense, because in general there will not exist a lasso hyperparameter λ that
will produce sparsity pattern Iaug.

As noted by, for example, [295], the double selection estimator may suffer from imprecision
due to adjustment for covariates that are associated with treatment but not outcome. One
could in principle remove covariates that are only predictive of the treatment, but this can
jeopardize statistical inference. We refer to [207] for a discussion on navigating this trade-off.

4.6 Kernel Ridge Regression: Asymptotic and Finite

Sample Analysis

The results above are numerical : they hold without any statistical or causal assumptions.
However, the connection between augmented estimators and outcome models also presents
statistical insights that we discuss here. In particular, we leverage the numerical result that
double (kernel) ridge regression — which uses ridge regression for fitting both the outcome
and weighting models — is equivalent to a single, undersmoothed outcome ridge regression
plug-in estimator.

First, we consider an asymptotic analysis in Section 4.6: we use this equivalence to make
explicit the connection between asymptotic results for augmented balancing weights with
kernel ridge regression and prior results on optimal undersmoothing of a kernel ridge plug-in
estimator. As a result, optimally undersmoothed kernel ridge regression inherits whatever
guarantees can be proven for augmented ridge regression. An implication is that we can
generalize the insight from [245] that OLS is doubly robust to a wider class of non-parametric
estimators. This equivalence also suggests an appropriate hyperparameter scheme when the
outcome regression is an element of an RKHS.

Second, we consider a finite sample analysis in Section 4.6: we use this equivalence to
derive the finite-sample design-conditional mean squared error of augmented kernel ridge
regression. We then use this expression to characterize finite-sample-optimal hyperparameter
tuning. We turn to hyperparameter tuning in practice in the next section.

Asymptotic Results

We now use our results in Proposition 4.4.3 to make explicit the connection between two
otherwise distinct sets of asymptotic results. First, [312] and [278] argue that double kernel
ridge regression can deliver

√
n-consistent estimation of functionals in certain scenarios.
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[312] also proposes an optimally undersmoothed ℓ2 balancing weights estimator. Separately,
[130] and [209] propose optimally undersmoothed (single) kernel ridge outcome regression.
Since, as we have shown in Proposition 4.4.3 (see also Remark 2), these three procedures
are equivalent, we can connect these results and show that plug-in estimators based on
optimally undersmoothed kernel ridge regression or ℓ2 balancing weights can be

√
n-consistent.

Moveover, results on RKHSs suggest a simple heuristic for hyperparameter choice. We give
the high-level argument here and defer additional technical details to Appendix B.5.

To move from numerical results to statistical results, we must place some constraints
on the data generating process. Assume that we observe n iid samples of (xi, yi, zi) from
p. Define K ∈ Rn×n to be the kernel matrix with i, j-th entry Kij = k((xi, zi), (xj, zj)). Let
σ2
j denote the eigenvalues of K. We assume that σ2

j = σ2 > 0 is constant for all j; we can
relax this at the cost of additional complexity. The “single” kernel ridge regression outcome
regression estimator with parameter λ has coefficient estimates:

β̂λ
ridge = (K + λI)−1y.

Applying Proposition 4.4.3, the augmented “double kernel ridge” estimator with hyperpa-
rameter δ is equivalent to a plug-in estimate for a new kernel ridge model:

β̂aug = (K + γI)−1y, with γ =
λδ

σ2 + λ+ δ
.

For statistical guarantees, we must typically allow the hyperparameters to change with n; let
γn, λn and δn then denote sequences of hyperparameters. In the doubly robust framework, one
can choose λn and δn in a way that is MSE-optimal for prediction purposes whilst ensuring
that the bias of the augmented estimator is small. For two functions of n, fn and gn, let
fn ≍ gn denote that fn = O(gn) and gn = O(fn). Then due to special properties of RKHS
geometry, it follows that δn can be of the same order as λn, that is δn ≍ λn [281, Theorem
5.2]. In the next section, we consider setting δ = λ for hyperparameter tuning in practice; our
Proposition 4.4.3 then implies that γn ≍ λ2n. We note more generally that Proposition 4.4.3
implies that γn ≍ λnδn.

There are two important cases to consider. When the RKHS is finite dimensional, the
choice λn = δn = n−1/2 is optimal for controlling the prediction error for both the outcome
and weighting models [48, 281]. The augmented estimator is then equivalent to a single ridge
regression with hyperparameter γn ≍ n−1, which matches the rate of [130, 209]. Hence, this
approach will always undersmooth relative to the MSE-optimal hyperparameter for a single
ridge regression.

When the RKHS is infinite-dimensional, we find that the undersmoothed hyperparameter
implied by the augmented procedure can take on a range of asymptotic rates, both faster
and slower than n−1, depending on effective dimension and smoothness; we give concrete
examples in the Appendix. This somewhat contrasts with the results in [130, 209]. In this
sense, Proposition 4.4.3 generalizes the standard undersmoothing arguments, which typically
change the regularization schedule from n−1/2 to n−1.
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Remark 4.6.1 (Single-model double robustness). Another interesting implication of the
equivalence of these two procedures is that the single kernel ridge procedure is doubly robust,
much the same way OLS is. Because estimating the coefficients from an OLS regression of Y
onto features of (Z,X) is equivalent to a balancing weights or an IPW estimator based on a
model for the inverse weights that is linear in the same features, this procedure is consistent
whenever either the weights or the outcome model is truly linear–that is, whenever either of
these two linear models is correctly specified [245]. Similarly, the single kernel ridge procedure
is doubly robust in that it is consistent if either the true outcome regression or the inverse
propensity score is consistently estimated. However, valid inference in the case where the
inverse weight model but not the outcome model is truly linear will typically require different
tuning parameter selection.

Finite Sample Mean-Squared Error

We now use our numerical equivalences to write out the exact finite-sample mean squared
error of the augmented kernel ridge estimator: by re-writing the augmented balancing weights
estimator as a single outcome model, we can immediately leverage existing results from [83].

Following their setup, we define the diagonal matrix Σ̂ := 1
n
ΦT

pΦp; if Σ̂ is not diagonal,
we can apply a rotation (without loss of generality). We consider ridge regression with
rescaled hyperparameter λ and solution (Σ̂ + λI)−1ΦpYp/n; this is equivalent to standard
ridge regression above with hyperparameter nλ, and also accommodates kernel ridge regression
with appropriate choice of Φp. Assume that Yp = Φpβ0 + ϵ with β0 ∈ Rd, and where ϵ ∈ Rn

are iid with mean zero and variance σ2. Then the exact, design-conditional, squared bias and
variance of the ridge regression prediction applied to a new iid sample (Φnew, Ynew) ∼ p are:

B2
p(λ) = λ2βT

0 (Σ̂ + λI)−1E[ΦT
pΦp](Σ̂ + λI)−1β0

Vp(λ) =
σ2

n
tr
[
Σ̂(Σ̂ + λI)−1E[ΦT

pΦp](Σ̂ + λI)−1
]
.

Applying Proposition 4.4.3, we can simlarly derive the squared bias and variance of an
augmented ridge estimator for our linear functional estimand; we denote these quantities B2

q

and Vq respectively. We express the bias and variance in terms of the two hyperparameters,
λ and δ:

Proposition 4.6.1. Let σ2
j denote the eigenvalues of Σ̂ and define Γλ,δ to be the diagonal

matrix with non-zero entries γj :=
δλ

σ2
j+δ+λ

. Then,

B2
q (λ, δ) = βT

0 (Σ̂ + Γλ,δ)
−1Γλ,δE[Φq]

TE[Φq]Γλ,δ(Σ̂ + Γλ,δ)
−1β0

Vq(λ, δ) =
σ2

n
tr
[
Σ̂(Σ̂ + Γλ,δ)

−1E[Φq]
TE[Φq](Σ̂ + Γλ,δ)

−1
]
.

In the next section, we compare — numerically and via simulation — existing hyper-
parameter selection schemes to the optimal trade-off between B2

q and Vq. However, first
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we note that the analysis above opens up exciting new avenues for both theoretical and
methodological work. One could theoretically analyze the mean squared error to understand
how the optimal δ scales with the problem parameters; for example, by using proportionate
asymptotics from random matrix theory as in the high-dimensional ridge regression literature
[124]. Second, our analysis here suggests a novel, more complex hyperparameter selection
scheme based directly on the finite sample analysis. We leave this to future work.

4.7 Numerical illustrations and hyperparameter tuning

This section illustrates our results in practice. We first explore hyperparameter tuning
for double ridge regression, comparing practical methods to the optimal hyperparameter
computed using our results from Proposition 4.6.1. Following our asymptotic results in
4.6, we recommend equating the weighting and outcome model hyperparameters in practice.
We then apply both double ridge and lasso-augmented ℓ∞-balancing to two versions of the
canonical [184] application. An important theme throughout is that some approaches for
hyperparameter selection frequently lead to δ = 0, which collapses the augmented estimate
to OLS alone — even in settings where this is far from optimal. Overall, we take this as a
warning that existing hyperparameter tuning schemes can be potentially misleading when
applied naively.

Hyperparameter tuning for ridge-augmented ℓ2 balancing

We begin with practical hyperparameter tuning for the special case of double ridge, building
on the MSE expression in Section 4.6. There is an active literature on selecting hyperparam-
eters for augmented balancing weights estimators and double machine learning estimators
more broadly [152, 310, 30, 19]. We contribute to this literature by comparing practical
hyperparameter tuning schemes with an oracle hyperparameter tuning scheme based on
Proposition 4.6.1.

Reflecting empirical practice, we focus here on choosing hyperparameters sequentially: we
first select the outcome model hyperparameter λ (e.g. by cross-validation) and then select
the weighting model hyperparameter δ. Ultimately, we find strong performance for both CV
imbalance and CV outcome hyperparameters, as defined below. We especially recommend
the latter as a reasonable starting point in practice. In additional to theoretical support from
our asymptotic analysis, the outcome model hyperparameter scheme does not require any
additional algorithm or code after having fit the initial outcome model.

Oracle and practical hyperparameter tuning

Oracle hyperparameter. To compute oracle hyperparameters, we first compute the
prediction-MSE-optimal λ using the standard ridge regression MSE expression, and then
we use Proposition 4.6.1 to compute the corresponding optimal δ for the linear functional
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estimand:

λ∗ := argmaxλ{B2
p(λ) + Vp(λ)}

δ∗ := argmaxδ{B2
q (λ

∗, δ) + Vq(λ
∗, δ)}.

While there is not a closed form for δ∗, we can nonetheless directly compute this optimal
hyperparameter and characterize its behavior under a range of scenarios. We draw several
conclusions about optimal δ∗ for a wide range of DGPs of the form Yp = Φpβ0 + ϵ. First,
δ∗ is generally increasing in the noise, σ2: larger σ2 typically implies larger δ∗. Second, δ∗

generally depends on the target mean, E[Φq]; that is, two DGPs that are identical except
for E[Φq] can have different values of δ∗. The optimal hyperparameter, however, does not
depend on the magnitude of the shift in the target mean: replacing E[Φq] with cE[Φq] for
c ̸= 0, scales both the bias and variance by c2, leaving δ∗ unchanged.

Practical hyperparameter. We compare the oracle hyperparameter with three imple-
mentable practical proposals. In all cases, we first pick λ by cross-validating the mean squared
error of a ridge outcome model.

• CV imbalance. Choose δ by cross-validating the estimated imbalance, ∥ 1
n
ŵΦp − Φ̄q∥22 ,

adapting a proposal from [310].

• CV Riesz loss. Choose δ by cross-validating the Riesz loss in Equation (4.6), adapting
a proposal from [55]; this is the dual form of cross-validating the estimated imbalance.

• CV outcome. Choose δ to be equal to the cross-validated ridge outcome λ, as inspired
by the asymptotic theory in [281].

Before presenting simulation results, we provide a preliminary analytic discussion, com-
paring these practical schemes to the behavior of the oracle δ∗. For the first two proposals:
just like the oracle, both depend on the target mean E[Φq] and are invariant to re-scaling.
However, these two approaches are mechanically independent of the outcomes Yp, unlike the
oracle δ∗ which, in general, depends on the variance of the outcomes. On the other hand, the
last proposal depends on the outcomes Yp but is mechanically independent of E[Φq].

This suggests that any one of these tuning parameter approaches cannot perform well across
all DGPs. In future work, if we pursue a theoretical analysis of the oracle hyperparameter,
e.g. in a proportionate asymptotics framework, we may be able predict when either the
outcomes or the covariate shift is more important. In this work we begin by demonstrating
that no one tuning scheme does uniformly best in simulations.

Simulation study

To assess the behavior of these hyperparameter tuning schemes, we conduct an extensive
simulation study using 36 distinct data-generating processes, 30 synthetic and 6 semi-synthetic;
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# of DGPs Relative MSE
Method Best Worst Median Best Worst Prop.(δ = 0)

CV Outcome 10 3 0.58 0.097 2× 105 0
CV Imbalance 25 2 0.39 0.001 2× 105 0
CV Riesz Loss 1 31 3,454 0.23 3× 107 0.56

Table 4.1: Mean-squared error (relative to the oracle) for four hyperparameter selection
methods for double ridge regression from a numerical investigation of 36 data generating
processes (30 synthetic and 6 semi-synthetic). The final column is the proportion of draws
where the hyperparameter δ = 0.

see Appendix B.3 for a detailed discussion. For each DGP, we directly compute the oracle
hyperparameter using the results in Section 4.6. We then compute values from the three
practical hyperparameter tuning methods discussed above. The mean squared error that we
consider is design-conditional, and so we draw samples of the covariates for each DGP only
once.

Table 4.1 presents a summary of the MSE for the three methods across the 36 DGPs.
Overall, we find that the CV outcome approach of choosing δ = λ and the CV imbalance
approach both perform well in practice: these two achieve the lowest MSE in 35 of the 36
DGPs, with CV imbalance performing slightly better on average. By contrast, selecting δ via
CV for the Riesz loss has numerical stability problems that compromises performance. The
performance for the outcome and balance approaches, on the other hand, seem to degrade
gracefully and rarely perform catastrophically. Taken together, these preliminary findings
suggest researchers should begin with these two tuning methods as defaults.

Recovering the OLS point estimate. As we discuss above (see, e.g., Figure 4.1), when
δ = 0 the point estimate for the augmented balancing weights estimator is numerically
identical to the OLS point estimate. Thus, when a hyperparameter tuning procedure chooses
δ = 0 in practice, researchers are simply estimating the equivalent of OLS — even if they
are unaware they are doing so. This is especially problematic in settings where OLS is far
from optimal [though see 174, 124, for counterexamples]. In our synthetic and semi-synthetic
DGPs, δ = 0 is never optimal, and is usually associated with a very large error driven by
extreme variance. Thus the fact that hyperparameter tuning procedures can return δ = 0 in
these DGPs represents a pathological case.

In our simulation study, we find that, when cross validating the Riesz loss, over half of
all draws returned δ = 0. By contrast, none of the other methods returned δ = 0 in the
synthetic DGPs, though, as we discuss below, we do observe exact zeros for δ occasionally
when cross-validating imbalance in the standard LaLonde dataset. This further highlights
the numeric instability of hyperparameter tuning via CV for the Riesz loss, at least in the
settings we consider here. We further suggest that in these cases, practitioners assess the
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sensitivity of the δ = 0 results to the particular tuning procedure used or to the random
choice of cross-validation splits.

Application to LaLonde 1986

We now illustrate our equivalence and hyperparameter tuning results on real-world datasets.
Following [55], we focus on the canonical [184] data set evaluating a job training program in
the National Supported Work (NSW) Demonstration. The primary outcome of interest is
annual earnings in 1978 dollars.

For these illustrations, we estimate the Average Treatment Effect on the Treated (ATT),
E[Y (1)− Y (0) | Z = 1]. We recover the missing conditional mean E[Y (0) | Z = 1] using the
setup from Example 3 in Appendix B.1, where the source and target populations are the
control and treated units respectively. Thus Φp and Φq correspond to the feature expansion
ϕ(X) applied to the covariates in the control group and treated group respectively. We
consider two different features expansions of the original covariates: (1) a “short” set of 11
covariates used in [77];1 and (2) an expanded, “long” set of 171 interacted features used in
[91].

Our goal is to explicate how augmented estimators under different hyperparameter tuning
schemes undersmooth in practice in both low and high-dimensional settings. In some cases,
the augmented estimator collapses to exactly OLS as we document above.

High-dimensional setting

Following [55], we first consider the expanded set of 171 features for [184] used in [91].
Figure 4.3 shows estimates for ridge-augmented ℓ2 balancing (top row) and lasso-augmented
ℓ∞ balancing (bottom row). The left two panels of each row show the cross-validation curves
for the outcome regression and balancing weights, respectively. The right panels show the
point estimate as a function of the weighting hyperparamter δ, holding the outcome model
hyperparameter λ fixed; the black triangle represents the OLS plug-in point estimate. For
context, the corresponding experimental estimate is $1,794 [see 77]. The green and red dotted
lines correspond to hyperparameters chosen by cross-validating balance and the Riesz loss,
respectively. For the double ridge estimate, the purple line corresponds to δ = λ̂, the outcome
hyperparameter selected via cross validation.

Figure 4.3 highlights that both the imbalance and the point estimate are highly nonlinear
close to zero. Thus, even small departures from OLS (at δ = 0) lead to large changes in the
point estimate. We can also assess the sensitivity of the point estimate to the hyperparameter
selection scheme. In this case, choosing δ via CV balance leads to meaningfully larger choices
than via other methods.

Finally, the selected δ is always strictly greater than zero for this high-dimensional dataset.
However, we find this is sensitive to small perturbations in the problem parameters. For

1These are: age, years of education, Black indicator, Hispanic indicator, married indicator, 1974 earnings,
1975 earnings, age squared, years of education squared, 1974 earnings squared, and 1975 earnings squared.
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example, when we perturb E[Φq] by adding a small value to all the even elements, then the
cross-validated ℓ2 Riesz loss chooses δ = 0 in 38% of draws of the cross-validation splits. As
suggested by our simulation results, this is likely to result in extremely large mean squared
error.

(a) Ridge outcome model (b) ℓ2 balancing
(c) Estimate from “double
ridge”

(d) Lasso outcome model (e) ℓ∞ balancing
(f) Estimate from “double
lasso”

Figure 4.3: Augmented balancing weights estimates for the [184] data set with the expanded
set of 171 features used in [91]; the top row shows ridge-augmented ℓ2 balancing, and the
bottom row shows lasso-augmented ℓ∞ balancing. Panels (a) and (d) show the 3-fold cross-
validated R2 for the ridge- and lasso-penalized regression of Yp on Φp among control units
across the hyperparameter λ; the purple dotted lines show the CV-optimal value for each.
Panel (b) and (e) show the 3-fold cross-validated imbalance for ℓ2 and ℓ∞ balancing weights
across the hyperparameter δ; the green dotted lines show the CV-optimal value for each.
Panels (c) and (f) show the point estimates for the augmented estimators across the weighting
hyperparameter δ; the black triangles correspond to the OLS point estimate; the green and red
dotted lines correspond to the cross-validated balance and Riesz loss respectively; the purple
line corresponds to the cross-validated ridge hyperparameter (for δ = λ̂). The variance-based
hyperparameter for ridge is σ̂2/n2 = 104.8 and for lasso is 137.5. The corresponding point
estimates are 1923.6 and 725.8 respectively, essentially equal to the plug-in outcome model
estimates.
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(a) Ridge outcome model (b) ℓ2 balancing (c) Augmented estimate

Figure 4.4: Ridge-augmented ℓ2 balancing weights (“double ridge”) for [184] with the original
11 covariates. Panel (a) shows the 3-fold cross-validated R2 for the Ridge-penalized regression
of Yp on Φp among control units across the hyperparameter λ; the purple dotted line shows the

CV-optimal value, λ̂. Panel (b) shows the 3-fold cross-validated imbalance for ℓ2 balancing
weights across the hyperparameter δ; the green dotted line shows the CV-optimal value,
which is δ = 0 or exact balance. Panel (c) shows the point estimate for the augmented
estimator across the weighting hyperparameter δ; the black triangle corresponds to the OLS
point estimate, the green dotted line corresponds to cross-validated balance, the red dotted
line corresponds to cross-validated Riesz loss, and the purple dotted line corresponds to the
ridge outcome hyperparameter.

Low-dimensional setting: Recovering OLS

Finally, we apply double ridge to the “short” version of the [184] data set with 11 features.
Figure 4.4 shows the cross-validation curves for the outcome and weighting models, as well
as the point estimate as a function of the balance hyperparameter, with the OLS estimate
given by the black triangle. As above, the green, red, and purple dotted lines correspond
to hyperparameters chosen by cross-validating balance, cross-validating the Riesz loss, and
choosing δ = λ respectively.

Unlike for the “long” dataset in Figure 4.3, Figure 4.4 does not display quite as stark
nonlinearity around zero. Importantly, however, setting δ by cross-validating imbalance or the
Riesz loss yields δ = 0 (up to numerical imprecision), which reduces the augmented estimator
to exactly the estimate from a simple OLS regression — even though the base learner ridge
outcome model is heavily regularized. By contrast, our preferred hyperparameter tuning
scheme of choosing δ = λ results in an estimate that is roughly $400 dollars smaller than the
OLS estimate.
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4.8 Discussion

We have shown that augmenting a plug-in regression estimator with linear balancing weights
results in a new plug-in estimator with coefficients that are shrunk towards — in some cases
all the way to — the estimates from OLS fit on the same observations. We generalize this
equivalence for different choices of outcome and weighting regressions. In the asymptotic
setting, we draw the explicit connection between augmented estimators and undersmoothing
for the special case of kernel ridge regression. Then we derive the design-conditional finite
sample MSE for the double ridge estimator, and use it to solve numerically for oracle
hyperparameters. We compare the oracle hyperparameters with three practical tuning
schemes and then illustrate our results on the canonical LaLonde data set.

There are many promising avenues for future research. The fundamental connection
between doubly robust estimation and undersmoothing opens up several theory directions.
While we focus on the special case of kernel ridge regression in Section 4.6, we anticipate
that these connections will hold more broadly. Similarly, while our focus in this paper has
been on interpreting balancing weights as a form of linear regression, the converse is also
valid: we could instead focus on how many outcome regression-based plug-in estimators are,
in fact, a form of balancing weights; see [191] for connections between outcome modeling and
density ratio estimation.

We also anticipate that the MSE we derive in Section 4.6 is a starting place for future
theoretical analysis that can inform practice. We demonstrate in our simulation study that
existing hyperparameter selection methods cannot perform uniformly well over all DGPs.
We expect that analyzing the optimal hyperparameters, for example in a proportionate
asymptotics regime, can either help devise new tuning schemes or inform which tuning
method will work best on the dataset at hand.

We conjecture that these results may provide new insights into the estimation of causal
effects in the proximal causal inference framework [297]. This framework uses proxy variables
to identify causal effects in the presence of unmeasured confounding. Estimation has been
complicated by the fact that, in the absence of strong parametic assumptions, estimators
of proximal causal effects are solutions to ill-posed Fredholm integral equations. [107] and
[153] recently proposed tractable nonparametric estimators in this setting. They use an
“adversarial” version of double kernel ridge regression — allowing the weighting and outcome
models to have different bases — to estimate the solution to the required Fredholm integral
equations. Our results apply immediately to standard augmented estimators with different
bases for the outcome and weighting models, either via a union basis [55] or by applying
an appropriate projection as in [131], and extending these results to proximal causal effect
estimators might help in constructing new proximal balancing weights, matching, or regression
estimators with attractive asymptotic properties.

Finally, many common panel data estimators are forms of augmented balancing weight
estimation [1, 28, 12]. We plan to use the numeric results here to better understand connections
between methods and to inform inference.



68

Part III

Causal Inference with Unobserved
Confounders



69

Chapter 5

Dynamic Sensitivity Analysis: The
Tabular Case

In this part, we discuss the setting where we cannot observe all relevant confounding variables.
The existence of these unobserved confounders make identifying the exact causal effect
impossible and instead we will perform sensitivity analysis. We parameterize the strength
of unobserved confounding, and this solve an optimization problem to get upper and lower
bounds on the causal effect.

Notably in this section we turn to dynamic causal effects. We are interested in intervening
in a system that evolves over time, and get upper and lower bounds on the causal effect on
outcomes of interest at many time steps into the future. To do this, we change our formalism
and turn to the language of reinforcement learning. While we will not explicitly refer to
potential outcomes, our counterfactuals are now give in terms of different policies running in
a Markov decision process. However, all of the key objects — like the density ratio — are the
same as they were above. In Chapter 5, we consider the tabular case (with discrete actions
and covariates), and in Chapter 6 we extend our results to the full continuous case with
machine learning function approximation.
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5.1 Introduction

Due to cost, feasibility, or safety concerns, practitioners often need to evaluate a sequential
decision-making strategy using only previously-collected observational data. In reinforcement
learning (RL), this problem is called off-policy policy evaluation (OPE). When the policy
used to collect the data is unknown, there might exist unobserved variables correlated with
both the policy and the outcomes. In this case, the causal effect of future interventions is
unidentified and naive estimates for a new policy will be biased.

What kind of so-called unobserved confounders arise in Markov decision processes (MDPs)?
Unobserved variables of interest in a medical setting are almost always highly persistent. For
example, consider electronic medical records that do not document socio-economic status.
A patient’s socio-economic status is unlikely to change between visits to the hospital. In
macroeconomics on the other hand, unobserved shocks are often assumed to be drawn iid
every period. Consider the Federal Reserve Board adjusting monetary policy in response to
oil price shocks. Events like earthquakes in oil fields might reasonably be assumed to occur
independently across quarters.

Recent work develops OPE methods that are robust to unobserved confounding [214,
158]. Given an observational data set and a hypothetical confounder, these methods adapt
importance sampling approaches to calculate worst-case estimates for the value of a new
policy. A practitioner can assess the sensitivity of their results to unobserved variables by
increasing the strength of confounding and computing how quickly the worst-case bounds
degrade.

However, the existing literature arrives at radically different conclusions. [158] - henceforth
KZ - finds that it is possible to efficiently construct non-conservative bounds in the infinite
horizon setting. On the other hand, [214] - henceforth NKYB - only finds non-trivial bounds
when confounding is restricted to a single time step. Furthermore, both approaches find the
finite horizon case with confounding at each step to be computationally intractable.

The natural questions are: 1) what is responsible for the substantial gap between the
conservativeness of the existing bounds? and 2) how can we compute tractable lower bounds
for the finite horizon case?

Summary of our Results:
We identify a key assumption under which it is possible to obtain sharp lower bounds on

the expected value in a confounded MDP, even as the horizon grows. When the unobserved
confounding variables are drawn iid each period, the marginal dynamics over the observed
state themselves form an MDP. In this case, OPE methods can be applied to the marginal
MDP after appropriate adjustments for confounding. Such an assumption is made in KZ.

But if the unobserved state might be persistent over time, the problem is a genuine
partially-observed MDP (POMDP). Marginal transition probabilities for the observed state
will not be Markovian in general. Medical applications, which frequently feature persistent
unobserved variables, fall under this category. As a result, existing bounds that target this
setting, such as NKYB, are more conservative. In this paper, we focus on the case where the
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marginal problem is an MDP and demonstrate enormous performance differences compared
to setting with persistent unobservables.

We derive an expression for the bias of common estimands under confounding in the
marginal MDP setting. We show how to express OPE “direct methods” in this form. Then
we demonstrate how to adapt direct methods to give worst-case bounds in the finite horizon
case. Our method is sufficiently generic that any approach which regresses a function against
states and actions can be plugged into our framework to get bounds.

