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Abstract

Cool Things That Matter: Multiphase Dynamics of Galactic Atmospheres

by

Brent Tan Zun Yi

Galaxies are extremely complex systems. A multitude of open problems still surround

galaxy formation and evolution today. One that sits at the very heart is the challenge to

understand the observed multiphase nature of not just the galaxies and their surrounding

environment (circumgalactic medium (CGM)), but also that of the Cosmic Baryon Cycle.

Galactic outflows driven by feedback mechanisms carry material outwards while inflowing

gas provides fuel for new star formation. This cycling connects processes on stellar (∼ pc)

scales to galactic (∼ kpc) and cosmological (∼Mpc) scales. The interactions between

phases in multiphase systems leads to coupling across this large range of scales. In

short, understanding the small scales is essential for being able to accurately model

larger scales. A large focus of the research presented in this dissertation hence lies in

studying the physics that govern the dynamic nature of these multiphase systems and

their interactions. Despite being ubiquitous, many uncertainties remain due to their

surprisingly rich complexity. Combining analytic theory with numerical simulations, we

delve into their inner workings so as to be able to understand and model them. We

start at the smallest scales in the problem with a deep dive into the interfaces between

phases and how they determine the bulk evolution. We then explore the connection

between these mixing layers and observables. Applying these results to larger scales, we

look at cold clouds moving through hot backgrounds, both infalling under gravity and in

turbulent outflowing winds.
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Chapter 1

Introduction

There are more things in Heaven and Earth, Horatio,

Than are dreamt of in your philosophy.

William Shakespeare, Hamlet

Galaxies are complex ecosystems—making sense of observations thus means making

sense of the inherent nonlinear, dynamical structures that underlie them. A multitude

of open problems still surround galaxy formation and evolution today. One that sits

at the very heart is the challenge to understand the multiphase nature of not just the

galaxies and their surrounding environment (circumgalactic medium (CGM)), but also

that of the Cosmic Baryon Cycle. Galactic outflows driven by feedback mechanisms carry

material outwards while inflowing gas provides fuel for new star formation. This cycling

connects processes on stellar (∼ pc) scales to galactic (∼ kpc) and cosmological (∼Mpc)

scales, weaving them into a tightly interdependent network and creating a multiphysics,

multiphase, multiscale ecosystem.

In recent years, a wealth of observations of the CGM ranging from quasar line spec-

troscopy to emission line mapping with integral field units have provided challenging tests

1



Introduction Chapter 1

for galaxy formation theory (Tumlinson et al. 2017). One particularly surprising finding

from such observations is the prevalent and ubiquitous presence of cold (∼ 104K) gas in

the CGM. The balance between gravity and thermal pressure suggests that gas in the

CGM should exist at much higher temperatures (> 106K). Instead, observations include

small and dense cold (∼ 104K) clouds (Hennawi et al. 2015) and intermediate tempera-

ture (∼ 105K) gas which should be thermally unstable and cool rapidly (Tumlinson et al.

2011). Observations also suggest that cold clouds have significant sources of non-thermal

pressure support (Werk et al. 2014) such as turbulence, magnetic fields and cosmic rays.

How these all come together to impact cold clouds is still poorly understood. Further-

more, such clouds should be rapidly destroyed by hydrodynamic instabilities (Klein et al.

1994), so how do they survive? Recent work has shown that for outflowing winds, captur-

ing the appropriate scales and boundary conditions is critical in answering this question.

However, outflows are but one step in the cycling of baryons, and similar studies for the

CGM and infalling clouds, and in general more realistic environments, are still lacking.

Lastly, multiphase systems are notoriously difficult to study because they introduce new,

much smaller scales that can significantly impact large scale behavior. For instance, the

interactions at the interfaces between phases can alter bulk flow and phase properties. If

we do not understand the small scales, we will not get the large scales right.

Where do we stand? Theories for the origin of cold gas in the CGM include formation

via thermal instability in the hot halo gas (the precipitation model; Sharma et al. 2012;

Voit et al. 2019) or transport outward via outflowing winds driven by stellar or AGN

feedback. Empirical support for this idea come from the detection of outflowing galactic

winds which contain both cold and hot gas (Veilleux et al. 2005; Steidel et al. 2010;

Rubin et al. 2014; Heckman & Thompson 2017). These observations were puzzling,

since any cold gas that is swept up should be destroyed in these winds. The timescale

for the acceleration of a cold cloud is a factor of ∼ 10 times longer than the timescale

2
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for its destruction via Kelvin-Helmholtz and Rayleigh-Taylor instabilities (Zhang et al.

2017). This was verified in simulations (Cooper et al. 2009; Scannapieco & Brüggen

2015; Schneider & Robertson 2017). However, it was recently shown that under the

right conditions, these cold clouds can not only survive but even grow (Gronke & Oh

2018). This is possible when the cooling time of mixed gas is shorter than the destruction

timescale. The mechanism that drives this growth is the formation of a long tail structure

of cold gas where mixing and cooling takes place efficiently in radiative turbulent mixing

layers at the interface of the two gas phases (Ji et al. 2018; Fielding et al. 2020; Tan et al.

2021). Crucially, this requires long simulation domains that were not captured in earlier

simulations. This has led to renewed interest in such simulations. As mentioned, winds

are only one piece of the puzzle. For example, in precipitation models, the ratio of the

cooling time to free-fall time (the key parameter in the model) is controlled via feedback

processes. A crucial part of this process is the transport of cold gas to the disk itself.

How this happens remains unclear.

A large focus of the research presented in this dissertation lies in studying the physics

that govern the dynamic nature of these multiphase systems. Despite being ubiquitous,

many uncertainties remain due to their surprisingly rich complexity. Combining analytic

theory with numerical simulations, we delve into their inner workings so as to be able

to understand and model them. In Chapter 2, we start at the smallest scales in the

problem with a deep dive into the interfaces between phases and how they determine bulk

evolution. We then explore the connection between these mixing layers and observables in

Chapter 3. Applying these results to larger scales, we look at cold clouds moving through

hot backgrounds, both infalling under gravity (Chapter 4) and in turbulent outflowing

winds (Chapter 5). Lastly, we summarize and conclude in Chapter 6.

3



Chapter 2

Radiative Mixing Layers: Insights

from Turbulent Combustion

Some say the world will end in fire,

Some say in ice.

From what I’ve tasted of desire

I hold with those who favor fire.

But if it had to perish twice,

I think I know enough of hate

To say that for destruction ice

Is also great

And would suffice.

Robert Frost, Fire and Ice
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Radiative Mixing Layers: Insights from Turbulent Combustion Chapter 2

Radiative mixing layers arise wherever multiphase gas, shear, and radiative cooling

are present. Simulations show that in steady state, thermal advection from the hot phase

balances radiative cooling. However, many features are puzzling. For instance, hot gas

entrainment appears to be numerically converged despite the scale-free, fractal structure

of such fronts being unresolved. Additionally, the hot gas heat flux has a characteristic

velocity vin ≈ cs,cold(tcool/tsc,cold)
−1/4 whose strength and scaling are not intuitive. We

revisit these issues in 1D and 3D hydrodynamic simulations. We find that over-cooling

only happens if numerical diffusion dominates thermal transport; convergence is still

possible even when the Field length is unresolved. A deeper physical understanding of

radiative fronts can be obtained by exploiting parallels between mixing layers and tur-

bulent combustion, which has well-developed theory and abundant experimental data.

A key parameter is the Damköhler number Da = τturb/tcool, the ratio of the outer eddy

turnover time to the cooling time. Once Da > 1, the front fragments into a multiphase

medium. Just as for scalar mixing, the eddy turnover time sets the mixing rate, inde-

pendent of small scale diffusion. For this reason, thermal conduction often has limited

impact. We show that vin and the effective emissivity can be understood in detail by

adapting combustion theory scalings. Mean density and temperature profiles can also be

reproduced remarkably well by mixing length theory. These results have implications for

the structure and survival of cold gas in many settings, and resolution requirements for

large scale galaxy simulations.

2.1 Introduction

Multiphase media are ubiquitous in astrophysics. Interfaces between different phases

are not infinitely sharp, but thickened by energy transport processes such as thermal

conduction (Borkowski et al. 1990; Gnat et al. 2010) and collisionless cosmic ray (CR)

5
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scattering (Wiener et al. 2017). Shear flows further structure the interface, by driving

the Kelvin-Helmholtz (KH) instability, which seeds turbulence and fluid mixing. In ideal

hydrodynamics, the KH instability is scale free. However, non-ideal processes, such as

viscosity, can set a characteristic scale. Perhaps the most important of these non-ideal

processes is radiative cooling, which typically is very strong in mixed gas at temperatures

intermediate between the two stable phases. For instance, under coronal conditions the

cooling curve peaks at T ∼ 105K, intermediate between the T ∼ 104K and T ∼ 106K

phases. Radiative turbulent mixing layers (TMLs) then arise where the exchange of mass,

momentum and energy between phases is governed by the interaction between turbulence

and radiative cooling. This has many important physical and observational consequences.

For example, in the circumgalactic medium (CGM), such physics governs the growth or

destruction of cold clouds embedded in a hot wind (Klein et al. 1994; Mellema et al.

2002; Pittard et al. 2005; Cooper et al. 2009; Scannapieco & Brüggen 2015; Schneider &

Robertson 2017; Gronke & Oh 2018, 2020a), and the survival of cold streams inflowing

from cosmological accretion (Cornuault et al. 2018; Mandelker et al. 2020). TMLs also

‘host’ T ∼ 105K gas which could explain the abundance of OVI seen in galaxy halos,

despite the fact that it is thermally unstable (Slavin et al. 1993). In addition, TMLs

play crucial roles in the ISM (e.g., in supernova explosions), galaxy clusters (e.g., in the

interface between optical filaments and the intracluster medium), AGN environments

(e.g., chaotic cold accretion on the AGN, Gaspari et al. 2013); survival and stability of

AGN jets (Hardee & Stone 1997), and many other astrophysical settings.

Despite their ubiquity and importance, radiative mixing layers have received relatively

little attention compared to adiabatic simulations of the Kelvin Helmholtz instability.

Begelman & Fabian (1990) wrote an early analytic paper suggesting that radiative mixing

layers are characterized by a mean temperature T̄ ∼ (ThotTcold)
1/2 and width l ∼ vttcool,

where vt is the turbulent velocity and tcool is the cooling time of the mixed gas. In a

6
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series of papers (Kwak & Shelton 2010; Kwak et al. 2011; Henley et al. 2012; Kwak

et al. 2015), Kwak and collaborators ran 2D hydrodynamic simulations and compared

to observed line column densities and ratios, but not to analytic theory. Esquivel et al.

(2006) ran 3D MHD simulations, but not for long enough for effective mixing (or a stable

equilibrium) to develop.

More recently, Ji et al. (2019) performed 3D hydrodynamic and MHD simulations,

including both photoionization and non-equilibrium ionization. Interestingly, they found

strong discrepancies with analytic models even in the purely hydrodynamic regime, with

characteristic inflow and turbulent velocities much less than the shear velocity, and of

order the cold gas sound speed, cs,cold. They also found the layer width l ∝ t
1/2
cool rather

than l ∝ tcool, implying a surface brightness and mass entrainment velocity Q, vin ∝

t
−1/2
cool . They also found that previous analytic scalings (e.g., that the column density

is independent of density or metallicity) do not agree with simulations. Subsequently,

Gronke & Oh (2018, 2020a) looked at mass growth of cold clouds embedded in a wind

and found similar inflow velocities vin ∼ cs,cold, but with a different scaling Q, vin ∝ t
−1/4
cool ,

which has also been seen by Mandelker et al. (2020); Fielding et al. (2020). Fielding

et al. (2020) ran a suite of 3D hydrodynamic simulations similar to Ji et al. (2019), and

highlighted the fractal nature of the interface; they derived a formula for vin based on

this observation.

The situation is far from resolved. In our opinion, some of the biggest outstanding

questions are:

• Scalings. In previous work (Gronke & Oh 2020a), we found:

vin ≈ 0.2cs,cold

(
tcool
tsc,cold

)−1/4

= 0.2cs,cold

(
cs,coldtcool

L

)−1/4

, (2.1)

where L is a characteristic length scale, and cs,cold is the sound speed of the cold gas.

7
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These scalings are not intuitive, and do not contain the shear velocity vshear and

overdensity χ which might be expected to play a role in the hot gas entrainment

rate. What is their origin? And why are there discrepant scalings of vin ∝ t
−1/2
cool (Ji

et al. 2019) and vin ∝ t
−1/4
cool (Gronke & Oh 2018, 2020a; Fielding et al. 2020)?

• Energetics. In steady state, cooling in the mixing layer is balanced by enthalpy flux

from the hot gas, at a rate ∼ 5/2Pvin. To order of magnitude, inflow of the hot gas

occurs at roughly the cold gas sound speed, vin ∼ cs,cold, as seen in Eq. (2.1). This

may seem surprising, since it is far below the maximum rate∼ cs,hot at which the hot

gas can potentially deliver enthalpy. For instance, saturated thermal conduction

has a heat flux ∼ Pcs,hot. Why is turbulent heat diffusion so inefficient? The

simulations of (Gronke & Oh 2018, 2020a) suggested that pulsations of the cold

gas cloud (driven out of pressure balance with surroundings by radiative cooling

were responsible for drawing in hot gas, in which case cs,cold might be a natural

velocity scale. However, it is not clear why vin ∼ cs,cold should be similar in a plane

parallel shear layer, where the velocity shear drives mixing.

• Robustness to Resolution. Perhaps the most surprising feature of the simulations

is the robustness of vin (or equivalently, the surface brightness Q) to numerical

resolution. Most cooling occurs in the thermal front, where the gas transitions

between the thermally stable phases Tcold and Thot. It is widely accepted that

for numerical convergence, such transition layers must have finite thickness (by

explicit inclusion of thermal conduction) and moreover that these fronts must be

numerically resolved by at least 4 cells (Koyama & Inutsuka 2004). Otherwise,

cooling gas fragments to the grid scale, and the total amount of cooling is resolution

dependent (‘numerical overcooling’). Most simulations mentioned above do not

include explicit thermal conduction and most of the emission occurs in zones∼ 1 cell

8
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thick – yet the surface brightness Q appears numerically converged. Surprisingly,

the value of vin in the high resolution calculations of a single plane parallel mixing

layer (Ji et al. 2019; Fielding et al. 2020) agree with the results of Gronke & Oh

(2018, 2020a,b), which embed a macroscopic cloud in a wind. In the latter case,

by necessity resolution is orders of magnitude worse and the entire mixing layer is

essentially unresolved. Simulations of radiative cooling in a turbulent, thermally

bistable medium also show convergence in global quantities such as the density

PDF, despite no explicit thermal conduction and lack of convergence in cold gas

morphology (Gazol et al. 2005). The morphology of the mixing region is a strong

function of resolution. For instance, the area of the cooling surface increases with

resolution, and recently Fielding et al. (2020) demonstrated that the area is a

fractal with A ∝ λ−1/2, where λ is the smoothing scale. Since the volume of the

cooling region scales as ∼ Aλ ∼ λ1/2, one would expect the total cooling rate to be

resolution dependent. Somehow it is not, even when characteristic scales such as

the cooling length cstcool are highly under-resolved. It is critical to understand this,

particularly in the context of prescribing resolution requirements for larger scale

simulations of galaxy formation. For instance, the circumgalactic medium (CGM)

in present day state of the art galaxy simulations is unconverged, with HI column

densities continually rising with resolution (van de Voort et al. 2019; Peeples et al.

2019; Mandelker et al. 2019; Hummels et al. 2019; Nelson et al. 2020).

In this paper, we exploit the close parallels between a two-phase turbulent radiative

front and a turbulent combustion front to understand the above issues. In the parlance of

combustion fronts, hot gas is the ‘fuel’ and cold gas is the ‘oxidizer’ which ‘burn’ to give

‘ashes’ (more cold gas). There is an extensive literature on combustion which not only

has theoretical and computational underpinnings, but vast experimental backing as well

9
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– a critical component in a situation where it is unclear whether numerical hydrodynamic

codes can attain the required dynamic range. We explore the distinction between laminar

and turbulent radiative fronts, with a particular focus on numerical convergence and

robustness to resolution.

The structure of the paper is as follows. In §2.2, we detail the implementation of

radiative cooling and thermal conduction in our simulations. In §2.3, we describe 1D

simulations with radiative cooling and conduction which probe the dependence of laminar

fronts to resolution. In §2.4, we explore parallels between radiative fronts and turbulent

combustion, and review findings from the turbulent combustion literature. Based on this,

we also develop an analytic model of radiative TMLs. In §2.5, we show 3D simulations

which develop a turbulent mixing layer with radiative cooling via the Kelvin-Helmholtz

instability. We compare our results to analytic predictions, and a 1D mixing length

model. Finally, we conclude in §2.5.8.

2.2 Methods

We carry out our simulations using the publicly available MHD code Athena++ (Stone

et al. 2020). All simulations are run on regular Cartesian grids and use the HLLC

Riemann solver. The individual simulation setups of 1D laminar fronts and 3D turbulent

fronts are described separately in §2.3.1 and §2.5.1. Here, we describe how we implement

radiative cooling, present in all our simulations, and thermal conduction, present in all

1D simulations and a subset of 3D simulations (§2.5.5).
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Figure 2.1: Heating and cooling rates as a function of temperature, with a temperature
floor set at 104 K. The two stable phases are at 104 K and 106 K.
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2.2.1 Radiative Cooling

The net cooling rate per unit volume is usually written as

ρL = n2Λ− nΓ, (2.2)

where Λ is the cooling function and Γ is the heating rate. For radiative cooling, we assume

conditions of collisional ionization equilibrium and solar metallicity (X = 0.7, Z = 0.02).

We obtain our cooling curve by performing a piece-wise power law fit to the cooling

table given in Gnat & Sternberg (2007) over 40 logarithmically spaced temperature bins,

starting from a temperature floor of 104 K. We then implement the fast and robust exact

cooling algorithm described in Townsend (2009). We also add in a density dependent

heating rate such that we have a thermally bistable medium. The cooling and heating

curves that we used are shown in Fig. 2.1. While the inclusion of heating for a formally

bistable medium is important in comparing to exact analytic solutions for the 1D front,

it is inconsequential to the cooling rates in 3D simulations; we thus resort to a fixed

temperature floor as well as setting the cooling rate in the hot medium (T > 0.5Thot) to

be zero in our 3D simulations. For some tests, we used a different shape of the cooling

curve, which we specify in the relevant respective section.

2.2.2 Thermal Conduction

The conductive heat flux is Q = −κ∇T , where the thermal conductivity of an ionized

plasma is given by Spitzer (1962):

κsp = 5.7× 10−7 T 2.5 erg cm−1 s−1 K−1. (2.3)

Instead of using the above temperature dependent conductivity, we assume a constant
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conductivity equivalent to the value of κsp at the temperature of the warm gas, T =

0.8× 105 K. This is numerically convenient but does not significantly change the results

presented. The conductivity we use where applicable is hence

κ = 106 erg cm−1 s−1 K−1. (2.4)

As thermal conduction is a diffusive process, it is normally computationally expensive

to implement. We employ a two moment approximation method for conduction similar

to the approach used for implementing cosmic rays in Jiang & Oh (2018). This is done

by introducing a second equation

1

V 2
m

∂Q

∂t
+∇E = − ρQ

(γ − 1)κ
, (2.5)

with an effective propagation speed Vm. The latter represents the ballistic velocity of free

electrons, which is ∼
√

mp/me ∼ 45 times larger than the gas sound speed1. In the limit

that Vm goes to infinity, the equation reduces to the usual equation for heat conduction.

As long as Vm is large compared to the speeds in the simulation, the solution is a good

approximation to the true solution. We check that our results are converged with respect

to Vm (cf. Appendix A). The timestep of this approach scales as O(∆x), compared to

traditional explicit schemes which scale as O(∆x2). Implicit schemes which also have

a linear scaling with resolution are constrained by the fact that they require matrix

inversion over the whole simulation domain, which can be slow and hinders parallelization.

The module employs operator splitting to compute the transport and source terms, using

a two step van-Leer time integrator; the source term is added implicitly. We thank Y.F.

Jiang for providing the code in advance of publication.

1The analogous quantity in Jiang & Oh (2018) is the reduced speed of light for free-streaming cosmic
rays.
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2.2.3 Parameter studies

In our simulations, we vary thermal conduction and cooling strength, and will hence-

forth refer to them as constant multiples of the fiducial values described above. To adjust

the cooling strength, we change the normalization of the cooling curve via multiplication

by a constant prefactor Λ0. Physically, a change in the cooling time is usually due to a

change in the ambient pressure; adjusting the normalization for the cooling curve achieves

the same result and is more numerically convenient. In the stratified CGM, the cooling

time is a function of radius. Similarly, to adjust conduction, we multiply the conductivity

by a prefactor κ0. The cooling function and conductivity in a given simulation are thus

given by

Λ(T ) = Λ0Λfid(T ) (2.6)

κ = κ0κfid, (2.7)

where Λfid and κfid are the fiducial cooling profile and conductivity given in Fig. 2.1 and

Eq. (2.4) respectively.

In radiative mixing layers, radiative cooling is balanced by enthalpy flux (Ji et al.

2019),

Q ≈ 5

2
Pvin, (2.8)

where Q is the surface brightness. Hence, measuring Q or vin are equivalent. We focus

on measuring Q as it is a frame-independent quantity.
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2.3 1D Simulations: Laminar Fronts

A large focus of this paper is on resolution requirements and convergence issues. As

we shall see, the structure of the front depends strongly on whether the flow is lami-

nar or turbulent, and on the dominant heat diffusion mechanism: thermal conduction,

turbulence, or numerical diffusion. We first study the behavior of laminar flows in 1D

simulations with thermal conduction and cooling. In the parlance of turbulent combus-

tion discussed at length in §2.4, this gives us insight into the behavior of the laminar

flame speed SL and associated convergence issues. Conventional wisdom (e.g, Koyama

& Inutsuka 2004) holds that it is necessary to (a) include explicit thermal conduction,

and (b) resolve the smallest Field length in the problem (usually of the coldest gas), in

order for calculations to be numerically converged. This is unequivocally true if we seek

numerically converged temperature and density profiles. However, we shall see that if we

merely seek numerical convergence in the mass flux jx and hence the surface brightness

Q, there are some subtleties which relax this requirement.

2.3.1 Setup

For time-steady thermal fronts, we can calculate the equilibrium solution by solving

a set of coupled ODEs; this can then be compared to the time-dependent Athena++

simulations with varying resolution to understand convergence. For given boundary

conditions, we can solve for the unique mass flux when we include both radiative cooling

and conduction in the hydrodynamics equations (Kim & Kim 2013). We assume that
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ρv2 ≪ P , giving us the stationary state equations in the frame of the front:

jx ≡ ρvx = constant (2.9)

Mx ≡ P + ρv2x = constant (2.10)

κ
d2T

dx2
= jxcp

dT

dx
+ ρL(T ), (2.11)

where we have defined the mass flux jx and cp = γ(γ − 1)−1kB/m̄ is the specific heat

at constant pressure. We now have a second order ordinary differential equation in

Eq. (2.11) that can be solved numerically for the eigenvalue jx, subject to the boundary

conditions:

T−∞ = T1 T+∞ = T2
dT

dx ±∞
= 0. (2.12)

Once we solve for jx, we can confirm that the approximation ρv2 ≪ P holds.

Integrating Eq. (2.11) also yields a relationship between the mass flux and the cooling

flux Q:

jx =
Q

cp(T2 − T1)
; Q = −

∫ ∞

−∞
ρLdx. (2.13)

Equation (2.13) makes clear that the mass flux jx depends on the detailed temperature

and density profile within the front; thus requiring that the structure of the front be

resolved. Whether the front condenses or evaporates is given by the sign of jx, which

in turn depends on the pressure of the system (Zel’Dovich & Pikel’Ner 1969). This is

equivalent to a criterion on the cooling time, tcool ∝ P−1. At some critical pressure Pcrit,

jx = 0 and the front is static. For P > Pcrit (P < Pcrit), cooling (heating) dominates and

hence there is a net mass flux from the hot (cold) phase to the cold (hot) phase. We are
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interested in cold gas mass growth, and so focus on the condensing case.

From Eq. (2.11), we can write down two relevant length scales set by conduction

(Kim & Kim 2013) - the diffusion length, over which conduction balances mass flux, and

the Field length, over which conduction balances radiative cooling (Begelman & McKee

1990). Figure 2.2 shows that the advective term is much smaller than the other two

terms in Eq. (2.11), which balance one another. Thus the Field length

λF =

√
κT

n2Λ
(2.14)

is the relevant scale here. It was previously found in studies of thermal instability with

radiative cooling that this length scale needed to be adequately resolved in order for

simulations to converge (Koyama & Inutsuka 2004; Kim & Kim 2013).

To verify the numerical solution for the steady front equilibrium and test for conver-

gence with resolution, we set up the solution profile in a series of Athena++ simulations.

We first initialize the simulation domain as a one dimensional box with x = [−100, 300] pc.

When we reduce resolution, we switch to a larger box with a range of x = [−400, 1200] pc

to avoid boundary effects. The front profile is generated by numerically solving the

ODE for the steady state solution, and centered such that it has a temperature of 105K

at x = 0. The left side has an initial temperature of 104K and a number density of

10−2 cm−3, while the right side has an initial temperature of 106K and a number density

of 10−4 cm−3. These correspond to the cold and hot stable equilibrium states respectively

where the net cooling rate is zero. Outflowing boundary conditions are used at both ends.

With the above setup, we perform a resolution study over four orders of magnitude in

order to identify what scale lengths need to be resolved in the simulation. We perform

three resolution sweeps, one with the fiducial cooling curve where Λ0 = κ0 = 1, one

with very strong cooling where Λ0 = 128, corresponding to the strongest cooling used in
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Figure 2.2: Lower panel: Temperature profile solution of the thermal front. Upper
panel: Corresponding conductive, advective and cooling terms in Eq. (2.11) across the
thermal front.
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§2.5, and one with weak conduction where κ0 = 0.1. By varying thermal conduction or

radiative cooling at similar Field lengths, we can probe how convergence changes when

the Field length is under-resolved but the relative influence of numerical and explicit

diffusion is different.

2.3.2 Results

The bottom panel of Fig. 2.2 shows the temperature profile of the solution obtained

from the ODE in Eq. (2.11), which we solve via the shooting method. The final solution

corresponds to an inflow velocity of 2 km s−1 in the hot gas. The top panel of Fig. 2.2

shows the relative importance of the conductive and advective terms in Eq. (2.11); con-

duction balances cooling over most of the front. By varying the parameters κ0 and Λ0,

we find that jx, Q ∝ (κ/tcool)
1/2, as expected from Eqs. (2.13) and (2.14). This provides

a reference solution which we compare against the Athena++ results in our resolution

study.

The results of the resolution study are shown in the top panel of Fig. 2.3. First con-

sider the runs with conduction. With increasing resolution, we see convergence towards

the mass flux computed from Eq. (2.13). At high resolution, when the Field length is

resolved, the structure of the thermal front is resolved and agrees with the reference so-

lution. However, as we lower the resolution, Q deviates from the reference solution, and

increases steadily Q ∝
√
∆ (where ∆ is the grid scale).These are marked by dashed lines

in Fig. 2.3. In the runs with no thermal conduction, only numerical diffusion balances

cooling. Convergence vanishes and throughout the entire range, Q ∝
√
∆; as ∆ → 0,

Q → 0. This is in line with the expectation that for zero conduction, there should be a

vanishing mass flux. All of the behavior in the fiducial case is in agreement with canonical

expectations.
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Figure 2.3: Resolution Study: Top panel shows 1D runs with fiducial cooling and
conduction. The next two panels reduce the Field length λF, either by reducing
conduction (middle panel), or increasing cooling (bottom panel). While the reduced
conduction case shows resolution dependence once the grid scale ∆ > λF, the in-
creased cooling case shows that Q remains converged over two orders of magnitude
even when λF is unresolved. Clearly, the Field length is not the key criterion when
determining convergence. In the text, we argue instead that it is the relative strengths
of thermal and numerical diffusion that matters. Field lengths, analytic solutions and√
∆ scalings (grey dashed lines) are also shown for comparison.
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Since – in line with previous expectations – the Field length λF ∝
√
κtcool appears to

be the critical scale which must be resolved, we reduce it in two ways, either by reducing

the cooling time tcool or reducing the conductivity κ. We find that these two procedures

do not give the same result for the same reduced Field length. If we keep cooling fixed

but reduce conduction (middle panel of Fig. 2.3), then Q becomes resolution dependent

once ∆ ≳ λF, as expected. By contrast, in the setup with strong cooling, (bottom

panel of Fig. 2.3), we find that the mean cooling Q is slightly lower but still close to the

converged value for ∆ ≲ 100λF, even though the Field length is completely unresolved.

