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Freshwater exchanges between the ocean–ice–atmosphere system play a crucial role in

the global climate system. This study provides an analysis of the local impact of freshwater

fluxes both off the coast of California and in the Arctic. Studies are carried out using observations

and numerical and statistical models. We show that freshwater exchanges between the ocean

and atmosphere in the form of precipitation from atmospheric rivers (ARs) over the ocean in

the California Current System (CCS) have impacts on the surface ocean salinity on event and

seasonal timescales. In the upper ocean, precipitation from ARs can produce long-lasting layers

of freshwater, the extent of which are dependent on atmospheric forcing from precipitation
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and wind. We conclude that upper ocean salinity changes due to ARs are within the limits of

detectability of ocean instruments.

We also examine the extent to which wind acts as a driving force for ice motion in the

Arctic. To accomplish this, we build a sequence of machine learning (ML) models that make

one-day predictions of present-day zonal and meridional sea-ice velocity components from

inputs of present-day wind velocity, previous-day sea-ice velocity, and previous-day sea-ice

concentration. We analyze the performance of these models, and implement explainable machine

learning (XML) methods to understand how they are making their predictions. One of these

methods, layerwise relevance propagation (LRP), was developed for ML models that make

classification rather than regression predictions. This study is the first known implementation of

a global LRP for a regression problem in geosciences. We therefore provide a comparative study

of several different XML methods to bolster trustworthiness in the use of LRP for this particular

application. A convolutional neural network (CNN) has improved performance compared

conventional persistence (PS) and linear regression (LR) models. Outputs from local LRP studies

are shown to be consistent with other XML methods. However global implementations of LRP

are highly sensitive to choices made during processing. We analyze the coefficients of the LR

model to understand the relationship between ice motion and wind speed. We show that the ice

is becoming more responsive to wind forcing, and link this to decreasing ice concentration.
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Introduction

Distribution of freshwater in the upper ocean plays an important role in the global climate

system. The exchange of freshwater between the ocean and atmosphere is a key component of

the global freshwater cycle (Solomon et al., 2021). Freshwater fluctuations in the upper ocean

are a balance between sources (precipitation, river runoff, ice melt), sinks (evaporation, ice

growth), and redistribution (horizontal advection, vertical mixing). These processes are closely

linked to atmospheric variability, which impact the distribution of freshwater through transport

of mass, momentum, and heat. In addition to direct exchanges of freshwater between the ocean

and atmosphere, wind also plays a large role in upper ocean freshwater budgets. Processes linked

to freshwater fluxes have both local and remote impacts (Wijesekera and Boyd, 2001).

Locally, freshwater exchanges in the ocean influence upper-ocean salinity and density

gradients (i.e. stratification). Surface stratification controls vertical mixing and impacts the

development of the surface mixed layer, which can cause mixed-layer entrainment that further

modulates the oceanic response to atmospheric forcing (Yamaguchi and Suga, 2019). For

example, the formation of long-lasting freshwater layers at the surface can inhibit turbulent

vertical mixing and decrease exchanges between the mixed layer and the thermocline (Schmitt,

2008). This can lead to the formation of diurnal warm layers (Webster et al., 1996), enhanced

surface currents (Wijesekera et al., 1999), the suppression of near-surface turbulent dissipation

below lenses (Smyth et al., 1997), and may provide unexpected regional variation of internal

wave energy propagation, dissipation, and mixing in the thermocline (Schmitt, 2008).

On a global scale, freshwater fluxes in the upper ocean play a role in large-scale oceanic

and atmospheric circulation. For example, freshwater modulation due to the melting of ice in the
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Antarctic is related to deep water formation, which impacts large-scale overturning circulations

(Goosse and Fichefet, 1999). This thermohaline circulation (i.e. circulation caused by density

gradients related to variations in temperature and salinity) is linked to variations in global climate

on decadal to millennial timescales (Schmitt, 1995). Additionally, Sévellec et al. (2017) used

an optimal flux perturbation framework to show that on multi-decadal timescales anomalous

fluxes of freshwater in the Arctic that result from a declining sea ice extent are the dominant

mechanism in driving weakening of the Atlantic Meridional Overturning Circulation (AMOC).

Freshwater in the Arctic is also modulated by sea ice advection around the Arctic and

export through the Fram Strait. Export of sea ice through the Fram Strait is the largest dynamic

sink of freshwater in the Arctic, and has been increasing in response to changes in the climate

state of the Arctic (Solomon et al., 2021). Rapid changes in the Arctic climate system have led to

a regime shift to what has been dubbed the “New Arctic” (Jeffries et al., 2013). These changes

include a reduction in the sea ice extent (Stroeve and Notz, 2018), thinning of the ice cover

(Kwok, 2018), warming and freshening of the Arctic Ocean (Timmermans and Marshall, 2020),

regionally enhanced oceanic and atmospheric mixing, and enhanced ocean–ice–atmosphere

coupling (Polyakov et al., 2020). These changes have a large impact on the variability of

freshwater in the Arctic and around the globe.

Understanding the impacts and redistribution of freshwater is important because the

global freshwater cycle is predicted to amplify as the vapor-carrying capacity of the atmosphere

increases from expected changes in climate (Yu et al., 2020). Changes in the global water cycle

are cited as some of the most societally relevant aspects of climate change (Lagerloef et al.,

2010; SPURS-2 Planning Group, 2015; Yu et al., 2020). This work explores the implications

of atmospheric river (AR) precipitation and Arctic sea-ice dynamics on freshwater budgets and

air-sea interactions in the upper ocean. Analyses are carried out using both observations and

modeling. However, the bulk of the analyses are approached from a modeling perspective, with

implementations of both dynamical and statistical models.

The first part of this work analyzes the impact of AR precipitation on upper ocean
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salinity in the California Current System (CCS). Salinity variability in the CCS has historically

been attributed to intrinsic ocean dynamics, including alongshore advection from the California

Current (Lynn and Simpson, 1987; Schneider et al., 2005), upwelling (Auad et al., 2011), and

riverine runoff (Kudela and Chavez, 2004; Johnson et al., 1999). The salinity response to

precipitation in the CCS has received little attention to date, particularly in contrast to studies

in the tropics that show a significant impact of upper ocean salinity on precipitation (Boutin

et al., 2014; Clayson et al., 2019; Drucker and Riser, 2014; Drushka et al., 2016, 2019). This

work investigates the role of local atmospheric forcing in the form of precipitation from ARs in

influencing upper ocean salinity. Atmospheric rivers are examples of extreme weather events

that impact the distribution of heat and moisture between the ocean and atmosphere, both

locally and globally. ARs are associated with extreme precipitation on land and over the ocean,

and account for up to 82% of total rainfall in the CCS. Climate projections indicate that the

moisture content and frequency of extreme AR events and seasons are expected to increase in

response to a warming climate (Dettinger, 2011; Payne et al., 2020; Shields and Kiehl, 2016).

Understanding how ARs impact surface ocean salinity, mixing, and stratification is important

for understanding their impacts on air-sea exchanges at different timescales and at different

locations. This work uses a combination of observations and a one-dimensional configuration of

the MITgcm (Massachusetts Institution of Technology General Circulation Model; a dynamical

model) to analyze the surface salinity response to ARs on seasonal and event timescales. The

response of the ocean to freshwater input its a function of precipitation, wind, background

stratification, heat flux, and vertical mixing (Drushka et al., 2016).

The remainder of this work focuses on using ML to predict and understand sea-ice

dynamics in the Arctic. The analysis begins by assessing the viability of using a neural network

as a surrogate for the dynamical component of ice in a numerical model that provides nowcasting

of the state of Arctic sea ice. ML models are promising for this application because they do

not need to resolve the complex physics inherent to numerical models of sea-ice dynamics,

and therefore have improved computational efficiency and cost (Hunke et al., 2020). Statistical
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models of ice dynamics have historically been based on a linear relationship between wind speed

and ice speed, where ice motion is related to wind through a speed reduction factor (the wind

factor) and a turning angle (Thorndike and Colony, 1982). This relationship describes up to

70% of the variability in ice motion in the central Arctic for short time scales, but has decreased

success in coastal regions (Thorndike and Colony, 1982; Kimura and Wakatsuchi, 2000; Hibler,

1979; Maeda et al., 2020; Kwok et al., 2013). In comparison to linear regression (LR), ML

models in the form of neural networks incorporate non-linear relationships between the inputs

into their predictions, and are able to capture important spatial information. In this study we

develop a convolutional neural network (CNN) that can make skillful one-day predictions of

ice motion. ML models are trained to predict present-day zonal and meridional ice velocity

components from inputs of present-day wind velocity, previous-day ice velocity, and previous-

day ice concentration. These predictors are chosen based on the momentum equation for sea-ice,

where scale analyses show that the dominant drivers of ice motion on short time scales are wind

and ocean currents, and internal ice stresses (Hibler, 1979; Lepparanta, 2011; Olason and Notz,

2014; Feltham, 2008). We analyze the overall performance of the CNN in comparison to classical

statistical models. We also analyze the spatial and temporal distributions in performance and

how they are linked to the variability of various properties related to ice motion.

In addition to assessing the predictive skill of ML models, this study also investigates the

“black box” nature of ML models and analyzes what information the models are using to make

predictions. This methodology, known as explainable ML (XML), provides insight into how the

model output (i.e. sea-ice velocity) is linked to the various inputs and how those relationships

are changing in time. We begin with a methods-based approach, where we investigate several

different XML techniques. We perform a comparative analysis of outputs from standard methods

of interpretability with newer methods that are able to provide more information. In particular,

we aim to understand the layerwise relevance propagation (LRP) explainabliliy method because

of the sheer quantity of information that it provides. This study is the first known application of a

domain-integrated implementation of LRP to a regression problem in the geosciences. Therefore
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we compare it to other XML methods to provide context and build trust in the method.

Ultimately, we aim to use output from XML to understand the relationship between ice

speed and wind speed and how it is changing in response to the changing ice state. Increases in

ice drift speeds have been attributed to ice thinning and reduction of multiyear sea ice coverage

(Rampal et al., 2009; Spreen et al., 2011; Zhang et al., 2012; Kwok et al., 2013; Carmack et al.,

2015; Tandon et al., 2017; Docquier et al., 2017). Reductions in sea-ice extent lead to a regime

where more of the ice is in free drift, and reductions in ice thickness lead to changes in ice

mechanics, both of which increase the responsiveness of ice motion to winds. Increases in the

wind factor between ice and wind speed have been cited for many regions throughout the Arctic

for all seasons (Spreen et al., 2011; Maeda et al., 2020). In this study we use ML in the form of a

linear regression (LR) model to confirm the increase in the relationship between ice and wind

speed, and to understand the mechanisms driving it.
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Chapter 1

Ocean Surface Salinity Response to Atmo-
spheric River Precipitation in the Califor-
nia Current System

1.1 Summary

Atmospheric rivers (ARs) result in precipitation over land and ocean. Rainfall on the

ocean can generate a buoyant layer of fresh water that impacts exchanges between the surface and

the mixed layer. These “fresh lenses” are important for weather and climate because they may

impact the ocean stratification at all timescales. Here we use in situ ocean data, co-located with

AR events, and a one-dimensional configuration of a general circulation model, to investigate the

impact of AR precipitation on surface ocean salinity in the California Current System (CCS)

on seasonal and event-based time scales. We find that at coastal and onshore locations the

CCS freshens through the rainy season due to AR events, and years with higher AR activity

are associated with a stronger freshening signal. On shorter time scales, model simulations

suggest that events characteristic of CCS ARs can produce salinity changes that are detectable

by ocean instruments (≥ 0.01 psu). Here, the surface salinity change depends linearly on rain

rate and inversely on wind speed. Higher wind speeds (U > 8 m s−1) induce mixing, distributing

freshwater inputs to depths greater than 20 m. Lower wind speeds (U ≤ 8 m s−1) allow freshwater

lenses to remain at the surface. Results suggest that local precipitation is important in setting
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the freshwater seasonal cycle of the CCS and that the formation of freshwater lenses should be

considered for identifying impacts of atmospheric variability on the upper ocean in the CCS on

weather event time scales. 1

1.2 Introduction

Freshwater inputs from rainfall can have variable impacts on surface ocean salinity. Of

particular significance is the impact on upper-ocean stratification, which has been shown to limit

the penetration depth of wind mixing and thus the vertical distribution of atmospheric fluxes

(Schmitt, 2008; Chaudhuri et al., 2021; Thompson et al., 2019). This has larger implications for

intensification of the global water cycle (SPURS-2 Planning Group, 2015; Yu et al., 2020). The

relative importance of factors that are known to impact the ocean’s response to freshwater inputs

is not well characterized, especially in the subtropics where studies are limited. Atmospheric

Rivers (ARs) are narrow, elongated plumes of strong poleward water vapor transport known to

produce large amounts of precipitation over the ocean and land in the California Current System

(CCS) (Ralph and Dettinger, 2012; Ralph et al., 2013). The impact of ARs on surface ocean

salinity has received minimal attention to date. Previously, global seasonal salinity variations in

the upper ocean have been attributed to runoff (in coastal regions), advection in the ocean, as

well as evaporation and precipitation (Yu, 2011). Ren and Riser (2009) found that among these,

in the subarctic regions of the Northeast Pacific (45◦N - 50◦N), precipitation was the largest

contributor. However, they did not address the California Current System, where variations

in salinity have been linked to variations in anomalous advection along the trajectories of the

California Current, the Inshore Current, and the California Undercurrent on seasonal (Lynn and

Simpson, 1987), interannual, and decadal (Schneider et al., 2005) timescales. Therefore to date,

seasonal variations of salinity within the CCS have mainly been attributed to advection (Lynn

and Simpson, 1987; Schneider et al., 2005). Here we hypothesize that local precipitation in the
1This chapter is published as Hoffman, L., Mazloff, M. R., Gille, S.T., Giglio, D., and Varadarajan, A. (2022).

Ocean Surface Salinity Response to Atmospheric River Precipitation in the California Current System. Journal of
Physical Oceanography, 52(8): 1867–1885. ©American Meterological Society. Used with permission.
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CCS (including ARs) provides a significant contribution to seasonal freshening. Additionally,

we hypothesize that precipitation from ARs impacts the surface ocean on shorter time scales,

and may be detectable by oceanographic salinity sensors in some conditions.

This study uses a combination of observations and modeling with the aim of understand-

ing the surface salinity response to ARs in the California Current System by characterizing (i)

the ocean salinity response to precipitation over the duration of the wet season; and (ii) the

role of rain rate and wind speed in driving changes in upper-ocean salinity and stratification for

characteristic AR events on event time scales.

1.3 Background

1.3.1 Salinity variability in the California Current System

Surface salinity variability in the CCS is typically attributed to alongshore advection from

the California Current (Lynn and Simpson, 1987; Schneider et al., 2005). Situated 150–1300 km

offshore, the California Current transports cool, fresh, nutrient-rich water southward. Within

the coastal zone (0–150 km) there is a poleward flow of warm, saline, low-oxygen subtropical

waters from the California Inshore Countercurrent (IC) (Bograd et al., 2001; Lynn and Simpson,

1987). At the surface (upper 50 m), the IC has seasonality, with a poleward flow occurring in the

winter and fall, and an equatorward flow in the spring and summer (Lynn and Simpson, 1987;

Rudnick et al., 2017b). Salinity increases toward the coast, implying that an increase in offshore

flow would result in an increase in salinity offshore (Rudnick et al., 2017b). Additionally, in

a study of the temperature and salinity extremes found in the CCS beginning in 2017, Ren

and Rudnick (2021) concluded that the positive salinity anomaly was a result of advection and

that different source waters were found in the California Current from 2017-2019. During the

summer, the increased salinity at the coast is enhanced due to coastal upwelling of cold, saline

waters from depth (Auad et al., 2011). Riverine runoff has been linked to salinity decreases off

the coast of central California (Kudela and Chavez, 2004; Johnson et al., 1999). While, as noted
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in the introduction, salinity variability in the CCS has previously been attributed to intrinsic

ocean dynamics (Lynn and Simpson, 1987; Schneider et al., 2005; Auad et al., 2011; Kudela and

Chavez, 2004; Johnson et al., 1999), atmospheric forcing such as local surface freshwater flux

may also influence surface salinity and is investigated here.

1.3.2 Salinity response to precipitation

The response of the ocean to freshwater input is a function of rainfall, wind, background

stratification, heat flux, and vertical velocity in the upper ocean (Drushka et al., 2016). Rainfall

forms stably stratified upper-ocean layers, with lenses of fresher water of O(1 m to 10 m) thick.

Changes in these freshwater lenses are driven by the interaction between buoyancy and shear

forces; they can persist from minutes to hours depending on factors such as wind-driven surface

mixing, lateral advection, convective overturning during nighttime cooling, and internal and

surface waves (Brainerd and Gregg, 1997; Drushka et al., 2019; Price, 1979; Tomczak, 1995;

Wijesekera et al., 1999). While most fresh layers disperse within a few hours, in some cases

fresh layers have been shown to persist for tens of hours (Walesby et al., 2015). Long-lasting

freshwater layers can inhibit turbulent vertical mixing and decrease exchanges between the mixed

layer and the thermocline (Schmitt, 2008). This can lead to the formation of diurnal warm layers

(Webster et al., 1996), enhanced surface currents (Wijesekera et al., 1999), and the suppression

of near-surface turbulent dissipation below lenses (Smyth et al., 1997). In addition, fresh lenses

may provide unexpected regional variation of internal wave energy propagation, dissipation,

and mixing in the thermocline (Schmitt, 2008). While this work pertains to freshwater lenses

rather than barrier layers (Soloviev et al., 2015), it is interesting to note that de Boyer Montégut

et al. (2007) identified the presence of unexplained barrier layers off the California coast at

25–45◦ latitude. This study may explain the mechanisms behind this previously unexplained

phenomenon.

While the ocean salinity response to precipitation in the CCS has received little attention

to date, there is a growing pool of research on the ocean’s response to freshwater input in
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the tropics, as experiments involving Surface Salinity Profilers (SSP) provide high-resolution

measurements near the surface. Results from a SSP deployed in the western tropical Pacific in

December 2011 indicate that the vertical salinity difference between 0.26 m and 0.11 m depth

has a cubic dependence on rain rate, and is inversely proportional to wind speed (Asher et al.,

2014). Other studies have shown a linear relationship between the vertical salinity gradient and

maximum rain rate (Boutin et al., 2014; Clayson et al., 2019; Drucker and Riser, 2014; Drushka

et al., 2016, 2019). However, wind speed was not factored into all of these studies. In the cases

where wind was taken into account, results from a one-dimensional general ocean turbulence

model (GOTM) and measurements made in the Intertropical Convergence Zone (ITCZ) in the

eastern tropical Pacific during the second Salinity Processes in the Upper-ocean Regional Study

(SPURS-2) showed the maximum difference in salinity between 1-5 m depth and the surface to

be inversely proportional to wind speed (Drushka et al., 2016, 2019). In this study, we focus on

the subtropics, where studies to date have been limited.

1.3.3 Atmospheric rivers in the California Current System

ARs account for a substantial amount of the global water transport, especially at mid-

latitudes where they can supply more than 90% of meridional transport of atmospheric water

vapor (Ralph and Dettinger, 2012; Zhou and Newell, 1998). ARs are characterized by high

atmospheric water vapor content and heavy winds. Because they are associated with extreme

precipitation on land and over the ocean, especially in coastal regions (Ralph and Dettinger,

2012; Ralph et al., 2013), ARs often cause devastating flooding and play a large role in the global

distribution of moisture and drought (Ralph and Dettinger, 2011). ARs can occur in families

consisting of several (typically 2–6) consecutive ARs (Fish et al., 2019), contributing to the

accumulation of precipitation in the upper ocean and on land. The AR that extends from Hawaii

to the US West Coast carries moisture across the eastern Pacific to the coast of California. Off

the coast of Monterey Bay in the CCS, 30-48% of precipitation events greater than 5 mm day−1

occur during ARs, which are responsible for up to 82% of total rainfall in the CCS, as seen along
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California Cooperative Oceanic Fisheries Investigations (CalCOFI) line 66.7 in Fig. 1.1, and as

indicated by Guan and Waliser (2015). Argo profiles indicate large-scale upper ocean freshening

on average from December to February in areas of the Pacific that receive frequent AR-associated

rainfall (Giglio et al., 2020). Implications of AR events for upper-ocean stratification and salinity

are important, especially as climate projections indicate that the moisture content of ARs and

the frequency of extreme AR events and storm seasons are expected to increase as a result of a

warming climate (Dettinger, 2011; Payne et al., 2020; Shields and Kiehl, 2016).

Figure 1.1. (a) Fraction of rain events with precipitation greater than 5 mm day−1 that are
also ARs; and (b) fraction of total precipitation that comes from ARs, within the region of the
CCS. Events included occur between September and March for the years 2007-2019. Also
depicted is the trajectory traveled by CUGN Spray glider along CalCOFI line 66.7, the location
of the MBARI M1 mooring (purple) and the coastal (yellow), onshore (cyan), and offshore (red)
locations that were used during model analyses. The gray dashed line represents CalCOFI line
66.7 off the coast of Monterey, CA.

1.3.4 Impacts of salinity on global moisture distribution

Changes in surface salinity have broad implications for the distribution of moisture and

the Earth’s water cycle. For example, a reduction in sea surface salinity due to precipitation

is hypothesized to lead to a positive feedback in which the formation of buoyant freshwater
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layers reduces vertical mixing in the upper ocean, which then contributes to increased SST,

and in turn leads to a further increase in atmospheric convection and precipitation (SPURS-

2 Planning Group, 2015). In contrast, Williams et al. (2006) used climate modeling to show that

freshwater lenses formed from an intensified hydrological cycle could produce a basin-scale

negative sea surface temperature feedback to anthropogenic human climate change. These

nuances make understanding the vertical upper-ocean salinity gradient important for improving

air-sea coupling in models (McCulloch et al., 2012) and understanding the role of upper ocean

stratification in a changing climate. Boutin et al. (2013) also suggested that the impact of

precipitation on salinity stratification should be taken into account when assimilating satellite

data under rainy conditions. Furthermore, the Clausius-Clapeyron relationship shows a strong,

non-linear dependence of water vapor pressure on temperature. With this relation, a rise in

temperature of about 1◦C leads to a 7% increase in vapor pressure, which causes changes in the

water cycle as the vapor-carrying capacity of the atmosphere increases (Schmitt, 2008). These

changes will impact the global distribution of rainfall and drought, which is one of the most

societally relevant aspects of climate change (SPURS-2 Planning Group, 2015; Yu et al., 2020).

1.4 Observational Data and Model

A combination of observations and modeling are used to determine the seasonal and

event-based response of ocean salinity to rain events within the CCS (30◦N-42.5◦N, 128◦W-

115◦W). Here the region is divided into three subdomains based on the distance from shore:

coastal (0-50 km), onshore (50-150 km) and offshore (150-550 km). The distance ranges are

chosen based on the location of California Undercurrent (strongest around 70 km offshore),

the California Inshore Countercurrent (strongest around 150 km offshore), and the California

Current (strongest at 200–300 km offshore) as they fall along CalCOFi line 66.7 (Rudnick et al.,

2017b). The subdomains include data collected along the Spray glider line, and their bounds,

perpendicular to the coast, are indicated by three colored markers in Fig. 1.1. Model initialization
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and forcing data are taken from observations and reanalysis fields at three coordinate locations

(36.67◦N, 122.06◦W; 36.11◦N, 123.47◦W; and 34.43◦N, 127.13◦W, which are 30 km, 150 km,

and 550 km offshore from Monterey Bay, respectively) within the three subdomains (coastal,

onshore, and offshore). Figure 1.1 shows these locations and indicates the location of the

Spray glider path along CalCOFi line 66.7 and the Monterey Bay Aquarium Research Institute

(MBARI) M1 mooring location.

1.4.1 Instrument Accuracy

The accuracy specification for conductivity, temperature, depth (CTD) instruments in

measuring salinity is equivalent to 0.003 psu. However, this value is defined in a clean, well-

mixed calibration bath and does not take into account effects of in situ ocean measurements.

For example, the dynamic effects of moving instruments are known to increase errors in CTD

measurements to 0.02-2.0 psu (Seabird Scientific, 2016). This is consistent with observation

errors for in situ salinity data that are found to be typically on the order of ± 0.01 psu after

post-processing for quality control (Vinogradova et al., 2019; Delcroix et al., 2005). These values

are similar to the 0.01 psu accuracy reported in Argo salinity measurements after delayed-mode

adjustments (Wong et al., 2020). Here, we use 0.01 psu as the threshold for a detectable salinity

change.

1.4.2 ERA5

The ERA5 dataset is produced using a 4D-Var data assimilation of the European Centre

for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS) by combining

a vast number of historical observations into global estimates. Covering the Earth on a 31 km

(0.28128◦) grid and resolving the atmosphere using 137 levels from the surface to 80 km height,

the ERA5 dataset provides hourly estimates of a number of surface ocean and atmospheric

variables from 1979 to present (Hersbach et al., 2020). In an analysis of the performance of five

state-of-the-art global reanalyses in comparison to in situ data, ERA5 surface winds were found
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to have the best agreement with observed variability on daily and interannual time scales (Ramon

et al., 2019). The ERA5 dataset showed significant improvements in precipitation estimates

compared to ERA-Interim, with the caveat that biases still remained in the southeastern United

States and on the North American western coast (Tarek et al., 2020). Additionally, reanalysis

products (including the ERA5) showed the best agreement with precipitation measurements

made by local ground stations in a comparison of a collection of satellite, reanalysis, and gauge

measurements from the Frequent Rainfall Observations on GridS (FROGS) dataset for two case

studies (California and Portugal) of extreme AR events (Ramos et al., 2021). However, the

ERA5 often underestimated heavy precipitation compared to gauge measurements, with a mean

absolute percent error of 68% (Ramos et al., 2021).

In this study, the ERA5 reanalysis dataset (Muñoz Sabater, 2019) is used to characterize

atmospheric conditions, i.e. atmospheric temperature, Ta(K); zonal and meridional wind speed,

UZ and UM (m s−1); downwelling longwave radiation and shortwave radiation, IL and IS (W m−2);

specific humidity, SpH (kg kg−1); evaporation minus precipitation, EmP (m s−1); and rain rate,

R (m s−1). This study uses hourly data at the surface within the CCS from 2007-2019 to match

the date range of the dataset for the Spray glider along line 66.7.

1.4.3 SIO-R1 AR Catalog

The Scripps Institution of Oceanography (SIO)-generated AR catalog, the SIO-R1 AR

catalog (Gershunov, 2017), provides a record of AR activity on the North American West Coast

(20.0◦-60.0◦N, 160◦-100◦W). The dataset indicates whether or not an AR was detected (0 or 1)

for each 6-hourly time step on a 2.5◦ resolution spatial grid (Gershunov et al., 2017). Here, this

catalog is used to investigate the fraction of events with rainfall exceeding 5 mm day−1 that are

associated with ARs (Fig. 1.1), as well as the total number of AR events during the rainy season

each year. Here we define the AR as ‘detected’ if there is an AR in the grid cell or neighboring

grid cell. To quantify rain events, we use ERA5 precipitation estimates at the AR locations.
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1.4.4 CUGN Spray Line 66.7

The California Underwater Glider Network (CUGN) provides continuous sampling along

CalCOFI line 66.7 by one Spray glider at a time (Rudnick, 2016). The glider travels from

Monterey Bay to a distance about 500 km offshore, vertically profiling in a sawtooth pattern.

Each cycle to 500 m depth and back to the surface covers 3 km of horizontal distance and takes

roughly 2.75 h. The quality controlled Spray glider dataset provides temperature and salinity

observations from the glider ascent phase at discrete 10 m vertical levels, with the shallowest

measurements available at 10 m depth (Davis et al., 2008). Finer resolution (raw) data are

available, but performing quality control at depths shallower than 10 m is beyond the scope of

this study. Salinity collected by the Spray glider is reported in practical salinity units (psu). Data

are available from April 2007 through present (Rudnick et al., 2017b). Here glider data are used

to characterize the ocean’s salinity response to atmospheric precipitation on seasonal time scales

and to initialize model runs (as described in sections 1.5.1 and 1.5.2). Spray glider data allow

us to investigate precipitation impacts on salinity at larger spatial scales over the CCS. One

limitation of the Spray dataset for this study is that the temporal response of the upper-ocean

salinity to precipitation is not fully captured at a particular location due to the fact that the glider

is neither a Lagrangian nor an Eulerian platform and is travelling cross-shore.

1.4.5 MBARI M1 Mooring

The MBARI M1 mooring (Chavez, 2015) measures continuously at one location. There-

fore in comparison to Spray it has the disadvantage of conveying no spatial information, but

the advantage of not aliasing spatial variability into temporal fluctuations. Here we use surface

measurements (nominal depth of 1 m) of ocean salinity at a location 20 km offshore of Monterey

Bay (36.75º N, -122.0º W; purple marker in Figure 1.1) from 2007 - 2019. This dataset is used

to investigate the seasonal response of salinity to precipitation, to compare to model output, and

to make event composites.
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1.4.6 MITgcm 1D Model

In this study, a one-dimensional configuration of the MITgcm (Adcroft et al., 2018), with

vertical transport equations for momentum and heat, is used to run both seasonal (September

- March) and event-based simulations (four-day sensitivity studies and nine-day case studies)

aimed at characterizing the ocean’s response to precipitation from ARs on different time scales.

The MITgcm uses the non-local K Profile Parameterization (KPP) vertical mixing scheme of

Large et al. (1994) with a standard configuration as listed in Adcroft et al. (2018). Turbulent heat

fluxes are computed in the model using methods from Large and Pond (1982). Details of model

setup for each experimental run (seasonal, event sensitivity, and event case studies) are provided

in Table 1.1 and in the sections that follow.