Finally, we show that model-based OPE methods provide sharper lower bounds on the
value function. We can compute these bounds in a computationally efficient way by combining
techniques from the robust MDP literature with sensitivity models from causal inference. A
model-based approach provides a natural way for domain experts to provide guidance on
reasonable limits for the strength of confounding on outcomes. We evaluate our methods
with existing OPE benchmarks.

5.2 Related Work

Off-policy evaluation There are several classes of popular OPE algorithms. [306] provides
a summary and empirically compares their performance. These classes include: importance
sampling (IS) [236, 122], model-free direct methods like Fitted Q-Evaluation [186], model-
based methods [229, 110], and hybrid methods [300, 145, 156]. [306] shows that, typically,
either simple methods like FQE or hybrid methods have the best performance in practice.

Recently, a variety of marginalized importance sampling (MIS) methods [192, 302, 211]
have been developed, which have the potential to solve the poor empirical performance of
standard IS. This approach is adopted by KZ.

Causal inference and sensitivity analysis
Estimating the causal effect of a treatment on some outcome is the object of study in

causal inference [128, 138, 234]. The line of work on dynamic treatment regimes [210, 181]
is the most relevant to RL. Work in this area frequently assumes an unconfoundedness
condition, which guarantees that the causal effect of a treatment is identified. For example,
unconfoundedness will hold if the data come from a randomized control trial.

If unconfoundedness might be violated, then a researcher can assess the robustness of
their causal estimates via sensitivity analysis [253, 97]. In recent work, [315, 155] give bounds
for treatment effects subject to a sensitivity model. Other work develops bounds for the
effectiveness of a single-step policy in the presence of unobserved confounders [159, 150].

Off-policy evaluation with unobserved confounders
Besides NKYB and KZ, most work in RL with unobserved confounders assumes that the

causal effects are identified, i.e. assumptions are made about latent structure such that the
true effect of interest can be recovered [32, 224]. For POMDPs, [299] analyze the bias for
importance sampling in the presence of confounders, and give some conditions under which
this bias can be corrected.
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5.3 Problem Setting and Notation

Markov Decision Processes

Let (X ,A, P, R, χ, γ) be an Markov decision process (MDP) where X is the set of states
and A is the set of actions, which we assume are finite. Let P(S) denote all probability
distributions on a set S. P : X ×A → P(X ) is the transition function, R : X ×A×X → R is
the reward function, χ ∈ P(X ) is the initial state distribution, and γ ∈ [0, 1) is the discount
factor. A (stationary) policy π : X → P(A) assigns probabilities to each action given a state.
We are interested in the expected value of policy π:

V π
T = E

[
T−1∑
t=0

γtrt

]
,

where x0 ∼ χ, at ∼ π(·|xt), xt+1 ∼ P (·|xt, at), rt = R(xt, at, xt+1) and T ≤ ∞.

Confounded Off-policy Evaluation

In this paper, we consider MDPs with unobserved confounding variables. Specifically, we
assume the state space is partitioned into observed state X and unobserved state U . The
full-information MDP is (X × U ,A, P, R, χ, γ).

In the confounded off-policy evaluation problem, we have access to a dataset Dπb
=

{τi}Nn=1, collected according to a stationary behavior policy, πb : X × U → P(A). Each
τi = {(xit, ait, xit+1, r

i
t)}T−1

t=0 denotes an observed trajectory where (x0, u0) ∼ χ, at ∼ πb(·|xt, ut),
(xt+1, ut+1) ∼ P (·|xt, ut, at), and rt = R(xt, at, xt+1). Note that while R is only a function of
the observed state, it can still rely on ut via xt+1.

Our goal is to estimate the expected return V πe
T for a stationary evaluation policy,

πe : X → P(A), which does not depend on the unobserved state.

5.4 Two Types of Unobserved State

We begin by making a distinction between unobserved states that are dependent over time,
and unobserved states that are drawn iid each time step.

Assumption 1 (IID Confounders). The unobserved state ut is drawn iid for all t ≥ 0
and therefore the transition dynamics can be factored as:

P (x′, u′|x, u, a) = P (x′|x, u, a)p(u′)

This corresponds to the “memoryless” unobserved confounding assumption in KZ. Under
Assumption 1, the marginal observed state transition probabilities are Markovian:

P (x′|x, a) =
∑
u∈U

p(u)P (x′|x, u, a)
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and the value of evaluation policy πe in the true MDP is equal to the value of πe in the
marginal MDP, (X ,A, P, R, χ, γ), where we abuse notation slightly to let P and χ denote
the corresponding marginal quantities over the observed state.

While we have reduced the problem to finding the value of πe in the marginal MDP, this
value is not identified given the dataset Dπb

because the unobserved state u affects both
the choice of action πb(a|x, u) and the transitions P (x′|x, u, a). For example, any dataset
collected under policy πb will be consistent with a set of many possible marginal transition
probabilities P (x′|x, a). However, standard OPE algorithms for MDPs can be adapted to
this setting via some strategy to control for confounding.

If the unobserved state is persistent, then the problem is no longer a marginal MDP plus
causal uncertainty. Consider the simplest such scenario where u0 is drawn from some initial
distribution and ut = u0,∀t. In this setting, P (xt+1|xt, at) is non-stationary in general and
P (xt+1|xt, at, ..., x0, a0) is not Markovian due to the dependence via u induced by conditioning
on x. Therefore, the problem is a partially-observed MDP (POMDP).

For the POMDP case, even when πb(a|x, u) = πb(a|x, u′),∀a, x, u, u′ (as in a randomized
trial), many OPE algorithms are biased because the observed state and actions do not
themselves constitute an MDP. A notable exception is IS methods. When πb(a|x, u) =
πb(a|x, u′), the problem satisfies Assumption 1 in [299] for POMDPs.

When the behavior policy varies over u, the value is not identified and one must further
adapt IS methods as in NKYB. However, as we will demonstrate, without Assumption 1 these
bounds are too conservative for practical use - even when confounding is limited to a single
time step. Therefore, in this paper, we develop lower bounds on the value of a policy given
Assumption 1, and show that the bounds are far less sensitive to confounding. It is crucial
to remember that Assumption 1 is not reasonable in some settings, especially medical ones,
and given the substantial gap in performance, we suspect that new algorithms or sensitivity
models need to be developed to make the persistent confounder case work in practice.

5.5 Estimation with Unobserved Confounders

Bias due to Spurious Correlation

Under Assumption 1, we can explicitly quantify the bias due to unobserved confounding. For
comparison, we begin with a quantity that is identified under confounding: the behavior
policy conditional on the observed state. Consider the naive empirical estimate, π̂b(a|x), for
πb(a|x) given Dπb

.

Lemma 5.5.1. Under Assumption 1, π̂(a|x) is an unbiased estimator of πb(a|x).
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Proof.

EDπb
[π̂(a|x)] =

∑
u∈U

p(u|x)πb(a|x, u)

=
∑
u∈U

p(u)πb(a|x, u) = πb(a|x).

On the other hand, consider estimating the expectation of a function of x, a, and x′,
conditional on x, a, i.e. mf(x, a) := E[f(x, a, x′)|x, a]. Define the corresponding naive
estimator, m̂f (x, a) as above.

Proposition 5.5.2. Under Assumption 1 and given a function f : X ×A×X → R,

mf (x, a) = EDπb

[
πb(a|x)
πb(a|x, u)

f(x, a, x′)
∣∣∣x, a] .

Proof sketch. Conditional on x and a, the distribution of u in Dπb
is p(u|x, a) and

p(u|x, a) = πb(a|x, u)
πb(a|x)

p(u)

by Bayes rule. Then reweight accordingly.

As an immediate corollary of Proposition 1, m̂f(x, a) is not, in general, an unbiased
estimator of mf(x, a). For a relevant example, let f(x, a, x′) = 1(x′ = i) for some i ∈ X .
Then mf(x, a) = P (i|x, a), the marginal probability of transitioning to state i. Unless
πb(a|x, u) = πb(a|x, u′) or P (x′|x, a, u) = P (x′|x, a, u′),∀u, u′, the naive estimator of the
transition probabilities is biased. Furthermore, since πb(a|x, u) is unobserved, the observed
data is consistent with many possible P (x′|x, a).

Sensitivity Model

While estimands like P (x′|x, a) are not point-identified under Assumption 1, it is possible to
give upper and lower bounds that are consistent with the observed data. However, without
further assumptions these bounds are typically vacuous. Therefore, we follow the sensitivity
analysis approach and specify limits on the impact of the unobserved state. The idea is that
we will construct a worst-case estimate given a fixed level of confounding and study how the
estimate changes as the degree of confounding is increased.

We control the dependence of the behavior policy on the unobserved state via a parameter
Γ. This is a popular technique in the causal inference literature, described in [253]. In
particular, we follow [293] and have Γ bound the odds ratio between the unobserved behavior
policy and the observed marginal behavior policy:

Assumption 2 (Policy Confounding Bound). Given Γ ≥ 1, for all x ∈ X , u ∈ U , and
a ∈ A:

1

Γ
≤
(

πb(a|x, u)
1− πb(a|x, u)

)/( πb(a|x)
1− πb(a|x)

)
≤ Γ
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Note that Assumption 2 implies the bounds:

α(x, a) ≤ πb(a|x)
πb(a|x, u)

≤ β(x, a)

where

α(x, a) := πb(a|x) +
1

Γ
(1− πb(a|x))

β(x, a) := Γ + πb(a|x)(1− Γ)

5.6 Policy Evaluation with Confounders

In this section, we will show how to compute worst-case value estimates. As long as
Assumption 1 holds, by Proposition 1 we have an unbiased expression for regressing any
observed quantity f against x and a. This expression depends on the unknown probabilities
πb(a|x, u) which we can bound using Assumption 2. By choosing different functions f , we
can adapt most OPE direct methods as described in [306]. We illustrate this procedure for
Fitted Q Evaluation (FQE).

We begin with some notational details. We denote the state and state-action value
functions for a policy π and horizon T as:

V π
T (x) = E

[
T−1∑
t=0

γtrt

∣∣∣x0 = x

]
Qπ

T (x, a) = E
[
R(x, a, x′) + V π

T−1(x
′, u′)

∣∣x, a]
respectively. Throughout the rest of the paper, we will use the short-hand g(x, π) :=∑

a∈A π(a|x)g(x, a). Denote the Bellman evaluation operator for a policy π as T π, defined as:

(T πg)(x, a) = E
[
r(x, a, x′) + γg(x′, π)

∣∣∣x, a]
where g is any function on X ×A. The state-action value function Qπ

T can be computed by
applying T π to Q0 = 0, T-times [237]. Furthermore, V π

T (x) = Qπ
T (x, π), and the expected

value is simply the average of the value function over the initial state distribution. Therefore,
we can easily compute estimates of the expected value using Qπ

T .

Confounded FQE

FQE iteratively applies an empirical approximation of T π to compute Qπ
T . Let Q0 = 0 and let

H be some function class. Given a dataset Dπb
and an evaluation policy πe, FQE computes

Qk = argmin
h∈H

1

NT

N∑
i=1

T−1∑
t=0

(h(xit, a
i
t)− yit)

2

where yit = r(xit, a
i
t, x

i
t+1) + γQk−1(x

i
t+1, πe).
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Essentially, regression with the class H approximates the conditional expectation of the
function

f(x, a, x′) = r(x, a, x′) + γQk−1(x
′, πe)

and T πeQk−1(x, a) = E[f(x, a, x′)|x, a]. With unobserved confounding, regression using the
data Dπb

no longer gives an unbiased estimate of T πeQk−1(x, a). Instead, we can apply
Proposition 1 with the function f defined above to get:

T πeQk−1(x, a) = EDπb

[
πb(a|x)
πb(a|x, u)

f(x, a, x′)
∣∣∣x, a] .

We can then use Assumption 2 to bound the unobserved πb(a|x, u). For example, we
immediately get the following naive bound.

Proposition 5.6.1. Let y := f(x, a, x′). Under Assumptions 1 and 2, For all x ∈ X and
a ∈ A,

(T πeQk−1)(x, a) ≥

EDπb

[
(β(x, a)1(y < 0) + α(x, a)1(y ≥ 0)) y

∣∣∣x, a] .
This naive bound is too conservative to use in practice, especially as the horizon grows. To

get a better bound, we can solve an optimization problem over all possible values of πb(a|x, u)
which are consistent with the observed data. Fix x and a. Let πb(a|x) and P̂ (x′|x, a) be
the nominal behavior policy and nominal transition probabilities respectively. The basic
unknown quantities are p(u), πb(a|x, u), and P (·|x, u, a) ∈ P(X ),∀u. We have the following
observable implications:

Lemma 5.6.2. Under Assumption 1, ∀x ∈ X , a ∈ A, x′ ∈ X ,∑
u∈U

p(u)πb(a|x, u) = π(a|x), and

∑
u∈U

p(u)πb(a|x, u)P (x′|x, u, a) = π(a|x)P̂ (x′|x, a).

For a fixed x and a, let Bxa be the set of possible πb(a|x, ·) such that Lemma 2 and
Assumption 2 hold. Then:

T πeQk−1(x, a) ≥

min
πb(a|x,·)∈Bxa

EDπb

[
πb(a|x)
πb(a|x, u)

f(x, a, x′)
∣∣∣x, a]

Unfortunately, when computing a regression in practice, this requires introducing a new
optimization variable for the unknown values of u for every data point. Instead we use a
clever reparameterization to remove the dependence on u that KZ introduced for MIS.
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Reparameterization

Define

g(x, a, x′) :=
∑
u∈U

(
p(u|x, a)P (x′|x, u, a)

P̂ (x′|x, a)

)
1

πb(a|x, u)

and the corresponding set

B̃xa := {g(x, a, ·) : πb(a|x, u) ∈ Bxa}.

The idea is that g(x, a, x′) is equal to 1/πb(a|x, u) convolved with an unknown density. Since
both πb(a|x, u) and p(u|x, a)P (x′|x, u, a) are unknown, optimizing over B̃xa is equivalent to
optimizing over Bxa where we replace πb(a|x)/πb(a|x, u) with πb(a|x)g(x, a, x′). We have the
following constraints:

Lemma 5.6.3. Under Assumptions 1 and 2,
∀x ∈ X , a ∈ A, x′ ∈ X ,

α(x, a) ≤ πb(a|x)g(x, a, x′) ≤ β(x, a),

and ∑
x′∈X

πb(a|x)g(x, a, x′)P̂ (x′|x, a) = 1.

Now we are ready to state our confounded FQE bound:

Theorem 5.6.4. Under Assumptions 1 and 2,
∀x ∈ X , a ∈ A,

T πeQk−1(x, a) ≥

min
πb(a|x,·)∈Bxa

EDπb

[
πb(a|x)
πb(a|x, u)

f(x, a, x′)
∣∣∣x, a]

= min
g(x,a,·)∈B̃xa

EDπb

[
πb(a|x)g(x, a, x′)f(x, a, x′)

∣∣∣x, a]
For a given dataset Dπb

, this bound can be computed with a simple linear program. Fix
x and a, and for shorthand, denote the naive estimates of the nominal behavior policy and
nominal transition probabilities as π̂xa ∈ [0, 1] and P̂xa ∈ [0, 1]|X | respectively. The bound in
Theorem 1 can be estimated by the following LP:

min
w∈R|X|

cTw

such that

π̂xa +
1

Γ
(1− π̂xa) ⪯ w ⪯ Γ + π̂xa(1− Γ)

and P̂ T
xaw = 1,
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where c(x′) is the sample average of r + γQk−1(x
′, πe) conditional on x and a. Note that

π̂xa, P̂xa, and c are all observables estimated from the data, and Γ is given. Only the vector
w is unknown.

Remark 1. Theorem 1 gives a lower bound for a single application of T πe . We get a lower
bound on V πe

k by applying T πe k-times and then averaging over the initial state distribution.
Remark 2.The reparameterized optimization problem in Theorem 1 can in principle be

used when regressing a wide variety of functions f against x and a. This provides a blueprint
for adapting other OPE methods that solve a regression problem.

5.7 Sharper Bounds with Robust MDPs

Unobserved variables create bias when they are correlated with both the behavior policy
and the state transitions. The sensitivity model in Assumption 2 limits the correlation
with the behavior policy. However, in the reparameterization strategy above, we combine
our unknowns, πb(a|x, u) and P (x′|x, u, a). Therefore, we cannot leverage any additional
information that limits the correlation between u and the transitions. Consider the extreme
case, where P (x′|x, u, a) = P (x′|x, a),∀u. In this case, naive OPE estimates will be unbiased
even if Γ in Assumption 2 is large. While in observational studies, it is not possible to rule
out all correlation between unobservables and the dynamics, we might be able to use domain
knowledge on causal mechanisms to restrict the feasible transitions.

One branch of the sensitivity analysis literature, exemplified by [254], suggests using three
sensitivity parameters. First, a bound on the correlation between the unobserved confounder
and the treatment. Second, a bound on the correlation between the unobserved confounder
and the outcome. Third, a parameter representing the distribution of the unobserved
confounder. [254] presents the case where u is a binary variable. However, [81] show that for
worst-case bounds, this is without loss of generality. Therefore, we assume that U = {0, 1}.

Assumption 2 bounds the impact of u on πb. Following [254], we now introduce two
additional parameters:

Assumption 3 (Transition Confounding Bound). Given ∆ ≥ 1, for all x ∈ X , a ∈ A,
x′ ∈ X , and u ∈ U :

1

∆
≤

(
P (x′|x, u, a)

1− P (x′|x, u, a)

)/( P̂ (x′|x, a)
1− P̂ (x′|x, a)

)
≤ ∆

Assumption 4. Given a fixed p ∈ [0, 1], p(u = 1) = p.
For any tuple of sensitivity parameters, (Γ,∆, p), we will give worst-case bounds on the

value function V πe
T (x) using a model-based approach. Each (Γ,∆, p) has a corresponding set

of possible transition probabilities under Assumptions 2, 3, and 4, such that the observable
implications in Lemma 2 hold. Finding the worst-case value given an uncertainty set for
the dynamics has been extensively explored in the Robust MDP literature [221]. The
standard approach is to separate the uncertainty over the state-action pairs, assuming that
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the uncertainty sets across x, a pairs are not linked. In our problem, this assumption is
violated because of the requirement that πb(·|x, u) is a probability distribution. In the
language of robust MDPs, our problem is “s-rectangular” instead of “s,a-rectangular”.

Fortunately, s-rectangular MDPs can also be solved efficiently [311]. Let Gx denote the
set of feasible transition probabilities for a fixed x. Let Px ∈ R|A|×|X | be the matrix whose
rows are P (·|x, a) for each a. Instead of the state-action value function, we iteratively solve
for worst-case estimates of the value function:

Vk(x) = min
Px∈Gx

πe(·|x)TPxy

where y = (
∑

a∈A πe(a|x)R(x, a, ·))+γVk−1(·). When optimizing over the unknown quantities
P (x′|x, u, a) and πb(a|x, u) for all x′, a, and u, this problem has a linear objective with linear
and bilinear equality constraints, so it can be easily solved. We estimate V πe

T by letting V0 = 0,
then solving the above minimization problem T -times. As we will show in our evaluation, for
all values of the parameters (Γ,∆, p), the s-rectangular robust MDP formulation provides
sharper bounds than the linear program corresponding to Theorem 1.

5.8 Evaluation

We use the benchmarks from OPE-Tools [306] for evaluation. In particular, we adapt their
three discrete environments, Graph, Discrete MC, and Gridworld, together with a small toy
problem. Note that the data generating processes do not strictly need to be confounded.
Our methods bound the worst possible confounded MDP that could have generated the data.
Therefore, the two relevant, observable reference points are the value of the behavior policy
and the nominal value of the evaluation policy. Nonetheless, for completeness we augment
the environments with unobserved confounding variables. Our approach takes an existing
behavior policy and transition matrix, and adds an additional state variable u which induces
a correlation between the policy and transitions based on either the rewards or the optimal
value function.

For each environment, we choose a behavior policy πb and evaluation policy πe such that
the value of πe without confounding is greater than the value of πb. This way, it is possible
to find which level of confounding makes it impossible to guarantee that πe is superior to πb.
Furthermore, the impact of confounding can be compared relative to the difference in values
between the two policies. See Table 5.1 for a summary of the four test environments and the
Appendix for full details.

Lower Bounds with Confounding

For our first experiment, we collect trajectories from each of the four environments using their
respective behavior policies. For each environment, we collect 30,000/horizon trajectories,
keeping the number of data points the same across environments. Then, we compute our
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Environment Horizon States Actions V πb
T V πe

T Sparse Rewards?

toy 5 3 2 0.3397 0.4990 No
ope-graph 4 8 2 -0.1786 0.7174 No
ope-mc 20 22 2 -18.1890 -15.7381 Yes

ope-gridworld 8 16 4 -0.4994 -0.3569 No

Table 5.1: Characteristics of the four test environments.

confounded FQE and robust MDP lower bounds for values of Γ and ∆ ranging between 1.1
(barely confounded) and 10 (highly confounded). For the robust MDP bounds, we fix the
parameter p = 0.5, i.e. each period the unobserved state is equally likely to be u = 0 or
u = 1. The robust MDP bounds are not very sensitive to this parameter and this choice
doesn’t impact the qualitative results, although corroborating results are in the Appendix.
Our lower bounds for the four environments are plotted in Figure 5.1.

The confounded FQE bounds are the black curve at the bottom of each plot. Without
any additional restrictions of the transition dynamics, these bounds degrade the quickest
as Γ increases. This curve intersects the value of πb at Γ = 6 for ope-graph, and Γ < 3 for
the remaining environments. Qualitatively, this means strong requirements on confounding
are required for the FQE bounds to guarantee that the evaluation policy is better than the
behavior policy. Compare this, for example, to the other curves in ope-graph and ope-mc
which are greater than V πb for all values of Γ.

The curves above the confounded FQE curve correspond to our robust MDP bounds. In
all cases as ∆ grows, the corresponding lower bounds get worse. As mentioned previously, for
ope-graph and ope-mc, any value of ∆ guarantees that V πe > V πb . For toy and ope-gridworld,
consider the ∆ = 2 curve, which is third from the top. For the toy environment, assuming
∆ = 2 substantially increases the Γ at which the curve crosses the dotted πb line compared to
the FQE curve. For ope-gridworld, the ∆ = 2 curve lies above V πb for all Γ. These examples
highlight the qualitative and quantitative importance of limiting the degree of confounding
on the transition probabilities.

Tightness

Our confounded FQE and robust MDP methods provide lower bounds on the expected value
subject to their respective sensitivity models. A natural question is: how far are these bounds
from the infimum over all full-information MDPs consistent with the observed data, subject to
the given sensitivity model? We split our analysis of tightness into two parts, the single-step
case and the multi-step case.

A single iteration of our bounds requires solving a minimization problem. The tightest
possible bound on V π

T is the minimum over all valid full-information MDPs. But our robust
MDP solution produces candidate transition probabilities P (x′|x, u, a) and behavior policy
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Figure 5.1: Lower bounds on the expected value of πe. For reference, in each environment, we
plot the value of πe without confounding (the dotted line at the top) and the value of πb (the
dotted line below). The black line at the bottom is the confounded-FQE bound. Each other
line corresponds to a robust MDP bound for a single value of the transition confounding
parameter ∆, with light to dark lines going from 1.1 to 10.

πb(a|x, u) corresponding to some valid full-information MDP. Therefore, since it is a lower
bound, it must achieve the true minimum and so a single iteration of the robust MDP
approach is tight.

On the other hand, our confounded FQE bound solves a minimization problem separately
for each state-action pair without enforcing that πb(·|x, u) be a density across actions. We
quantify the impact on performance by comparing the FQE bound to our robust MDP bound
as ∆ goes to infinity. We present results for the ope-graph and ope-mc environments in
Figure 5.2. The qualitative findings for the other environments are similar.

For the ope-graph environment, the gap between the FQE bound (the black line at the
bottom) and the robust MDP bounds for large ∆ are negligible until Γ ≥ 8, at which point
the gap grows. For the ope-mc environment, the gap begins substantial and grows slightly
larger as Γ grows. For this particular environment, the robust MDP lower bounds always
guarantee that the evaluation policy is at least as good as the behavior policy. However, the
FQE lower bound can only provide this same guarantee for Γ < 3. Therefore, it appears that
enforcing the density constraint across actions can matter in practice, so for cases where we
do not wish to make any assumptions on the transitions, we prefer our robust MDP bounds
with very large values of ∆.

When confounding occurs in more than one time step, our robust MDP bound is computed
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Figure 5.2: Lower bounds on the expected value as ∆ grows large. The black line at
the bottom is the confounded FQE bound. The upper dashed line is value of πe with no
confounding. The lower dashed line is the value of πb.

iteratively with different minimization problems solved at each time step. The candidate
transitions and behavior policy that correspond to each minima may differ, so the lower
bounds are potentially loose. Theoretically, the looseness of our bound is characterized by
Theorem 4 of [221]. In particular, as the horizon goes to infinity, our lower bound converges
to the best possible lower bound - the rate of convergence can be found in the proof of the
theorem.

To test this empirically, we use the full-information transitions and behavior policy from
the final iteration of our robust MDP method as a candidate. Because the candidate MDP is
consistent with the observed data subject to the sensitivity model, if the value of this MDP
matches our lower bound, than our lower bound must be tight. For the toy, ope-graph, and
ope-mc environments, we use the same experimental setup as we did for the results in Figure
5.1. The gap between the candidate MDP value and our lower bounds are reported in Table
5.2. For these environments, the value of the candidate MDP differs by less than 10−8 from
our lower bound. For the ope-gridworld environment, we find our lower bound is not tight at
small horizons, so we ran experiments with a short, medium, and long horizon. As predicted
by the theory, the bound improves for large T as value iteration approaches its fixed point.

Assumption 1 and Comparison with NKYB

Assumption 1 - that the unobserved state is drawn iid each period - is crucial to the quality
of the bounds above. We demonstrate this by comparing our bounds to those in NKYB,
which do not assume iid confounders. In order to compare to NKYB, we have to alter the
experimental setup above in two ways. First, NKYB only supports confounding that occurs
in a single time step. The initial time step is confounded, but for the remainder of the horizon,
the behavior policy only uses the observed state. We compute the analogue for our robust
MDP algorithm by computing T − 1 iterations of unconfounded value iteration followed by a
single iteration of our lower bound.

Second, NKYB uses a similar but more restrictive sensitivity model. Our sensitivity
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env Γ = 2, ∆ = 2 Γ = 10, ∆ = 10

toy < 1e-8 < 1e-8
ope-graph < 1e-8 < 1e-8
ope-mc < 1e-8 < 1e-8

ope-gridworld T=28 2.03e-3 3.06e-2
ope-gridworld T=208 4.75e-3 2.87e-2
ope-gridworld T=508 2.65e-5 2.97e-4

Table 5.2: The difference between our robust MDP bound and the value of πe in the candidate
MDP defined by the transition probabilities from the last iteration of our bound. The first
three environments use the default horizons given in Table 5.1.

parameter restricts the odds ratio between the confounded policy for a given value of u
and the policy averaged over all u. Their sensitivity parameter restricts the odds ratio
for the confounded policy between any values of u, which grows roughly like the square
of ours. For this comparison, we can calculate the true sensitivity parameters for each
confounded environment under the different sensitivity models. We provide a performance
comparison using the true sensitivity parameters for each environment in Table 5.3. Even
with confounding restricted to a single time step, the NKYB bounds, which do not assume
iid confounders, are enormously conservative.