Instead, lower resolution results in rapid temporal oscillations in Q, which increase in

amplitude for lower resolution. Instead of an offset, Q simply oscillates about the correct

equilibrium value. Similar behavior is also observed in the 3D simulations as described

further below in §2.5.6 and shown in Fig. 2.17. Here, we plot the mean value of Q, while

error bars indicate the standard deviation.

These results make clear that one must distinguish between errors due an unresolved

front (stiff source terms) and errors due to numerical diffusion. In our case, an unresolved

front contributes to the variance of the solution (numerical dispersion), but does not bias

the solution. It can be beaten down by time averaging. Numerical diffusion, on the other

hand, unavoidably biases the solution. The criterion for a converged solution is therefore

not ∆ < λF, but rather Dnum < Dthermal; i.e. that numerical diffusion is subdominant to

thermal diffusion.

To expand on this point: the static radiative interface is a stiff problem where the

source term (radiative cooling) defines a length scale (the Field length, over which ther-

mal diffusion and radiative cooling balance) which is often much smaller than other

scales of interest and can lie below the grid scale. It is well-known that hyperbolic sys-

tems with a stiff source term which is unresolved can have wave speeds which are either

spurious (e.g., see Colella et al. 1986 for detonation waves), or still centered about the
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correct value, albeit with a larger dispersion (e.g., LeVeque 2002, see §17.10-17.18). Re-

laxation systems are known to be well-behaved if certain subcharacteristic requirements

are satisfied; although the reason is still not fully understood (Pember 1993). At least

with Athena++, which uses a stable, second-order accurate modified Gudunov method

for handling stiff source terms (Sekora & Stone 2010), and the two-moment conduction

module we have used, radiative thermal fronts appear to fall into this class of problem,

potentially because the sound speed of the cold gas sets a characteristic velocity scale.

When the Field length is not resolved, cooling and conduction cannot balance exactly

due to discretization errors in the temperature and its derivatives. Instead, they (and

hence Q) oscillate about thermal balance and the true answer. While numerical diffusion

creates systematic biases in the true steady state solution, numerical dispersion creates

fluctuating errors which can be averaged out over a long time series. Of course, also the

latter can only buy a limited amount of dynamic range before errors swamp the solution

(in the example shown in the lower panel of Fig. 2.3, it is ∼ 2 orders of magnitude). We

quantify this effect below.

The Field length is a strong function of temperature, and despite the fact that (under

isobaric conditions) volumetric emissivity peaks at few ×104 K, the contribution to the

integral surface brightness is more broadly distributed:

Q =

∫
ρLdx =

∫
ρL T

T ′
dT

T

≈
∫

ρLλF d(log T ) ∝
(
Λ(T )κ

T

)1/2

, (2.15)

where we have used nT ≈ const and T ′ ≈ T/λF. Figure 2.4 shows the integrand ρLλF.

It has two distinct peaks at T ∼ 104 and 105K for the κ = const case considered

here, and is dominated by higher temperatures T > 105K for the more realistic case of

Spitzer conduction. Even though the volumetric emissivity peaks at T ∼ 104K, Q has
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Figure 2.4: The distribution of net cooling with temperature. The solid line shows the
integrand of Eq. (2.15), while the dashed line shows Q(Tfloor = T ), where the lower
limit of the integral in Eq. (2.15) is clipped at Tfloor. Note that Q has contributions
from a broad range of temperatures from 104K < T < 105K, and does not plummet
until Tfloor > 105K.
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contributions from a broad range of temperatures, because the Field length is a strongly

increasing function of temperature:

λF =

(
κT

n2Λ(T )

)1/2

∝
(
T 3+n

Λ(T )

)1/2

, (2.16)

where κ ∝ T n (and n = 0 for κ = const, n = 5/2 for Spitzer conduction). Thus,

even when λF(T ∼ 104K) is unresolved, Q will be approximately correct as long as

λF(T ∼ 105K) is resolved. This explains well the numerical results shown in the lower

panel of Fig. 2.3, for which λF(T ∼ 105K)/λF(T ∼ 104K) ∼ 30.

In summary: in our 1D simulations, in the absence of thermal conduction, the surface

brightness is resolution dependent Q ∝
√
∆. If explicit thermal conduction is included

and larger than numerical diffusion, then Q is numerically converged, even if the Field

length is unresolved. The unresolved Field length merely contributes to an increased

variance. However, once ∆ > λF(T ∼ 105K) ∼ 30λF(T ∼ 104K), the error bars grow

rapidly.

2.4 Analytic Estimates from Turbulent Combustion

In 3D, turbulence in the mixing layer complicates matters considerably. In this sec-

tion, we explore parallels between radiative and combustion fronts, and review findings

from the turbulent combustion literature. Based on this, we also develop an analytic

model of radiative TMLs.

2.4.1 Introduction & Terminology

There are close parallels between a two-phase radiative front and a combustion front.

In a radiative front, the ‘fuel’ is hot gas, which ‘burns’ (i.e. cools radiatively) in a

24



Radiative Mixing Layers: Insights from Turbulent Combustion Chapter 2

AT
AL ·m

SL

ST vshear
u′ �

Figure 2.5: Slice through a mixing layer simulation with the relevant quantities from
combustion theory marked.

temperature and density dependent manner upon mixing with ‘oxidizer’ (cold gas) to

produce ‘ash’ (more cold gas). The one unusual characteristic in radiative fronts is that

the end product is more ‘oxidizer’. Moreover, combustion fronts share the property that

the rate of burning and hence speed of front propagation is determined by conditions

within the front, which in general must therefore be resolved; it similarly reduces to a

non-linear eigenvalue problem in 1D (Zeldovich et al. 1985). Due to the obvious bearing of

turbulent combustion on gas chamber combustion engines in automobiles and jet engines,

with implications for fuel efficiency and air pollution, the literature is vast (see Kuo &

Acharya 2012 for a recent comprehensive textbook). Importantly, besides sophisticated

high resolution numerical simulations, there is a plethora of experimental results. Within

the astrophysical community, similar issues arise in thermonuclear burning fronts on

carbon-oxygen white dwarfs, where conditions within the front determine the burning

rate. The large scale separation (∼ 107) between the size of the white dwarf (which sets

the outer scale of turbulence) and the front structure precludes direct calculation of the

fronts in simulations; a subgrid model (e.g., Niemeyer & Hillebrandt 1995; Schmidt et al.

2006; Jackson et al. 2014) is necessary. Here, we draw upon this literature to provide an
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intuitive physical picture for the puzzles described in §2.1.

In the language of combustion literature, in radiative TMLs the fuel and oxidizer are

not perfectly pre-mixed before combustion. Instead, the two are initially separate. They

are subsequently entrained and dispersed by large scale eddies with turbulent velocity

u′. The turbulent cascade down to small scales leads to stretching, fragmentation and a

vast increase in surface area, until at small scales diffusion mixes the fuel and oxidizer

and allows combustion to take place. The net result is that fuel is consumed at a rate

ṁ. The process is similar to how stirring enables a vast increase in surface area and the

large mixing rate between coffee and cream, despite the long molecular diffusion time.

What is the characteristic velocity at which a thermal front propagates, and how do

results depend on the source of thermal diffusion? Thermal diffusion is canonically due

to thermal conduction. In the absence of turbulence, this gives rise to a ‘laminar flame

speed’ SL ∼
√

DL/tcool, where DL is the customary diffusion coefficient with units of

L2T−1. This can be seen by balancing thermal diffusion with cooling (Eq. (2.13) below),

or simply from dimensional analysis. If, however, thermal conduction is not included,

which is often the case in many numerical simulations, then all diffusion is numerical: gas

mixing and thermal diffusion operate close to the grid scale. When numerical diffusion

dominates, D ∼ v∆x, where v is a characteristic velocity and ∆x is the grid scale. Thus,

in the absence of conduction, SL ∝
√
∆x.

Turbulence gives rise to a large increase in surface area of the phase boundary AT ≫

AL which leads to a ‘turbulent flame speed’ ST ≫ SL, where ST (corresponding to

vin in Eq. (2.1)) characterizes the rate at which fuel is consumed and the overall front

propagates. Our goal is to understand ST, which sets the hot gas entrainment rate. In

Fig. 2.5 we visualize the quantities introduced in this section.

In this paper, we consider the impact of shear driven turbulence on the radiative front.

Evaporative fronts are subject to a well-known corrugational instability, the Darrieus-
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Landau instability (Zeldovich et al. 1985; Landau & Lifshitz 1987; Inoue et al. 2006),

which deforms the front and drives turbulence, which can also lead to increased surface

area and accelerated reaction rates. Here, we focus only on condensation fronts.

2.4.2 Characteristic Regimes

Turbulent combustion is characterized by several dimensionless numbers (Kuo &

Acharya 2012). These give rise to classification into many distinct burning regimes which

are typically shown on a plot known as a Borghi diagram. For our purposes, the most

useful parameter is the Damköhler number:

Da =
τturb
τreact

=
L

u′tcool(T )
, (2.17)

which gives the ratio of the eddy turnover time at the outer scale L, with turbulent

velocity u′, to a reaction time2. For us, it can also be viewed as Da ∼ L/Lcool(T ), the

ratio of the integral length scale of turbulence to the cooling length Lcool(T ) ∼ u′tcool(T ).

Note that the cooling time tcool(T ) varies with temperature through the front. The

Damköhler number separates two asymptotic regimes, Da ≪ 1 (‘well-stirred reactor’)

and Da ≫ 1 (‘corrugated flamelets’) which are universal across all classification schemes.

The cooling time tcool(T ) decreases continually across the front, as the temperature T

declines from the hot to the cold gas temperature (Th and Tc, respectively) and the

cooling function peaks extremely close to Tc. Initially, close to the hot gas boundary,

Da < 1. Turbulence cascades to the diffusion (grid) scale before the two components

2Another important parameter in combustion studies is the Karlovitz number Ka = δ2/η2, where δ is
the diffusive scale (corresponding to the Field length) and η is the Kolmogorov scale at which viscosity
damps turbulence. It determines whether the propagation of the small scale interface is set by laminar
burning, or whether turbulence alters the structure of the diffusive front. Since we do not have explicit
thermal conduction or viscosity, the flamelet fronts are generally unresolved and we have δ ∼ η ∼ ∆x,
i.e. Ka ∼ 1 in our simulations.
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react. Fuel and oxidizer are well mixed and thus the reaction rate is uniform across

the entire volume. This is known as the ‘well-stirred reactor’ regime. In mixing length

theory, this can be characterized by a turbulent diffusion coefficient Dturb ∼ u′L. Thus,

in the weak cooling (Da < 1) regime, we expect:

ST ≈
(
Dturb

tcool

)1/2

≈
(
u′L

tcool

)1/2

. (2.18)

However, as we move toward the cold gas boundary, the temperature and cooling

time fall. When Da > 1, burning proceeds before mixing is complete, and combustion

thus takes place inhomogeneously. In our context, inhomogeneous cooling leads to frag-

mentation into a multiphase medium. The criterion Da ∼ 1 corresponds to the transition

between single and multiphase structure in the mixing layer. The steep temperature de-

pendence of cooling means that most cooling takes place in thin unresolved fronts close

to T ∼ 104K at the interface between cold and hot gas. The turbulent cascade wrinkles

this interface and vastly increases its area, thus increasing the volumetric cooling rate.

In a famous paper, Damköhler (1940) conjectured that the increase in surface area leads

to a turbulent flame speed:

ST ≈ SL

(
AT

AL

)
, (2.19)

where AT and AL are the turbulent and laminar flame areas. This comes from simply

equating the mass flux through AL at velocity ST with the mass flux through AT at

velocity SL, as illustrated in Fig. 2.5. This intuitive notion can be made more precise

and proven (Bray & Cant 1991).
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2.4.3 Scalings of the turbulent velocity ST

To calculate ST, we therefore need to know AT/AL. This has no single consensus

answer; for instance, Table 5.1 of Kuo & Acharya (2012) lists 20 fits to ST/SL obtained

from theory, simulation and experiment depending on geometry, boundary conditions

and flame wrinkling process. One simple way of parametrizing most known scalings is to

write:

ST

SL

=
AT

AL

= 1 +

(
u′

SL

)n

≈
(
u′

SL

)n

, (2.20)

where the last equality holds for u′ ≫ SL. The most well-known scaling is n = 1

(Damköhler 1940), which has substantial experimental support in a variety of settings.

For instance, Libby et al. (1979); Clavin & Williams (1979); Peters (1988); Bray (1990);

Bedat & Cheng (1995) obtain similar scalings in both theory and experiment. It implies

ST ≈ u′, (2.21)

i.e. that the combustion front simply propagates at the turbulent velocity. A useful

geometrical interpretation comes from Damköhler (1940) and Shchelkin (1943) who con-

sidered the distortion of the flame-burning front into several ‘Bunsen cones’ – analogous

to a Meker burner. A simplified version of his argument is as follows: consider a flat

interface of area AL = L2. It propagates in a direction normal to the front at velocity SL.

Over a burning time tburn ∼ L/SL, laminar burning will traverse a distance L, whereas

turbulent motions traverse a distance lturb ∼ u′tburn ∼ (u′/SL)L, creating a wrinkled

(conical) region with area AT ∼ lturbL ∼ (u′/SL)AL. Thus, AT/AL ∼ u′/SL. A more

careful consideration of the conical geometry gives

AT

AL

∼

(
1 +

(
2u′

SL

)2
)1/2

, (2.22)
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which reduces to AT ∝ u′ for u′ ≫ SL. Note that in our context, ST ∼ u′, independent

of all other parameters, including SL, which in general is resolution dependent.

Thus far, we have ignored the influence of other parameters. As previously mentioned,

turbulent combustion is in fact characterized by at least two dimensionless numbers in

a Borghi diagram, typically either (ReL,Da) or (η/δ, u′/SL), where δ is the thermal

diffusive scale and η is the Kolmogorov scale. An important boundary in the Borghi

diagram is the Klimov-Williams line, where Ka = (δ/η)2 ∼ 1, where laminar flame scales

and turbulent stretching scales become comparable. As noted earlier, in numerical codes

where numerical diffusion is dominant, we expect δ ∼ η ∼ ∆, so that Ka ∼ 1, and we

are always in this regime. In a broad neighborhood of the Klimov-Williams line, flame

propagation has been argued to obey the scaling (Gülder 1991):

ST

u′ = Da1/4 =

(
L

u′τreact

)1/4

, (2.23)

which fits a large body of burning velocity data (Gülder 1991; Zimont et al. 1995). Note

that this is precisely the vmix ≈ cs,cold(tcool/tsc,cold)
−1/4 scaling previously reported (Gronke

& Oh 2018, 2020a; Fielding et al. 2020) if we identify u′ ≈ cs,cold and Da ∼ L/(u′treact) ∼

tsc,cold/tcool – but backed up by experimental data. In this work, we will test and confirm

the resolution independence of vin (cf. §2.5.6), and thus continue with Eq. (2.23) as our

‘fiducial’ scaling in the strong cooling regime where Da > 1. Note that while combustion

theory can provide a link between ST and u′ and helps us understand the core questions

presented in §2.1, the scaling of u′ with respect to the flow properties depend on the

turbulent driving process and have to be found from numerical experiments (see §2.5.3).
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2.4.4 Details of the Fiducial ST/u
′ = Da1/4 Scaling

What is the theoretical justification for Eq. (2.23)? Following Tennekes (1968); Kuo

& Corrsin (1972), Gülder (1991) argues that turbulent vortex tubes should be separated

by a distance of order the Taylor microscale3. Assuming that laminar burning fronts

must cover a distance of order the Taylor microscale to complete burning, he arrives at

Eq. (2.23). We do not recount his arguments here, but instead refer interested readers

to the original paper.

It is not clear how applicable the Gülder (1991) argument is to our numerical simula-

tions, which do not have explicit viscosity and a well defined Reynolds number, and thus

do not have a well-defined Taylor microscale (which will vary with resolution). For us,

the most important fact is that there is significant experimental evidence in turbulent

combustion data for the scaling in Eq. (2.23), which do not suffer from the same limi-

tations as our numerical simulations. Here, we propose a simpler alternative argument

which gives similar results.

What is the effective cooling time τ̃cool of an inhomogeneous medium where Da > 1?

It is clearly not the standard cooling time tcool, since only a small fraction of the medium

is cooling. Consider cold gas as a scalar pollutant, which diffuses over scales λ on a

timescale tD ∼ λ2/Dturb. In the fast cooling (Da ¿ 1) limit, all of the mixed gas will cool.

Over a cooling time, the cold gas diffuses over a distance (setting tD ∼ tcool):

λcool ∼
√

Dturbtcool ∼
√

Lu′tcool (2.24)

Thus, after a cooling time tcool, only a fraction fcool ∼ λcool/L of the gas in an eddy has

mixed and cooled; only after Ncool ∼ f−1
cool ∼ L/λcool cooling times does all the gas in the

3The Taylor microscale is a lengthscale which comes from a Taylor series expansion of flow correla-
tions; it is the scale at which shear is maximized. While it is larger than the Kolomogorov scale, it can
be thought to demarcate the end of the inertial range and the beginning of the dissipation range.
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eddy cool. The effective cooling time is therefore:

τ̃cool ∼ Ncooltcool ∼
L

λcool

tcool ∼
√

L

u′ tcool, (2.25)

i.e., the geometric mean of the eddy turnover time and the cooling time. Equivalently,

we can view Eq. (2.24) as the effective mean free path of a fluid element. The mean free

time is therefore:

τ̃cool ∼
λcool

u′ ∼
√

L

u′ tcool, (2.26)

which gives the same result. Hot gas in the multiphase, strong cooling region is converted

to cold gas on a timescale τ̃cool, which is shorter than the mixing time L/u′, but longer

than than homogeneous cooling time tcool, since only a small fraction of the volume is

cooling.

Equation (2.25) is a common random walk result. For instance, consider a photon

in a medium which scatters (with optical depth τs) and absorbs (with optical depth

τa). Then the effective optical depth is τ∗ ∼ √
τaτs, with effective survival time t∗ ∼

√
tats (Rybicki & Lightman 1986). Similarly, when considering the competition between

thermal conduction and cooling, the Field length:

λF ∼

√
κT

n2Λ(T )
∼
√
λevetcool (2.27)

(using κ ∼ Pveλe/T ) is the geometric mean of the elastic (λe; the Coulomb mean free

path) and inelastic (vetcool) mean free paths for a thermal electron. Considering the

Field length as the effective mean free path for an electron, the mean free time is te ∼

λF/ve ∼
√
tetcool, where te ∼ λe/ve. Eqs. (2.24) and (2.25) are the equivalent analogs for

a turbulent eddy, with λe → L, ve → u′. Note that the largest eddies dominate mixing,

and so therefore all quantities related to turbulence are evaluated at the outer scale L.
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Later in §2.5.4, we shall see from simulation results that (as assumed here) the turbulent

diffusion coefficient Dturb ∼ u′L is relatively unaffected by cooling.

Substituting τ̃cool (Eq. (2.25)) for the cooling time in the usual expression for the

turbulent flame velocity (Eq. (2.18)), we obtain:

ST ∼
(
Dturb

τ̃cool

)1/2

∼ u′
(

L

u′tcool

)1/4

∼ u′Da1/4. (2.28)

Beyond the turbulent flame speed (Eq. (2.28)), this ansatz makes predictions which

are testable in the simulations:

• Effective emissivity. This model predicts an effective cooling time in the multiphase

region given by Eq. (2.25), so that the effective emissivity is:

ϵ̃ ∼ P

τ̃cool
∼ P

(
u′

tcoolL

)1/2

. (2.29)

The ϵ̃ ∝ u′1/2t
−1/2
cool scaling can be checked in the simulations.

• Width of multiphase regions. Equivalently, if Eqs. (2.28) and (2.29) hold, then we

can use Q ∼ Pvin ∼ ϵ̃h to find that the width h of the multiphase region scales as:

h ∝ L

(
u′tcool
L

)1/4

∝ Da−1/4, (2.30)

where the h ∝ (u′)1/4t
1/4
cool scaling can be tested in the simulations. Of course, of

Eqs. (2.28), (2.29), and (2.30), only two are independent.

We caution once again that there does not appear to be universally applicable turbu-

lent velocity scalings in the literature, which tend to be situation dependent. Nonetheless,

it is reassuring to see that the scalings we see in our numerical simulations with limited
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dynamic range have also been seen in a large body of experimental data and have theo-

retical justification.

2.4.5 Implications for the fractal nature of mixing layers

These properties can also be related to the fractal nature of radiative mixing layers.

Recently, Fielding et al. (2020) showed that the area of the cooling surface in radiative

mixing layer simulations obeys a fractal scaling, with

AT

AL

=

(
λ

L

)2−D

, (2.31)

where λ is the smoothing scale and D = 2.5 was the fractal dimension argued to hold by

analogy with well-known fractals, and verified in their simulations. Turbulence combus-

tion fronts are indeed well known to be fractals, due to the dynamical self-similarity of

turbulence in the inertial range. Experimental measurements by e.g. instantaneous laser

tomography have given values ranging from D = 2.1−2.4 in a variety of flow geometries,

with a preferred value of D = 2.35 (Hentschel & Procaccia 1984; Sreenivasan et al. 1989);

it has been argued that this fractal dimension is universal (Catrakis et al. 2002; Aguirre

& Catrakis 2005). From Eq. (2.19), the fractal dimension can be used to calculate the

turbulent flame speed (Gouldin et al. 1986; Peters 1988). The fractal scaling and conse-

quent increase in area AT should extend all the way down to the Gibson scale λG, which

is defined to be the scale where the turbulent velocity equals the laminar flame speed,

v(λG) = SL. This is often unresolved in simulations. If we use the Kolmogorov scaling

v ∝ λ1/3, then we obtain:

ST

SL

=
AT

AL

=

(
λG

L

)2−D

=

(
u′

SL

)3(D−2)

, (2.32)
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where we have used Eq. (2.31) and v(λG) = SL. Thus, in Eq. (2.20), we have n = 3(D−2).

The experimental value of D = 2.35 gives n = 1.05, in good agreement with Damköhler’s

scaling, and fair agreement with the scaling in Eq. (2.23). The Fielding et al. (2020)

value of D = 2.5 gives n = 1.5, or ST = u′(u′/SL)
1/2. If one uses the laminar SL ∝ t

−1/2
cool

from our static simulations, this would imply ST ∝ t
1/4
cool. However, in the Fielding et al.

(2020) model, the speed at which a cooling layer advances is SL ∝ t
1/2
cool, so they end

up with ST ∝ t
−1/4
cool as well. The scalings are sensitive to the fractal dimension D and

the measurement error on D obtained from the simulations is unclear at this point. In

addition, the cutoff scale of turbulence may not be the Gibson scale. We caution that

fractal arguments have not proven to be fully robust in the turbulent combustion context.

For instance, the measured fractal parameters fluctuate depending on the extraction

algorithm, and have not been able to correctly predict the turbulent burning velocity

(Cintosun et al. 2007).

2.4.6 Implications for energetics and convergence criteria

The above considerations bear upon the two over-arching questions first raised in

§2.1, which will be further addressed in the course of this paper.

Energetics. Why is ST ∼ cs,cold? From Eq. (2.21), we have ST ∼ u′, i.e. of order the

turbulent velocity at the outer scale. The timescale of the Kelvin-Helmholtz instability,

which mixes the two fluids, is tKH ∼ √
χL/vshear; the characteristic turbulent velocity of

the interface between hot and cold gas is u′ ∼ vshear/
√
χ ∼ Mhotcs,hot/

√
χ ∼ Mhotcs,cold.

If Mhot ∼ 1, as is true for many situations in the CGM (since the virial velocity is of

order the virial sound speed), this reduces to u′ ∼ cs,cold. We will study detailed scalings

of u′ in §2.5.3.
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Resolution independence. Neither our fiducial scaling (Eq. (2.28)) nor the Damköhler

scaling (Eq. (2.21)) depend on the diffusion coefficient, and thus are independent of

resolution. Physically, this is because most radiative cooling takes place in the Da > 1

regime, when the cooling time is shorter than the eddy turnover time. When cooling is

‘fast’ compared to mixing, all gas which mixes cools – the rate limiting step is the rate at

which turbulence cascades to diffusive scales, whereupon mixing and cooling happen on

very short timescales. The time the turbulent cascade takes to reach small scales is simply

τturb ∼ L/u′ the eddy turnover time at the outer scale, since in Kolmogorov turbulence,

the eddy turnover time τl ∼ l/vl ∝ l2/3 is a progressively smaller function of scale. The

situation is similar to passive scalar mixing, except that here the passive scalar which is

being advected is temperature. The rate at which coffee mixes with cream is given by the

stirring time of the spoon, independent of the details of molecular diffusion. Similarly,

the rate at which hot gas mixes with cold gas and subsequently cools is given by the

eddy turnover time at the outer scale, independent of the details of thermal (numerical)

diffusion, which set the structure of the (often unresolved) laminar thermal fronts. Thus,

the important scale that needs to be resolved is the mixing due to turbulent eddies at

the outer scale.

2.5 3D Simulations: Turbulent Fronts

We next turn to 3D simulations of radiative mixing layers. Due to an additional in-

gredient – turbulence – not present in 1D simulations, their properties are quite different.

In this section, we compare the results of 3D simulations to the model discussed in the

previous section.
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2.5.1 Setup

Our setup closely follows the work of Ji et al. (2019). The coordinate system is as

follows: y is the axis of shear flow, x is normal to the cold/hot interface (the principal

direction of interest along which front properties vary), and z is the third remaining

dimension. Boundary conditions are periodic along the y and z axes and outflowing

along the x axis. The bounds of the x axis are [−100, 200] pc and the bounds for

the y and z axes are [0, 100] pc. Cold 104 K gas is initially located in the negative x

region and hot 106 K gas in the positive x region, separated by a smoothly varying front

centered at x = 0 where T = 105 K. The initial front profile is obtained by solving for

the 1D steady state solution as described previously. The initial gas density is set to

nhot = 1.6×10−4 cm−3 and ncold = 1.6×10−2 cm−3 in the hot and cold gases respectively.

We use a resolution of 384× 128× 128 in the box, which corresponds to a cell length of

0.78 pc. This is approximately the minimum Field length in the simulation when thermal

conduction is included. We also introduce a shear velocity profile across the front that

takes the following form:

vy =
vshear
2

tanh
(x
a

)
, (2.33)

where we set the scale length a = 5 pc, and the shear velocity vshear = 100 km/s, which

is of order the sound speed of the hot medium. The profile is then perturbed as follows

to induce the Kelvin Helmholtz instability:

δvx = A exp

(
−x2

a2

)
sin(kyy) sin(kzz), (2.34)

where we set the perturbation amplitudeA to be 1% of vshear. We also set the perturbation

wavelength λi = 2π/ki to be of order the box size, and set the ballistic speed of free
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electrons to be Vm ∼ 15 times the hot gas sound speed when thermal conduction is

included. The latter pertains only to §2.5.5 – thermal conduction is not included in

any of the other 3D simulations. We check that results are not sensitive to these choices.

Unlike adiabatic mixing layers which continue to grow over time, our mixing layers appear

stable after the initial onset and development of turbulence. All quantities presented

were measured in the latter half of the simulations after the mixing layers had been given

sufficient time to reach this stage. The exact time periods vary between simulations, but

simulations were run sufficiently long to ensure that they span at least 20 Myr. Errors

bars reflect the standard deviation of the measured values. While the surface brightnesses

Q were saved at very small time intervals, and hence have many measurements, the

turbulent velocities u′ were calculated from full simulation snapshots and have a smaller

(∼ 10) number of measurements per simulation.

2.5.2 Morphology of Mixing Layers: Transition from Single

Phase to Multiphase

We begin by examining the morphology and slice averaged properties of the mixing

layer, and how these vary with cooling (or equivalently, with Damköhler number Da).

We shall soon see (§2.5.4) that temperature and velocity profiles can be calculated by

judicious application of mixing length theory.

The upper panels in Fig. 2.6 show the normalized profiles for the emissivity, mean

temperature, and volumetric fraction of gas in the cold phase4, for the weak (Λ0 = 1/4),

fiducial (Λ0 = 1), and strong (Λ0 = 8) cooling cases respectively. They also plot the

Damköhler profile. In calculating the Damköhler number, we use a fixed length scale

L = 100 pc (the box size in the direction of the flow), but use local values of the turbulent

4Defined to be T < 5× 104K gas.