1.5 Methods

1.5.1 Seasonal Time Scale

Observational Methods

The seasonal response of ocean salinity is first investigated by looking at the MBARI

M1 mooring surface (1 m) salinity measurements from 2015-2018, which are compared with

model output from simulations run at the mooring location. Model forcing and initialization are

discussed further in section 1.5.1. This is followed by analysis of the annual and interannual

(2008 through 2019) salinity anomaly from the Spray glider along line 66.7 in the CCS. As part

of this analysis we assess a one-dimensional salinity budget at a location 15 km offshore along

the glider path using the hypothesis that changes in salinity within the water column will be fully

explained by E −P in the form of an equation,

d
dt

(∫ Z
0 Sdz

Z

)
=

(E −P)Sref

Z
(1.1)
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Here we ignore advection and diffusion and calculate the amount of precipitation required to

produce the rain-year salinity anomaly over a depth, Z, in the limiting case where evaporation, E

(from ERA5), and rain, P, are the only contributing factors.

Additionally, over the rain-year from September through March, cumulative precipitation

is calculated from ERA5 and compared with change in salinity at 10 m depth from the Spray

glider along line 66.7 in coastal, onshore, and offshore regions. Glider offshore distance is

calculated by comparing Spray glider data for latitude and longitude at given time steps with

the initial coordinate location 5 km offshore. Salinity data are binned monthly and into coastal,

onshore and offshore subdomains for each year, and averaged over each bin. Changes in salinity

from September (start of the rain-year) to March are calculated for each year from the averages

of the binned values. Along the line 66.7 glider path, ERA5 precipitation data are extracted

at the fixed locations used to represent the coastal, onshore, and offshore regions, respectively

(Fig. 1.1). ERA5 data from each location are binned by month to calculate cumulative monthly

precipitation, from which cumulative precipitation is calculated from September through March,

to be compared with change in salinity. Uncertainties for salinity and rainfall between September

and March are computed by calculating the standard error of the mean in each bin and then

propagating errors through the calculations to produce cumulative rainfall or salinity differences.

Model Setup

The seasonal, one-dimensional MITgcm model is run over a period of 213 days (Septem-

ber 1–April 1) with a 0.5 h time step. Atmospheric forcing is applied daily and taken from

ERA5 daily mean (longwave and shortwave radiation, zonal and meridional winds, atmospheric

temperature, and specific humidity) and daily cumulative (precipitation) values. Forcing is

applied for three different locations representing the coastal, onshore, and offshore subdomains.

Initial conditions are taken to be temperature and salinity depth profiles, interpolated to 0.5 m

intervals, from the Spray glider dataset along line 66.7, which provides measurements at 10 m

intervals. The shallowest Spray measurements are at 10 m, so T and S between 0 and 10 m
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are set to the 10-m values, under the assumption of a well-mixed surface layer with constant T

and S in the upper 10 m. Profiles of T and S are binned by month and by offshore distance for

each year. Initial profiles are set as the calculated average profiles in September for each year

(2008-2019) and offshore distance regime. When no data are available for September in a given

year/distance bin, the T and S profiles from October are used as initial conditions. This is the

case for 2008 (coastal bin), 2012 (coastal and onshore bins), and 2017 (coastal bin). The model

is run for the upper 140 m of the water column, using 280 vertical levels with 0.5 m spacing. The

depth of 140 m was chosen to allow ample room for the downward propagation of the salinity

response, as even for cases of high wind speeds, the salinity response to freshwater input was not

found to propagate below 120 m depth. These model parameters are also listed in Table 1.1.

Model Validation

The use of a one-dimensional model will allow for analysis without the influence of

ocean processes such as horizontal advection, upwelling, and runoff, thus isolating the impact of

rainfall and wind speed on upper-ocean salinity changes. We validate the model for long-term

studies by comparing the observed and modeled March-minus-September salinity differences

for all rain rates over the years 2008–2019 (Fig. 1.2). To do this, the methods discussed in

section 1.5.1 for Spray glider data are applied to model output. A linear regression of observed

to modeled salinity difference finds a slope of 1.25 with an r2 value of 0.52, which is statistically

significant at the 99% level. Figure 1.2 also shows that a 1:1 ratio between observed and modeled

data falls within the 99% prediction interval (green shading) and is close to the upper bound

of the 99% confidence interval (blue shading) for the linear fit. Here the prediction interval

represents the estimated range of a future observation, while the confidence interval represents

the range of values for the linear regression slope and indicates how well this slope has been

determined. Higher cumulative rainfall in Fig. 1.2 typically corresponds to a larger rainy-season

decrease in salinity, as seen in the gradient of the color-coded data points, where large negative

salinity differences (salinity decrease) are dark blue (high cumulative rain), and large positive
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salinity differences (salinity increase) are tan (low cumulative rain). Spray salinity differences

tend to be larger than model differences, indicated by the slope being slightly large than one (i.e.

for every 1 unit change in modeled salinity difference, Spray measures a change of 1.25 units).

This difference in slope could be indicative of the model not including horizontal advection,

upwelling, or runoff.
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Figure 1.2. Observed vs. modeled March-minus-September salinity differences (psu) color
coded by cumulative rainfall (cm) for the years 2008–2019. The solid black line represents
the linear regression of observed to modeled salinity data for all rain rates, plotted with 99%
confidence (blue shading) and prediction (green shading) intervals. The slope and r2 value for
the fit are indicated in the legend. The black dotted line indicates the 1:1 relationship. Data are
included from coastal, onshore, and offshore locations. With 27 data points, linear regression
coefficients are statistically different from zero at the 99% confidence level if r2 > 0.24; our
results exceed this threshold.
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1.5.2 Event Studies

Observational Methods

To assess the salinity response to precipitation on an event basis, we analyze ERA5

precipitation at the location of the MBARI M1 Mooring surface salinity measurements. Event

composites are created by averaging rainfall, wind speed and salinity from 85 heavy rain events

as a function of time relative to the start date, described below. Events are included if daily

cumulative precipitation is greater than a threshold of 5 mm and there has not been another rain

event of this size within 10 days prior to the event start date. Events are defined to start (day

0) on the first date with rainfall exceeding the threshold. For the MBARI M1 mooring, events

are chosen within a date range from January 2007 through March 2019. Composite analysis is

not carried out using data from the Spray glider. While the decrease in salinity in response to

precipitation is visible for a few glider events (not shown), the motion of the Spray glider makes

composites too difficult to compute in a consistent way.

Model Setup, Sensitivity Studies

Event-based sensitivity studies are run in the one-dimensional configuration of the

MITgcm for four-day periods to study the impact of AR events on the formation of freshwater

lenses. Atmospheric forcing is applied every minute with the 60-s time steps linearly interpolated

from hourly ERA5 fields. In order to isolate the impact of wind speed on surface mixing, values

for radiation (IL and IS), specific humidity (SpH), and air temperature Ta are kept constant and

set as the calculated average value of the ERA5 dataset over five coastal AR events from October

2016 – February 2017. Characteristic precipitation, wind speed, and event duration are defined

based on commonly occurring conditions for AR events, as noted in the statistical distribution of

different conditions for composited AR events from Table 2 in Ralph et al. (2013). Precipitation

is applied as a 12-hour long Gaussian pulse (defined by the full width of the Gaussian at one

tenth of the peak) with maximum rain rate (R = 0, 2, 3, 4, 5, and 8 mm h−1) occurring during the

48th hour, preceded and followed by a period of zero rainfall. The Gaussian pulse was chosen
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based on work of Drushka et al. (2016), who showed that for the same cumulative rainfall, the

maximum rain rate was more important than pulse width in determining the salinity response.

Wind speed is applied as a constant value (U = 0, 2, 4, 8, 12, 16 m s−1) over the four-day time

period. The six different rain conditions and six different wind conditions result in a total of 36

model runs. Figure A1 shows an example of idealized forcing and modeled ocean response for

one sensitivity run. The model parameters for this study are also listed in Table 1.1.

For event-focused simulations, the initial temperature profile is set as the interpolated

profile averaged over five coastal AR events from October 2016–February 2017 from Spray

glider data on line 66.7. The initial salinity profile is constant with depth to allow the vertical

change in salinity from precipitation to be distinguished from mixing. The salinity at all depths

is set to the 10 m salinity from Spray averaged over the same five coastal AR events. The

decision to adopt a constant vertical salinity profile is justified by the results of sensitivity tests

that indicate that variations in the stratification of the initial vertical salinity profile have little

effect on the salinity response to rain events (not shown). In contrast, in a different regime in

the tropics, Drushka et al. (2016) and Iyer and Drushka (2021) find that rain falling on saltier

water will lead to a larger salinity stratification than rain falling on freshwater, and that the

preexisting background salinity can have a larger impact on the salinity response to rain than the

rain conditions themselves.

Following Drushka et al. (2016), two metrics are defined in order to characterize the

ocean response to rainfall: the depth (DL) and duration (TL) of the fresh lens. Here the fresh-lens

depth, DL, is defined as the depth at which the salinity anomaly relative to the salinity at the first

time step is 25% of the maximum anomaly. In contrast Drushka et al. (2016) defined DL where

the salinity anomaly relative to a no-rain control run was 10% of the maximum anomaly. The

lifetime of the fresh lens, TL, is defined as the time period over which the fresh-lens depth is

non-zero. The definition of DL differs from that of Drushka et al. (2016) in order to account for

AR conditions in the CCS, as ARs in the CCS have smaller rain rates but longer duration than

rain events in the tropics. To compare the model simulations for different external forcing cases,
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we calculate the salinity difference ∆S as the salinity at 0.01 m depth at each time step subtracted

from the 0.01 m depth salinity at the first time step. A positive ∆S therefore represents a decrease

in surface salinity over time. The maximum vertical salinity difference, ∆Smax, is defined as the

maximum value of ∆S within the four-day time period.

Model Setup, Case Studies

Event case studies are run using the one-dimensional configuration of the MITgcm to

study the impact of specific AR events on the formation of freshwater lenses. The event length

is set to nine days to match the MBARI composite studies. Five different coastal AR events

are chosen: (i) 16 October 2016; (ii) 27 November 2016; (iii) 11 December 2016; (iv) 19

January 2017; and (v) 17 February 2017. Atmospheric forcing is applied hourly and is linearly

interpolated to 60 s time steps by the model. Values for rain rate (R), wind speed (UZ and UM),

radiation (IL and IS), specific humidity (SpH), and air temperature (Ta) are taken from the ERA5

dataset at the coastal location for a duration starting three days before and ending six days

after the event date. Figure A2 shows an example of the forcing for one of the five runs. The

initial temperature and salinity profiles are set as the profile for each event starting date from

the Spray glider at the coastal location along line 66.7, interpolated to telescoping depths. As

in the sensitivity studies, ∆Smax is calculated for each model run as the maximum value of the

difference in salinity at 0.01 m depth between each time step within the nine-day time period and

the first time step. Model output from case studies is compared to that of the sensitivity studies,

as well as observational results from the MBARI M1 mooring. The model parameters for this

study are also listed in Table 1.1.

Model Validation

A one-dimensional model (the MITgcm ocean column (Adcroft et al., 2018)) will allow

for analysis without impacts from horizontal advection or runoff. In order to validate the use of

the MITgcm for event-based studies, we first run with external forcing and initial conditions used
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by Drushka et al. (2016) for a site in the tropical Pacific and compare with the published results

of the General Ocean Turbulence Model (GOTM) by Drushka et al. (2016). For consistency

with GOTM outputs, in this model validation ∆Smax is defined as the maximum vertical salinity

difference between 5 m and 0.01 m, following Drushka et al. (2016). MITgcm results are similar

to GOTM results (Fig. A.3). One difference is that the MITgcm KPP tends to mix deeper and

preserves the freshwater lens for a shorter duration, except in the case of 10 m s−1 winds and

2 mm h−1 precipitation rates (not shown). As a result, the maximum vertical salinity difference

between 5 m and 0.01 m for a given model run is generally smaller in the MITgcm than in

GOTM. Conversely, at higher rain rates, GOTM has greater mixing of large freshwater inputs

at the surface, resulting in a lower maximum vertical salinity difference than in MITgcm for

2 m s−1 (not shown) winds and 50 mm h−1 precipitation rates. However, for most rain and

wind cases a statistically significant 1:1 linear fit is exhibited between the two models (Fig. A.3).

Therefore differences between GOTM and the MITgcm are judged minor. Since the MITgcm

is consistent with the one-dimensional turbulence model, we choose to use it here because it

can later be extended to run in a three-dimensional configuration, which will aid in future work

considering ocean processes such as horizontal advection, runoff and upwelling.

Sensitivity experiments are run to test other parameters of the MITgcm, including the

model time step, the KPP Richardson number threshold for mixing, and the initial stratification

(not shown). Model results are relatively insensitive to time step and only sensitive to Richardson

number threshold at high rain rates in combination with low wind speeds. Initial stratification

is tested by changing the input vertical salinity profile to have different slopes within a salinity

range of 33–34 psu in the upper 20–80 m of the water column (not shown). These changes are

found to have little impact on the vertical changes in salinity in response to different rain rates.
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Figure 1.3. Time series showing salinity (psu) for MITgcm one-dimensional model runs (red,
solid) and MBARI M1 Mooring (red, dashed) at 1 m depth, compared to ERA5 rain rate
(mm day−1) (blue) from September through March in 2015–2018 (a–d). The black dashed line
represents the initial salinity in September for comparison.

1.6 Results

1.6.1 Seasonal Response

While changes in the salinity of the CCS have previously been attributed mainly to

advection (Lynn and Simpson, 1987; Schneider et al., 2005), the time series for the MBARI

M1 Mooring salinity and the MITgcm model output salinity at 1 m depth in comparison to

ERA5 daily cumulative precipitation both suggest that local precipitation also impacts ocean

surface salinity (Fig. 1.3). A seasonal freshening is present from September to March for the

years 2015–2018 in both mooring and model data, with the exception of 2017 for the mooring

(Fig. 1.3). Here, the mooring data often show the freshening to be a response to rain events,

as typically spikes in precipitation (10 mm day−1–35 mm day−1) are followed by decreases in

salinity (0.1 psu–1.0 psu). The comparison of model and mooring salinities in Fig. 1.3 shows
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that the mooring has a more drastic salinity response immediately following rain events, while

the model response is more gradual (up to 0.25 psu). While Fig. 1.3 suggests a relationship

between seasonal precipitation and salinity change, its inclusion here is mainly intended as an

introduction to the idea that salinity changes in the upper ocean may be linked to precipitation.

Data from the MBARI M1 mooring are further analyzed in section 1.6.2.

Figure 1.4. (a) Climatological annual cycle and (b) multi-year time series of salinity anomaly as
a function of offshore distance at 10 m depth as measured by the CUGN Spray underwater glider
on line 66.7. (c,d) Salinity anomaly averaged over offshore distances from 0–50 km (red) and
daily precipitation with a 30 day moving mean at the coastal location (blue; offshore distance
< 50 km): (c) annual signal averaged over 2007–2019; (d) time series, showing interannual
anomaly for salinity and a 30-day moving mean for daily precipitation. (e) Salinity anomaly
averaged over different depths (40 m, 50 m, 70 m, 100 m & 150 m) in the upper ocean at 15 km
offshore (red) and theoretical daily precipitation that would be required if local rain was the only
factor leading to a change in salinity (blue). (f) Ratio of observed cumulative precipitation from
September to January of each year to cumulative precipitation that would be required to produce
the annual salinity anomaly in (e) for different depths. Spray data from Rudnick et al. (2017a);
evaporation and precipitation data from ERA5.

We also examine annual and interannual variability of salinity as measured by the Spray

glider and precipitation from ERA5 (Fig. 1.4). The annual climatological salinity anomaly

in Fig. 1.4a shows that at all locations there is a negative salinity anomaly (blue) during the
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rainy season months of October-April. A positive anomaly (red) is seen during the summer

months May-September. This pattern is stronger at the coast than offshore. The annual cycle

of negative anomaly in the winter (Oct-Apr) and positive anomaly in summer (May-Sep) is

also often visible in the full time series (Fig. 1.4b & d). For example, high precipitation in the

2016–2017 rainy season (Fig. 1.4d) coincides with a negative salinity anomaly (Fig. 1.4d and

blue in Fig. 1.4b), while lower precipitation in the 2017–2018 season coincides with a positive,

or less negative, salinity anomaly (Fig. 1.4d and red in Fig. 1.4b). Fig. 1.4e shows that the

salinity anomaly averaged over the top 40 m to top 150 m is rather insensitive to the depth range

over which it is averaged (red lines), suggesting that processes other than local rain (e.g. runoff,

advection) play a role in these salinity changes. However, the all-rain scenario is used here as a

limiting case by applying these salinity anomalies in Equation (1.1) to calculate the amount of

precipitation that would theoretically produce the anomaly if evaporation and rain were the only

contributing factors (blue line, Fig. 1.4e). This information is then used to compute the ratio of

observed cumulative local precipitation from September to January of each year to the theoretical

cumulative precipitation that could account for the annual cycle of freshening. Here, Fig. 1.4f

shows that ratio and indicates that local rain could potentially account for up to 100% of the

annual cycle of freshening in the upper 50 m in this limiting case in which the system depends

only on vertical mixing, with no effect due to horizontal advection. The precipitation required to

produce the annual salinity anomaly over the depth range increases with increasing depth, which

leads to estimated rain fraction decreasing with increasing integration depth. In other words, as

we integrate to greater depth, a smaller portion of the salinity signal is expected to be due to rain.

Determining the mechanisms responsible for the residual, which possibly include horizontal

advection, runoff, upwelling, or downwelling, is outside the scope of this study.

To characterize upper-ocean freshening in response to precipitation, for both glider and

model data, we plot the March-minus-September salinity differences at 10-m depth as a function

of cumulative rainfall at coastal, onshore, and offshore locations (Fig. 1.5 a–c). We also include

salinity differences as measured from the MBARI M1 mooring at the coastal location. The
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Figure 1.5. (a-c) Cumulative rainfall (cm) and (d–f) number of AR events as a function of
salinity (psu) difference between March and September for the years 2008–2019 at (a,d) offshore,
(b,e) onshore, and (c,f) coastal locations. Panels a–c include CUGN Spray line 66.7 observations
(blue), MBARI M1 mooring observsations (red, dotted) and MITgcm one dimensional model
runs (red, solid) at 10 m depth. The blue and red lines represent least squares fits to glider,
mooring, and model data with the slope and r2 values labeled in the legend. Panels d-f show data
from SIO-R1 AR catalog and CUGN Spray line 66.7 observations (blue) at 10 m depth. Blue
lines represent linear regressions, with slopes and r2 indicated in the legends.

quantities appear anti-correlated: high cumulative rainfall typically corresponds to larger salinity

decreases (Fig. 1.5a–c). For glider, mooring, and model data, least squares fits show negative

slopes and r2 values that are statistically significant at the 95% level (corresponding to r2 > 0.30

for 12 years of data), except at the offshore location. These r2 values suggest that precipitation

can explain a significant portion of the variance in salinity difference over the rainy season at

coastal and onshore locations (52% and 59% for the glider data, 50% for the mooring data,

and 84% and 62% for the model output). The offshore region does not always show a salinity

decrease over the course of the water year, and it also tends to experience a lower cumulative

rainfall than coastal and onshore locations (15-45 cm for offshore in comparison to 20-70 cm for

coastal). The model response differs from the observational data in that the model tends to show
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a smaller decrease in salinity over the season (Fig. 1.5a–c), as discussed in section 1.5.1.

Given the one-dimensional nature of the model, external forcing would be expected

to explain 100% of the variance in salinity changes, which is not the case in Fig. 5. Here,

unexplained variance results from not including evaporation and analyzing salinity changes

only at the surface, thus not capturing mixing of the freshwater input to further depths. When

comparing evaporation minus precipitation to the salinity change integrated over all depths,

100% of the variance is explained by the model for all locations (not shown).

To further investigate the role that ARs play in seasonal upper-ocean freshening, we

compare the number of AR events to the March-minus-September 10-m salinity difference for

glider data at the three locations (Fig. 1.5d–f). Years with more ARs tend to exhibit larger salinity

decreases, as seen in Fig. 1.5d–f and as indicated by the negative slopes of the regressions. This

is the case except in 2017, when an increase in salinity is seen despite a large number of ARs

(Fig. 1.5d). Similarly to the relationship between cumulative rainfall and salinity difference,

this trend is statistically significant at the 95% level, except at offshore locations, and r2 values

suggest that ARs can explain a significant portion of the variance in salinity difference over the

rainy season for coastal and onshore locations. At offshore locations, relationships between the

number of AR events and salinity difference (Fig. 1.5d) or precipitation and salinity difference

(Fig. 1.5a) do not exhibit r2 values for linear regression that are statistically significant. The lack

of correlation between local rainfall and freshening at offshore locations could be caused by

salinity changes related to processes other than rainfall, such as advection.

1.6.2 Event-Based Response

Event Composites

While the results of section 1.6.1 demonstrate that in the CCS region, the upper ocean

freshens more during high rainfall years than it does in low rainfall years, the question of whether

individual rainfall events are detectable in upper-ocean salinity remains. We begin examination

of the ocean salinity response to rain events on short time scales by using event composites.
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Figure 1.6. Composite time series of (a) six-hourly rain (mm, red) and daily cumulative rain
from day -3 to day n (mm, blue), (b) wind speed (m s−1) with a six-hour moving mean, and (c)
salinity difference (psu) between relative day n and relative day 0 for 85 rain events occurring at
the MBARI M1 mooring location from January 2007 – March 2019. The solid line (µ) represents
the mean of all composite events and the shading represents the standard error of the mean (sem)
among these events. The solid black line in (c) represents a salinity of zero, which is zero on
day zero because the anomaly is in reference to this day. Events are included if daily cumulative
precipitation on day zero is greater than 5 mm day−1 and there has not been another rain event
within 10 days of the event start date. Event start dates are set as the first date that rainfall
exceeds the threshold; conditions are shown from 3 days before through 6 days after this date.
Rainfall and wind speed are taken from ERA5 and salinity from the MBARI M1 Mooring.

Figure 1.6 shows a time series composited from 85 events that occurred at the MBARI M1

mooring location from January 2007–March 2019 (see Fig. A.4). The rain events that are in the

composite analysis are shown as both cumulative rain over six hours (red) and daily cumulative

precipitation (blue), whereas salinity is plotted as a six-hourly moving mean. In Fig. 1.6, relative

day zero represents the first day that rainfall exceeded a threshold of 5 mm day−1 (a result of

the event compositing discussed in section 1.5.2). The wind speed (Fig. 1.6b) remains relatively

constant at about 5±1 m s−1 for the duration of the composite time series, with a slight peak

on relative days 0–1. Figure 1.6c shows that the surface salinity measured by the M1 mooring

decreases over the duration of the composite time series, especially during the days with peak

rain (day 0 through 1). While there is an increase in salinity from day 1 through day 4, overall

the salinity is lower at the end of the composite time series than at the beginning. The results
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from this composite study indicate that salinity measurably decreases in response to rain on an

event basis. To assess the mechanisms governing this freshening pattern, we use the model to

carry out event sensitivity studies.

Model Sensitivity Studies of Rain and Wind Effects in Freshwater Lens Formation

Event-based studies are performed using the one-dimensional MITgcm configured for

the CCS. The model allows us to isolate the impacts of rain and wind on upper-ocean salinity

stratification and to determine whether the resulting vertical salinity change will be detectable,

given the 0.01 psu resolution of CTD instruments (as discussed in section 1.4.1). While the

range of salinity responses depends on rain rate and wind speed on event time scales, this study

highlights two key mechanisms that govern salinity changes as a function of precipitation and

wind speed: (i) mixing of the freshwater or (ii) development of freshwater lenses at the surface.

Figure 1.7 shows the salinity anomaly in the upper ocean in response to a range of model

input conditions (wind speeds increase from 2 to 16 m s−1 from top to bottom, and rain rates

increase from 2 to 8 mm h−1 from left to right), normalized to the maximum salinity anomaly for

each given wind speed and rain rate. Two extreme cases are detected: (i) vertical mixing of the

freshwater to depths greater than 20 m at high wind speeds (U > 8 m s−1) and (ii) development

of freshwater lenses at the surface for low wind speeds (U ≤ 8 m s−1), where the depth of

the fresh lens is depicted by the black lines of Fig. 1.7. This is consistent with results from

Thompson et al. (2019), where stable rain layers were found to persist with wind speeds up to

9.8 m s−1. As wind speed increases (moving top to bottom) the freshwater lens is brought to a

greater depth and remains over a shorter time period than at low wind speeds, except in the case

of R = 2 mm h−1 where the small freshwater input may impact the trend in lens depth. As rain

rate increases (moving left to right) the freshwater input is mixed over a deeper range, except in

the case of U = 2 m s−1; additionally the lens has a longer duration. These results are reproduced

in Fig. 1.8.

The dependence of the vertical salinity gradient on rain and wind speed is shown in
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Figure 1.7. Normalized salinity anomaly in the upper 55 m of the ocean for the four-day
one-dimensional MITgcm runs and for wind speeds from 2 to 16 m s−1 and maximum rain rates
from 2 to 8 mm h−1. Each contour plot is divided by the absolute value of the maximum salinity
anomaly for the given rain rate and wind speed. Black lines represent the freshwater lens depth,
DL (m), defined as the depth at which the salinity anomaly relative to the salinity during the first
time step for each run is 25% of the maximum anomaly.

Fig. 1.8. In Fig. 1.8a & b, the maximum vertical salinity difference, ∆Smax (defined in sec-

tion 1.5.2), increases as a function of rain rate and decreases as a function of wind speed.

Modeled freshwater lens depth (DL) and duration (TL) are shown as a function of wind speed and

rain rate in Fig. 1.8c-d. Here, an increased wind speed corresponds to deeper mixing, bringing

freshwater to a greater depth, therefore decreasing stratification and decreasing the magnitude of

∆Smax. At low wind speeds there is minimal mixing, and changes in salinity are confined to the

surface (<20 m) and are not prominent at depth, leading to a larger ∆Smax (Fig. 1.8a & b). In this

case, a freshwater lens is formed at the surface, and stratification is enhanced. Figures 1.8a & b

(reproduced in Fig. 1.9) also show model output from five event case studies (the colored circles),
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Figure 1.8. Results from the MITgcm experiments using idealized environmental forcing in
which the peak rain rate and the wind speed are varied. (a) Peak magnitude of ∆S, ∆Smax, as a
function of rain rate for five different wind speeds; (b) ∆Smax as a function of wind speed for
different rain rates; (c & d) maximum (c) thickness, DL, and (d) lifetime, TL, of the fresh lens
as a function of wind speed at different rain rates. ∆Smax is defined as the maximum value of
the salinity difference at 0.01 m depth from the salinity at the first time step within the four-day
simulation time period. In both figures (a) and (b), the colored circles show model output from
event case studies, with the colors representing wind speed and rain rate, respectively.

which fall within the same range for ∆Smax as the output from the sensitivity studies with similar

rain rates and wind speeds. The black dotted line in Fig. 1.9 represents the salinity change that

is detectable by CTD instruments (0.01 psu). Almost all of the events in the sensitivity studies

exceed this threshold, with the only exception being for a rain rate of 2 mm h−1 in combination

with a wind speed of 16 m s−1.

The results show a relationship between wind, rainfall, and salinity similar to that

suggested by Drushka et al. (2016): ∆ Smax = ARmaxUb, where constants A and b are solved for

using model outputs. Here, rain rates of 0 mm h−1 and wind speeds of 0 m s−1 are omitted from

the regression because the fit is representative of cases where rain and wind are present. For the
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Figure 1.9. Same as Fig. 1.8 a & b, zoomed in to enhance view of results from event case studies
(colored circles). The colored circles show model output from event case studies, with the colors
representing wind speed and rain rate, respectively. The black dotted line represents the salinity
difference of 0.01 psu that is detectable by CTD instruments.

MITgcm model runs, A = 0.32 ± 0.05 psu (mm h−1)−1 and b = 1.44 ± 0.06. Uncertainties of

linear regression parameters are calculated using Monte Carlo methods (Fig. A.5). The values

of the regression parameters are within five standard deviations of values found by Drushka

et al. (2016): A = 0.11 ± 0.03 and b = 1.1 ± 0.03. The values of these coefficients are also

similarly related to those found in studies done without the wind dependence both by Drucker

and Riser (2014), who found a value A = 0.14 psu (mm h−1)−1 averaged over the tropics, and

by Boutin et al. (2014), who found region-dependent values of A that ranged from 0.14 to 0.22

psu (mm h−1)−1 at moderate wind speeds. Differences in these coefficients likely arise as a result

of the difference in duration of the applied rain pulse (12 h here for AR studies in CCS versus

1 h for studies in the tropics). While this relationship has been applied in the tropics for the

references listed above, we find it does well in representing AR events in the CCS, with an r2 of

0.97 (Fig. A.5). It should be noted that this equation is appropriate for one-dimensional models

that do not include advection, and may not work well in cases where advection is significant.

However, case studies in the following section (section 1.6.2) show this equation does well

in representing the magnitude of the salinity response to AR events in comparison to in situ

measurements (Figs. 1.9 & 1.10).
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Freshwater lenses reach depths of 5–50 m, depending on rain rate and wind speed

(Fig. 1.8c). The depth of the fresh lens increases with wind speed for all rain rates, except in the

cases of 2 mm h−1 and 3 mm h−1 rain rates where wind is greater than 8 m s−1. These exceptions

likely occur because the freshwater input is too small to cause salinity changes at increasing

depths during mixing. Additionally, the fresh lens depth increases with higher rain rates, as

indicated by the ordering of the green lines, with the lowest rain rate (light green, 2 mm h−1)

having the smallest DL and the highest rain rate (dark blue, 8 mm h−1) the largest DL. This is true

except in the cases of low wind speed and high rain rate (U = 2, 4 & 8 m s−1 and R = 8 mm h−1),

where the magnitude of the salinity response is comparatively large (∆Smax = 1.3, 0.55 & 0.2 psu).

These events fall outside the trend for DL because for each particular combination of wind speed

and rain rate these metrics are defined based on the maximum salinity anomaly relative to the

salinity at the first time step, which for these extreme cases is much higher than the average

salinity anomaly for a particular rain rate or wind speed. Freshwater lenses last anywhere from

10–50 h, depending on rain rate and wind speed (Fig. 1.8d). The duration of the freshwater lens,

TL, shows a pattern of decreasing with increasing wind speed and decreasing rain rate. For wind

speeds greater than 8 m s−1 the lens duration has a much smaller range of 10–15 h.