This is a key result. Even for a single time-step, policy evaluation is highly sensitive
to persistent unobserved variables. The ability of our robust MDP bounds to guarantee
improvement over the behavior policy in Figure 5.1, even over longer horizons, depends
crucially on our Assumption 1. In turn, this highlights the fact that off-policy evaluation
with confounding in settings where Assumption 1 fails is far more difficult and requires a
different algorithmic approach. As mentioned in the introduction, while iid confounders are
feasible in certain settings - like unobserved oil supply shocks for macroeconomic policy -
Assumption 1 is not reasonable for many applications, especially in medicine.

The results in Table 5.3 might hinge on the different sensitivity models, so we perform a
robustness check which uses identical values of Γ and which should therefore be very favorable
for the NKYB bounds. The toy and ope-graph NKYB bounds improve, but the ope-mc and
ope-gridworld bounds remain unusable.

Horizon and Comparison with KZ

Many of the details above depend on the horizon. For example, our robust MDP bounds
become tight as the horizon increases and NKYB restricts confounding to a single time-step.
Therefore, in this section we assess how our lower bounds change as the horizon increases.
This also provides a convenient setting to compare with the infinite horizon bounds in KZ.

Comparing with KZ requires modification of our initial experimental setup. We use
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env Nominal NKYB Ours

toy 0.5189 0.0436 0.25372
ope-graph 0.7008 0.0280 0.3994
ope-mc -15.6941 -64.5040 -15.9647

ope-gridworld -0.3588 -2.3914 -0.4112

Table 5.3: The value of πe without confounding and the corresponding lower bounds from
NKYB and our robust MDP procedure. For each bound and each environment, we use the
true parameter value for the respective sensitivity models.

the ope-graph and ope-gridworld environments. In order to generate a non-trivial steady-
state distribution, we remove the terminating states and alter the transition probabilities
accordingly. Furthermore, to match KZ’s approach, we modify the rewards to only depend
on the current state. We then calculate our bounds for 1 to 200 time steps. For both
environments, T = 200 is long enough to spend a majority of the time close to steady-state.
We also adopt a discount rate of γ = 0.95 so that T = 200 is well beyond the effective horizon.
We produce bounds for Γ = 1.5, 2, and 10 using our robust MDP method with ∆ set to
1,000,000.

Since we use the same marginal sensitivity model, we can use KZ’s method to calculate
infinite horizon bounds for the same values of Γ. Their method computes bounds on the
long-run average value, i.e. the expectation of the rewards with respect to the steady-state
distribution, instead of the discounted value. Therefore we use the discounted sum of rewards
as the per-state reward for KZ’s method. The results are plotted in Figure 5.3. The dotted
black curve at the top is the value of πe without confounding at each horizon. The curves
below are the lower bounds for Γ = 1.5, 2, and 10 respectively. The dots on the far right are
the corresponding KZ infinite horizon bounds. In all cases, the gap between our bounds and
the unconfounded value grow at the horizon increase. This is not because our bounds are loose
- as value iteration reaches its fixed point, our bounds are provably tight as mentioned - but
because confounding over many time periods is a more difficult problem. This phenomenon
is especially pronounced for Γ = 10: at long horizons, a smaller value of the sensitivity
parameters becomes much more valuable.

The infinite horizon bounds follow roughly the same qualitative behavior as ours but are
much looser. This is presumably due to the fact that the long-run average of discounted
rewards is a different estimand than the average discounted sum of rewards. With no
confounding, the difference is small (compared the uppermost line and uppermost dot). But
as the level of confounding increases, the long-run average becomes more sensitive. The
magnitude of the difference is surprising and perhaps worth studying in future work.
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Figure 5.3: Robust MDP lower bounds as the horizon grows. The dotted curve is the nominal
value of πe. The dots on the right are KZ’s infinite horizon bounds.

5.9 Conclusion

To summarize: our first key contribution is to develop a method for computing finite horizon
lower bounds for policy evaluation with unobserved confounders that are drawn iid each
period. We find that our model-based robust MDP approach can give substantially sharper
bounds by leveraging assumptions about the transition probabilities. To be clear on this
point: the argument is not that a plug-in estimator using a model of the dynamics is
inherently more efficient. When using observational data to estimate a dynamic causal
effect, understanding the dynamics of the system and the causal mechanisms are critically
important. Quantitatively, we illustrate this by showing that sharp partial identification
of the value of a policy requires restricting the set of possible transition probabilities. In
practice, such an approach relies on domain-expertise. Practitioners must have enough
mechanistic understanding of the dynamics that they are able to specify bounds, ∆, on
potential confounding in order to get a reasonable estimate of the expected value.

Our second key contribution is to demonstrate that policy evaluation is far more challenging
when there are persistent unobserved confounders. This is responsible for the substantial
performance gap between our bounds and those in NKYB. These results are especially relevant
for medical applications where unobserved variables are likely to be persistent. For example,
any patient variable that may not be recorded, but doesn’t change between treatment choices
like socio-economic status or undocumented chronic illness. Work published after this paper
was completed [179] has taken an initial step to tackle this setting without confounding. An
important next step will be to achieve similar results in the observational causal setting.
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Chapter 6

Dynamic Sensitivity Analysis: The
General Case

6.1 Introduction

Sequential decision-making problems in medicine, economics, and e-commerce require the use
of historical observational data when online experimentation is costly, dangerous or unethical.
Given the rise of big data, there is great potential to improve decisions based on personalizing
treatments to those who most benefit. However, it is also more difficult to ex-ante specify the
underlying dynamics when personalizing sequential decision-making from rich data, which
precludes performance evaluation via traditional methods based on stochastic simulation.
The recent literature on offline reinforcement learning addresses these challenges of evaluating
sequential decision rules, given only a historical dataset of observed trajectories. In particular,
we focus on methods that target estimation of the Q function leveraging black-box regression,
such as fitted-Q-evaluation and fitted-Q-iteration for policy evaluation and optimization,
respectively.

However, these methods almost unilaterally all assume full observability of all the covariate
information that informed historical treatment decisions. Unfortunately, historical decision-
making policies typically made decisions based on additional unobserved variables. Such
data was usually collected for convenience from a system that was optimizing for outcomes,
or other complex human decisions. Data collected under “business as usual” is neither a
randomized controlled trial nor a designed observational study emulating a target trial. This
introduces unobserved confounders, variables that impact both treatment assignment and
outcomes. In the presence of unmeasured confounders, the typical approach of estimating
transition probabilities and solving standard Markov decision processes is biased due to
incomplete adjustment for confounding.

The default realistic case for observational data is that there were some unobserved
confounders; but as datasets grow richer in the era of big data, their influence may be
limited. For example, if working with a database of electronic health records, it may become
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more plausible that information such as recorded patient vitals explain most of medical
decision-making while unobserved confounders such as patient affect may be less important.
Sensitivity analysis techniques in the causal inference literature assess the impact of potential
unobserved confounding. Instead of reporting incorrect point estimates, they report the
range of estimates consistent with some potential amount of unobserved confounding, via
how it affects the probability of selection into treatment [247, 252, 305]. These estimates
can be framed as optimization problems over ambiguity sets, which can be sized by domain
expertise, for example by comparing to the informativity of observed covariates. Importantly,
such restrictions on the unobserved confounding are untestable from observational data,
and ambiguity sets on unobserved confounding differ from uncertainty sets motivated on
probabilistic grounds alone, i.e. robustness to finite-sample deviations.

We study robust sequential personalized policy learning under an ambiguity set of the
unknown probability of taking actions given both observed and unobserved confounders, the
propensity score. Importantly, we go beyond prior work because we seek not only robust
bounds on value, but also robust decisions. Our algorithm links sensitivity analysis under
unobserved confounders to the framework of robust Markov decision processes, and uses
statistical function approximation to estimate bounds on the worst-case conditional bias
of the Q function. More specifically, we use the “marginal sensitivity model” (MSM) of
[292], a variant of Rosenbaum’s sensitivity model [252], which has been widely used for
offline single-timestep policy optimization [13, 206, 325, 315, 154, 160]. Contrary to typical
uses of the MSM probing importance sampling-based estimators, we partially identify the
Bellman equation for the state-action value function using an MSM with state-conditional
restrictions. We develop the first principled and practical methodology for robust sequential
policy learning under memoryless unobserved confounders. Recent work has only solved
robust policy evaluation (not learning) under the sequential MSM under restrictions such
as one-stage unobserved confounders [214], or small, discrete state spaces under additional
assumptions [158, 44]. Partially identifying the Bellman equation provides a direct connection
to practical policy optimization algorithms such as the fitted-Q-iteration we extend.

Learning from observational data is crucial to make progress on data-driven decision-
making in consequential domains where online reinforcement learning is infeasible or costly. For
example, the release of electronic health records such as the MIMIC-III critical care database
enabled rich data-driven research on medical decision-making: researchers developed an
illustrative task for offline reinforcement learning based on managing sepsis via administration
of vasopressors and fluids, a complex dynamic task without clinical consensus. This is an
important problem: sepsis is one of the foremost drivers of both mortality and hospital
costs. But in the causal and reinforcement learning setting, typical performance measures in
machine learning such as cross-validation, or simulation of sequential policies using a known
generative model are not valid. Instead, the performance evaluation of learned sequential
decision policies via off-policy evaluation from offline reinforcement learning implicitly requires
the untrue assumption of unconfoundedness. [111] thoroughly articulates these challenges
of offline evaluation, including the likely presence of no unobserved confounders in this
dataset. Importantly, such real-world data is complex, motivating scalable approaches based
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on statistical learning for generalization to unseen states. In important settings such as
sepsis management, robust information can leverage widely available, but imperfect data, to
support more resource-intensive investigations. The wide previous usage of these methods
speaks to the importance of the question. As observed data grows richer, robust methods can
support state-of-the-art methodology to safely obtain valid partial inferential information
from observational data and partially inform managerial insights.

In this paper, we develop methodology for robust bounds and decision rules that can
inform managerial decisions in a number of ways. Later on, we revisit sepsis data from
MIMIC-III: since our method allows direct comparison to typical fitted-Q-evaluation/iteration
methods used in the literature, we show how comparing robust vs. nominal value functions
can provide insight or inform future investigation. More broadly, the FDA has recognized a
growing need for methods that assess the “robustness and resilience of these [clinical decision
support] algorithms to withstand changing clinical inputs and conditions” [92]. A recent
working group argues that sensitivity analysis can support product development from real-
world evidence and points out the need for comparable methodology for the sequential policy
learning setting [82]. Finally, even if robust policies are not deployed directly, robust bounds
can be used as prior knowledge to improve the data-efficiency of online experimentation, if
it becomes available. We introduce an extension of our methods for warm-starting online
reinforcement learning, which also highlights key differences of our structural assumptions
from other models for Markov decision processes with unobserved confounders: the online
counterpart assuming no memoryless unobserved confounders is a tractable MDP instead of
an difficult-to-solve partially observable Markov decision process (POMDP).

Contributions: we develop an algorithm for efficiently computing MSM bounds with
multi-step confounding, high-dimensional continuous state spaces and function approximation.
Our approach leverages the recent characterization of sensitivity in single-step settings as
a conditional expected shortfall (also called conditional CVaR or superquantile) [270]. Our
algorithm is a simple extension of fitted-Q evaluation/iteration [100, 186] that can be
implemented with off-the-shelf supervised learning algorithms, making it easily accessible to
practitioners. We solve a key statistical challenge by incorporating orthogonalized estimation
of the robust Bellman operator, and derive a corresponding theoretical analysis, giving
sample complexity guarantees for orthogonalized robust FQI based on the richness of the
approximating function classes. This reduces the dependence of statistical error in estimating
the conditional expected shortfall on estimation of the conditional quantile function. Finally,
we show how our model enables warm-starting standard optimistic reinforcement learning
from valid robust bounds for safe data-efficiency. Our algorithm enables researchers in
the managerial, clinical, and social sciences to assess and report sensitivity to unobserved
confounding for dynamic policies learned from observational data, and to learn new policies
that are more robust when assumptions on confounders fail.
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6.2 Related Work

We first discuss offline reinforcement learning in general, and other approaches for unob-
served confounders besides ours based on robustness. Then we discuss other topics such as
orthogonalized estimation, robust Markov decision processes, and robust offline reinforcement
learning; before summarizing how our work is at the intersection of and relates to these areas.

Policy learning with unobserved confounders in single-timestep and sequential
settings. The rapidly growing literature on offline reinforcement learning with unobserved
confounders can broadly be divided into three categories. We briefly discuss central differences
from our approach to these three broad groups and include an expanded discussion in the
appendix. First, some work assumes point identification is available via instrumental variables
[308]/latent variable models [32]/front-door identification [275]. Although point identification
is nice if available, sensitivity analysis can be used when assumptions of point identification
(instrumental-variables, front-door adjustment) are not true, as may be the case in practice.
Second, a growing literature considers proximal causal inference in POMDPs from temporal
structure [298, 33, 303, 274] or additional proxies [205]. Proximal causal inference imposes
additional (unverifiable) completeness assumptions on the latent variable structure and is a
statistically challenging ill-posed inverse problem. Furthermore, we study a more restricted
model of memoryless unobserved confounders that precisely delineates unobserved confounding
from general POMDP concerns. As a result, we have an online counterpart that is a marginal
MDP, justifying warmstarting approaches. Third, a few approaches compute no-information
partial identification (PI) bounds based only on the structure of probability distributions and
no more. [121] obtains a partial order on decision rules with only the law of total probability.
[54] derives PI bounds with time-varying instrumental variables, based on Manski-Pepper
bounds. These can generally be much more conservative than sensitivity analysis, which
relaxes strong assumptions.

Overall, developing a variety of identification approaches further is crucial both for analysts
to use appropriate estimators/bounds, and methodologically to support falsifiability analyses.
Other works include [101, 188, 261]. In our work, we consider the marginal sensitivity model.
Extending to other sensitivity analysis models may also be of interest [247, 264, 317, 38, 39,
265, 62]. Both the state-action conditional uncertainty sets and the assumption of memoryless
unobserved confounders are particularly crucial in granting state-action rectangularity (for
binary treatments), and avoiding decision-theoretic issues with time-inconsistent preferences
in multi-stage robust optimization [78]. On the other hand, the exact functional form (subject
to these structural assumptions) could readily be modified.

Recent work of [230] also proposes a robust fitted-Q-iteration algorithm for RMDPs.
Although the broad algorithmic design is similar, we consider a different uncertainty set from
their ℓ1 set, and further introduce orthogonalization. In the single-timestep setting, further
improvements are possible when targeting a simpler scalar mean, such as in [84, 85]. By
constrast, we need to estimate the entire robust Q-function.
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Off-policy evaluation in offline reinforcement learning An extensive line of work on
off-policy evaluation [144, 301, 192, 296] in offline reinforcement learning studies estimating the
policy value of a posited evaluation policy when only data from the behavior policy is available.
Most of this literature, implicitly or explicitly, assumes sequential ignorability/sequential
unconfoundedness. Methods for policy optimization are also different in the offline setting
than in the online setting. Options include direct policy search (which is quite sensitive to
functional specification of the optimal policy) [326], off-policy policy gradients which are
either statistically noisy [137] or statistically debiased but computationally inefficient [157],
or fitted-Q-iteration [186, 88]. Of these, fitted-Q-iteration’s ease of use and scalability make
it a popular choice in practice. It is also theoretically well-studied [86]. A marginal MDP
also appears in [161] but in a different context, without unobserved confounders.

Orthogonalized estimation. Double/debiased machine learning seeks so-called Neyman-
orthogonalized estimators of statistical functionals so that the Gateaux derivative of the
statistical functional with respect to nuisance estimators is 0 [216, 60, 96]. Nuisance estimators
are intermediate regression steps (i.e. the conditional quantile) that are not the actual target
function of interest (i.e. the robust Q function). Orthogonalized estimation reduces the
dependence of the statistical estimator on the estimation rate of the nuisance estimator.
See [167] for tutorial discussion and [149] for a computationally-minded tutorial. There
is extensive literature on double robustness/semiparametric estimation in the longitudinal
setting, often from biostatistics and statistics [180, 247, 227]. Many recent works have studied
double/debiased machine learning in the sequential and off-policy setting [34, 156, 280, 187].

Recent work studies orthogonality/efficiency for partial identification and in other sensi-
tivity models than the one here [38, 39, 265, 62]. [266, 226] study orthogonalization of partial
identification or conditional expected shortfall, and we build on some of their analysis in
this paper. In particular, we directly apply the orthogonalization given in [226]. [315] study
orthogonality under the closely related Rosenbaum model and provide very nice theoretical
results. They obtain their orthogonalization via a variational characterization of expectiles.
Though [214] consider a restricted model of the worst single-timestep confounding, out of all
timesteps, it seems likely that sequential orthogonalization under the sequential exogenous
confounders assumption is also possible. The single-timestep work of [142] orthogonalizes a
marginal CVaR, but they assume the quantile function is known. [84] provide very nice and
strong theoretical guarantees and surface additional properties of double validity.

Robust Markov decision processes and offline reinforcement learning. Elsewhere,
in the robust Markov-decision process framework [221], the challenge of rectangularity has
been classically recognized as an obstacle to efficient algorithms although special models
may admit non-rectangularity and computational tractability [114]. Many recent algorithmic
improvements are tailored for special structure of ambiguity sets [24, 132]. On the other hand,
work in robust Markov decision processes has prominently featured the role of uncertainty sets
and coherent risk measures, for example in distributionally robust Markov decision processes
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[327]. Our work relates sensitivity analysis in sequential causal inference to this line of
literature and focuses on algorithms for policy evaluation based on a robust fitted-Q-iteration.
Other relevant works include [194], which considers a “soft-robust” criterion that averages
the nominal expectation and the robust expectation; however, they study marginal CVaR
while our later discussion of CVaR is conditional. Studying the conditional expected shortfall
(equivalently, CVaR) uncertainty set is a crucial difference from previous work on risk-sensitive
MDPs [65].

Importantly, robust offline reinforcement learning frameworks by themselves don’t neces-
sarily inform the problem of causal ambiguity : it can be more plausible that decision-makers
can reason about, or external evidence can inform, restrictions on the underlying selection
process rather than “assuming the consequent”, i.e. positing restrictions on the bias in transi-
tion probabilities directly. On the other hand, our identification argument links ambiguity in
the unobserved confounders to an equivalent ambiguity set on transition probabilities: we can
also go the other way and relate ambiguity sets that appear in robust MDPs to ambiguity
sets on unobserved confounding.

Lastly, we emphasize that the quantile level in our setting with ambiguity in our later
conditional CVaR reformulation depends on the analyst-specified ambiguity rather than a
probabilistic confidence level. More generally, the so-called “pessimism” principle in offline
reinforcement learning is well-studied as a tool to relax strong concentrability assumptions
[146], but such robustness sets are calibrated to probabilistic confidence levels.

Regarding distributionally robust offline reinforcement learning specifically, [198] studies
linear function approximation. [318] studies the sample complexity of tabular robust MDPs
under a generative model. The focus of our work is on unobserved confounders, although we
reformulate the ambiguity set as a distributionally robust optimization problem. Other, less
related, works study distributionally robust online learning [309].

Summary of differences of our work. We connect robustness for causal inference under
unobserved confounders to distributionally robust MDPs and orthogonalized estimation, to
obtain scalable methods with provable guarantees. In contrast to the line of work developing
specialized (first-order) algorithms for (robust) Markov decision-processes, we consider approx-
imate (robust) Bellman operator evaluations in the fitted-Q-evaluation/iteration paradigm.
We use the closed-form characterization of the state-conditional solution to derive the infinite-
data solution and approximate the estimation of the resulting function from data. Also,
methodologically, we leverage orthogonalized estimation, which does not appear in previously
mentioned works on distributionally robust offline reinforcement learning and can be of
interest beyond our setting of unobserved confounders.
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6.3 Problem Setup and Characterization

Problem Setup with Unobserved State

We consider a finite-horizon Markov decision process on a full-information state space,
summarized as the tuple M = (S × U ,A, R, P, χ, T ). We let the product state space of
observed and unobserved confounders, S,U , be continuous, and assume the action space A
is finite. The Markov decision process dynamics proceed from t = 0, . . . , T − 1 for a finite
horizon of length T . Although we focus on presenting the finite-horizon case in the main text,
the method and results extend readily to the discounted infinite-horizon case, discussed in
the appendix. Let ∆(X) denote probability measures on a set X. The set of time t transition
functions P is defined with elements Pt : S × U ×A → ∆(S × U); R denotes the set of time
t reward maps with Rt : S ×A× S → R; the initial state distribution is χ ∈ ∆(S × U). A
policy, π, is a set of maps πt : S × U → ∆(A), where πt(a | s, u) describes the probability of
taking actions given states and unobserved confounders. Given the initial state distribution,
the Markov decision process dynamics under policy π induce the random variables, for all t,
At ∼ πt(· | St, Ut), St+1, Ut+1 ∼ Pt(· | St, Ut, At). When another type of norm is not indicated,
we let ∥f∥ := E[f 2]1/2 indicate the 2-norm.

We consider a confounded offline setting: data is collected via an arbitrary behavior policy
πb that potentially depends on Ut, but in the resulting data set, the U part of the state space
is unobserved. That is, although the underlying dynamics follow a standard Markov decision
process generating the history {(S(i)

t , U
(i)
t , A

(i)
t , S

(i)
t+1)

T−1
t=0 }ni=1, the observational dataset omits

the unobserved confounder. The observational dataset comprises of N trajectories including
observed confounders only, Dobs := {(S(i)

t , A
(i)
t , S

(i)
t+1)

T−1
t=0 }ni=1 For example, we might have a

data set of electronic medical records and treatment decisions made by doctors; the electronic
medical records include an observed set of patient measurements St, but the doctors may
have made their treatment decisions using additional unrecorded information Ut.

As in standard offline RL, we study policy evaluation and optimization for target policies
πe using data collected under πb. In our confounded setting, we consider πe that are a function
of the observed state St alone.We will use Pπ and Eπ to denote the joint probabilities (and
expectations thereof) of the random variables St, Ut, At,∀t in the underlying MDP running
policy π. For the special case of the behavior policy πb, we will write Pobs, Eobs to emphasize
the distribution of variables in the observational dataset.

Our objects of interest will be the observed state Q function and value function for the
target policy πe:

Qπe

t (s, a) := Eπe [
T−1∑
j=t

R(Sj, Aj, Sj+1)|St = s, At = a] (6.1)

V πe

t (s) := Eπe [Qπe

t (St, At)|St = s].

We would like to find a policy πe that is a function of the observed state alone, maximizing
V πe

t . Throughout, we work primarily in the offline reinforcement learning setting where we
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do not have access to online exploration due to cost or safety concerns. With unobserved
confounders, we cannot directly evaluate the true expectations above due to biased estimation.
Therefore in the remainder of Section 6.3, we introduce confounding-robust Q and value
functions, which we can estimate from the observational data.

Defining an MDP on Observables

We next articulate the challenges of our setting more specifically and introduce our main
structural assumption of memoryless unobserved confounders. For offline policy evalua-
tion/optimization with unobserved confounding, there are two separate concerns: biased
estimation from confounded observational data, and partial observability in the presence
of unobserved confounders. First, the dependence of πb on Ut introduces unobserved con-
founding, sothe distribution of the observed data is biased for estimating the true underlying
transition probabilities. Without further assumptions, the observational distribution alone
cannot completely adjust for the spurious correlation induced by the behavior policy. Second,
even if we knew the true underlying transition probabilities, the existence of the unobserved
state would change the policy optimization problem from a tractable MDP to an intractable
Partially-Observed Markov decision process (POMDP). Standard RL algorithms like Bellman
iteration for MDPs would no longer yield an optimal policy — because, for example, the
observed next state St+1 need not be Markovian conditional on only St and At.

In this section, we isolate the confounding concern from the POMDP concern by introduc-
ing a “memoryless confounding” assumption. Under this assumption, we will show that policy
evaluation over πe in the underlying MDP is equivalent to policy evaluation in a marginal
MDP over the observed state alone. Therefore, the underlying difficulty of decision-making
under memoryless unobserved confounders is intermediate between the unconfounded and
generic POMDP setting.

Assumption 3 (Memoryless unobserved confounders). The unobserved state Ut+1 is inde-
pendent of St, Ut, At.

What settings satisfy this assumption of memoryless unobserved confounders? One
such example in the medical setting could be due to a memoryless arrival process of some
additional information that affects both treatment and transition to the next state. For
example, [322] conducts NLP analysis of clinical notes of electronic health records (which
may contain information not entered in the structured EHR) and finds keywords such as
“attention”, “alertness” are confounders in their setting. Such aspects of patients may vary
via memoryless arrival rates of periods of unalertness and may be observable by physicians,
but unrecorded in the structured data. On the other hand, baseline unobserved confounders
that are fixed throughout the time horizon are not directly handled in this framework, except
via interpreting our model as a timewise relaxation.
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Under this assumption, the full-information transition probabilities factorize as:

Pt(st+1, ut+1|st, at, ut) = Pt(st+1|st, at, ut)Pt(ut+1|st+1, st, at, ut)

= Pt(st+1|st, at, ut)︸ ︷︷ ︸
new observed state

Pt(ut+1|st+1)︸ ︷︷ ︸
new unobserved state

.

In a slight abuse of notation, we will change the subscript on the unobserved state distri-
bution to read Pt+1(ut+1|st+1) so that the time subscripts are consistent. Note that under
Assumption 3, Pobs(Ut|St) is always the same regardless of what policy produced the historical
data. Without Assumption 3, Pobs(Ut|St) would generally vary with the behavior policy πb

because Ut could depend on St−1, At−1, and Ut−1.
With memoryless unobserved confounders, observed-state policy evaluation and opti-

mization in the full POMDP reduce to an MDP problem. Define the marginal transition
probabilities:

Pt(st+1|st, at) :=
∫
U
Pt(ut|st)Pt(st+1|st, at, ut)dut (6.2)

Then we have the following proposition:

Proposition 6.3.1 (Marginal MDP). Given Assumption 1, for any policy πe that is a
function of St alone, the distribution of St, At,∀t in the full-information MDP running πe is
equivalent to the distribution of St, At,∀t in the marginal MDP, (S,A, R, P, χ, T ). That is,
S0 ∼ χ, At ∼ πe(· | St), St+1 ∼ Pt(·|St, At).

See the Appendix for a formal derivation. The key takeaway from Proposition 6.3.1 is
that if we knew the true marginal transition probabilities, Pt(St+1|St, At), then we could
apply standard RL algorithms for evaluation or optimization. We have observed-state Q and
value functions in the marginal MDP, that satisfy the Bellman evaluation equations,

Qπe

t (s, a) = EPt [Rt +Qπe

t+1(St+1, π
e
t+1)|St = s, At = a],

V πe

t (s) = EA∼πe
t (s)

[Qπe

t (s, A)]

where we use the short-hands Rt := Rt(St, At, St+1) and g(S ′, π) := EA′∼π(S′)[g(S
′, A′)] for

any g : S ×A → R. Furthermore, by classical results [237], an optimal policy exists among
policies defined on the observed state alone, yielding the optimal Q function, Q∗

t (s, a), and
value function, V ∗

t (s), with corresponding Bellman optimality equations.
Before continuing, we want to emphasize that while Assumption 3 is strong, it has testable

implications. In particular, under Assumption 3 the observed-state transition probabilities
will be Markovian, which can be tested from observed states and actions alone.1

1It is possible to use observed-state Markovian transitions as the core assumption at the cost of substantially
more complexity. See the Appendix for discussion.
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Offline RL and Unobserved Confounding

Proposition 6.3.1 establishes that the oracle decision problem, given knowledge of the true
marginal transition probabilities, remains a Markov decision process under memoryless
confounding. However, while Assumption 3 rules out POMDP concerns, it does not rule out
bias from unobserved confounding. In general, it is not possible to get unbiased estimates
of the true marginal observed-state transitions given data collected under πb when Ut is
unobserved. In particular, Pobs(St+1|St, At) ̸= Pt(St+1|St, At). To see this, first define the
marginal behavior policy,

πb
t (at|st) :=

∫
U
πb
t (at|st, ut)Pt(ut|st)dut = Pobs(at|st).