38



Radiative Mixing Layers: Insights from Turbulent Combustion Chapter 2

0.0

0.2

0.4

0.6

0.8

1.0

Weak Cooling (Λ0 = 1/8)

ρ/ρmax
T/Thot
fcold
Da

Fiducial (Λ0 = 1)

ρ/ρmax
T/Thot
fcold
Da

Strong Cooling (Λ0 = 16)

ρ/ρmax
T/Thot
fcold
Da

−100 −50 0 50 100 150
x (pc)

−2

0

2

v/
c s

,c

vy
u'
ℓmix∇(vy)

−100 −50 0 50 100 150
x (pc)

vy
u'
ℓmix∇(vy)

−100 −50 0 50 100 150 200
x (pc)

vy
u'
ℓmix∇(vy)

Figure 2.6: Upper panels: Normalized profiles for the mean emissivity, the mean
temperature, and volumetric fraction of gas in the cold phase for various cooling
strengths. The profile of the Damköhler number is also shown, denoting the region
where mixing is more efficient than cooling. Lower panels: Mean shear and rms
velocity profiles for the same selection of cooling strengths. The red dashed line shows
the gradient of the shear velocity ∇(vy) multiplied by a mixing length ℓmix = 15 pc,
which traces the rms velocity profile well.
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velocity u′ and cooling time tcool measured from the simulation. The initial Damköhler

number Da = L/(u′tcool) in the hot medium is small due to the extremely long cooling

times. However, as mixing proceeds and the mean temperature falls in the mixing layer,

the cooling time falls and the Damköhler number rises toward cooler regions. The fact

that the Damköhler number is a function of position within the mixing layer is important

for understanding some key properties. Note that the mixing layer has roughly constant

pressure. There are small pressure fluctuations seeded by cooling which are compensated

by increased turbulent pressure support, so that P +ρu′2 ≈ const (see Figure 8 of Ji et al.

2019), but these fluctuations are sufficiently small (δP/P < 10%) that isobaric cooling

is a good approximation.

The lower panels in Fig. 2.6 show the corresponding mean and rms velocity profiles.

The rms velocity is calculated by first subtracting off the mean flow in both the y (flow)

and x (normal to cold/hot interface) directions. We have explicitly checked that the

velocity dispersion is roughly isotropic (σ2
x = σ2

y = σ2
z), a sign of well-developed turbu-

lence. While stronger shear flows do display more anisotropy, the difference stays within

a factor of two. It is interesting such isotropy can arise, despite the strong anisotropy in

mean flow. The velocity dispersion σ2
z is a particularly good indicator, since there is no

mean flow in the z direction.

Figure 2.6 reveals a number of interesting properties:

• The criterion Da = 1 roughly controls the transition from single phase to multi-

phase gas, when the cold gas fraction first becomes non-zero. In the weak and

fiducial cooling cases, the mean temperature falls substantially in the single phase

regime (the ‘well-stirred reactor’, in the language of §2.4), before the gas turns

multiphase. Thus, the mean temperature profile and the cold gas profile do not

track one another. A substantial amount of the cooling flux is emitted in the single-
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phase regime. However, for the strong cooling case, all cooling takes place in the

multiphase regime. In this case, the mean temperature profile tracks the cold gas

profile; T̄ ≈ fcoldTcold + (1− fcold)Thot.

• The turbulent velocity tracks the shear, u′ ∝ ∇vy. This is expected from mixing

length theory, where u′ ≈ l∇vy, and l is the mixing length. We discuss this further

in §2.5.3.

• The normalized emissivity has an approximately Gaussian profile, as one would

expect if cooling balances the divergence of turbulent diffusion. A diffusive process

will of course have a Gaussian profile. For instance, in a multiphase medium, the

fractal hot/cold gas boundary (where most of the cooling takes place in a thin sheet)

has a Gaussian distribution of displacements from the mid-point, as expected for

a random walk. The emissivity tracks the cold gas fraction rather than the mean

temperature profile, peaking at fcold ≈ 0.5. This makes sense, since the surface area

of the hot-cold interface (which dominates cooling) peaks when fcold = 0.5. The

emissivity profile becomes narrower in the strong cooling regime. Later, we shall

see that the area under the blue curves Q ∝ t
−1/2
cool , t

−1/4
cool in the weak and strong

cooling regimes respectively.

• In the strong cooling regime, the cooling emissivity and turbulence track one an-

other closely. Both peak at the same spatial location (where fcool ≈ 0.5). This was

predicted by Eq. (2.29), where ϵ̃ ∝ u′1/2. This is consistent with our model, where

turbulent mixing regulates the fraction of gas available for cooling.

• The mean temperature profile and mean velocity profile also track one another quite

closely, corresponding to M ≈ 1 in the shear layers (see also Figure 9 of Ji et al.

2019). Thus, for instance, cooling causes the shear profile to narrow in moving from
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weak to fiducial cooling. This makes sense since turbulent diffusion governs both

momentum and thermal transport. Furthermore, in the strong cooling case, the

cooling emissivity also tracks the shear profile: ϵ̃ ∝ u′1/2t
−1/2
cool ∝ (∇vy)

1/2t
−1/2
cool . This

correspondence fails when sink/source terms in the energy equation which are not

present in the momentum equation become dominant: (i) very strong cooling (see

the low temperature portion of the strong cooling regime), or (ii) highly supersonic

flow in the hot medium (not shown). In the latter case, shocks and turbulent

dissipation heat the gas, and so the hot region remains hot even when significant

cool gas is mixed in. These effects narrow the temperature profile relative to the

velocity profile.

The distinction between the weak (single phase) and strong (multiphase) cooling

regimes can be clearly seen in Fig. 2.7. At first glance, both cases appear to be similar,

except that the weak cooling case has a broader mixing layer (top panel). However, it is

already apparent that there is a lot more intermediate temperature (T ∼ 105K) gas in the

weak cooling case. We can also see this in the temperature slices, which only show the

‘multiphase’ portion of both cases (when fcold is non-zero). For weak cooling, the ‘hot’

phase in this regime is significantly cooler than T = 106K, the initial temperature of the

hot gas – it has cooled via efficient mixing in the single-phase regime. By comparison, the

temperature contrast between the two phases is much higher in the strong cooling case,

with a clearly bimodal temperature distribution centered at T ∼ 104K and T ∼ 106K.

In both cases, the amount of intermediate temperature (T ∼ 105K) gas peaks when

fcool ∼ 0.5, where the emissivity also peaks. In the strong cooling case, cooling is clearly

dominated by the very thin (unresolved) interface between the phases, as can be seen in

the emissivity slices (bottom panel). This is less true in the weak cooling case, where a

larger fraction of the volume contributes to cooling (note the low filling factor of interface
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Figure 2.7: Slices of temperature and cooling for the ‘low cooling’ (left) and ‘high
cooling’ regime where the cooling function has been reduced or amplified by a factor
of four, respectively. The top row shows a temperature slice orthogonal to the flow
while the middle and lower panels show temperature and emissivity at three different
depths in the mixing layer (marked in the top with grey dashed lines). The cooling
slices have been normalized by the boost factor of Λ0 = 1/4 and Λ0 = 4 for the left and
right panels, respectively, to allow comparison of interface widths. We observe that
the gas is strongly multiphase, especially when cooling is stronger, and that cooling
happens mostly at the interfaces between the two phases. When cooling is weaker,
these interfaces are thicker. This is consistent with the idea that they are defined by

a diffusive length λF ∝ t
1/2
cool.

regions at fcold = 0.5, when cooling peaks). Furthermore, the interface regions (which

should scale as l ∝ t
1/2
cool) are now broader and clearly resolved.

2.5.3 Scaling Relations

The key theoretical quantity of interest in radiative mixing layers is the hot gas

entrainment rate vin, or equivalently the surface brightness Q (assuming that hot gas

enthalpy flux balances cooling). This determines the rate at which hot gas is converted

to cold gas, which has many important implications, amongst them the ability of cold

gas to survive in the face of hydrodynamic instabilities (Gronke & Oh 2018). In previous
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work, we derived the mass growth rate shown in Eq. (2.1). However, this was performed

at relatively low resolution. Higher resolution work similar to that done here (Ji et al.

2019) also obtained scaling relations, with some important differences. However, their

results relied on a rather small number of simulations. Here, we clarify the nature of the

scaling relations using a larger set of simulations, and thus put the results obtained from

previous studies in a broader context. In particular, we explicitly test5 the predicted

scaling relations Eqs. (2.18) and (2.28), which state that in the weak cooling regime,

Q ∝ vin ∝ u′1/2(L/tcool)
1/2, while in the strong cooling regime, Q ∝ vin ∝ u′3/4(L/tcool)

1/4,

with no additional dependence on other parameters such as overdensity χ and flow Mach

number (relative to the hot gas sound speed) M (§2.5.3). We then test scalings for

emissivity, or equivalently for the width of the mixing layer (§2.5.3). Finally, we test how

turbulent velocities u′ vary with χ,M, tcool in our specific setup (§2.5.3).

Scaling Relations for Q

Dependence on Cooling. Figure 2.8 shows the surface brightness Q as a function of

cooling strength Λ0. It is clear that Q ∝ Λ1/2 ∝ t
−1/2
cool (Q ∝ Λ1/4 ∝ t

−1/4
cool ) in the weak

(strong) cooling regimes, as predicted by Eqs. (2.18) and (2.28) respectively. We have

already seen that the Damköhler number varies spatially across a mixing layer. Here, it is

useful to define a Damköhler number characterizing a single simulation as a whole. This

provides a reference point for differentiating between the two regimes. Thus, for each

simulation, we have to choose a single value for the spatially varying quantities u′, tcool.

We choose the peak value of u′; later, we shall see in §2.5.3 that this is insensitive to

cooling. For tcool, we use the cooling time of mixed intermediate T = 2 × 105 K gas,

which is tcool,mix = 10 Myr for the cooling time in the fiducial simulation, and adjust

5In practice, we only vary tcool when testing the scaling Q ∝ (L/tcool)
n. Since the cooling length is

the only scale in the problem (ideal hydrodynamics is scale free), varying L and tcool at fixed L/tcool are
equivalent. We have checked this previously for cloud-crushing setups.

44



Radiative Mixing Layers: Insights from Turbulent Combustion Chapter 2

10−1 100 101
Damix

10−1 100 101 102

Cooling Strength Λ0

10−7

Q 
(e

rg
 c

m
−2

 s
−1

)

α= 1/2
α= 1/4

Figure 2.8: Surface brightness Q as a function of cooling strength. We see that Q

scales as t
−1/2
cool for weak cooling and t

−1/4
cool for strong cooling. These two regimes can

be characterized by Damix, which we show in the top axis for reference.
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Figure 2.9: Surface brightness Q plotted against turbulent velocities for the two cool-
ing regimes. Expected scalings are given by the orange dashed lines.
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Figure 2.10: Q/u′3/4 is independent of both the shear velocity (upper panel) and
the overdensity (lower panel) as expected from Eq. (2.28). Note that to change the
overdensity we varied both the cold and hot gas temperatures (shown in blue and
orange, respectively).
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it accordingly in other simulations. We denote the resulting characteristic Damköhler

number as Damix, which is shown in the top of Fig. 2.8 as a secondary axis. The turnover

between the two scalings thus occurs where Damix ∼ 1. When Damix is small, we are in

the weak cooling regime and conversely, when Damix is large, we are in the strong cooling

regime.

Dependence on Turbulence. Figure 2.9 shows the surface brightness Q as a function

of the measured peak turbulent velocity u′, in the weak and strong cooling regimes

respectively. The turbulent velocity was varied by changing the shear velocity (u′ ∝ v0.8shear;

see §2.5.3). As given by Eqs. (2.18) and (2.28), Q ∝ u′1/2 and Q ∝ u′3/4 in the weak and

strong cooling regimes, respectively. Interestingly, these relationships stay the same even

when the flow is supersonic with respect to the hot gas.

No Hidden Parameters. As discussed in §2.4, radiative mixing layers are characterized

by the dimensionless parameters Da = τturb/tcool, M, χ. Above, we tested the dependence

on Da via the dependence on τturb and tcool. By contrast, our theoretical predictions for

Q (Eqs. (2.18) and (2.28)) do not contain any explicit dependence6 on M, χ. We confirm

this by plotting Q divided by our fiducial scalings against χ and M in Fig. 2.10. For

the simulations that vary the overdensity, we assumed a flat cooling curve and adjusted

Λ0 to keep tcool of the cold gas constant throughout. We see that our fiducial scalings

are accurate, with no additional dependence on the parameters χ and M across a wide

dynamic range. While Fig. 2.10 shows the strong cooling case (Λ0 = 64), we also check

that this holds for the scaling in the fiducial regime.

In summary, our fiducial formula for Q is

Q = Q0

(
P

160kBcm−3 K

)(
u′

30 km/s

)1/2(
L

100 pc

)1/2(
tcool,min

0.03 Myr

)−1/2

(2.35)

6Q does, however, have implicit dependence on M, χ since u′ = u′(M, χ). See §2.5.3

48



Radiative Mixing Layers: Insights from Turbulent Combustion Chapter 2

in the slow cooling regime and

Q = Q0

(
P

160kBcm−3 K

)(
u′

30 km/s

)3/4(
L

100 pc

)1/4(
tcool,min

0.03 Myr

)−1/4

(2.36)

in the fast cooling regime, where tcool is evaluated at the peak of the cooling curve and

the scalings are normalized by Q at the turnover point in Fig. 2.8:

Q0 ∼ 8.8× 10−8 erg cm−2 s−1. (2.37)

Scaling relations for Effective Emissivity

The above simulations confirm our scalings for Q. However, we would like to test the

theoretical ideas behind them. The formula in the single-phase regime (Eq. (2.18)) is a

straightforward application of mixing length theory, entirely analogous to the thermal

conduction case (§2.3). However, the formula for the multiphase regime, (Eq. (2.28)) is

much less well-established. Its central claim is that the eddy lifetime is now the geometric

mean of the eddy turnover time and the cooling lifetime (Eq. (2.25)). As discussed in

§2.4.4, this can be tested by checking that the effective emissivity of the multiphase

medium scales as ϵ̃ ∝ u′1/2t
−1/2
cool (Eq. (2.29)), and that the width of the multiphase region

scales as h ∝ Da−1/4 ∝ u′1/4t
1/4
cool. Note that these two quantities are related by Q ∝ ϵ̃h,

so only one of them constitutes an independent test. In Fig. 2.11, we show ϵ̃ at the

spatial location where it is maximized, as a function of u′ and cooling strength Λ ∝ t−1
cool.

It clearly conforms to the expected scalings. We also confirm that the FWHM of the

multiphase region agrees with the predicted scalings, though this is a less well-defined

and noisier quantity. In §2.5.4, we shall see that the predicted effective emissivity allows

remarkably accurate predictions of mean temperature profiles.

In summary, our fiducial formula for effective emissivity in the strong cooling regime
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Figure 2.11: The effective emissivity for various shear velocities with Λ0 = 64 and for
different cooling strengths. Expected scalings are given by the red dashed lines.
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is the Gaussian model

ϵ̃ = cp
P

τ̃cool
N (0, σ2), (2.38)

where from Eq. (2.25):

τ̃cool = 2.5Myr

(
L

100 pc

)1/2(
u′

30 km/s

)−1/2(
tcool,min

0.03 Myr

)1/2

, (2.39)

where u′ is evaluated at its peak (and follows the scaling relations obtained in §2.5.3),

and tcool is evaluated at the peak of the cooling curve. This is the form plotted as the

red dashed lines in Fig. 2.11; note that it is a derived quantity with no free parameters.

From Eqs. (2.36), (2.38) and (2.39), we obtain the width of the cooling region as

σ ∼ 16 pc

(
L

100 pc

)3/4(
u′

30 km/s

)1/4(
tcool,min

0.03 Myr

)1/4

. (2.40)

In the weak cooling (homogeneous reactor) regime, the emissivity is unchanged from the

standard ϵ = n2Λ(T ) form.

Scaling Relations for u′

We now consider how the turbulent velocity u′ depends on other parameters in our

simulation, specifically cooling, the overdensity χ and shear Mach number M. We focus

on the strong cooling regime, since that is of the most astrophysical interest (e.g., for

cloud survival, Gronke & Oh 2020a) and less well-understood. We stress that these

scalings are particular to our setup and not as general as the scalings for Q. They will

differ depending on the source of turbulent driving. Thus, we do not invest the same

effort in deriving and understanding them.

It is still useful to note some theoretical considerations. The free energy for driving
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Figure 2.12: Dependence of turbulent velocity on shear velocity (using χ ∼ 100),
overdensity and cooling. Overdensity and shear velocity are varied in the strong
cooling regime (Λ0 = 64). Scalings are represented by dashed lines. The middle panel
and bottom panel includes simulations with a simplified cooling curve (see text).
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turbulence in our mixing layer is shear, where:

u′2 ≈ l2
(
∂vy
∂x

)2

, (2.41)

with l being the characteristic size of vortices. This is simply the statement that the

vorticity of the eddies and the shear flow (from which the eddies derive their vorticity)

are comparable. Since we volume average within slices through the mixing layer when

measuring u′, the contribution is dominated by the turbulent velocity of the hot gas in

the region where turbulence u′ and emissivity peak (fhot ∼ 0.5). In our simulations, we

indeed see u′ ∝ ∇vy (Fig. 2.6). Cooling can play an important role in regulating the

width of the mixing layer, and hence ∇v and u′ (see Fig. 2.6). However, once deep in the

multiphase regime, cooling only has a weak effect. We can see this from ∇v ∼ vshear/h;

if we combine our prediction for h, Eq. (2.30), and Eq. (2.41), we obtain:

u′ ∝ v
4/5
shear

(
L

tcool

)1/5

. (2.42)

Note that for a given shear velocity and cooling time, there is no explicit overdensity

dependence. In the multi-phase Da≫ 1 regime, tcool is the cooling time of the cold gas.

Figure 2.12 show the scalings of u′ with vshear, χ, and Λ0. The upper panel includes

the scalings from previously mentioned simulations that vary the shear velocity from the

fiducial setup. We find, as in Eq. (2.42) that u′ ∝ v
4/5
shear.

Changing the overdensity involves a change in the temperature regime where cooling

takes place. We want to do so while keeping tcool constant. We adopt a simplified form

of the cooling curve Λ = const for T < 104K and Λ ∝ T 4 for T > 104 K, such that

tcool ∝ T−2 and tcool ∝ T 2 below and above T = 104 K respectively. This singles out the

minimum in the cooling time to occur at T ∼ 104K (as is true of more realistic cooling
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curves). This cooling time is held constant. To vary χ, we keep either the hot or cold

phase constant and change the temperature and density of the other phase.

In the middle panel of Fig. 2.12, we see that for χ ≳ 100, u′ behaves according

to Eq. (2.42) with no dependence on χ, regardless of whether the hot or cold phase is

being varied. On the other hand, at lower overdensities, u′ does not scale as expected:

it declines toward low χ instead. In this low overdensity regime, the temperature and

velocity profiles decouple and no longer track one another. This was first noted by

Fielding et al. (2020) (see their Figure 1), but we draw a slightly different conclusion

from them: the decoupling of thermal and momentum profiles is not general but only

happens at low χ. The reason is that the cooling time of mixed gas (tcool,mix ∼ χtcool,cold)

is still relatively short, where Tmix ∼ (ThotTcold)
1/2. The hot gas then rapidly cools after a

small amount of mixing with cold gas. Radiative cooling outpaces momentum transport,

which mostly takes place when the gas is already cold; the velocity shear and turbulence

peak in the single phase regime. This vitiates the assumptions behind Eq. (2.42). Indeed,

the assumption of a thin mixing layer is no longer valid. For the ratio of the thickness of

the shear layer h and the the horizontal length Ly we can write to first order

h

Ly

∼ vin
vshear

∼ cs,cold
Mcs,hot

∼ 1

M√
χ
, (2.43)

where the first equality comes from the continuity equation. Hence, the flow decelerates

on a length scale comparable to the thickness of the mixing layer as the simulation pro-

ceeds. Overall, this regime holds less astrophysical significance: because of the location

of the stable phases in the cooling curve, most situations of astrophysical interest involve

density contrasts χ ≳ 100, where Eq. (2.42) holds.

In the bottom panel of Fig. 2.12, we check the dependence of u′ on tcool. The χ = 104

simulation follows the expected u′ ∝ Λ0.2 scaling. However, the χ = 100 simulation
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Figure 2.13: A comparison between simulation profiles and a 1D mixing length model
at two different cooling strengths shows good agreement.

follows a slightly weaker u′ ∝ Λ0.1 scaling. This remains true for simulations which use

the full (realistic) cooling curve (blue points). This is because the turbulent velocity

approaches equation (2.42) asymptotically as χ increases. For instance, it only becomes

fully independent of overdensity for χ ≳ 300 (middle panel). In any case, the difference

is small.

2.5.4 Comparing Simulations to 1D Mixing Length Models

In §2.3, we constructed time-steady 1D models of thermal interfaces, where thermal

conduction balances radiative cooling. In the single-phase, weak cooling case, one can

construct similar profiles by substituting turbulent heat diffusion for thermal conduction

(as has been done for galaxy clusters, Kim & Narayan 2003; Dennis & Chandran 2005).
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Figure 2.14: Measurement of turbulent diffusion through the mixing layer in a sim-
ulation without radiative cooling. The upper panel shows the corresponding average
temperature. In the lower panel, the blue line shows κturb measured from the simula-
tion via Eq. (2.48), while the orange line shows the mixing length approximation for
the fiducial setup (cf. §2.5.4). The dashed line shows the value used for the profiles
shown in Fig. 2.13 .
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Figure 2.15: For adiabatic, weak and strong cooling, the Reynolds stress is shown in
blue along with the mixing length model in orange. As in the case of turbulent heat
transport, we find good agreement between them.
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However, it may seem absurd to carry this over to the strong cooling regime, where

the highly fluctuating, fractal and multiphase structure of the radiative front seems to

preclude a simple mean-field approach. Here, we show that with judicious choice of the

effective emissivity, such a model matches simulations surprisingly well.

We first establish that in an isobaric medium, we can write the turbulent heat flux

in a form similar to that for thermal conduction, Fturb = −κturb∇T . In mixing length

theory, the turbulent heat flux is proportional to the gradient of specific entropy (e.g.,

Dennis & Chandran 2005):

Fturb = −DeddyρT∇s, (2.44)

where s = cVln(p/ρ
γ) is the specific entropy, γ = cP/cV = 5/3 is the ratio of specific

heats, cV = 3/2kB/m̄ is the specific heat at constant volume, and Deddy is the eddy

diffusivity, with units [Deddy] = L2T−1. However, under isobaric conditions ∇P = 0,

evaluating the above expression gives:

Fturb = −DeddyρcP∇T, (2.45)

i.e., the turbulent heat flux is proportional to the temperature gradient. In an isobaric

medium, one can equally well think of passive scalar advection of entropy or temperature7.

For simplicity, and analogous to thermal conduction, we will consider Fturb = −κturb∇T ,

where:

κturb = DeddyρcP. (2.46)

We then assume that the coefficient κturb is a constant independent of temperature.

We can show after the fact that this is a reasonable assumption. As in §2.3, we then

7Of course, only entropy advection is correct in a stratified medium like a star or galaxy cluster,
where mixing length theory is usually applied.

58



Radiative Mixing Layers: Insights from Turbulent Combustion Chapter 2

solve the 1D steady-state equation:

κturb
d2T

dx2
= jxcp

dT

dx
+ ρL. (2.47)

In §2.3, the thermal conductivity κ was known and we solved for the mass flux jx = ρv

as an eigenvalue. Here, since the medium is multiphase, the emissivity is not the same as

that of single-phase medium with the same mean temperature. Motivated by the scalings

in §2.5.3, we model the emissivity as a Gaussian as specified in Eq. (2.38). This sets Q

and hence the mass flux jx = Q/cP(Thot − Tcold). Because our cooling is now a function

of position and not temperature, we specify the value of κturb and solve for the profile via

the shooting method, subject to the same boundary conditions as before (Eq. (2.12)).

The results for two strong cooling (Λ0 = 4, 64) cases are shown in Fig. 2.13, where we

have used κturb = 5 × 106 erg cm−1 s−1K−1 for both cases. This is justified below. Such

a simple mixing length model provides a remarkably good fit to the profiles seen in

our simulations. This allows the construction of rapid semi-analytic models of radiative

mixing layers, which is very useful when comparing against observations (e.g., matching

line column density ratios) when the underlying model parameters such as u′, L, tcool are

unknown and one has to search over parameter space. We can thus construct models for

multiphase mixing layers with the same speed and ease as for thermal conduction.

We estimate the turbulent diffusion coefficient by applying mixing length theory to

direct measurements from the simulation. The simplest way to do this is to first obtain

κturb from adiabatic simulations where we can model the turbulence using the Reynold’s

Averaged Naiver-Stokes (RANS) equations. This approach separates the flow into two

components: a mean flow and a time-dependent varying flow. By representing initial

variables such as temperature and velocity as ϕ = ϕ̄+ϕ′′ where ϕ̄ is the density weighted

mean value, we find an extra term of the form ⟨ρv′′xT ′′⟩ which is modelled using a simple
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gradient relation:

Fturb = ⟨cpρv′′xT ′′⟩ = −κturb
dT̄

dx
. (2.48)

Figure 2.14 shows the resulting measurement of κturb as a function of height in the

mixing layer for a single time snapshot where the averages were taken along the y-z

plane. Consistent with our assumptions, κturb is roughly constant, and the dashed line

shows the value we adopt in the simple model above. The solid orange line in Fig. 2.14

shows the mixing length approximation:

κturb = ρ̄cPlu
′, (2.49)

with a mixing length of l = 4 pc, which fits the result of Eq. (2.48) from the simulation

remarkably well.

In mixing length theory, the mixing length l cannot be obtained from first principles,

but must be calibrated from experiments or simulations. Nonetheless, the value we obtain

is reasonable from order of magnitude considerations. Since u′ ≈ l∇vy ∼ (l/L)vshear, we

have:

l ∼ u′

vshear
L ∼ cs,cold

cs,hot
L ∼ L

√
χ
, (2.50)

which gives l ∼ 10 pc for our setup.

Due to the multiphase structure of the mixing layers with strong cooling, it is not

possible to use Eq. (2.48) to measure κturb there. It is interesting that κturb derived from

adiabatic simulations provides a good fit when used to solve for temperature profiles in

strong cooling simulations, and is consistent with the finding that cooling appears to

have little effect on turbulence.

Instead, in cooling simulations we can focus on velocity profiles to verify the mixing

length approach. In Fig. 2.15, we plot the Reynolds stress in adiabatic, weak, and strong
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cooling simulations, and compare with the expectation from mixing length theory that

Rxy = −⟨ρv′′xv′′y⟩ = ρ̄νT∇vy, (2.51)

where the turbulent viscosity νT = u′
xl. The orange line shows the mixing length estimate

from the right side of Equation (2.51) and is again a remarkably good fit, with a mixing

length l ∼ 4 pc throughout all simulations. Since the mixing length ansatz for Reynolds

stress is a good approximation, we can also construct mean shear vy and turbulent

velocity profiles u′ analytically as well, though we eschew this for the sake of brevity.

This suggests that the turbulent Prandtl number (νT/Deddy) is of order unity as typical

in turbulent flows (Tennekes & Lumley 1972).

2.5.5 Thermal Conduction

We perform a quick assessment of the impact of isotropic thermal conduction. We

defer anisotropic field-aligned conduction to future work. We use the same (constant,

temperature independent) thermal conductivity as the 1D simulations, given in Eq. (2.4),

which we vary in amplitude κ0. Note that for our fiducial case, κturb ∼ κcond. The results

are shown in Fig. 2.16. Conduction has no impact until κcond > κturb. At this point, Q

falls back towards the laminar speed SL, but SL at this transition is already close to ST,

indicating that thermal conduction is strong enough to compete with turbulent diffusion

as the main source of heat transport. Without thermal conduction, we assumed that

the turbulent velocity u′ was much larger than SL, but this assumption breaks down

for strong thermal conduction since that increases SL. The scale at which u′ ∼ SL is

known as the Gibson scale. In turbulent combustion, below this scale, the flames burn

through the turbulent eddies within an eddy lifetime and hence the speed of the front is

unaffected by the turbulence. The front is thus said to be ‘wrinkled’ by the turbulence,
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Figure 2.16: Dependence of cooling in the mixing layer on thermal conductivity.
The curves show runs where the fiducial κ is multiplied by a constant scaling factor
κ0. Thermal conduction does not matter until it gets large enough to suppress the
turbulence.
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but not ‘corrugated’ due to the turbulent eddies. This is also known as the ‘wrinkled

flames regime’ in the Borghi diagram. Conduction also suppresses the multiphase nature

of the mixing layer by broadening the hot/cold gas interface. Our results are consistent

with previous cloud-crushing studies which show that thermal conduction hinders hydro-

dynamic instability but otherwise has fairly mild effects for clouds large enough to resist

thermal evaporation, in conditions typical of the CGM (Brüggen & Scannapieco 2016;

Armillotta et al. 2017; Li et al. 2020). Overall, as long as turbulent diffusion dominates

heat transport, conduction can be safely ignored.