Results for the fresh lens depth, DL, are in agreement with the the 20 m mean stable

layer depth in central Indian Ocean found by Thompson et al. (2019). These results also show

similar trends to the tropical results of Drushka et al. (2016). One difference is that for these

studies of characteristic AR events in the CCS, the depth and duration of the freshwater lens are

much larger than studies done in the tropics. This is likely a result of the fact that AR events in

the CCS have a much longer rainfall duration than rain events in the tropics (12 h versus 1 h).

This is confirmed by runs done in the CCS with 24 h rain pulses (not shown), where DL and TL

increased even more from the 12 h rain pulse case. It should be noted that DL and TL are highly

sensitive to the lens definition, as discussed in section 1.5.2. Decreasing the percentage of the

maximum salinity anomaly that defines the depth leads to overall increases in DL and TL. This

makes sense because a less drastic salinity anomaly is expected to reach greater depths for a
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longer duration. As an example of this sensitivity, for a rain rate of 8 mm h−1 and U = 12 m s−1,

when DL is defined as the depth at which the salinity anomaly is 15% of the maximum anomaly,

rather than 25%, it reaches a maximum of 80 m instead of 53 m. Correspondingly, the time, TL,

reaches a maximum of 95 h instead of 50 h.
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Figure 1.10. Results from case studies for three AR events in the CCS. (a–c) Time series of rain
rate (mm h−1, blue) and wind speed (m s−1, red) that was used as model forcing from ERA5
at the coastal location; (d–f) time series showing the salinity difference (∆S, psu) from the first
time step at 0.01 m depth for the model output (red, solid) and at 1 m depth for the MBARI
M1 mooring (orange, dotted). The black dotted line in (d–f) indicates the salinity difference of
0.01 psu that is detectable by CTD instruments. The start date for event 1 (a,c) is 16-OCT-2016;
event 2 (b,e) is 27-NOV-2016; and event 3 (c,f) is 11-DEC-2016. The model runs were initialized
three days before this date, and run until six days after.

Model Case Studies

Event case studies are performed using the one-dimensional MITgcm configured for

the CCS at the start of each of five different AR events (Table 1.1). The model allows us to

isolate the impacts of atmospheric forcing on upper-ocean salinity stratification and to determine

whether the resulting vertical salinity change may be detectable, given the 0.01 psu resolution of

CTD instruments (as discussed in section 1.4.1). The results from three case studies are shown

in Fig. 1.10, where the different columns (i.e. a&d, b&e and c&f) represent each of the three
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different events. The top row (a–c) shows the rain rate (blue) and wind speed (red) from ERA5

at the coastal location that was used as forcing for the model. The second row (d–f) shows the

response of salinity difference (∆S) from the first time step at 0.01 m depth for the model (red,

solid) and 1 m depth for the MBARI M1 mooring (orange, dotted). The magnitude of the model

and mooring ∆S responses are similar, while their temporal structure is not. The mooring often

has a slower response that lasts a longer duration. These differences are likely due to the fact that

the model is one-dimensional and solely shows a salinity response to rain, while the mooring

captures runoff and advection of waters from other locations that were impacted by the rain

events, and thus changes continue to occur once the local rain has stopped. Here, the black dotted

line indicates ∆S values that are detectable by CTD instruments (0.01 psu), showing that all three

AR events produced measurable changes in salinity. Additionally, Fig. 1.9 shows the results from

five modeled case studies overlaid on results from the model sensitivity studies (colored circles),

as a function of both rain rate and wind speed. The black dotted line indicates ∆S values that are

detectable by CTD instruments (0.01 psu). All of the the case studies shown produce salinity

changes greater than the measurable threshold. The ∆S values for the case studies fall within the

range of the sensitivity studies for a given rain rate and wind speed, as discussed in section .1.6.2.

Overall, the salinity difference, ∆S, in the modeled case studies is consistent with outputs from

the model sensitivity studies for characteristic AR events, as well as with observations at the

MBARI M1 mooring.

1.7 Discussion

The purpose of this study has been to evaluate the impact of atmospheric forcing on

surface ocean salinity in the CCS. A one-dimensional ocean model can help isolate the salinity

response to rainfall events in comparison to other intrinsic ocean dynamics. While changes in

salinity in the CCS have previously been largely attributed to southward horizontal advection of

low salinity water from the northeast Pacific (Lynn and Simpson, 1987; Schneider et al., 2005),
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this analysis has shown that the salinity changes could also be attributed to freshwater inputs in

the form of precipitation from atmospheric rivers on both seasonal and event timescales.

1.7.1 Seasonal Response

Seasonal freshening in the CCS depends on cumulative rainfall. Results in section 1.6.1

compare ERA5 rainfall to salinity from observational data (mooring and underwater glider)

and one-dimensional model output. While intrinsic ocean processes should be captured by

observations, most are not represented by the one-dimensional model. Despite this omission,

the model nonetheless shows a statistical relationship between cumulative rainfall and salinity

difference (Fig. 1.5). These analyses support the idea that local rainfall may be one of several

mechanisms playing a role in the seasonal salinity response, and that it is a significant enough

component to account for anomalously fresh or salty years.

We find that there is a stronger salinity signal in coastal locations for both observations

and model outputs. As discussed in section 1.6.1, this could be attributed to the fact that there is

a higher cumulative rainfall at coastal locations. Additionally, processes omitted by the model,

including upwelling, runoff and advection, could all play a role in the observational results.

For example, Auad et al. (2011) suggest that upwelling of cool, saline water enhances coastal

salinity increases in the summer, which could contribute to a larger positive salinity anomaly

in summer (September) and a larger difference in March minus September salinity. Freshwater

input from riverine runoff has also been linked to decreases in surface salinity measurements.

AR precipitation events occur more often on land than over the ocean (Fig. 1.1a), which might

lead to runoff. Riverine input from the Salinas River that discharges into Monterey Bay has been

linked to decreases in surface salinity as measured by the MBARI M1 Mooring (Kudela and

Chavez, 2004). River discharge from the Sacramento/San Joaquin River system 100 km north of

the M1 Mooring has also been linked to low salinity measurements off the coast of Monterey

Bay (Johnson et al., 1999).

Southward advection of freshwater in the low-salinity tongue of the California Current
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has been previously described as the main source of salinity changes in the CCS (Auad et al.,

2011; Lynn and Simpson, 1987; Schneider et al., 2005). While we do not find evidence against

this, when looking at the seasonal cycle of CCS advection there are a few instances of anomalous

salinity that may not be linked to advection. For example, the low surface salinity anomaly seen

50 m offshore along CalCOFI line 66.7 during the winter months (Fig. 4.2.3.1 in Rudnick et al.,

2017b) is unexplained by the strong poleward current at this location and time which would be

expected to carry saltier water from further south. On longer timescales (5–10 years), Schneider

et al. (2005) found that negative anomalies in salinity storage averaged over the top 150 m

corresponded to increased precipitation, but also noted that patterns in salinity anomaly imply

freshwater fluxes that are larger than the observed precipitation or evaporation anomalies. This is

supported by Fig. 4f, which shows that the observed precipitation is 3–30% of the precipitation

that would be required to produce the salinity anomaly in the upper 150 m if all other terms in

the salinity balance are ignored. While this may be the case for the salinity changes in the upper

150 m, we have shown the observed precipitation can explain up to 100% of the seasonal salinity

change in the upper 40 m.

While some of the salinity changes may be linked to runoff, upwelling, or advection, the

one-dimensional nature of the model omits these ocean dynamics that might have a visible impact

on mooring and glider data. Nonetheless, the model still shows a seasonal salinity response to

freshwater inputs from rain, as discussed in section 1.6.1.

1.7.2 Event-Based Response

On event time scales, certain combinations of rain rate and wind speed can lead to the

formation of freshwater lenses. Freshwater lenses may inhibit mixing of surface waters and

increase upper-ocean stratification, which has a variety of implications for the exchange of

heat and moisture between the ocean and atmosphere, as discussed in section 1.3.4 (SPURS-

2 Planning Group, 2015; Williams et al., 2006). Understanding the structure and evolution of

these lenses is important for understanding the possible impacts on air–sea exchanges.
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The wind speed and rain rate dependences of ocean surface salinity are investigated using

event composites and one-dimensional model sensitivity studies. We show that salinity decreases

in response to rain events (section 1.6.2). Furthermore, model results show that the salinity

change during a rain event depends linearly on the rain rate, and is inversely proportional to wind

speed (section 1.6.2). This suggests that for low wind speeds, freshwater inputs are trapped at the

surface and lead to the formation of freshwater lenses, while high wind speeds cause freshwater

from rain to mix as deep as 50 m and prevent the formation of long-lasting fresh lenses.

Many events characteristic of ARs in the CCS produce measurable changes in salinity. As

discussed in section 1.6.2, there is only one instance where the sensitivity studies do not produce

a salinity changed that exceeds the 0.01 psu detectable limit (low rain rate in combination with

high wind speed). Additionally, all modeled and observed case studies produce measurable

salinity changes. Case studies show that single AR events can produce salinity decreases of

up to 0.1 psu that last up to 50 hours (Fig. 8). These salinity anomalies are comparable to the

decreases in salinity over the entire rainy season, which are shown to be as high as 0.8 psu for

observations, and 0.4 psu for one-dimensional models where effects from advection, runoff and

upwelling are excluded (Fig. 5). It should be noted that while a single AR event may not cause a

large, long-lasting drop in salinity, there is a range of salinity change depending on the strength

of the given AR. Additionally, ARs often occur in series with several in a row, which may lead

to a larger integrated effect over time. Statistics from a composite analysis of 91 AR events from

Table 2 of Ralph et al. (2013) indicate that the average maximum rain rate for these events is

4.09 mm h−1 and the average wind speed is 12.8 m s−1. Based on our results, these events would

produce salinity changes above the measurable threshold, implying that AR events should be

detectable by CTD measurements of ocean salinity.
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1.8 Conclusion

Seasonal freshening in the CCS depends on cumulative rainfall and atmospheric river

events, in addition to other intrinsic ocean dynamics that previous studies have identified. At

coastal and onshore locations, the CCS freshens throughout the rainy season due to AR events,

and years with higher AR activity are associated with a stronger freshening signal (Fig. 1.5).

Event studies indicate that freshening in the CCS depends on wind speed in addition to

rain rate. Low winds lead to conditions that cause freshwater lens formation, while high wind

speeds mix freshwater input from rain through the mixed layer. Results from our one-dimensional

model show that freshwater lens formation in the CCS is possible in the event of heavy rain and

low winds. For events that are characteristic of ARs in the CCS, these lenses are formed often

and can last anywhere from 10–50 h. The one-dimensional model simulations also suggest that

events characteristic of ARs in the CCS tend to produce changes in salinity that are greater than

the measurable CTD limit of 0.01 psu, as indicated in Figs. 1.9 & 1.10.

Because of the dependence of salinity on both rain and wind, further investigation in

the CCS would require local, high-resolution observations of both variables, as was done in the

SPURS-2 experiment, in order to develop a more complete understanding. With observations

it would also be possible to validate the use of the one-dimensional MITgcm to represent

salinity changes on an event time scale, as was done for the seasonal studies (e.g. Fig. 1.2 in

section 1.5.1).

As discussed in section 1.6.2, the freshwater lens is highly sensitive to definition. The

definitions for DL and TL that were shown to work with GOTM for the salinity response to

rain events in the tropics (Drushka et al., 2016) were altered slightly for results in the CCS, as

discussed in section 1.5.2. In another study, Thompson et al. (2019) derived an estimate of the

stable layer depth based on wind speed and buoyancy frequency. Future work could explore

different forms of the definition specific to the CCS.

While this study has provided evidence that freshwater inputs from rain contribute to
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variability in ocean surface salinity, the relative importance of horizontal advection, runoff, and

external atmospheric forcing has not been addressed. Advection could contribute to the evolution

of freshwater lenses by causing increased mixing and by introducing new water into the region.

Future studies could address these shortcomings by considering a three-dimensional ocean

model that will show the relative importance of horizontal advection and runoff. Additionally,

large-scale surface advective salinity transport could be estimated from observations. Future

work could also look at the response of properties other than salinity, for example temperature or

biogeochemical properties, and thus elucidate the impact of precipitation events on the climate

state.
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Table 1.1. Model parameters for (a) seasonal (b) event sensitivity and (c) event case studies.

Study Time scale (a) Seasonal (b) Event Sensitivity (c) Case Studies
Model Parameters (one-dimensional MITgcm)

Time step (sec-
onds)

1800 60 60

Run time (days)
/ number of time
steps

213 / 10244 4 / 5760 9 / 13020

Depth (m) / dZ (m) 140 / 0.5 140 / telescoping 140 / telescoping
External forcing in-
put interval (sec-
onds)

86400 60 3600

Number of runs 13 (September–
March, 2008–2019)

36 (six rain rates / six
wind speeds)

five (16 October 2016,
27 November 2016,
11 December 2016,
19 January 2017, 17
February 2017)

Initial Conditions (from Spray)
Salinity profile averaged over

September for each
year within each off-
shore distance regime
(coastal, onshore,
offshore)

constant from salin-
ity average over five
coastal AR events at
10 m depth, telescop-
ing depths

salinity on event start
date at coastal loca-
tion, interpolated to
telescoping depths

Temperature pro-
file

averaged over
September for each
year within each off-
shore distance regime
(coastal, onshore,
offshore)

temperature average
over five coastal AR
events, interpolated to
telescoping depths

temperature on event
start date at coastal lo-
cation, interpolated to
telescoping depths

External Forcing (from ERA5)
Rain rate daily cumulative idealized 12 h Gaus-

sian pulse (0, 2, 3, 4,
5, & 8 mm h−1)

hourly

Wind speed daily mean idealized constant
over four days (0, 2,
4, 8, 12, & 16 m s−1)

hourly

Atmospheric tem-
perature, specific
humidity, short
and longwave
radiation

daily mean constant (Ta, 13.1◦C ;
SpH, 0.008 kg kg−1;
Is, -106.3 W m−2; IL,
-323.2 W m−2), av-
erage over five AR
events at the coastal
location

hourly
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Chapter 2

Machine learning for daily forecasts of
Arctic sea-ice motion: an attribution as-
sessment of model predictive skill.

2.1 Summary

Physics-based simulations of Arctic sea ice are highly complex, involving transport

between different phases, length scales, and time scales. As a result, numerical simulations

of sea-ice dynamics have a high computational cost and model uncertainty. We employ data-

driven machine learning (ML) to make predictions of sea-ice motion. The ML models are

built to predict present-day sea-ice velocity given present-day wind velocity and previous-day

sea-ice concentration and velocity. Models are trained using reanalysis winds and satellite-

derived sea-ice properties. We compare the predictions of three different models: persistence

(PS), linear regression (LR), and convolutional neural network (CNN). We quantify the spatio-

temporal variability of the correlation between observations and the statistical model predictions.

Additionally, we analyze model performance in comparison to variability in properties related

to ice motion (wind velocity, ice velocity, ice concentration, distance from coast, bathymetric

depth) to understand the processes related to decreases in model performance. Results indicate

that a CNN makes skillful predictions of daily sea-ice velocity with a correlation up to 0.81

between predicted and observed sea-ice velocity, while the LR and PS implementations exhibit
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correlations of 0.78 and 0.69, respectively. The correlation varies spatially and seasonally;

lower values occur in shallow coastal regions and during times of minimum sea-ice extent. LR

parameter analysis indicates that wind velocity plays the largest role in predicting sea-ice velocity

on one-day time scales, particularly in the central Arctic. Regions where wind velocity has the

largest LR parameter are regions where the CNN has higher predictive skill than the LR. 1

2.2 Introduction

Sea-ice cover in the Arctic has been diminishing since the beginning of the satellite record

(Serreze et al., 2007; Stroeve et al., 2012; Stroeve and Notz, 2018; Thoman et al., 2022). Negative

trends in sea-ice concentration, thickness, and multiyear ice coverage (Carmack et al., 2015)

have been reported throughout the Arctic, whereas the length of the melt season, drift speeds, and

deformation rates are increasing (Stroeve and Notz, 2018; Rampal et al., 2009; Onarheim et al.,

2018). Climate model simulations indicate a substantial likelihood that the Arctic Ocean will

become largely ice free during September by 2100 if warming exceeds 2ºC (Stroeve and Notz,

2018; Notz and Stroeve, 2018; Jahn, 2018; Meredith et al., 2019). Transition to thinner and more

fragile ice will have widespread environmental, geopolitical, and logistical impacts, including

potential for new increased maritime activity (Bennett et al., 2020; Crawford et al., 2021; Cao

et al., 2022), with which comes the need to know where sea-ice is and the need for skillful

predictions of where it will be. In this study we contribute to addressing these issues by assessing

the skill of machine learning models in making one-day predictions of sea-ice motion. We design

these models to predict present-day ice motion based on previous-day observations, and show

proof-of-concept for applications in operational forecasting that would allow information about

the ice state to be obtained before satellite retrievals are processed. Additionally, we explore the

extent to which these ML models will have enough skill to be used to represent the dynamical

1This chapter is published as Hoffman, L., Mazloff, M. R., Gille, S.T., Giglio, D., Bitz, C. M., Heimbach, P., and
Matsuyoshi, K. (2022). Machine learning for daily forecasts of arctic sea-ice motion: an attribution assessment of
model predictive skill. Artificial Intelligence for Earth Systems, in review. ©American Meterological Society. Used
with permission.
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component of sea ice in a simulation framework that provides nowcasting of the state of Arctic

sea ice.

Predictions of sea-ice motion have almost exclusively been attempted with numerical

prediction models (Petrou and Tian, 2019). While these state-of-the-art physics-based models

for sea-ice prove useful, their inherent complexity comes with a high computational cost (Hunke

et al., 2020). There are also several sources of uncertainty, including large sensitivity to initial

conditions and physical assumptions (Blanchard-Wrigglesworth et al., 2015). In contrast to

physics-based models, machine learning is emerging as a powerful tool for applications in the

geosciences in cases where large volumes of data are available (Hsieh and Tang, 1998; Toms

et al., 2020). Machine learning predictions are driven by data and therefore do not depend on

assumptions imposed on physical constraints. Although these constraints are crucial for some

applications (e.g. where mass, heat, and momentum need to be conserved), in other applications

they introduce additional uncertainty and complexity with little scientific benefit. While simple

forms of machine learning (e.g. linear regression) have been commonly used in the geosciences,

more advanced deep learning models (e.g. neural networks) have the potential to further elucidate

physically meaningful relationships within data (McGovern et al., 2019; Toms et al., 2020). In

this study, we assess the viability of using a neural network as a surrogate model to parameterize

sea-ice motion in a numerical model setting on one-day time scales.

Machine learning models for sea-ice have been applied to improve estimates of ice

properties from satellite remote sensing (Lee et al., 2016; Dumitru et al., 2019), to predict and

understand sea-ice concentration on different time scales (Kim et al., 2020; Li et al., 2021;

Andersson et al., 2021), and to make predictions of sea-ice motion (Petrou and Tian, 2019; Zhai

and Bitz, 2021). ML models have been successful at improving predictions of sea-ice properties

in comparison to state-of-the-art dynamical models. For example, the deep learning model

IceNet outperformed the SEAS5 dynamical model from the European Centre for Medium-Range

Weather Forecasts (ECMWF) for lead times greater than one month when making seasonal

forecasts of summer ice (Andersson et al., 2021). Additionally, a CNN designed to make one-day
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predictions of ice motion showed higher correlations with satellite observations than CICE5, a

leading physics-based model for sea ice (Zhai and Bitz, 2021). The high performance of this

CNN provides evidence that a CNN would be an effective surrogate model to replace the sea ice

dynamical component of a numerical model for short-time-scale predictions. We build upon the

work of Zhai and Bitz (2021) by further analyzing the nuances in the performance of a CNN in

predicting ice motion, and by building the case for its use over a conventional linear regression

approach.

We apply three different models, including persistence (PS), linear regression (LR), and

convolutional neural network (CNN) to make predictions of sea-ice motion. In comparison

to the other two models, a CNN has the benefits of incorporating spatial information and

non-linear relationships between the inputs into its predictions. We build a CNN that has a

similar architecture to that of Zhai and Bitz (2021) (differences are noted in the supplementary

information, Table B.1) and that is trained on the same input and output data. Our models show

similar performances in making one-day predictions of sea-ice motion (Table B.1). We expand

on previous work by putting an emphasis on understanding the spatial and temporal variability

in performance of the different models and how it is related to various properties of the ice. We

divide the Arctic into four geographic regions (Fig. 2.1) based on the differences in skill between

the CNN and LR models, and we analyze model performance within each.

2.3 Background

Sea-ice motion, as described by the momentum equation (Equation 2.1), is determined

from a balance of the momentum tendency ( D
Dt (mu⃗)) with drag from the atmosphere (⃗τa) and

ocean (⃗τw), the Coriolis force (m f k̂× u⃗), the ocean surface tilt (mg∇H), and the internal ice

stress (∇ ·σ ) (Olason and Notz, 2014; Feltham, 2008). The term on the left represents the total
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Figure 2.1. Maps showing (a) spatial divisions (Greenland Sea, Eastern Arctic, Central Arctic,
and Baffin Bay), (b) bathymetric depth (m) (note logarithmic scaling), and (c) the distance
from coast (km). Spatial divisions are based on overall performance of the CNN model and the
difference between the performance of the CNN and LR models. The four divisions represent
regions of: variable model performance and corrLR ≫ corrCNN (Greenland Sea, dark blue),
low model performance and corrLR > corrCNN (Eastern Arctic, light blue), high model perfor-
mance and corrLR < corrCNN (Central Arctic, light red), and variable model performance and
corrLR ≪ corrCNN (Baffin Bay, dark red). Gray shading represents areas where the difference in
correlation between the CNN and LR is not statistically significant or areas that are not included
within this analysis. Data are not shown in regions where the ice concentration is zero or the
satellite retrievals are absent for more than 20% of the year.

derivative of mass, m times velocity, u⃗:

D
Dt

(mu⃗) = τ⃗a + τ⃗w −m f k̂× u⃗−mg∇H −∇ ·σ . (2.1)

Changes in external forcing (i.e. winds, currents, radiation, etc.) influence the geometric

and mechanical properties of the ice (thickness distribution, mass, strength, drag coefficients,

etc.), which ultimately impact ice motion and deformation (Untersteiner et al., 2007). The

American-Canadian Arctic Ice Dynamics Joint Experiment (AIDJEX) of 1970-1978 was one of

the first major studies aimed at developing a comprehensive model of sea-ice motion under the

influences of the ocean and atmosphere (Maykut et al., 1972; Untersteiner et al., 2007). Using
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data from the AIDJEX experiments, Thorndike and Colony (1982) introduced a relationship

between sea-ice velocity and geostrophic wind that explained up to 70% of the variance in

sea-ice velocity in the central Arctic. This relationship describes ice that is subject to high

wind speeds on time scales of days to months. In this relationship, sea-ice velocity is related to

geostrophic wind velocity through a speed reduction factor (the wind factor) and a turning angle,

after removal of the long-term mean ice velocity field. In the absence of a steady ocean current,

sea-ice moved about 8◦ to the right of the geostrophic wind at about 0.008 times the speed. This

model is less successful for areas within 400 km of the coast, where stress gradients within

the ice become more important due to the restriction of ice motion by geographical features

(Thorndike and Colony, 1982).

The internal stress gradient also depends on factors including the magnitude of the wind

speed, ice concentration, and ice thickness. Ice with high values for thickness and concentration

may have large stress gradients, which can result in a smaller dependence on wind. Conversely,

ice with smaller stress gradients (low thickness and concentration) is found to have higher

dependencies on wind (Hibler, 1979). Decreases in correlation between wind and ice motion

near the coast have often been attributed to ice stresses (Thorndike and Colony, 1982; Kimura

and Wakatsuchi, 2000; Hibler, 1979).

A relationship between ice motion and geostrophic wind was also examined by Kimura

and Wakatsuchi (2000) and by Maeda et al. (2020), using sea-ice motion derived from satellite

products and geostrophic wind derived from the sea-level pressure data from ERA Interim

Reanalysis data produced by European Centre for Medium-Range Weather Forecasts (ECMWF)

on 2.5◦ and 0.75◦ grids, respectively. In these studies, geostrophic wind was generally found

to explain 70% of the variance in sea-ice velocity, with 60–90% of the variance explained in

the central Arctic, and up to 40% in coastal regions (Fig. 3 in Maeda et al. (2020)). In addition

to spatial variability, seasonal variations in the speed reduction factor and turning angle have

been reported (Thorndike and Colony, 1982; Kimura and Wakatsuchi, 2000; Kwok et al., 2013;

Maeda et al., 2020).
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2.4 Data

In our analysis, models are trained to make one-day predictions of sea-ice velocity given

present-day wind velocity, previous-day sea-ice concentration, and previous-day sea-ice velocity

from various satellite and reanalysis sources, during 1989–2021. Using present-day wind as a

predictor of present-day sea-ice velocity incorporates information that gives the model intrinsic

skill. This approach is appropriate for the objective to make predictions on one-day time scales.

We opt not to detrend to avoid contaminating the data with spurious removals. However, we do

find that the model performance does not have any significant changes when run on data with the

seasonal cycle removed (not shown). Processed data and methods for obtaining and processing

raw data are made available by (Hoffman et al., 2023).

The ice velocity and concentration data are available from 25 October 1978 to 31 De-

cember 2021. However, evaluation of the uncertainty metrics for the Polar Pathfinder ice motion

product shows a change in the error fields starting in the summer of 1987 (Figure B.1) due to a

difference in the sampling period when switching from using Scanning Multichannel Microwave

Radiometer (SMMR, 48hr sampling period) to Special Sensor Microwave/Imagers (SSM/Is,

24hr sampling period) for brightness temperature (Tschudi et al., 2020). Additionally, ice con-

centration data from the Nimbus-7 passive microwave are only available every other day until

1987, and there is a gap in availability of the sea ice concentration data from 03 December 1987

to 12 January 1988. Thus, for consistency in the stability of the observation systems and the

quantity of data used from each year, we use data from 1989-2021 to build our models. We use

the satellite and reanalysis sources discussed below for consistency with Zhai and Bitz (2021).

However, in comparison, we make a slight extension to the temporal subset of data over which

the model is trained and tested.
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2.4.1 Sea-Ice Velocity: Polar Pathfinder Version 4 Daily Sea Ice Motion
vectors (PP)

The Polar Pathfinder product (PP; Tschudi et al., 2019) provides daily sea-ice motion

vectors at a spatial resolution of 25 km in the Equal-Area Scalable Earth (EASE)-grid. The

EASE-grid was defined by the NOAA/NASA Polar Pathfinder Program to support standardized

spatial comparisons from gridded, satellite microwave data. In polar regions, the EASE-Grid

takes the form of Lambert azimuthal equal-area projections that accurately represent area in

all regions of the global sphere (Brodzik et al., 2012). This data set is informed by optimal

interpolation of a combination of observations from passive microwave inputs, buoys, and

NCEP/NCAR reanalysis winds. The PP dataset relies on wind because during the summer,

passive microwave and buoy sources become unreliable for melting ice (Tschudi et al., 2020).

For wind-derived ice motions, ice is assumed to move at ∼1% of the wind speed and in the

direction of the wind, based on the estimate from Thorndike and Colony (1982). An estimated

uncertainty map is also provided, which we use for comparison when evaluating our models. We

were unable to obtain a dataset that is independent from the PP product to validate the use of

the PP for this case. We did find high correlation between the PP and the Ice-Tethered Profiler

data (not shown), but these observations were used to create the PP product. Wang et al. (2022)

found the PP to have low accuracy in speed, but high accuracy in angle in comparison to eleven

other satellite products when evaluated against measurements from buoys from the International

Arctic Buoy Program (IABP) and the Multidisciplinary drifting Observatory for the Study of

Arctic Climate (MOSAiC).

2.4.2 Sea-Ice Concentration: Nimbus-7 SMMR and DMSP SSM/I-
SSMIS Passive Microwave Data

The passive microwave sea-ice concentration product (Cavalieri et al., 1996) is generated

from brightness temperature data derived from various sensors (SMMR, DMSP and SSM/I-

SSMIS). This product provides daily measurements of sea-ice concentrations (fraction of ocean
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area covered by sea ice in each grid cell) in a 25 × 25 km polar stereographic projection. Here we

re-grid to the 25-km EASE-grid for consistency with other ML model inputs. An intercomparison

study of 10 satellite passive microwave sea-ice concentration data sets by Kern et al. (2019) found

that while the Nimbus-7 product used in this work showed the largest difference between other

products, all 10 products compared reasonably well to ship-based observations. Additionally, the

Nimbus-7 product used in this study showed less than a 7% deviation from all other products from

November–June, and less than a 15% deviation from July–October when comparing the monthly

mean values of sea-ice concentration among the 10 products from June 2002 to September 2011.

The product used in this study was also found to have a negative bias in sea-ice concentration

throughout the Arctic in comparison to the ensemble mean of the 10 products (Fig. 8 from Kern

et al. (2019)). While this negative bias was particularly large in the peripheral seas, it was close

to zero (i.e. < 6%) in the region of study of this work.

2.4.3 Wind Velocity: Japanese 55-year Reanalysis derived for ocean-ice
models (JRA55-do)

The Japanese Meteorological Agency 55-year atmospheric reanalysis based surface

dataset for driving ocean-sea ice models (JRA55-do) is used to prescribe wind velocity (Tsujino

et al., 2018). Based on the JRA55 (Kobayashi et al., 2015), the JRA55-do is derived for use in

ocean simulations, with surface fields adjusted relative to satellite climatological winds (SSM/I

and QuikSCAT) using a spatially varying wind factor for wind speed and EOF analysis for

wind direction (Tsujino et al., 2018). The JRA55-do better matches satellite wind fields in

coastal areas than do other reanalysis products (Taboda et al., 2019). The JRA55-do provides

3-hourly estimates of total wind velocity at 10 m with a horizontal resolution of ∼55 km. Here

we calculate daily average wind vectors and re-grid to the 25-km EASE-grid.
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2.4.4 Bathymetric Depth: International Bathymetric Chart of the Arctic
Ocean (IBCAO)

We use bathymetric depth from IBCAO (Jakobsson et al., 2020) for comparisons of

model performance after training. We make use of the Version 4.2 product without elevation

data for the Greenland Ice Sheet on a 400 m × 400 m grid cell spacing, re-gridded to the 25-km

EASE-grid.