Then,

Pobs(st+1|st, at) =
∫
U
Pt(st+1|st, at, ut)Pobs(ut|st, at)dut

=

∫
U
Pt(st+1|st, at, ut)

πb
t (at|st, ut)
πb
t (at|st)

Pt(ut|st)dut, (6.3)

where the second equality follows by Bayes rule. The final expression for Pobs(st+1|st, at)
differs from Pt(st+1|st, at) in eq. (6.2) by the unobserved factor

πb
t (at|st,ut)

πb
t (at|st)

. Note that the term

Pobs(ut|st, at) is the bias from confounding: in the observational distribution conditioning
on at changes the distribution of the unobserved ut relative to Pt(ut|st) because at is drawn
according to πb(at|st, ut).

If πb is independent of ut, the ratio
πb
t (at|st,ut)

πb
t (at|st)

will be uniformly 1 and we recover

Pt(st+1|st, at). However, if πb
t (at|st, ut) can be arbitrary, then an estimate of Pt(st+1|st, at)

using Pobs(st+1|st, at) can be arbitrarily biased. This result immediately implies that any
regression using Pobs will be biased for the corresponding estimand in the marginal MDP.

Proposition 6.3.2 (Confounding for Regression). Let f : S ×A× S → R be any function.
Given Assumption 3, ∀s, a,

EPt

[
f(St, At, St+1)|St = s, At = a

]
= Eobs

[
πb
t (At|St)

πb
t (At|St, Ut)

f(St, At, St+1)

∣∣∣∣∣St = s, At = a

]
.

where the first equality follows from Proposition 6.3.1 and the second equality follows from
Equation (6.3). This proposition shows that regression of f on states and actions using data
collected according to πb is a biased estimator for the corresponding conditional expectation
under the true marginal transition probabilities Pt(s

′|s, a) where the exact bias is:

Eobs[f(St, At, St+1)|St = s, At = a]− EPt

[
f(St, At, St+1)|St = s, At = a

]
= Eobs

[(
1− πb

t (At|St)

πb
t (At|St, Ut)

)
f(St, At, St+1)

∣∣∣∣∣St = s, At = a

]
.
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Since the unobserved factor
πb
t (At|St)

πb
t (At|St,Ut)

can be arbitrarily large without further assumptions,

to make progress we follow the sensitivity analysis literature in causal inference.

Assumption 4 (Marginal Sensitivity Model). There exists Λ such that ∀t, s ∈ S, u ∈ U , a ∈
A,

Λ−1 ≤
(

πb
t (a | s, u)

1− πb
t (a | s, u)

)
/

(
πb
t (a | s)

1− πb
t (a | s)

)
≤ Λ. (6.4)

The parameter Λ for this commonly-used sensitivity model in causal inference [292] has
to be chosen with domain knowledge. A common approach is to compare Λ to corresponding
values for observed variables, e.g. in a clinical setting, if smoking has an effective Λ = 1.5, a
practitioner might say “I do not believe there exists an unobserved variable with twice the
explanatory power of smoking” to justify a choice of Λ = 3 [133].

Now consider any function f : S × A × S → R as in Proposition 6.3.2. For shorthand,
we will write Yt := f(St, At, St+1). We use a generic f here to emphasize that this argument
would apply to any model-based or model-free RL algorithms using regression, but later
when we introduce our fitted-Q iteration algorithm, we will specialize Yt to get an empirical
estimate of the Bellman operator. Combining Assumption 4 and Proposition 6.3.2, we can
express the target expectation EPt [Yt|St, At] as a weighted regression under the behavior
policy with bounded weights. Define the random variable

W πb

t :=
πb
t (At|St)

πb
t (At|St, Ut)

, where EPt [Yt|St, At] = Eobs[W
πb

t Yt|St, At] (proposition 6.3.2).

(6.5)
While we cannot estimate W πb

t , we can bound it. The weights must satisfy that πb(a | s, u) is
a valid probability distribution,

Eobs[W
πb

t |St, At] = 1, (6.6)

and Assumption 4 implies the following bounds almost everywhere:

αt(S,A) ≤ W πb

t ≤ βt(S,A),∀s′ (6.7)

αt(S,A) := πb
t (At|St) + Λ−1(1− πb

t (At|St)), βt(S,A) := πb
t (At|St) + Λ(1− πb

t (At|St)).

So while Proposition 6.3.2 demonstrates that we cannot unbiasedly estimate the value
function in the confounded setting, we can instead compute worst-case bounds on the
conditional bias subject to the constraints in eqs. (6.6) and (6.7). Next, we will make this
precise by showing that Assumption 4 defines a Robust Markov decision process.

Robust Estimands and Bellman Operators

In this section, we introduce our key estimands – the robust Q and value functions. Assump-
tion 4 implies the constraints in eqs. (6.6) and (6.7), which define an uncertainty set for the
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true observed-state transition probabilities Pt(s
′|s, a). [158] and [44] uses a reparameterization

to show that for each weight Wt that satisfies these constraints, there is a corresponding
transition probability in the set:

P̄t(· | s, a) ∈ Ps,a
t :=

{
P̄t(· | s, a) : αt(s, a) ≤

P̄ (st+1 | s, a)
Pobs(st+1 | s, a)

≤ βt(s, a),∀st+1;∫
P̄t(st+1 | s, a)dst+1 = 1

}

Define the set Pt of transition probabilities for all s, a to be the product set over the Ps,a
t .

Then under Assumptions 3 and 4, the true marginal transition probabilities belong to Pt.
While point estimation is not possible, we can find the worst-case values of Qπe

t and V πe

t

over transition probabilities in the uncertainty set, P̄t ∈ Pt — a Robust Markov decision
process (RMDP) problem [139]. Importantly, the set Pt is s, a-rectangular, and so we can use
the results in [139] to define robust Bellman operators and a corresponding robust Bellman
equation.

Denote the robust Q and value functions Q̄πe

t and V̄ πe

t and define the following operators:

Definition 1 (Robust Bellman Operators). For any function g : S ×A → R,

(T̄ πe

t g)(s, a) := inf
P̄t∈Pt

EP̄t
[Rt + g(St+1, π

e
t+1)|St = s, At = a], (6.8)

(T̄ ∗
t g)(s, a) := inf

P̄t∈Pt

EP̄t
[Rt +max

A′
{g(St+1, A

′)}|St = s, At = a]. (6.9)

Proposition 6.3.3 (Robust Bellman Equation). Let |A| = 2 and let Assumptions 1 and 2
hold. Then applying the results in [139], gives

Q̄πe

t (s, a) = T̄ πe

t Q̄πe

t+1(s, a), V̄ πe

t (s) = EA∼πe
t (s)

[Q̄πe

t (s, A)],

Q̄∗
t (s, a) = T̄ ∗

t Q̄
∗
t+1(s, a), V̄ ∗

t (s) = EA∼π̄∗
t (s)

[Q̄∗
t (s, A)],

where Q̄∗
t and V̄ ∗

t are the optimal robust Q and value function achieved by the policy π̄∗.

Finally, we comment on the tightness of the robust operator. For a fixed s and a, the Ps,a
t is

exactly the set of transition probabilities consistent with Assumption 4 and the observational
data distribution. However the s, a-rectangular product set Pt does not explicitly enforce the
density constraint on πb

t across actions, and is therefore potentially loose. In the special case
where there are only two actions, [85] show that the different minima over Ps,a

t across actions
are simultaneously achievable, and thus the robust bounds are tight and we get equalities
in Proposition 6.3.3. For |A| > 2, the infimum in eq. (6.8) is not generally simultaneously
realizable — it’s easy to construct a counter-example. Nonetheless, the robust Bellman
operator corresponds to an s, a-rectangular relaxation of the RMDP, Proposition 6.3.3 will
hold with lower bounds instead of equalities, and our results are still guaranteed to be robust.
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6.4 Method

In the previous section, we defined our estimands of interest — the robust Q and value
functions under the marginal sensitivity model. In this section, we introduce robust policy
optimization via function approximation. Our estimation strategy is a robust analog of
Fitted-Q Iteration (FQI).

Assume that we observe n trajectories of length T , where the observational dataset Dobs :=
{(S(i)

t , A
(i)
t , S

(i)
t+1)

T−1
t=0 }ni=1 was collected from the underlying MDP under an unknown behavior

policy πb that depends on the unobserved state. We will write En,t to denote a sample average

of the n data points collected at time t, e.g. En,t[f(St, At, St+1)] :=
1
n

∑n
i=1 f(S

(i)
t , A

(i)
t , S

(i)
t+1).

Nominal (non-robust) FQI [88, 186, 86] successively forms approximations Q̂t at each time
step by minimizing the Bellman error:

Yt(Q) := Rt +max
a′

[Q(St+1, a
′)] , Qt(s, a) = E[Yt(Qt+1)|St = s, At = a], (6.10)

Q̂t ∈ argmin
qt∈Q

En,t[(Yt(Q̂t+1)− qt(St, At))
2]. (6.11)

The Bayes-optimal predictor of Yt is the true Qt function, even though Yt is a stochastic
approximation of Qt that replaces the expectation over the next-state transition with a
stochastic sample thereof (realized from data). In this way, fitted-Q-iteration is pseudo-
outcome regression, regressing onto a random variable whose conditional expectation is the
target function, but is not equivalent to it under additive noise, as is the case with typical
regression on observed outcomes. Pseudo-outcome regression has recently been used in causal
inference [166, 268], and later in our robust procedure we are therefore able to use analogous
arguments to obtain orthogonalized estimation. The procedure for fitted-Q-evaluation is
exactly analogous, replacing the maximum over next-timestep actions with evaluation under
the evaluation policy. In this manuscript, we present on focusing the fitted-Q-iteration case
for succinctness.

In our robust version of FQI, we instead approximate the robust Bellman operator from
eq. (6.9). In particular, we will apply Proposition 6.3.2, but impose the constraints in eqs. (6.6)
and (6.7) to arrive at the following optimization problem in terms of observable quantities:

Proposition 6.4.1. Let Q be a real-valued function over states and actions, and define Yt(Q)
as in Equation (6.11). Given Assumption 3 and Assumption 4, the robust Q(s, a) function
solves the following optimization problem:

(T̄ ∗
t Q)(s, a) = min

Wt

{
Eobs [WtYt(Q)|St = s, At = a] :

Eobs [Wt|St = s, At = a] = 1, αt(S,A) ≤ Wt ≤ βt(S,A), a.e.
}
.

Next, in Section 6.4, we show that the optimization problem in Proposition 6.4.1 admits
a closed form as a conditional expectation of observables. Then in Section 6.4, we incor-
porate this insight into an orthogonalized confounding-robust FQI algorithm with function
approximation.
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Closed-Form for the Robust Bellman Operator

Solving the optimization problem in Proposition 6.4.1 for each s, a pair isn’t feasible for
large state and action spaces. In this section, we use recent results to derive a closed-form
expression for the minimum in Proposition 6.4.1 in order to derive a feasible algorithm
leveraging function approximation. This is an application of the results in [249] and [85].

The closed-form state-action conditional solution to Proposition 6.4.1 is written in terms
of a superquantile (also called conditional expected shortfall, or covariate-conditional CVaR).
The conditional expected shortfall is the conditional expectation of exceedances of a random
variable beyond its conditional quantile. Define τ := Λ/(1+Λ). For any function Q : S×A →
R, we define the observational (1− τ)-level conditional quantile of the Bellman target:

Z1−τ
t (Yt(Q) | s, a) := inf

z
{z : Pobs(Yt(Q) ≥ z | St = s, At = a) ≤ 1− τ}.

We use the following shorthands when clear from context: Z1−τ
t,a := Z1−τ

t (Yt(Q) | s, a), αt :=
αt(S,A), βt := βt(S,A). We can learn the conditional quantile functions by minimizing the
pinball loss over a function class Z:

Z1−τ
t (Yt(Q) | St, At) ∈ argmin

z∈Z
E[Lτ (Yt(Q), z(St, At))],

where Lτ (y, ŷ) :=

{
(1− τ)(ŷ − y), if y < ŷ

τ(y − ŷ), if y ≥ ŷ
. (6.12)

Proposition 6.4.2. The solution to the minimization problem in Proposition 6.4.1 is:

(T̄ ∗
t Q)(s, a) = Eobs

[
αtYt(Q) +

1− αt

1− τ
Yt(Q)I

[
Yt(Q) ≤ Z1−τ

t,a

] ∣∣∣∣∣St = s, At = a

]
. (6.13)

Proposition 6.4.2 suggests a simple two-stage procedure. First, estimate Z1−τ
t , and then

estimate the conditional expectation in eq. (6.13) via regression using the estimated Z1−τ
t .

We do so to develop robust policy evaluation and optimization algorithms in the next section.
We first describe the basic method, its improvement via orthogonalization, and lastly sample
splitting/cross-fitting.

Improving estimation: the orthogonalized pseudo-outcome

The two-stage procedure depends on the conditional quantile function Z1−τ
t , a nuisance

function that must be estimated but is not our substantive target of interest. To avoid
transferring biased first-stage estimation error of Z1−τ

t to the Q-function, we introduce
orthogonalization. Orthogonalized estimators remove the first-order dependence of estimating
the target on the error in nuisance functions. An important literature from biostatistics
and econometrics on Neyman-orthogonality (also called double/debiased machine learning,
and related to semiparametric statistics) derives bias adjustments [167, 216, 60, 180]. (See
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Algorithm 1 Confounding-Robust Fitted-Q-Iteration

1: Estimate the marginal behavior policy πb
t (a|s). Compute {αt(S

(i)
t , A

(i)
t )}ni=1 as in Equa-

tion (6.7). Initialize Q̂T = 0.
2: for t = T − 1, . . . , 1 do

3: Compute the nominal outcomes {Y (i)
t (Q̂t+1)}ni=1 as in eq. (6.11).

4: For a ∈ A, where A
(i)
t = a, fit Ẑ1−τ

t the (1− τ)th conditional quantile of the outcomes

Y
(i)
t .

5: Compute pseudooutcomes {Ỹ (i)
t (Ẑ1−τ

t , Q̂t+1)}ni=1 as in eq. (6.14).

6: For a ∈ A, where A
(i)
t = a, fit Q̂t via least-squares regression of Ỹ

(i)
t against (S

(i)
t , A

(i)
t ).

7: Compute π∗
t (s) ∈ argmaxa Q̂t(s, a).

8: end for

Appendix C.2 for more). In particular, we apply an orthogonalization of [226] for what they
call truncated conditional expectations, m(η, x) = 1

1−τ
E[Y I [Y ≤ Z1−τ ] | X = x]. They show

that
1

1−τ
E[Y I [Y ≤ Z1−τ ]− Z1−τ (I [Y ≤ Z1−τ ]− (1− τ)) | X]

is Neyman-orthogonal with respect to error in Z1−τ . Note that this comprises an additive,
zero-mean adjustment to the original pseudo-outcome. We apply this orthogonalization to
Equation (6.13) to obtain our regression target for robust FQE:

Ỹt(Z,Q) := αtYt(Q) +
1−αt

1−τ

(
Yt(Q)I

[
Yt(Q) ≤ Z1−τ

t

]
− Z · {I [Yt(Q) ≤ Z]− (1− τ)}

)
(6.14)

When the quantile functions are consistent, the orthogonalized pseudo-outcome enjoys
quadratic, not linear dependence on the first-stage estimation error in the quantile functions.
We describe in more detail in the next section on guarantees. The orthogonalized time-t
target of estimation is:

Q̂t ∈ argmin
qt

En,t[(Ỹt(Ẑ
1−τ
t , Q̂t+1)− qt(St, At))

2]. (6.15)

A large literature discusses methods for quantile regression [175, 203, 25], as well as
conditional expected shortfall [47, 165] and can guide the choice of function class for quantiles
and Q appropriately.

We summarize the algorithm in Algorithm 1. In the appendix, we discuss a sample-
splitting version in more detail; we describe the approach, which is standard, in the main
text for brevity. Lastly, to ensure independent errors in nuisance estimation and the fitted-
Q regression, for the theoretical results, we study a cross-time variant of the standard
cross-fitting/sample-splitting scheme for orthogonalized estimation and machine learning.
Interleaving between timesteps ensures downstream policy evaluation errors are independent
of errors in nuisance evaluation at time t. Finally, we note that sample splitting can be
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avoided by posing Donsker-type assumptions on the function classes in the standard way.
In the experiments (and algorithm description) in the interest of data-efficiency we do not
data-split. Recent work of [53] shows rigorously that sample-splitting may not be necessary
under stability conditions; extending that analysis to this setting would be interesting future
work.

Extension to continuous actions

Although the manuscript focuses on binary or categorical actions, the method can directly be
extended to continuous action spaces, at the expense of sharpness results and interpretability
of the robust set. [143] proposes a continuous-action sensitivity model which instead directly
bounds the density ratio (rather than the odds ratio):

1

Λ
≤ πb

t (a | s)
πb
t (a | s, u)

≤ Λ. (6.16)

In the continuous setting, densities could be greater than 1, which would violate conditions
on the odds ratio. One way to interpret this sensitivity parameter is via implications for
the KL-divergence of nominal and complete propensity scores. We can readily apply this to
our problem by changing the uncertainty set on W to that implied by the above. Namely,

solve the same linear program of Proposition 6.4.1 but enforce that Wt =
πb
t (a|s)

πb
t (a|x,u)

satisfy the

constraints of eq. (6.16) rather than Assumption 4:

(T̄ ∗
t Q)(s, a) = min

Wt

{
Eobs [WtYt(Q)|St = s, At = a] :

Eobs [Wt|St = s, At = a] = 1,

Λ−1 ≤ Wt ≤ Λ−1, a.e.
}
.

That is, the characterization of Proposition 6.4.2 holds, replacing the (αt, βt) bounds arising
from the MSM with (Λ−1,Λ). The pointwise solution of the (s, a)-conditional optimization
problem is structurally the same, i.e. a conditional quantile characterization at a different level.
The only difference algorithmically is in the conditional quantile estimation; in the continuous
action setting, we would appeal to function approximation and minimize the (orthogonalized)
pinball loss of eq. (6.12) with the action as a covariate. In the infinite-data, nonparametric
limit, this would be well-specified; in practice, there will be some additional approximation
error. Given those conditional quantiles, the rest of the method, (orthogonalization, etc.)
proceeds analogously as discussed previously.

6.5 Analysis and Guarantees

We first describe the estimation benefits we receive from orthogonalization before discussing
analysis of robust fitted-Q-evaluation and iteration, and insights. (All proofs are in the
appendix).
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Estimation guarantees

We describe the orthogonalized estimation results, before the results about the full output of
the robust fitted-Q-iteration. We also require some regularity conditions for estimation. We
assume nonnegative bounded rewards throughout.

Assumption 5 (Boundedness). Outcomes are nonnegative and bounded: 0 ≤ Rt ≤ BR,∀t.
The state space is bounded.

We assume the transitions are continuously distributed, a common regularity condition
for the analysis of quantiles.

Assumption 6 (Bounded conditional density). Assume that Pt(st+1 | st, a) < MP , ∀t, st, st+1

a.s.

We let Ên indicate a function obtained by regression, on an appropriate data split
independent of the nuisance estimation. Define

Q̂t(s, a) = Ên[Ỹt(Ẑt, Q̂t+1) | s, a] feasible regressed robust Q,

Q̃t(s, a) = Ên[Ỹt(Zt, Q̂t+1) | s, a] oracle-nuisance regressed robust Q

Qt(s, a) = E[Ỹt(Zt, Q̂t+1) | s, a] oracle robust Q.

In the above, Q̂t(s, a) = Ên[Ỹt(Ẑt, Q̂t+1) | s, a] is the feasible regressed robust-Q-estimator

with estimated nuisance Ẑ, while Q̃(s, a) = Ên[Ỹt(Zt, Q̂t+1) | s, a] is the regressed robust-Q-
estimator with oracle nuisance Z, and Qt(s, a) is the true robust Q output at time t (relative
to the future Q functions that are the output of the algorithm).

We assume the following regression stability assumption, which appears in [166]. It is a
generalization of stochastic equicontinuity and is satisfied, for example, by nonparametric
linear smoothers.

Assumption 7 (Regression stability). Suppose D1 and D2 are independent training and test

samples, respectively. Let: 1. f̂(x) = f̂ (x;D1) be an estimate of a function f(x) using the

training data D1, 2. b̂(x) = b̂ (x;D1) ≡ E[f̂(x)− f(x) | D1, X = x] the conditional bias of the

estimator f̂ , 3. Ên[Y | X = x] denote a generic regression estimator that regresses outcomes

on covariates in the test sample D2. Then the regression estimator Ên is defined as stable at
X = x (with respect to a distance metric d ) if

Ên[f̂(x)|X=x]−Ên[f(x)|X=x]−Ên [̂b(x)|X=x]√
E
(
[Ên[f(x)|X=x]−E[f(x)|X=x]]

2
) p→ 0

whenever d(f̂ , f)
p→ 0.

Under these regularity conditions, we can show that the bias due to the first-stage
estimation of the conditional quantiles is only quadratic in the estimation error of Ẑt.
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Proposition 6.5.1 (CVaR estimation error). Assume Assumptions 5 to 7. For a ∈ A, t ∈
[T − 1], if the conditional quantile estimation is op(n

− 1
4 ) consistent, i.e. ∥Ẑ1−τ

t − Z1−τ
t ∥∞ =

op(n
− 1

4 ), E[∥Ẑ1−τ
t − Z1−τ

t ∥2] = op(n
− 1

4 ), then

∥Q̂t(S, a)−Qt(S, a)∥2 ≤ ∥Q̃t(S, a)−Qt(S, a)∥2 + op(n
− 1

2 ).

This implies we can maintain op(n
− 1

2 ) consistent estimation of robust Q functions under
weaker estimation error requirements on the conditional quantile functions Z.

Next, we describe key assumptions for convergence of fitted-Q-iteration, concentrability
which restricts the distribution shift in the sequential offline data vs. optimized policies, and
approximate Bellman completeness which assumes the closedness of the regression function
class under the Bellman operator. Both these assumptions are standard requirements for
fitted-Q-iteration, but certainly not innocuous; they do impose restrictions.

Assumption 8 (concentrability). Given a policy π, let ρπt denote the marginal distribution
at time step t, starting from s0 and following π, and µt denote the true marginal occupancy
distribution under πb. There exists a parameter C such that

sup(s,a,t)∈S×A×[T−1]
dρπt
dµt

(s, a) ≤ C for any policy π.

Assumption 9 (Approximate Bellman completeness). There exists ϵ > 0 such that, for all

t ∈ [T − 1], where ϵ is at most on the order of Op(n
− 1

2 ),

supqt+1∈Qt+1
infqt∈Qt ∥qt − T ⋆

t qt+1∥2µt
≤ ϵ.

concentrability is analogous to sequential overlap or positivity, as it is called in single-
timestep causal inference. It assumes a uniformly bounded density ratio between the true
marginal occupancy distribution and those induced by arbitrary policies. Approximate
Bellman completeness assumes that the function class Q is approximately closed under the
robust Bellman operator. Assuming that ϵ is at most Op(n

− 1
2 ) is somewhat restrictive, but is

consistent with frameworks for local model misspecification that consider local asymptotics
with Op(n

− 1
2 ) vanishing bias.

Although we ultimately seek an optimal policy, approaches based on fitted-Q-evaluation
and iteration instead optimize the squared loss, which is related to the Bellman error that is
a surrogate for value suboptimality.

Definition 2 (Bellman error). Under data distribution µt, define the Bellman error of
function q = (q0, . . . , qT−1) as: E(q) = 1

T

∑T−1
t=0 ∥qt − T ∗

t qt+1∥2µt

The next lemma, which appears as [86, Lemma 3.2] (finite horizon), [313, Thm. 2] (infinite
horizon), justifies this approach by relating the Bellman error to the value suboptimality. Its
proof follows immediately by considering the MDP given by the worst-case transition kernel
that realizes the optimization in the definition of the robust Bellman operator and is omitted.
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Lemma 6.5.2 (Bellman error to value suboptimality). Under Assumption 8, for any q ∈ Q,
we have that, for π the policy that is greedy with respect to q, V ∗

1 (s1)−V π
1 (s1) ≤ 2T

√
C · E(qπ).

We will describe convergence results based on generic results for loss minimization over a
function class of restricted complexity. We use standard covering and bracketing numbers to
quantify the functional complexity of infinite function classes.

Definition 3 (Covering numbers, e.g. [304]). Let (F , ∥ · ∥) be an arbitrary semimetric space.
Then the covering number N(ϵ,F , ∥ · ∥) is the minimal number of balls of radius ϵ needed to
cover F .

Definition 4 (Bracketing numbers). Given two functions l and u, the bracket [l, u] is the
set of all functions f with l ≤ f ≤ u. An ϵ-bracket is a bracket [l, u] with ∥u− l∥ < ϵ. The
bracketing number N[](ϵ,F , ∥ · ∥) is the minimum number of ϵ-brackets needed to cover F .

The covering and bracketing numbers for common function classes such as linear, polyno-
mials, neural networks, etc. are well-established in standard references, e.g. [307, 304]. We
assume either that the function class for Q,Z is finite (but possibly exponentially large), or
has well-behaved covering and bracketing numbers.

Assumption 10 (Finite function classes.). The Q-function class Q and conditional quantile
class Z are finite but can be exponentially large.

Assumption 11 (Infinite function classes with well-behaved covering number.). The Q-
function class Q, and conditional quantile class Z have covering numbers N(ϵ,Q, d), N(ϵ,Z, d)
(respectively).

Theorem 6.5.3 (Fitted Q Iteration guarantee). Suppose Assumptions 5 to 9 and let BR be

the bound on rewards. Recall that E(Q̂) = 1
T

∑T−1
t=0

∥∥∥Q̂t − T ⋆

t Q̂t+1

∥∥∥2
µt

. Then, with probability

greater than 1− δ, under Assumption 10 (finite function class), we have that

E(Q̂) ≤ ϵQ,Z +
56(T 2 + 1)BR log{T |Q||Z|/δ}

3n
+√

32(T 2 + 1)BR log{T |Q||Z|/δ}
n

ϵQ,Z + op(n
−1),

while under Assumption 11 (infinite function class), choosing the covering number ap-
proximation error ϵ = O(n−1) such that ϵQ,Z = O(n−1), we have that

E(Q̂) ≤ ϵQ,Z +
1

T

T−1∑
t=0

{
56(T − t− 1)2 log{TN[] (2ϵLt,Lqt(z′),z, ∥ · ∥)/δ}

3n

}
+ op(n

−1).

where Lt = KBr(T − t− 1)Λ for an absolute constant K.
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Finally, putting the above together with Lemma 6.5.2, our sample complexity bound
states that the policy suboptimality is on the order of O(n− 1

2 ). Note that this analysis omits
estimation error in πb for simplicity. Note that Lemma C.3.3 of the appendix gives that
N[] (2ϵL,Lq(z′),z, ∥ · ∥) ≤ N(ϵ,Q×Z, ∥ · ∥) ≤ N(ϵ,Q, ∥ · ∥)N(ϵ,Z, ∥ · ∥). Therefore ensuring

some ϵ = cn− 1
2 approximation error (for some arbitrary constant c) can be achieved by fixing

ϵ′ = ϵ
2L
; i.e. we require finer approximation.