2.5.6 Convergence

The convergence properties of this setup have been previously studied (Ji et al. 2019;

Fielding et al. 2020). We therefore perform a restricted set of resolution studies for our

3D simulations, considering the fiducial case (Λ0 = 1) and a case with strong cooling

(Λ0 = 128). The results are shown in Fig. 2.17. The resolutions go from a quarter to

twice that of the fiducial resolution. Lower resolution runs are also shown for the run

with strong cooling. Error bars are derived from fluctuations in Q in the time series. In

the fiducial case, we find that we are well converged, with little difference in the mean

Q and small error bars, indicating that the simulation is well resolved. However, for the

case of strong cooling, oscillations are significantly large for lower resolutions, consistent

with the 1D case, resulting in larger error bars. The cooling over time is shown in the

middle and bottom panels of Fig. 2.17 for both cases, where we can see more clearly

that in the case with fiducial cooling, the curves are generally smooth with no rapid

oscillations. In the case with strong cooling, we see that as we lower the resolution,

we see rapid oscillations with increasing amplitude. These oscillations have a period of

roughly tcool. In 3D, the oscillations cause apparent broadening of the interface, and
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Figure 2.17: Upper panel: Result of varying the resolution of the 3D runs with the
fiducial and strongest cooling rates. The fiducial resolution ∆0 = 1 is converged in
both cases. The pink dashed line shows the result for the 1D simulations with strong
cooling and no conduction for comparison (orange line in Fig. 2.3), reflecting where
numerical diffusion becomes dominant. Middle and Lower panels: The time profiles
of cooling for the various points shown in the top panel. The middle panel shows runs
from the fiducial runs (Λ0 = 1), while the bottom panel shows runs with the strongest
cooling (Λ0 = 128). The runs with strong cooling shows rapid oscillations that grow
in amplitude as resolution is lowered.
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the cooling surface appears to adjust with resolution. However, the mean Q still remain

close to the converged value. As long as Q is averaged over a sufficient time interval,

our fiducial resolution is sufficient, even for our strongest cooling case. This is consistent

with previous results of larger scale simulations, and follows the expectations from the

1D results in §2.3.

2.5.7 Comparison with Previous Work

We now compare our results to recent work on radiative TMLs. We confine our com-

parisons to the formula for hot gas entrainment (Eq. (2.28)) and its physical justification.

Ji et al. (2019) was the first paper to confront analytic models of radiative TMLs with

simulations. They pointed out that the inflow and turbulent velocities were much less

than the shear velocity, that radiative cooling was balanced by enthalpy flux from the hot

gas (rather than turbulent dissipation, as in e.g., White et al. 2016), and that contrary

to the widely cited model of Begelman & Fabian 1990, the layer width does not scale

as h ∝ vttcool. They obtained a scaling h ∝ t
1/2
cool, vin ∝ t

−1/2
cool , which in hindsight is the

scaling in the weak cooling regime; they did not run enough simulations to discern the

change in slope to v ∝ t
−1/4
cool in the strong cooling regime. Interestingly, they noted that

using standard emissivities, mixing length theory matches temperature/density profiles

well in the weak, but not strong cooling regimes. We now know this is because emissivity

changes in the multiphase regime (Eq. (2.38)).

Gronke & Oh (2020a) obtained a scaling relation (Eq. (2.1)) which is identical to our

fiducial Eq. (2.28) in the strong cooling regime if u′ ∼ cs,cold. They consider a cold cloud

embedded in a hot wind, which grows in mass and entrains. It continues to grow even

after it is fully entrained (vshear → 0); in fact, growth peaks at this point. The cloud

pulsates due to loss of pressure balance seeded by radiative cooling; this in turn drives
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turbulence and hot gas entrainment.

Both of these studies considered magnetic fields, which are ignored here. For instance,

the plane parallel shear simulations of Ji et al. (2019) show that B-fields suppress tur-

bulence and mixing due to magnetic tension, but the MHD cloud simulations of Gronke

& Oh (2020a) nonetheless show cloud growth at the same rate as hydrodynamic simula-

tions, despite very different cloud morphology in the two cases. The difference likely lies

in the very different nature of turbulent driving in the shear flow and cloud scenarios,

which also affects the growth in surface area. Given the substantial differences between

hydrodynamic and MHD turbulence, it is important to eventually extend the arguments

in this paper to the MHD case.

Both Ji et al. (2019) and Gronke & Oh (2020a) invoked low pressure due to fast

cooling to seed turbulence and set the entrainment rate of the hot gas, rather than

the Kelvin Helmholtz instability. In Ji et al. (2019), this was argued to be due to the

constancy of P +ρu′2 across the mixing layer (so that pressure drops due to cooling boost

turbulence), as well as the fact that vin appeared only weakly dependent on vshear and

independent of χ, two factors which set the Kelvin Helmholtz timescale. In light of our

larger suite of simulations, it is now clear that in fact entrainment rates do depend on

vshear. Turbulence seeded by cooling is also inconsistent with the very weak dependence

of u′ with cooling strength that we see here (Fig. 2.12). For this problem, it is important

to have sufficient dynamic range and dense sampling to establish scaling relations (as we

have seen in the u′ vs χ relation; Fig. 2.12). In this paper we argue – consistent with

results from the combustion literature, and as argued by Fielding et al. (2020) – that

turbulence, rather than pressure gradients, is the primary driver of hot gas entrainment.

This statement has to be qualified by the fact that in the cloud case, cooling-induced

pressure gradients appear to be the primary driver of cloud pulsations and turbulence,

so the end result can be the same. Thus, the Gronke & Oh (2020a) scaling for vin still
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holds, as potentially do their analytic arguments8. However, we await detailed study of

u′ scalings in this scenario to refine the model.

Fielding et al. (2020) ran simulations of radiative plane parallel mixing layers very

similar to Ji et al. (2019) and this work. They rightly emphasize the fundamental role

of turbulence in hot gas entrainment, and directly measure fractal properties in their

simulations. They derive an analytic model whose scalings are similar to Gronke & Oh

(2020a) and this work.

The analytic model of Fielding et al. (2020) states that:

vin =
w

tcool

(
Aw

AL

)
=

w

tcool

(w
L

)−1/2

, (2.52)

where w is a length scale defined by tmix ∼ w/vturb,hot(w) ∼ tcool and the second equality

arises from fractal scalings with fractal dimension D = 2.5, which they measure directly

from their simulations. The first equality is very similar to Eq. (2.19), except that w/tcool

is substituted for SL. However, at face value, this argument would seem to imply that if

the length scale w is not resolved (and replaced by a resolution element ∆), then inflow

becomes resolution dependent, vin ∝ ∆1/2. Neither Fielding et al. (2020) nor we see

evidence for this, even in simulations where w is highly under-resolved.

2.5.8 Conclusions

Radiative mixing layers are closely analogous to turbulent combustion fronts: in both

cases, the speed of front propagation vin is determined by the temperature and density

sensitive reaction rate, and thus conditions within the front itself. This is in contrast to

shock propagation, where the shock speed and jump conditions are simply determined by

8E.g., they identify the timescale tsc,cold ∼ H/cs,cold, where H ∼ (rclcstcool)
1/2 is analogous to the

length scale in Eq. (2.24). This is identical to the effective cooling time (Eq. (2.25)) which is critical to
the model in this paper.
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conservation laws, independent of the small-scale details of shock structure. To obtain

vin, it would seem that the structure of the front must be accurately resolved. Thus,

it has long been thought that calculations of thermal fronts can only be converged if

thermal conduction is included and the Field length is resolved (Koyama & Inutsuka

2004). Yet, recent simulations (Ji et al. 2019; Gronke & Oh 2018, 2020a; Mandelker

et al. 2020; Fielding et al. 2020) show remarkable robustness to resolution, despite the

absence of thermal conduction – even when the cooling front is one cell thick! They also

show characteristic front propagation speeds of order the cold gas sound speed vin ∼ cs,cold

(far less than the maximum possible cs,hot) and scalings vin ∝ (tsc/tcool)
−1/4 (where tsc is

a sound-crossing time) which are not trivial to understand. In this paper, we use models

derived from the turbulent combustion literature to shed light on these issues.

We first examine the impact of resolution on laminar fronts. The restriction to laminar

fronts allows the problem to be considered in 1D, where there are analytic solutions. In

the absence of thermal conduction, there is clear resolution dependence, such that vin ∼
√
Dnumtcool ∝ ∆1/2. The numerical diffusion coefficient from truncation error is Dnum ∼

v∆, v is a characteristic velocity, and ∆ is the grid resolution. The inclusion of conduction

is indeed required for convergence. However, surprisingly it is not strictly necessary to

resolve the Field length for convergence. Instead, the key requirement for convergence

is that explicit thermal diffusion simply be larger than numerical diffusion: i.e., Dcond >

Dnum, whereDcond ∼ κ/(ρcP), where κ is the standard conduction coefficient and cP is the

specific heat at constant pressure. If the Field length is unresolved, numerical dispersion

increases, as the front structure is not accurately resolved and there are larger errors

in the temperature derivatives and conductive heat flux. Nonetheless, the steady-state

simulations oscillate about the correct answer. The error can be beaten down by time

averaging. This is not unusual for a stiff problem where the smallest length scale remains

unresolved.
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We then examine the effects of turbulence. As in Ji et al. (2019), we simulate a

plane-parallel shear layer where the Kelvin-Helmholtz instability drives turbulence and

mixing. We find, consistent with previous findings, that the inflow velocity vin and

surface brightness Q are converged without thermal conduction. Heuristically, we argue

that this is because as long as the turbulent driving scale L is well resolved L ≫ ∆, the

turbulent diffusivity Dturb ∼ u′L is always larger than the numerical diffusivity Dnum ∼

v∆. Similar to our 1D results, lower resolution simply implies larger numerical dispersion

and temporal oscillations in the front profile. We also find that thermal conduction has

little effect unless it is larger than the turbulent diffusivity.

The front is characterized by the dimensionless parameters: overdensity χ, Mach

number M, and most importantly the Damköhler number Da = τturb/tcool = L/(u′tcool),

where u′ is turbulent velocity at the outer scale L, and tcool is the local cooling time.

The Damköhler number, which measures the relative importance of mixing and cooling,

increases as temperature falls within the front. There are two distinct regimes:

• Weak cooling (Da ¡ 1): the ‘well stirred’ regime. Since the cooling time is longer

than the eddy turnover time, the gas entropy is set primarily by mixing. Thus,

it forms a single phase gas with smoothly varying temperature within the front.

The front structure is entire analogous to a thermal conduction front, except that

the conductive diffusivity Dcond is replaced by the turbulent diffusivity Dturb. This

implies a front thickness h ∼ (Dturbtcool) ∝ t
1/2
cool and an inflow velocity vin ∼

(Dturb/tcool)
1/2 ∝ t

−1/2
cool .

• Strong cooling (Da ¿ 1): the ‘corrugated flamelet’ regime. In this limit, the cooling

time is shorter than the mixing time, the gas entropy is set primarily by cooling, and

the gas fragments into a multiphase medium. The interface between the two phases

is highly corrugated, and has been shown to have a fractal structure (Fielding et al.
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2020). This increase in surface area of the front boosts the mass flux across the

front. The surface area increase is resolution dependent. Nonetheless, hot gas as

a whole is consumed at a rate vin ∼ u′ (where u′ is the turbulent velocity at the

outer scale), independent of resolution. The rate limiting step in determining hot

gas consumption is the turbulent mixing rate, which proceeds at the outer scale

velocity u′. It is similar to how mixing time of a passive scalar (e.g., cream in coffee)

is set by the eddy turnover time at the outer scale, independent of the details of

molecular diffusivity. Rapid mixing in both cases depends on the large increase in

surface area due to turbulence.

Our results are also of importance to the resolution requirements in larger scale sim-

ulations; e.g., cosmological simulations which are currently unconverged in the cold gas

properties (Faucher-Giguère et al. 2016; Hummels et al. 2019). Ultimately, the physics of

radiative TMLs explored here sets the mass and momentum transfer between the hot and

the cold phase, and thus, impacts not only the morphology of the multiphase medium

but also, for instance, the fuel supply for future star-formation. In this work, we showed

that as long as numerical diffusion is not the dominant mixing mechanism, it is sufficient

in the presence of turbulence to resolve the outer scale L of the turbulence to obtain

a converged solution, and not the width of the laminar front, contrary to conventional

wisdom. While in many astrophysical applications L is likely of the order of ∼parsecs

(McCourt et al. 2018; Gronke & Oh 2018) and thus challenging to resolve directly in

large scale simulations, our findings relax the resolution requirements by up to orders of

magnitude.

At a more detailed level, one must still take into account the behavior of small scales

in the strong cooling regime. We argue that there is a characteristic effective cooling

timescale τ̃cool ∼
√

(L/u′)tcool. This effective cooling time is resolution independent.
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The turbulent velocity u′ measured in the simulations peaks in the multiphase region

where the cold gas fraction is ∼ 50%, where cooling also peaks. A similar lifetime for

eddies in combustion fronts was given by Gülder (1991), by assuming that the mixing

front is corrugated down to the Taylor microscale. Thus, the front propagates at a

velocity vin ∼ (Dturb/τ̃cool)
1/2 ∝ u′3/4t

−1/4
cool . Our fiducial scalings are given by Eqs. (2.35)

and (2.36) in the slow and fast cooling regimes respectively. The slow cooling result is

a straightforward application of 1D mixing length theory, while the fast cooling result

agrees well with previous simulation work (Eq. (2.1)) if u′ ∼ cs,cold (see below).

We have verified directly in our simulations the scalings vin, Q ∝ u′1/2t
−1/2
cool and

vin, Q ∝ u′3/4t
−1/4
cool in the weak and strong cooling regimes respectively (Figs. 2.8 and

2.9). We also show that are no hidden parameters; and in particular no dependence on

overdensity χ or Mach number. Astrophysically, the strong cooling regime is often of

more interest. For instance, for clouds embedded in a hot wind to survive cloud-crushing

instabilities, tcool(Tmix) < tcc ∼ L/u′ (Gronke & Oh 2018), where Tmix ∼ (ThotTcold)
1/2,

which implies that most emission is in the strong cooling regime. In this regime, we veri-

fied in our simulations that within the front, the cooling rate tracks the cold gas fraction

(which tracks the surface area), peaking at fcold ∼ 50%, and that the cooling flux has a

Gaussian shape (Fig. 2.6), as expected for the front position if it undergoes a random

walk. In addition, we show that the effective emissivity in the multiphase region of the

simulations scales as ϵ̃ ∼ P/τ̃cool ∝
√
u′tcool, in agreement with our model. The emissivity

ϵ̃ ∝ u′1/2 tracks turbulence and hence the shearing rate. The width of the strong cooling

region also obeys an analytic scaling relation Eq. (2.30) predicted by theory. If we use

a turbulent diffusion coefficient and emissivity ϵ, ϵ̃ in the weak (strong) cooling regimes

respectively, we can match temperature and density profiles in the simulations with mix-

ing length theory remarkably well. The turbulent velocity follows mixing length scalings

u′ ≈ l∇vy, and the Reynolds stress is also accurately represented by mixing length the-
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ory (Fig. 2.15). This allows for rapid construction of semi-analytic profiles of radiative

mixing layers without recourse to simulations, which is very useful for comparing against

observations.

All that remains is to specify the turbulent velocity at the outer scale, u′. Turbulence

can arise either from external driving (in this paper, due to the shear flow), or be driven

by radiative cooling itself (e.g., clouds with r > cstcool which lose sonic contact with

their surroundings and begin to pulsate; Gronke & Oh 2020a,b). In this shear driven

case, we have verified that u′ ∝ ∇vshear, as predicted by mixing length theory. To

order of magnitude, u′ ∼ cs,cold for cloud pulsations or transonic M ∼ 1 shear flows,

but here we find detailed parameter dependences. For the plane-parallel shear flow in

these simulations, we find that u′ ∝ v0.8shear, almost no dependence on cooling time tcool,

and a non-monotonic dependence on overdensity (Fig. 2.12). For χ ≳ 100, Eq. (2.42)

is a reasonable approximation. These scalings will of course depend on the nature of

turbulent driving. In the future, we plan to investigate turbulent scalings in pulsating

clouds, and the effect of B-fields on these scalings. We stress, however, that Eq. (2.28) is

general, independent of the source of turbulent driving.

In summary, the cold gas mass growth rates we find in our 3D simulations agree with

our analytic model (§2.4.4) and read:

vin ≈ 11.3 km s−1M1/2
turb

(
L

100 pc

)1/2(
tcool,cold
0.03Myr

)−1/2

(2.53)

for the Da < 1 ‘well stirred’ (slow cooling) regime, and

vin ≈ 9.5 km s−1M3/4
turb

(
L

100 pc

)1/4(
tcool,cold
0.03Myr

)−1/4

(2.54)

for the Da > 1 ‘corrugated flame’ (fast cooling) regime. Here, Mturb ≡ u′/cs,cold but
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as stated above u′ – unlike the vin scalings – depends on the geometry employed. For

shearing layers, we find (§2.5.3) that

u′ ≈ 50 km s−1M4/5
( cs,c
15 km s−1

)4/5( tcool,cold
0.03Myr

)−0.1

, (2.55)

for χ ≳ 100 and M ≡ vshear/cs,hot as used throughout.

Of course, at higher levels of precision, details of the interaction between turbulence,

diffusion and cooling remain to be explored. Just as there are a plethora of models and

computational algorithms for subgrid turbulent scalar transport (often used in simula-

tions of metal mixing), there are a plethora of models for subgrid turbulent combustion

(e.g., see Swaminathan & Bray 2011). The issues are more complex since combustion

can backreact on the flow and change its properties. Such models have been used in

simulations of thermo-nuclear burning on white dwarfs (Schmidt et al. 2006; Jackson

et al. 2014), where the burning fronts are unresolved. Such sub-grid models would be

an interesting avenue for future work, particularly in the context of cosmological simu-

lations of galaxy formation, where the separation of scales is even more forbidding than

in Type Ia supernova problem. Another avenue for more detailed future work is the in-

clusion of non-equilibrium chemistry. In this work, equilibrium cooling curves were used

in all simulations. In reality, material will often be out of equilibrium, with recombina-

tion/ionization rates often having time scales longer than the cooling time. Metallicity

differences between the different phases could also lead to further complications beyond

the analysis in this paper. While non-equilibrium ionization/recombination was taken

into account in (Kwak & Shelton 2010; Ji et al. 2019), to our knowledge there have not

been any studies which incorporate non-equilibrium cooling. Such details could be im-

portant due to their bearing on the predictions of observables such as column densities.

It is also important to continue to verify scalings for ST in higher resolution simulations,
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perhaps with thermal conduction so that SL is well-defined and resolution-independent.

One important limitation of current simulations is that the front width δ and Kolmogorov

scale η are unresolved and simply equal to the grid scale, so that Ka ∼ (δ/η)2 ∼ 1. In

practice, these scales could be sufficiently separated (with Ka ≫ 1) that the arguments

in §2.4.4 no longer apply. If so, turbulence can penetrate the conductive interface and

affect conditions there, impacting the effective and total cooling rates. An intriguing

approach in the spirit of 1D modeling in this paper, and useful for developing physical

insight is the Linear Eddy Model (Kerstein 1988), which attempts to model the effects of

turbulence in 1D so that extremely high resolution can be achieved, and has good sup-

port from experiments and direct numerical simulation. It has been successfully applied

to the Type Ia supernova problem (Woosley et al. 2009). These are promising avenues

for future work.
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Chapter 3

A Model for Line Absorption and

Emission from Turbulent Mixing

Layers

All the variety, all the charm, all the beauty

of life is made up of light and shadow.

Leo Tolstoy, Anna Karenina

Turbulent mixing layers (TMLs) are ubiquitous in multiphase gas. They can po-

tentially explain observations of high ions such as Ovi, which have significant observed

column densities despite short cooling times. Previously, we showed that global mass,

momentum and energy transfer between phases mediated by TMLs is not sensitive to

details of thermal conduction or numerical resolution. By contrast, we show here that ob-

servables such as temperature distributions, column densities and line ratios are sensitive

to such considerations. We explain the reason for this difference. We develop a pre-

scription for applying a simple 1D conductive-cooling front model which quantitatively
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reproduces 3D hydrodynamic simulation results for column densities and line ratios, even

when the TML has a complex fractal structure. This enables sub-grid absorption and

emission line predictions in large scale simulations. The predicted line ratios are in good

agreement with observations, while observed column densities require numerous mixing

layers to be pierced along a line of sight.

3.1 Introduction

Observations of ultraviolet absorption lines of high ions like C iv, Si iv, Nv and Ovi

trace intermediate temperature (∼ 105 K) gas, assuming collisional ionization equilibrium

(CIE). They are widely observed in a range of astrophysical contexts, such as our own

galactic disk and halo, external galaxies, and high velocity clouds. Observations of a

significant column density of these ions is puzzling since the gas they trace should cool

quickly. One possibility is that they exist in turbulent mixing layers (TMLs) between

cold 104 K and hot 106 K gas. There, radiative cooling is balanced by enthalpy flux

into the TML, reaching a steady state. Such TMLs are relevant to a host of issues

such as the stability and survival of AGN jets (Hardee & Stone 1997), cold clouds in

a hot wind (Scannapieco & Brüggen 2015; Schneider & Robertson 2017; Gronke & Oh

2018, 2020a), and cold streams inflowing from cosmological accretion (Mandelker et al.

2020). Observational diagnostics of TMLs could be very informative. For instance, the

mass entrainment rate per unit area is directly proportional to the bolometric surface

brightness (in the absence of radiative heating and scattering).

Models for absorption and emission in conductive-cooling fronts (McKee & Cowie

1977; Borkowski et al. 1990; Gnat et al. 2010) have predicted column densities that are

too low, requiring many layers to be pierced along a sightline, and line ratios that do not

match observations (Wakker et al. 2012). To our knowledge, the only equivalent work for
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TMLs is Slavin et al. (1993), based on an analytic model by Begelman & Fabian (1990).

The latter had many important physical insights, but its detailed predictions are not in

agreement with 3D hydrodynamic simulations (Ji et al. 2019). However, Slavin et al.

(1993) made the important early prediction that TML column densities are also too low.

This has been borne out in simulations (Kwak & Shelton 2010; Ji et al. 2019), although

Kwak & Shelton (2010) find line ratios in good agreement with observations (Wakker

et al. 2012). Subsequent modeling of TMLs (Ji et al. 2019; Fielding et al. 2020; Tan

et al. 2021) has focused on hot gas mass entrainment rates, which is crucial for the cold

gas survival issues mentioned above. Such work has found that global mass, momentum

and energy transfer between phases is not sensitive to details of thermal conduction

or numerical resolution (Tan et al. 2021). By contrast, we show that the same is not

true of observables such as temperature distributions, column densities and line ratios.

We develop a prescription for how we can apply 1D conductive-cooling front models to

3D TMLs to obtain analytic predictions for these quantities, which we then verify with

simulations.

3.2 Methods

We carry out our simulations using the publicly available MHD code Athena++ (Stone

et al. 2020). For details of our setup and implementation, we refer the reader to Sec-

tions 2 and 5.1 of Tan et al. (2021). In brief, we simulate a shear layer between gas of

temperatures Tcold = 104 K and Thot = 106 K, with shear velocity vshear = 100 km s−1, and

include radiative cooling along with isotropic thermal conduction. We use a conductivity

κcond = Tα
6 10

6 erg cm−1 s−1 K−1, where T6 = T/106 K, and a CIE cooling function Λ

based on a broken power law fit to Gnat & Sternberg (2007). When we vary conduction

and cooling in our simulations, we label them as κn and Λn respectively, where the sub-
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script n denotes a constant prefactor multiplying the fiducial values as stated above. We

also label αm where m is the value of the exponent α. (The fiducial simulation is thus

κ1Λ1α0.)

We calculate ion column densities along sightlines through simulations using Trident

(Hummels et al. 2017), which generates synthetic spectra. For simplicity and consistency,

we ignore photoionization and instead assume CIE ion fractions from Gnat & Sternberg

(2007). Using Trident, we add fields for the ions we are interested in by post-processing

snapshots from simulation data. We assume solar metallicity and zero redshift. Lastly,

we use pyatomdb (Foster & Heuer 2020) to compute line emissivities.

3.3 1D Mixing Layer Models

Why should complex TMLs be amenable to 1D modeling? Here we justify this ap-

proach. TMLs can be characterized by their Damköhler number, Da = tturb/tcool, the

ratio of the eddy turnover time of the largest eddies to the cooling time. While tcool

is temperature dependent, it has proven useful to evaluate Da at the temperature of

mixed gas, Tmix ∼ (TcoldThot)
1/2, which we henceforth assume. TMLs can be either single

phase (Da < 1), with temperature varying continuously with depth in the interface, or

multiphase (Da > 1), with the slice-averaged cold gas fraction changing continuously

(Tan et al. 2021). If multiphase, the interface has a large scale fractal structure down

to the scale of the interface width (Fielding et al. 2020). In both regimes, numerically

converged mass entrainment rates do not require the resolution of the Field length or

even the interface, only the outer eddy scale of turbulence in cold gas (Tan et al. 2021).

This is of order the box size here, and the cold cloud size in driven turbulence (Gronke

et al. 2022).

That the temperature distribution of a single phase TML can be reproduced by a
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1D model is reasonable. But doing so for a fractal, multiphase TML might appear im-

plausible. It is useful to distinguish between macroscopic and microscopic heat diffusion.

Macroscopic heat diffusion (such as turbulence) drives global energy transport, dictating

the global structure of the TML and the coarse-grained temperature profile9. However,

it does not drive actual energy exchange between the two phases; all that changes is the

relative amount of hot and cold gas. Changing the fine-grained, thermodynamic tem-

perature – which determines ionic abundances – requires microscopic heat transfer via

explicit thermal conduction. Each segment of the fractal interface between hot and cold

gas is a locally planar, laminar heat conduction front, whose temperature profile is set by

the competition between explicit thermal conduction and cooling. All intermediate tem-

perature gas lies in this interface, which can be modeled in 1D. Since the same universal

interface profile holds at every segment of the fractal interface, it sets the temperature

PDF. The global structure of the TML is immaterial. In §3.4, we verify this conjecture

by comparing 1D models to 3D simulations.

Thus, if one is to accurately capture this temperature distribution in 3D simulations,

then in contrast to mass entrainment, the interface (and hence the Field length) must

be resolved. This is currently impossible in large-scale simulations. Moreover, explicit

thermal conduction must be included.

3.3.1 1D Mixing Layers

In a 1D mixing layer, an equilibrium state can be reached between two stable phases

with three ingredients: radiative cooling, thermal conduction, and enthalpy advection.

9Indeed, Tan et al. (2021) showed that the mean, coarse-grained temperature profile T̄ (x) ≈
fc(x)Tcold + (1 − fc(x))Thot, where fc(x) is the spatially varying mass fraction of cold gas, can be
reproduced by a mixing length model.
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In the frame of the front, this gives (?):

d

dx

(
κ
dT

dx

)
= jxcp

dT

dx
+ ρL(T ), (3.1)

where jx = ρvx is the the constant mass flux and cp = γ
γ−1

kB
m̄

is the specific heat at

constant pressure. κ is the thermal conductivity and ρL = n2Λ − nΓ is the net cooling

rate per unit volume, where Λ is the cooling function and Γ is the heating rate. We

assume that ρv2 ≪ P so pressure is constant, which can be verified in the solutions.

Given the boundary conditions T−∞ = Tcold, T∞ = Thot and
dT
dx±∞ = 0, we can solve for

the equilibrium solution numerically with jx as an eigenvalue using the shooting method.