2.5 Methods

2.5.1 Model Inputs

We employ a suite of machine learning and classical statistical models (PS, LR, and

CNN) to predict present-day sea-ice velocity components (ui,t & vi,t) using the input parameters:

• present-day zonal & meridional wind velocity (ua,t & va,t),

• previous-day zonal & meridional sea-ice velocity (ui,t−1 & vi,t−1), and

• previous-day sea-ice concentration (ct−1).

Inputs are chosen based on results from Zhai and Bitz (2021), who showed that the

above combination of parameters produced skillful output when used to predict sea-ice motion

with a CNN. Sea-ice velocity might be expected to be dependent also on sea-ice thickness, in

addition to our selected input fields (Hibler, 1979; Thorndike and Colony, 1982). However,

feature exploration studies of CNN models applied to Community Earth System Model version

2 (CESM2) output by Zhai and Bitz (2021) found that the inclusion of sea-ice thickness as an

input parameter does not greatly impact the overall skill and correlation of CNN predictions.

Fortunately the thickness is not an important input, as satellite observations of sea-ice thickness

prior to 2019 have a high uncertainty, are discontinuous in time and unavailable during the

summer. Therefore this parameter is omitted from our analyses. We note that efforts are being

made to extend the CryoSat-2 sea-ice thickness record back in time using machine learning
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techniques (Landy et al., 2022). However, these data are available bi-weekly and thus do not

meet the requirements of this study for daily data.

Inputs are taken from satellite and reanalysis sources listed in section 2.4. All variables

are normalized to zero mean and one standard deviation before being input into the models,

based on the global statistics of the entire record used here from 1989-2021. Data are broken

up into train, validation and test data sets with an 88%–6%–6% split (e.g. train with years

1989–2017, validate with years 2018–2019 and test with years 2020–2021). The train, validate,

and test years are shuffled ten times to produce data for ten different ensemble runs for each

ML model. We refer to an “ensemble run” as a run that is trained on a different temporal subset

of data. We calculate performance statistics (discussed in section 2.5.3) for each ensemble run

and average over the ten runs for final results. A CNN requires inputs to be of consistent size,

with consistent spatial and temporal coverage, and without non-numerical (e.g. not-a-number

or ‘NaN’) values. Thus, while it may make sense to remove data in regions where sea-ice

motion data are not available (i.e. sea-ice concentration is zero or there is land) before training,

due to the practical constraints of applying a CNN sea-ice velocity components are set to zero

during training. A time-variable mask is used to remove these sea ice free points during model

evaluation. Additionally, while uncertainty metrics are available for the Polar Pathfinder sea-ice

motion product, we do not mask out any points during training due to the constraints of CNN

models listed above. We note that taking uncertainty into account during training of PS and LR

models is possible, but to maintain consistency between models we leave that for future work.

2.5.2 Model Setup

We compare prediction outputs from three different models: PS, LR, and CNN.
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Persistence and Linear Regression Models

PS predicts the present-day sea-ice velocity to be the same as the previous day at each

grid point (Equation 2.2):

u∗i,t = u∗i,t−1. (2.2)

This offers a baseline measure of the variability of the system and of the minimum skill that any

alternative models should attain. Here the vector u∗i is a complex number, where the real and

imaginary parts are the zonal and meridional components of the sea-ice velocity vector.

LR regresses each of the five input parameters (section 2.5.1) onto the sea-ice velocity

components (Equation 2.3):

u∗i,t = Au∗a,t +Bu∗i,t−1 +Cc∗i,t−1 +D (2.3)

Given inputs and outputs, LR solves for parameters A to D. In equation (2.3), A to D are complex

constants, and the vectors u∗i , u∗a and c∗i are complex numbers, where the imaginary part of c∗i is

set to zero. LR is carried out in two different manners: one is performed globally (LR-g), and

uses each time snapshot as an independent sample for fitting, providing one equation for the

entire modeled region in the Arctic; the other is performed grid-wise (LR), leading to a different

regression equation for each grid point. For both LR configurations we employ ridge regression

with a ridge parameter of λ = 10−2 to limit the magnitude of the regression coefficients and

prevent them from being unrealistically large (Marquardt and Snee, 1975). The value of the

ridge parameter is chosen based on the iterative approach in Marquardt and Snee (1975) where

we make step changes from small to large values of λ and pick the value of λ for which the LR

coefficients stabilize (i.e. are not infinitely large). We also note that data are not removed from

the training set when ci = 0, which may dampen the wind dependence in LR because the model

is trained that ui = 0 when ua ̸= 0 in these locations. As discussed in section 2.5.1, these data are

not masked during training because the CNN requires numerical values (i.e. not ‘NaN’).
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Figure 2.2. Schematic of the convolutional neural network (CNN) used in this study for
predicting present-day sea-ice velocity components, ui,t & vi,t (outputs), from present-day wind
velocity, ua,t & va,t , previous-day sea-ice velocity, ui,t−1 & vi,t−1, and previous-day sea-ice
concentration, ci,t−1 (inputs). This CNN has five repeating units of a 2D convolution with a
ReLU activation and max pooling, followed by a 20% droput layer, flattening and a dense layer.

Convolutional Neural Network (CNN) Architecture

A CNN architecture based on Zhai and Bitz (2021) is used in this study. A CNN is a type

of ML model typically applied to visual images, where a computer is fed numerous (hundreds to

millions) different images and learns from their patterns in order to make a prediction (O’Shea

and Nash, 2015). We use data sets that are image-like in that they have a specified value at various

grid-points on a map (for images this would be colors at various pixel locations). Incorporation

of spatial information when making predictions is one of the benefits of CNN over LR or PS

models, in addition to the ability of a CNN to capture non-linearities in the relationships between

the input predictors and the outputs. Our CNN (Fig. 2.2) is set up with five repetitions of the

block unit: 2D convolution, ReLU (Rectified Linear Unit), and 2D max-pooling. This is followed

by a 20% drop-out layer, a flattening to a one-dimensional vector, and finally a regression onto a

1D vector (dense layer) representative of the output predictions. This output is then concatenated

into two maps of present-day zonal and meridional sea-ice velocity.

We implement the CNN in python using the Tensorflow/Keras library (Abadi et al., 2015).

Convolutional and ReLU layers are carried out with (1,1) strides and (3,3) filter sizes, whereas

the max pooling strides and filter sizes are (2,2). For each of the respective repeating block units,

there are 7, 14, 28, 56, and 112 filters. The training runs for 50 epochs with a batch size of 365
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days. Optimization is carried out with an Adam optimizer and a normalized root mean squared

error as the loss function (second term in Equation 2.5 discussed below). Similarly to the LR,

we employ ridge regression with a ridge parameter of λ = 10−2. Further descriptions of the

architectural components of a CNN (i.e. layers, strides, filters, ReLU, max pooling, etc.) can be

found in O’Shea and Nash (2015). Filter sizes are chosen based on the conventional VGGNet

architecture (Szegedy et al., 2015). We do not carry out hyperparameter tuning for this study

in order to maintain consistency with the architecture of Zhai and Bitz (2021), with the only

differences being in the sizes and number of the filters due to differences in the sizes of the

starting input maps.

2.5.3 Model Evaluation

As in Zhai and Bitz (2021), the model performances are evaluated and compared based

on the correlation (Corr) and skill, given by:

corrx,y =
∑

n
i (xi − x̄)(yi − ȳ)√

∑
n
i (xi − x̄)2

√
∑

n
i (yi − ȳ)2

, (2.4)

skillx,y = 1−

√
(xi − yi)2√
(xi − x̄)2

, (2.5)

where x represents observations, and y represents predicted values of a sample size n. The

correlation (Equation 2.4) is defined as the covariance between prediction and observation scaled

by their standard deviations. The skill (Equation 2.5) is a representation of the fraction of the

observed standard deviation explained by the model predictions, where the second term is the

root mean squared error normalized by the standard deviation of the observations (Thomson

and Emery, 2014). The correlation ranges from -1 to 1, with 1 indicating a perfect positive

relationship, -1 indicating a perfect negative relationship, and zero representing orthogonality.

The skill can range from negative infinity to 1, with 1 representing a perfect match between model
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predictions and observations. The correlation is a measure of how well the phase variability in

the data is explained by the model, whereas the skill is a measure of the absolute error in the

model predictions.

These metrics are calculated using the test data set (varying years, as discussed in

section 2.5.1) of which the models have no prior knowledge. Two different masks are made

and both applied to the data during model evaluation: one is time-variable and evaluates model

outputs only at times and in locations where sea-ice concentration is greater than zero; the other

is constant with time and masks out all areas where sea-ice concentration is zero more than 20%

of the time from 1992–2017. Metrics are calculated overall (section 2.6.1), at each grid point to

provide spatial evaluation (section 2.6.1), over each month for temporal evaluation (section 2.6.1),

and for different percentile ranges of various sea-ice properties (wind speed, ice speed, and

ice concentration) to understand the role these play on the model performance (section 2.6.1).

For temporal evaluations we calculate the monthly mean for each of the ten ensemble runs.

Overall monthly means are then represented by the mean of the ten ensemble runs, and monthly

errors are calculated as the standard error of the mean of the ten ensemble runs (as discussed in

section 2.5.1). Temporal evaluations are carried out for for different regions within the Arctic.

The divisions (Fig. 2.1a) are made based on spatial distributions of model performance metrics

(corrCNN and corrCNN − corrLR in Fig. 2.3c & f), representing regions of: (i) variable model

performance and LR greatly outperforming CNN (i.e. variable corrCNN and corrLR ≫ corrCNN ;

Greenland Sea, dark blue), (ii) low model performance and LR slightly outperforming CNN (i.e.

low corrCNN and corrLR > corrCNN ; Eastern Arctic, light blue), (iii) high model performance

and CNN slightly outperforming LR (ie. high corrCNN and corrLR < corrCNN ; Central Arctic,

light red), and (iv) variable model performance and CNN greatly outperforming LR (i.e. variable

corrCNN and corrLR ≪ corrCNN ; Baffin Bay, dark red).
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2.5.4 Model Comparison

We also investigate the correlation and skill differences between the LR and CNN models,

which requires an understanding of where the differences are significant. Significance tests

on the differences are approximated with a cross-validated t test (Dietterich, 1998; Tang et al.,

2000). The cross-validated t test proceeds as follows: (i) for each of the ten ensemble runs, the

correlation and skill for the LR and CNN are calculated for each grid point or percentile range for

a given variable and transformed by Fisher’s z transform (Equation 14.5.6 in Press et al., 1986) to

remove skewness in the distribution; (ii) the difference between the transformed correlation and

skill for the two models is calculated and averaged over the ten ensemble runs; (iii) a two-tailed t

test is performed to detect whether the mean difference between the two models is significantly

different from zero at the 95% confidence level. The cross-validated t test uses the degrees of

freedom to calculate significance. For spatial comparisons (section 2.6.1) we estimate degrees

of freedom using the temporal decorrelation scale to estimate the number of independent time

series of sea-ice motion in the Arctic. This temporal decorrelation scale is taken as the e-folding

scale of a Gaussian fit to the autocorrelation of the sea-ice speed calculated at different time-lags

(Equations 10 and 11 in Sumata et al., 2018).

2.5.5 Analysis of Inputs

We analyze the spatial and temporal variability of different parameters related to ice

motion (wind speed, ua; ice speed, ui; and ice concentration, ci) to assess how the model

performance compares to the model inputs. Spatial analyses look at maps of the average and

standard deviation of each parameter over time from 1989–2021. This type of analysis is useful

for comparing these properties to maps of the model performance metrics in order to understand

different regimes within the Arctic. We also look at the seasonality of each of these properties.

Similarly to the input analysis in section 2.5.3, monthly errors are calculated as the standard

error of the mean of the ten ensemble runs, and temporal evaluations are carried out for different
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divisions that are chosen based on the model performances.

2.6 Results

2.6.1 Model Performance

Overall

We evaluate the overall performance of the different models by calculating the correlation

and skill over all gridpoints and times (Table 2.1). The CNN has the highest correlation and skill,

followed closely by the grid-wise linear regression (LR). The grid-wise LR largely outperforms

the global LR (LR-g) that covers the entire Arctic, which is not much better than the simple

PS model. These results confirm the advantage of using a model that captures non-linearity

(CNN) and the heterogeneity of Arctic sea ice motion statistics (both CNN and LR). The better

performance of the CNN, LR, and LR-g models in comparison to the PS confirms that sea-ice

motion depends on wind and sea-ice concentration on daily time scales. Table 2.1 shows the

pattern that an increase in model complexity leads to an increase in performance. Additionally,

because correlation is a measure of how well the model is able to capture the phasing, while

skill measures the model’s ability to capture phasing and magnitude, the high correlation but

lower skill suggests the models do well capturing the phasing but incur error in capturing the

magnitude.

Table 2.1. Overall correlation and skill between observations and predictions of sea-ice velocity
for four different models.

Model Correlation Skill
Persistence (PS) 0.69 ± 0.02 0.21 ± 0.02
Linear Regression, global (LR-g) 0.72 ± 0.01 0.30 ± 0.01
Linear Regression, gridwise (LR) 0.78 ± 0.02 0.37 ± 0.02
Convolutional Neural Network (CNN) 0.81 ± 0.01 0.42 ± 0.02
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Spatial

Spatial variations in the correlation (Fig. 2.3) and skill (not shown) are similar for the PS,

LR, and CNN models. Models perform well for predictions in the central Arctic, with decreasing

performance in coastal locations. Low values of correlation (Fig. 2.3a–c) are visible in the Bering

Strait, Bering Sea, Hudson Bay, East Siberian Sea, Laptev Sea, Kara Sea, and off the coast

of Greenland. Particularly poor model performances are found near the islands in the Eastern

Arctic. The best model performance is seen north of Fram Strait and in the Beaufort Sea.

Typically, corrCNN > corrLR > corrPS, similar to the results from section 2.6.1. The

spatial differences in correlation between the models are shown in Fig. 2.3d–f. Regions in red

indicate areas where the first model in the difference metric outperforms the second (i.e. corrCNN

> corrPS in Fig. 2.3d, corrLR > corrPS in Fig. 2.3e, and corrCNN > corrLR in Fig. 2.3f), whereas

blue regions indicate the opposite (i.e. corrCNN < corrLR in Fig. 2.3f). Gray regions show where

the difference in correlation between the two models is not statistically significant. The CNN

and LR models outperform the PS over the entire Arctic (Fig. 2.3d & e), with the exception of

the western side of Baffin Bay where the PS outperforms the LR (blue). Overwhelmingly, the

CNN outperforms the LR (red in Fig. 2.3f). Interestingly, the LR has a higher correlation (blue)

in coastal regions where both models have decreased performance (i.e. near the islands in the

Eastern Arctic and off the coast of Greenland).

The spatial patterns in model performance compared to the distance from the coast are

confirmed in Fig. 2.4. Correlations for the CNN and LR models tend to be lower in coastal

regions (Fig. 2.4a–b). This is also true for skill (not shown). For both models, locations that

are greater than 400 km from the coast consistently have correlation greater than 0.7 (and skill

greater than 0.3, not shown). The finding that the CNN outperforms the LR model for most cases

is confirmed in Fig. 2.4c, where most of the data lie in the positive region (i.e. above the black

line). Conversely, locations where the LR outperforms the CNN only occur within 400 km of the

coast.
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We also show that models have decreased performance in shallower regions (Fig. 2.4d–

e). Overall, model performance increases with increasing seafloor depth. The relationship is

logarithmic: performance increases rapidly with increasing depth for depths shallower than

1000 m, while the trend levels out for depths greater than 1000 m. Models exhibit correlations

less than 0.7 and 0.5 (CNN and LR, respectively) only for locations with depths less than 1000 m.

The CNN outperforms the LR for most cases (Fig. 2.4f). Most regions where the LR outperforms

the CNN (below the black line) occur at depths shallower than 500 m, although there are some

instances of higher correlation of the LR for greater depths.

We also analyze the spatial variability of the various properties related to sea-ice motion

(wind speed, ua; sea-ice speed, ui; and sea-ice concentration, ci). The mean and standard

deviation of the properties listed above are mapped in Fig. 2.3g–l. Patterns in mean ice speeds

tend to coincide with the spatial patterns in wind speed (Fig. 2.3g & h), consistent with the

known dependence of ice motion on wind speed (Thorndike and Colony, 1982). Both ice and

wind speed are relatively low in the coastal and island regions of the East Siberian Sea, the

Canadian Arctic Archipelago, and off the northern and western coasts of Greenland. The highest

mean wind speeds occur in the Davis Strait, off the eastern coast of Greenland, and in the Bering

Strait; high mean ice speeds also occur in these regions, in addition to the Beaufort Sea. The

region of low mean ice speeds to the north of the Canadian Arctic Archipelago coincides with

high mean ice concentrations (Fig. 2.3h & i). Conversely, the region of low mean ice speeds in

the East Siberian Sea coincides with lower mean ice concentrations.

Regions that show high variability (large standard deviations) in ice speed coincide with

high mean ice speeds (i.e. in the Beaufort Sea, Baffin Bay, Davis Strait, and Greenland Sea),

while regions with low variability coincide with lower mean ice speeds (to the north of the

Canadian Arctic Archipelago and in the East Siberian sea) (Fig. 2.3h & k). Variability in wind

speed is found to be relatively consistent throughout the Arctic, with the exception of high

variability off the eastern coast of Greenland (Fig. 2.3j). Regions with large variability in ice

concentration typically correspond to regions with lower mean ice concentrations (i.e. in the
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East Siberian Sea, Baffin Bay, the Kara Sea, and the Bering Strait). These are the regions where

the largest amount of seasonal ice melt typically occurs (not shown), which contributes to the

large variability and lower mean ice concentrations.

Figure 2.3. (a–c) Mapped correlation for predictions of sea-ice velocity made by the (a) PS,
(b) LR, and (c) CNN models. (d–f) The difference in correlation between models: (d) corrCNN-
corrPS, (e) corrLR-corrPS, and (f) corrCNN-corrLR. The gray regions in d–f represent locations
where the difference in correlation between the two models is not statistically significant. (g–i)
Mean and (j–l) standard deviation in time of various properties related to sea-ice motion from
satellite and reanalysis products(wind speed, ua (g & j); sea-ice speed, ui (h & k); and sea-ice
concentration, ci (i & l).

Temporal

For the region containing the entire Arctic, the CNN typically has the highest correlation,

followed by the LR and then the PS model (Fig. 2.5a). During June–September the difference in

correlation between the CNN and LR models is not statistically significant. Temporal structure
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Figure 2.4. PDFs for model performances compared to their distance from the coast (a–c) and
bathymetric depth (d–f), with (a & d) for the CNN and (b & e) for the LR. (c & f) The difference
(corrCNN-corrLR) between the correlation of the two models. Gray shading (c & f) represents
correlation differences between the two models that are not statistically significant. Results for
skill (not shown) are similar to correlation.

is visible in the correlation for all of the models. The LR model performance (Fig. 2.5a) has a

larger range of seasonal variability than the other two models. Maximum correlation and skill

for the PS and CNN models occurs during October–December, while the LR has a correlation

maximum in June–August. All three models experience a minimum performance in April.

The temporal evaluations are divided into regions (Fig. 2.1a) based on the spatial vari-

ability of their performance, as discussed in section 2.5.3. The impacts of this spatial division

on model performance are shown in Fig. 2.5b–d, while Fig. 2.5e–g represent differences in the

correlation between the different models. Here the black lines represent metrics calculated with

all of the data included, and the different shades of red and blue represent the respective spatial

regions from Fig. 2.1a. Diamonds in Fig. 2.5e–g indicate months where the difference between

the two models is statistically significant. The correlation for the region within the Central

Arctic division (light red) does not deviate much from that of the entire Arctic (black) because

the Central Arctic region is large and covers most of the region containing the entire Arctic.

However, there are significant changes in monthly values of correlation for all other divisions

(Greenland Sea, Eastern Arctic, and Baffin Bay divisions). For all three models, the Eastern
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Arctic (light blue) division exhibits a similar seasonal cycle to the entire Arctic (i.e. minimum

correlation in March–April), but has a consistently lower monthly correlation in comparison to

the other divisions for all models, except during the months of July–October.

The Greenland Sea (dark blue) and Baffin Bay (dark red) divisions exhibit a relatively

high correlation from October–May that decreases toward a minimum in August or September

(Fig. 2.5b–d). The Greenland Sea division (dark blue) has a higher correlation than the other

divisions from October–April for all three models. The Greenland Sea division shows a lower

correlation than the region containing the entire Arctic from the months of June–September,

reaching a minimum in August for all three models that is significantly lower than correlations

for the entire Arctic (i.e the CNN has a minimum of 0.54 for the Greenland Sea division in

comparison to 0.80 for the overall Arctic). The Baffin Bay division (dark red) exhibits the

largest deviations in correlation from the overall Arctic for all models, showing up as a large

decrease during the months of May–November. The Baffin Bay division has higher correlations

in December–April, and the lowest August–September minimum out of all of the divisions

for all models (i.e. the August correlation of the CNN within the Baffin Bay division is 0.28

in comparison to 0.80 for the entire Arctic). The performance minima that occur in August–

September for the Greenland Sea and Baffin Bay regions are much lower than the April minima

for the region containing the entire Arctic. This pattern of decreased model performance during

months of minimum sea-ice extent (Greenland Sea and Baffin Bay divisions) suggests a link

between model performance and sea-ice concentration, which will be further evaluated in

section 2.6.3.

The differences in correlation between the models for the different divisions are shown

in Fig. 2.5e–g. The LR and CNN typically outperform the PS for all divisions (i.e. diamonds

indicating statistically significant difference in model performance are above zero in Fig. 2.5e & f).

The LR outperforms the CNN in all months for the Eastern Arctic division. However, statistically

significant differences from zero are only present December–May. The CNN outperforms the

LR during the months of September–May for the Central Arctic, and September–June for the
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Baffin Bay division. However, the difference between the correlation of the CNN and LR is not

statistically significant during the months of June–October for the Central Arctic or July and

September–November for the Baffin Bay division. These differences in model correlation will

be further analyzed in section 2.6.3.

We also compare the temporal variability in performance to that of the various properties

related to sea-ice motion (wind speed, ua; sea-ice speed, ui; and sea-ice concentration, ci). The

ensemble mean monthly averages of various properties related to sea-ice motion are shown in

Fig. 2.5h–j. Analysis is further broken down into the four divisions within the Arctic, which are

chosen based on values of the model correlations (Fig. 2.1).

For all regions the seasonal cycles for ice speed and wind speed (Fig. 2.5h & i) generally

line up, with minima typically occurring during the summer months and maxima in the winter.

The seasonal pattern of minimum wind speeds occurring from June–July, and maximum speeds

anywhere from October–February is consistent throughout all regions, except for the Eastern

Arctic division where minima are found in December–March, and maxima occur in September–

October. The Greenland Sea division has greater seasonal variability in wind and ice speeds than

the other divisions, with comparatively high maximum speeds in November–April. Seasonal

patterns in ice speed show minima in June–July for the Central Arctic, June–August for the

Greenland Sea, and May–October for the Baffin Bay division. The Eastern Arctic division

shows the opposite seasonal trend, instead exhibiting minimum ice speed from December–May.

Sea-ice concentration also follows a seasonal cycle within each division, typically reaching a

maximum in March and a minimum in September (Fig. 2.5j). The Baffin Bay division exhibits

the lowest and longest duration minimum ice concentration (i.e. ci < 0.5 from July–October).

From December–May the Greenland Sea division has a lower ice concentration than the other

divisions, which are all similar during this time.
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Figure 2.5. (a–d) Ensemble mean monthly correlation for the prediction of sea-ice velocity by
three different models: (a) all models, (b) persistence, (c) linear regression, and (d) CNN. (e–g)
The difference between the correlation of the (e) CNN and PS, (f) LR and PS, and (g) CNN and
LR models. (h–j) Ensemble mean monthly values of various properties related to sea-ice motion
(wind speed, ua (h); sea-ice speed, ui (i); and sea-ice concentration, ci (j). Metrics are calculated
for five different regions: containing the entire area of the Arctic (black), and within the spatial
divisions indicated in Fig. 2.1a (shades of red and blue). Error bars represent ensemble mean
standard deviations. Diamonds in Fig. 2.5e–g indicate months where the difference between the
two models represented is statistically significant.

Model Performance for Percentiles of Inputs

The model performance is compared to properties related to sea-ice motion (wind speed,

ua; sea-ice speed, ui; and sea-ice concentration, ci) to probe the variability in model correlation in

space and time. Figure 2.6 shows the correlation metrics calculated from subsets of test data for

all models (PS in dark blue, LR in teal, and CNN in green). Subdivisions are based on percentile

ranges (5% intervals) of the various properties. The performance metrics (correlation (a–c) and

the difference in correlation between the various models (d–f)) are plotted against the average of

each percentile range (i.e. 0–5%, 5–10%, etc.) for each property. Skill metrics (not shown) have
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similar patterns to the correlation. We find that the correlation increases with increasing wind

speed, sea-ice speed, and sea-ice concentration for all models (Fig. 2.6a–c). These relationships

have statistically significant r2 values when fit to a second-order polynomial with a least squares

regression.

The CNN and LR consistently outperform the PS model, as these two difference metrics

(corrCNN-corrPS & corrLR-corrPS) are positive for all ua, ui, and ci (blue and teal lines in Fig. 2.6

d–f). The CNN has a higher correlation than the LR (green lines in Fig. 2.6 d–f), except for the

case where ci < 0.5 (Fig. 2.6f). The metrics for the difference between the CNN and the other

two models (i.e. corrCNN-corrPS & corrCNN-corrLR) have statistically significant relationships

with wind speed, ice speed, and ice concentration: the difference between the two models

decreases for increases in wind and ice speed (Fig. 2.6d & e), and increases with increases in ice

concentration (Fig. 2.6f). The difference metric corrLR-corrPS shows a similar relationship to ui,

but not ua or ci. Additionally, the difference between the CNN and the LR is less dependent on

ui than the other two difference metrics (i.e. the slope of the green line is less than the slopes of

the teal and blue lines in Fig. 2.6e). This can be attributed to the correlation of the PS model

being much lower than that of the CNN or LR when ice speeds are close to 0 m s −1. The results

in Fig. 2.6d–f are robust whether we use all data or remove non-significant points.

2.6.2 Linear Regression Parameters: Relationship Between Sea-Ice
Motion and Input Parameters

Analysis of the linear regression parameters provides insight on the locations where each

of the inputs is important for predicting sea-ice motion. The parameters from the full LR (A-C in

Equation 2.3) described in section 2.5.2 are mapped in Fig. 2.7. Here Fig. 2.7a–c represents the

magnitude of the regression coefficients for normalized wind speed, sea-ice speed, and sea-ice

concentration on the sea-ice velocity (i.e.
√

ℜ2 +ℑ2 of A to C, where ℜ and ℑ represent the real

and imaginary components of these coefficients). These values range between 0 and 1 in the

figure because they are normalized to the maximum overall coefficient. Larger values indicate
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Figure 2.6. Correlation of the CNN (a–c) and the difference between CNN and LR correlation
(d–f) as a function of various properties related to sea-ice motion (wind speed, ua (a & d);
sea-ice speed, ui (b & e); and sea-ice concentration, ci (c & f). The correlation is calculated with
subsets of test data based on percentiles (5 percent intervals) of the various parameters. The
x-axis represents the mean value of the data in each 5% interval of each parameter. Correlation
differences (d–f) that are not statistically significant are not shown.

that sea-ice velocity has a larger linear dependence on a particular parameter.

Results show that wind speed has the largest importance in predicting sea-ice velocity

within the Central Arctic (Fig. 2.7a). Near the coast, the LR coefficient for previous-day sea-ice

velocity is elevated (Fig. 2.7c) complementary to the high values in the interior for wind speed

(Fig. 2.7a). Fig. 2.7d–e represents the rotation angles of the wind and sea-ice velocity to the

predicted next-day sea-ice velocity. The wind angle has an average of 24.9◦ ± 11.3◦ throughout

the Arctic, which is fully consistent with Nansen’s observations aboard the Fram of angles

between 20 and 40◦ (Ekman, 1905), and falls within one standard deviation of previous research

(Thorndike and Colony, 1982; Serreze et al., 1989; Maeda et al., 2020) who found wind angles

of -5 to 18◦, 0 to 19◦, and -10 to 30◦ (depending on season; winter to summer), respectively. The

spatially averaged angle between present and previous-day sea-ice speed is -8.3◦ ± 6.4◦, with

spatial variations as seen in Fig. 2.7e. When looking at the data, the expected spatial mean of the
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angle difference between previous and present-day sea-ice velocity is 0.2◦ (not shown), which is

within two standard deviations of the angle found from the LR parameters.

Wind velocity is found to have the maximum LR coefficient for predicting sea-ice velocity

throughout the Central Arctic (dark blue in Fig. 2.7f). Locations near the coast are dominated by

the sea-ice speed (pink regions). This is consistent with results from previous studies (Thorndike

and Colony, 1982; Kimura and Wakatsuchi, 2000; Maeda et al., 2020) that conclude that the

dependence of sea-ice velocity on wind velocity is not as strong in coastal locations where ice

stresses become more important. Additionally, the low coefficient for wind velocity found in

the Fram Strait off the east coast of Greenland, where the transpolar drift acts as a strong and

persistent export pathway for Arctic sea-ice (Weiss, 2013), has previously been attributed to

strong surface ocean currents (Kimura and Wakatsuchi, 2000).

The LR coefficient for wind speed is related to the spatial patterns in the mean ci

(Figs. 2.7a & 2.3i). We find low values for the LR parameter for wind speed in the Canadian

Arctic Archipelago, a region where ci is high and has little temporal variability (Fig. 2.3i &l),

which is consistent with results from Kimura and Wakatsuchi (2000); Maeda et al. (2020).