Proof sketch. As appears elsewhere in the analysis of FQI [86], we may obtain the following
standard decomposition:

∥Q̂t,Ẑt
− T ∗

t,Ẑt
Q̂t+1∥2µt

= Eµ[ℓ(Q̂t,Ẑt
, Q̂t+1; Ẑt)]− Eµ[ℓ(Q

†
t,Zt
, Q̂t+1;Zt)] + ∥Q†

t,Zt
− T ∗

t Q̂t+1∥2µt

where Q
†
t,Zt

is the oracle squared loss minimizer, relative to the Q̂t+1 output from the
algorithm. Assumption 9 (completeness) bounds the last term. Our analysis differs onwards
with additional decomposition relative to estimated nuisances and applying orthogonality
from Proposition 6.5.1.

Finally, we note that our analysis extends immediately to the infinite-horizon case.
Crucially, the (s,a)-rectangular uncertainty set admits a stationary worst-case distribution
[139].

Bias-variance tradeoff in selection of Λ

We can quantify the dependence of the sample complexity on constants related to problem
structure. We consider an equivalent regression target which better illustrates this dependence.

Corollary 6.5.4. Assume that the same function classes Q,Z are used for every timestep,
and they are VC-subgraph with dimensions vq, vz. Assume that ϵQ,Z = 0. Then there exist
absolute constants K, k such that

E(Q̂) ≤ K{ log(vq + vz)

+ 2(vq + vz)

+ 2((vq + vz)− 1)(T − 1) (log (2KBrΛ(T − 1)n/ϵ)− 1)}n−1

+op(n
−1).

Note that the width of confidence bounds on the robust Q function scale logarithmically
in Λ, which illustrates robustness-variance-sharpness tradeoffs. Namely, as we increase Λ,
we estimate more extremal tail regions, which is more difficult. Sharper tail bounds on
conditional expected shortfall estimation would also qualitatively yield similar insights.

Confounding with Infinite Data

While Theorem 6.5.3 analyses the difficulty of estimating the robust value function, here we
analyze how the true robust value function differs from the nominal value function at the
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population-level for policy evaluation (not optimization). This gives a sense of how potentially
conservative the method is, in case unconfoundedness held after all. We consider a simplified
linear Gaussian setting.

Proposition 6.5.5. Let S = R and A = {0, 1}. Define parameters θP , θR, σP ∈ R. Suppose
in the observational distribution that St+1|St, At ∼ N (θPSt, σP ), R(s, a, s

′) = θRs
′, πe

t (1|St) =
0.5, and consider some πb such that πb

t (At|St) does not vary with St. Finally, let βi :=
θR
∑i

k=1 θ
k
P and notice that the nominal, non-robust value functions are V πe

T−i(s) = βis for
i ≥ 1. Then:

|V πe

0 (s)− V̄ πe

0 (s)| ≤ (16θP )
−1(
∑T−1

i=0 βi)σP log(Λ).

Note that the cost of robustness gets worse as the horizon T increases, depending on the
value of θP . The parameter θP is the autoregressive coefficient for the state transitions — it
controls how strongly last period’s state impacts this period’s state. In the language of linear
systems, θP will determine whether or not the system is stable. Each of the stability regimes
— stable, marginally stable, and unstable — results in different scaling with T for the cost of
robustness. For |θP | < 1, the term (

∑T−1
i=0 βi)/θP is asymptotically linear in T ; for |θP | = 1,

the term is quadratic in T ; and for |θP | > 1, the term scales asymptotically as θTP . In other
words, for stable systems, unobserved confounding can at worst induce bias that is linear
in horizon, but for unstable systems, the bias could increase exponentially. In contrast, for
the unconfounded problem, unstable systems are typically easier to estimate due to their
better signal-to-noise ratio [277]. While this example involves a scalar state for simplicity, we
can straightforwardly generalize Proposition 6.5.5 to higher dimensions where the bias will
depend on the spectrum of the transition matrix.

On the other hand, the scaling with the degree of confounding Λ is independent of horizon,
and has a modest log(Λ) rate. This is surprising: it suggests that the horizon of the problem
presents more of a challenge than the strength of confounding at each time step, and that
T and Λ do not interact at the population level — at least in a simple linear-Gaussian
setting. Characterizing exactly when the scaling with Λ is horizon-independent is a promising
direction for future work.

6.6 Experiments

We first illustrate the benefits of our orthogonalized fitted-Q-iteration in a simulated example,
where we know the ground-truth outcomes. Next, we illustrate how the robust fitted-Q-
iteration allows robust evaluation of policies learned with methods similar to those used in the
literature, and learning robust policies, revisiting the example of sepsis data from MIMIC-III
since it has been widely studied in the literature.
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Simulation

In this section, we validate the performance of our estimator, including its scaling with the
sensitivity parameter Λ and the importance of orthogonalization. Note that our goal is
not to evaluate the utility of the marginal sensitivity model itself — we leave that to the
existing empirical literature in medicine and social science. Instead, we demonstrate that our
robust FQI procedure can successfully solve the MSM, validating our theoretical analysis. We
perform simulation experiments in a mis-specified sparse linear setting with heteroskedastic
conditional variance. Previous methods for sensitivity analysis in RL, [214, 158, 44], cannot
solve this continuous state setting with confounding at every time step. We use the following
(marginal) data-generating process for the observational data:

S ⊂ Rd,A = {0, 1}, S0 ∼ N (0, 0.01), πb(1|St) = 0.5, ∀St

Pobs(St+1|St, At) = N (θµSt + θAa,max{θσSt + σ, 0}), R(St, At, St+1) = θTRSt+1

with parameters θµ, θσ ∈ Rd×d, θR, θA ∈ Rd, σ ∈ R chosen such that ASt + σ > 0 with
probability vanishingly close to 1. The number of features d = 25 and θµ and θσ are chosen to
be column-wise sparse, with 5 and 20 non-zero columns respectively. We collect a dataset of
size n = 5000 from a single trajectory. We then repeat this experiment in a higher-dimensional
setting with d = 100 and n = 600 — the d/n ratio is 300 times worse.

We estimate V̄ ∗
1 (s) for T = 4 and several different values of Λ, using both the orthogonalized

and non-orthogonalized robust losses. For function approximation of the conditional mean
and conditional quantile, we use Lasso regression. Note that while this is correctly specified
in the non-robust setting, the CVaR is non-linear in the observed state due to the non-linear
conditional standard deviation of θTRSt+1, and therefore the Lasso is a misspecified model for
the quantile and robust value functions. For details see Appendix C.4 in the Appendix.

We report the mean-squared error (MSE) of the value function estimate over 100 trials,
alongside the average ℓ2-norm parameter error and the percentage of the time a wrong action
is taken. The MSE and percentage of mistakes compare the estimated value function/policy
to an analytic ground truth and are evaluated on an independently drawn and identically
distributed holdout sample of size n = 200, 000 drawn from the initial state distribution. See
the Appendix for details on the ground truth derivation.

The low-dimensional results in Table 6.1 illustrate two important phenomena. First, the
MSE increases with Λ. While in practice, we would like to certify robustness for higher levels
of Λ, the estimated lower bounds become less reliable. Second, the non-orthogonal algorithm
suffers from substantially worse mean-squared error and as a result selects a sub-optimal
action more often, especially at high levels of Λ. Orthogonalization has a very large impact
not just in theory, but in practice.

The results for the high-dimensional setting are in Table 6.2. In this setting, policy
optimization is substantially harder — even the nominal policy estimate only picks the
true optimal action 72% of the time. However, we still see almost identical behavior as in
the low-dimensional setting when comparing the orthogonal and non-orthogonal estimators.
Without orthogonalization, performance drops off dramatically as Λ increases, such that for
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Λ Algorithm MSE(V̄ ∗
0 ) ℓ2 Parameter Error % wrong action

1 FQI 0.2927 2.506 0%

2
Non-Orthogonal 0.6916 3.458 5e-5%

Orthogonal 0.4119 2.678 0%

5.25
Non-Orthogonal 10.87 7.263 0.39%

Orthogonal 0.5552 3.110 0%

8.5
Non-Orthogonal 50.72 17.32 2.5%

Orthogonal 0.7113 3.410 4e-5%

11.75
Non-Orthogonal 171.1 33.80 5.4%

Orthogonal 1.336 3.666 6e-4%

15
Non-Orthogonal 432.9 55.86 8.2%

Orthogonal 2.687 3.931 4e-3%

Table 6.1: Simulation results with d = 25 and n = 5000, reporting the value function MSE,
Q function parameter error, and the portion of the time a sub-optimal action is taken. The
results compare non-orthogonal and orthogonal confounding robust FQI over five values of Λ.

Λ Algorithm MSE(V̄ ∗
0 ) ℓ2 Parameter Error % wrong action

1 FQI 0.2300 3.399 28%

2
Non-Orthogonal 0.5496 4.057 31%

Orthogonal 0.5271 3.522 28%

5.25
Non-Orthogonal 3.160 11.51 43%

Orthogonal 1.739 3.949 31%

8.5
Non-Orthogonal 7.683 24.04 45%

Orthogonal 2.723 3.921 31%

11.75
Non-Orthogonal 15.22 48.89 47%

Orthogonal 3.397 3.725 31%

15
Non-Orthogonal 30.21 88.02 48%

Orthogonal 3.848 3.462 30%

Table 6.2: Simulation results with d = 100 and n = 600, reporting the value function MSE,
Q function parameter error, and the portion of the time a sub-optimal action is taken. The
results compare non-orthogonal and orthogonal confounding robust FQI over five values of Λ.

Λ = 15, the policy is only slightly better than random choice. Our orthogonalized algorithm
has MSE that decays more gracefully with Λ, and picks the correct action at essentially the
same rate as the nominal algorithm, even as Λ increases.

Note that these simulation results validate our algorithm for estimating the worst-case
value function and robust policy. They do not assess how quickly the ground-truth population
robust value function decays with Λ. See Section 6.5 above for an initial discussion.



CHAPTER 6. DYNAMIC SENSITIVITY ANALYSIS: THE GENERAL CASE 109

Complex real-world healthcare data

In the next computational experiments, we show how our method extends to more complex
real-world healthcare data via a case study around the use of MIMIC-III data for off-policy
evaluation of learned policies for the management of sepsis in the ICU with fluids and
vasopressors [185]. Sepsis is an umbrella term for an extreme response to infection and is
a leading cause of mortality, healthcare costs, and readmission. Still, the management of
sepsis is complex and there remains substantial uncertainty about clinical guidelines [89].
Practitioners recommend dynamic changes in treatment, i.e. tracking the patient’s state
over time. For example, giving IV fluids is expected to be beneficial at the very beginning,
but there are also expected risks from too much [321].The pioneering efforts in releasing
the MIMIC-III database enabled the development of Markov decision process models via
model-based approaches or offline reinforcement learning methods [193, 239, 238, 195, 256].
However, a crucial challenge is off-policy evaluation for credible, data-driven estimates of the
benefits of these learned policies, that are less vulnerable to model assumptions.

Crucial assumptions such as unconfoundedness are likely violated in this setting: treatment
decisions probably included additional information not recorded in the database. (Indeed, the
clinical literature certainly discusses other aspects of patient state and potential actions not
included in the data). On the other hand, the comprehensive electronic health record (EHR)
contains the most important factors in clinical decision-making such as patient vitals. So, our
methods that develop robust bounds for off-policy evaluation of complex sequential policies
can be applicable here, in highlighting the sensitivity of current learned policies to potential
violations of sequential unconfoundedness. Since many research works used fitted-Q-iteration,
we compare confounding-robust policies vs. naive policies for prescriptive insights.

We now describe the specific MDP data primitives. Following the data preprocessing
of [170] and cohort definition of [177], the data covers an observation period of 72 hours
past the onset of sepsis. Observed actions, administration of fluids or vaso-pressors, were
categorized by volume and segmented into quantiles per each action type based on obser-
vational frequency. This leads to 25 possible discrete actions. Demographic and contextual
features include age, gender, weight, ventilation and re-admission status. Other time-varying
features include patient information such as blood pressure, heart rate, INR, various blood
cell counts, respiratory rate, and different measures of oxygen levels (see [170, Table 2] for
exact description). The reward function takes on three values: R = {−1, 0,+1} where −1
indicates patient death, +1 indicates leaving the hospital; and 0 for all other events.

Fitted-Q Iteration with Gradient Boosting

For this case study, we perform flexible non-parametric regression using gradient-boosted
trees in place of the simple linear models in our earlier simulations [98, 125]. Features include
the full state vector and indicators for each action.

We begin with nominal (non-robust) estimation using standard fitted-Q iteration with
gradient-boosted regression as our approximating function class. Implementing the robust
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estimator for MSM parameter Λ requires only a few simple modifications of nominal FQI with
off-the-shelf tools. First, we estimate the behavior policy πb using a gradient-boosted classifier.
Then within the FQI loop, we estimate a conditional quantile model using gradient-boosted
regression with the quantile loss, which is supported natively in the scikit-learn package.
Finally, we use the estimated quantiles to compute the orthogonalized pseudooutcomes, and
fit a model for the Q function with gradient-boosted regression. We compute the value
functions and optimal policies for a time horizon up to T = 11.

MIMIC Results

This case study is not meant to be a medical analysis, but concretely illustrates why caution
is needed for interpreting offline RL applied to healthcare settings. In Figure 6.1a, we plot the
distribution of the initial state value function, V0(s), with horizon T = 11 from non-robust
FQI over the initial states in our dataset. The expected outcome under the nominal optimal
policy is strongly positive for the majority of the population, including the 10% quantile.

By contrast, we plot the value function for the robust optimal value function (with Λ = 2)
in Figure 6.1b. By construction, the robust value estimates are far more pessimistic. The
average value of the robust optimal policy is still greater than zero, with a fairly substantial
mass around +0.5. However, there is also a large negative tail with a strongly negative 10%
quantile. We have truncated the plot at −1.0, which represents death, and notice that there
are nearly 1000 starting states with value function ≤ −1.0. The more pessimistic outlook
of the robust optimal value function represents the fact that some of the positive outcomes
in the historical data could be due to spurious correlations with unobservables instead of a
causal effect of the observed treatment.

We can also perform robust policy evaluation on the nominal optimal policy. We plot
the corresponding value function over the initial states in Figure 6.1c. First, note that the
expected robust value of the nominal optimal policy is actually negative. In other words,
given only a modestly strong unobserved confounder (Λ = 2), it’s possible that the nominal
optimal policy does more harm than good. Furthermore, the number of initial states whose
value is ≤ −1.0 has grown from about 1000 to about 1600, which now subsumes the 10%
quantile. So under robust evaluation, not only does the nominal optimal policy have a slightly
negative expected value for this distribution of patients, but it also substantially worsens the
tail risk of death.

Beyond the value function, we also explore at a high level how robustness changes the
actions suggested by the optimal policy. In Figure 6.2, we compare the counts of actions
taken in the historical data with the optimal actions from the nominal and robust policy.
Figure 6.2a shows log counts of the historical actions, which include a large number of patients
with no treatment, many patients being treated with fluid but not vasopressors, and then a
smaller number of patients receiving a variety of vasopressor intensities. The nominal optimal
policy falls roughly the same pattern but made sharper; most patients are given either no
treatment or the lowest level of IV fluid. Of the others, the majority are given a medium or
large volume of both fluid and vasopressors. In contrast, the robust optimal policy makes two
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(a) (b) (c)

Figure 6.1: Histograms of initial state value functions over the observed initial states in the
MIMIC-III dataset. From left to right, the nominal value; the robust value for Λ = 2; and
the robust value of the nominal optimal policy for Λ = 2. Each histogram includes a solid
vertical line for the mean and the 10% quantile.

key changes: there are more patients assigned to no treatment at all, but also more patients
assigned to higher levels of vasopressors.

(a) Historical (b) Nominal Policy (c) Robust Policy, Λ = 2

Figure 6.2: Log of one plus counts of actions in the MIMIC-III dataset. The left panel plots
the log counts of the actual actions observed, while the middle and right panels plot the log
counts of the nominal and robust policy actions, respectively, given the observed states.

Finally, in Figure 6.3 we plot how the robust optimal actions change as the sensitivity
parameter Λ is increased. At the far left, we have Λ = 1, which corresponds to the nominal
policy, where a substantial fraction of patients are assigned to receiving only IV fluid. As Λ
increases, the number of untreated increases dramatically, while the number treated with
only fluid drops. At the same time, the number treated with both vasopressors and fluids
increases by over ten times from Λ = 1 to Λ = 2.5. Note that we end the plot at Λ = 2.5.
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We find that at higher values — even Λ = 3 — the robust value is mostly negative, with
a large mass below −1.0. This reflects the fact that off-policy evaluation of the MIMIC-III
data is highly sensitive to unobserved variables.

Figure 6.3: Counts of actions taken by the robust optimal policy over the states seen in
the observed data as a function of the sensitivity parameter Λ. We combine the actions
into four coarse groups: no treatment, only IV fluid, only vasopressors, and both fluid and
vasopressors.

6.7 Conclusion

We developed a robust fitted-Q-iteration algorithm under memoryless unobserved confounders,
leveraging function approximation, conditional quantiles, and orthogonalization. Importantly,
our algorithm can be implemented using only off-the-shelf tools by changing only a few lines
of code of standard FQI, making it easily accessible to practitioners. We derived sample
complexity guarantees, demonstrated the effectiveness of our algorithm and the benefits
of orthogonality in simulation experiments, and then provided a case-study with complex
real-world healthcare data. Finally, we showed how to use our robust bounds to warm-start
online reinforcement learning, demonstrating substantial performance benefits, whereas naive
use of the offline data for warm-starting can actually hurt performance. Interesting directions
for future work include falsifiability-based analyses to draw on competing identification
proposals, extending to other models, model-selection procedures for the conditional quantile
and mean models, and a formal theoretical analysis of warm-starting with our robust bounds.
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Chapter 7

Conclusion and Looking Forward

In this dissertation, I considered roles for machine learning in macroeconomics. I began with a
case study on a pure prediction problem in Icelandic tax data, and then considered the use of
machine learning in observational causal inference — first, with all relevant variables observed,
and then with potentially unobserved confounders. While this dissertation is largely technical
in nature, much of the work has had direct applications in my applied macro research. To
conclude, I will give an overview of some successful applications, and briefly discuss promising
future work.

Broadly speaking, there are two broad avenues for applications of my work in macroe-
conomics. The first is “direct” causal inference applications in empirical macroeconomics.
One promising example, is to estimate the marginal propensity to consume (MPC) from
income and expenditure data, ala [37, 104]. From Chapter 2, we have some evidence that
non-linearity is relevant for the bottom of the income distribution, and that that non-linearity
is appropriately modelled by gradient boosted tree methods. The next step would be to
estimate a nonparametric scalar estimand for the MPC, such as the average derivative effect.
Methodology for this setting follows directly from Chapter 4, by using the Riesz representer
corresponding to the average derivative. This is a good starting point, but note that for
MPC estimation, one usually pairs an estimate of the average derivative effect with an
instrumental variable (IV) for identification. Using machine learning for nonparametric IV
regression requires more work than the presentation in Chapter 4, and I have results in
this direction forthcoming. Another “direct” causal inference problem with a very similar
structure is monetary policy impulse response estimation using “local projections” [148]. In
this application, the equivalence results for linear regression in Chapter 4 are particularly
relevant, because with them we can rewrite local projections as a weighting estimator. In
doing so, we can more clearly connect common macro time series estimators with explicit
potential outcomes and selection mechanisms, in the spirit of the project laid out in [241].
Likewise, our CVAR-based sensitivity analysis from Chapter 6 can be applied to these impulse
responses.

The second broad way to apply the work in this dissertation is to the development of
economic theory. An individual use of observational causal inference as outlined in this
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dissertation can only go so far in the study of macro policy. Very often we do not have data
for the specific intervention we are interested in, but instead have to synthesize evidence
from many related interventions. We do this by building a structural/theoretical model of
the underlying mechanisms. Perhaps surprisingly, the methodology in this dissertation is
quite useful at helping to build these theoretical models. Chapter 2 for example describes a
prediction methodology that estimates conditional expectations to construct income shocks.
Summary statistics of these conditional expectations and shocks can be used to discipline
income processes that are fed into theoretical models. Similarly, via the Riesz representer,
other moments used in the calibration of structural models can be estimated using machine
learning together with the techniques in Chapter 3 and 4. In forthcoming work, I apply
this to the classic “age-time-cohort” problem for income data. In future work, I would like
to study how the choice and construction of these data moments might enable predictive
guarantees for new interventions and new settings. This is the ultimate goal: to be able to
use the interventions we have observed to design new policies, and there is no way to do this
without understanding the underlying mechanisms.
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Appendix A

Additional Materials: Duality for
Balancing

A.1 Proof of Theorem 3.4.1

We derive a dual formulation of the optimization problem:

inf
R∈M(P )
ER[1]=1

D2(R||P )

such that IPMF(Q,R) ≤ δ,

where δ > δmin. As a reminder, D2(R||P ) := EP [(dR/dP )
2 − 1] is the χ2 divergence and

IPMF(Q,R) := supf∈F{EQ[f ]−ER[f ]}. Note that this problem takes the form of a projection
in D2 of P onto an IPM ball around Q.

By the definition of δmin, the constraint set is non-empty and convex. D2 is strictly convex
in R and 0 ≤ D2(R||P ) <∞ so there is a unique solution.

When P already satisfies the IPM constraint, then R = P has objective 0 and we’re
done (i.e. we don’t need to do a projection, P is already on or in the ball). Otherwise, by
standard use of the Lagrangian, we claim (details in Section A.1 below) that for some µ > 0
corresponding to δ, this problem is equivalent to:

inf
R∈M(P )
ER[1]=1

{
(1/µ)D2(R||P ) + sup

f∈F
{EQ[f ]− ER[f ]}

}
.

Exchanging hard subproblem for an easy subproblem

The inner supremum is hard to solve for arbitrary F . However, we can make a series of
transformations to get an easier subproblem with a closed-form solution:
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inf
R∈M(P )
ER[1]=1

{
(1/µ)D2(R||P ) + sup

f∈F
{EQ[f ]− ER[f ]}

}
= inf

R∈M(P )
ER[1]=1

sup
f∈F

{
(1/µ)D2(R||P ) + EQ[f ]− ER[f ]

}
= sup

f∈F
inf

R∈M(P )
ER[1]=1

{
(1/µ)D2(R||P ) + EQ[f ]− ER[f ]

}
= sup

f∈F

{
EQ[f ] + inf

R∈M(P )
ER[1]=1

{(1/µ)D2(R||P )− ER[f ]}
}

The only non-trivial step is the interchange of the inf and the sup. This follows by Sion’s
Minimax Theorem [282]. We assumed that X was a separable Banach space so we have the
necessary topological properties. The objective on the second line is continuous and strictly
convex in R and is linear in f . The set F is convex and closed and R is in a linear subspace.
Furthermore, we know there is a unique solution R∗, and so we can always find the necessary
compact subset of the linear subspace for R to apply the theorem [e.g. ala 119].

Solving the easy subproblem with the variational representation

Next, we apply the variational representation of ϕ-divergences to get a dual formulation of
the inner sub-problem over R. Define: ϕ(x) = (1/µ)(x2 − 1) which has convex conjugate
ϕ∗(y) = (µ/4)y2 + (1/µ). The Lagrangian for the infimum for a fixed f is:

Lf (R, λ) = Dϕ(R||P )− ER[f − λ]− λ

We get the first-order condition:

ϕ′(dR∗/dP ) = f − λ∗ =⇒ dR∗

dP
=
µ

2
(f − λ∗)

where λ∗ solves the supremum supλ≥0 g(λ) over the dual function:

g(λ) := −λ+ inf
R∈M(P )

{Dϕ(R||P )− ER[f − λ]}

= −λ− sup
R∈M(P )

{ER[f − λ]−Dϕ(R||P )}

= −λ−D∗
ϕ(f − λ),

where D∗
ϕ is the convex conjugate of the ϕ-divergence as a function of R for a fixed P . We

can then use the standard result [Proposition 4.2 40], D∗
ϕ(f) = EP [ϕ

∗(f)].
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Using this form of the dual function, we can write our subproblem over R as:

inf
R∈M(P )
ER[1]=1

{(1/µ)D2(R||P )− ER[f ]} = sup
λ≥0

{−λ− EP [ϕ
∗(f − λ)]}

Plugging in ϕ∗, we can solve for λ∗ by straightforward calculus:

λ∗ = EP [f ]−
2

µ
.

Now using the first-order conditions, we can find the optimal R∗:

dR∗

dP
=
µ

2
(f − EP [f ]) + 1

and after some algebra, a closed form of the subproblem:

inf
R∈M(P )
ER[1]=1

{(1/µ)D2(R||P )− ER[f ]} = −EP [f ]−
µ

4
VarP [f ].

Writing the original problem as a single optimization problem over
F
Finally, we substitute this form of the sub-problem into our original optimization problem:

inf
R∈M(P )
ER[1]=1

{
(1/µ)D2(R||P ) + sup

f∈F
{EQ[f ]− ER[f ]}

}
= sup

f∈F

{
EQ[f ] + inf

R∈M(P )
ER[1]=1

{(1/µ)D2(R||P )− ER[f ]}
}

= sup
f∈F

{
EQ[f ]− EP [f ]−

µ

4
VarP [f ]

}
and therefore by duality:

dR∗

dP
=
µ

2
(f ∗ − EP [f

∗]) + 1

where f ∗ achieves this supremum.

Recovering δ in terms of µ

Most of the proof of the theorem is complete. We just need to rewrite µ in terms of the original
tuning parameter δ. Remember from the projection perspective, that µ > 0 corresponds to
P outside of the IPM ball. As a result:

δ = sup
f∈F

{EQ[f ]− ER∗ [f ]}
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We just proved that R∗ achieves the infimum of the objective which equals the supremum
of the dual:

IPMF(Q,R
∗) + (1/µ)D2(R

∗||P )

= EQ[f
∗]− EP [f

∗]− µ

4
VarP [f

∗]

=
(
EQ[f

∗]− ER∗ [f ∗]
)
+
(
ER∗ [f ∗]− EP [f

∗]− µ

4
VarP [f

∗]
)

But then, using the variational representation of the ϕ-divergence and the definition of
the IPM we have:

IPMF(Q,R
∗) + (1/µ)D2(R

∗||P )

= sup
f∈F

{
EQ[f ]− ER∗ [f ]

}
+ sup

f

{
ER∗ [f ]− EP [f ]−

µ

4
VarP [f

∗]
}

=
(
EQ[f

∗]− ER∗ [f ∗]
)
+
(
ER∗ [f ∗]− EP [f

∗]− µ

4
VarP [f

∗]
)

which implies

δ = sup
f∈F

{
EQ[f ]− ER∗ [f ]

}
= EQ[f

∗]− ER∗ [f ∗]

Finally, substituting the form of R∗ in terms of f ∗ we get

δ = EQ[f
∗]− EP [f

∗]− µ

2
VarP [f

∗]

=⇒ µ = 2

(
EQ[f

∗]− EP [f
∗]− δ

VarP [f ∗]

)
,

which concludes the proof.