We can also integrate Eq. (3.1) to give us the relationship between jx and the surface

brightness Q:

jx =
Q

cp(Thot − Tcold)
; Q = −

∫ ∞

−∞
ρL dx. (3.2)

3.3.2 Temperature Distribution

For a given front solution T (x), the volume weighted probability density function

(PDF) of the temperature distribution is given by dx/dT multiplied by some normaliza-

tion factor, henceforth referred to in our plots as just the probability density. In the lower

panel of Fig. 3.1, we show in the shaded lilac histogram the temperature distribution for

the solution to Eq. (3.1) with our fiducial parameters. We consider temperatures in the

range from 104 to 106 K, excluding the boundary temperatures themselves. In the upper

panel, we show the corresponding magnitudes of the advection, cooling and conduction

terms in Eq. (3.1). Similar to the analysis in McKee & Cowie (1977) for spherical clouds,

we identify three separate regions where the distribution can be understood via simplified

versions of Eq. (3.1).
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Figure 3.1: Lower panel: The lilac histogram shows the temperature distribution
across the front. Three separate regions are identified where the distribution can
be understood by simplifying Eq. (3.1), with colored curves showing resulting dis-
tributions. Upper panel: Corresponding magnitudes of the advection, cooling and
conduction terms in Eq. (3.1).
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• Region A : In the low temperature region, we can see from the upper panel of

Fig. 3.1 that cooling dominates over advection and is balanced by the conduction

term. Eq. (3.1) thus simplifies to

d

dx

(
κ
dT

dx

)
= ρL. (3.3)

The blue curve in the lower panel shows the temperature distribution of the solution

to this simplified equation, in excellent agreement with the actual distribution in

this region (normalizations of the colored lines in the lower panel have been adjusted

for easy comparison). From Eq. (3.3), we can define a characteristic length scale

known as the Field length (Begelman & McKee 1990),

λF =

√
κT

n2Λ
. (3.4)

• Region B : At some intermediate temperature, the cooling and advection terms are

equal and the conduction term is zero, hence:

κ
dT

dx
≈ constant. (3.5)

This is a single inflection point separating regions A and C.

• Region C : In the high temperature region where cooling is weak, the advection term

dominates and is balanced by the the conduction term. Eq. (3.1) thus simplifies to

d

dx

(
κ
dT

dx

)
= jxcp

dT

dx
. (3.6)
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Figure 3.2: Temperature distributions remain unchanged for different values of κ, Λ
and P relative to fiducial values. Subscripts denote multiples of the fiducial value.
However, changing the metallicty can change the distribution by changing the shape
of the cooling curve.

As with Region A, the orange curve in the lower panel of Fig. 3.1 shows the tem-

perature distribution of the solution to Eq. (3.6). In fact, for a constant κ, we can

solve Eq. (3.6) analytically, which gives an exponential temperature profile with a

distribution that scales as λD/(Thot − T ), where λD is a diffusion length scale:

λD =
κ

jxcp
. (3.7)

3.3.3 Length Scales

In regions A and C, the temperature scale heights λF, λD are obtained by balancing

conduction against cooling and enthalpy advection respectively (i.e., the second and third
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term of Eq. (3.1)). Since there is no net heat flux into the TML (dT
dx±∞ = 0), the latter

two balance across the front as a whole, i.e. enthalpy advection balances cooling, giving

Eq. (3.2), which gives jx ∝ Q ∝ (n2Λ)λ at a given temperature. Substituting into

Eq. (3.7), this gives λD ∝
√

κ0/(n2Λ0) ∝ λF, where κ0 and Λ0 are constant prefactors

multiplying κ(T ) and Λ(T ), i.e. both the Field length λF (Eq. (3.4)) and the diffusion

length λD (Eq. (3.7)) share the same scalings with respect to κ0, Λ0, and P ∝ n (at fixed

T ). Since varying any of these rescales the solutions in regions A and C identically, the

temperature distribution (∝ dx/dT ) is thus independent of κ0, Λ0 and P , unless they

change Da sufficiently to affect the choice of κ (see §3.3.4). This is verified numerically

in Fig. 3.2, where we show that the distribution remains unchanged whether we vary κ0,

Λ0 or P . Thus, a change in isobaric cooling time or reduced conduction due to tangled

B-fields does not affect the temperature PDF. While changes in the normalization of

cooling or conduction processes do not affect the temperature PDF, changes in their

temperature dependence (e.g., via metallicity for cooling) do, as we now discuss.

3.3.4 Non-Constant Conductivity

Consider a temperature dependent conductivity κ ∝ Tα. What are relevant values

of α? For single phase TMLs (Da < 1), where the coarse-grained and fine-grained

temperatures coincide, the temperature PDF is set by turbulent heat diffusion:

• α = −0.5 : Since conductivity and diffusivity D ∼ vL are related by κ = Dρcp ∝

DP/T , this arises when D ∝ T 0.5. This is seen in the low Da regime of TMLs,

where turbulent diffusion scales with the local sound speed, Dturb ∝ cs ∝ T 0.5 (see

Figure 14 of Tan et al. 2021).

For multiphase TMLs (Da > 1), the temperature PDF is set by microscopic thermal

conduction:
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Figure 3.3: Distributions for various values of α. The scaling with temperature gets
steeper as α increases.

• α = 2.5 : Spitzer conductivity. Spitzer (1962) gives the thermal conductivity of an

ionized plasma as:

κsp = 5.7× 10−7 T 2.5 erg cm−1 s−1 K−1. (3.8)

• α = 0 : Constant conductivity. This was assumed in previous simulations of TMLs

which included thermal conduction (e.g. Kim & Kim 2013; Tan et al. 2021), largely

for numerical reasons.

• α = −1 : Constant diffusivity. This is a good approximation for numerical diffusion

Dnum ∼ v∆x in simulations without thermal conduction (e.g. Kwak & Shelton

2010; Ji et al. 2019).
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In Fig. 3.3, we show the corresponding temperature distributions for each α. As α

increases, the temperature scale height and PDF is weighted toward higher temperatures.

3.3.5 Column Densities and Line Ratios

Given a solution for the temperature profile, we can compute column densities. From

the scalings in §3.3.3, and using NOvi =
∫
nOvi dl ∝ nOviλ, we obtain:

NOvi = ℓNc

(
κ

106 erg cm−1s−1K−1

)0.5(
Λ(TOvi)

10−21.5 erg cm3s−1

)−0.5(
Z

Z⊙

)
, (3.9)

where Nc is a reference column density, κ is the conductivity, Λ(TOvi) is the the cooling

function at TOvi ∼ 3× 105 K (where Ovi abundance peaks), and ℓ is a correction factor.

Similar equations can be written for the other ions as well. Since λF , λD ∝
√

κ/(n2Λ(T ))

have the same scalings, the scaling Ni ∝
√

κ/Λ holds whether the ion peaks in region A

or C. The value Nc depends on α. For example, in a turbulent single phase front where

α = −0.5, Nc = 5.10 × 1011 cm−2, but in a front with just Spitzer conduction where

α = 2.5, Nc = 2.1× 1012 cm−2. Nc also depends on the shape of the cooling curve (and

hence metallicity indirectly).

We include a path length correction factor ℓ to match 3D simulations, since sight-lines

that intersect the mixing layer at an angle have longer path lengths. We estimate this to

be a factor of ∼
√
2. This correction factor could also account for a sightline intersecting

the interface multiple times in a fractal TML. However, because the mixing layer does

not often ‘wrap around’ on large scales, we find in our 3D simulations that the sightlines

usually only intersect the mixing layer 1-2 times. Similarly, a line through the fractal

coastline on a map will typically intersect the water-land boundary once.

An important point in applying Eq. (3.9) is the choice of κ. The two candidates
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are explicit thermal conduction κcond and turbulent conduction κturb. If κcond > κturb,

then κcond should be used. However if κcond < κturb, then we have to consider Da of the

system. For large Da (multiphase), κcond should be used, since the width of individual

interfaces are governed by explicit thermal conduction. If Da < 1 (single phase), they

are set by turbulent conduction, and κturb should be used instead.

The scalings of Eq. (3.9) are consistent with those of Equation 30 in Ji et al. (2019).

They found that NOvi ∝ Z0.8, but with the change in cooling function with metallicity

folded in. In the single phase regime that their simulations fall in, κturb = Dturbρcp ∝ P

which then translates to NOvi ∝ P 0.5, as seen in their simulations.

Similarly, we can also compute a line surface brightness Qi as

Qi = fiQtotal ; fi ≡
∫
n2ϵi(T ) dl∫
n2Λ(T ) dl

, (3.10)

where ϵi is the line emissivity and Qtotal is the total surface brightness modeled in Tan

et al. (2021) (which for a fractal interface differs from Eq. 3.2). For example, using

pyatomdb to compute the emissivity of [O iii] 5008.24 Å, we obtain fi ∼ 8.4 × 10−3 for

α = 0 and fi ∼ 5.2× 10−3 for α = −0.5.

3.4 Results

3.4.1 Temperature PDFs

In Fig. 3.4, we compare 3D hydrodynamic simulations with 1D models. The distribu-

tions are from single snapshots where the mixing layer has fully developed. The following

categories are represented:
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Figure 3.4: Distributions of simulations (solid lines) compared to expected correspond-
ing 1D models (dashed lines). Simulations vary cooling and conduction prefactors,
along with α. Normalizations are adjusted for comparison.
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• Strong Conduction: When κcond > κturb (purple line Λ1κ8α0), mixing is set by

conduction and not by turbulence, and hence the distribution follows the constant

κ model (α = 0, red dashed line).

• Single Phase: In the low Da regime, where mixing is faster than cooling, the gas

is single phased. Our fiducial setup (Λ1κ1α0, orange line) lies in this region. Since

κturb is larger than κcond and hence dominates mixing, we expect the distribution

to follow the α = −0.5 model (orange dashed line), as explained in §3.3.4.

• Multiphase: The rest of the simulations have strong cooling (Λ128) and hence lie in

the high Da regime. Although κturb is larger than κcond, the multiphase structure of

the mixing layer means that the thickness of the interface locally is still set by κcond.

We show simulations for a range of α, including one with no explicit conduction

(blue line) which hence only has numerical diffusivity (α = −1, blue dashed line).

The simulation with a Spitzer scaling (pink line) differs from the α = 2.5 model for

T < 3×105 K. This is because the Field length at lower temperatures is unresolved,

as we now discuss.

3.4.2 Resolution

What resolution is required for convergence? It is usually thought that one needs

to resolve the Field length λF (e.g. see Figure 7 of Kim & Kim 2013). Our results are

consistent with this. In our highest resolution simulations, we are just able to resolve

the smallest λF with fiducial cooling (Λ1). However, in simulations with strong cooling

(Λ128), the Field length λF of gas below T = 5× 104 K remains unresolved. As a result,

we see in Fig. 3.4 that these simulations all show a dip at ∼ 2 × 104 K, where λF is

the smallest. In resolution tests, this feature becomes more prominent as we lower the

resolution. However, if the lines we are interested in only trace gas at T ∼ 105 K,
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Figure 3.5: Column densities from simulation sightlines (solid circles) compared with
their corresponding α models (hollow circles).

then it is sufficient to just have enough resolution to resolve λF at 105 K. The lowest

resolution simulation also shows a drop at higher temperatures, as numerical diffusion

starts to dominate over thermal conduction. This can also be seen in the simulation with

Spitzer conductivity (pink line in Fig. 3.4), where the distribution switches over from

the expected model to the one with numerical diffusion at lower temperatures where the

Spitzer conductivity is small.

3.4.3 Column Densities and Line Ratios

Finally, we use Trident to compute column densities along sightlines through the

mixing layer simulations. We run a hundred sightlines through the mixing layer in the

simulation, randomly initializing the start and end points of the sightlines on the sides
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of the box each time. These column densities are then summed. While there can be a

large variation in column densities along a single sightline, this is greatly reduced when

passing through many mixing layers, as required to match observed column densities. To

estimate the variance, we repeat this process 75 times over several time snapshots.

The average column densities per mixing layer are plotted in Fig. 3.5 for the fiducial

setup (Λ1, single phase) and one with much stronger cooling (Λ128, multiphase). Each

setup is also compared to the model predictions from §3.3 with ℓ =
√
2. For the α = −0.5

model, we used κturb = 107 erg cm−1 s−1K−1(T/104 K)−0.5 from Figure 14 of Tan et al.

(2021). The models and simulations are in good agreement. This implies that the number

of interface intersections per mixing layer in the multiphase regime is of order unity.

We show the corresponding model and simulation line ratios in Fig. 3.6. Observational

values for the Milky Way were obtained from Wakker et al. (2012) and are also shown

for comparison. We find that the single phase TML model is a good match with the

observations, consistent with the 2D simulations of Kwak & Shelton (2010). While the

multiphase TML simulation is also a good match, the constant conductivity used therein

is not physically motivated, unless conduction is saturated (Cowie & McKee 1977). As-

suming a Spitzer conductivity (pink hollow circles) instead leads to predictions which

differ significantly. Such potential constraints on Da = tturb/tcool < 1 are interesting,

particularly if one of these timescales can be independently estimated.

We also estimate line emission from the simulations above using pyatomdb and com-

pare with Eq. 3.10. For [O iii] 5008.24 Å, we find Qi ∼ 4 × 10−10 erg cm−2 s−1 and

Qi ∼ 4.5 × 10−9 erg cm−2 s−1 for Λ1 and Λ128 respectively. While these values are

around a factor of 2 higher than the model values, the difference mostly comes from

post-processing the line emission rather than tracking total emission in the simulations

over a timestep as done for Qtotal.
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Figure 3.6: Line ratios from simulations (solid circles) and their corresponding α
models (hollow circles). Grey bars represent observational data of the MW halo from
Wakker et al. (2012).
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3.5 Discussion

We have found that the thermodynamic temperature distribution in TMLs depends

only on the local rather than global front structure. As shown in Fielding et al. (2020)

and Tan et al. (2021), the global structure is set by turbulence, which can significantly

deform the front in the fast cooling limit, leading to a complicated fractal structure. The

interaction between turbulence and cooling sets the overall surface brightness and mass

entrainment rate. It is not sensitive to the details of thermal diffusion, and only requires

the outer eddy scale to be resolved. However, the local front structure is set by balance

between radiative cooling, advection, and thermal diffusion (conduction, turbulence),

requiring much smaller scales such as the Field length to be resolved. Fortunately, the

temperature PDFs, column densities and line ratios in converged 3D simulations are

surprisingly well matched by simple 1D models of local front structure. This is good

news, because resolving the local front structure is currently impossible in larger galaxy

scale simulations. Instead, the model we have presented can be inserted as a subgrid

prescription, when calculating the contribution of TMLs to line emission or absorption.

We regard this as significant progress. At the same time, there are refinements we

have ignored, which we leave to future work. Some of these include:

• Photoionization; Non-equilibrium Ionization (NEI). The effects of photoionization

and NEI were studied in 3D simulations by Ji et al. (2019). They have two effects:

(i) the gas is over-ionized compared to CIE expectations, and thus has larger line

column densities (typically by a factor of a few). (ii) Decreased radiative cooling

efficiency due to over-ionization; leading to thicker mixing layers and larger column

densities, although in practice this is a minor effect. Both of these effects can be

captured in our analytic model, by altering the temperature dependence of the

ionization fraction xi(T ) and cooling function Λ(T ), as a function of radiation field
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(Wiersma et al. 2009) or cooling history Gnat & Sternberg (2007), using lookup

tables.

• Multiple clouds; Kinematic Structure. To account for the observations, a line of

sight has to pass through ∼ 100 − 1000 mixing layers; which is conceivable if the

cold gas has a ‘fog-like’ structure (McCourt et al. 2018; Gronke & Oh 2020b). Cold

gas in a turbulent medium acquires a wide-ranging, almost scale-free range of sizes,

but the covering fraction is dominated by small cloudlets (Gronke et al. 2022).

Our analytic model enables us to assign column densities and line ratios for these

cloudlets, while kinematic structure due to turbulence can be obtained from the

simulation.

• Nonthermal Forces. Our simulations are purely hydrodynamic. B-fields can sup-

press the Kelvin-Helmholtz instability, significantly reduce mass entrainment rates

and column densities Ji et al. (2019). Non-thermal pressure support from cosmic-

rays has similar effects.

• Metallicity and Dust Depletion. We have assumed solar and equal cold/hot gas

metallicities/abundances. The first assumption is easily modified. The second can

be handled by modeling the relative cold/hot gas fraction in the mixing layer.

• Anisotropic Conduction. In our simulations, we only model isotropic conduction.

Anisotropic conduction along tangled B-fields potentially implies a reduction in κ.

As long as κ(T ) can be calibrated from high resolution simulations, it can be used

in our 1D model.
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Chapter 4

Cloudy with A Chance of Rain:

Accretion Braking of Cold Clouds

Body cells replace themselves every month.

Even at this very moment. Most everything

you think you know about me is nothing

more than memories.

Haruki Murakami, A Wild Sheep Chase

Understanding the survival, growth and dynamics of cold gas is fundamental to galaxy

formation. While there has been a plethora of work on ‘wind tunnel’ simulations that

study such cold gas in winds, the infall of this gas under gravity is at least equally

important, and fundamentally different since cold gas can never entrain. Instead, velocity

shear increases and remains unrelenting. If these clouds are growing, they can experience

a drag force due to the accretion of low momentum gas, which dominates over ram

pressure drag. This leads to sub-virial terminal velocities, in line with observations.

We develop simple analytic theory and predictions based on turbulent radiative mixing
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layers. We test these scalings in 3D hydrodynamic simulations, both for an artificial

constant background, as well as a more realistic stratified background. We find that the

survival criterion for infalling gas is more stringent than in a wind, requiring that clouds

grow faster than they are destroyed (tgrow < 4 tcc). This can be translated to a critical

pressure, which for Milky Way like conditions is P ∼ 3000 kBKcm−3. Cold gas which

forms via linear thermal instability (tcool/tff < 1) in planar geometry meets the survival

threshold. In stratified environments, larger clouds need only survive infall until cooling

becomes effective. We discuss applications to high velocity clouds and filaments in galaxy

clusters.

4.1 Introduction

The cycle of baryons – particularly that of cold gas, the fuel for star formation – is

absolutely fundamental to galaxy formation and a crucial link between galactic and cos-

mological scales (Péroux & Howk 2020). This cycle can take various forms: (i) Outflows

due to feedback processes (Thompson et al. 2016; Schneider et al. 2018). Observationally,

cold gas is frequently seen outflowing at velocities comparable to virial/escape velocities

(Veilleux et al. 2005; Steidel et al. 2010; Rubin et al. 2014; Heckman & Thompson 2017).

(ii) Inflow of cold gas which forms via thermal instability in the halo (Joung et al. 2012;

Sharma et al. 2012; Fraternali et al. 2015; Voit et al. 2019; Tripp 2022), or is supplied

by direct cosmology accretion (cold streams; Kereš et al. 2005; Dekel & Birnboim 2006),

and falls under gravity. (iii) Fountain recycling, which is a combination of these two pro-

cesses. A useful analogy is the terrestrial water cycle, where evaporation, condensation

and precipitation both play crucial roles.

All of these motions involve velocity shear between cold gas clouds and background

hot gas. A long-standing problem has been to understand why clouds are not shredded
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by hydrodynamic instabilities, particularly the Kelvin-Helmholtz instability. The hydro-

dynamic acceleration time for a cloud of radius r, overdensity χ embedded in a wind

of velocity vw is tacc ∼ χr/vw, the timescale for the cloud to sweep up its own column

density. By contrast, the cloud destruction (‘cloud crushing’) time is tcc ∼
√
χr/vw, i.e.

of order the Kelvin-Helmholtz time, implying that tacc/tcc ∼
√
χ, i.e. clouds should be

destroyed before they can be accelerated (Klein et al. 1994; Zhang et al. 2017). Nu-

merous simulation studies, including those with radiative cooling, concluded that cold

clouds get destroyed before they can become entrained with the wind (e.g. Cooper et al.

2009; Scannapieco & Brüggen 2015; Schneider & Robertson 2017); magnetic fields can

ameliorate but do not solve the problem (McCourt et al. 2015; Gronke & Oh 2020a).

In recent years, it was realized that there are regions of parameter space where the

cooling efficiency of the mixed, ‘warm’ gas is sufficiently large to contribute new comoving

cold gas which can significantly exceed the original cold gas mass, enabling the cloud to

survive. Cloud growth is thus mediated by these turbulent mixing layers (Begelman &

Fabian 1990; Ji et al. 2018; Fielding et al. 2020; Tan et al. 2021). The criteria for this

to happen is tcool,mix/tcc < 1, where tcool,mix is the cooling time of the mixed warm gas

(with Tmix ∼ (ThotTcold)
1/2) and tcc is the cloud crushing time (Gronke & Oh 2018). This

criterion is always satisfied for a large enough cloud r > cs,coldtcool,mix (where cs,cold is the

sound speed of the cold gas), which grows and entrains by gaining mass and momentum

from cooling mixed hot gas. Thus, the cloud eventually comoves with the wind, with

a cold gas mass which can be many times the original cloud mass. These conclusions

have been borne out in many subsequent studies (e.g., Sparre et al. 2020; Li et al. 2020;

Abruzzo et al. 2022b; Girichidis et al. 2021; Farber & Gronke 2022).

However, cold gas survival and growth has only been understood for part of the baryon

cycle, galactic outflows. To date, there have only been a handful of studies studying

cold gas survival and growth during infall, which is arguably even more fundamental to
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processes such as star formation.

An important outstanding problem in galaxy evolution is that the observed star

formation rates (SFRs) in galaxies at a range of redshift are unsustainable - they would

rapidly deplete current existing gas reservoirs - and hence these galaxies require some

form of continuous accretion to supply the necessary fuel (Erb 2008; Hopkins et al. 2008;

Putman et al. 2009). For example, our Milky Way has a SFR of ∼ 2 M⊙ yr−1 but only

∼ 5× 109M⊙ of existing fuel, and would thus burn through this supply in just 2-3Gyrs

(Chomiuk & Povich 2011; Putman et al. 2012). Supplementary inflow must come in the

form of low-metallicity (Z < 0.1Z⊙) gas, so as to satisfy constraints from disk stellar

metallicities and chemical evolution models (Schönrich & Binney 2009; Kubryk et al.

2013).

At the same time, we see infall in the form of ‘high-velocity’ and ‘intermediate-

velocity’ clouds (HVCs and IVCs; Putman et al. 2012) with relatively low metallicities,

as well as a galactic fountain with continuous circulation of material between the disk

and corona (Shapiro & Field 1976; Fraternali & Binney 2008). Fountain-driven accretion

could supply the disk with gas for star formation, and explain the observed kinematics

of extra-planar gas (Armillotta et al. 2016; Fraternali 2017). It is tempting to speculate

from the results of wind tunnel simulations that star formation in the disk exerts a form

of positive feedback: cold gas thrown up into the halo ‘comes back with interest’, by

mixing with low metallicity halo gas which cools and increases the cold gas mass.

HVCs are also good candidates and could provide a significant amount of the necessary

fuel for star formation, provided they survive their journey to the disk (Van Woerden

et al. 2004; Putman et al. 2012; Fox et al. 2019). First detected in HI 21 cm emission by

Muller et al. (1963), HVCs are gas clouds observed moving at high velocities relative to

the local standard of rest. The traditional definition for HVCs is thus those clouds with

velocities in the Local Standard of Rest frame |vLSR| ≥ 90 km/s (Wakker & van Woerden
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1991) (although similar clouds whose velocities significantly overlap that of the disk may

be missed; Zheng et al. 2015). They have been observed in all regions of the sky, and come

in a range of sizes (Putman et al. 2012). Clouds are grouped into various complexes based

on spatial and kinematic clustering but because of their proximity, precise distances to

HVCs are difficult to measure. The main method of doing so is to use halo stars of known

distances in the same sky region to bracket the cloud distance by looking for absorption

lines (or lack thereof) in the stellar spectra. By determining if a HVC is in front of or

behind each star, the HVC’s distance can thus be effectively constrained. Most HVCs

with distances measured as such are found between 2-15 kpc, with most heights above the

disk < 10 kpc (Wakker et al. 2008; Thom et al. 2008). The head-tail morphology observed

in many HVCs (Putman et al. 2011), along with observations that the majority of high

velocity absorbers kinematically and spatially lie in the vicinity of HVCs (Putman et al.

2012), strongly suggest that the HVCs are mixing as they travel through the ambient

medium. There is a wealth of literature on observations of HVCs – we refer the reader

to reviews such as Putman et al. (2012) for a more comprehensive account.

As we have discussed, the survival of HVCs is inherently problematic, since they are

vulnerable to hydrodynamic instabilities while travelling through the hot background

(Klein et al. 1994; Zhang et al. 2017). Early theoretical efforts to model HVCs initially

focused on predicting their velocity trajectories, without taking into consideration their

mass evolution. These early models assumed that these HVCs fell ballistically (Bregman

1980) or reached a terminal velocity when eventually slowed by hydrodynamic drag forces

(Benjamin & Danly 1997), and were used in evaluating the contributions of HVCs in

larger feedback models (Maller & Bullock 2004). However, the decoupling of the velocity

and mass evolution implied by this approach has been shown to be untenable for HVCs

with the advent of high resolution hydrodynamical simulations, many of which show

that the mass and morphology of the clouds evolve significantly (e.g., Kwak et al. 2011;
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Armillotta et al. 2017; Gritton et al. 2017; Gronke & Oh 2020a). While wind-tunnel

setups are numerous, the number of 3D simulations of clouds falling under the influence

of gravity and including radiative cooling is more limited (Heitsch & Putman 2009;

Heitsch et al. 2022; Grønnow et al. 2022). The survival criterion for infalling clouds has

not been quantified, and analytic models for mass and velocity evolution which match

simulations do not yet exist. We will tackle these challenges in this paper.

Presumably, similar considerations apply, with a minimum cloud size rcrit ∼ cs,coldtcool,mix

required for survival and growth. However, this ignores a crucial distinction between

outflowing and infalling cold gas clouds. Outflowing gas clouds gradually entrain, so

destruction processes become weaker as the velocity shear is reduced. The cloud only

has to survive until it becomes comoving with the hot gas, at which point hydrodynamic

instabilities are quenched (and mass growth peaks). Indeed, wind tunnel simulations

(particularly for clouds with sizes just above rcrit) often show clouds which initially break

up into small fragments, with a significant amount mixed into the hot medium, but even-

tually survive as the fragments entrain and grow. The cold fragments then coalesce –

the cloud ‘rises from the dead’ to a peaceful environment. In contrast, infalling clouds

accelerate under the action of gravity, with continually increasing velocity shear, and

consequently increasing cloud destruction rate, which is maximized at the cloud terminal

velocity. Thus, the cloud instead is exposed to continually worsening conditions, and

somehow has to survive an unrelenting hot wind. Moreover, the properties of the wind

change with time, as the cloud falls through a background stratified hot medium.

The survival and growth of a cold cloud under such conditions is the focus of this

paper. We develop simple analytic scalings which we test in 3D hydrodynamic simula-

tions. Unsurprisingly, several important aspects, such as cloud survival criteria, are quite

different from the wind tunnel case.

What is at stake? As previously mentioned, if clouds can survive and grow, the ulti-
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mate fuel supply for star formation could simply be coronal gas, whose condensation is

triggered by star formation feedback and Galactic fountain recycling. During this pro-

cess, cold gas also exchanges angular momentum with coronal gas, which links fountain

circulation to the observable kinematics of coronal gas. More broadly, the physics of

radiative turbulent mixing layers is complex, and theoretical studies demand empirical

tests. Unlike clouds embedded in galactic winds, which lie at extra-galactic distances

and are difficult to resolve, there is a plethora of spatially and kinematically resolved

observational data for intermediate and high velocity clouds in the Milky Way. There

is also ample similar data for infalling filaments in galaxy clusters (e.g. Russell et al.

2019). Such systems can be used as laboratories for the interaction between multiphase

gas, mixing, and radiative cooling, which is also critical to galactic winds but difficult to

test there. We shall see that we predict sub-virial terminal velocities at odds with stan-

dard predictions (which balance hydrodynamic drag with gravity) but in much better

agreement with observations. Moreover, the predicted terminal velocity from the model

is an observable that can be tested, at least on a statistical basis (given observational

uncertainties and degeneracies). Such empirical tests have thus far been sorely lacking

in cloud physics models.