However, regions of low mean ci often have smaller values for the LR wind coefficient (i.e.

coastal regions in the eastern Arctic, Baffin Bay, and the Bering Strait). This contradicts

results from Kimura and Wakatsuchi (2000); Maeda et al. (2020), where areas with high ice

concentration exhibit a relatively small wind factor as a result of internal stresses becoming more

important in regions where ice is thick and concentrated. However, we note that in contrast

to Kimura and Wakatsuchi (2000), our model also includes ui as a predictor, which increases

in importance near the coast. Additionally, our analysis has one LR coefficient at each spatial

location throughout all time from 1992–2017, which provides a description of the relationship

between the wind factor and the average ci at each location. In contrast, Maeda et al. (2020) have

a different LR equation for each month, providing a better picture of the relationship between

the wind factor and the instantaneous ci, which is more likely to display impacts of ice stresses.

Values of the LR coefficients are related to the performance of the LR model and to the
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difference between the CNN and LR model performance. Figure 2.8 shows the relationship

between the LR coefficients and the model correlation (Fig. 2.7a–c), and the difference between

the correlation of the CNN and the LR (Fig. 2.7d–e), as calculated at each grid point. Larger LR

coefficients for wind speed are associated with larger correlation of the LR model (Fig. 2.8a)

in addition to an improved performance of the CNN over the LR (Fig. 2.8d). Conversely, a

larger LR coefficient for sea-ice speed is associated with lower correlation (Fig. 2.8b) and does

not show a statistically significant relationship with the difference metric, corrCNN - corrLR

(Fig. 2.8e). A larger LR parameter for ice concentration is linked to higher model correlation

(Fig. 2.8c) and tends toward the LR outperforming the CNN (Fig. 2.8f). The skill (not shown)

exhibits the same patterns as the correlation.

Figure 2.7. (a–c) Magnitude of the normalized linear regression coefficient for the relationship
between sea-ice velocity components and input parameters (a, wind speed, A; b, sea-ice speed,
B; c, sea-ice concentration, C) normalized to the maximum of a–c. (d–e) Mean angle of
(d) wind speed and (e) sea-ice speed to the predicted next-day sea-ice speed. (f) Maximum
linear regression parameter (a–c) for predicting sea-ice velocity at each location. Wind and ice
speed parameters are derived from calculating the magnitude of the parameters for the velocity
components.
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Figure 2.8. PDFs for LR correlation (a–c) and the difference between the correlation of the CNN
& LR correlation (d–f) compared to the LR coefficient magnitudes for (a & d) wind speed, LRua;
(b & e) sea-ice speed, LRui; and (c & f) sea-ice concentration, LRci.

2.6.3 Attribution assessment of model predictive skill

We address our aims to understand (i) reductions in forecast skill and (ii) discrepancies

in the performance of the different models by comparing the variability of these performance

metrics (i.e. corrCNN and corrCNN - corrLR) to variables related to ice motion (i.e. distance

from coast, dc; bathymetric depth, d; wind speed, ua; ice speed, ui; ice concentration, ci; and

the LR coefficients for wind speed, A, ice speed, B, and ice concentration, C). We focus on the

difference between the CNN and the LR, because the CNN and LR both outperform the PS for

almost all spatial locations.

In section 2.6 we find high model performance is linked to large distances from the

coast, depths (Fig. 2.4 in section 2.6.1), wind speed, ice speed, ice concentration, (Fig. 2.6 in

section 2.6.1), and values of the LR coefficients for wind speed & ice concentration (Fig. 2.8

in section 2.6.2). Additionally, the difference between the correlation of the CNN and LR

models is typically smaller for high wind speed and ice speed, and larger for high sea-ice

concentration (Fig. 2.6d–f in section 2.6.1), large distances from the coast, and large depths
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(Fig. 2.4 in section 2.6.1). We aim to confirm these findings by comparing the spatial and

temporal variability in model correlation (Figs. 2.3a–f & 2.5a–g) to that of the various properties

linked to ice motion (Figs. 2.3g–l & 2.5h–j), as well as to the spatial variability of the LR

coefficients (Fig. 2.7a–c).

We analyze four spatial divisions (Fig. 2.1a) that are made based on overall model

performance and the difference between the performance of the CNN and LR models. The

Greenland Sea division (dark blue in Fig. 2.1a) covers the region to the east of Greenland where

the model correlation is variable, but the LR largely outperforms the CNN. The Eastern Arctic

division (light blue in Fig. 2.1a) represents the region of the eastern Arctic where the correlation

is low and the LR outperforms the CNN. The Central Arctic division (light red in Fig. 2.1a)

includes the central Arctic, the Beaufort Sea, and the regions to the north of the Canadian Arctic

Archipelago. The Baffin Bay division (dark red in Fig. 2.1a) is the region where the model

correlation is variable, but the CNN consistently outperforms the LR. The gray shading in

Fig. 2.1a indicates regions that are not included in the following analysis. We discuss how the

variability in the input parameters is linked to (i) model performance, (ii) the difference between

the performance of the CNN and LR models, and (iii) the values for the LR coefficients in each

division. We note the distinction between inter-divisional comparisons and analysis within each

division, both of which are discussed below.

A summary of the inter-divisional comparisons is shown in Fig 2.9. Here the average

values of the metrics and properties are shown for each division, and error bars represent the

standard deviation. While the mean over any given division falls within one standard deviation

of the mean for the other division for many properties, significance testing shows that for each

property the differences between the mean value for each individual division and all other

divisions are statistically significant (not shown). Analysis within each division is summarized

in Fig. 2.10, which shows the ensemble-averaged correlation between each of the performance

metrics and each of the properties related to ice motion within each division. The correlation

between the maps of the performance metrics (Figs. 2.3a & f) and the average of the properties
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throughout time (Figs. 2.3g–i) are shown in Fig. 2.10a & b. The correlation between the daily time

series of the performance metrics and the spatially averaged properties (similar to Figs. 2.5d & g

vs. Figs. 2.5h–j, but using daily rather than monthly values) are shown in Fig. 2.10c & d. The

properties are compared to the model correlation (circles, Figs. 2.10a & c) and the difference

between the CNN and LR correlation, corrCNN - corrLR (triangles, Figs. 2.10b & d). The different

divisions are represented by the different colors, as indicated in the legend. Values greater than

zero are representative of cases where increases in the property are linked to increases in the

model performance metric, while values less than zero indicate an inverse relationship between

the property and performance metric.
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Figure 2.9. Overall mean of the performance metrics, ((a) corrCNN , and (b) corrCNN - corrLR),
and properties related to ice motion ((c) wind velocity, ua (m s−1); (d) ice velocity, ui (m s−1); (e)
ice concentration, ci; (f) bathymetric depth, d (m); (j) distance from coast, dc (km); and the LR
coefficients for (g) ua, (h) ui, and (i) ci). Different colors represent the different spatial divisions,
as indicated in the legend. Error bars represent the standard deviation within each division. The
black line in panel each represents the mean value for the overall Arctic (’ALL’ in the legend)
for comparison.
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Figure 2.10. Ensemble mean of the correlation between the model performance metrics (circles
for corrCNN in a & c; triangles for corrCNN - corrLR in b & d) and the various properties
related to ice motion within each of the spatial divisions (different shades of red and blue,
as indicated in the legend). Correlations are calculated to understand how (a & b) spatially
mapped performance metrics are related to spatial variability in time-averaged wind speed, ua;
ice speed, ui; ice concentration, ci; depth, d; distance from coast, dc; LR parameter for wind,
LRua; LR parameter for ice speed, LRui; and LR parameter for ice concentration, LRci; and
(c & d) temporal variability in performance is linked to daily averages of ua, ui, and ci within
each division. Error bars represent the standard deviation of the ensemble runs within each
division.

Model predictive skill vs. properties related to ice motion

Inter-divisional comparisons suggest that low correlation of the CNN is typically linked

to low depth, distance from coast, and ice speed, which is consistent with results from Fig. 2.6.

For example, the Eastern Arctic division has the lowest corrCNN , as well as the lowest mean of

the properties listed above in comparison to the other divisions (Fig 2.9).

Visual inspection of spatial (Fig. 2.3) and temporal (Fig. 2.5) results also support this.

For example, the low corrCNN found in the Eastern Arctic division (Fig. 2.3c) is coincident

with low values for depth, distance from coast (Fig. 2.1b–c), wind speed, ice speed, and ice

concentration (Figs. 2.3g–i). Temporally, the exceptionally low correlation in the Eastern Arctic
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division from November–May (Fig. 2.5b–d) is coincident with values of ui for the Eastern Arctic

division that are lower than all of the other divisions (Fig 2.5i). Additionally, the Central Arctic

division exhibits a higher correlation than the other divisions, particularly during May–October,

where the Central Arctic has higher ua, ui and ci in comparison to the other divisions. Temporal

analysis also shows that divisions that have a lower seasonal minimum ci also exhibit a lower

correlation relative to the other divisions, and in August–September the ordering for both ci and

corrCNN between divisions is: Baffin Bay < Eastern Arctic < Greenland Sea < Central Arctic.

Within each division, large corrCNN is typically related to high depth, distance from

coast, wind speed, ice speed, and ice concentration, which is consistent with results from Fig. 2.6.

This can be seen in Fig. 2.10a & c, where data points for all divisions are typically greater than

zero (above the black line), which indicates that spatial (Fig. 2.10a) and temporal (Fig. 2.10c)

variability of the properties listed on the x-axis are linked to variability in the correlation of

the CNN. There are a few exceptions to this relationship when comparing spatial variability

of performance metrics to the mean field of the properties: large wind speed is linked to low

corrCNN within the Central Arctic and the overall Arctic; within the Eastern Arctic division

large ice concentration, depth, and distance from coast are linked to low corrCNN . Interestingly,

many of these exceptions lie within the Eastern Arctic division, where overall depth, distance

from coast, wind speed, ice speed, and ice concentration are significantly lower than other

divisions. However, the values of these exceptions are within one standard deviation of zero,

which indicates neither a positive or negative correlation between the model performance and

the respective property. We note that the spatial comparisons (Fig. 2.10a) make use of the mean

fields of ua, ui, and ci, while temporal analyses (Fig. 2.10c) look at the daily time series that are

averaged over the spatial domain of each division. We use spatial and temporal analyses here as

a confirmation of results in Fig. 2.6, but do not expect perfect adherence due to the differences

caused by averaging across space and time.

While Fig. 2.10a & c provides a quantitative analysis of the comparisons of spatial

(Fig. 2.3c vs. g–i) and temporal (Fig. 2.5d vs. h–j) variability in the model correlation with
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respect to these properties, we can also see the link through visual inspection. For example,

spatial patterns of high correlation within the Greenland Sea division (i.e. increasing from west

to east; Fig. 2.3a–c) are coincident with high depth, distance from coast, ice speed, and wind

speed, while low correlation is seen in locations with high ice concentration. Within the Eastern

Arctic division, low correlation is largely linked to low depth and ice speed (Fig. 2.10a). High

correlation within the Central Arctic division is generally coincident with high depth, distance

from coast, ice speed, and ice concentration. Slightly lower correlations are seen in regions with

lower values of ua and ui (western side), and lower ci (eastern side and near the Bering Strait).

Interestingly, the Beaufort Sea has high values of skill and correlation despite its proximity to

land. However, the Beaufort Sea is relatively deep and has exceptionally high mean ua and ui

in comparison to other coastal regions, properties that are linked to higher model performances

(Figs. 2.4d & 2.6a–b). Lastly, high model correlation in the Baffin Bay division (Fig. 2.3)

is aligned with large depth (Fig. 2.1b), ua, ui, and ci (Fig. 2.3g–i). These spatial patterns of

correlation within each of the divisions tend to be consistent with results from Figs. 2.4d &

2.6a–b, the main exception being for the link between low correlation and high ci within the

Greenland Sea division, and the high correlation found close to the coast in the Beaufort Sea.

Temporally, the seasonal cycle for correlation follows that of ua, ui, and ci, with minimum

model correlations occurring during the months of minimum ua, ui, and ci (August–September)

for most models and divisions. The exceptions here are the Eastern and Central Arctic divisions

where the correlation does not follow the seasonal cycle for ci. This is likely a result of the low

ua and ui in the Eastern and Central Arctic division during this time. Additionally, low seasonal

variability in correlation within the Central Arctic division could be linked to the relatively small

seasonal variations in ua, ui, and ci in comparison to the other divisions.
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Difference between predictive skill of the CNN and LR models vs. properties related to
ice motion

Inter-divisional analysis suggests that low values for the difference metric, corrCNN -

corrLR (the Greenland Sea and Eastern Arctic divisions in Fig 2.9b), are linked to low depth,

distance from coast, and ice concentration (the Greenland Sea and Eastern Arctic division in

Fig 2.9 e–f & j). Additionally, a low difference metric is linked to high ua and ui in the Greenland

Sea division. Conversely, low ui is linked to a low difference metric in the Eastern Arctic division

(Fig 2.9d). The high difference metric in the Baffin Bay division is also linked to a lower mean

ua. As noted above, while the mean value of a particular division may fall within one standard

deviation of that for other divisions, significance testing shows that the differences between

means among divisions for a given property are statistically significant. For the case of ci, these

inter-divisional comparisons are consistent with results from Fig. 2.6d–f, where a high difference

metric is linked to high ci. Additionally, these results are consistent with the relationship between

high corrCNN - corrLR and low wind and ice speeds found in Fig. 2.6d–f for the Greenland Sea

(ua & ui) and Baffin Bay (ua) divisions, but not the Eastern Arctic division (ua & ui).

Visual inspection of spatial (Fig. 2.3f vs. Figs. 2.1b–c & 2.3h–j) and temporal (Fig. 2.5g

vs. Fig. 2.5h–j) results also supports this. Spatially, the low difference metric, corrCNN -

corrLR, in combination with relatively low depth, distance from coast, ice concentration, and

exceptionally high wind and ice speeds in the Greenland Sea division compared to the rest of

the Arctic is consistent with results in Fig. 2.6d–f. Additionally, temporal analysis shows the

difference metric for the Greenland Sea division remains lower than that for the entire Arctic

(dark blue line is below black line), while ua and ui are higher in the Greenland Sea division than

other divisions during the months of October–April. Similarly, for the Eastern Arctic division a

relatively low depth, distance from coast, and ice concentration are linked to a low difference

metric. However, contrary to patterns found in Fig. 2.6, the difference metric in the Eastern Arctic

division is low, while ua and ui are also low in both spatial and temporal analyses. The difference

metric for the Eastern Arctic division is lower than that for the Greenland Sea division from
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January–April, despite lower ci and higher ua and ui in the Greenland Sea division, all of which

are expected to contribute to a lower difference metric (Fig. 2.6). Spatially, the high difference

metric in the Central Arctic division is linked to high ci, low ua, and high ui relative to other

divisions, which is consistent with results in Fig. 2.6, with the exception of the tendency of ui.

However, in temporal analysis of the Central Arctic division, the difference metric is particularly

high compared to other divisions when ui is lower in January–May, which is consistent with

results in Fig. 2.6. The notably high difference metric in the Baffin Bay division compared to

other divisions is linked to low ua in both spatial and temporal (December–June in Fig. 2.5g & h)

analyses.

Within each division, comparisons of corrCNN - corrLR with the properties related to ice

motion are more nuanced, as data points in Fig 2.10b & d do not consistently lie above or below

zero for a given property, particularly with spatial comparisons using the mean fields (Fig 2.10b).

From results in Fig. 2.6, we would expect points in Fig 2.10b to be above zero for ci and below

zero for ua and ui (i.e. high corrCNN - corrLR is linked to high ci, low ua, and low ui), which is

only the case for some divisions. The region containing the entire Arctic (black) is consistent with

this pattern for all variables on the x−axis, except for ui. Additionally, these results are consistent

with Fig. 2.6 for the following cases: the coincidence of high corrCNN - corrLR with low ua,

low ui, and high ci in the Greenland Sea division; high corrCNN - corrLR coincident with low

ua, but high ci and depth in the Central Arctic region; the coincidence of high corrCNN - corrLR

with low ua in the Baffin Bay region. We find the following exceptions to the trends in Fig. 2.6:

the coincidence of high corrCNN - corrLR and low d and dc in the Greenland Sea division; high

corrCNN - corrLR coincident with high ui and low ci in the Eastern Arctic division; and high

corrCNN - corrLR coincident with high ui, low ci, low depth, and low distance from coast in the

Baffin Bay division.

Comparisons between temporal variability of the difference metric and the various

properties are more straightforward, and tend to show results that are consistent with what is

found in Fig. 2.6, where a high difference metric is linked to low ua, low ui, and high ci. This is
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true (i.e. data for ua and ui exist below the black line, and points for ci are above), except for in

the case of the region containing the entire Arctic, the Central Arctic division, and the Baffin

Bay division for both ua and ui, as well as the Greenland Sea division for ci. Additionally, while

the ensemble mean value of the correlation between ui and the difference metric is negative for

the Greenland Sea division, it lies within one standard deviation of zero.

Looking at the time series (Fig. 2.5g–j) it is clear that the low difference metric in the

Eastern Arctic division from December–May is linked to low ui and high ci, which is the opposite

of what is expected from Fig. 2.6. Within the Central Arctic division low corrCNN - corrLR is

linked to low ci in June–October, while a slightly higher corrCNN - corrLR from December–May

is linked to high ua and low ui. Within the Baffin Bay division low corrCNN - corrLR is linked to

low ci (Figs. 2.5g & j & 2.10d): during months of low ci, the difference metric is not statistically

different from zero (May–November, except August), while for all other months the opposite

is true, and corrLR < corrCNN . Additionally, high corrCNN - corrLR during January–April is

coincident with a low ua. Temporal results from Fig. 2.5g–j tend to be consistent with results

from Fig. 2.6, with the following exceptions: coincidence of low corrLR < corrCNN with low

ui and high ci from December–May within the Eastern Arctic division; coincidence of high

corrLR < corrCNN and high ua from December–May in the Central Arctic division.

Impact of LR parameters on model performance metrics

We find that the performance metrics (corrCNN and corrCNN - corrLR) are related to

the values of the LR coefficients for the different input parameters (Fig. 2.8 in section 2.6.2).

These results come from comparing the LR coefficient at each location (Fig. 2.7a–c) with the

mapped values for the performance metrics (Fig. 2.3c & f). We use divisional analyses to

confirm the maximum LR coefficient in each division (Fig. 2.9g–i vs. Fig. 2.7f), as well as

the relationship between the performance metrics and the LR coefficients within each division

(Fig. 2.10a & b vs. Fig. 2.8). We also aim to understand whether the variable with the highest

LR coefficient has the strongest relationship to model performance.
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Inter-divisional comparisons (Fig. 2.9g–i) show that the mean LR coefficient for ua is

higher than all other coefficients in the Central Arctic division and the region covering the entire

Arctic. For all other divisions the mean of the LR coefficients are within one standard deviation

of each other and the maximum coefficient within each division is not conclusive. The mean LR

coefficient within the overall Arctic and the Central Arctic division (Fig. 2.9g–i) is consistent

with what is seen spatially (Fig. 2.7f). We find that variability in model performance is not

necessarily linked most strongly to the property that exhibits the dominant LR coefficient within

each division (i.e. a high LR coefficient for ua does not necessarily mean that the correlation

between either performance metric and ua will be stronger than that between the performance

metric and ui or ci). In other words, the high value of the LR coefficient for ua in comparison to

that for ui or ci for the Central Arctic division in Fig.2.9g is not linked to the correlation between

model performance and ua being higher than that for ui or ci in Fig 2.10.

In Fig. 2.8, high model correlation is found in locations with large LR coefficient for

ua and ci, but a low LR coefficient for ui. Analysis of the LR coefficient within each division

(Fig. 2.10a & b) confirms this and shows that high corrCNN is related to high a high LR coefficient

for ua and ci within all four divisions. The relationship between high corrCNN and a low LR

coefficient for ui is also seen for all divisions except the Eastern Arctic division (light blue in

Fig. 2.10a). While the general trend in Fig. 2.8 suggests high correlation to be linked to a low LR

coefficient for ui, it is clear that when corrCNN < 0.6 (which is the case for the Eastern Arctic

division, where the mean corrCNN is 0.5 ± 0.02), a high LR coefficient for ui is linked to higher

corrCNN .

The relationship between a high difference metric and a high LR coefficient for ua seen in

Fig. 2.8 is confirmed within all divisions, except for the Baffin Bay division (Fig. 2.10b), however

the Central Arctic division is within one standard deviation of zero. The relationship between

high corrCNN - corrLR and a low LR coefficient for ci seen in Fig. 2.8c is only found within the

Greenland Sea division. While the general pattern in Fig. 2.8c suggests a link between high

corrCNN - corrLR and a low LR coefficient for ci, this is largely true where the LR coefficient
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for ci is high (> 0.6), which is the case for the Greenland Sea division (0.69 ± 0.34). When the

LR coefficient for ci < 0.6 the opposite is true, and high corrCNN - corrLR is linked to a high

LR coefficient for ci, which is the case for the Greenland Sea, Eastern Arctic, and Baffin Bay

divisions. Thus, Fig. 2.10b confirms results from Fig. 2.8.

2.7 Conclusions

2.7.1 A CNN can make skillful predictions of sea-ice motion on one-day
time scales.

As sea-ice in the Arctic declines and opens new pathways for maritime transportation, the

skill of sea-ice motion predictions becomes increasingly important (Bennett et al., 2020; Cao et al.,

2022). This work uses machine learning models to make one-day predictions of sea-ice motion

for operational forecasting. We show that a CNN can make skillful predictions of sea-ice velocity

and outperforms other statistical models in most instances. In comparison to the other models,

the CNN has the benefit of incorporating non-linearities between inputs and spatial information

when making predictions. We also show that a grid-wise linear regression (LR) model performs

almost as well as a CNN in most instances, and comes with the benefit of decreased complexity

in comparison to neural networks. Both the CNN and LR models outperform the baseline PS

model. Additionally, we find that the CNN shows improved performance in comparison to the

models of Maeda et al. (2020); Kimura and Wakatsuchi (2000) discussed in section 2.3: the

correlation of the CNN is as low as 0.4 in the Eastern Arctic, and 0.7 in the Canadian Arctic

Archipelago (Fig. 2.3c), where Maeda et al. (2020) find correlation between ice motion and

geostrophic wind as low as 0 and 0.4 in the same regions. Lastly, while comparing the model

performance to that of a dynamical model was outside the scope of this study, our model was an

extension of that presented by Zhai and Bitz (2021) (differences between the two models are

identified in Table B.1), which was found to have higher correlations for sea-ice velocity with

satellite observations than the CICE5 dynamical model for sea ice.
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2.7.2 Model predictive skill and discrepancies between model perfor-
mances are linked to various properties related to sea-ice motion.

Model performances vary spatially and seasonally, and are linked to variability in prop-

erties related to sea-ice motion. Although there are exceptions that come with having different

combinations of these properties, in general, better model performance is linked to:

• increased bathymetric depth and distance from the coast

• larger mean values of ua, ui, and ci

• larger LR coefficients for ua and ci; smaller LR coefficient for ui

The CNN outperforms the LR in most cases. We have shown that the following are

related to increases in the performance of the CNN over the LR:

• larger distance from coast and greater bathymetric depth

• smaller mean ua and ui, and larger mean ci

• larger LR coefficient for ua, and smaller LR coefficients for ci

Interestingly, the LR model tends to outperform the CNN model in some coastal regions

where non-linear effects might be expected to play a large role. However, the locations where

this happens exhibit shallow depths, and when coastal waters are deep (i.e. the Beaufort Sea)

the CNN outperforms the LR. We note that sharp discontinuities between ocean and land pixels

may reduce the quality of the CNN predictions due to the way the CNN incorporates spatial

filters and non-local information in its predictions Sonnewald et al. (2021). This may also impact

our result that the LR outperforms the CNN at shallower depths because depth increases with

increasing distance from the coast. To address this, future analyses we will apply a non-local

LR at each grid-point for a more direct comparison between LR and CNN models. However,

even with non-localities built in, the LR doesn’t apply spatial filters in the same way that the
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CNN does, so we may not be able to reproduce the same decreases in performance inherent to

the CNN in coastal regions.

The LR typically outperforms the CNN in regions where wind speed is not the dominant

LR coefficient: ice velocity is the dominant LR coefficient in the coastal regions of the eastern

Arctic, and sea-ice concentration dominates the LR predictions in the coastal region to the east

of Greenland. Conversely, wind speed is found to be the dominant LR coefficient wherever the

CNN outperforms the LR. This suggests that the relationship between wind velocity and ice

velocity includes non-linearities that are captured by the CNN (and not the LR), leading to an

improved performance.

We find that larger LR coefficients for a given parameter are not necessarily linked to

larger parameter values (e.g. in the Greenland Sea division, ice concentration is the dominant

predictor in regions where wind and ice speed are exceptionally high). However, we find that the

LR coefficient for wind speed tends to be lower in regions with low mean ci. This contradicts

previous findings, where areas with high ci are known to exhibit larger internal ice stresses,

which leads to a reduction in the dependence of ice motion on wind (Kimura and Wakatsuchi,

2000; Maeda et al., 2020). We note that this particular conclusion does not take into account

instantaneous effects, as it is a comparison between a mean ci over time and a LR coefficient that

is descriptive of ice motion over the duration of the study. Future work could decrease the time

period over which LR is run to obtain equations that are more descriptive of instantaneous effects

such as that of ice stresses due to high ci. Lastly, we find that variability in model performance is

not necessarily linked to the dominant LR coefficient within each region.

2.7.3 Wind velocity plays the largest role in predicting ice velocity.

We find that the spatial average of the wind factor over the Arctic is 0.72% ± 0.31%

(Fig. B.2). The wind factor is higher for regions in the Central Arctic in comparison to coastal

regions, confirming historical results (Thorndike and Colony, 1982; Serreze et al., 1989; Kimura

and Wakatsuchi, 2000; Maeda et al., 2020). We also show an average turning angle to the wind
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of 24.9◦ ± 11.3◦, which is consistent with the cited historical results. Analysis of LR parameters

shows that of all of the input predictors, wind velocity has the largest importance in predicting

sea-ice velocity. This relationship is particularly strong in the central Arctic, and is reduced in

coastal regions. Furthermore, an increased dependence of the models on wind speed is related to

increased model performance for the CNN, which provides further evidence as to why the models

are not as skillful at predicting ice speed in coastal regions (i.e. ice speed is not as dependent on

the training information in these regions). Future work will build off of these results and look at

using outputs from machine learning models to understand how the relationship between wind

and ice velocity is changing in time as the ice melts.
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Chapter 3

Evaluating the robustness of explainable
machine learning (XML) methods for ap-
plication in regression predictions of Arc-
tic sea-ice motion.

3.1 Summary

Recent advances in explainable ML (XML) methods have shown promise for under-

standing predictions made by machine learning models. In this study we evaluate explainability

methods applied to linear regression (LR) and convolutional neural network (CNN) models that

are built to predict present-day ice velocity from inputs of present-day wind velocity, previous-

day ice velocity, and previous-day ice concentration. We aim to understand the importance of

each of the inputs in predicting sea-ice velocity on one-day timescales. This work focuses on

methodology in order to gain a comprehensive understanding of the various XML methods. We

compare more established techniques with those that have been more recently introduced to the

field. In particular, we compare covariance maps, parameters from linear regression equations,

permutation feature importance (PFI) maps using CNN, perturbation experiments using CNN,

and layerwise relevance propagation (LRP) methods. This is the first known application of

a domain-integrated implementation of the LRP method for a regression problem in the geo-

sciences. We refer to “domain-integrated” or “regional” explainability methods when describing

87



methods that interpret the importance of the inputs over the entire spatial domain of interest,

rather than just at one grid location. The LRP method was developed for ML models built for

classification. Here we apply XML to regression rather than classification-type predictions,

and thus seek to evaluate the robustness of LRP for its application to regression, rather than

classification-type predictive ML models. Outputs from different explainability methods are

generally consistent. Results from local methods are consistent in showing the relevance of each

of the inputs has a similar radius of influence for the perturbation and LRP methods. However,

local methods are inconsistent in determining the relevant importance of the inputs: perturbation

indicates wind speed is the most relevant predictor of ice motion, while LRP shows that ice

concentration is the most relevant. Domain - integrated methods show similar inconsistencies in

the relative importance of the inputs for predicting ice motion: while both the LR parameters

and PFI methods show that wind speed is the most important predictor, domain - integrated LRP

indicates that ice concentration has a higher relevance in predicting ice motion. We also discuss

nuances found in the spatial distribution of relevance between the various domain-integrated

explainability methods.

3.2 Introduction

Machine learning (ML) models can make skillful predictions of sea-ice motion on one-

day time scales (Zhai and Bitz, 2021; Hoffman et al., 2023). Sea-ice velocity has historically

been modeled linearly as a function of wind speed, moving at some fraction of the wind speed

(known as the wind factor), and at some angle to the wind (the wind angle; Thorndike and

Colony, 1982). On short timescales, the wind alone can account for 70% of the variability in

sea-ice motion in the central Arctic region. In regions within 400 km of the coast, the wind-only

approximation of ice motion becomes less reliable, as internal stress gradients within the ice

become more important (Hibler, 1979; Thorndike and Colony, 1982; Serreze et al., 1989; Kimura

and Wakatsuchi, 2000; Maeda et al., 2020). This historical result was seen in the decrease in
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performance in coastal regions of linear regression (LR) and convolutional neural network (CNN)

models analyzed in Hoffman et al. (2023). These models were designed to predict present-day

ice velocity from present-day wind velocity, previous-day ice velocity and previous-day ice

concentration. Even with additional information about the ice state (i.e. the previous-day velocity

and concentration), the performance of these models dropped in coastal regions. The previous

chapter discussed potential mechanisms to explain the decrease in model skill in coastal region

(see section 2.7).

We move forward with analysis of the LR and CNN models for predicting ice motion. In

the this chapter and the next, we aim to understand how the relationships between ice motion

and the model input predictors are changing in response to the changing state of the Arctic. To

accomplish this, we employ explainable ML (XML) methods to probe into the black-box of

the ML models and gain insight into how each of the inputs is important in making one-day

predictions of ice motion. This chapter begins as an analysis of several different XML methods,

and the final chapter investigates trends in the relevance of each of the inputs in predicting ice

motion.