Transformation from δ to µ via Lagrangian

Here we provide the details for our earlier claim that we can rewrite the problem over δ as a
problem over µ. The dual function corresponding to the original δ problem is:

g(µ) = inf
R∈M(P )
ER[1]=1

L(R, µ)

= inf
R∈M(P )
ER[1]=1

{D2(R||P ) + µ(sup
f∈F

{EQ[f ]− ER[f ]} − δ)}

where L is the Lagrangian. Notice that the original optimization problem has a strictly
convex objective. Furthermore, since the function class F is convex and closed, δ > δmin, and
the individual constraints for f ∈ F are all linear, the feasible set is convex with a non-empty
interior. Then by standard convex duality there exists R∗ and µ∗ ≥ 0 such that R∗ solves the
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original optimization problem, µ∗ achieves supµ≥0 g(µ), and R
∗ achieves the infimum inside

g(µ∗).
By complementary slackness, µ∗ = 0 only when the worst-bias constraint doesn’t bind

which only occurs when R = P already satisfies the IPM constraint. Then R = P has
minimum variance and we’re done. So we only need to consider the case where µ∗ > 0.

At µ = µ∗, the solution to:

inf
R∈M(P )
ER[1]=1

{
D2(R||P ) + µ sup

f∈F
{EQ[f ]− ER[f ]}

}
has the same solution as the original problem. Furthermore, since µ∗ > 0, we can apply one
more transformation without affecting the infimum to get:

inf
R∈M(P )
ER[1]=1

{
(1/µ)D2(R||P ) + sup

f∈F
{EQ[f ]− ER[f ]}

}
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A.2 General Statement and Proof for Remark 3.1

Theorem (Birrell et al). Let ϕ be a convex function such that ϕ(1) = 0 with convex conjugate
ϕ∗ such that {ϕ∗ <∞} = R. Let ϕµ denote the weighted function ϕµ(x) = (1/µ)ϕ(x) and ϕ∗

µ

its convex conjugate. Then under Assumption 2, for δ > 0, ∃µ ≥ 0 such that the optimization
problem,

inf
R∈M(P )
ER[1]=1

Dϕ(R||P )

such that IPMF(Q,R) ≤ δ,

has a solution,

R∗ = P when µ = 0,

dR∗

dP
= (ϕ∗

µ)
′(f ∗ − λ∗) otherwise,

where f ∗ and λ∗ achieve the supremum,

sup
f∈F

{
EQ[f ]− inf

λ∈R
{λ+ EP [ϕ

∗
µ(f − λ)]}

}
.

The proof begins with an argument identical to 1.5 above which gives the equivalent
optimization problem:

inf
R∈M(P )
ER[1]=1

{
Dϕµ(R||P ) + IPMF(Q,R)

}
.

From here, conceptually, the proof is similar to above, except we cannot apply our proof
directly because general ϕ loses some of the nice properties of the quadratic. Instead, using
the theory of infimal convolutions, [36] prove that for Polish X and any ϕ-divergence such
that {ϕ∗ <∞} = R:

inf
R∈M(P )
ER[1]=1

{
Dϕ(R||P ) + IPMF(Q,R)

}
= sup

f∈F

{
EQ[f ]− inf

λ∈R
{λ+ EP [ϕ

∗(f − λ)]}
}

and so in particular, it holds for ϕµ above.
This result follows from Theorems 2.15 and 3.3 in [36] with one minor modification: we

do not require that limy→−∞ ϕ∗(y) < ∞ which results in R∗ no longer being a probability
measure because we lose statement (174) in their proof of Theorem C.6. This is in the spirit of
the arguments in [40]. In fact, since the original problem is a projection of P in ϕ-divergence
onto an IPM, we can interpret this as a version of [40] Theorem 5.1 which applies for the case
of finitely-many linear inequality constraints, generalized to the case of a linear inequality
constraint for each f in a convex and closed set F .
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A.3 Extension with non-negative weights

We can use the general Theorem to immediately get results for the case where we require
non-negative weights. This is identical to taking ϕ(x) = x2 − 1, but restricting the domain to
[0,∞). Then we have

ϕ∗
µ(y) =

µ

4
y21(y ≥ 0) +

1

µ

and applying the theorem, we get the dual formulation:

dR∗

dP
=
µ

2
(f ∗ − λ∗)1(f ∗ ≥ λ∗)

such that:

EP

[µ
2
(f ∗ − λ∗)1(f ∗ ≥ λ∗)

]
= 1

and f ∗ and λ∗ solve:

sup
f∈F

{
EQ[f ]− inf

λ∈R

{
λ+

µ

4
EP

[
(f − λ)21(f ≥ λ)

]}
+

1

µ

}
.

The minimax weights are extremely simliar to the minimax weights from Theorem 3.1. In
Theorem 3.1 we found a function f ∗, such that we de-meaned it, rescaled it, and then shifted
the result to get weights with expectation equal to 1. In the case where the weights are
non-negative, we can no longer just de-mean and add 1. Instead, we have to optimize over
all shifts λ which give expectation 1 after truncating at 0.
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A.4 Connection to surrogate loss for density ratio

estimation

A closely related literature implements regularized estimators of the density ratio via a
surrogate loss as first proposed in [219]. Similar connections have been made for balancing
weights; see the relation to propensity score estimation in [323, 29]. Here, we compare our
dual formulation based on variational representations to density ratio estimation with a
surrogate loss.

Consider the variational representation (3.11). Specializing to ϕ(x) = µ(x2 − 1) for µ > 0,
we can write the weighted χ2 divergence between Q and P as:

1

µ
D2(Q||P ) = sup

f

{
EQ[f ]− EP [f ]−

µ

4
VarP [f ]

}
,

where the supremum is over all real-valued measurable functions. If overlap holds then the
supremum is achieved by 2µ(dQ/dP ), otherwise D2(Q||P ) = ∞. The variational representa-
tion is identical to (3.12), except that the problem in (3.12) is restricted to functions in F .
We immediately have the following corollary:

Corollary A.4.1. Under the conditions in Theorem 3.4.1,

2

µ

dQ

dP
∈ F =⇒ f ∗ =

2

µ

dQ

dP
and

dR∗

dP
=
dQ

dP
.

If the density ratio exists and a scaled version belongs to the outcome function class, then
it is minimax optimal to reweight so that there is zero bias. If F is sufficiently flexible, then
this will always hold as µ→ ∞, as in the example from Section 3.5.

There is a clear similarity to density ratio estimation using ϕ-divergences as in [219]. The
form of their final estimator looks the same as ours: maximizing a variational representation
over a function class. However, our motivations and assumptions are entirely different.
[219] assumes that the density ratio exists and that it belongs to F . We do not make any
assumption about the density ratio. It could have some arbitrary functional form. We show
that the shape of the optimal weights is determined by the shape of f0, not by the shape of
dQ/dP .

If the density ratio exists, and our dual problem is solved over all measurable functions,
the only unique solution will be dQ/dP . In that sense, once we restrict to optimization over
F , it might be helpful to think of the balancing weights as a projection of the density ratio
onto our outcome function class. However, in general, we do not need a functional form for
the density ratio to specified. In fact, we do not need even require that the density ratio
exists.
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A.5 RKHS optimization problem

The optimization problem that implements our dual formulation using an RKHS for the
IHDP dataset is:

sup
f∈FB

H

{
EQ[f ]− EP [f ]−

µ

4
VarP [f ]

}
= sup

f=Kα
α∈Rn:αTKα≤B

{
fT eq − fT ep − (fT Ipf − (fT ep)

2)
}

where:

• ep ∈ Rn is a vector equal to 1/n0 for those indices corresponding to control group data
points and 0 otherwise

• eq ∈ Rn is a vector equal to 1/n0 for those indices corresponding to treatment group
data points and 0 otherwise

• Ip ∈ Rn×n is the matrix with ep on the diagonal.

We solve this problem using the scipy Python package.
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Appendix B

Additional Materials: Augmented
Balancing

B.1 Additional background and examples

Examples of general linear functionals via the Riesz representer

Example 1 (Counterfactual mean). Let Z = {0, 1} and ψ(m) = E[m(X, 1)]. Under SUTVA
and conditional ignorability, this estimand is equal to E[Y (1)]. The Riesz representer is the
IPW, α(X,Z) = Z/e(X).

Example 2 (Average derivative). Let Z ∈ R and ψ(m) = E
[

∂
∂z
m(X,Z)

]
. Under an

appropriate generalization of SUTVA and conditional ignorability, this estimand corresponds
to the average derivative effect of a continuous treatment. Under regularity conditions the

Riesz representer is given by α(X,Z) = −
d
dz

p(Z|X)

p(Z|X)
where p(z|x) is the conditional density of

Z given X.

Example 3 (Distribution shift). Consider an example without Z, following the machine
learning literature on covariate shift. Let p denote the source distribution of the observed data,
and let p∗ over X denote the target distribution. The estimand is then ψ(m) =

∫
X m(x)dp∗(x).

In a causal inference setting, this can recover the Average Treatment Effect on the Treated
(ATT) under SUTVA and conditional ignorability; i.e., let p be the distribution of covariates
and outcomes for units assigned to control and p∗ be the distribution of the covariates for
units assigned to treatment. The Riesz representer is the density ratio, α(X) = dp∗

dp
(X).

Example 4 (Exact balancing weights). The most common balancing weights estimation
problem finds the minimum weights that exactly balance each element of Φ. In the constrained
form, exact balancing solves

min
w∈Rn

∥w∥22 (B.1)

such that 1
n
wϕpj = ϕ̄qj for all j
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Examples of balancing weights

Example 5 (ℓ2 balancing). The ℓ2 balancing weights problem is usually expressed via its
penalized form:

min
w∈Rn

{
∥ 1
n
wΦp − Φq∥22 + δ∥w∥22

}
. (B.2)

The automatic form is a ridge-penalized regression for the Riesz representer.

Example 6 (ℓ∞ balancing). The constrained form of the ℓ∞ balancing weights problem is

min
w∈Rn

∥w∥22 (B.3)

such that ∥ 1
n
wΦp − Φq∥∞ ≤ δ

The automatic form is a lasso-penalized regression for the Riesz representer, sometimes known
as the Minimum Distance Lasso [55].

Example 7 (Kernel balancing). As a brief preview of the balancing problem in the infinite-
dimensional setting, we provide an example where F = H is a reproducing kernel Hilbert
space on X × Z with norm ∥ · ∥H and kernel K : (X × Z) × (X × Z) → R. Then for any
xi ∈ X , zi ∈ Z, the representer ϕ(xi, zi) := K(xi, zi, ·, ·) ∈ H. Using infinite-dimensional
matrix notation, we denote Φp ∈ Hn and Φq ∈ H as above. The penalized balancing weights
problem for F = H is:

min
w∈Rn

{
∥ 1
n
wΦp − Φq∥2H + δ∥w∥22

}
. (B.4)

See Appendix B.2 for details and references.

Causal inference

We now return to Example 1 above. Here the goal is estimating the unobserved potential
outcomes in an observational study. Let Y be the potential outcome under control [with
appropriate restrictions, such as SUTVA; 259], let p be the population of individuals in the
control condition, and let q be the population of individuals in the treatment condition. Then
Y is observed for population p but not for population q, and the missing mean, Eq[Y ], is
the average potential outcome under control for the individuals who in fact were treated.
Letting Y be the potential outcome under treatment, p the population of individuals in the
treatment condition, and q the population of individuals in the control condition, Eq[Y ] is the
average potential outcome under treatment for the individuals who in fact received control.

For both examples, the crucial assumption for identification is conditional ignorability : the
conditional distribution of Y given X is the same in the source and target populations. This
is also known as “conditional exchangeability,” “selection on observables,” or “no unmeasured
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confounding.” For our purposes, we will require the mean, but not distributional, version of
this assumption: Ep[Y |X] = Eq[Y |X].

Since we assume the conditional expectations are the same in the two populations, we
occasionally denote the common conditional mean functional without subscripts, E[Y |X].
Under this assumption, we can identify Eq[Y ] with the regression functional, also known as
the adjustment formula or g-formula:

Eq [Ep[Y |X]] = Eq [Eq[Y |X]] = Eq[Y ]. (B.5)

A complementary approach instead relies on the density ratio between the marginal
covariate distributions in the source and target populations, dq

dp
(X), also known as the Radon-

Nikodym derivative, importance sampling weights, or inverse propensity score weights (IPW).
1 This is also a special case of a Riesz representer [55]. Under an additional population overlap
assumption that q(x) is absolutely continuous with respect to p(x), we can identify Eq[Y ] via
the weighting functional, also known as the IPW functional :

Ep

[
dq

dp
(X) Y

]
= Ep

[
dq

dp
(X) Ep[Y |X]

]
= Eq[Ep[Y |X]] = Eq[Y ]. (B.6)

Finally, we can combine the regression and weighting functionals to create a third
identifying functional, known as the doubly robust functional [248]:

Eq [Ep[Y |X]] + Ep

[
dq

dp
(X) {Y − Ep[Y |X]}

]
. (B.7)

This functional has the attractive property of being equal to Eq[Y ] even if either one of dq
dp
(X)

or Ep[Y |X] is replaced with an arbitrary function of X, hence the term “doubly robust.”2

See [60, 167] for recent overviews of the active literature in causal inference and machine
learning focused on estimating versions of Equation (4.3).

The augmented estimators that we analyze in this paper are based on estimating this
doubly robust functional. These estimators augment an estimator of the regression functional
based on an outcome regression (or base learner) with appropriately weighted residuals.
Alternatively, they augment an estimator of the weighting functional with an outcome
regression-based estimator of the regression functional (subtracting off the implied estimator
of dq

dp
(X)Ep[Y |X]).

1Using Bayes Rule, we can equivalently express dq
dp (X) via the propensity score P (1p|X), where 1p is the

indicator that an observation from the size-proportional mixture distribution of p and q is from population p:
dq
dp (X) =

1−P (1p|X)
P (1p|X)

P (1p)
1−P (1p)

2This functional is equal to Eq[Y ] if Ep[Y |X] is replaced with an arbitrary well-behaved functional of

Xp, because the first and last terms cancel and we are left with the weighting functional Ep[
dq
dp (X)Y ]. It

is also equal to Eq[Y ] if dq
dp (X) is replaced with an arbitrary well-behaved functional of Xp, because the

Ep[h(X)(Y − Ep[Y |X])] is equal to 0 for any h and therefore we are left with the regression functional
Eq [Ep[Y |X]].
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Recall that under linearity the imbalance over all f ∈ F has a simple closed form. For
any f(x, z) = θ⊤ϕ(x, z) ∈ F , E[h(X,Z, f)] = θ⊤E[h(X,Z, ϕ)], where h(X,Z, ϕ) is short-hand
for the vector with jth entry h(X,Z, ϕj). We can then write the imbalance in terms of a
transformed feature space h(X,Zϕ), giving a closed form that we can readily calculate by
applying the linear functional ψ from (4.1) to the features ϕ :

ImbalanceF(w) := sup
f∈F

{
E[w(X,Z)f(X,Z)]− E[h(X,Z, f)]

}
= sup

∥θ∥≤1

{
θ⊤E[w(X,Z)ϕ(X,Z)]− θ⊤E[h(X,Z, ϕ)]

}
=
∥∥E[w(X,Z)ϕ(X,Z)]− E[h(X,Z, ϕ)]

∥∥
∗.

Consider the counterfactual mean estimand ψ(m) = E[m(X, 0)|Z = 1]. We have

ImbalanceF(w) =
∥∥E[w(X,Z)ϕ(X,Z)]− E[ϕ(X, 0)|Z = 1]

∥∥
∗.

For simplicity let ϕ(x, z) = x. Now we get ImbalanceF(w) = |E[w(X,Z)X] − E[X|Z = 1]|
and therefore, the balancing optimization problem finds weights w that reweight the total
mean E[X] to approximate the conditional mean E[X|Z = 1].

Equivalences of outcome regression and balancing weighting
methods

For the special case of ℓ2 kernel balancing, the balancing weights problem is numerically
equivalent to directly estimating the conditional expectation E[Yp|Φp] via kernel ridge re-
gression and applying the estimated coefficients to Φ̄q. We begin with the special case of
unregularized linear regression and then present the more general setting. We initially present
the results assuming d < n and that Φp has rank d, turning to the high-dimensional case
with d > n in Appendix B.2.

Linear regression. Ordinary least squares regression is equivalent to a weighting estimator
that exactly balances the feature means. See [102] for discussion in the survey sampling
literature; see [245], [1], [173], and [51] for relevant discussions in the causal inference literature.

In particular, let ŵexact be the solution to the the exact balancing weights problem in
Example 4 in the main text. Let β̂ols = (Φ⊤

p Φp)
−1Φ⊤

p Yp be the OLS coefficients from the
regression of Yp on Φp. We then have the following numerical equivalence:

Ê[Φqβ̂ols] = Ê[ŵexact ◦ Yp] (B.8)

Φq (Φ
⊤
p Φp)

−1Φ⊤
p Yp︸ ︷︷ ︸

β̂ols

= Φq(Φ
⊤
p Φp)

−1Φ⊤
p︸ ︷︷ ︸

1
n
ŵexact

Yp,

where the weights have the closed form 1
n
ŵexact = Φq(Φ

⊤
p Φp)

−1Φ⊤
p .
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Ridge regression. This equivalence immediately extends to ridge regression [284, 130,
152].3 Let ŵδ

ℓ2
be the minimizer of the ℓ2 balancing weights problem in Example 5 in the

main text, with hyperparameter δ. Let

β̂δ
ridge := argmin

β∈Rd

{
∥Yp − Φpβ∥22 + δ∥β∥22

}
(B.9)

be the ridge regression coefficients from least squares regression of Yp on Φp. We then have
the following numerical equivalence:

Ê[Φqβ̂
δ
ridge] = Ê[ŵδ

ℓ2
◦ Yp] (B.10)

Φq (Φ
⊤
p Φp + δI)−1Φ⊤

p Yp︸ ︷︷ ︸
β̂δ
ridge

= Φq(Φ
⊤
p Φp + δI)−1Φ⊤

p︸ ︷︷ ︸
1
n
ŵδ

ℓ2

Yp,

where the weights have the closed form 1
n
ŵδ

ℓ2
= Φq(Φ

⊤
p Φp + δI)−1Φ⊤

p . Thus, the estimate
from ridge regression is identical to the estimate using the ℓ2 balancing weights. We leverage
this equivalence in Section 4.3 below.

Kernel ridge regression. In general, the same equivalence holds in the non-parametric
setting where ϕ is the feature map induced by an RKHS. In particular, let F = {f ∈ H :
∥f∥H ≤ r}, where H is a reproducing kernel Hilbert space (RKHS) on X × Z with kernel
K, ∥ · ∥H denotes the norm of the RKHS, and r > 0. Then the equivalence above holds for
ϕ(x, z) := K(x, z, ·, ·). Although ϕ is typically infinite-dimensional, the Riesz Representer
Theorem shows that the least squares regression and, equivalently, the balancing optimization
problem have closed-form solutions. The least squares regression approach is kernel ridge
regression and the weighting estimator is kernel balancing weights [see 126, 171]. [130]
leverage this equivalence to analyze the asymptotic bias of kernel balancing weights. For
further discussion of this equivalence see [116, 152].

Finally, we briefly mention some additional papers that discuss relevant equivalences. In
the context of panel data, [271] establish connections between different forms of regression,
which is especially relevant for our discussion of high-dimensional features in Appendix B.2.
In addition, [191] provide an interesting alternative perspective by demonstrating that a large
class of outcome regression estimators can be viewed as implicitly estimating the density
ratio of the covariate distributions in the two treatment groups. Our results generalize and
unify many of these existing numeric equivalences.

3See [123] for an interesting connection of this equivalence to experimental design. See [28] and [271] for
related applications in the panel data setting.
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B.2 Details for when d > n

In this section, we extend our results to the high-dimensional setting. In all that follows we
will assume that d > n and we will assume Φ⊤

p has rank n.4 For d = ∞, we replace Rd with
any infinite-dimensional Hilbert space H and we require the norm defining F to be the norm
of the Hilbert space. In this case, it should be understood that Φp ∈ Hn.

Balancing weights when d > n

In the main text, recall that there are three equivalent versions of the balancing weights
problem: the penalized, constrained, and automatic form with hyperparameters δ1, δ2, δ3 ≥ 0
respectively. When Φ⊤

p Φp is no longer invertible, a unique solution may fail to exist for certain
values of these hyperparameters. We provide the relevant technical caveats here.

We begin by mentioning that for δ1 > 0, the penalized form of the balancing weights
optimization problem is strictly convex, and therefore a unique solution exists, regardless of
whether d > n. However, when δ1 = 0, there could potentially be infinite many solutions. In
this setting, we choose the one with the minimum norm:

min
w∈Rn

∥w∥22 (B.11)

such that ∥wΦp − Φq∥2∗ = min
v

∥vΦp − Φq∥2∗.

If we define δmin := minv ∥vΦp − Φq∥2∗, we see that the minimum norm solution in
Equation (B.11) corresponds to a solution to the constrained form of balancing weights with
δ2 = δmin. Importantly, no solution exists for δ2 < δmin, and we must make the additional
restriction that δ2 ≥ δmin. In particular, no solution exists for δ2 = 0 and we cannot achieve
exact balance; that is, for all w, wΦp ̸= Φ̄q.

As in the penalized form, the automatic form is strictly convex and a unique solution
exists for δ3 > 0. When δ3 = 0 we choose the minimum norm solution: by duality this will
be equivalent to the minimum norm solution to the penalized problem [see 45].

Note that for d = ∞, each “row” of Φp is a vector in a Hilbert space H. To solve the
balancing weights problem computationally, we need a closed-form solution to the Hilbert
space norm ∥ · ∥H. For example, this is a tractable computation when H is an RKHS.

[278] gives the automatic form of this problem. See also [312], [126], and [152].

Equivalences from Appendix B.1 when d > n

We now extend the equivalences from Appendix B.1 to the high-dimensional case. Let δ ≥ 0
be the hyperparameter for the penalized form of balancing weights — as we note above, this

4Alternatively, we could follow [21] and assume that, almost surely, the projection of Φp on the space
orthogonal to any eigenvector of E[ΦpΦ

⊤
p ] spans a space of dimension n. But as our results are numerical this

has no real advantage.
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is important to state explicitly, since the constrained form will not have a solution for all
values of its hyperparameter. For hyperparameter δ > 0, the solutions to ℓ2 balancing weights
and ridge regression are identical as in Equation (B.9) with no alterations; ridge regression
works by default when d > n. On the other hand, when δ = 0, there exist infinitely many
solutions to the normal equations that define the solution to the OLS optimization problem.
Since (Φ⊤

p Φp) is not invertible, Equation (B.9) does not apply directly. Instead, we introduce
the minimum norm solution to OLS:

min
β∈Rd

∥β∥22

such that ∥Φpβ − Yp∥22 = min
β′

∥Φpβ
′ − Yp∥22.

See [21] for an extensive discussion of this optimization problem and its statistical properties
as an OLS estimator. For d > n, the minimum norm solution is:

β̂ols := (Φ⊤
p Φp)

†Φ⊤
p Yp = Φ⊤

p (ΦpΦ
⊤
p )

−1Yp,

where A† denotes the pseudoinverse of a matrix A. Note that the definition holds in
general.5 In the low-dimensional setting in the main text, (Φ⊤

p Φp) is invertible, and so
(Φ⊤

p Φp)
† = (Φ⊤

p Φp)
−1. The second equality holds only when d > n.

A version of Equation (B.8) holds between the minimum norm ℓ2 balancing weights and
minimum norm OLS estimators. Because the minimum norm ℓ2 balancing weights do not
achieve exact balance, we change the notation from ŵexact to ŵ

0
ℓ2
. In this setting, ∥ · ∥∗ = ∥ · ∥2

and the minimum-norm balancing weights problem in Equation (B.11) is also a minimum
norm linear regression, but of Φ̄q ∈ Rd on Φ⊤

p ∈ Rd×n:

ŵ0
ℓ2
= Φ⊤

p (Φ
⊤
p Φp)

†Φ̄q = (ΦpΦ
⊤
p )

−1ΦpΦ̄q.

Therefore, Equation (B.8) holds by replacing the inverse with the pseudo-inverse:

Ê[Φqβ̂ols] = Ê[ŵ0
ℓ2
◦ Yp]

Ê[Φq (Φ
⊤
p Φp)

†Φ⊤
p Yp︸ ︷︷ ︸

β̂ols

] = Ê[Φq(Φ
⊤
p Φp)

†Φ⊤
p︸ ︷︷ ︸

ŵ0
ℓ2

◦Yp],

Ê[Φq Φ
⊤
p (ΦpΦ

⊤
p )

−1Yp︸ ︷︷ ︸
β̂ols

] = Ê[ΦqΦ
⊤
p (ΦpΦ

⊤
p )

−1︸ ︷︷ ︸
ŵ0

ℓ2

◦Yp].

Propositions 4.3.1 and 4.3.2 when d > n

The results in Propositions 4.3.1 and 4.3.2 apply to the setting where d > n without any
further alteration using the pseudo-inverse.

5For example, when Φp ∈ Hn for an infinite-dimensional Hilbert space H, (Φ⊤
p Φp)

† is guaranteed to exist,
since it is bounded and has closed range.
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Proof of Proposition 4.3.1.

Y ⊤
p Φpθ̂

δ = Y ⊤
p ΦpΦ

†
pΦpθ̂

δ = Y ⊤
p Φp(Φ

⊤
p Φp)

†Φ⊤
p Φpθ̂

δ = β̂olsΦ̂q,

where the first two equalities follow from the pseudoinverse identities A = AA†A and
A† = (A⊤A)†A⊤ for any matrix A.

Likewise Proposition 4.3.2 holds exactly for β̂ols defined with the pseudoinverse.

The RKHS Setting

The results for d = ∞ can be computed efficiently for reproducing kernel Hilbert spaces. For
notational simplicity, we will consider the distribution shift setting from Example 3. Let H
be a possibly-infinite-dimensional RKHS on X with kernel K and induced feature map via
the representer theorem, ϕ : X → H with ϕ(x) = K(x, ·). Let ∥ · ∥H denote the norm of H.
Let Kp be the matrix with entries K(xi, xj), where xi, xj ∈ X are the ith and jth entries of
Xp. Then ΦpΦ

⊤
p = Kp is invertible.

We will write out the versions of the main results for F = H to demonstrate how to
compute the corresponding results for RKHSs even though d = ∞. Denote the solution to
the regularized least squares problem in H with λ ≥ 0:

f̂ δ := argminf∈H∥f(Xp)− Yp∥22 + λ∥f∥2H.

This is equivalent to the following problem by the representer theorem:

β̂δ
H := argminβ∈Rn∥Kβ − Yp∥22 + λβKβ

= (Kp + λI)−1Yp.

Let Kx,p ∈ Rn be the row vector with entries K(x, xi) where x is an arbitrary element of X
and xi is the ith entry of Xp. Then for any element x ∈ X , f̂ δ(x) = Kx,pβ̂

δ
H. In particular, let

define Kq,p as the matrix with (i, j)th entry K(xqi, xpj) where xqi is the ith sample from the

target population and xqj is the jth entry of Xp. Furthermore, define K̄q,p := Ê[Kp,q] ∈ Rn.
Then, for any solution ŵδ

H to the penalized form of balancing weights with function class F
and hyperparameter δ ≥ 0:

ŵδ
H = (Kp + λI)−1K̄q,p. (B.12)

The proof follows from the closed-form of ImbalanceH(w), known as the Maximum Mean
Discrepancy (MMD) [116]; see, e.g., [130, 152, 45].