The outline of this paper is as follows. In Section 4.2, we outline analytic theory and

predictions for the dynamics, growth and survival of infalling cold clouds. In Section 4.3,

we describe our simulation setup. In Sections 4.4 and 4.5, we describe simulation results,

both for an artificial constant background (which allows us to test analytic scalings), as

well as a more realistic stratified background. In Section 4.6, we discuss applications to

the Milky Way (HVCs) and galaxy clusters (infalling filaments). Lastly, we summarize

and conclude in Section 4.7.
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4.2 Dynamics of Infalling Clouds

4.2.1 Cloud Evolution and Terminal Velocities

A falling cloud growing via accretion can be described by the following set of differ-

ential equations:

dz

dt
= v (4.1)

d(mv)

dt
= mg − 1

2
ρhotv

2C0Across (4.2)

dm

dt
=

m

tgrow
(4.3)

where z, v and m represent the distance fallen, velocity, and mass of the cloud respec-

tively, tgrow ≡ m/ṁ is the growth timescale (which we discuss in Section 4.2.2), g is the

gravitational acceleration, C0 is the drag coefficient (geometry dependent; of order unity

here), ρhot is the density of the background medium, and Across is the cross-sectional area

which the cloud presents to the background flow. We shall see that it is important to

distinguish Across from Acloud, the overall surface area of the cloud. We shall also see that

tgrow is roughly independent of mass growth, so that from equation (4.3), mass growth

is nearly exponential. Note that equation (4.3) assumes steady growth and omits terms

which contribute to cloud destruction. Thus, it does not apply to clouds which are losing

rather than gaining mass. In this paper, we focus on scenarios where clouds survive and

grow, which is the novel feature in our new model (previous works, e.g. Afruni et al. 2019,

have looked at scenarios with significant mass loss). In Section 4.2.3 we will quantify the

criterion for cloud survival. In this work, we only consider the hydrodynamic case and

leave investigation of other factors such as magnetic fields, externally driven turbulence,

and cosmic rays to future work.
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The terms on the right hand side in the momentum equation (equation (4.2)) represent

the gravitational and hydrodynamic drag forces. In standard models, these two terms are

assumed to balance one another in steady-state, giving the hydrodynamic drag terminal

velocity

vT,drag =

√
2mg

ρhotC0Across

≃
√

2χLg

C0

(4.4)

for a falling cloud with volume ∼ AcrossL and χ = ρcloud/ρhot. The hydrodynamic drag

time (momentum divided by the drag force) is given by tdrag ∼ χL/v. In fact, this gives

the terminal velocity only if the left hand side of equation (4.2) vanishes, ṗ = mv̇+ ṁv =

0 ⇒ v̇ = 0, which is correct only if cloud mass does not evolve so ṁ = 0. If ṁ > 0, i.e. the

cloud grows by accreting mass from the background, then from momentum conservation,

since the background gas is at rest and has zero initial momentum, this will slow down

the cloud. In the limit that the hydrodynamic drag term is small compared to ṁv,

v =
m

ṁ
(g − v̇). (4.5)

Thus, if v̇ ≪ g, there is a second terminal velocity

vT,grow =
mg

ṁ
= gtgrow. (4.6)

The two terminal velocities in equations (4.4) and (4.6) represent regimes where the cloud

acceleration under gravity is predominantly balanced by either hydrodynamic drag or the

momentum transfer from background accretion respectively. We can separate them by

considering the ratio tgrow/tdrag. When this ratio is large, gravity is balanced by drag.

Conversely, when this ratio is small, gravity is balanced by accretion. The transition

between the two is marked by where tgrow ∼ tdrag. We can illustrate this by solving
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Figure 4.1: The terminal velocity (normalized by the drag terminal velocity) as a
function of the ratio of the growth time tgrow and the drag time tdrag. The dashed
lines show the corresponding values for the terminal velocities when assumed to be
set by either drag or growth. As the ratio increases, there is a smooth transition from
vT,grow to vT,drag.
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equations (4.1) – (4.3) numerically for a constant tgrow. The result is shown in Fig. 4.1,

where we plot the terminal velocity as a function of tgrow/tdrag. We can see that when

tgrow ≪ tdrag, the terminal velocity follows vT,grow, and when tgrow ≫ tdrag, the terminal

velocity follows vT,drag as expected.

Which regime is more realistic? Let us first explore this for the idealized case of

spherical clouds. For a spherical cloud, the growth time is given by (Gronke & Oh

2020a):

tgrow ≡ m

ṁ
∼ ρcoldr

3

ρhotAcloudvmix

∼ χ
r

vmix

. (4.7)

This seems long: if vmix ∼ cs,cold (a reasonable estimate; see Section 4.2.2 of Gronke &

Oh 2020a and Sections 4.6 & 5.3.3 of Tan et al. 2021), then tgrow ∼ χtsc, where tsc is the

sound crossing time across the cloud. By contrast, the hydrodynamic drag time for a

spherical cloud (as mentioned previously) is:

tdrag ∼ χ
r

v
, (4.8)

which is much shorter, since tdrag/tgrow ∼ vmix/v ∼ cs,cold/cs,hot ∼ χ−1/2 ≪ 1, if we assume

the the virial velocity to be a characteristic infall speed, v ∼ vvir ∼ cs,hot. The fact that

tdrag ≪ tgrow makes physical sense. The hydrodynamic drag time is also the timescale

for a cloud to sweep up its own mass in hot gas (ρhotAcrossvtdrag ∼ ρhotr
3χ ∼ m). Even

if all this mass is incorporated into the cloud, then at best tgrow ∼ tdrag. In fact, only a

small fraction of this gas is actually incorporated into the cloud, so that tgrow ≫ tdrag.

This suggests that hydrodynamic drag is the main drag force, which results in a terminal

velocity given by equation (4.4).

However, as previously mentioned, clouds in a shearing wind do not remain spher-

ical; they develop extended cometary tails (as seen both in simulations and observa-
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tions). This change in geometry – and in particular the large increase in surface area

– is crucial for enabling momentum transfer via mass growth. In hydrodynamic drag,

Fdrag ∼ ρhotv
2Across, the area Across ≈ πr2 is the cross-sectional area the cloud presents

to the wind. Thus, Fdrag remains roughly constant during cloud evolution. By contrast,

in ṁ ∼ ρhotAcloudv, the area Acloud is the surface area of the cloud available for mix-

ing. In a cometary structure, this is dominated by the sides of the cylinder, so that

Acloud ∼ 2πrL, where L is the length of the tail. Thus, ṁ ∝ Acloud ∝ L increases as

a cloud develops a cometary tail. It is this increase in ṁ, and thus the effective mo-

mentum transfer rate Fgrow ∼ ṗgrow ∼ ṁv, compared to a constant Fdrag, which causes

mass growth to dominate momentum transfer: tgrow ∼ χr/vmix is roughly constant, while

tdrag ∼ mv/Fdrag ∼ ρcloudAcrossLv/(ρhotAcrossv
2) ∼ χL/v increases as the mass of the

cloud increases. In particular,

tgrow
tdrag

∼ r

L

v

vmix

∼ r

L
χ1/2. (4.9)

In cloud crushing simulations, the tail grows during the process of entrainment to a length

L ∼ vtdrag ∼ χr during the ‘tail formation’ phase (?), so that tgrow/tdrag ∼ χ−1/2 ≪ 1.

The continuous shear for infalling clouds can lead to even more extended tails since the

cloud does not entrain, so tgrow/tdrag ≪ 1 is easily satisfied10.

Finally, it is important to realize that there is a third timescale in the problem, the

free-fall time tff ∼ vvir/g. This sets the evolutionary lifetime available to clouds, before

they fall to the halo center. Clouds will not grow significantly (and reach the terminal

velocity vT,grow given by equation (4.6)), unless tgrow < tff . Indeed, tgrow < tff is required

for a subvirial terminal velocity. We can show this by recalling that Fgrav ∼ mg ∼

mvvir/tff , while the drag force from mass growth is Fgrow ∼ ṁv ∼ mv/tgrow. At the

10Shorter entrainment times than tdrag have been observed in cloud crushing simulations (e.g., Gronke
& Oh 2020a; Farber & Gronke 2022).
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terminal velocity vT , we have Fgrav ∼ Fgrow, so that:

fsub−vir ≡
vT,grow

vvir
∼ vT

cs,hot
∼ tgrow

tff
. (4.10)

This is useful because fsub−vir – infall velocities, normalized to the virial velocity – can be

measured observationally. Indeed, fsub−vir < 1, sub-virial infall velocities, is commonly

observed in LRGs (Huang et al. 2016; Zahedy et al. 2019) and galaxy clusters (Russell

et al. 2016), much lower than predicted terminal velocities from hydrodynamic drag mod-

els (Lim et al. 2008). Our models can explain these puzzling observations, as we describe

in Section 4.6.2. It also allows for testable predictions. Since fsub−vir is measured and tff

is known from the density profile, we can predict tgrow ≈ fsub−virtff from kinematic obser-

vations, assuming that clouds have reached terminal velocity. This can be compared with

predictions for tgrow from equations (4.22) and (4.23), given measured or inferred cloud

and background hot gas properties. Lastly, the mass growth that a cloud experiences

is m/m0 ∼ exp(tff/tgrow) ∼ exp(f−1
sub−vir). Thus, a measurement of sub-virial velocities

directly constrains the degree to which mixing and cooling enhances cool gas infall to the

central galaxy. Significantly sub-virial infall implies that cold clouds grow considerably

before reaching the halo center. These analytical estimates can be compared to measure-

ments of the mass infall rate (e.g., Fraternali & Binney 2006; Fox et al. 2019). In Section

4.5, we will also show the rather remarkable result that in an isothermal atmosphere with

constant gravity, fsub−vir is fixed by geometry, specifically the scaling between cloud mass

and area (α in equation (4.21)), independent of all other properties of the system. For

our infalling clouds, we find fsub−vir ≈ 0.6.
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4.2.2 Cloud Growth

Previous models of infalling clouds have considered the interplay between gravity

and hydrodynamic drag forces, assuming a fixed cloud mass (Benjamin & Danly 1997).

However, a fixed cloud mass is unrealistic due to various processes that trigger mixing

with the hot background gas or shred the cloud. Mass evolution therefore cannot remain

static; clouds should either be destroyed (ṁ < 0), or grow (ṁ > 0) over time.

In the absence of cooling, clouds moving relative to a background medium are de-

stroyed by hydrodynamic instabilities on the cloud crushing timescale (Klein et al. 1994;

Scannapieco & Brüggen 2015)

tcc ∼
√
χ
r

v
, (4.11)

where χ is the ratio of the cloud density to the background density, r is the cloud radius,

and v is the magnitude of the relative velocity between the cloud and the background.

This cloud crushing timescale reflects the destruction of the cloud via internal shocks

induced inside the cloud due to its velocity with respect to the medium it is moving

through (assuming that this velocity is supersonic with respect to the sound speed within

the cloud), and is roughly the same timescale on which surface instabilities such as the

Kelvin-Helmholtz and Rayleigh-Taylor instabilities grow to the cloud scale (Klein et al.

1994). This destructive fate can however be counteracted by mass growth due to cooling.

In wind tunnel simulations of ‘cloud crushing’, Gronke & Oh (2018) found that in order

for cold gas to survive, cooling needs to be strong enough to satisfy the criterion

tcool,mix < tcc, (4.12)

where tcool,mix is the cooling time of the mixed gas, defined as Tmix ∼
√
TcloudThot (in
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the spirit of Begelman & Fabian 1990, see also Hillier & Arregui 2019 for an alternative

derivation). That is, if the cooling time of the mixed gas is shorter than the initial cloud

crushing time, then cold gas survives and is eventually entrained in the hot background

wind.

However, infalling clouds have an important aspect that differentiates them from

clouds in a wind – gravity. Clouds encountering a hot wind gradually entrain in the wind,

so that shear eventually drops to zero if the cloud manages to survive until entrainment.

The cloud thus encounters destructive forces for a limited period of time. By contrast,

clouds in a gravitational field will always keep falling and shearing against the background

gas. Thus, the survival criterion is different, and more stringent; we discuss this in

Section 4.2.3.

Assuming cloud survival, let us quantify the timescale on which clouds grow. We first

derive some scaling relations, before deriving numerical expressions. For now, we ignore

fudge factors (due to geometry, etc.) which can be up to an order of magnitude. As in

equation (4.7), the mass growth rate of a cloud can be written as

ṁ ∼ ρhotAcloudvmix, (4.13)

where ρhot is the density of the hot background medium, Acloud is the effective surface

area of the cloud11 and vmix is the the velocity corresponding to the mass flux from the

hot background onto this surface. As above, if we write m ∼ ρcoldAcloudr, this gives:

tgrow ∼ χ
r

vmix

. (4.14)

11The effective surface area corresponds to the (smoothed) enveloping area of the cloud and not the
(non-convergent) surface area of the cold gas. See Gronke & Oh (2020a) for further discussion of this
distinction.

110



Cloudy with A Chance of Rain: Accretion Braking of Cold Clouds Chapter 4

Plane parallel simulations of mixing layers (Tan et al. 2021) show:

vmix ∼ u′3/4
(

r

tcool

)1/4

∼ v
3/5
shearv

3/20
0

(
r

tcool

)1/4

(4.15)

where tcool is the cooling time in cold gas (the minimum cooling time in the mixing

layer, a convention we adopt henceforth) and u′ is the peak turbulent velocity in the

mixing layer (usually in intermediate temperature gas). Note that while the first step in

equation (4.15), i.e., vmix(u
′), is generally valid, we have used the scaling u′ ∝ v

4/5
shear for

relating u′ to the parameters of the setup. This scaling was found numerically in Tan

et al. (2021) for plane-parallel mixing layers and we have written it here as u′ ∼ v
4/5
shearv

1/5
0

to preserve dimensionality (v0 simply encodes normalization). If we set vshear ∼ vT,grow ∼

gtgrow, this yields:

tgrow ∼ χ5/8 r
15/32t

5/32
cool

g3/8v
3/32
0

; vT,grow < cs,hot. (4.16)

While the above scalings focus on the subsonic and transonic cases, large enough clouds

can reach velocities exceeding the sound speed of the hot gas. In such a case, the turbulent

mixing velocity saturates and stops scaling with the cloud velocity (Yang & Ji 2023),

changing the above scalings. In this case, from equations (4.14) and (4.15), we obtain:

tgrow ∝ χr3/4

c
3/5
s,hott

1/4
cool

. (4.17)

We now give numerical expressions, which are calibrated to simulations. For cooling

dominated regimes (defined below), Tan et al. (2021) found that vmix in turbulent mixing

layers follows

vmix ≈ 9.5 km s−1

(
u′

50 km s−1

)3/4(
Lturb

100 pc

)1/4(
tcool

0.03Myr

)−1/4

, (4.18)
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where Lturb is the outer scale of the turbulence. Note that equation (4.18) only applies in

the ‘fast cooling’ (Damix ≡ Lturb/(u
′tcool,mix) > 1, where Damix is the Damköhler number;

Tan et al. 2021) regime, where the cooling time is much smaller than the turbulent mixing

time Lturb/u
′. As we will discuss below, however, this is always true for surviving clouds.

Tan et al. (2021) note that u′ is geometry dependent, but find for shearing layers that

u′ ≈ 50 km s−1M4/5
( cs,hot
150 km s−1

)4/5( tcool
0.03Myr

)−0.1

, (4.19)

for χ ≳ 100 and M ≡ vshear/cs,hot. From equation (4.18), we can approximate vmix ∼

cs,cold for quick estimates. While Tan et al. (2021) only considered mixing layers with

subsonic to transonic velocity shears, Yang & Ji (2023) found that beyond M = 1, u′ in

the mixing region stops scaling with M and saturates. We include this in our model by

setting M → min(1,M). We find good evidence for this in our simulations.

Equations (4.18) and (4.19) assume fully developed turbulence. When a cloud falls

from rest however, there is a transient period when turbulence is developing. We hence

set a time dependent weight factor wkh(t) to account for the initial onset of turbulence.

Turbulence develops over the timescale for the development of the Kelvin-Helmholtz

instability; on the scale of the cloud tkh = fkhtcc where fkh is some constant of propor-

tionality (Klein et al. 1994). We use the simplest ansatz that

vmix → wkh(t)vmix; wkh(t) = min

(
1,

t

fkhtcc

)
, (4.20)

which amounts to vin growing linearly with time over the instability growth time, until

fully developed and capped at unity. We will justify this ansatz in our simulations. Since

tcc is changing over time, we note that t/tcc ∝ vt ∼ z, where z is distance the cloud has

fallen. We find in our simulations that fkh ∼ 5 for a constant background and ∼ 1 for
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a stratified background. In a more realistic setting with less idealized initial conditions,

this time-dependent weight factor might not be necessary as the initial mixing can be

already seeded from the outflowing section (assuming v < vesc), extrinsic turbulence, or

cooling induced pulsations (Gronke & Oh 2020b, 2022).

What is an appropriate scaling relation for the effective cloud surface area Acloud?

In cloud crushing simulations, areal growth follows two phases (Gronke & Oh 2020a;

Abruzzo et al. 2022b). In the ‘tail-formation’ phase, surface area growth is dominated

by the formation of a cometary tail, with Acloud ∝ L ∝ m, where L is the length of the

tail. The stretching of the cloud means that the area to mass ratio Acloud/m ≈ constant,

rather than Acloud/m ∝ m−1/3, as for fixed geometry. Once the tail grows to a length

L ∼ χr (the hydrodynamic drag length), the cloud becomes entrained in the wind from

efficient momentum transfer, and due to lack of shear the tail no longer grows. The cloud

surface area thereafter scales roughly as Acloud ∝ (m/ρcloud)
2/3, as one would expect for

a monolithic cloud.

However, our falling clouds do not get entrained - rather the opposite in fact, as

they start at rest and accelerate until reaching some terminal velocity. This means they

start ‘entrained’ and then begin to shear against background gas. They never leave the

‘tail-formation’ phase, since there is a constant velocity difference between the cloud and

background medium. The cloud sees a continuous headwind which drives turbulence,

mixing, and lengthening. Instead of Acloud ∝ m/ρcloud or Acloud ∝ (m/ρcloud)
2/3, we

assume that Acloud ∝ (m/ρcloud)
α, where α is a growth scaling exponent between 2/3

and 1. Physically, this is because both mass growth onto the surface of the cloud and

a lengthening tail are concurrent processes. We will demonstrate that this is a good

assumption for the mass growth of the falling clouds in our simulations, where we find
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α ≈ 5/6. The cloud surface area is thus

Acloud ≈ Acloud,0

(
m

m0

ρcloud,0
ρcloud

)α

, (4.21)

where Acloud,0, ρcloud,0 and m0 are the initial cloud surface area, density and mass re-

spectively. Note that since ṁ ∝ mα where α = 5/6 is close to 1, the growth is close to

exponential12. The cloud density ρcloud changes because the ambient pressure increases

as the cloud falls in a stratified medium, compressing the cloud.

Using equations (4.13), (4.18), (4.20) and (4.21), we can write the growth time tgrow ∼

m/ṁ as

tgrow =
tgrow,0

wkh(t)

(cs,150
v

)3/5( tcool
tcool,0

)1/4(
m

m0

ρhot,0
ρhot

)1−α

, (4.22)

where cs,150 = 150 km s−1 is the sound speed of gas at 106 K and the initial growth time

tgrow,0 is given by

tgrow,0 ≈ 35Myr

(
fA
0.23

)( χ

100

)( r

r100

)(
Lturb

L100

)−1/4(
tcool,0

0.03Myr

)1/4

. (4.23)

where r100 = L100 = 100 pc and r is the initial cloud size. We will assume generally that

Lturb ∼ r (since the hydrodynamic instabilities which drive turbulence and mixing have

an outer scale set by cloud size). We have included an unknown normalization factor

fA to account for uncertainties arising from geometrical differences between the single

mixing layers in Tan et al. (2021) and our cloud setup here, the use of the initial size of

the sphere as a characteristic scale (see discussion at the end of Section 4.6), and any

12Similar scalings ṁ ∝ A ∝ mα, where α ≈ 0.8, are seen in simulations of cloud growth when clouds are
embedded in a turbulent medium (Gronke et al. 2022). This super-Euclidean scaling can be understood
as the outcome of the fractal nature of the mixing surface, where area A ∝ mD/3, where D is the fractal
dimension (Barenblatt & Monin 1983). In their mixing layer simulations, Fielding et al. (2020) measure
D ≈ 2.5, which gives α ≈ D/3 = 5/6, consistent with the above.
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other simplifying assumptions we might have made. We find in our simulations that

fA ∼ 0.23. We can simplify equations (4.22) and (4.23) by ignoring the weak mass and

hot gas density dependence, and setting Lturb ∼ r, to obtain:

tgrow =
35Myr

wkh(t)

(
fA
0.23

)(cs,150
v

)3/5 ( χ

100

)( r

r100

)3/4(
tcool

0.03Myr

)1/4

. (4.24)

Equations ((4.22)) and (4.23) should be used when evaluating tgrow if the velocity v(t)

varies with time (i.e., when solving equations (4.1) – (4.3). However, a key quantity is the

growth time at the terminal velocity v = gtgrow, which we shall see determines whether

the cloud can survive (Section 4.2.3). Inserting v = gtgrow into equation (4.22), setting

wkh(t) = 1, and using fA = 0.23, we obtain the numerical version of equation (4.16):

tgrow = 40Myr

(
g

gfid

)−3/8 ( χ

100

)5/8( r

r100

)15/32(
tcool

0.03Myr

)5/32

, (4.25)

where gfid = 10−8 cm s−2. On the other hand, for supersonic speeds, as we have discussed,

the turbulent mixing velocity saturates and stops scaling with the cloud velocity (Yang &

Ji 2023). Setting v ∼ gtgrow to v ∼ cs,hot instead in equation (4.24), we find the numerical

version of equation (4.17):

tgrow = 35Myr

(
cs,hot
cs,150

)−3/5 ( χ

100

)( r

r100

)3/4(
tcool

0.03Myr

)1/4

. (4.26)

4.2.3 Cloud Survival

The model we have presented only accounts for mass growth of the cloud and does not

include processes that result in mass loss. In addition, the initial onset and development

of turbulence is only very crudely incorporated. The absence of these refinements mean

that we should expect differences between model predictions and simulations, certainly
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for clouds that are losing mass, and at early times even for clouds that do survive and

grow. We leave the inclusion and refinement of these components for future work, as

we find that the model as presented works well for surviving clouds. Since the key

assumption of our model is that the cloud is growing, we now discuss when this is a valid

assumption.

As we previously discussed, clouds placed in a wind tunnel encountering a hot wind

can survive if tcool,mix < tcc (equation (4.12)). Physically, tcool,mix can be understood as

the time it takes gas to cool in the downstream tail region of the cloud. Even if the initial

pristine cloud material does not survive, if mixed gas can cool and survive, then the cold

gas mass will increase. Since this mixed gas in the tail is cooling from the background,

it is much more entrained in the wind than the initial cloud and hence able to survive –

once the cold gas is entrained, it is no longer subject to destruction by shear.

The ‘usual’ survival criterion tcool,mix < tcc above is certainly a necessary condition

for survival. If no gas can cool before the cloud is completely disrupted, the cloud cannot

survive. However, this criterion is not a sufficient one. This is because the physical

process associated with tcc is not simply surface evaporation. If this were so, then the

above criterion would indeed be sufficient as any mixing would lead to a net increase

in cloud mass. Instead, the entire cloud is disrupted (i.e. the cloud is broken up into

smaller fragments; Klein et al. 1994; Schneider & Robertson 2017). Hence, as we shall

see, it is not enough that mixed gas can cool faster than the cloud crushing time.

Compared to a wind tunnel setup, the considerations for an infalling cloud are differ-

ent. Since the cloud’s velocity increases instead, and there is no entrainment, tcc decreases

over time. The only way for cold gas to survive is if it is produced at a rate faster than
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it is destroyed:

tgrow < fStcc, (4.27)

where fS is some constant13 factor of order unity, which we shall calibrate in simulations.

It encodes the fact cloud destruction takes place over several cloud crushing times (Klein

et al. 1994; Scannapieco & Brüggen 2015). In evaluating tcc ∼ χ1/2r/v, the cloud radius

is evaluated at its initial value. As in wind tunnel experiments, this turns out to be a

very good approximation, since the cloud grows mostly in the streamwise direction. If

the velocity is evaluated at the terminal velocity vT ∼ gtgrow, then equation (4.27) is

equivalent to:
gt2grow
χ1/2r

< fS. (4.28)

As we have seen, there are two regimes for tgrow, subsonic and supersonic infall. The

criterion for subsonic infall is tgrow < tff (equation (4.10)). Using equation (4.25), and

assuming tff ∼ cs,hot/g, this can be rewritten as r < rsonic, where

rsonic ∼ 150 pc

(
tcool

0.03Myr

)−1/3(
g

gfid

)−4/3 ( χ

100

)−4/3
(
cs,hot
cs,150

)32/15

. (4.29)

Thus, clouds must be smaller than some critical radius to fall at sub-virial velocities. In

this regime, (vT ∼< cs,hot), tgrow is given by equation (4.25), and the survival criterion,

equation (4.28), becomes:

tcool < 5× 10−3Myr

(
fS
2

)16/5(
r

r100

)1/5(
g

gfid

)−4/5 ( χ

100

)−12/5

. (4.30)

13Although we find that a constant factor is sufficient for our purposes, this coefficient has been
found to vary in supersonic flows. For example, Scannapieco & Brüggen (2015) found that in the cloud
crushing setup with a supersonic wind, fS scales as

√
1 +Mhot where Mhot is the Mach number of the

hot medium (see also Li et al. 2020; Bustard & Gronke 2022, for alternative scalings). However, we
mostly probe the subsonic to transonic regime.
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Note that equation (4.30) is almost independent of cloud size. Indeed, tgrow/tcc ∝

gt2grow/r ∝ r−1/16, i.e., a very weak scaling. We shall verify this in Section 4.4.4.

Is it possible for clouds to survive in the supersonic regime (r > rsonic)? This requires

tff < tgrow < fStcc. This in turn requires that clouds be smaller than some critical size

rSS, since tgrow/tcc ∝ gt2grow/r ∝ r1/2 in the supersonic regime (using tgrow ∝ r3/4 from

equation (4.26)). Thus, supersonic infall and survival requires:

rsonic < r < rSS, (4.31)

where rSS is given by:

rSS = 100 pc

(
tcool

0.03Myr

)−1(
g

gfid

)−2 ( χ

100

)−2
(
cs,hot
cs,150

)12/5

. (4.32)

Note that equation (4.31) can only be fulfilled if rsonic/rSS < 1, where:

rsonic
rSS

∼ 1.5

(
tcool

0.03Myr

)2/3(
g

gfid

)2/3 ( χ

100

)2/3(cs,hot
cs,150

)−4/15

. (4.33)

Figure 4.2 shows the survival criteria above (equations (4.30) and (4.32)) for g = gfid,

χ = 100, cs,hot = cs,150, and fS = 2. It is clear that survival is mostly independent of

cloud size and depends instead on the cooling time.

In practice, the subsonic case is of most interest. There, clouds must satisfy tgrow <

min(tff , tcc), which translates into a maximum allowed cloud size (equation (4.29)) and

a maximum allowed cooling time in cold gas (equation (4.30)). The latter criterion is

quite stringent. Since the dependence on size in equation (4.31) is weak, under isobaric

conditions tcool ∝ 1/P , we can translate equation (4.30) into a critical pressure. For
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Figure 4.2: Cloud survival for subsonic and supersonic infall for different cloud sizes
and cooling times. Survival is mostly sensitive to the latter.
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fS = 2, and ignoring the size dependence, equation (4.30) is equivalent to:

P > 3000 kB Kcm−3

(
g

gfid

)4/5 ( χ

100

)12/5
, (4.34)

where the RHS is the critical pressure Pcrit above which a falling cloud can survive. We

can also write equation (4.30) in terms of the cooling time of the hot gas tcool,hot ∼

χ2tcool[Λ(Tcold)/Λ(Thot)] and the free fall time tff ∼ cs,hot/g to obtain:

tcool,hot
tff

≲ 1
( χ

100

)−2/5
(
Λ(Tcold)

Λ(Thot)

)
, (4.35)

where we have ignored the weak dependence on g, tcool/tff ∝ g1/5. This is similar to the

criterion (tcool,hot/tff < 1, where tcool is evaluated at one scale height) for precipitation out

of a thermally unstable background medium in a plane parallel atmosphere14 (McCourt

et al. 2012). Since all our analytics and simulations are in the framework of plane

parallel systems, the numerical factor in equation (4.35) will likely change in spherical

systems. Equation (4.35) has the very interesting implication that clouds which condense

via thermal instability are able to survive subsequent infall, as long as they are below

the critical size given by equation (4.29). Note that the physics of stratified thermal

instability which leads to the tcool,hot/tff < 1 criterion – overstable gravity waves driven by

cooling – is quite different from what we have discussed here, so it is non-trivial (perhaps

coincidental) that both thermal instability and falling cloud survival have similar criteria.

14It is somewhat more stringent than the requirement for thermal instability in spherical systems
(tcool,hot/tff < 10; Sharma et al. 2012), where the gravitational acceleration g and hence tff varies as
a function of radius. However, it has been shown that there is no geometrical difference in cold gas
condensation in plane parallel and spherical geometries; the apparent difference arises from definitional
differences in where tcool/tff is evaluated and cold gas is located (Choudhury & Sharma 2016).
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4.3 Methods

We carry out our simulations using the publicly available MHD code Athena++ (Stone

et al. 2020). All simulations are run in 3D on regular Cartesian grids using the HLLC

approximate Riemann solver and Piecewise Linear Method (PLM) applied to primitive

variables for second order spatial reconstruction. By default, we use the second-order

accurate van Leer predictor-corrector scheme for the time integrator, but switch to the

third-order accurate Runge-Kutta method when the former is not stable enough, in

particular for simulations with a constant background where the cooling time is extremely

short throughout the entire simulation.