Investigations in the interpretability of ML predictions have become more common with

an increasing reliance on complex neural networks (Linardatos et al., 2021). CNNs are black-box

models that incorporate non-linear interactions between the predictors, and it is difficult to

interpret the reasoning behind any given prediction. However, several explainability methods

have been developed with the aim of untangling the black box nature of the CNN. Several

different ways of categorizing these methods have been identified (Haar et al., 2023; Letzgus

et al., 2021; McGovern et al., 2019). Here, we analyze perturbation-based and back-propagation-

based methods. We further classify methods into those producing local or domain - integrated

interpretations of the model predictions (Linardatos et al., 2021).

In this study we analyze the outputs from different XML methods applied to a CNN

(a non-linear, black-box model) in comparison to a simplified analysis of the coefficients in

a LR model (a linear, glass-box model). We use the coefficients of the LR equation as an
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indicator of how important each of the inputs was for the model in predicting the output. We

analyze the perturbation and back propagation-based methods applied to a CNN for local and

domain-integrated cases. These include local implementations of perturbation and LRP, and

domain-integrated implementations of PFI and LRP. We evaluate the outputs from these different

XML methods applied to a CNN and compare to the LR case for a robust analysis and to bolster

trustworthiness in the interpretations of our models.

3.3 Data

We train linear regression (LR) and convolutional neural network (CNN) models to make

predictions of present-day zonal and meridional sea-ice velocity (ui,t & vi,t) from inputs of:

• present-day zonal & meridional wind velocity (ua,t & va,t),

• previous-day zonal & meridional sea-ice velocity (ui,t−1 & vi,t−1), and

• previous-day sea-ice concentration (ct−1).

Daily values of wind velocity, ice velocity, and ice concentration from 1989–2021 are

taken from the same satellite and reanalysis sources discussed in chapter 2.4, which can be

referenced for further information on data sources and processing steps. In summary, wind

velocity is taken from the Japanese Meteorological Agency 55-year atmospheric surface dataset

for driving ocean-sea ice models (JRA55-do; Tsujino et al., 2018); ice velocity is from the Polar

Pathfinder Daily Sea Ice Motion Vectors, Version 4 (Tschudi et al., 2019); ice concentration is

from the Nimbus-7 SMMR and SMSP SSM/I-SSMIS Passive Microwave Data (Cavalieri et al.,

1996).

Similarly to chapter 2.4, we re-grid wind and ice concentration to the 25 km EASE-Grid

of the Polar Pathfinder Ice Motion product for consistency. We also standardize all data to zero

mean and one standard deviation, based on global statistics over the entire temporal domain.

Sea-ice velocity and concentration are set to zero rather than ‘NaN’ in regions without ice
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because the CNN requires inputs to be numerical values. The Nimbus-7 sea ice concentration

data set is missing data in a circular sector centered over the North Pole as a result of the orbit

inclination of the satellite. In the analysis in chapter 2 these grid locations were simply filled in

with zeros before implementation in model training. For XML studies here, we have filled in this

polar hole using imputation methods, replacing locations with ‘NaN’ values with the mean of the

40 nearest neighboring grid points. We opted to apply imputation here because while the polar

hole did not significantly impact the overall performance of the model (which was the focus of

chapter 2), it did impact the XML outputs that were analyzed in this chapter (not shown).

3.4 Methods

3.4.1 Model Setup

The model frameworks are taken from Hoffman et al. (2023) and further described here.

Linear Regression (LR)

The LR is expressed as equation (3.1):

u∗i,t = Au∗a,t +Bu∗i,t−1 +Cc∗i,t−1 +D. (3.1)

Here the inputs and coefficients (i.e. u∗a,t & A, etc.) are complex numbers, with the real

and imaginary parts representing the zonal and meridional components and their respective

parameters. The LR is applied grid-wise and each grid location has a unique set of LR coefficients.

We apply a time-variable mask that only uses grid points and times where the ice concentration

is greater than zero. Similarly to Hoffman et al. (2023), we apply ridge regression with a ridge

parameter of λ = 10−2 to prevent unrealistically large LR parameters (Marquardt and Snee,

1975).

We run LR for three different temporal subsets: overall, seasonal, and monthly. For

the overall runs, data are split into train and test sets, which include 30 and 2 years of data,
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respectively. Ten different LR models are trained, where the years used in the train and test sets

are varied; we refer to each of these models as an “ensemble” run. For the monthly runs, we

build a different LR model for each month from 1989–2021. For the seasonal runs, a different

LR model is built for each season (i.e. January–March, JFM; April–June, AMJ; July–September,

JAS; and October–December, OND) from 1989–2021.

Convolutional Neural Network (CNN)

The CNN architecture is illustrated in Figure 3.1. The model is set up with five repeating

units of Conv2D-ReLU-MaxPool, followed by a 20% dropout, a flattening, and a dense layer that

applies a regression to predict the output at each grid point. The CNN is implemented in python

using the Tensorflow/Keras library (Abadi et al., 2015). The parameters are described in Table

3.1 and further details can be found in section 2.5.2. Data are split into train, validation, and test

sets with an 88%–6%–6% split. We train ten different CNN models with varying date ranges

used the train, validation, and test sets. Similarly to the LR, we refer to each of these models as

an “ensemble” run. We use the CNN to apply several different types of sensitivity analyses to

understand the importance of the input parameters in prediction sea-ice motion. These analyses

include perturbation, permutation feature importance (PFI), and layerwise relevance propagation

(LRP), which are discussed in more detail in the following section.

3.4.2 Sensitivity Analyses

We aim to explore the importance of each of the inputs to the ML models (i.e. present-

day wind velocity, ua; previous-day ice velocity, ui; and previous-day ice concentration, ci) in

predicting the output. We apply different types of sensitivity analyses to LR and CNN models,

including perturbation and back-propagation-based methods. These can be separated into two

types: local and domain-integrated. Localized analyses show the sensitivity of each of the

inputs at individual grid locations, whereas domain-integrated analyses provide insight into

the overall relevance of each input in predicting the output over the entire analysis domain.
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Figure 3.1. Schematic of the convolutional neural network (CNN) used in this study for prediting
present-day sea-ice velocity components (outputs) from present-day wind velocity, previous-day
sea-ice velocity, and previous-day sea-ice concentration (inputs). This CNN has five repeating
units of a 2D convolution with a ReLU activation and max pooling, followed by a 20% dropout
layer, flattening, and a dense layer. An example of the heat maps produced using layerwise
relevance propagation (LRP) is also shown here. LRP highlights regions of high relevance for
each of the inputs in making predictions of sea-ice motion.

Localized methods include analyzing covariance maps of the inputs, perturbation analyses, and

gridwise-LRP. Domain-integrated methods include analysis of the LR parameters, permutation

feature importance (PFI) applied to the CNN, and a global implementation of the LRP. Each of

these methods are described below. We compare the outputs from various sensitivity methods to

validate the use of newer methods (i.e. LRP for regression problems) against the more established

case (i.e. analysis of LR parameters).

Covariance Maps of Inputs

We evaluate spatial covariance maps of each model input at 17 different locations

throughout the Arctic. We note that the covariance is not a metric of sensitivity magnitude for the

relationship between ice motion and the input parameters, but use it here to analyze the spatial

extent to which each input co-varies in time. This provides a visual of the spatial decorrelation

length scale for wind velocity, ice velocity and ice concentration. The spatial covariance pertains
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to the linear relationship between two points for a given predictor. The magnitude of the spatial

covariance of a particular predictor indicates the degree to which knowledge at one spatial

location permits at least partial knowledge of information at another location (Wunsch, 2006).

This metric gives information about the distance over which the 17 chosen analysis points the

variations in each of the inputs are synchronous. We analyze spatial covariance over the full

temporal duration of the data (i.e. 1989–2021).

Linear Regression Parameters

The linear regression parameters provide information about where each of the inputs is

important for predicting sea-ice motion. In comparison to sensitivity studies using the CNN, LR

only shows information about linear relationships. We build different LR models over varying

temporal subsets of data, as discussed in section 3.4.1. These include implementations for the

overall (trained on 30 years of data), seasonal (a separate model trained on each season from

1989–2021), and monthly (a separate model trained on each month from 1989–2021) cases. Each

grid point has a unique set of LR parameters relating the inputs to the output. Analysis of the LR

parameters from the overall case allows comparison with the sensitivity studies applied to the

CNN that have domain-integrated results; we use this method as a baseline for comparison with

explainability methods applied to a more complex model (i.e. a neural network). We take the

average of each of the LR parameters over the ten ensemble runs to create a map indicating the

overall impact of each input at each location.

Perturbation Analysis

Perturbation analyses provide information about the sensitivity of a ML model prediction

to a perturbed element (McGovern et al., 2019; Ivanovs et al., 2021). The perturbed element

is considered important if the model prediction changes as a result of the perturbation. We are

interested in understanding the relative importance of each of the input predictors at various

geographical locations. Thus, we apply perturbation analyses for each input at 17 different
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locations throughout the Arctic. We follow a procedure similar to that of Sinha and Abernathey

(2021). After the CNN has been trained we apply the model to the standard test data set (2020–

2021) to make a prediction. Next, a new test data set is made for each of the five inputs and each

of the 17 hand-picked locations, for a total of 17 x 5 = 85 perturbation runs. Here, the input

is perturbed at the chosen location while keeping the rest of the variables and locations fixed.

For each perturbation, we subtract a fraction (1/2) of the standard deviation of the input. This

statistic is taken globally over all space and time. The model is run on each perturbed test data

set to make a prediction. For each perturbation, the root mean square difference (RMSD) is

calculated between the prediction made using the perturbed and the non-perturbed input. We

evaluate the spatial extent of the RMSD by summing the square of the difference in the temporal

dimension for each grid point (equation 3.2).

RMSD =

√
n

∑
i

(ŷi − yi)2

n
, (3.2)

Permutation Feature Importance (PFI)

Another way to evaluate the sensitivity of the ML model to the various inputs is through

permutation feature importance (PFI) methods (Radivojac et al., 2004). Similarly to perturbation,

in PFI the relative importance of the inputs is determined by the extent to which the ML model

predictions are impacted by changing elements of the inputs. To apply PFI, we randomly shuffle

the spatial values of each input at each time step for the test data set (i.e. 2020–2021). We then

use the shuffled data to make a prediction with a trained CNN. The performance (correlation and

skill, equations 2.4 & 2.5) of the CNN is calculated and compared to a standard case without

randomization. The magnitude of the change in performance is a metric for how important

the randomized input is in predicting the output. We analyze this importance for each input

spatially at each grid point. From this analysis we can determine the input with the overall highest

importance, in addition to spatial locations that are identified as important by the CNN. This PFI
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method has been applied to ML predictions made in geosciences in the form of classification

problems involving sea ice (Shen et al., 2017) and weather event detection (Molina et al., 2021;

Lakshmanan et al., 2015), as well as for regression problems for predicting motions of wave

gliders (Amador et al., 2021).

Layerwise Relevance Propagation (LRP)

We use a method called layerwise relevance propagation (LRP) to trace the explanation

of CNN predictions (Bach et al., 2015; Montavon et al., 2015, 2019, 2018). LRP informs the

“relevance” of individual input parameters by back-propagation through the neural network to

the first layer. The process proceeds as follows: (i) the CNN is run, and weights and biases are

frozen; (ii) a prediction output is propagated backwards onto the frozen weights and biases of

the different layers of the CNN and feature relevance is learned through a process governed by

conservation, where neurons that contribute the most to the higher-layer receive most relevance

from it; (iii) the output is a heat map showing the “relevance” of each input parameter at each

mapped location (latitude & longitude). This process is repeated for each prediction output at

each location, producing a daily relevance heat map for each input time step and grid point. We

proceed with analysis of LRP in two different ways: locally and domain-integrated. For the local

case, we pick 17 different latitude-longitude locations in the Arctic and analyze the relevance

heat maps produced from each of these locations in comparison to other explainability methods

that are confined to one grid point (i.e. covariance maps and perturbation). For domain-integrated

analyses, we create integrated heat maps by running LRP for 219 selected points throughout the

Arctic (Fig. 3.2) and averaging the relevance maps produced by each of these locations at each

time step. This allows for comparison of LRP to more spatially comprehensive explainability

methods, such as the LR parameters or PFI outputs.

We run the LRP analysis on the testing data for consistecy with other XML analyses. Here

we use the iNNvestigate package (Alber et al., 2019) with the ‘sequential preset A’ configuration

of LRP that applies different rules at different layers of the model, where LRP-α1β0 is applied
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for convolutional layers and LRP-ε is applied for dropout, flatten, and dense layers. This custom

configuration was chosen based on suggestions from Montavon et al. (2019).

While LRP methods were developed for classification rather than regression (Bach et al.,

2015; Montavon et al., 2019), there have been examples of LRP being applied for regression

in other fields (Dobrescu et al., 2019; Rahman et al., 2021; Schnake et al., 2020). Additionally,

Letzgus et al. (2021) discuss methods to extend LRP to regression problems. These methods

involve re-training the CNN with respect to a carefully chosen reference value (i.e. subtracting

the reference value from the outputs before training). For consistency in comparison with other

explainability methods, we show LRP relevance outputs where the reference value is not applied

for local and domain-integrated implementations in this chapter. We discuss applications of the

reference value to future work in the final chapter.

In comparison to other explainable AI techniques (i.e. perturbation and gradient-based),

backward propagation techniques, such as LRP, have the advantages of producing explanations

from a single forward / backward pass (Letzgus et al., 2021). To our knowledge, this is the first

application of using a spatially-integrated LRP for a regression problem in the geosciences. For

more details, an overview of using LRP for applications in geosciences is provided by Toms et al.

(2020).

3.5 Results

3.5.1 Localized Sensitivity Studies

We compare the sensitivity studies applied at specific grid points: covariance, perturbation

and localized-LRP. We run each of these analyses for 17 different locations (red points in

Fig. 3.3g). While we have noted that the covariance is not the same as a sensitivity between the

model inputs and ice motion, we refer to the “relevance” of each of the inputs within each of these

methods to simplify the discussion. The sensitivity outputs are normalized by dividing by the top

0.5% maximum value for each particular method to create similar scales for comparison among
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Figure 3.2. Locations used in integrated analysis for global LRP implementation (blue dots).
Regions of the Arctic are labeled for reference during discussion.

the different methods. Thus, when we refer to “relevance” we are referring to the covariance,

the RMSD, and the LRP output, each normalized to the 0.5 % maximum value for each of

the covariance, perturbation, and LRP methods, respectively. We compare relevance maps that

indicate the importance of each of the inputs (e.g. wind speed) in predicting the output (i.e.

sea-ice velocity). The spatial extent of the relevance metric for each sensitivity method is shown

for location 9 (Fig. 3.4); an extensive look at this set of maps for each location can be found in

the appendix (Fig. C.1 – C.17). The rows represent the different sensitivity methods, and the

columns are the inputs.

Spatial covariance decreases with an increasing distance from the analysis point for all
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predictors. Sea-ice concentration has the highest and most far-reaching spatial covariance, with

locations throughout the Arctic having highly correlated values for ice concentration (Fig. 3.4c).

For both wind and sea-ice velocity, spatial covariance remains high within a radius of the analysis

location, but drops off significantly with increasing distance (Fig. 3.4a & b). Within that radius,

wind and ice velocity have a similar spatial covariance, whereas the covariance of ice velocity

is slightly larger than that for wind at greater distances. While we show results for location 9,

the same patterns tend to hold for all 17 analysis points. We note that when analyzing the

correlation of for the case where the seasonal cycle has been removed (not shown), the radius

of influence of the spatial covariance for ice concentration is lower, while that for wind and ice

speed does not change much. This suggests that the seasonal cycle dominates the covariance

of ice concentration, but not wind or ice speed. Thus removal of the seasonal cycle could play

a role in the outputs of explainability methods, particularly for the case of which input has the

largest relevance in predicting the output.

Perturbation analyses on the CNN show decreasing importance with an increasing

distance from the analysis point for all predictors (Fig. 3.4d–f). Wind velocity has the highest

importance and radius of influence, followed by ice concentration and then ice velocity. The

normalized perturbation relevance score (i.e. the RMSD in equation 3.2 normalized to the 0.5 %

maximum value) for wind speed remains above 0.3 even for locations across the Arctic (i.e. off

the east coast of Greenland), while that for ice speed drops down to zero at the same location. In

comparison to all other methods and inputs, the perturbation relevance score for wind remains

above 0.8 for the largest distance away from the analysis point.

Similarly, LRP applied at the analysis location shows high localized importance that

decreases with increasing distance from the analysis point for all predictors (Fig. 3.4g–i). Here,

ice concentration shows the highest relevance in predicting ice velocity, followed by wind

velocity and the previous-day ice velocity. LRP relevance tends to be more non-localized in

comparison to perturbation analyses, with locations of high relevance farther away from the

analysis point. This is particularly true for ice concentration, which was also shown to have a
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larger decorrelation length scale in the covariance maps (Fig. 3.4c). Interestingly, some of the

locations far from the analysis point where LRP shows high relevance for each of the inputs

are the same locations with high spatial covariance for sea-ice concentration; this occurs, for

example, in the Eastern Arctic and to the east of Greenland. Additionally, while areas of high

relevance in perturbation tend to extend coherently within a certain radius of the analysis point,

the spatial extension of high LRP relevance is not coherent and instead high relevance is also

found at locations farther away (i.e. Fig. 3.4d vs. g). Overall, the LRP relevance seems to

have more similarities in spatial variability to the covariance maps than does the perturbation

relevance. This difference in the spatial patterns of relevance suggests that LRP and perturbation

pick up on areas of high relevance through different mechanisms.

For a comprehensive analysis of the relevance at each of the 17 locations (labeled in

Fig. 3.3d), we show the mean and standard deviation relevance for each of the inputs and each

analysis method (Fig. 3.3a–c). Variations in the relative importance of the inputs discussed for

location 9 (Fig. 3.4d–f) tend to hold for all locations. Sea-ice concentration has the largest spatial

covariance and LRP relevance in comparison to the other inputs (i.e. the red line is above the

orange and yellow lines in Fig. 3.3a & c), while wind velocity tends to have the largest relevance

in the perturbation analyses (i.e yellow line is on top in Fig. 3.3b). Additionally, if a location

tends to have a higher relevance for one parameter, it has high relevance for the others as well.

For example, the LRP relevances of the wind, ice speeed, and ice concentration parameters are

higher for locations 4, 7, and 9 than the other locations (Fig. 3.3c).

We also analyze the extent to which the relevance values vary with distance from the

analysis location for all locations and each of the sensitivity methods and inputs (Fig. 3.5). Here,

we only show data within 2000 km of the analysis point because our interest concerns the regions

of high relevance. The red lines represent exponential fits, and the legend shows the r2 value and

the e-folding distance, which is a measure of the radius of influence of each method. Relevance

decreases exponentially with increasing distance from the analysis point. This is true for all

sensitivity methods and inputs. However, the covariance of the ice concentration remains high at
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large distances from the analysis point, as indicated by a relatively low r2 for the exponential

fit, and an e-folding distance that is one order of magnitude (OM) higher than that for all other

methods and inputs (Fig. 3.5c). For all methods, the ‘relevance’ score for ice concentration has

the highest radius of influence (Fig. 3.5c, f, and i). We note that the LRP has more locations

with higher relevance at larger distances from the analysis point than perturbation for the case

of sea-ice concentration (Fig. 3.5i vs. f); the LRP also has areas with relevance scores above

0.2 at distances greater than 2000 km, which are not shown here. Results in Fig. 3.5 include

all locations. We also calculate the radius of influence for each location individually and show

the mean and standard deviation over all locations for each input and method (Fig. 3.5j–l). The

mean radius of influence for the LRP and perturbation methods are similar, and fall within one

standard deviation of each other for each of the inputs. Generally, the radius of influence for LRP

and perturbation are similar for each location, with exceptions at a few locations (i.e. L2, L11,

L12). Additionally, between the inputs, the mean e-folding distances are within one standard

deviation for each method, except for the case of the spatial covariance for ice concentration.

3.5.2 Domain-Integrated Sensitivity Studies

We compare sensitivity studies that analyze domain-integrated relevance of each input

in predicting ice motion: linear regression parameters, PFI, and domain-integrated LRP. The

sensitivity outputs are normalized by dividing by the top 0.5% maximum value for each particular

method to create similar scales for comparison among the three methods. We compare relevance

maps that indicate the importance of each of the inputs to the ML models in predicting sea-ice

motion and analyze the spatial extent of the relevance produced from each of these methods in

Figs. 3.6. Based on historical results (Thorndike and Colony, 1982) we expect wind velocity to

have the highest relevance out of all of the inputs.

The LR parameters are calculated on data from 1989–2019, where data from 2020–2021

were saved for use as the ‘test’ data set. The CNN used for both PFI and LRP was trained on

data from 1989–2017, where data from 2018–2019 were used for validation and 2020–2021 for
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Figure 3.3. Spatial mean and standard deviation of the “relevance” scores for the covariance,
perturbation, and LRP sensitivity methods: (a) spatial covariance; (b) normalized RMSE from
perturbation analysis; (c) normalized relevance score from LRP for each of the inputs (yellow,
wind speed, ua; orange, ice speed, ui; red, ice concentration, ci) at each location (x-axis). For
consistency in the magnitude of the axes among the methods, each subplot is normalized by
dividing by the maximum spatial mean and standard deviation of the ‘relevance’ value for each
method. (d) Map showing the fraction of time the ice concentration is greater than zero, as well
as the location of each point of analysis (red dots; labeled 1–17).

testing. Output from the PFI and LRP methods is shown here for the test years (2020–2021). We

note that for a more comprehensive analysis in the future we will analyze these XML methods for

ten different model runs where the years for the train, validation, and test data sets are shuffled

as to account for temporal trends.

Spatial analysis of the LR parameters indicates that wind velocity has the highest rele-

vance in predicting ice motion for the LR model, particularly in the central Arctic (dark blue in

Fig. 3.6d). Previous-day ice velocity is the second largest LR parameter in the central Arctic,

and the highest in coastal regions (Fig. 3.6f & h).

The PFI method also shows that wind velocity is the most important predictor. However,

the spatial variability in relevance for the PFI is not consistent with the LR case. For PFI, the

wind parameter maintains high relevance throughout the Arctic, even (and especially in some
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Figure 3.4. Results from localized sensitivity studies for each of the inputs at location 9,
indicated by the red dot. The columns represent each of the different inputs: (a), (d), and (g),
wind speed, ua; (b), (e), and (h), ice speed, ui; and (c), (f), and (i), ice concentration, ci). The
rows represent the different sensitivity methods: (a–c) Spatial covariance; (d–f) normalized
RMSE from perturbation analysis; (g–i) normalized relevance score from LRP. Each row is
normalized by dividing by the maximum ‘relevance’ value of the spatial mean for each method.

cases, such as in the Eastern Arctic) in coastal regions. Spatial patterns in the relevance of the ice

speed for the PFI analysis show similarities to that of the LR: the relevance of ice concentration

is higher for coastal regions than the central Arctic (i.e. the Canadian Arctic Archipelago, Bering

Strait and Eastern Arctic), and in particular for the region to the east of Greenland. There are also
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Figure 3.5. (a–i) Probability density of the relevance of each localized sensitivity study as a
function of the distance from the point of analysis for each of the inputs and for all locations.
The columns represent each of the different inputs: (a), (d), and (g), wind speed, ua; (b), (e),
and (h), ice speed, ui; and (c), (f), and (i), ice concentration, ci). The rows represent the
different sensitivity methods: (a–c) normalized spatial covariance; (d–f) normalized RMSE from
perturbation analysis; (g–i) normalized relevance score from LRP. Each row is normalized by
dividing by the maximum ‘relevance’ value for each method. The red lines represent exponential
fits to the data. The legend gives the e-folding distance for that fit and gives a measure of the
radius of influence for each of the relevance methods. The legend also shows the r2 values for
each fit; and r2 > 0.12 is statistically significant with 95% confidence based on the degrees
of freedom for each fit. (j–l) Radius of influence (i.e. e-folding distance) for each location
individually for each input (columns) and relevance method (colored lines: red for covariance
(COV), purple for perturbation (PERT), and green for LRP). The mean and standard deviation
over all locations for each input and method are shown in the legend, located below each panel.

similarities between the spatial patterns in the relevance of ice concentration between the LR and

PFI methods, where ice concentration has a higher relevance in Baffin Bay for both methods.

The domain-integrated LRP implementation shows that sea-ice concentration is the most

relevant predictor of ice velocity (yellow in Fig. 3.6l). Based on the other XML methods we
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do not expect this, and instead expect wind velocity to have the highest relevance. We further

discuss these results in section 3.6. While the magnitude of relevance for LRP varies between the

inputs, the spatial patterns between the inputs are all similar and tend to show higher relevance

in the coastal regions (Fig. 3.6i–k; particularly off the coast of Greenland, and in the Beaufort,

Bering, and East Siberian Seas). For sea-ice concentration, spatial patterns of relevance for LRP

are similar to the LR parameters in that they show a relatively high relevance off the coast of

Greenland (Fig. 3.6k vs. g). For ice velocity, similar spatial patterns exist between the standard

LRP, the PFI, and the LR parameters in that higher relevance values are found in the coastal

regions (Fig. 3.6j vs. b vs. f). The spatial patterns in relevance for wind velocity are different

for all three methods. For example, the standard LRP shows relatively high relevance in coastal

regions, particularly in the Beaufort Sea and East Siberian Sea; these are the regions where PFI

conversely has the lowest relevance for wind velocity, and that the LR parameters also show low

importance in the wind velocity (Fig. 3.6i vs. e vs. a).

3.6 Discussion and Conclusions

We analyze various XML methods for interpreting and understanding predictions made by

machine learning models. Among these are analyzing the spatial covariance of the model inputs,

perturbation analysis, localized-LRP, analyzing the coefficients in the LR equation, PFI, and a

domain-integrated implementation of LRP. We separate into localized and domain-integrated

analyses, and within each category, we compare the methods. This is the first known application

of a domain-integrated implementation of the LRP method for sea ice. In this study, we confirm

the feasibility of this method through comparison with other more conventional forms of XML

(i.e. analysing LR parameters).

Locally, perturbation methods suggest that wind velocity is the most relevant input

for predicting ice motion, followed by ice concentration and previous-day sea-ice velocity.

Conversely, LRP shows that sea-ice concentration is the most relevant predictor, followed by
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Figure 3.6. Results from global sensitivity studies for each of the inputs. The columns represent
each of the different inputs: (a), (e), and, (i), wind speed, ua; (b), (f), and (j), ice speed, ui; (c),
(g), and (k), ice concentration, ci); and (d), (h), and (l), the maximum parameter at each location.
The rows represent the different sensitivity methods: (a–d) LR parameters; (e–h) PFI; (i–l) LRP.
We normalize by dividing by the top 0.5% maximum relevance value of the spatial mean for
each method.

wind and then previous-day ice velocity. Relevance decreases exponentially with increasing

distance from the analysis point for all methods and inputs. Local implementations of LRP

exhibit similar radii of influence to perturbation methods, which fall within one standard deviation

of each other for each of the inputs. One difference between methods is that relevance scores

greater than 0.2 exist at distances greater than 2000 km from the analysis point for the LRP only

(not shown). This suggests that the LRP may be able to capture the non-local information that

the CNN is using more effectively than the perturbation method.

For domain-integrated analyses, analysis of LR parameters and PFI similarly show that

wind velocity is the most relevant input for predicting ice velocity. However, there are differences

in the spatial variability of the relevance heat maps between the two methods. For example, LR

parameters show that the relevance of wind speed decreases in coastal regions, where previous-
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day sea-ice velocity becomes the most important predictor. On the other hand, PFI shows that

wind velocity is consistently the most relevant predictor throughout the Arctic.

We find that outputs from LRP are similar to other sensitivity methods for both local and

global cases. However, there are a few contradictions, particularly when it comes to the relative

importance of the various inputs in predicting sea-ice velocity. Local and global implementations

of LRP show that sea-ice concentration has the highest relevance for predicting sea-ice velocity,

while all other methods indicate that wind is the input with the highest importance. Based on the

physics of sea-ice motion, we would expect wind to have the largest relevance if the behaviour

was linear. This has been the case historically, and wind has been shown to explain up to 70% of

the variability in ice motion on short time scales (Thorndike and Colony, 1982).

Based on these expectations, we suspect nuances in the LRP or non-linearities in the

CNN that require further analysis. First, we note that for local analyses, the spatial variability of

LRP relevance more closely follows that of the covariance than does the perturbation relevance,

especially for the case of sea-ice concentration. We noted in section 3.5.1 that the models were

run for the case where the seasonal cycle was not removed, and that the spatial variability in the

covariance of sea-ice concentration was sensitive to the removal of the seasonal cycle. In future

work we will run the CNN and LRP with the seasonal cycle for sea-ice concentration removed to

see if this has an impact on the relevance heat maps for sea-ice concentration.

Additionally, from the global analyses we noted that the LRP was highly sensitive to the

format of the inputs (not shown). In section 3.4.1 we discussed the fact that LRP can be run

to produce relevance heat maps with units (i.e. m/s of output explained per m/s of input). To

achieve this, the CNN needs to be run with the inputs standardized to zero mean and one standard

deviation, but with the output retaining its original units. After the model is trained, the inputs

are un-standardized and returned to their original units before they are analyzed using LRP. The

LRP relevance heat maps discussed in this study are for the fully standardized case. In future

work we will evaluate the difference in LRP outputs between the standardized (no units) and

non-standardized (relevance has units) cases. In future work we aim to understand the nuances
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in the impacts of standardization before implementing LRP, and think this will provide clarity on

why the LRP shows differences in the relative importance of the various inputs in comparison to

other XML methods.
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Table 3.1. Details about training data for the CNN and LR models, and model architecture (i.e.
parameters and hyperparameters) for the CNN.