With these preliminaries, we immediately have the following equivalence from [130], which
generalizes Appendix B.1 to the RKHS case:

Ê[Kq,pβ̂
δ
H] = Ê[ŵδ

H ◦ Yp] (B.13)

Ê[Kq,p (Kp + δI)Yp︸ ︷︷ ︸
β̂δ
H

] = Ê[K̄q,p(Kp + δI)−1︸ ︷︷ ︸
ŵδ

H

◦Yp].
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Likewise, we have the following form for Proposition 4.3.1. Define K̂q,p := ŵδT
H Kp. Then, for

any δ ≥ 0:

Ê[ŵδ
H ◦ Yp] = Ê[K̂q,pβ̂

0
H].

The resulting expression for Proposition 4.3.2 is:

Ê[ŵδ
H ◦ Yp] + Ê

[(
Kq,p − K̂δ

q,p

)
β̂λ
H

]
= Ê[Kq,pβ̂aug],

where the jth element of β̂aug is:

β̂aug,j :=
(
1− aδj

)
β̂λ
H,j + aδj β̂

0
H,j

aδj :=
∆̂δ

j

∆j

,

where ∆j = K̄q,p,j − K̄p,j and ∆̂δ
j = K̂δ

q,p,j − K̄p,j with K̄p,j := Ê[Kp].
Identical versions for the RKHS setting apply to Section 4.4. These follow directly from the

expressions above so we will omit repeating them explicitly. Importantly, equivalent versions
for ℓ∞ balancing in Section 4.5 do not follow immediately because an infinite dimensional
vector space equipped with the ℓ1 norm does not form a Hilbert space. We conjecture that
such extensions could be constructed using the Reproducing Kernel Banach Space literature
[190].

B.3 Simulation Study Details

Setup

We consider 36 different data generating processes (DGPs) for our simulation study. For each
of them, we compare an oracle baseline with three feasible hyperparameter tuning schemes.

For the remainder of this section, we we say “numerically optimize”, we mean using the
scipy.optimize.minimize solver with tolerance 1e-12. In particular, we pre-compute the SVD
of the covariance matrix before solving, so that we can compute the pseudoinverse for all
involved expressions in closed form without performing traditional matrix inversion during
optimization.

For the oracle hyperparameters, we compute λ∗ by numerically optimizing the in-
distribution mean squared error for ridge regression from Section 4.6. We then fix λ = λ∗

and then numerically optimize the expression in Proposition 4.6.1 to get the MSE-optimal δ∗

The three feasible hyperparameter tuning schemes we consider, by contrast, use a particular
draw of Yp. In all cases, we choose λ by cross-validating a ridge outcome model. Then we
considering choosing δ by: (1) cross-validating balance, (2) cross-validating the Riesz loss, and
(3) setting δ equal to the cross-validated ridge λ. In all cases, cross-validation is performed
5-fold via numerical optimization as described above instead of using a grid.
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Note that the oracle hyperparameters are only optimal in a setting where we have to
pick a single λ and δ for each draw of Yp. Cross-validation picks a new λ for each Yp and so
can theoretically outperform the oracle. This happens very rarely, but a non-zero amount
of the time. Overall, the results in Table 4.1 suggest that this is still a very good baseline.
Finally, note that we could have picked λ by cross validation for the oracle, and then solved
for the optimal δ∗ separately for each Yp, fixing the CV value of λ. However, we cannot
guarantee that the resulting δ will have any optimality properties, since the mean squared
error expression is derived by averaging over Yp draws for fixed values of λ and δ. But this
could be an interesting follow up experiment.

In all cases, we take 1000 draws of Yp and then compute the squared error and take their
average as a monte carlo estimate of the mean squared error.

Synthetic DGPs

To compute the oracle λ∗ and δ∗ from Section 4.6, we need: the true coefficients, β0, the
population covariance matrix, E[ΦT

pΦp], a sample covariance matrix Σ̂, the conditional
variance σ2, and the target covariance mean, E[Φq]. So for each DGP, we need to specify
these five objects.

We consider synthetic DGPs with three basic setups. They all use n = 2000 and d = 50.
For each of the three setups, we draw a random β0, that is the absolute value of a d-dimensional
standard normal, that is then normalized to have 2-norm equal to 1. The three setups each
generate a popuation covariance matrix in roughly the same way. In each case, we choose a
maximum and minimum eigenvalue, ηmin and ηmax respectively. We then generate an equally
space grid between η

1/c
min and η

1/c
min for some curvature constant c. We choose the eigenvalues of

the covariance matrix to be the numbers in this grid raised to the cth power. We then draw
a random eigenvector matrix from the special orthogonal group, U , and form the covariance
matrix from the eigenvectors and eigenvalues in the standard way. Next, we draw an Φp with
n = 2000 samples from a mean-zero normal distribution with this covariance matrix, and
compute Σ̂ = ΦT

pΦp/n.
The three basic setups differ in teh choice of ηmin, ηmax, and c. For setting 1 we choose

ηmin = 1e− 4, ηmax = 3 and c = 5000. For setting 2 we choose ηmin = 1e− 8, ηmax = 3, and
c = 5000. For setting 3, we choose ηmin = 1e− 10, ηmax = 5, c = 10.

Then for each of these basic setups, we create 10 DGPs, by consider all combinations of a
list of E[Φq] and σ

2. We use σ2 ∈ {0.1, 2}. For E[Φq] we use: the vector of all 0.1, the vector
of all 2, and then 3 vectors chosen randomly uniformly between −1 and 1 which are then
scaled to have norm 1. Thus the total of 2× 5 = 10 DGPs for each setup.

Semi-Synthetic DGPs

We then also use semi-synthetic DGPs based on Lalonde Long and IHDP Long. For each
of these datasets, we recenter Φp and Yp to have mean-zero. Then we choose β0 to be the
coefficients from cross-validated ridge regression of Yp on Φp. We let σ2 be the variance of
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the residuals from this regression, and we choose the population covariance matrix to be
ΦT

pΦp/n. Next, we redraw a new matrix of samples from a mean-zero normal distribution

with this covariance matrix, and compute the sample covariance Σ̂ from these new samples.
For targets, we use the actual E[Φq], but also include two perturbed versions where all even
elements of E[Φq] are either increased or decreased by a proportion of the norm of E[Φq]. For
IHDP, the perturbation is 1/10 times the norm, for Lalonde, the perturbation is 1/100 times
the norm.

So since for each semi-synthetic setting we have three values of E[Φq] and one value of σ2,
that corresponds to 6 DGPs each, for a total of 36 together with the synthetic DGPs.
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B.4 Additional Proofs

Closed forms for ℓ2 and exact balancing weights. We derive the closed form for ℓ2 balancing
weights with parameter δ (with exact balance following as a special case). The optimization
problem:

min
w∈Rn

∥w⊤Φp − Φ̄q∥22 + δ∥w∥22 = w⊤ΦpΦ
⊤
p w − 2w⊤ΦpΦ̄q + δw⊤w

has first order condition:
2(ΦpΦ

⊤
p + δIn)w − 2ΦpΦ̄q = 0,

which gives the solution:

w∗ = (ΦpΦ
⊤
p + δIn)

†ΦpΦ̄q

= Φp(Φ
⊤
p Φp + δId)

†Φ̄q.

Proof of Proposition 4.4.1. We apply Proposition 4.3.2. We have aδj = Φ̂δ
q,j/Φ̄

δ
q,j. Then:

Φ̂δ
q = ŵδ

ℓ2
Φp = Φq(Φ

⊤
p Φp + δI)−1Φ⊤

p Φp.

Since we have assumed that Φ⊤
p Φp is diagonal, with jth diagonal entry, σ2

j , we have:

Φ̂δ
q,j =

(
σ2
j

σ2
j + δ

)
Φ̄q,j.

Plugging this back into aδj completes the proof.
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Proof of Proposition 4.4.3. Applying Proposition Proposition 4.4.1:

β̂ℓ2,j =

(
σ2
j

σ2
j + δ

)
β̂ols,j +

(
δ

σ2
j + δ

)
β̂λ
ridge,j

=

(
σ2
j

σ2
j + δ

)
β̂ols,j +

(
δ

σ2
j + δ

)(
σ2
j

σ2
j + λ

)
β̂ols,j

=
σ2
j (σ

2
j + λ+ δ)

(σ2
j + δ)(σ2

j + λ)
β̂ols,j

Then taking:
σ2
j (σ

2
j + λ+ δ)

(σ2
j + δ)(σ2

j + λ)
=

σ2
j

σ2
j + γj

and solving for γj gives:

γj :=
δλ

σ2
j + λ+ δ

which completes the proof.

Proof of Proposition 4.5.1. We begin with the constrained form of the balancing problem:

min
w∈Rn

∥w∥22
such that

∥∥wΦp − Φ̄q

∥∥
∞ ≤ δ.

Note that we can rewrite the norm constraint as two vector-valued linear constraints:

wΦp ⪯ Φ̄q + δ

−wΦp ⪯ −Φ̄q + δ,

which results in the Lagrangian,

L(w, µ, ν) = ∥w∥22 + µ⊤ (wΦp − Φ̄q − δ
)
− ν⊤

(
wΦp − Φ̄q + δ

)
.

The first-order conditions for the optimal w∗, µ∗, ν∗ are:

w∗ = −1

2
(Φpµ

∗ − Φpν
∗)

µ∗
j

(
w∗Φp,j − Φ̄q,j − δ

)
= 0,∀j

ν∗j
(
w∗Φp,j − Φ̄q,j + δ

)
= 0,∀j

µ∗
j , ν

∗
j ≥ 0,∀j

plus the linear constraints on w∗Φp. Note that the linear constraints plus the complimentary
slackness conditions imply that one of three mutually-exclusive cases holds for each covariate.
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Case 1: w∗Φp,j = Φ̄q,j − δ, in which case µ∗
j = 0. Case 2: w∗Φp,j = Φ̄q,j + δ, in which case

ν∗j = 0. Or Case 3: w∗Φp,j ∈ (Φ̄q,j − δ, Φ̄q,j + δ), in which case µ∗
j = ν∗j = 0.

Define:

θ∗j :=


0 if w∗Φp,j ∈ (Φ̄q,j − δ, Φ̄q,j + δ)

−µ∗
j/2 if w∗Φp,j = Φ̄q,j + δ

ν∗j /2 if w∗Φp,j = Φ̄q,j − δ.

Then we have w∗ = Φpθ
∗ from the first-order condition, and thus w∗Φp = (Φ⊤

p Φp)θ
∗. Using

the fact that (Φ⊤
p Φp) is diagonal, we get w∗Φp,j = σ2

j θ
∗
j .

Finally, we can plug this into the three cases that define θ∗. First, θ∗j = 0 when

σ2
j θ

∗
j ∈ (Φ̄q − δ, Φ̄q + δ)

=⇒ 0 ∈ (Φ̄q − δ, Φ̄q + δ)

=⇒ Φ̄q ∈ (−δ, δ).

Second, θ∗j = −µ∗
j/2 when σ2

j θ
∗
j = Φ̄q,j + δ, which implies µ∗

j = −2(Φ̄q,j + δ)/σ2
j . We then

apply the dual variable constraint:

µ∗
j ≥ 0

=⇒ − 2(Φ̄q,j + δ)/σ2
j ≥ 0

=⇒ Φ̄q,j ≤ −δ.

Third, θ∗j = ν∗j /2 when σ2
j θ

∗
j = Φ̄q,j − δ , which implies ν∗j = 2(Φ̄q,j − δ)/σ2

j . We then apply
the dual variable constraint:

ν∗j ≥ 0

=⇒ 2(Φ̄q,j − δ)/σ2
j ≥ 0

=⇒ Φ̄q,j ≥ δ.

Putting the cases together we get:

θ∗j :=


0 if Φ̄q ∈ (−δ, δ)
(Φ̄q,j + δ)/σ2

j if Φ̄q,j ≤ −δ.
(Φ̄q,j − δ)/σ2

j if Φ̄q,j ≥ δ.

This is exactly the soft-thresholding operator, which completes the proof.

Proof of Proposition 4.5.2. To obtain this result from the general form of aδj = ∆̂j/∆j in

Proposition 4.3.2, notice that the implied feature shift, ∆̂j = Φ̂δ
q,j − Φp,j = Tδ(Φq,j − Φp,j) is:

∆̂j =


0 if |∆j| < δ

∆j − δ if ∆j > δ

∆j + δ if ∆j < −δ

.
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Thus, for instance,
∆̂j

∆
=

∆j−δ

∆j
= 1− δ

∆j
when ∆j > δ.

Proof of Proposition 4.5.3. The result follows immediately from Proposition 4.5.2.

Proof of Proposition B.5.1. Rewriting the definition of γn with λn = δn, we have

γn =
λ2n

σ2 + 2λ2n
=

1

σ2λ−2
n + 2λ−1

n

.

Because σ2x2+2x = O(x2) as a function of x, and because λ−1
n is monotonically increasing,

σ2λ−2
n + 2λ−1

n = O(λ−2
n ). And λ−2

n = O(σ2λ−2
n + 2λ−1

n ) because σ2 ≥ 0 and λ−1
n > 0. Thus

σ2λ−2
n + 2λ−1

n ≍ λ−2
n .

Finally, note that for any two functions of n, fn and gn,

fn ≍ gn ⇐⇒ f−1
n ≍ g−1

n ,

and therefore,
γn ≍ λ2n.

B.5 Additional Details for Asymptotic Results

Our setup for the RKHS follows [278]. First, assume that the space X × Z is Polish. Let H
be an RKHS on X ×Z with corresponding kernel k satisfying standard regularity conditions
[278, Assumption 5.2] and let ηj, φj denote the eigenvalues and eigenfunctions respectively
of its kernel integral operator under p. Next, assume that the eigenvalues satisfy the decay
condition ηj ≤ Cj−b for some b > 1 and a constant C. The parameter b encodes information
on the effective dimension of H. For a bounded kernel, b > 1 [94]: the case where b = ∞
corresponds to a finite-dimensional RKHS; for the case with 1 < b <∞, the ηj must decay
at a polynomial rate.

We then assume that for some c ∈ [1, 2], the outcome function m(x, z) belongs to the set:

Hc :=

{
f =

∞∑
j=1

ajφj :
∞∑
j=1

a2j
ηcj
<∞

}
⊂ H, (B.14)

where c encodes additional smoothness of the conditional expectation. If c = 1, then by the
spectral decomposition of the RKHS, Equation (B.14) is equivalent to requiring m ∈ H;
choosing larger values of c corresponds tom being a smoother element ofH, with a “saturation
effect” kicking in for c > 2 [23]. Varying b (the effective dimension of the RKHS) and c (the
additional smoothness of the outcome function) changes the optimal rates for regression,
with larger values of both corresponding to faster rates of convergence.

Finally, we assume that the Riesz representer, α(x, z), of our linear functional estimand
also belongs to Hc. Under these conditions, [278] demonstrates that an augmented estimator
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combining kernel balancing weights and a kernel ridge regression base learner is root-n
consistent and asymptotically normal.

Following [48], Theorems 5.1 and 5.2 of [278] use hyperparameter schedules for λ and δ,
which depend on the effective dimension b and smoothness c:

λn = δn =


n−1/2 if b = ∞
n− b

bc+1 if b ∈ (1,∞), c ∈ (1, 2]

(n/ log(n))−b/(b+1) if b ∈ (1,∞), c = 1

,

We can compute the implied augmented hyperparameter sequence γn using the following
proposition.

Proposition B.5.1. Let λn > 0 be any monotonically decreasing function of n and let
δn = λn. Then:

γn :=
λnδn

σ2 + λn + δn
≍ λ2n.

The standard ridge regression case corresponds to the finite-dimensional setting with

b = ∞. When c > 1, the optimal rate for λn is n− b
bc+1 ; the implied hyperparameter is then

order n−2b/bc+1 ∈ (n−2, n−2/3) for c ∈ (1, 2] and b ∈ (1,∞). Whether or not this smooths more
than n−1 therefore depends on the relationship between the effective dimension b and the
smoothness c. In particular, the implied hyperparameter goes to zero at a slower rate than n−1

whenever c ≥ 2− 1
b
. It is unclear whether the rates we find here are the only undersmoothed

rates that will yield efficiency for fixed b and c; we leave a thorough investigation to future
work.
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Appendix C

Additional Materials: Sensitivity
Analysis

C.1 Proofs for Section 6.3, Marginal MDP

First, we give a reminder for the main notational device used for the following proofs. We
will use Pπ and Eπ to denote the joint probabilities (and expectations thereof) of the random
variables St, Ut, At,∀t in the underlying MDP running policy π. That is, Pπ(St, At, St+1) is a
joint distribution obtained from an MDP running policy π (and we can analogous obtain
conditionals, other marginals, etc). In particular, this notation differs from notation about
transitions controlled under π, i.e. Pπ(St+1 | St), where π indicates expectations over π.

For example, in general due to the unobserved confounders, we will have that Pπe(St+1|St =
s, At = a) ̸= Pπb(St+1|St = s, At = a). Since we are not conditioning on Ut, without further
assumptions, these are not Markovian, and so it’s important to keep in mind that St+1 has a
generally different distribution under πe than it does under by πb even after conditioning on
St and At.

Under Assumption 3, the setting with a policy πe that only depends on the observed state
is equivalent to a marginal MDP over the observed state alone:

Proof. Proof of Proposition 6.3.1 First, note that for any πe and all t, s, a:

Pπe(St+1|St = a,At = a) =

∫
U
Pπe(St+1|St = s, At = a, Ut = u)Pπe(Ut = u|St = s, At = a)du

=

∫
U
Pπe(St+1|St = s, At = a, Ut = u)Pπe(Ut = u|St = s)du,

where the second equality uses the fact that πe is independent of Ut. To complete the
proof, we need to show that this resulting value is the same for all possible πe and equals
Equation (6.2). This is always true for the first probability, because it is equal to the
transition probability Pπe(St+1|St, At = Ut) = Pt(St+1|St, At, Ut) from the definition of the
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full-information MDP. Under Assumption 3, the second term can also be written as a
transition probability: Pπe(Ut|St) = Pπe(Ut|St, St−1, At−1, Ut−1) = Pt(Ut|St, St−1, At−1, Ut−1).

The above proof establishes what probabilities are independent of the policy and are only
a function of the transition probabilities Pt(St+1, Ut+1|St, Ut, At). We could use this same
idea to prove a more general version of Proposition 6.3.1 that places assumptions only on the
observed states and actions, but at the cost of substantially more complexity.

For any t, let Ht = {Sj, Aj : j ≤ t} be the history of the observed state and actions
up to time t. In the rest of this section, we will use shorthands like Pπ(st+1|st, at, ht−1) :=
Pπ(St+1|St = st, At = at, Ht−1 = ht−1) whenever clear from the text.

We only require the following Markov assumption on observed states and actions:

Assumption 12 (Observable Markov Property). For all π and for all t, s, a, h,

Pπ(st+1|st, at, ht−1) = Pπ(st+1|st, at)
Pπ(at|st, ht−1) = Pπ(at|st).

Note that Assumption 3 implies Assumption 12:

Pπ(st+1|st, at, ht−1) =

∫
U
Pπ(st+1|st, ut, at, ht−1)Pπ(ut|st, at, ht−1)du

=

∫
U
Pπ(st+1|st, ut, at)Pπ(ut|st, at)du

= Pπ(st+1|st, at).

We now prove the following general version of Proposition 6.3.1:

Proposition C.1.1 (Marginal MDP, General). Let χmarg be the marginal distribution of χ
over the observed state. Given Assumption 12, there exists Pmarg

t : S ×A → ∆(S) such that
for any policies πe and πe′ that do not depend on Ut and for all s, a, t:

Pmarg
t (s, a) = Pπe(St+1|St = s, At = a) = Pπe′ (St+1|St = s, At = a).

Furthermore, we can define a new MDP, (S,A, R, Tmarg, χmarg, H), with probabilities under
policy πe denoted Pmarg

πe such that

Pmarg
πe (S0, A0, ...SH , AH) = Pπe(S0, A0, ...SH , AH).

The proof uses the following two lemmas:

Lemma C.1.2 (Conditional Mean Independence with Respect to Transitions). Given As-
sumption 12,∫

U
Pπ(ut|st, ht−1)Pπ(st+1|st, at, ut)du =

∫
U
Pπ(ut|st)Pπ(st+1|st, at, ut)du.
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Proof. Proof of Lemma C.1.2 Note that the full-information state transitions are Markovian
by the definition of an MDP:

Pπ(st+1|st, at, ut, ht−1) = Pπ(st+1|st, at, ut).

The lemma then follows by applying the tower property to both sides of Assumption 3.

Lemma C.1.3. Given Assumption 12, for any two πe and πe′ which do not depend on U ,
∀s, a, and t:

Pπe(st+1|st, at) = Pπe′ (st+1|st, at).

Proof. Proof of Lemma C.1.3 The proof proceeds by mutual induction on the statement
above and the following statement:

Pπe(ut|st, ht−1) = Pπe′ (ut|st, ht−1).

We will consider πe and demonstrate the equality with πe′ by showing that the relevant
qualities do not depend on πe. First, consider t = 0. From the definition of the initial state
distribution,

Pπe(u0|s0) = χ(u0|s0).

which holds for all πe.
From the definition of the MDP, Pπ(st+1|st, ut, at) = Pt(st+1|st, ut, at) for any π. Then we

have:

Pπe(s1|s0, a0) =
∫
U
Pπe(u0|s0, a0)Pπe(s1|s0, a0, u0)du

=

∫
U
Pπe(u0|s0, a0)P0(s1|s0, a0, u0)du

=

∫
U
Pπe(u0|s0)P0(s1|s0, a0, u0)du

=

∫
U
χ(u0|s0)P0(s0, a0, u0)du,

where the third equality uses the fact that πe does not depend on U . This equality also holds
for all πe and so we have proven the base case.

Now we consider a general t:

Pπe(ut|st, ht−1) =

∫
U
Pπe(ut−1|st, ht−1)Pπe(ut|st, ht−1, ut−1)du

=

∫
U
Pπe(ut−1|st−1, ht−2)

Pπe(st, ut|st−1, ut−1, at−1)

Pπe(st|st−1, at−1)
du,
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where the second equality follows from applying Bayes rule to both probabilities in the second
line. By the inductive hypothesis, Pπe(ut−1|st−1, ht−2) does not depend on πe. The transition
probabilities Pπe(st, ut|st−1, ut−1, at−1) do not depend on πe. And by the inductive hypothesis,
Pπe(st|st−1, at−1) does not depend on πe. Therefore, Pπe(ut|st, ht−1) does not depend on πe.

Finally,

Pπe(st+1|st, at) =
∫
U
Pπe(ut|st, at)Pπe(st+1|st, ut, at)du

=

∫
U
Pπe(ut|st, at)Pt(st+1|st, ut, at)du

=

∫
U
Pπe(ut|st)Pt(st+1|st, ut, at)du

=

∫
U
Pπe(ut|st, ht−1)Pt(st+1|st, ut, at)du

where the third equality follows from the fact that πe does not depend on U and the fourth
equality follows from Lemma 1. We have already shown that Pt(st+1|πe(ut|st, ht−1) does not
depend on πe which concludes the proof.

Proof. Proof of Proposition C.1.1 Define Pmarg
t = Pπe(st+1|st, at), which by Lemma C.1.3

is the same for any πe. From the conditional independence structure of the original MDP
together with Assumption 12, we have

Pπe(S0, A0, ..., ST−1, AT−1) = Pπe(S0)Pπe(A0|S0)
T−1∏
t=1

Pπe(At|St)Pπe(St|St−1, At−1)

= χM(S0)π
e(A0|S0)

T−1∏
t=1

πe(At|St)P
marg
t (St|St−1, At−1)

= PM
πe (S0, A0, ...ST−1, AT−1).
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Confounding for Regression

Proof. Proof of Proposition 6.3.2

EPt [f(St, At, St+1)|St = s, At = a]

=

∫
S
f(s, a, s′)Pt(s

′|s, a)ds′

=

∫
S
f(s, a, s′)

(∫
U
Pt(u|s)Pt(s

′|s, a, u)du
)
ds′

=

∫
S
f(s, a, s′)

(∫
U

πb(a|s)
πb(a|s, u)

Pobs(Ut = u|St = s, At = a)Pt(s
′|s, a, u)du

)
ds′

= Eobs

[
πb(At|St)

πb(At|St, Ut)
f(St, At, St+1)

∣∣∣∣∣St = s, At = a

]
.

We conjecture that the same result would hold replacing Assumption 3 with Assumption 12,
but it would require showing that∫

U
Pπe(u|s)Pt(s

′|s, a, u)du =

∫
U
Pπb(u|s)Pt(s

′|s, a, u)du

Note that: Pπ(u|s) = Pπ(u|s, h) when under the integral with the transitions. So we need to
use the fact that this is history-independent.

Proof of Proposition 6.4.1

Proof. The result follows by applying Corollary 4 of [84] to Proposition 6.3.2.
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C.2 Additional discussion

Related Work

Connections to pessimism in offline RL. Pessimism is an important algorithmic design
principle for offline RL in the absence of unobserved confounders [314, 243, 146]. Therefore,
robust FQI with lower-confidence-bound-sized Λ gracefully degrades to a pessimistic offline
RL method if unobserved confounders were, contrary to our method’s use case, not actually
present in the data. Conversely, pessimistic offline RL with state-wise lower confidence
bounds confers some robustness against unobserved confounders. But state-wise LCBs are
viewed as overly conservative relative to a profiled lower bound on the average value [314].

Derivation of the Closed-Form for the Robust Bellman Operator

Proof. Proof of Proposition 6.4.2
[85] show that the linear program in Proposition 6.4.1 has a closed-form solution corre-

sponding to adversarial weights:

Ỹ −
f,t(s, a) = Eπb [W ∗

t Yt|St = s, At = a] where W ∗
t = αtI

[
Yt > Z1−τ

t

]
+ βtI

[
Yt ≤ Z1−τ

t

]
.

We can derive the form in Proposition 6.4.2 with a few additional transformations. Define:

µt(s, a) := Eπb [Yt|St = s, At = a],

CVaR1−τ
t (s, a) :=

1

1− τ
Eπb

[
YtI
[
Yt < Z1−τ

t

]
|St = s, At = a

]
.

We use the following identity for any random variables Y and X:

E[Y |X] = E[Y I
[
Y > Z1−τ (Y |X)

]
|X] + E[Y I

[
Y ≤ Z1−τ (Y |X)

]
|X]

to deduce that

Ỹ −
f,t(s, a) = αtµt(s, a) + (βt − αt)(1− τ)CVaR1−τ

t (s, a),

which gives the desired convex combination by noticing that (βt − αt)(1− τ) = (1− αt).
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C.3 Proofs for Robust FQE/FQI

Auxiliary lemmas for robust FQE/FQI

Lemma C.3.1 (Higher-order quantile error terms). Assume Assumption 6 (i.e. bounded
conditional density by MP ), and that Z1−τ

t is differentiable with respect to s and its gradient

is Lipschitz continuous. Then, for ft = Rt + Q̂t+1, if Ẑ
1−τ
t is Op(wn) sup-norm consistent,

i.e. sups∈S |Z1−τ
t − Ẑ1−τ

t | = Op(wn), uniformly over s ∈ S,

|E[(ft − Z1−τ
t )(I[ft ≤ Ẑ1−τ

t ]− I[ft ≤ Z1−τ
t ]) | S = s, A = 1]| = Op(w

2
n), (C.1)

and

E[(Z1−τ
t − Ẑ1−τ

t )
(
I[f ≤ Z1−τ

t ]− (1− τ)
)
| A = 1] ≤MPE[(Z1−τ

t − Ẑ1−τ
t )2 | A = a]. (C.2)

Lemma C.3.1 is a technical lemma which summarizes the properties of the orthogonalized
target which lead to quadratic bias in the first-stage estimation error of Ẑt. Equation (C.1) is
a slight modification of [226]/[165, A.3]; eq. (C.2) is a slight modification of [267, Lemma 4.1].