Our simulation setups consist of rectangular boxes with identical x, y dimensions and

an extended vertical z axis. They are filled with static hot Thot = 106K gas with initial

density n0 = 10−4 cm−3 at z = 0. A cold Tcold = 104K spherical cloud, initially at

rest, is also inserted, usually a quarter box height from the bottom. This placement

allows us to follow the development of a cometary tail behind the cloud as it falls. The

initial cloud density is perturbed at the percent level randomly throughout the cloud to

reduce numerical artifacts arising from the initial symmetry. We use outflowing boundary

conditions, except at the bottom of the box (negative z) where the background profile

is enforced in the ghost cells and the velocity is set to be that of the frame velocity.

This is valid as long as cloud material does not interact with this bottom boundary. The

frame velocity is based on a cloud-tracking scheme we implement where we continuously

shift into the reference frame of the center of mass of the cold gas, defined as gas below a

temperature of T ∼ 2×104K, an approach widely used in similar falling cloud simulations

(Heitsch et al. 2022) and wind tunnel simulations (McCourt et al. 2015; Gronke & Oh

2018, 2020a). This scheme allows our simulation box to ‘track’ the cloud as it falls and

hence reduces computational costs. The fiducial resolution of the boxes are 2562 × 2048
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(see Section 4.5.4 for a resolution test). The dimensions of the boxes are 102 × 80 rcloud.

This translates to rcloud being resolved by ∼ 25 cells.

During the simulations, the clouds are allowed to fall freely under gravity. We assume

a constant gravitational acceleration g ≡ −gẑ, with g = 10−8 cm s−2, as appropriate for

the Milky Way, taken from the fit in Benjamin & Danly (1997) for distances between

1 and 10 kpc. We discuss the impact of a more realistic gravitational profile and apply

them within the scope of our model in Section 4.6.

In our implementation of radiative cooling, we assume collisional ionization equilib-

rium (CIE) and solar metallicity (X = 0.7, Z = 0.02)15. We obtain our cooling curve

by performing a piece-wise power law fit to the cooling table given in Gnat & Sternberg

(2007) over 40 logarithmically spaced temperature bins, starting from a temperature

floor of 104K, which we also enforce in the simulation. We then implement the fast and

robust exact cooling algorithm described in Townsend (2009). For this cooling curve, the

cooling time in the cold gas is tcool ∼ 0.15Myr. To emulate the effect of heating and to

prevent the background medium from cooling over simulation timescales, we cut off any

cooling above 5 × 105K. The particular choice of this value is unimportant (Gronke &

Oh 2018, 2020a; Abruzzo et al. 2022b).

We run two different sets of simulations with different static background profiles.

The first set has gravity acting on a cloud which is embedded in a constant background,

i.e. constant hot gas temperature, density and pressure. This is obviously unphysical,

since there are no pressure gradients in the background to counteract gravity. However,

it is very useful for understanding the underlying physical mechanisms which affect the

cloud, without the confounding effects of the varying background which a cloud falling

through a stratified medium experiences. To prevent the background from falling under

15We phrase our results in terms of cooling times, so they can easily be scaled for different cooling
curves. We note however, that the minimum cooling time at T ∼ 1.5 × 104K, which is dominated by
hydrogen cooling, is relatively insensitive to metallicity.
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gravity, we introduce an artificial balancing force ρhotg upwards. The hot background

thus feels a net zero force from gravity, while the cold cloud is negligibly affected. For

this set of simulations, we also vary the cooling time by changing the normalization of the

cooling function by a constant factor Λ0. For example, Λ0 = 100 would be a case where

cooling is a hundred times stronger than the fiducial value, corresponding to cooling an

environment where nhot = Λ0n0 = 10−2 cm−3, or nT = 104Kcm−3, a relatively high

pressure. For the constant background, we adopt Λ0 = 100 as a default, so that cooling

is extremely strong and cloud growth is guaranteed. We emphasize that the constant

background is simply used to provide a clean test of our analytic model, so that (for

instance) the cooling time is not a function of position, as in a stratified atmosphere.

The second, more realistic, setup is that of a hydrostatic isothermal halo. The density

profile of the background is thus:

n(z) = n0 exp

(
− gmH

kBThot

z

)
, (4.36)

where n0 is the midplane density, z is the height above the disk and H ≡ kBThot/gmH =

2.8 kpc is the isothermal scale height (assuming the mean molecular weight µ = 1). This is

a simplified model that is likely to break down close to the disk below 2 kpc, where it likely

underestimates the background density, since the background gas is cooler. However, this

simple model allows us to study the effects of both a changing background profile and the

resultant decrease in cooling time as the cold gas falls inwards. Besides the initial setup

of the background profile, since we are employing a cloud-tracking scheme, the boundary

cells are set accordingly throughout the course of the simulation using this background

profile and the current height of the cloud, which we also track.

Our cloud chambers are somewhat artificial in that they are arbitrarily long. Thus,

for instance, in the stratified case, the cloud can fall through an unrealistically large
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number of scale heights (well beyond when the plane parallel approximation is valid).

In practice, transition to a spherical gravitational potential with declining gravitational

acceleration g means that even if clouds fall ballistically, they will only accelerate to

transonic velocities, rather than fall supersonically. However, our setup is a clean probe

of the underlying physics. In all the cases we care about, where the cloud survives, infall

is subsonic.

In order to evaluate the cold gas mass m as well as other related quantities such as

the mass growth rate, we use a temperature threshold of T ∼ 2× 104K below which we

define the gas to be ‘cold’. No magnetic fields are included in our simulations. We leave

the exploration of the MHD case to future work.

4.4 Results : Constant Background

Our first objective is to test our semi-analytic model for falling clouds (equations (4.1)

– (4.3)) against full 3D simulations. Hence, the first set of our simulations are set up

with a constant background, where the properties of the background medium are held

unchanged as the cloud falls. We use this setup as a simple way to explore and test our

model in an environment where the cooling time is kept constant. This allows us to test

the various components of our model by adjusting individual parameters, ceteris paribus.

4.4.1 Time Evolution

In order to understand the dynamical evolution of a falling cloud, we first present the

time history of various quantities of interest, both as predicted by the model and as seen

in the simulations. Note that the model (equations (4.1) – (4.3)) predicts m(t), v(t), and

z(t) independently, without using any input from the simulations. Figure 4.3 shows the

evolution of these quantities over the course of a simulation with an initial cloud radius
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Figure 4.3: Time evolution of various quantities for a r = 300 pc cloud falling in
a constant background. From left to right, top to bottom, the panels compare the
growth time tgrow, the velocity v, the distance fallen z, and the cold gas mass m of
the cloud in the simulation versus the model. The upper panels also include compar-
ison with other quantities of interest. Model predictions are in good agreement with
simulations results.
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r = 300 pc. These are, from left to right and top to bottom - timescales, cloud velocity,

distance fallen, and the total mass of cold gas. The simulation runs for over 200Myr,

which is between 10 to 15 cloud crushing times.

The various timescales shown in the upper left panel of Fig. 4.3 are as follows: The

cooling time of the mixed gas tcool,mix, where mixed gas is defined as gas at Tmix ∼
√
ThotTcold ∼ 105K, the free-fall time tff = cs,hot/g, the cloud crushing time tcc =

√
χr/v,

which uses the initial cloud radius r and the instantaneous cloud velocity, and the instan-

taneous cloud growth time tgrow = m/ṁ, computed using the mass of cold gas (defined

as gas with T < 2× 104K). For the latter two timescales (tcc and tgrow), both model and

simulation results are shown for comparison. While wind tunnel setups define tcc using

the initial wind velocity, we use the instantaneous cloud velocity (defined as the center of

mass velocity of cold gas) instead. This changes with time - it is initially infinitely long

since the cloud starts at rest, but decreases as the cloud accelerates. Similarly, tgrow is

initially infinite, since there is no turbulence at the start of the simulation (any mixing

would be due to numerical diffusion, since we do not implement physical diffusion). Mass

growth then begins with the initial onset of turbulence, which we have included in the

model via the weight term wkh(t). Our crude model for wkh(t) means that our analytic

model for tgrow is less accurate at these times. However, since tgrow is in any case long

in these stages, with mass increasing very slowly, inaccuracy in modeling the growth of

turbulence fortunately has little impact on m(t) (and by extension v(t) and z(t)). The

model performs well at matching the simulation results for both tcc and tgrow. Since

tgrow ∼ tff , the terminal velocity of the cloud here is roughly the sound speed of the hot

gas, as expected from equation (4.10). For all simulations, tcool,mix ≪ tcc, as required to

be in the fast cooling regime.

The upper right panel of Fig. 4.3 shows the velocity evolution of the cloud, as mea-

sured by the center of mass velocity of the cold gas. We also show the velocity trajectory
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from the model, along with three other characteristic velocities. These are the ballistic

velocity vballistic = gt and the ‘terminal’ drag and growth velocities vT,drag and vT,grow re-

spectively, as given by equations (4.4) and (4.6). The terminal velocities16 are computed

using the size of the initial cloud, and we can see that vT,grow < vT,drag, as expected. The

ram pressure drag experienced by the cloud is thus much weaker than the mixing-cooling

induced drag due to momentum transfer as hot surrounding gas is accreted onto the cloud

(as expected from the estimates presented in Section 4.2.1). The relative contribution

of ram pressure drag can be seen in the small deviation of the model (which includes

both effects) from vT,grow. The cloud initially accelerates ballistically, before reaching a

high enough velocity where the cooling drag force kicks in and slows the cloud down.

Since the cooling drag force operates on a timescale tgrow, the cloud remains ballistic

until t ∼ tgrow. This progression means that the cloud can experience a phase where its

velocity is decreasing as it falls. While not strongly apparent in this setup, this effect can

be pronounced when the background is not constant, which we discuss in the following

section. The model does an excellent job at matching the evolution of the cloud velocity

over time, and in particular the cloud reaches the asymptotic velocity vT,grow ≈ gtgrow

predicted by the mixing and cooling induced accretion of hot background gas.

The remaining two lower panels of Fig. 4.3 show the distance the cloud has fallen and

the total mass of cold gas. Of course, the two quantities are not independent from the

upper panels: we expect to predict z(t) accurately since we predict v(t) accurately, and

we expect to predict m(t) accurately since we could predict tgrow accurately. Overall, it

is remarkable how well our simple model of ‘accretion braking’ matches the simulations.

We now explore how it performs in different regions of parameter space.

16While we use the terminology of a ‘terminal’ velocity, vT,grow ≈ gtgrow is in fact time dependent
here since tgrow has a mass dependence.
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4.4.2 Area Growth Rate

We first investigate the areal growth scaling in equation (4.21), where we stated that

we expect the value of α to lie between 2/3 and 1. Equation (4.22) can be rewritten as

ṁ =
m0

tgrow,0

(
v

cs,6

)3/5(
m

m0

)α

. (4.37)

Figure 4.4 shows the mass growth rate of cold gas ṁ as a function of the cold gas

mass m normalized by the initial cloud mass m0 in three simulations with r = 100, 300

and 1000 pc. We expect from our model that past the turbulent onset and acceleration

phases, the cloud should reach terminal velocity and its mass growth rate should thus

follow lines with slope α. The dashed lines in Fig. 4.4 show mass growth rate curves

from our model with fA = 0.23 and α = 5/6. These choice of values give a good match

to the mass growth rate curves from simulations represented by the solid lines, which

are obtained by smoothing the instantaneous values of ṁ represented by the grey points.

The slopes are initially steeper as the cloud accelerates. As discussed in the Section 4.2,

we find that α ∼ 5/6 seems to be an good fit to simulation data – supporting the idea

that both processes of cloud growth on the surface (α ∼ 2/3) and in a lengthening tail

(α ∼ 1) are at play (or that the effective surface area scales in a fractal manner).

As noted above, we also observe a ‘burn-in phase’, where the mass growth is initially

low because turbulence is developing around and behind the cloud due to instabilities,

then ramps up quickly due to both turbulent onset and a rapid increase in surface area.

Small sudden drops are associated with cold mass that exits the simulation box due to its

fixed size, which are likely to occur at late times in our simulations. The computational

cost of tracking cloud growth over longer periods of time increases significantly as the

clouds keep growing in size and length which require increasingly larger boxes to contain.

For the large 1 kpc radius cloud, we were unable to run the simulation for a sufficient
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Figure 4.4: The mass growth rate as a function of cold gas mass for clouds of different
initial sizes. Curves are labelled by the initial cloud radius and whether they represent
model solutions (M) or simulations (S), which are shown as dashed and solid lines
respectively. Using a scaling of α = 5/6 in the model matches the mass growth rate
in the simulations well.
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time to see the mass growth rate reach the same steady growth as convincingly as the

smaller clouds, but nevertheless the mass growth is in line with model predictions for all

growing clouds.

4.4.3 Scalings

To verify our analytic scalings for tgrow in the subsonic and supersonic regimes, equa-

tions (4.25) and (4.26), we vary each parameter to test the scalings explicitly. However,

the parameters cannot be arbitrarily varied – they are limited to the region of parameter

space where the clouds survive. This is given by equation (4.30) and (4.31) for subsonic

and supersonic infall respectively.

Scaling With Cloud Size

We first vary the initial cloud size r. The upper plot of Fig. 4.5 shows tgrow as a

function of time for the range of cloud sizes, while the lower plot shows the scaling of

tgrow with r, measured at the times indicated by the black circles in the upper plot where

the weight function in the model reaches unity, or in other words, turbulence and mixing

has fully developed. In the upper plot, simulation results are represented by the small

points colored by cloud size. Solid lines show model predictions. In the lower plot, the

orange line represents the model predictions while the analytic scalings of r15/32 and

r3/4 derived above (before and after saturation of turbulent velocities for subsonic and

supersonic infall respectively) are plotted as dashed lines. The simulation results match

the model and analytic scalings.
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Figure 4.5: Upper panel: The growth time as a function of time for clouds of different
sizes in the effective cooling regime (Λ0 = 100). All clouds shown here are growing
and survive. Solid lines show model predictions, while colored points represent sim-
ulation results. Lower panel: The growth time where turbulence is fully developed
(wkh(t) = 1) as a function of cloud size. Dashed lines show expected analytical scal-
ings in the subsonic (tgrow ∝ r15/32) and supersonic (tgrow ∝ r3/4) regimes, while the
solid orange line shows the model predictions. Both are in agreement.
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Figure 4.6: The growth time for different cooling strengths Λ0, which modify the
cooling time tcool ∝ Λ−1

0 . Dashed lines show expected analytical scalings, while the
solid orange line shows the model predictions. As expected, the dependence of tgrow
on tcool is weak.
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Scaling With Cooling

Next, we vary the cooling strength parameter Λ0 by a factor of 3 above and below

the fiducial value. Figure 4.6 shows the scaling of tgrow with Λ0 ∝ 1/tcool, along with the

simulation and model results as before. The simulations are in agreement with the weak

tcool scaling. Despite this, as we will see later, survival is sensitive to cooling time rather

than size, and hence it is difficult to probe the scaling to weaker cooling. Unfortunately,

reducing the cooling strength further leads to cloud destruction. Higher cooling strengths

require shorter timesteps and larger boxes, and are hence numerically challenging. While

we vary the cooling strength explicitly here, strong cooling also corresponds to denser

environments where higher densities lead to shorter cooling times.

Scaling With Gravity

We also vary the gravitational strength g from 0.1 to 3 times the fiducial value.

Figure 4.7 shows the scaling of tgrow with g. As before, we also plot the model and the

expected g−3/8 and g0 scalings, for subsonic and supersonic infall respectively. Simulation

results are consistent with the model in both cases.

Scaling With Density Contrast/Hot Gas Temperature

Lastly we vary χ by changing the background temperature. Figure 4.8 shows the

scaling of tgrow with χ. Unlike the previous sections, we do not see the expected χ5/8

scaling. This can be understood by the scaling of the turbulent velocity u′ with χ; in our

derivation, we assumed u′ is independent of χ. As seen in the middle panel of Fig. 12 of

Tan et al. (2021), this is true for χ ≳ 100, but for χ ≲ 100, then u′ ∝ √
χ. If we put in

this scaling u′ ∝ √
χ, we see that the χ dependence of tgrow becomes weaker and better

matches the simulation results. We expect the our predicted tgrow ∝ χ5/8 scaling to hold
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Figure 4.7: The growth time for different gravitational fields. Dashed lines show
expected analytical scalings tgrow ∝ g−3/8, g0 for subsonic and supersonic infall re-
spectively, while the solid orange line shows the model predictions.
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Figure 4.8: The growth time for different overdensities. Dashed lines show analyt-
ical scalings tgrow ∝ χ5/8, χ for subsonic and supersonic infall respectively. At low
overdensities (χ ∼< 100), the simulations differ from the expected scalings, which we
attribute to lower turbulent velocities in mixing layers. If this is taken into account,
simulations and models (dotted green line) match. We also test one case at high over-
density χ ∼ 1000 for cluster-like parameters, where multiple parameters were varied.
The model and simulations match well.
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at higher χ, but the simulations required to probe this regime in detail require very long

boxes and are beyond the numerical scope of this work. We also plot a single simulation,

along with the model expectation, where multiple parameters were varied, not just χ,

so as to sample a different region of parameter space with higher χ. These are plotted

as standalone points. For this particular simulation, the parameters we have used are

r = 300 pc, χ = 1000, g = 4 × 10−8 cm/s2 and n = 1 cm−3. Cooling here is not boosted

since we use a high density instead (i.e. Λ0 = 1). We find that the growth time for this

simulation remains in line with the model.

4.4.4 Survival

Since we are primarily interested in modeling clouds which are growing, it is useful

to determine when we are in such a growth regime. In Section 4.2.3, we argued that

this criterion is given by tgrow < fStcc, where fS is some constant factor of order unity.

We now test this by running a number of simulations to explore the parameter space,

varying the initial cloud radius between 3 pc and 3 kpc, and the cooling time between

the fiducial value and 100 times shorter. Figure 4.9 shows17 the fate of simulated clouds

for various cloud sizes and cooling times. Solid lines denote a contour of constant cooling

strength, while the vertical axis shows the ratio of the growth time to the cloud crushing

time tgrow/tcc. These timescales are calculated by evaluating the model where our weight

factor wkh(t) = 1. Physically, this is where turbulence has fully developed and tgrow

stabilizes. Alternatively, evaluating tgrow/tcc at some time αtcc yields the same result,

but can change the normalization of tgrow/tcc (this ratio gets larger as α gets smaller

17Question marks denote simulations where it is unclear what the fate of the cloud is. For example,
the cloud might break up, with one portion accelerating and getting destroyed, while leaving some much
slower falling material behind it that possibly survives and grows. The cold material then hits the
boundary of the box at the top or bottom and we cannot track further evolution. This seems to happen
near our survival boundary, where the long term fate of the cloud can be sensitive to cloud dynamics.
It also happens for the largest clouds.
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Figure 4.9: Overview of the fate of cold gas in the ‘constant background’ case as a
function of cloud size and different cooling strengths. Points denote whether clouds
in the corresponding simulations are growing in mass or losing mass; question marks
denote cases where the fate is uncertain. The breaks correspond to where the the
turbulent velocity u′ saturates when the cloud velocity reaches the sound speed of the
hot background cs,hot. This causes tgrow/tcc to increase with cloud size instead. In the
simulations marked with ‘?’, the final fate of the cold gas is unclear.
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since wkh(t) < 1). The implication here is that the threshold value of fS is depends on

when tgrow/tcc is evaluated.

In general, the results are in line with criterion tgrow/tcc ∼< fS ∼ 4 for survival, and the

discussion in Section 4.2.3. Rather than being sensitive to cloud size, clouds get destroyed

when cooling is weak, and only survive when cooling is strong enough. Cloud size does

begin to play a role when tgrow > tff , so that infall velocities become supersonic, and

tgrow/tcc ∝ r1/2. As discussed in Section 4.2.3, this happens when r > rsonic, (equation

(4.29)); rsonic ∼ 200pc in our models, where we see the change to a tgrow/tcc ∝ r1/2

scaling. The low mass growth rates at high Mach number means that it is harder for

clouds to fall supersonically and still survive; it is only possible in a limited size range

rsonic < r < rSS (where rSS is given by equation (4.32)).

To reinforce the point that tgrow/tcc < fS is a more stringent survival criteria than

others, in Fig. 4.10 we show the boundaries in the r − Λ0 plane for two other possi-

ble criteria: (i) tcool,mix < tcc, which is the criterion for cloud survival in a wind, (ii)

Damix ≡ L/(u′tcool,mix) > 1, which is the criterion for a multi-phase medium in the pres-

ence of turbulence and radiative cooling (Tan et al. 2021). The two criterion are closely

related. In Fig. 4.10, we see that clouds which satisfy these criterion are nonetheless de-

stroyed, while the more restrictive criterion tgrow/tcc < fS straddles the boundary between

destruction and survival. Note that for sufficiently small clouds, tgrow < tcool,mix (blue

dashed line) instead of the other way round. However, this lies in the cloud destruction

regime and thus is irrelevant.

4.4.5 Growth and Free-fall Timescales

In Section 4.2, we saw that if the drag force from mass accretion balances gravity such

that Fgrav ∼ Fgrow, then we expect that tgrow/tff ∼ vT,grow/cs,hot. We show that we do
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Figure 4.10: Comparison of various survival criteria (dashed lines) to the simulation
results as a function of cloud radius and cooling strength. The criteria are satisfied
above the respective lines. The symbols indicate whether a cloud grows or gets de-
stroyed (as in Fig. 4.9).
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Figure 4.11: Evolution of the falling velocity of the cloud as a function of (evolving)
tgrow/tff for different cloud sizes. Black triangles indicate the direction of evolution at
t = tff . As the cloud accelerates, the growth time is decreasing until it stabilizes at
the growth terminal velocity vT,grow/cs,hot ∼ tgrow/tff .
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indeed see this in our simulations in Fig. 4.11. The blue dotted line shows the equality,

while the colored points are simulation results for various cloud sizes over time. Solid

lines show the model values for the same time range as the corresponding simulations.

Initially, tgrow is large as turbulence develops, but once they reach the terminal velocity

vT,grow ∼ gtgrow, falling clouds indeed obey the scaling vgrow ∼ cs,hot(tgrow/tff , as seen from

the fact that the clouds evolve to the blue dotted line and stays there.

4.5 Results : Stratified Background

In our second set of simulations, we consider a more realistic setup of a cloud falling

through an isothermal hydrostatic background. This means that P, ρ ∝ exp
(

z
H

)
, where

z is the vertical height the cloud has fallen and H is the scale height of the background

medium. As mentioned in Section 4.3, the density profile of the background is thus:

n(z) = n0 exp
( z

H

)
, (4.38)

where n0 = 10−4 cm−3 is the initial background density, z is the height the cloud has

fallen and H ≡ kBThot/gmH = 2.8 kpc is the isothermal scale height (assuming the mean

molecular weight µ = 1). We define our origin where the cloud begins to fall, hence

density increases rather than decreases exponentially with z. While the use of a constant

gravitational acceleration g is not in general a realistic assumption, this simplification

helps in isolating the relevant physics.

4.5.1 Time Evolution

We now present the time evolution of a simulation where the cloud comfortably

survives, along with the model predictions for various quantities. Unlike the constant
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background setups, we do not artificially boost the cooling function in these simulations.

Instead, the cooling time naturally varies with density and hence height. Fig. 4.12 shows

the evolution of these quantities over the course of a simulation with an initial cloud

radius r = 1kpc and g = gfid = 10−8cm s−2. As before, these are, from left to right and

top to bottom - timescales, cloud velocity, distance fallen, and the total mass of cold gas.

The upper left panel of Fig. 4.12 shows the same timescales as in Fig. 4.3: The

cooling time of the mixed gas tcool,mix, which decreases as the clouds falls, the free-fall

time tff = cs,hot/g, the cloud crushing time tcc =
√
χr/v, which uses the initial cloud

radius r and the instantaneous cloud velocity, and the instantaneous cloud growth time

tgrow = m/ṁ, computed using the mass of cold gas. For the latter two timescales (tcc and

tgrow), both model and simulation results are shown for comparison. We have adjusted

the value of fkh in the weight term wkh(t) to be 1 for the stratified background as that

is more in line with simulation results. The suggests a more rapid onset of turbulence

for clouds that are falling into a denser background (this parameter is of course, only

a crude approximation of the relevant processes involved). The model performs well at

matching the simulation results for both tcc and tgrow, although marginally less so than

for the constant background. This can be attributed to the cloud initially travelling

through a region of parameter space where it is not in the growth regime. Since our

model does not include cloud destruction, this leads to a deviation of the simulation

from the model. The velocity evolution of the cloud is shown in the upper right panel.

The cloud initially accelerates ballistically, before the cooling drag force kicks in and

slows the cloud down. Since the cooling drag force operates on a timescale tgrow, the

cloud remains ballistic until t ∼ tgrow. During this time, the cloud can reach velocities

greater than the eventual terminal velocity vT,grow = gtgrow. The subsequent deceleration

due to cooling slows the cloud down such that the velocity turns around and starts to

decrease. This has implications for cloud survival which we discuss further on. At late

142



Cloudy with A Chance of Rain: Accretion Braking of Cold Clouds Chapter 4

times the cloud velocity approaches a roughly constant value. We now delve into this

further.

4.5.2 Terminal Velocity

Previously, we argued that the terminal velocity should approach a value vT,grow ≈

gtgrow (equation (4.6)). Indeed, it does so, after some ‘overshoot’ as described above.

However, as apparent from equation (4.22), tgrow itself is a function of parameters such

as tcool(t), m(t), ρh(t) which change with time as the cloud falls through a stratified

atmosphere. Thus, one might expect tgrow and consequently vT,grow to vary with time as

the hot plasma surrounding the cloud increases in density. Instead, what is surprising

from Fig. 4.12 is that tgrow asymptotes to a constant value. Indeed, it does so quite early,

before v → vT,grow. How can we understand this?

From equation (4.22), and using tcool ∝ 1/n ∝ exp
(−z

H

)
, we can write:

tgrow(t) ∝ v(t)−3/5

(
m(t)

m0

)1−α

exp

(
−(

5

4
− α)

z(t)

H

)
. (4.39)

as a time-dependent quantity. The rate at which tgrow changes is:

dlntgrow
dt

=
ṫgrow
tgrow

= −3

5

v̇

v
+

(1− α)

tgrow
− (

5

4
− α)

v

H
(4.40)

From equation (4.6), this can be contrasted with the rate at which v evolves:

dlnv

dt
=

v̇

v
=

g

v
− 1

tgrow
(4.41)

We can make two observations. Firstly, equation (4.40) has terms of opposing sign. Thus,

it is possible that ṫgrow → 0, i.e. tgrow ≈ const, rather than evolving with background
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Figure 4.12: Time evolution of various quantities for a r = 300 pc cloud falling
in a stratified background. From left to right, top to bottom, the panels compare
the growth time tgrow, the velocity v, the distance fallen z, and the cold gas mass
m of the cloud in the simulation versus the model. The upper panels also include
comparison with other quantities of interest. Model predictions are in good agreement
with simulations results.
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quantities. Physically, this is because of a negative feedback loop. Suppose tgrow decreases

as a cloud falls into denser surroundings. The subsequent increase in mass causes tgrow to

increase (from equation (4.39)). The opposite is also true: if tgrow is large, the cloud will

fall faster (due to weaker accretion drag) into denser regions, reducing tgrow. Secondly, by

comparing terms on the right-hand side of equations (4.40) and (4.41), the timescale on

which tgrow equilibrates to its steady-state value is comparable to the timescale on which

v equilibrates to its steady-state value18, vT,grow = gtgrow. Thus, v̇, ṫgrow → 0 on similar

timescales. From setting equations (4.40) and (4.41) to zero, the steady-state value of

tgrow, and hence vT,grow, is given by:

vT,grow = gtgrow ≈
√

1− α
5
4
− α

Hg ≈
√

2

5
cs,hot, (4.42)

where in the last step we use α = 5/6 and g ≈ c2s/H for an isothermal atmosphere. This

velocity is shown by the grey line in Fig 4.12. This then has the remarkable implication

that in an isothermal atmosphere with constant gravity, fsub−vir = vT/cs,hot = tgrow/tff

(equation (4.10)) of a cloud where accretion induced drag dominates is independent of all

properties of the system except cloud geometry, specifically α. For our measured value of

α = 5/6 from infalling clouds with cometary tails, we predict fsub−vir = [(1− α)/(5/4−

α)]1/2 ≈ 0.6. In Fig. 4.13, we compare velocity evolution in our model (equations

(4.1) – (4.3)), to the asymptotic velocities from equation (4.42), for different cloud sizes

and gravitational fields. Equation (4.42), which only depends on α, correctly predicts

the asymptotic velocity. Note, however, that reaching the asymptotic velocity requires

falling through many scale heights, and a planar g ≈ const isothermal atmosphere may

not be realistic over such lengthscales. ‘Velocity overshoot’ also implies that large clouds

(which exhibit stronger overshoot) might be seen to fall faster than predicted. In systems

18Indeed, because of ‘velocity overshoot’, tgrow equilibrates first.
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Figure 4.13: Velocities in a stratified environment converge to a constant value that
only depends on α (where area A ∝ Mα), independent of all other properties such as
cloud size, or gravity. Curves show velocity evolution in our model (equations (4.1) –
(4.3)), while solid lines give the asymptotic velocities from equation (4.42).
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Figure 4.14: The mass growth rate as a function of cold gas mass for clouds of different
initial sizes and different gravitational strengths. Curves are labelled by the initial
parameters and whether they represent model solutions (M) or simulations (S), which
are shown as dashed and solid lines respectively.

with varying g(r) and T (r) (and thus non-constant scale heights), the result can be more

complex, and the most straightforward way to arrive at predictions is to simply integrate

the set of ODEs, equations (4.1) – (4.3). We will show an example in Section 4.6.2.