Training
Data

Inputs Present-day wind velocity from JRA55-do, ua,t & va,t

Previous-day sea-ice velocity from Polar Pathfinder Sea Ice
Motion, Version 4, ui,t−1 & vi,t−1
Previous-day sea-ice concenetration from Nimbus-7 Passive
Microwave, Version 1, ct−1

Outputs Present-day sea-ice velocity from Polar Pathfinder Sea Ice
Motion, Version 4, ui,t & vi,t

Input Size 361 x 361 x 5
Output Size 361 x 361 x 2

Model Ar-
chitecture

Layer 1 Conv2D with ReLU: filter size = (3,3), stride = (1,1);
Max Pool: filter size = (2,2), stride = (2,2);
number of filters = 7

Layer 2 Conv2D with ReLU: filter size = (3,3), stride = (1,1);
Max Pool: filter size = (2,2), stride = (2,2);
number of filters = 14

Layer 3 Conv2D with ReLU: filter size = (3,3), stride = (1,1);
Max Pool: filter size = (2,2), stride = (2,2);
number of filters = 28

Layer 4 Conv2D with ReLU: filter size = (3,3), stride = (1,1);
Max Pool: filter size = (2,2), stride = (2,2);
number of filters = 56

Layer 5 Conv2D with ReLU: filter size = (2,3), stride = (1,1);
Max Pool: filter size = (2,2), stride = (2,2);
number of filters = 112

Layer 6 Dropout, 20%
Layer 7 Flatten
Layer 8 Dense
Optimizer Adam
Activation
Function

ReLU (slope coefficient, α = 0.1)

Loss Func-
tion

Normalized Root Mean Square Error

Regularizer L2 with λ = 0.01
Epochs 50
Batch Size 365
Train,
Validation,
& Test
Years

1989-2017
2018-2019
2020-2021
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Chapter 4

Explainable machine learning (XML) for
evaluating trends in the drivers of variabil-
ity in Arctic sea-ice dynamics.

4.1 Summary

The dynamical properties of sea-ice in the Arctic are changing in response to the diminish-

ing sea-ice cover. In this study we apply Explainable ML (XML) methods to a linear regression

(LR) model that is built to predict present-day ice velocity from inputs of present-day wind

velocity, previous-day ice velocity, and previous-day ice concentration. We aim to understand

the importance of each of the inputs in predicting sea-ice velocity on one-day timescales, and to

assess how the relationships between these properties and ice motion are changing in response to

the changes in the state of Arctic sea-ice. We put particular emphasis on the relationship between

wind speed and ice speed (referred to as the wind factor), and investigate trends in the spatial

and temporal variability in the relevance of wind in driving ice motion. Overall we find that the

ice is becoming more responsive to wind forcing; however we note variability in these changes

seasonally and spatially. We analyze this spatio-temporal variability to understand how changes

in the responsiveness of ice motion to the wind are linked to changes in ice concentration. We

find that locations that exhibit a relatively low wind factor also have a low ice concentration, and

that locations with negative trends in sea-ice concentration tend to exhibit negative trends in the
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LR parameter for wind speed. Conversely, the ice is becoming more responsive to wind forcing

in locations where changes in ice concentration are not significant. These findings contradict

the physical understanding of the relationship between ice motion and wind speed and their

dependence on ice concentration. Increases in the wind factor have been historically linked to de-

creases in ice cover and increases in drift speed. These changes have been explained as decreases

in ice concentration leading to a regime of free-drifting that is more responsive to wind forcing

(Spreen et al., 2011; Kwok et al., 2013; Maeda et al., 2020). In conjunction with the expected

behavior of the wind factor, our results suggest that remote effects are coming into play. We also

discuss other mechanisms that may play a role in our findings in comparison to historical results,

including the impacts of geographical features, grid-resolution, and the changing interactions

between the ocean-ice-atmosphere systems in response to an overall diminishing sea-ice state.

Based on these, we suggest localized, in-situ analyses as a future pathway for investigation to

better understand how the relationship between ice drift and wind speed is related to changes in

the ice state.

4.2 Introduction

Changes in the dynamical properties of sea ice have been linked to a decline in the sea-ice

cover in the Arctic (Zhang et al., 2012). For example, widespread increases in sea-ice drift

speed have been attributed to reduction in sea-ice thickness in both models (Tandon et al., 2017;

Docquier et al., 2017) and observations (Rampal et al., 2009; Spreen et al., 2011; Zhang et al.,

2012), suggesting a link between sea-ice kinematics and sea-ice decline. This evidence supports

a mechanism by which sea-ice thinning leads to a reduction in strength, which reduces internal

stresses and allows for more deformation, fracturing, and a faster drift (Tandon et al., 2017).

Zhang et al. (2012) used a numerical model to show that changes in the dynamical properties of

sea ice are linked to reductions in sea-ice volume, concentration, and thickness. In turn, sea-ice

motion also impacts the distribution of sea-ice thickness, which may further impact melting
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(Untersteiner et al., 2007). Zhang et al. (2000) identified links between large-scale decadal

changes in ice thickness and ice dynamics through mechanisms related to the dynamical impact

on advection, growth, and lateral melt. Additionally, winter ice redistribution is an important

factor in determining summer ice area, with correlation coefficients between the two found to

range from 0.5 to 0.9 in some areas of the Arctic (Kimura et al., 2013). The studies relating drift

speed to concentration and thickness have been cited as “necessary, but not sufficient” to fully

explain the relationship (Docquier et al., 2017). Understanding the coupling between ice motion

and its drivers is important for understanding and predicting the state of sea ice. In this study

we address these issues by using machine learning methods to gain insight into the drivers of

variability in sea-ice motion.

As changes in the ice progress, there will also be changes in the response of the ice to

the dynamic mechanisms that drive its motion, particularly the relationship to winds and ocean

currents (Serreze et al., 2007). For example, studies focusing on the wind factor (defined as the

ratio between ice speed and wind speed) have shown that the ice is becoming more responsive to

wind forcing as it melts (Spreen et al., 2011; Maeda et al., 2020). As ice cover becomes thinner,

ice motion approaches a state of free drift and ice becomes more responsive to wind forcing

(Zhang et al., 2012). Spreen et al. (2011) have shown that sea-ice drift speeds in the Arctic have

seen an upward trend of 10.6%±0.9% per decade from 1992-2009, with ranges between −4%

and 16% per decade, depending on location. In the Central Arctic, a fraction of this observed

trend has been found to be explained by an increase in wind speed, but not over the entire basin.

In other coastal locations, Spreen et al. (2011) concluded that the trend is likely explained by

thinning of the ice cover (thickness and concentration). In another study (Maeda et al., 2020),

the wind factor exhibits an increasing linear trend from 2002–2016 in many regions of the Arctic

during all seasons. These studies support the notion that as the ice melts it is becoming more

responsive to wind forcing. We build upon this analysis and use a multiple linear regression (LR)

model to understand how the relationship between ice speed and wind speed is changing in time.

In this study we apply LR models to make one-day predictions of sea-ice motion from
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satellite and reanalysis sources. We expand on previous work by emphasizing on interpreting

the relationships between the input data and sea ice motion, and understanding how these rela-

tionships vary in space and time. We analyze the LR coefficients to characterize the relationship

between ice and wind in order to improve understanding of how it is changing with changes in

the state of sea-ice. We refer to the LR parameter for wind speed as the ‘wind factor’ throughout

the rest of this study. We note that our use of the term ‘wind factor’ is slightly different that

historical uses of the term, as we apply it to a multiple LR model, whereas historically the term

was used to describe the ratio between ice and wind speed in a simple LR model.

4.3 Data

Data used for this chapter are the same as those from the previous two chapters 2.4 and 3.3.

For a complete description refer to chapter 3.3.

4.4 Methods

4.4.1 The Models: Linear Regression (LR) and Convolutional Neural
Network (CNN)

We use implementations of the LR model from the previous chapter, and refer to sec-

tion 3.4.1 for a complete description of model architecture and setup. In short, this model is set

up to predict present-day ice velocity from present-day wind velocity, previous-day ice velocity,

and previous-day ice concentration.

In the following sections, we analyze outputs from the monthly and seasonal LR models,

where there are different LR coefficients at each grid point for each month or season of each

year, respectively. We use the coefficients in the LR equation (equation 3.1) over these different

timescales to calculate yearly trends in the importance of each of the inputs for predicting

ice motion on one-day timescales. We combine the coefficients for the zonal and meridional

velocity components to analyze the speed (i.e. the LR parameter for wind speed, LR,ua =
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√
(LR,ua).2 +(LR,va.2).

4.4.2 Trends in the ‘Relevance’ of the Inputs

We analyze seasonal and monthly implementations of the LR to understand yearly

trends in the importance of each of the inputs for predicting ice motion. We compare these to

the seasonal and monthly values for the inputs. The LR is applied with a time-varying mask

excluding locations where the sea-ice concentration is zero. This impacts the degrees of freedom

for each implementation of the LR, which is used to determine the significance of the fit and

further discussed below.

For the monthly implementation of LR, we employ separate LR coefficients for each grid

location, month, and year. These models are used to analyze yearly trends in the importance

of the inputs for each month. We find this trend by first calculating the spatial mean of the LR

parameter for each month and year. Values of the LR parameter are only included in the spatial

mean if they are statistically significant, i.e. if the r2 value for the particular equation is greater

than the critical r2 for the degrees of freedom for the given month, year and grid point. We

then apply a linear least-squares fit to the spatially averaged LR parameters for each month to

obtain a yearly trend in each parameter for each month from 1989–2021. Additionally, we apply

least squares fits for the months of each year that exhibit the maximum and minimum mean

sea-ice concentration to obtain linear yearly trends for times of maximum and minimum sea-ice

concentration.

For the seasonal LR, there are separate LR coefficients for each grid location, season, and

year. The seasonal models are used to analyze maps of the yearly trend in the LR coefficients of

each of the inputs. For this analysis, we apply a least squares regression to the magnitude of the

LR parameter for each grid point, input, and season over the 1989–2021 period to obtain a map

of the yearly slope of the parameter throughout the Arctic. Before doing this, we mask the LR

parameters for any locations, seasons, and years where the fit was not statistically significant.

We also mask out regions where the yearly trend in the LR parameter for each season is not
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statistically significant.

4.5 Results

We analyze the seasonality of the LR parameters and compare them to the seasonality in

ice concentration to understand the relationship that the LR parameter for each input has with

sea-ice concentration. We also analyze trends in the LR parameters over time to understand how

the relationship between each of the model inputs and sea-ice motion is changing. We compare

these trends to trends in the inputs to the model (i.e. wind speed, ua; ice speed, ui; and sea-ice

concentration, ci) to understand how changes in the ice state are impacting the drivers of ice

motion. Analysis of the yearly trends in these parameters are shown and discussed below in the

case of overall trend for each month and spatial trend for each season.

4.5.1 Overall LR Parameters and Trends

The monthly LR parameters for wind speed, LR,ua, ice speed, LR,ui, and ice concentra-

tion, LR,ci, are shown from 1989–2021 (Fig. 4.1a–c). We also show the monthly wind speed,

ice speed, and ice concentration for this time period (Fig. 4.1d–f). The black lines indicate the

monthly mean, and the error bars represent the standard deviation of each parameter calculated

over the region in the Arctic where sea-ice concentration is greater than zero for more than

20% of the year (i.e the regions shown in Figs. 3.4 and 3.6). The slopes of the red and blue

lines indicate the trend in the monthly mean for months of maximum and minimum sea-ice

concentration, respectively. The slope and r2 values for these trends are indicated in the legend,

where an r2 > 0.12 indicates a statistically significant trend at 95% confidence.

We find that the trends in all LR parameters are statistically significant during months of

minimum and maximum ice concentration, with the exception of the trend for the LR parameter

for ice velocity during months of maximum ice concentration (i.e. red line in Fig. 4.1b). The

LR parameters for wind speed, LR,ua, and ice concentration LR,ci increase throughout time

during both months of maximum and minimum sea-ice concentration (red and blue lines in
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Fig. 4.1a & c), with a larger slope during months with minimum ice concentration. The LR

parameter for ice speed, LR,ui also increases throughout time during the months of minimum

sea-ice concentration for each year (positive slope in the blue line in Fig. 4.1b), but the slope is

much smaller than that for wind speed and ice concentration parameters.

We find that the trends in both sea-ice velocity and sea-ice concentration are statistically

significant during months of minimum and maximum sea-ice concentration (red and blue lines in

Fig. 4.1e & f), while the trends in wind speed are not significant (red and blue lines in Fig. 4.1d).

Ice speed is increasing at a rate of 0.087 cm s−1 year−1 and 0.057 cm s−1 year−1 for months

of minimum and maximum ice concentration, respectively (Fig. 4.1e). Conversely, sea-ice

concentration is decreasing throughout time for months with both maximum and minimum ice

concentration, with a larger decreasing trend seen during months of minimum ice concentration

(Fig. 4.1f).

From these analyses, increases in monthly mean ice speed and decreases in monthly

mean ice concentration are linked to increases in the mean LR parameters for wind speed, ice

speed, and ice concentration (Fig. 4.1). The largest slope for the LR parameters is seen for

the LR parameter for wind speed (Fig. 4.1d), followed by that for ice concentration and then

ice speed. The r2 values for the LR parameters show a similar comparison during months of

minimum ice concentration: largest for the LR parameter for wind speed, followed by that for

ice concentration and then ice velocity. Overall, these trends suggest that as ice concentration

decreases, ice becomes more responsive to wind forcing, and ice velocity increases. Additionally,

predictions of ice motion on one-day timescales are becoming more sensitive to ice concentration

(Fig. 4.1f). These trends represent the spatial average of changes in the LR parameters, and in

the following analyses we address spatial distributions in these trends.

4.5.2 Spatial Variability of LR Parameters Compared to Inputs

We show results from seasonal implementations of LR to further analyze the relationship

between the inputs and the LR parameter for wind speed, i.e. the wind factor. In Figure 4.2,
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we show the mean wind factor, ice speed, and ice concentration taken over all years for each

season. The columns represent the various seasons (January–March, April–June, July–September,

and October–December), and the rows are the wind factor, ice speed, and ice concentration,

respectively.

The wind factor is relatively high for the Central Arctic and decreases in coastal regions

for all seasons (Fig. 4.2a–d). In all seasons, the lowest value for the wind factor is seen in the

Eastern Arctic. The wind factor is also particularly low in the Canadian Arctic Archipelago,

with the exception of July–September. Spatially, the highest values for the wind factor occur in

the Beaufort Sea and in the region northeast of the Greenland Sea from 0–60◦E and 80–90◦N.

Seasonally, the wind factor is the highest from October–November.

Sea-ice velocity shows spatial patterns similar to the wind factor: lower values in the

Canadian Arctic Archipelago and Eastern Arctic, and higher values in the Beaufort Sea and in

the region northeast of the Greenland Sea (Fig. 4.2e–h). Seasonally, the highest values of ice

speed are also found in October–November. One difference is that ice speed is particularly high

in the Greenland Sea for all seasons except July–August, where the wind factor is low for this

season and region.

Sea-ice concentration exhibits a seasonal cycle: it is high throughout the Arctic in

January–March, experiences decreases in the peripheral seas and reaches a minimum in July–

September, with particularly low values in the Eastern Arctic, Bering Sea, Kara Sea, and Baffin

Bay (Fig. 4.2i–l). Sea-ice concentration remains high in the Canadian Arctic Archipelago and

the Central Arctic throughout the year.

4.5.3 Spatial Trends in LR Parameters and Inputs

The spatial variability of yearly trends in the LR parameter for wind speed is compared

to the trend in sea-ice velocity and concentration for each season (Fig. 4.3). In this figure,

the columns represent the different seasons (January–March, April–June, July–September, and

October–December), and the rows represent the LR parameter for the wind speed, LR,ua; the ice
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speed, ui; and the ice concentration, ci, respectively. We found trends in the LR parameters for

ice speed and ice concentration and trends in the wind speed were not statistically significant,

and therefore do not show them here. Gray in Fig. 4.3 represents areas where the given yearly

trend is not statistically significant at 95% confidence, as judged by the r2 value for the trend.

Overall we see largely positive trends in the LR parameter for wind speed, LR,ua

(Fig. 4.3a–d), throughout the Arctic and for all seasons. This trend ranges from 2–8% per year

and varies spatially throughout the Arctic, though it is particularly high for the Beaufort Sea and

Kara Sea from January–June, and for the Central Arctic and Canadian Arctic Archipelago for

all months. The exception here is for the months of July–December, where regions regions in

the eastern Arctic exhibit negative trends in the LR parameter for wind speed (i.e. decreases of

around 2–4% per year the region between 70◦–85◦N latitude and from 30◦E–120◦W longitude).

Additionally, the peripheral and coastal seas also exhibit negative trends in the LR parameter for

wind speed from January–June.

Ice drift speed is generally increasing. Ice speed shows a consistent positive trend of

about 5% per year throughout all seasons and in most regions of the Arctic (Fig. 4.3e–h). The

only regions with negative trends in ice speed are some parts of Baffin Bay in January–March

and in July–September, and a small region near the islands in the Laptev Sea for July–September.

The largest increases in ice speed are seen in the Beaufort Sea for all seasons.

Ice concentration largely exhibits a negative trend throughout all seasons and most regions

of the Arctic (Fig. 4.3i–l). From January–June the trends in ice concentration are generally

not significant, with the exception of a small negative trend in ice concentration in some of the

peripheral seas and in some coastal regions; these trends are roughly - 1% per year. During

the months of July–December there is a negative trend in ice concentration throughout most

of the Arctic. The most drastic negative trends are found between 70◦–85◦N latitude and from

30◦E–120◦W longitude; this regions includes the Beaufort Sea, East Siberian Sea, Laptev Sea,

and Kara Sea. In these regions sea-ice concentration is decreasing at a rate of 2–5% per year.
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Figure 4.1. Monthly LR parameters and model inputs from 1989–2021. LR parameters for (a)
wind speed, LR,ua, (b) ice speed, LR,ui, and (c) ice concentration, LR,ci. Monthly (d) wind
speed, ua, ice speed, ui, and (f) ice concentration. In (a)–(f), black lines and error bars represent
the monthly mean and standard deviation taken over all grid locations. Red and blue lines
represent least-squares fits showing the yearly trend in (a)–(f) for months of minimum (blue)
and maximum (red) sea-ice concentration in each year. Slopes and r2 values of these trend lines
are indicated in the legend of each panel, where an r2 > 0.12 indicates a statistically significant
slope at a 95% confidence level.

4.6 Discussion

4.6.1 How is the wind factor related to ice concentration?

Analysis of the yearly trend in the monthly mean values of each of the model inputs and

LR parameters indicates that an increasing LR parameter for wind speed is linked to decreases in

ice concentration (Fig. 4.1a & f). This is consistent with the mechanism discussed in section 4.2:

a decrease in ice concentration leads to free-drifting ice that is more responsive to wind forcing.

We refer to this as the ‘free drift mechanism’ throughout the remainder of this discussion. This

phenomena has been supported by several studies that looked at the relationship between the

LR parameter for wind speed (i.e. the wind factor) and attributed increases in the wind factor to

decreases in ice concentration (Kimura and Wakatsuchi, 2000; Spreen et al., 2011; Zhang et al.,
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Figure 4.2. Map of seasonal mean for (a–d) the LR parameters for wind speed, LR,ua, (e–h)
the ice speed, ui, and (i–l) the ice concentration, ci from 1989–2021. Each column represents a
different season (i.e. January–March, April–June, July–September, October–December).

2012; Kwok et al., 2013; Cole et al., 2017; Maeda et al., 2020). Interestingly, while we find this

relationship to hold for the trends in the monthly mean, it is not always the case that the spatial

variability in the mean values or trends of ice concentration and the wind factor align in the same

way. We continue with a discussion of the nuances in spatial variability.

The Canadian Arctic Archipelago shows consistencies with what is expected, and we

find high ice concentration to be linked to low values of the wind factor (Fig. 4.2a–d & i–l). The

exception is during July–September, where the wind factor is higher in this region while ice

concentration remains high. We note that this is the season with the lowest ice concentration

throughout the Arctic, and that the higher wind factor in the region could be attributed to remote

effects of lower ice concentration placing the ice in free drift and increasing its responsiveness to

wind forcing.

Conversely to what is expected, the Eastern Arctic shows lower values for the wind factor

coincident with low ice concentration (Fig. 4.2a–d & i–l). Additionally, lower ice concentration
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Figure 4.3. Map of seasonal trend in (a–d) the LR parameters for wind speed, LR,ua, (e–h)
the ice speed, ui, and (i–l) the ice concentration, ci from 1989–2021. Each column represents a
different season (i.e. January–March, April–June, July–September, October–December). Red
and blue regions indicate positive and negative trends, respectively. Grey indicates regions where
trends are not statistically significant.

in the Beaufort Sea, Bering Sea, and Baffin Bay are also linked to low values for the wind factor.

We note that the wind factor is particularly low in the East Siberian and Laptev Seas for all

seasons, even when ice concentration remains high (i.e. January–March). The low wind factor

here could be attributed to geographical effects inhibiting the responsiveness of the ice to wind

forcing, rather than increases in the ice stresses that result from a higher ice concentration. This

would explain the patterns seen in this region for the January–March season.

However, this mechanism (i.e. geographical) does not fully explain the expansion in

the area of low wind factor in the the Beaufort-Baffin-Eastern Arctic region in July–September.

Based on the free drift mechanism we would expect a higher wind factor in regions of low ice

concentration; however we find the opposite. Here, we find a link between low ice concentration

and low values of the wind factor, which could be explained by one of the following mechanisms:
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(i) grid resolution and (ii) responsiveness of ice to ocean currents. For the grid resolution

mechanism, we first note that the ice concentration is a measure of the fraction of the grid box

that is covered by ice. Therefore, if floe sizes are small enough, the 25 km resolution of the

grid may not be high enough to effectively detect the relationship between wind and the drift of

individual floes, particularly if there are multiple floes and a distribution of wind speeds within

the grid cell. This could be addressed in future work by applying the same LR methods to the

ice drift product from synthetic aperture radar (SAR), which has a spatial resolution of 10 km

(Saludo and Hackett, 2020), or by using localised, in-situ data sets. The free drift speed of

ice is dependent on the relative contributions of the atmosphere and ocean to ice drift. These

are related to the atmosphere and ocean drag coefficients, which depend on (i) frictional force

based on the surface roughness of the ice on the ocean and atmosphere side (the skin drag) and

(ii) the ice morphology (the form drag) Lepparanta (2011). In this work, we do not include

information about ocean currents in our models, but acknowledge they could play a role in the

spatio-temporal variability in ice drift. In future work, even something as simple as looking at

the effects of the long-term mean ocean circulation could provide useful insight into the relative

importance that wind and ocean currents play in driving ice motion.

The highest values of the wind factor are found from October–December in locations

where the ice concentration is relatively high (Fig. 4.2d & l). However, this season has a

comparatively low overall ice concentration. Here, we suspect that remote effects play a role in

the high wind factor through the free drift mechanism: lower overall ice concentration leads to a

state of free drift in which ice is more responsive to wind forcing.

Throughout the Arctic and in all seasons we largely see that regions with a high wind

factor have a high ice speed (Fig. 4.2a–d & e–h). The exception is the particularly high ice speed

coincident with a low wind factor in the Greenland Sea for all seasons except July–August. This

region is known as the Fram Strait, and is identified as a region where ice is exported out of the

Arctic Ocean. The wind factor is relatively low in this region, but the LR parameter for ice speed

(not shown) is high, indicating that ice drift is controlled by persistence, or more likely, the ocean
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currents.

We find that spatial analyses show positive trends in the LR parameter for wind speed

throughout most regions in the Arctic (Figs. 4.3i–l & 4.3a–d), which is consistent with historical

results (Spreen et al., 2011; Zhang et al., 2012; Kwok et al., 2013; Maeda et al., 2020), and

findings in Figure 4.1. However, we find that areas that exhibit the largest negative trend in

ice concentration are those that exhibit negative trends in the LR parameter for wind velocity

(Figs. 4.3i–l & 4.3a–d). Here we refer to the region of the eastern Arctic (i.e. the region between

70◦–85◦N latitude and from 30◦E–120◦W longitude) from July–December, which exhibits some

of the largest decreases in ice concentration, coincident with a negative trend in the LR parameter

for wind speed. This is inconsistent with the free drift mechanism, which hypothesizes that

lower ice concentration leads to a regime of free drift where ice is more responsive to wind

forcing. However, the link between decreasing ice concentration and increasing wind factor

supported by the free drift mechanism is not negated just because there is not a local correlation

between the two. The free drift mechanism could have remote effects. In other words, decreases

in ice concentration in one part of the Arctic could free up the ice in other regions to become

more responsive to wind forcing. This hypothesized ‘remote effect of free drift’ mechanism

is consistent with the overall decrease in sea-ice concentration and maps in Figure 4.3a–d that

largely show a positive trend in the LR parameter for wind for most seasons and most regions

of the Arctic. This explanation would be consistent with what is know about the physics of ice

motion, historical results, and the trends shown in Figure 4.1.

In future work we will use information about the ice thickness and the linear kinematic

features (LKFs) in the ice to further investigate this relationship. For example, we may find

that ice is not one cohesive structure due to the presence of ridges or leads (i.e. converging or

diverging ice floes) in regions where spatial patterns show a link between decreases in ice speed

and decreases in the wind factor; this structural nature could impact the motion of the ice and

will be further investigated in future work.

We also note that most of the Arctic exhibits positive trends in ice speed (Fig. 4.3e–h),
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which further supports the mechanism that decreases in ice concentration lead to a regime where

more of the ice is in free drift and able to respond more freely to wind forcing, which increases

the ice drift speed (Spreen et al., 2011; Zhang et al., 2012; Kwok et al., 2013; Maeda et al.,

2020). Trends in drift speed have been shown to be more substantial in regions with larger

decreases in ice concentration (Fig. 4.3e–h & i–l), which has been attributed to decreases in the

mechanical strength of ice associated with thinning (Zhang et al., 2012). Further investigations

of the relationship between ice drift and wind speed discussed above will be able to provide

further evidence to support this mechanism.

4.6.2 Future Work: LRP with CNN

In future work we will replicate the above analysis using the LR model, but instead use a

CNN with LRP to understand trends in the relationship between ice drift and wind speed. We

will use a CNN with the same architecture discussed in section 3.4.1 (Fig. 3.1). We will employ

layerwise relevance propagation (LRP) as an explainablility method in order to gain insight

into the relevance of each of the inputs in predicting the output. The LRP will be applied using

the iNNvestigate package (Alber et al., 2019) with the ‘sequential preset A’ configuration. As

discussed in section 3.4.2 we will use a CNN that has been trained against a baseline reference

value because we are using LRP for a regression problem (as opposed to classification; Letzgus

et al., 2021; Mamalakis et al., 2023). Use of a baseline changes the CNN prediction question

from ‘how important are each of the inputs in predicting ice motion different from zero?’ to

‘how important are each of the inputs in predicting ice motion to be different from the baseline?’

(Mamalakis et al., 2023). This is an important distinction, because here we aim to understand

how the relationship between ice motion and wind speed is changing as the ice cover decreases.

Therefore, the baseline reference value is chosen to be 0.8% of the wind speed and at an angle of

25.3◦ to the right of the wind, based on the historical linear relationship between ice speed and

wind speed (Thorndike and Colony, 1982). The reference value is applied to the output for each

time step and grid point.
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The LRP can also be applied in a manner that produces relevance scores with units. We

will follow steps discussed in section 3.4.2 to train a CNN and run LRP on the outputs. The LRP

is applied for the entire duration of the data, and produces a relevance heat map for each input at

each day from 1989–2021. Similarly to the LR parameters, we will look at yearly trends in the

monthly and seasonal averages of these relevance values to understand how they are changing

with time.

The analysis of the CNN will be similar to that done for the LR. However, slight

differences exist due to the inherent nature of the ‘relevance’ outputs from these models. For the

LR we analyze the coefficients of the equations applied at different timescales (i.e. monthly and

seasonally). Applying the LR over shorter periods of time does not impact the overall skill of the

model in the same way that it does a neural network, which relies on large amounts of data to

make skillful predictions (not shown). We will not perform the CNN over shorter time periods

because this does not allow enough data for the model to make skillful predictions. However,

we will obtain ‘relevance’ results for the CNN for each day with implementation of the LRP

method for explainability. From this point, we will calculate monthly and seasonal mean values

to obtain data similar in structure to those of the LR analysis discussed above. We will use the

monthly mean LRP relevance value for each input averaged spatially throughout the Arctic to

analyze the overall yearly trend in the importance of each input in predicting ice motion for

the CNN for each month, and for months of maximum and minimum sea-ice concentration

for each given year. For seasonal analyses, we will average the LRP relevance score at each

location individually for each season and year, and then calculate the yearly trend in relevance

for each season mapped throughout the Arctic. In comparison to the LR, the CNN incorporates

information about non-linear and non-local interactions between the inputs, and is therefore

more skilled at making predictions of ice motion (Hoffman et al., 2023).
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4.7 Conclusions

This study has analyzed how the relationship between ice drift and wind speed (i.e. the

wind factor) is related to ice concentration. The primary mechanism by which the wind factor

is related to ice concentration is based on what is known about the physics of sea-ice motion

and how it is related to wind forcing and internal ice stresses. This ‘free drift mechanism’ links

decreases in ice concentration to a regime where the more of the Arctic sea-ice is in free drift,

which causes it to be more responsive to wind forcing, which in turn leads to increases in the ice

drift speed. Several studies have cited increases in the ice drift speed (Kwok et al., 2013) and

increases in the wind factor (Spreen et al., 2011; Maeda et al., 2020), and related these changes

to an overall decrease in ice concentration (Cole et al., 2017). In this study, we highlight ways in

which our results are consistent with historical mechanisms, and suggest mechanisms that may

be at play for locations where inconsistencies arise.

• The free drift mechanism: Our analyses of the spatial average of the wind factor, ice

speed, and ice concentration are consistent with the free drift mechanism. We see positive

trends in the yearly wind factor and ice speed coincident with negative trends in sea-ice

concentration. Spatial analyses also suggest the free drift mechanism plays an important

role in the relationship between the wind factor and ice concentration. For example, in

the Canadian Arctic Archipelago regions with high ice concentration exhibit a low wind

factor.