Lemma C.3.2 (Bernstein concentration for least-squares loss (under approximate realizabil-
ity)). Suppose Assumption 10 and that:

1. Approximate realizability: Q approximately realizes T Q in the sense that ∀f ∈ Q, z ∈ Z,

let q⋆f = argminq∈Q ∥q − T f∥2,µ, then
∥∥q⋆f − T f

∥∥2
2,µ

≤ ϵQ,Z .

2. The dataset D is generated from Pobs as follows: (s, a) ∼ µ, r = R(s, a), s′ ∼ P (s′ | s, a).

We have that ∀f ∈ Q, with probability at least 1− δ,

Eµ[ℓ(T̂Zf ; f)]− Eµ[ℓ(g
⋆
f ; f)] ≤

56V 2
max ln

|Q||Z|
δ

3n
+

√
32V 2

max ln
|Q||Z|

δ

n
ϵQ,Z

Lemma C.3.3 (Stability of covering numbers). We relate the covering numbers of the squared
loss function class, denoted as Lq(z′),z(qt+1), to the covering numbers of the function classes
Q,Z. Define the squared loss function class as:

Lq(z′),z(qt+1) =
{
ℓ(q(z′), qt+1; z)− ℓ(Q

†
t,Zt
, qt+1; z) : q(z

′) ∈ {Q ⊗ Z}, z ∈ Z
}

Then
N[] (2ϵL,Lq(z′),z, ∥ · ∥) ≤ N(ϵ,Q×Z, ∥ · ∥).

Lemma C.3.4 (Difference of indicator functions). Let f̂ and f take any real values. Then∣∣I[f̂ > 0]− I [f > 0]
∣∣ ≤ I[|f | ≤ |f̂ − f |]
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Proofs of theorems

Proof. Proof of Theorem 6.5.3
The squared loss with respect to a given conditional quantile function Z is:

ℓ(q, qt+1;Z) =

(
α(R + qt+1)+

(1− α)
(
Z1−τ

t +
1

1− τ

(
(R + qt+1 − Z1−τ

t )−

− Z1−τ
t · (I

[
R + qt+1 ≤ Z1−τ

t

]
− (1− τ))

))
− qt

)2

We let Ẑt,Qt+1 and Zt,Qt+1 denote estimated and oracle conditional quantile functions,
respectively, with respect to a target function that uses the Qt+1 estimate. Where the
next-timestep Qt+1 function is fixed (as it is in the following analysis) we drop the Qt+1 from
the subscript.

Define
Q̂t,Zt

∈ argmin
q

En[ℓ(q, Q̂t+1;Zt)]

and for z ∈ {Ẑt, Zt}, define the following oracle Bellman error projections Q
†
t,z of the

iterates of the algorithm:

Q
†
t,z = arg min

qt∈Qt

∥qt − T ∗
t,zQ̂t+1∥µt .

Relating the Bellman error to FQE loss. The bias-variance decomposition implies if
U, V are conditionally uncorrelated given W , then

E[(U − V )2 | W ] = E[(U − E[V | W ])2 | W ] + V ar[V | W ].

Hence a similar relationship holds for the robust Bellman error as for the Bellman error:

E[ℓ(q,Qt+1;Z)
2] = ∥q − T ∗

Qt+1∥µ + V ar[W ∗,π
t (Z)(Rt + V̄Qt+1

(St+1)) | St, A].

which is used to decompose the Bellman error as follows:

∥Q̂t,Ẑt
− T ∗

t,Zt
Q̂t+1∥2µt

= Eµ[ℓ(Q̂t,Ẑt
, Q̂t+1;Zt)]− Eµ[ℓ(Q

†
t,Zt
, Q̂t+1;Zt)] + ∥Q†

t,Zt
− T ∗

t Q̂t+1∥2µt
.

Then,

∥Q̂t,Ẑt
− T ∗

t,Zt
Q̂t+1∥2µt

= Eµ[ℓ(Q̂t,Ẑt
, Q̂t+1;Zt)]− Eµ[ℓ(Q̂t,Zt

, Q̂t+1;Zt)] (C.3)

+ Eµ[ℓ(Q̂t,Zt
, Q̂t+1;Zt)]− Eµ[ℓ(Q

†
t,Zt
, Q̂t+1;Zt)] (C.4)

+ ∥Q†
t,Zt

− T ∗
t Q̂t+1∥2µt

(C.5)
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We bound eq. (C.3) by orthogonality and eq. (C.4) by Bernstein inequality arguments.
We bound the first term. Let f denote the Bellman residual. Let x = f , (a− x) = Q− f ,

b = Q′. Since, by expanding the square and Cauchy-Schwarz, we obtain the following
elementary inequality:

(a− x)2 − (b− x)2 = (a− b)2 + 2(a− b)(b− x)

≤ (a− b)2 +
√

E[(a− b)2]E[(b− x)2]

Applying the above, we have that

Eµ[ℓ(Q̂t,Zt
,Q̂t+1;Zt)]− Eµ[ℓ(Q

†
t,Zt
, Q̂t+1;Zt)] ≤

∥(Q̂t,Zt
−Q

†
t,Zt

)∥22︸ ︷︷ ︸
op(n−1) by Proposition 6.5.1

+∥(Q̂t,Zt
−Q

†
t,Zt

)2∥ ∥Q̂t,Zt
− Ỹt(Q̂t+1;Zt)∥︸ ︷︷ ︸

=Op(n−1/2) by realizability

Therefore
Eµ[ℓ(Q̂t,Zt

, Q̂t+1;Zt)]− Eµ[ℓ(Q
†
t,Zt
, Q̂t+1;Zt)] = op(n

−1).

We bound eq. (C.4) by Lemma C.3.2 directly.
Supposing Assumption 10, we obtain that

∥∥∥Q̂t − T ⋆

t Q̂t+1

∥∥∥2
µt

≤ ϵQ,Z +
56V 2

max ln
|Q||Z|

δ

3n
+

√
32V 2

max ln
|Q||Z|

δ

n
ϵQ,Z + op(n

−1).

Instead, supposing Assumption 11, instantiate the covering numbers choosing ϵ = O(n−1).
Lemma C.3.3 bounds the bracketing numbers of the (Lipschitz over a bounded domain) loss
function class with the covering numbers of the primitive function classes Q,Z. Supposing
that Bellman completeness holds with respect to Q,Z, approximate Bellman completeness
holds over the ϵ-net implied by the covering numbers with ϵQ,Z = O(n−1) and we obtain that:∥∥∥Q̂t − T ⋆

t Q̂t+1

∥∥∥2
µt

≤ ϵQ,Z +
56V 2

t,max log{N(ϵ,Q, ∥ · ∥)N(ϵ,Z, ∥ · ∥)/δ}
3n

+

√
32V 2

t,max log{N(ϵ,Q, ∥ · ∥)N(ϵ,Z, ∥ · ∥)/δ}
n

ϵQ,Z + op(n
−1).

≤ ϵQ,Z +
56V 2

t,max log{N(ϵ,Q, ∥ · ∥)N(ϵ,Z, ∥ · ∥)/δ}
3n

Proofs of intermediate results

Orthogonality

Proof. Proof of Proposition 6.5.1 We first focus on the case of a single action, a = 1. First
recall that in the population, E[Z1−τ

t + 1
1−τ

(ft − Z1−τ
t ) | s, a] = 1

1−τ
E[ftI

[
ft ≤ Z1−τ

t

]
| s, a].
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In the analysis below we study this truncated conditional expectation representation.

∥Q̂t(S, 1)−Qt(S, 1)∥ ≲ ∥E[Ỹt(Ẑt, Q̂t+1)− Ỹt(Zt, Q̂t+1) | S,A = 1]∥+ ∥Q̂t(S, 1)−Qt(S, 1)∥
by Prop. 1 of [166] (regression stability)

Prop. 1 of [166] provides bounds on how regression upon pseudooutcomes with estimated
nuisance functions relates to the case with known nuisance functions.

It remains to relate ∥E[Ỹt(Ẑt, Q̂t+1)− Ỹt(Zt, Q̂t+1) | S,A = 1]∥ to the terms comprising
the pointwise bias, which are bounded by Lemma C.3.1. We define these terms as:

B1
1(S) = E

[
1− α̃

1− τ

{
(ft − Z1−τ

t )
(
I
[
ft ≤ Ẑ1−τ

t )
]
− I
[
ft ≤ Z1−τ

t )
])}

| S,A = 1

]
B1

2(S) = E
[
1− α̃

1− τ

{
(Z1−τ

t − Ẑ1−τ
t )

(
I
[
f ≤ Z1−τ

t

]
− (1− τ)

)}
| S,A = 1

]
.

Lemma C.3.1 bounds these terms as quadratic in the first-stage estimation error of Ẑt.
We have that

E[Ỹt(Ẑt, Q̂t+1)− Ỹt(Zt, Q̂t+1) | S, 1] = B1
1(S) +B1

2(S).

To see this, note:

E[Ỹt(Ẑt, Q̂t+1)− Ỹt(Zt, Q̂t+1) | S, 1]

= E
[
1− α̃

1− τ

{(
ftI
[
ft ≤ Ẑ1−τ

t )
]
− ftI

[
ft ≤ Z1−τ

t )
])

−
(
Ẑ1−τ

t · (I
[
f ≤ Ẑ1−τ

t

]
− (1− τ))− Z1−τ

t · (I
[
f ≤ Z1−τ

t

]
− (1− τ))

)
±Z1−τ

t · I
[
f ≤ Ẑ1−τ

t

]}
| S,A = 1

]
= E

[
1− α̃

1− τ

{
(ft − Z1−τ

t )I
[
ft ≤ Ẑ1−τ

t )
]
− (ft − Z1−τ

t )I
[
ft ≤ Z1−τ

t )
]

+(Z1−τ
t − Ẑ1−τ

t )I
[
f ≤ Z1−τ

t

]
− (Z1−τ

t − Ẑ1−τ
t )(1− τ)

}
| S,A = 1

]
= E

[
1− α̃

1− τ

{
(ft − Z1−τ

t )
(
I
[
ft ≤ Ẑ1−τ

t )
]
− I
[
ft ≤ Z1−τ

t )
])

+(Z1−τ
t − Ẑ1−τ

t )
(
I
[
f ≤ Z1−τ

t

]
− (1− τ)

)}
| S,A = 1

]
= B1

1(S) +B1
2(S)

Finally, we relate the root mean-squared conditional bias,

∥E[Ỹt(Ẑt, Q̂t+1)− Ỹt(Zt, Q̂t+1) | S,A = 1]∥,



APPENDIX C. ADDITIONAL MATERIALS: SENSITIVITY ANALYSIS 173

to the above quadratic error as follows. Using the inequalities (a + b)2 ≤ 2(a2 + b2) and√
a+ b ≤

√
a+

√
b (for nonnegative a, b), we obtain that

∥E[Ỹt(Ẑt, Q̂t+1)− Ỹt(Zt, Q̂t+1) | S,A = 1]∥

=
√

E[(B1
1(S) +B1

2(S))
2 | A = 1]

≤
√
E[2{(B1

1(S))
2 + (B1

2(S))
2} | A = 1]

≤
√
2E[(B1

1(S))
2 | A = 1] +

√
2E[(B1

2(S))
2 | A = 1].

The result follows by the uniform bounds of Lemma C.3.1.

Proof. Proof of Lemma C.3.1
Proof of eq. (C.1):
For l > 0, define

Ma
n(l) =

{
g : S → R s.t. sup

s∈S
|g(s)− Z1−τ

t (s, a)| ≤ lwn

}
Define

Un(g, s) := |E[(ft − Z1−τ
t )(I

[
ft ≤ Ẑ1−τ

t

]
− I
[
ft ≤ Z1−τ

t

]
) | S = s, A = 1]|

We will show that for every l > 0, s ∈ S:

sup
g∈Mn(l)

Un(g, s) = Op

(
w2

n

)
Breaking up the absolute value,

Un(g, s) ≤E[(ft − Z1−τ
t )(I

[
Z1−τ

t ≤ ft ≤ g
]
) | S = s, A = 1]

+ E[(Z1−τ
t − ft)(I

[
g ≤ ft ≤ Z1−τ

t

]
) | S = s, A = 1].

We will bound the first term, bounding the second term is analogous. Define

U1,n(g, s) := E[(ft − Z1−τ
t )(I

[
Z1−τ

t ≤ ft ≤ g
]
) | S = s, A = 1].

Observe that

sup
g∈Mn(l)

U1,n(g, s) = E[(ft − Z1−τ
t )(I

[
Z1−τ

t ≤ ft ≤ Z1−τ
t + lwn

]
) | S = s, A = 1]

≤MP l
2w2

n

The result follows.
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Proof of eq. (C.2):
The argument follows that of [266]. The difference of indicators is nonzero on the events:

E− := {ft − Ẑ1−τ
t < 0 < ft − Z1−τ

t }
E+ := {ft − Z1−τ

t < 0 < ft − Ẑ1−τ
t }

On these events, the estimation error upper bounds the exceedance

{E− ∪ E+} =⇒ {|Z − f | < |Z1−τ
t − Ẑ1−τ

t |} (C.6)

(since E− =⇒ {f − Ẑ1−τ
t < 0 < f − Z1−τ

t } and E+ =⇒ {0 < Z1−τ
t − f < Z1−τ

t − Ẑ1−τ
t }.)

Then

E[(ft − Z1−τ
t )I

[
E− ∪ E+

]
| S = s, A = 1] =

∫ |Z1−τ
t −Ẑ1−τ

t |

−|Z1−τ
t −Ẑ1−τ

t |
(ft(s, a, s

′)− Z1−τ
t )P (s′ | s, a)ds′

≤MPE[(Z1−τ
t − Ẑ1−τ

t )2 | S = s, A = 1]

Assumption 8 ensures the result holds for state distributions that could arise during policy
fitting. The above results hold conditionally on some action A = 1 but hold for all actions.

Other lemmas

Proof. Proof of Lemma C.3.2
Recall that

ℓ(q, qt+1;Z) =

(
α(R + qt+1)

+ (1− α)
(
Z1−τ

t +
1

1− τ

(
(R + qt+1 − Z1−τ

t )−

− Z1−τ
t · (I

[
R + qt+1 ≤ Z1−τ

t − (1− τ))
))]

− qt

)2

Define fq′,z = Define X to be the difference of the integrands.
Step 1:

V ar(X(g, f, z, g∗f )) ≤ 4V 2
max∥Q̂t,Zt

−Q
†
t,Zt

∥22
(by similar arguments as in the original paper). By the same arguments (i.e. adding and
subtracting T f) we obtain that

∥Q̂t,Zt
−Q

†
t,Zt

∥22 ≤ 2(E[X(g, f, z, g∗f )] + 2ϵQ,Z)

Therefore,
V ar(X(g, f, z, g∗f )) ≤ 8V 2

max(E[X(g, f, z, g∗f )] + 2ϵQ,Z).
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Applying (one-sided) Bernstein’s inequality uniformly over Q,Z, we obtain:

E
[
X(g, f, z, g∗f )

]
− En[X(g, f, z, g⋆f )]

≤

√
16V 2

max

(
E
[
X(g, f, z, g⋆f )

]
+ 2ϵF ,Z

)
ln |Q||Z|

δ

n
+

4V 2
max ln

|Q||Z|
δ

3n

Note that Q̂t,Zt
minimizes both En[ℓ(q,

ˆ̄Qt+1;Zt)] and E[(q, ˆ̄Qt+1, Zt, Q
∗
ˆ̄Qt+1

)] with respect to
q. Therefore, by completeness since the Bayes-optimal predictor is realizable,

En[ℓ(Q̂t,Zt
, ˆ̄Qt+1;Zt)] ≤ En[ℓ(Q

†
t,Zt
, ˆ̄Qt+1;Zt)] = 0

Therefore (solving for the quadratic formula),

E[X(Q̂t,Zt
, Q̂t+1, Zt, Q

†
t,Zt

)] ≤
56V 2

max ln
|Q||Z|

δ

3n
+

√
32V 2

max ln
|Q||Z|

δ

n
ϵF ,Z

Proof. Proof of Lemma C.3.3 We show this result by establishing Lipschitz-continuity of the
squared loss function class (with respect to the product function class of Q×Z).

We use a stability result on the bracketing number under Lipschitz transformation. Classes
of functions x 7→ fθ(x) that are Lipschitz in the index parameter θ ∈ Θ have bracketing
numbers readily related to the covering numbers of Θ. Suppose that

|fθ′(x)− fθ(x)| ≤ d(θ′, θ)F (x),

for some metric d on the index set, function F on the sample space, and every x. Then
(diamΘ)F is an envelope function for the class {fθ − fθ0 : θ ∈ Θ} for any fixed θ0. We invoke
Theorem 2.7.11 of [304] which shows that the bracketing numbers of this class are bounded
by the covering numbers of Θ.

Theorem C.3.5 ([304], Theorem 2.7.11). Let F = {fθ : θ ∈ Θ} be a class of functions
satisfying the preceding display for every θ′, θ and some fixed function F . Then, for any
norm ∥ · ∥,

N[] (2ϵ∥F∥,F , ∥ · ∥) ≤ N(ϵ,Θ, d).

Let F = {fθ : θ ∈ Θ} be a class of functions satisfying the preceding display for every s and
θ and some fixed envelope function F . Then, for any norm ∥ · ∥,

N[] (2ϵ∥F∥,F , ∥ · ∥) ≤ N(ϵ,Θ, d).

This shows that the bracketing numbers of the loss function class can be expressed via
the covering numbers of the estimated function classes Q,Z, which are the primitive function
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classes of estimation, for which results are given in various references for typical function
classes.

Denote

g(qt+1) = α(s, a)(R + qt+1)

h(z) = (1− α)
( 1

1− τ
(z + (R + qt+1 − z)− − z · (I [R + qt+1 ≤ z]− (1− τ)))

)
and notate

ℓ(q, qt+1; z) = (q − g(qt+1) + h(qt+1, z))
2.

Note that 1
1−τ

= (1 + Λ). Assuming bounded rewards, define Dz,t, Dq,t as the diameters
of Qt,Zt, respectively and note that Dz,t ≈ Dq,t. Note that h(qt+1, z) is (1 − αmin)(3(1 +
Λ) + 1)-Lipschitz in z (since the sum of Lipschitz continuous functions is Lipschitz) and it

is (1− αmin)
(
1 + (1 + Λ)(Dz,t

Dq,t
+ 1)

)
-Lipschitz in qt+1. Further, g(qt+1) is αmax-Lipschitz in

qt+1. Therefore, ℓ (q, qt+1; z) is Dq,t Lipschitz in q, LC
q,t+1-Lipschitz in qt+1 and LC

z,t-Lipschitz
in z, with LC

q,t+1, L
C
z,t defined as follows:

LC
q,t+1 = (2Dq,t+1 +Dz,t)(1− αmin)

((
1 + (1 + Λ)(

Dz,t

Dq,t+1

+ 1)

)
+ αmax

)
LC
z,t = (2Dq,t+1 +Dz,t)(1− αmin)(3(1 + Λ) + 1).

Therefore we have shown that restrictions of ℓ (q, qt+1; z) to the qt+1, z coordinates are
individually Lipschitz. We leverage the fact that a function f : Rn → R is Lipschitz if and
only if there exists a constant L such that the restriction of f to every line parallel to a
coordinate axis is Lipschitz with constant L. Choosing

Lt =
√
3max{Dq, L

C
q,t+1, L

C
z,t}

gives that ℓ (q, qt+1; z) is Lt-Lipschitz.

Proof. Proof of Corollary 6.5.4
Lemma C.3.3 gives that ℓ (q, qt+1; z) is Lt-Lipschitz with Lt =

√
3max{Dq, L

C
q,t+1, L

C
z,t}.

To interpret the scaling of the result, we can appeal to [304, Thm. 2.6.4] which upper
bounds the (log) covering numbers by the VC-dimension. Namely, [304, Thm. 2.6.4] states
that there exists a universal constant K such that

N (ϵ,F , Lr(Q)) ≤ KV (F)(4e)V (F)

(
1

ϵ

)r(V (F)−1)

.

Therefore, achieving an ϵ = cn−1 approximation error on the bracketing numbers of robust Q
functions results in an log(2Ltn) dependence.
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Lastly we remark on instantiating Lt. Note that under the assumption of bounded
rewards, Dq,t+1 = Br(T − t+1). Focusing on leading-order dependence in problem-dependent

constants, we have that Lt = O(Br(T − t)Λ). Then Ê(Q̂) ≤ ϵ+
∑T

t=1K
log(2Br(T−t)Λn)

n
. Upper

bounding the left Riemann sum by the integral, we obtain that

T∑
t=1

K
log(2KBr(T − t)Λn/ϵ)

n
≤
∫ T

1

K
log(2KBr(T − x)Λn/ϵ)

n
dx

=
(T − 1)

n
(log(2KBrΛ(T − 1)n/ϵ)− 1).

Confounding with infinite data

First, we prove the following useful result for confounded regression with conditional Gaussian
tails:

Lemma C.3.6. Define:

C(Λ) :=

(
Λ2 − 1

Λ

)
ϕ

(
Φ−1

(
1

1 + Λ

))
,

where ϕ and Φ are the standard Gaussian density and CDF respectively. Let Yt(Q) be
conditionally Gaussian given St = s and At = a with mean µt(s, a) and standard deviation
σt(s, a). Then,

(T̄ ∗
t Q)(s, a) = µt(s, a)− [1− πb

t (a|s)]C(Λ)σt(s, a).

Proof. Proof of Lemma C.3.6
The CVaR for Gaussians has a closed-form [223]:

1

1− τ
Eπb

[
Yt(Q)I

[
Yt(Q) < Z1−τ

t

]
|St = s, At = a

]
= µt(s, a)− σt(s, a)

ϕ(Φ−1(1− τ))

1− τ
.

Applying this to Proposition 6.4.2 gives the desired result.

Proof. Proof of Proposition 6.5.5 First, note that Rt is conditionally Gaussian given St and
At with mean θRθP s and standard deviation θRσT . Define βi := θR

∑i
k=1 θ

k
P . Using value

iteration, we can show that V πe

T−i(s) = βis for i ≥ 1. E.g. by induction, V πe

T−1(s) = θRθP s = β1
and if V πe

T−t+1(s) = βt−1s, then

V πe

T−t(s) = θP (θR + γβt−1)s = βts.

Next we will derive the form of the robust value function by induction. For the base case,
t = T − 1, we have:

YT−1 = θRs
′.
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Therefore, YT−1 is conditionally gaussian with mean θRθP s and standard deviation θRσP .
Applying Lemma C.3.6, we have:

V̄ πe

T−1(s) = θRθP s− 0.5C(Λ)θRσP .

Now assume that V̄ πe

t+1(s) = θV s+ αV . Then

Yt = θRs
′ + (θV s

′ + αV )

= (θR + θV )s
′ + αV .

Therefore, Yt is conditionally gaussian with mean (θR + θV )θP s+ αV and standard deviation
(θR + θV )σP . Applying Lemma C.3.6, we have:

V̄ πe

t (s) = (θR + θV )θP s+ αV − 0.5C(Λ)(θR + θV )σP , (C.7)

which is linear in s with new coefficients θ′V := (θR+θV )θT and α′
V := αV −0.5C(Λ)(θR+θV )σP .

By rolling out the recursion defined in Equation (C.7), consolidating the coefficients into
βi terms, and then simplifying we get:

V̄ πe

0 (s) = V πe

0 (s)− 1

2θP

(
T−1∑
i=0

βi

)
σPC(Λ).

Finally, that C(Λ) ≤ 1
8
log(Λ) can be verified numerically.



APPENDIX C. ADDITIONAL MATERIALS: SENSITIVITY ANALYSIS 179

C.4 Details on experiments

Low-Dimensional Parameter Values

θA = −0.05, σ = 0.36, γ = 0.9, H = 4.
The matrices A and B were chosen randomly with a fixed random seed:

np.random.seed(1)

B_sparse0 = np.random.binomial(1,0.3,size=d)

B = 2.2*B_sparse0 * np.array( [ [ 1/(j+k+1) for j in range(d) ]

for k in range(d) ] )

np.random.seed(2)

A_sparse0 = np.random.binomial(1,0.6,size=d)

A = 0.48*A_sparse0 * np.array( [ [ 1/(j+k+10) for j in range(d) ]

for k in range(d) ] )

Likewise for θR:

theta_R = 3 * np.random.normal(size=d)

* np.random.binomial(1,0.3,size=d)

High-Dimensional Parameter Values

θA = −0.05, σ = 0.1, γ = 0.9, H = 4.
The matrices A and B were chosen randomly with a fixed random seed:

np.random.seed(1)

B_sparse0 = np.random.binomial(1,0.3,size=d)

B = 2.2*B_sparse0 * np.array( [ [ 1/(j+k+1) for j in range(d) ]

for k in range(d) ] )/1.2

np.random.seed(2)

A_sparse0 = np.random.binomial(1,0.6,size=d)

A = 0.48*A_sparse0 * np.array( [ [ 1/(j+k+10) for j in range(d) ]

for k in range(d) ] )/20

Likewise for θR:

theta_R = 2 * np.random.normal(size=d)

* np.random.binomial(1,0.3,size=d)
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Function Approximation

Conditional expectations were approximated with the Lasso using scikit-learn’s implemen-
tation, with regularization hyperparameter α = 1e-4. Conditional quantiles were approximated
with scikit-learn’s ℓ1-penalized quantile regression, regularization hyperparameter alpha
= 1e-2, using the highs solver.

Calculating Ground Truth

To provide ground truth for our sparse linear setting, we analytically derive the form of the
robust Bellman operator. Consider the candidate Q function, Q(s, 0) = β⊤s+ a0, Q(s, 1) =
β⊤s+ a1. Then,

Yt = θ⊤RSt+1 + γβ⊤St+1 + θAγmax{1⊤d θR, 0}
= θ⊤RSt+1 + γβ⊤St+1 + θAγ1

⊤
d θR

where we chose simulation parameters such that θAγmax{1⊤d θR, 0} > 0. Therefore:

Yt|St, At ∼ N

(θR + γβ)⊤(BSt + θAAt) + θAγ1
⊤
d θR,

√√√√ d∑
i=1

(θR + γβ)2i (ASt + σ)2i


Since Yt is conditionally Gaussian, we apply Lemma C.3.6:

(T̄ ∗
t Q)(s, a) = E[Yt|St = s, At = a]− 0.5C(Λ)

√
Var[Yt|St = s, At = a]

= (θR + γβ)⊤(BSt + θAAt) + θAγ1
⊤
d θR − 0.5C(Λ)

√√√√ d∑
i=1

(θR + γβ)2i (ASt + σ)2i

First, note that the slope w.r.t. St is not a function of At validating our choice of an action-
independent β. Second, note that only the last term is non-linear in St. So the ground truth
for FQI with Lasso adds the first two terms to the closest linear approximation of this last
term. Since our object of interest is the average optimal value function at the initial state,
we perform this linear approximation in terms of mean squared error at the initial state. In
practice, we compute this by drawing 200, 000 samples i.i.d. from the initial state distribution
and then doing linear regression on this last term. Plugging the slope and intercept back in
is extremely close to the best linear approximation of (T̄ ∗

t Q)(s, a).