• Remote effects of the free drift mechanism: From spatial analyses, we find an overall

positive trend in the wind factor throughout the Arctic, along with an overall negative

trend in ice concentration. However, these trends do not necessarily coincide spatially. We

hypothesize that the free drift mechanism exhibits remote effects where the positive trends

in the wind factor result from non-localized decreases in ice concentration that lead to an

overall regime of free drift where the ice is more responsive to wind forcing. We suggest
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steps that can be taken to test this hypothesis moving forward.

• Geographical features: In the Eastern Arctic low values for the wind factor are coincident

with low ice concentration, particularly for the months of January–March. This is incon-

sistent with the free drift mechanism, which suggests a higher wind factor in this region.

Therefore, we hypothesize that geographical features (i.e. islands) are creating regions that

impede the responsiveness of ice motion to wind in these regions.

• Grid resolution: The portion of the Eastern Arctic with a low wind factor expands during

months of low ice concentration. This expansion cannot be explained by the geographical

features mechanism, and it is inconsistent with the free drift mechanism through which we

would expect to see a higher wind factor in conjunction with lower ice concentration. We

hypothesize that grid resolution could play a role here. Because the ice concentration is a

measure of the fraction of each grid cell that is occupied by ice, grid cells with low ice

concentration could be made up of many ice floes that are much smaller than the 25 km

grid resolution. If the spatial variability of the wind speed occurs on scales smaller than

25 km, each of these floes could experience a vastly different motion based on spatial

variability in the wind. Thus, while the free drift mechanism could still play a role, our

ability to see this effect could be inhibited by the spatial resolution of our data.

• The relative importance of ocean currents versus wind speed in driving local ice motion:

We found that locations with lower ice concentration have a lower wind factor. Additionally,

locations with the largest decreases in ice concentration are not coincident with locations

with a positive trend in wind factor, and instead exhibit a negative trend in the wind factor.

Here, we largely refer to the region in the Eastern Arctic between 70◦–85◦N latitude and

from 30◦E–120◦W longitude. We note that this study does not include information about

the ocean currents, and that the relative role that wind and ocean currents have could be

important in determining the role that wind speed plays in driving ice motion.
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Chapter 5

Conclusions and Future Work

Understanding the exchanges of freshwater within the ice–ocean–atmosphere system is

important because the global freshwater cycle is predicted to amplify in response to expected

changes in climate (Yu et al., 2020). Changes in climate are predicted to cause increases the

frequency of extreme AR events and seasons over the CCS (Dettinger, 2011; Payne et al., 2020).

Additionally, we are experiencing a regime-shift to a “New Arctic” that is characterized by

decreases in ice extent and thickness, warming and freshening of the Arctic Ocean, and enhanced

ice–ocean–atmosphere coupling, all of which will play a role in the freshwater cycle in the Arctic

and around the globe (Solomon et al., 2021). This study assesses freshwater exchanges between

ice, ocean, and atmosphere off the coast of California and in the Arctic. We divide the analysis

into three main parts: (i) characterizing the impact of precipitation from ARs on upper ocean

salinity in the CCS (chapter 1); (ii) assessing the viability of using ML models to predict and

understand changes in Arctic sea-ice dynamics (chapters 2 & 3), and (iii) characterizing the

changing relationship between sea-ice drift and wind speed (chapter 4).

5.1 Surface salinity response to precipitation from atmo-
spheric rivers in the California Current System.

While studies of the ocean’s response to precipitation have been extensive in the tropics,

there remain gaps in the understanding of the role large precipitation events play in modulating
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upper ocean salinity in the subtropics off the coast of California. In this study we analyze the

impact of precipitation from ARs on the surface ocean salinity in the CCS. The first part of this

dissertation addresses the following questions related to ARs in the CCS:

• How does the surface salinity respond to precipitation from ARs in the CCS on seasonal

and event timescales?

• How does atmospheric forcing in the form of precipitation and wind impact the formation

of lasting freshwater layers in the upper ocean?

• Does precipitation from ARs produce salinity changes in the upper ocean that are detectable

by ocean instruments?

This study shows that seasonal freshening in the CCS is linked to cumulative rain fall

and AR activity. For locations within 100 km of the coast, the upper 10 m of the CCS freshens

throughout the rainy season in response to AR events. Years with higher AR activity are

associated with a stronger freshening signal. Studies on event timescales investigate the role that

wind plays on the vertical distribution and duration of the freshening signal that results from

precipitation. Results show that higher wind speeds induce mixing that brings the freshwater

deeper, and decreases the duration of lasting changes in freshwater at the surface. These studies

also show that rain events that are characteristic of ARs in the CCS lead to the formation of

long-duration (10–50 h) freshwater layers at the surface. We show that rain events that are

characteristic of ARs are detectable with observations of the ocean surface salinity: modeled

and observational responses to rain events show changes in salinity that are greater than the

measurable limit of current CTD instruments.

While this study has shown that freshwater inputs from rain contribute to variabiltiy

in ocean surface salinity, the use of a one-dimensional model leaves out information about

horizontal advection, upwelling, and runoff. Future work could address these shortcomings by

applying a similar analysis approach to output from a three-dimensional ocean model. This would
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allow for a more comprehensive budget analysis from which conclusion could be drawn about

the relative importance of horizontal advection, upwelling, runoff, and external atmospheric

forcing. Additionally, future work could apply this type of analysis to properties other than

salinity, for example temperature or biogeochemical properties, to further understand the impact

of freshwater exchanges on the upper ocean in the CCS.

5.2 Assessing the viability of machine learning (ML) meth-
ods for predicting and understanding Arctic sea-ice
dynamics.

Numerical models for sea-ice dynamics are highly complex, and must resolve the physics

of what amounts to a multi-phase/multi-physics/multi-scale problem. On the other hand, ML

models are not subject to constraining to conservation laws, and thus come with improved

computational efficiency and cost. Additionally, ML models are driven by data rather than

prescribed physical parameterizations that may have inaccuracies. This provides an opportunity

to draw information from the data and learn about emergent behaviors that have not yet been

recognized.

This work addresses the viability of using ML as a surrogate to parameterize the dynami-

cal component of ice in a numerical model setting. We also analyze the extent to which outputs

from XML methods provide consistent and robust results that explain how and why the ML

models made their predictions. Models are built to make one-day predictions of sea-ice velocity

from various inputs. We use these models to address the following questions:

• Can a ML model in the form of a convolutional neural network (CNN) make skillful

predictions of ice motion on one-day time scales?

• How does the performance of the CNN compare with other classical statistical models?

• How does the spatio–temporal variability in the performance of CNN compare with that

of the inputs and other properties related to ice motion?
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• Are outputs consistent among various explainable machine learning (XML) methods

applied to this particular CNN?

• Does output from the layerwise relevance propagation (LRP) XML method show results

that are consistent with other more established methods?

We show that a CNN made skillful predictions of sea-ice velocity on one-day time

scales. In comparison to other classical statistical models (PS and LR), the CNN has improved

performance and the benefits of incorporating both non-linearities between inputs and spatial

information when making prediction. Model performances exhibit spatio-temporal variability.

In general, improved model performance is linked to:

• increased bathymetric depth and distance from the coast

• larger mean values of ua, ui, and ci

• larger LR coefficients for ua and ci; smaller LR coefficient for ui

The CNN outperforms the LR in most cases. We have shown that the following are

related to increases in the performance of the CNN over the LR:

• larger distance from coast and greater bathymetric depth

• smaller mean ua and ui, and larger mean ci

• larger LR coefficients for ua, and smaller LR coefficients for ci

Interestingly, the CNN typically outperforms the LR in regions where wind speed is the

dominant LR coefficient, which suggests that the relationship between wind velocity and ice

velocity includes non-linearities that are captured by the CNN (and not the LR), leading to an

improved performance. This provides motivation to move forward using XML methods that are

applied to the CNN rather than analysis of the LR coefficients.
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We analyze local and global implementations of various XML methods. Local methods

include perturbation and localized LRP. These methods show consistency in the spatial extent

to which each input and analysis location impacts predictions of sea-ice velocity. In other

words, the radius of influence of the ‘relevance’ metric for each input is similar for the two

methods. However, the spatial structure of the areas of relevance is different for the two models:

perturbation tends to extract importance from grid points within a particular radius of each

analysis point, while the LRP is more non-localised and exhibits high relevance in regions far

from the analysis point. These methods have inconsistent results for determining the relative

importance of each of the inputs in predicting the output. Perturbation showed that wind speed

was the most relevant predictor of ice motion, while LRP showed that sea-ice concentration was

the most relevant.

Domain-integrated XML methods also exhibit varying levels of consistency. Here

we analyse the LR coefficients in comparison to permutation feature importance (PFI) and a

domain-integrated implementation of LRP. PFI and LR are consistent in determining the relative

importance of the various inputs, but have inconsistencies in spatial structure. Both methods

show the highest relevance for wind speed in predicting sea-ice speed. However, while LR

indicates that the relevance of wind is less important in coastal regions, a result consistent with

historical studies (Thorndike and Colony, 1982; Serreze et al., 1989; Kwok et al., 2013; Maeda

et al., 2020), PFI shows high relevance for wind speed in determining sea-ice motion throughout

the Arctic. LRP outputs are inconsistent with both LR and PFI: they show that ice concentration

is the most important predictor and the spatial distribution of relevance for each of the inputs

does not match historical results.

We find the LRP method to be extremely sensitive to the methods applied during process-

ing the data for input into the CNN, after the model has been trained and it is being prepared for

input to LRP, and during manipulations applied to obtain a presentable form of LRP results after

the method is applied. In future work we plan to focus on these intricacies and learn more about

the causes of large sensitivity in LRP outputs. Moving forward with LRP is desirable because
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of the vast amount of information that it provides in comparison to the other XML methods.

For example, for LR we can only obtain one parameter (i.e. metric of explainability) for each

duration over which the model is applied, while LRP provides a mapped relevance output for

each time step and grid location that the CNN is applied.

5.3 Characterizing changes in the relationship between ice
drift and wind.

The rapidly declining sea-ice cover in the Arctic has been linked to changes in the

dynamical properties of sea ice as the ice enters a regime of free drift where it is more responsive

to wind forcing (Rampal et al., 2009; Spreen et al., 2011; Zhang et al., 2012; Kwok et al., 2013;

Carmack et al., 2015; Tandon et al., 2017; Docquier et al., 2017). Observed increases in sea-ice

drift speeds have been reported, in addition to increases in the ratio between ice and wind speed,

a term referred to as the wind factor (Spreen et al., 2011; Maeda et al., 2020). Studies analyzing

changes in the wind factor have been carried out using linear regression model of ice as a function

of wind speeds. In this study, we build upon historical results by applying a LR model that

predicts ice speed as a function of wind, in addition to previous-day ice speed and concentration.

We use this model to ask the following questions:

• How is the wind factor changing in time?

• What are the mechanisms contributing to changes in the wind factor?

We confirm historical results: the wind factor is increasing. We find a positive annual

trend in the wind factor during months of both minimum and maximum ice extent. We also find

positive annual trends in the LR parameter for previous-day ice speed and ice concentration,

suggesting the daily predicting of ice speed are becoming more reliant on persistence and the

state of the ice. Along with these trends, we see a decrease in ice concentration and increase in

drift speed that are consistent with historical results, and the hypothesized ‘free drift mechanism’
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whereby as ice concentration decreases, ice enters a regime of free drift where it is more

responsive to wind, which leads to increases in ice drift speeds.

When we analyze the spatial variability of changes in the wind factor, a slightly different

story is observed, and local yearly negative trends in ice concentration are not always linked

to positive trends in the wind factor. We hypothesize several mechanisms that could play a

role in the spatial variability of the relationship between the wind factor and ice concentration.

These are: the free drift mechanism, free drift with remote effects, geographical features, grid

resolution, and the relative importance of ocean currents versus wind speed for driving local ice

motion. We discuss implications of each, and propose future methods to evaluate their validity.

In the future we will apply the analysis done for the LR model in chapter 4 to the CNN

using LRP as the XML method. In chapter 2 we showed the CNN has improved performance

over the LR model. The CNN is able to capture spatial interactions of the inputs, as well as

non-linear relationships that exist between the inputs and sea-ice motion. Additionally, XML

methods applied to a CNN can provide more information about what is relevant in driving ice

motion. This is due to the nature of the output of LRP with CNN compared to LR. For LR we

only get one parameter of explainability for each time duration that we run the LR; for example

if we build one LR equation for each month/season we get a LR coefficient that explains the

relationship between each input and the output for the given month/season. On the other hand,

the LRP method applied to a CNN provides a parameter of explainability for each time step

that the model is run. Additionally, the LRP provides an entire relevance heat map for each grid

point (i.e. for each grid point that a prediction is made the LRP shows a map for what the CNN

considered relevant in making a prediction). Therefore, we will apply a CNN with LRP to gain

more information about changes to the wind factor (i.e. the relevance of wind in predicting ice

motion) than can be provided by the studies using LR. We provide a description of the methods

we will use to carry out these studies in section 4.6.2.

For this case we will apply a CNN that has been trained against a baseline reference

value, as discussed in chapter 3.4.2. The use of a baseline changes the CNN prediction question
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from ‘how important are each of the inputs in predicting ice motion different from zero?’ to

‘how important are each of the inputs in predicting ice motion to be different from the baseline?’

(Mamalakis et al., 2023). This is an important distinction, because here we aim to understand

how the relationship between ice motion and wind speed is changing as the ice cover decreases.

Therefore, the baseline reference value is chosen to be 0.8% of the wind speed and at an angle of

25.3◦ to the wind, based on the historical linear relationship between ice speed and wind speed

(Thorndike and Colony, 1982). The reference value will be applied to the output for each time

step and grid point.

The LRP can also be applied to produce relevance scores with units (Letzgus et al., 2021).

We will use the following procedure to train a CNN and run LRP on the outputs. In summary: (i)

Subtract the baseline reference value from the outputs; (ii) Standardize the inputs to zero-mean

and one standard deviation, but leave the outputs in their original units; (iii) Train the CNN to

predict the new output from the inputs; (iv) Un-standardize the inputs (i.e. return to original

units); (v) Run LRP at 219 evenly distributed grid points throughout the Arctic. Each of these

219 runs will produce a relevance heat map for each input, indicating the where the input is

important for predicting the output at each analyzed location; (vi) Integrate the LRP results over

the 219 grid points (i.e. take the average of the 219 maps) to produce a global relevance heat

map. We will apply the LRP for the entire duration of the data set, and produces a relevance heat

map for each input at each day from 1989–2021.

We also plan to investigate the relationship between the wind factor and ice thickness.

We will compare our findings to ice thickness data from CryoSat-2 sea-ice thickness record that

has been extended back in time using machine learning techniques (Landy et al., 2022). The

mechanism by which ice becomes more responsive to wind forcing is based on decreases in the

ice stresses, which are a function of ice concentration, thickness, roughness, and wind speed.

Additionally, information about ridges and leads in the ice (i.e. areas of diverging and converging

ice) is important for determining internal stresses in the ice (Feltham, 2008). The spatial extent

of these linear kinematic features (LKF) in the ice (Hutter et al., 2019) will also be analyzed in
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relation to the spatial extent of changes in the wind factor.

5.4 Interdisciplinarity

This research is interdisciplinary in nature. It draws from concepts in physical oceanog-

raphy and engineering to achieve the overarching goal of gaining a further understanding of the

processes involved during exchanges of mass, momentum and energy between the ocean and

atmosphere. The first chapter investigates how large precipitation events impact the physical

state of the ocean using both oceanic observations and a one-dimensional model with vertical

transfer equations for heat and momentum (the MITgcm). The second, third, and fourth chapters

involve engineering of a neural network (NN) that, in the future, can be used as a surrogate model

for sea-ice motion in physics-based ocean-ice simulations and for skillful forecasting of sea-ice

motion. These chapters investigate the physics behind the relationship between sea-ice motion

and other atmospheric and oceanic properties, leveraging a NN. Because we are dealing with a

multi-phase/multi-physics/multi-scale problem, this work involved an in-depth understanding of

the engineering principles of fluid dynamics, mass transport, and heat transport.
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Appendix A

Supplemental Material for “Ocean Sur-
face Salinity Response to Atmospheric
River Precipitation in the California Cur-
rent System”

Contents of Appendix A

1. Figures A1 to A5

Introduction This supporting information provides additional figures for analysis of observa-

tional data and model outputs (Figs. A1–A5).
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Figure A.1. Example MITgcm simulation used for four-day sensitivity tests with idealized
forcing from day -2 to day 2. (a) Time series of wind (m s−1, red) and rain (mm hr−1, blue)
forcing. (b) Salinity (psu) response in the upper 20 m. The thin black line indicates the depth
of the fresh lens, DL, determined as the depth at which the salinity anomaly relative to the
initial time step is 25% of the maximum anomaly for the given run. (c) Salinity difference, ∆S,
calculated as the 0.01 m salinity subtracted from the salinity at the first time step. Showing the
full length of the four-day simulation, where day zero represents the day with the peak in rain
rate and the other date labels are days relative to that day.
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Figure A.2. Example of external forcing from ERA5 and initial conditions from Spray for the
case study with an AR event starting on October 17, 2016. (a) rain rate (mm hr−1) and wind
speed (m s−1), (b) short and longwave radiation (W m−2), (c) specific humidity (kg kg−1), and
atmospheric temperature (◦C), (d) initial salinity (psu) depth profile, and (e) initial temperature
(◦C) depth profile.
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Figure A.3. Comparison of MITgcm vs. GOTM model output of maximum salinity difference,
∆Smax, for event-based studies using conditions in the tropics and wind speeds of 4–10 m s−1.
The black line represents a linear regression between the two sets of model results, with slope
and r2 labeled in the legend. Outputs for ∆Smax using wind speeds below 4 m s−1 are omitted
because a 1:1 linear fit is not found in this wind-speed range, as MITgcm produced much higher
values for ∆Smax than GOTM. GOTM model output was taken from Drushka et al. (2016). It
should be noted that here ∆Smax is defined as done in Drushka et al. (2016) to allow for a direct
comparison between MITgcm and GOTM. Here, ∆Smax is the salinity maximum vertical salinity
difference between 0.01 m and 5 m for the duration of the event.
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Figure A.4. Collection of 85 rain events used in the composite analysis at the MBARI M1
Mooring location from day -3 to day 7. (a) Daily cumulative rain (mm) from ERA5, (b) hourly
wind speed (m s−1) with a six hour moving mean from ERA5 and (c) surface salinity anomaly
(psu) from day zero as measured by the MBARI M1 Mooring with a one hour moving mean.
The different color lines represent the 85 different events that were averaged together for the
composite analysis. Day zero is defined to start on the first date with rainfall exceeding a
threshold of 5 mm day−1.
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Figure A.5. Monte Carlo simulation to find uncertainty on the parameters A and b in the linear
regression equation relating rain rate and precipitation to change in salinity, ∆Smax = ARmaxUb.
In (a) data from the one-dimensional model output (black) for various wind and rain conditions
and the linear regression fit of the model output (blue) are compared to the outputs from various
linear regression models formed by Monte Carlo simulations (red). The linear regression
parameters, A and b, are calculated for each of the 1000 Monte Carlo outputs, and the frequency
distributions are shown in (b) and (c).
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Appendix B

Supplemental Material for “Machine
learning for daily forecasts of Arctic sea-
ice motion: an attribution assessment of
model predictive skill.”

Contents of Appendix B

1. Figures B1 to B2

2. Tables B1 to B2

Introduction This supporting information provides additional figures for analysis of observa-

tional data and model outputs.
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Figure B.1. Uncertainty metrics for the Polar Pathfinder Sea Ice Motion Vector, Version 4 data
set. Monthly (blue) and annual (red) mean (a) error of sea-ice velocity with error bars (b) error of
sea-ice velocity without error bars, and (c) standard deviation of the error in sea-ice velocity (i.e.
error bars in (a)). We note that these uncertainties are not strictly direct error measurements of ice
motion. These values come from the relative quality of the source data and the spatial proximity
and distribution around each interpolated grid point. A low error means there are (i) higher
quality observations, (ii) observations that are closer to the grid cell, (iii) more observations that
are within the vicinity of the grid cell that are interpolated, or a combination of all three. The
increase in error in Summer 1987 is due to a difference in the sampling period when switching
from using Scanning Multichannel Microwave Radiometer (SMMR, 48hr sampling period) to
Special Sensor Microwave/Imagers (SSM/Is, 24hr sampling period) for brightness temperature
(Tschudi et al. 2020). This inconsistency in the stability of the observing system justifies our use
of data from 1989-2022 only.
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Table B.1. Comparison of model data and architecture to Zhai and Bitz (2021).

Hoffman et al (2023) Zhai and Bitz (2021)
Training
Data

Inputs Present-day wind velocity from
JRA55-do, ua,t & va,t

Present-day wind velocity from
JRA55, ua,t & va,t

Previous-day sea-ice velocity
from Polar Pathfinder Sea Ice
Motion, Version 4, ui,t−1 & vi,t−1

Previous-day sea-ice velocity
from Polar Pathfinder Sea Ice
Motion, Version 4, ui,t−1 & vi,t−1

Previous-day sea-ice concenetra-
tion from Nimbus-7 Passive Mi-
crowave, Version 1, ct−1

Previous-day sea-ice concenetra-
tion from Nimbus-7 Passive Mi-
crowave, Version 1, ct−1

Outputs Present-day sea-ice velocity from
Polar Pathfinder Sea Ice Motion,
Version 4, ui,t & vi,t

Present-day sea-ice velocity from
Polar Pathfinder Sea Ice Motion,
Version 4, ui,t & vi,t

Input Size 361 x 361 x 5 40 x 640 x 5
Output
Size

361 x 361 x 2 40 x 640 x 2

Model
Archi-
tecture

Layers 1–5 Conv2D with ReLU: filter size
= (fc,fc), stride = (sc,sc); Max
Pool: filter size = (fm,fm), stride
= (sm,sm); number of filters = nf

Conv2D with ReLU: filter size
= (fc,fc), stride = (sc,sc); Max
Pool: filter size = (fm,fm), stride
= (sm,sm); number of filters = nf

Layer 1 fc = (3,3), sc = (1,1);
fm = (2,2), sm = (2,2); nf = 7

fc(2,3), sc = (1,1);
fm = (2,3), sm = (2,3); nf = 12

Layer 2 fc = (3,3), sc (1,1);
fm = (2,2), sm = (2,2); nf = 14

fc = (2,3), sc = (1,1);
fm = (2,3), sm = (2,3); nf = 24

Layer 3 fc = (3,3), sc= (1,1);
fm = (2,2), sm = (2,2); nf = 28

fc = (2,3), sc = (1,1);
fm = (2,2), sm = (2,2); nf = 48

Layer 4 fc = (3,3), sc = (1,1);
fm = (2,2), sm = (2,2); nf = 56

fc = (3,3), sc = (1,1);
fm = (2,2), sm = (2,2); nf = 96

Layer 5 fc = (2,3), sc = (1,1);
fm = (2,2), sm= (2,2); nf = 112

fc = (2,3), sc = (1,1);
fm = (2,2), sm = (2,2); nf = 192

Layer 6 Dropout, 20% Dropout, 20%
Layer 7 Flatten Flatten
Layer 8 Dense Dense
Optimizer Adam Adam
Activation ReLU (slope coefficient, α = 0.1) LeakyReLU (α = 0.1)
Loss Norm Root Mean Square Error Norm Root Mean Square Error
Regularizer L2 with λ = 0.01 n/a
Epochs 50 50
Batch Size 365 365
Train,
Validate,
& Test

1989-2017
2018-2019
2020-2021

1990-2014
2015-2016
2017-2018
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Table B.2. Comparison of performance to Zhai and Bitz (2021); calculated from the temporal
evaluations (Fig. 5a) for consistency with Fig. 3 in of Zhai and Bitz (2021).

Hoffman et al (2023) Zhai and Bitz (2021)
correlation 0.80 ± 0.01 0.82 ± 0.11

skill 0.40 ± 0.02 0.42 ± 0.14

Figure B.2. Ensemble mean (a) wind factor and (b) turning angle for the relationship between
wind velocity and sea-ice velocity calculated from the linear regression equation: u∗i,t = Au∗a,t +B.
Data was not standardized in this case because here we represent the wind factor as the ratio
between ice speed and wind speed. The spatially averaged wind factor is 0.72% ± 0.31%, and
the spatially averaged wind angle is 23.3◦ ± 6.9◦, which are consistent with historical results
from Thorndike and Colony (1982). This wind angle differs slightly from the one cited in the
text because it is obtained from a different LR model.
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Appendix C

Supplementary Material for “Evaluating
the robustness of explainable machine
learning (XML) methods for application
in regression predictions of Arctic sea-ice
motion.”

Contents of Appendix C

1. Figures C1 to C17

Introduction This supporting information provides additional figures for analysis of local XML

methods.
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Figure C.1. Results from localized sensitivity studies for each of the inputs at location 1,
indicated by the red dot. The columns represent each of the different inputs: (a), (d), and (g),
wind speed, ua; (b), (e), and (h), ice speed, ui; and (c), (f), and (i), ice concentration, ci). The
rows represent the different sensitivity methods: (a–c) Spatial covariance; (d–f) normalized
RMSE from perturbation analysis; (g–i) normalized relevance score from LRP. Each row is
normalized by dividing by the maximum ‘relevance’ value of the spatial mean for each method.
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Figure C.2. Same as Fig. C.1, but for location 2.
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Figure C.3. Same as Fig. C.1, but for location 3.
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Figure C.4. Same as Fig. C.1, but for location 4.
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Figure C.5. Same as Fig. C.1, but for location 5.
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Figure C.6. Same as Fig. C.1, but for location 6.
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Figure C.7. Same as Fig. C.1, but for location 7.

154



Figure C.8. Same as Fig. C.1, but for location 8.
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Figure C.9. Same as Fig. C.1, but for location 9.
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Figure C.10. Same as Fig. C.1, but for location 10.
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Figure C.11. Same as Fig. C.1, but for location 11.
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Figure C.12. Same as Fig. C.1, but for location 12.
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Figure C.13. Same as Fig. C.1, but for location 13.
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Figure C.14. Same as Fig. C.1, but for location 14.
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Figure C.15. Same as Fig. C.1, but for location 15.
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Figure C.16. Same as Fig. C.1, but for location 16.
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Figure C.17. Same as Fig. C.1, but for location 17.
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Muñoz Sabater, J. (2019). ERA5-Land hourly data from 1981 to present.

Notz, D. and Stroeve, J. (2018). The trajectory towards a seasonally ice-free arctic ocean. Current
Climate Change Reports, 4:407–416.

Olason, E. and Notz, D. (2014). Drivers of variability in Arctic sea-ice drift speed. Journal of
Geophysical Research: Oceans, 119(9):5755–5775.

Onarheim, I. H., Eldevik, T., Smedsrud, L. H., and Stroeve, J. (2018). Seasonal and regional
manifestation of arctic sea ice loss. Journal of Climate, 13(12):4917–4932.

O’Shea, K. and Nash, R. (2015). An introduction to convolutional neural networks.

Payne, A. E., Demory, M.-E., Leung, L. R., Ramos, A. M., Shields, C. A., Rutz, J. J., Siler, N.,
Villarini, G., Hall, A., and Ralph, F. M. (2020). Responses of atmospheric rivers to climate
change. Nature Reviews Earth and Environment, 1:143–157.

172



Petrou, Z. I. and Tian, Y. (2019). Prediction of sea ice motion with convolutional long short-term
memory networks. IEEE Transactions on Geoscience and Remote Sensing, 57(9).

Polyakov, I. V., Rippeth, T. P., Fer, I., Alkire, M. B., Baumann, T. M., Carmack, E. C., Ingvaldsen,
R., Ivanov, V. V., Janout, M., Lind, S., Padman, L., Pnyushkov, A. V., and Rember, R. (2020).
Weakening of cold halocline layer exposes sea ice to oceanic heat in the eastern arctic ocean.
Journal of Climate, 33(18):8107 – 8123.

Press, W., Flannery, B., Teukolsky, S., and Vetterling, W. (1986). Numerical Recipes. Cambridge
University Press.

Price, J. F. (1979). Observations of a rain-formed mixed layer. Journal of Physical Oceanography,
9(3).

Radivojac, P., Obradovic, Z., Dunker, A. K., and Vucetic, S. (2004). Feature selection filters
based on the permutation test. In Boulicaut, J.-F., Esposito, F., Giannotti, F., and Pedreschi,
D., editors, Machine Learning: ECML 2004, pages 334–346, Berlin, Heidelberg. Springer
Berlin Heidelberg.

Rahman, M. M., Matsuo, K., Matsuzaki, S., and Purushotham, S. (2021). Deeppseudo: Pseudo
value based deep learning models for competing risk analysis. AAAI Conference on Artificial
Intelligence, 35(1).

Ralph, F., Coleman, T., Neiman, J., Zamora, J., and Dettinger, D. (2013). Observed impacts of
duration and seasonality of atmospheric-river landfalls on soil moisture and runoff in coastal
northern California. Journal of Hydrometeorology, 14:443–459.

Ralph, F. and Dettinger, M. (2011). Storms, floods and the science of atmospheric rivers. Eos
Trans. AGU, 92(32):265–272.

Ralph, F. and Dettinger, M. (2012). Historical and national perspectives on extreme West Coast
precipitation associated with atmospheric rivers during december 2010. Bull. Amer. Meteor.
Soc., 93(6):783–790.
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K., Macander, M. J., Magnússon, R. , Malkova, G. V., Mankoff, K. D., Manney, G. L., Meier,
W. N., Mote, T., Mudryk, L., Müller, R., Nyland, K. E., Overland, J. E., Pálsson, F., Park, T.,
Parker, C. L., Perovich, D., Petty, A., Phoenix, G. K., Pinzon, J. E., Ricker, R., Romanovsky,
V. E., Serbin, S. P., Sheffield, G., Shiklomanov, N. I., Smith, S. L., Stafford, K. M., Steer, A.,
Streletskiy, D. A., Svendby, T., Tedesco, M., Thomson, L., Thorsteinsson, T., Tian-Kunze, X.,
Timmermans, M.-L., Tømmervik, H., Tschudi, M., Tucker, C. J., Walker, D. A., Walsh, J. E.,
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