4.5.3 Scaling With Cloud Size and Gravity

In Fig. 4.14, we compare the mass growth rates as a function of mass for simulations

with varying initial cloud sizes and gravitational strengths to model predictions. Varying

147



Cloudy with A Chance of Rain: Accretion Braking of Cold Clouds Chapter 4

100 101 102 103

m/m0

101

102

103

104

105

106
ṁ
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Figure 4.15: The mass growth rate as a function of cold gas mass for a r = 300 pc
cloud with g = gfid at different resolutions (8× higher and lower mass resolution than
in the fiducial run, respectively). The simulations are relatively well converged.

g allow us to test the model for different scale heights. We can see that the model

predictions are in good agreement with simulations results. In all cases, the simulations

converge to the 1/tgrow slope predicted by the model. The divergence at early time is

due to the fact that for this setup, the clouds start in a destruction regime since cooling

is relatively weak.
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4.5.4 Resolution Convergence

To test if our results for mass growth rates are converged. we run a r = 300 pc

cloud with g = gfid at various resolutions, varying the fiducial resolution by a factor of 2.

Fig. 4.15 shows that the three resolutions show little difference in mass growth rates and

that the simulation appears to be converged, although the higher resolution simulation

matches the model slightly better – the cloud is disrupted less initially and reaches the

model growth rate more rapidly.

4.5.5 Survival in a stratified background

For a cloud falling in a constant background we found that the survival criterion

was given by a competition between the growth and destruction timescales of the cloud:

tgrow < fStcc where fS is a constant factor. We wish to ascertain if the same condition

applies to clouds falling in a stratified background.

In the case of a constant background, tgrow changes very little over time (once tur-

bulence has developed), with only a very weak scaling with mass, and cooling is strong

enough so v approaches gtgrow without ‘overshooting’, something we noted in Fig. 4.12

above. For a stratified background, both these assumptions do not hold - tgrow changes

continuously with background density, and an overshoot is often observed. Since our

initial conditions are in the regime where clouds do not survive, surviving clouds are

those that are able to survive long enough to enter the growth zone.

One ansatz would be to use the asymptotic value of tgrow and v that we derived above

in equation (4.42) and evaluate the survival criteria there. This gives:

r >
v2T,grow

gfS
√
χ

(4.43)
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Figure 4.16: The fate of clouds of different size falling in stratified backgrounds with
different gravitational strengths. Survival criterion evaluated at different times are
shown. The best survival criterion is given by the teal curve, i.e. equation (4.27)
evaluated at the maximum velocity, for fS = 3.
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Figure 4.17: Snapshots of the projected density weighted temperature through the
box (temperature here is hence just an indication of the amount of cold gas when
projected along the y-axis) for a 100 pc and a 300 pc cloud at various points in their
evolution. The former is disrupted completely while the latter reaches the survival
zone and grows. x and z here simply reflect the size of the box along the respective
axes normalized by cloud size.
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This condition is given by the blue dashed line in Fig. 4.16. Note that it is a lower

bound on r, since vT,grow is independent of r. It has the right qualitative behavior as

a survival criterion, but does not seem to match the survival thresholds seen in the

simulations. Clouds have to fall many scale heights to reach the asymptotic velocity

given by equation (4.42) – often survival is determined much earlier. Indeed, the falling

clouds often overshoot this asymptotic velocity as they initially fall ballistically, as seen

in Fig. 4.16. We can estimate the time where gravity and cooling balance:

ṁv ∼ m

tgrow
v ∼ mg

t

tgrow
(4.44)

assuming the cloud is falling ballistically in this initial phase. Hence, t ∼ tgrow is the

time where the cloud is slowed from its ballistic free falling trajectory. If we evaluate

equation (4.27) at this time in the simulation, we can solve numerically for some rcrit.

Of course, this only makes sense if v(t = tgrow) > vT,grow, i.e. there is an overshoot so

tcc is shorter. The larger the difference in the two velocities, the more likely the cloud

is to be destroyed in this overshooting phase. In Fig. 4.16, we show this limit in the

orange dashed line. We see that this matches the simulation results more closely for

larger values of g, where the clouds accelerate to higher velocities. Ultimately, it is the

maximum velocity that determines if a cloud survives. We thus show in the red and teal

curves in Fig. 4.16 the survival criterion evaluated at v = vmax from the model. The red

curve use fS = 4 as in the previous section, while the teal curve has fS = 3, which seems

to be a better match to the simulation results. It is unsurprising that we find a different

value of fS here, since we are evaluating our quantities at a different time.

In Fig. 4.17, we show the evolution of the 100 pc and the 300 pc cloud for g = gfid.

The 100 pc cloud does not survive and is disrupted completely, while the 300 pc starts

to get disrupted but survives long enough to reach the zone of growth and then grows.
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Note the tail growth in the surviving case. To summarize, we have looked at clouds that

start outside the growth zone in a stratified medium, and find that in order to survive,

the cloud has to make it to the growth zone. Since the cloud is accelerating ballistically

before it reaches high enough pressures where cooling is efficient enough for it to grow

and slow down, only large clouds can survive this infall. We explore the implications

of the survival conditions in this and the previous section on astrophysical systems of

interest in the following section.

4.6 Discussion

4.6.1 High Velocity Clouds

3D simulations of clouds falling under gravity with mixing and cooling processes

included have only been studied to a limited extent previously. Heitsch & Putman (2009)

concluded that clouds below 104.5M⊙ are disrupted within 10 kpc. Notable differences

in setup include a smaller box length along the tail direction and starting initially with

colder clouds, as their temperature range extended down to 100K. Heitsch et al. (2022)

focused on metallicity measurements, tracing original versus accreted cloud material.

They found that most of the original cloud material does not survive and is instead

replaced by accreted gas which mostly happens in the tail. Grønnow et al. (2022) observed

cloud growth in MHD simulations but did not follow the clouds for many cloud crushing

times. We have followed up by providing a model for the mass growth of such clouds

based on the underlying process of turbulent mixing and cooling, so as to tackle the key

questions of when HVCs can survive, how much mass they accrete, and how fast they

travel. We then tested the model against a suite of numerical simulations. What then

are the implications for HVCs?
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Figure 4.18: Survivability of HVCs in Milky Way conditions with a size rcl and drop-
ping height d0. For clouds outside the survival region given by equation (4.34), the
color coding corresponds to the ratio tgrow/tcc evaluated at the maximum velocity
along the cloud trajectory. The horizontal white dashed line shows where the survival
criterion equation (4.27) is satisfied for fS = 4. Large clouds that fall in from large
distances can still survive as they are not destroyed before reaching the survival re-
gion.
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In Fig. 4.18, we show our estimates for cloud survival in a Milky Way like profile in

the cloud size-initial height parameter space. Specifically, we employ the profiles from

Salem et al. (2015) who combine the density profile of Miller & Bregman (2015) with

a temperature profile mapped from a NFW halo (Navarro et al. 1997), which we also

use to set the gravitational profile. In the region of interest, T ∼ 106 K. Figure 4.18

shows the ratio of the growth time and the cloud crushing time tgrow/tcc evaluated at the

maximum velocity the cloud reaches along its trajectory. We also show the threshold of

survival (equation (4.27)) at ∼ 4 from the previous section. The analytic expectation

(equation (4.34)) for where cooling is strong enough for clouds to survive regardless is

demarcated by the white dashed line. Outside this region, larger clouds can survive

falling from further out, simply from the fact that tcc ∝ rcl.

More generally however, Fig. 4.18 shows that except for these larger (≳ 100 pc)

clouds, HVCs in the Milky Way should only survive if they start at an initial height of

d0 ≲ 10 kpc. Most HVC complexes detected do indeed fall within this regime – with the

notable detection of the ones associated with the LMC and its Leading Arm located at

≳ 20 kpc (Richter et al. 2017).

While this prediction seems to explain the observed survival of most HVCs, we want to

highlight that due to the mass transfer from the hot to the cold medium, most surviving

clouds in the Milky Way in our model would fall at vGSR ∼ 70 km/s (equation (4.42))

and might thus have velocities vLSR which are too low to be classified as HVCs. Such a

population of intermediate to low velocity clouds is of course to be expected even from

simply studying the velocity distribution of HVCs and “filling in” the gap at vLSR ∼ 0,

and has been the subject of several theoretical studies (e.g. Peek et al. 2007; Zheng et al.

2020) – as well as observational attempts to locate them (e.g. Peek et al. 2009; Bish et al.

2021). Thus far, there does not seem to be a firm conclusion on the existence of such

a low-velocity population. Our work provides a theoretical foundation for the existence
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of such clouds and predicts an overabundance of them in the Milky Way halo at lower

heights (≲ 10 kpc).

An interesting example of a nearby HVC is the Smith Cloud (Smith 1963), lying

only 3 kpc below the galactic plane with a metallicity of ∼ 0.5 M⊙, and which is falling

towards the galactic plane at velocity vz ∼ 70 km/s (Fox et al. 2016). A longstanding

mystery has been explaining the survival of the Smith Cloud at its current location. A

simple ballistic analysis suggests that the cloud might have already passed through the

disk (Lockman et al. 2008) and should hence have been disrupted, in which case some

mechanism is needed to explain its survival, such as the cloud being embedded in a dark

matter sub-halo, which would shield the gas and extend its lifetime (Nichols & Bland-

Hawthorn 2009). It is possible that the relative high metallicity and survival of the Smith

Cloud can be potentially explained instead by accretion of ambient material driven by

turbulent mixing and cooling. Henley et al. (2017) ran a wind tunnel simulation with the

aim of reproducing a Smith cloud like setup, and found entrainment of the background

gas largely in the tail of the cloud. Galyardt & Shelton (2016) ran simulations of the

Smith Cloud with gravity and in a stratified background. They concluded that if the

Smith Cloud was in a dark matter sub-halo, it would comprise gas accreted only after the

sub-halo passed through the disk. Alternatively, if the Smith Cloud was not accompanied

by such a sub-halo, then it must be on first approach, since the cloud would not survive

its journey through the Galactic disk. Our model could naturally explain the survival of

a Smith Cloud that was on first approach, as it fulfills the survival criterion Eq. (4.27),

i.e., it falls within the ‘survival zone’ of the Milky Way’s halo. The trajectory in this case

would be very different from the ballistic one since the accretion dynamically affects the

cloud.

Since the terminal velocity is independent of the cloud size, one would expect no

observable relationship between, for instance, cloud column density and infall velocity,
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although there may be significant scatter since this requires the cloud velocity to ‘turn

around’ and reach asymptotic terminal velocity. This is consistent with observations

(Westmeier 2018).

We have thus far considered clouds that are infalling from large distances and po-

tentially feed the disk. In our model, HVCs and IVCs can continually grow in mass

once they are near enough to the disk. It therefore also gives credence to the notion

that fountain-driven accretion can supply the disk with fuel for star formation: cold gas

thrown up into the halo ‘comes back with interest’, by mixing with low metallicity halo

gas which cools and increases the cold gas mass (Armillotta et al. 2016; Fraternali 2017).

Such low metallicity gas is required to satisfy constraints from disk stellar metallicities

and chemical evolution models (Schönrich & Binney 2009; Kubryk et al. 2013). The

equations for mass transfer and velocity derived in this work can also be incorporated

into semi-analytic ‘fountain flow’ models and checked against observations.

4.6.2 Clusters

Galaxy clusters are amongst the largest virial systems in the universe and thus present

opportune test beds for the comparison of observations and theoretical models of galactic

properties and evolution. The hot intracluster medium (ICM) in such environments

reaches temperatures in the range of 107–109 K which can be probed observationally

via X-ray emission originating from the thermal bremsstrahlung radiation of this hot

diffuse plasma (Sarazin 1986). However, the ICM does not exist simply in a single

phase. Observations from measurements of carbon monoxide (CO) which traces cold

molecular gas find an abundance in these central cluster galaxies, with molecular gas

mass correlating with X-ray gas mass (Pulido et al. 2018). One theory for the origin

of the cold molecular gas is that they develop from thermal instabilities triggered in
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the wakes of cooling updrafts of radio bubbles that rise and lift low entropy X-ray gas

(McNamara et al. 2016). These form the cold filaments observed to trace the streamlines

around and behind the bubbles, which should eventually decouple from the velocity

structure of the hot flow and fall back towards the galaxy center (Russell et al. 2019).

A particularly interesting conundrum is the low observed velocities of the molecular

gas measured by CO line emission in ALMA target systems (McNamara et al. 2014;

Russell et al. 2016; Pulido et al. 2018; Russell et al. 2019). They are significantly smaller

(< 100 km s−1) than both stellar velocity dispersions (200−300 km s−1) and galaxy escape

velocities (∼ 1000 km s−1), implying that the molecular gas is tightly bound to the galaxy

and should be expected to be infalling. Even initially outflowing gas should at some point

stall and fall back inwards. These low velocities are puzzling as models of free falling

clouds in cluster potentials have estimated that they can be accelerated to hundreds of

kilometers per second after falling just a few kpc (Lim et al. 2008; Russell et al. 2016).

The large density contrast between the molecular gas and the hot background in the ICM

means that ram pressure should do little to slow down these falling clouds, which would

rapidly accelerate to high velocities. Small velocities would require the observed cold gas

to have been falling gravitationally for only a short amount of time. While this could be

explained if the infalling cold gas observed was mostly recently decoupled from the hot

gas, there is no reason to suggest that this should be the case. Furthermore, the rapid

acceleration means we should see steep velocity gradients in these filaments. However,

we observe shallower velocity gradients that are inconsistent with free-fall (Russell et al.

2016, 2017). Some observations find that free-fall models can match observations in outer

filaments, but break down for inner regions (Lim et al. 2008; Vantyghem et al. 2016).

One caveat here is that increasing the spatial resolution of observations can reveal more

complex spatial and velocity structures (Lim et al. 2008). Lastly, if the molecular gas

was free-falling, we would expect to generally detect higher velocities at smaller radii, but
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there is no evidence for this. A large influx of cold gas implies that circumnuclear disks

should be more common in comparison with filaments, while the opposite is observed

(Russell et al. 2019).

The conclusion then is that the picture of free falling clouds fails to explain a large

number of observations with regard to these filaments, which suggest that the infalling

cold gas has to be slowed by some alternative process other than ram pressure drag. One

possibility which has been previously proposed is that magnetic stresses slow the clouds’

descent, since it has been suggested that the cold filaments are significantly magnetically

supported (Fabian et al. 2008). However, the magnetic pressure that would be required

to slow such a filament’s infall along its length requires a strong non-radial magnetic field

component with β ∼ 0.1 (Russell et al. 2016).

Our results suggest an alternative explanation that naturally addresses the above

issues. As noted above, observations of the prevalence of molecular gas are closely tied

to systems with shorter cooling times. As shown in the previous section, the filamentary

mass growth driven by turbulent mixing and cooling of these infalling cold filaments serve

as a braking mechanism via accretion induced drag. This can significantly reduce the

acceleration of the cold gas when the cooling time of mixed gas is short. To illustrate

this point, we compare our model to the free fall model used in Lim et al. (2008) in their

analysis of observed filaments in the cD galaxy NGC 1275 (Perseus A) located in the

Perseus cluster. For simplicity, we follow the approach of Lim et al. (2008) and adopt an

analytic model of the mass density and gravitational potential of the form from Hernquist

(1990). The mass density and gravitational potential as a function of radial distance are
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thus given by:

ρ(r) =
M

2π

a

r

1

(r + a)3
(4.45)

ϕ(r) = − GM

r + a
(4.46)

where M is the total galactic mass, r is the radial distance, and a is a scale length. We

also use the same values they deduce from luminosity observations of Smith et al. (1990)

and an estimated mass to light ratio, with M = 8.3× 1011 M⊙ and a = 6.8 kpc. We use

the number density profile given in Churazov et al. (2003) for the Perseus cluster, which

is mostly a constant n = 4× 10−2 cm−3 below 30 kpc and adopt a constant temperature

profile of T = 107K.

Figure 4.19 shows the observational contours of velocity as a function of radial distance

from the center of Per A for the outer western filament as shown in Figure 10 of Lim

et al. (2008). In Fig.4.19, we have also reproduced the free-fall trajectories used in Lim

et al. (2008), where they include one for galactic masses of M = 8.3 × 1011M⊙(M8b)

and M = 3.4 × 1011M⊙(M3b), both starting from a radius of 8.5 kpc. The free-fall

model that assumes the M = 8.3× 1011M⊙ mass deduced from luminosity observations

is unable to produce a good fit to observations, and hence the mass needs to be tuned to

M = 3.4× 1011M⊙ to fit a free-fall model to the observed contours. This tuning of mass

and drop height is sensitive to both these factors, mainly due to the rapid acceleration

by gravity in free-fall. In comparison, we show the same curve for M = 8.3 × 1011 M⊙

but using our model(M8c) (equations (4.1)-(4.3)) which includes the braking effect due to

growth from mixing and cooling. This shows the trajectory for a cloud where rcl = 50 pc,

assuming that L/r ∼ 100. We see that if the cloud initially falls from even a radial

distance of 15 kpc, it matches the observations well without changing the galaxy mass.

Clouds can thus fall from a further distance out than observed. It should be noted that
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Figure 4.19: Observed velocity contours of the outer western filament in Per A
from Lim et al. (2008) are shown in purple. Ballistic trajectories are shown by
the blue and orange lines for galactic masses of M = 8.3 × 1011 M⊙ (as observed)
and M = 3.4 × 1011 M⊙ (tuned to obtain the correct infall velocities) respectively.
The red line shows the trajectory of a cloud in our model with a galactic mass of
M = 8.3 × 1011 M⊙ but which is experiencing accretion drag. In the latter case,
tuning of galactic mass is not necessary to explain observations.
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the conditions here are on the boundary of the survival criterion from equation (4.30),

due to its strong scaling with χ.

In Fig. 4.20, we show velocity trajectories for clouds dropped from various heights

given by solid lines, with the 8 kpc distance used as a lower bound. We find that even

clouds that are dropped much further away do not accelerate as rapidly to high velocities

as in the ballistic case. Ballistic trajectories for clouds dropped from the same heights

are shown for comparison by the dashed lines, and can be seen to rapidly accelerate past

observed velocities. On the other hand, the clouds in our model are slowed and stay

within the range of observed velocities for much longer times. Hence, we are much less

sensitive to the exact distance at which the cold gas first begins to fall. Our results are

consistent with the lower velocities and shallower velocity gradients observed relative to

what would be expected from free-fall without requiring that the observed cold gas had

only just recently cooled, or that magnetic drag from a strongly magnetized background

must be present. In addition, the survival of cold gas and the filamentary morphology

can also be naturally explained by cooling tails.

4.6.3 Other Implications

We have found that it is more difficult for infalling cold material to survive, compared

to their outflowing counterparts, which are eventually entrained and do not experience

further shear forces thereafter. This conclusion has a range of wider implications which

we will now touch on.

Assuming isobaric conditions, our survival criterion is equivalent to tcool,hot/tff ∼< 1

(equation (4.35)), which is equivalent to the criterion for linear thermal instability in a

plane parallel atmosphere. As previously remarked, this has the interesting implication

that cold gas which forms via thermal instability should be able to survive infall, though

162



Cloudy with A Chance of Rain: Accretion Braking of Cold Clouds Chapter 4

2 4 6 8 10
Radial distance (kpc)

0

50

100

150

200

250

300

350

400

Ve
lo

cit
y 

(k
m

/s
)

8 kpc
10 kpc
15 kpc

20 kpc
25 kpc
30 kpc

Figure 4.20: Observed velocity contours of the outer western filament in Per A from
Lim et al. (2008) are shown in purple. Trajectories starting from different initial
heights in our model are shown by the solid lines. Dashes lines show ballistic trajec-
tories with the same starting point. The velocities we predict are much less sensitive
to the initial drop height compared to the ballistic model.
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this should be re-examined in a spherical potential, where the threshold for cold gas

condensation changes, and tff (and gravitational acceleration) vary with radius. This is

an interesting avenue for future work.

Our results imply that clouds which grow in mass when they fall should undergo

accretion-induced braking, a prediction which can be tested in larger scale simulations

with more realistic set-ups. Nelson et al. (2020) find an abundance of cold clouds of

sizes 1 kpc and smaller around the CGM of ‘red and dead’ intermediate redshift elliptical

galaxies in the TNG50 simulation. These clouds are mostly infalling, with the radial

velocity distribution peaking at just one third of the virial velocity. They also find that

the clouds are accreting and growing. They are long lived, surviving for cosmological

timescales. This appears to be consistent with predictions from our model - that infalling

cold clouds are growing and thus slowed to sub-virial velocities. It would be interesting

to directly compare growth times tgrow, and infall velocities, to see if the expectation

vT ∼ gtgrow is fulfilled.

Similarly, our results will affect the dynamics of cosmic cold streams feeding galaxies

at high-z (Dekel & Birnboim 2006; Kereš et al. 2005). Thus far, Mandelker et al. (2020)

has found that the survival criterion for cold clouds seems to be able to translate relatively

well to stream survival19. However, in their studies they used a constant hot gas velocity

– similar to the outflowing cloud simulations – which implies that their shear declines

rapidly in the simulation. Since in reality cosmic streams are also accelerated by gravity,

the situation for streams is likely closer to the setup studied here. This would imply that

(a) an equivalently more stringent survival criterion would apply to streams, and (b) their

terminal velocity is given by ∼ gtgrow. Indeed, unlike idealized simulations, cosmological

simulations find that streams reach a roughly constant terminal velocity (Dekel et al.

19There is some controversy regarding the destruction timescale but for the relevant χ ∼ 100 − 1000
the different possibilities agree (cf. discussion in Bustard & Gronke 2022)
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2009; Goerdt & Ceverino 2015); a result which has not been quantitatively explained.

These implications directly affect the cold gas mass supplied towards the inner galaxies

in dark matter halos.

Interestingly, coronal rain in our Sun is also observed to fall below free-fall velocities

– on average falling with only ∼ 1/3 − 1/2 of the ballistic value (see review by Antolin

& Froment 2022). While the temperatures and resulting overdensities are for coronal

rain similar to what has mostly been considered here, the main difference is the strong

magnetic field. Thus, most studies within the solar community have focused on mag-

netic fields as explanation of the slowdown and it has in fact been shown (using mostly

one and two-dimensional simulations) that coronal rain can be efficiently decelerated

due to a buildup of pressure in front of the cold cloud (Oliver et al. 2014; Mart́ınez-

Gómez et al. 2020). Clearly, the magnetic fields do play a major role here and affect

the dynamics. However, it is noteworthy that mass transfer can also lead to significant

slowdown. Plugging typical values found observationally (n ∼ 1011 cm−3, T ∼ 2 × 104,

r ∼ 1Mm, χ ∼ 100, g = 274m s−2; Antolin & Froment 2022) into Eq. (4.25) yields

vterm,drag/vterm,grow ∼ 0.45. Thus, the ‘accretion braking’ process described in this work

might be another important drag force at play; an interesting avenue for future work.

4.6.4 Further Considerations

While the model we have presented explores and captures the core physics at play,

simplifications and assumptions have been made along the way. We discuss several

considerations which could provide interesting avenues in order to expand and build

on this model.
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Additional Physics

There are a number of physical processes whose impact and importance we have not

touched on in this work, but which could lead to complications and should be studied in

future work. One such component is magnetic fields. Magnetic fields have been shown

to significantly affect the morphology of clouds in both the wind tunnel and falling cloud

setups, while their effect on mass growth is still uncertain (Grønnow et al. 2017, 2018;

Gronke & Oh 2020a; Grønnow et al. 2022; Abruzzo et al. 2022b). For example, magnetic

fields can suppress the KH instability, reducing mass entrainment rates (Ji et al. 2019;

Grønnow et al. 2022), although mass growth rates in some full cloud simulations appear

minimally impacted (Gronke & Oh 2020a). Another source of non-thermal physics that

could be important to study in this context is cosmic rays (Huang et al. 2022; Armillotta

et al. 2022). Self-gravity has been found to matter for compact HVCs (Sander & Hensler

2021). We have also not included explicit viscosity and thermal conduction (although we

point out that for turbulent mixing layers the mass transfer is generally dominated by

turbulent diffusion, Tan et al. 2021).

Initial Cloud Morphology

There is some uncertainty regarding an appropriate choice for the initial structure of

the cloud. A spherical cloud is clearly an idealized choice. Instead of a uniform density

sphere, smoothly varying density and temperature profiles connecting the two phases

have been used for more realism (Heitsch & Putman 2009; Kwak et al. 2011; Gritton

et al. 2014; Sander & Hensler 2021). Furthermore, Cooper et al. (2009) found that

fractal clouds were destroyed faster as compared to uniform spheres due to more rapid

cloud breakup. Schneider & Robertson (2017) similarly found that an initially turbulent

structure within the cloud would enhance fragmentation and ultimately facilitate cloud
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destruction. However, the above are all concerned with cloud destruction, where the

clouds are in a regime where the cloud is ultimately destroyed over time (tcool,mix > tcc

for wind tunnel setups). The importance of the initial cloud structure can thus be

understood in the context that it determines how the cloud is destroyed as it fragments

and breaks up. However, if we are in the regime where one is concerned about cloud

growth instead, then this dependence on the initial setup seems to matter less. Gronke

& Oh (2020a) found that in the regime of cloud growth, there was little difference in

either the mass growth or velocity evolution between an initially turbulent or uniform

cloud. In fact, the turbulent case actually grew slightly faster, since it had a larger

surface area at the start. Still, this suggests that the initial morphological evolution of

the sphere does have some dependence on the choice of the initial structure of the cold

gas cloud. In terms of numerical values, this creates some amount of uncertainty in our

model, in particular with regards to the initial values of the cloud surface area and its

initial evolution, which Heitsch et al. (2022) refers to as the ‘burn-in’ phase. In our

model, this uncertainty is folded in by calibrating a constant prefactor of order unity to

the results from our simulations. It is possible that the precise value of this factor might

vary depending on setup and initial cloud structure.

Temperature Floor and Self Shielding

In our simulations, we have assumed a temperature floor of T ∼ 104 K. However, it

would be useful to understand the phase structure of cold neutral gas that provides an

additional layer of structure to the clouds (Girichidis et al. 2021; Farber & Gronke 2022)

and how this might impact cloud growth and dynamics. This is especially for comparison

with observations, which often detect warm gas surrounding cold cores. On a related note,

we have assumed that all our clouds are optically thin. However, self-shielding could be

important for the more massive clouds.
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Infall Conditions

We have assumed our clouds fall directly towards the disk. However it is likely that

most clouds will have some sort of rotational velocity component and hence fall inwards

on some orbit trajectory. As mentioned in Heitsch & Putman (2009), this component

is more akin to the wind tunnel setups since net acceleration is reduced. We have also

assumed a quiescent background - realistic environments are likely subject to large scale

turbulence (Gronke et al. 2022). This could affect mixing rates or significantly lengthen

infall times and introduce a large stochastic variability in the infall velocity, much the

same way a leaf falling to the ground in a windy environment follows a much longer

trajectory. How this might affect cloud growth and dynamics is a natural follow up to

this work.

Metallicity

We have assumed solar metallicity everywhere in both phases. Depending on the

origin of the cold cloud, it is possible that the metallicity of the original cloud and the

background differ significantly. Gritton et al. (2014) and Heitsch et al. (2022) have showed

that there is significant mixing of metals in such a case, with important implications for

observables.

4.7 Conclusions

The growth and survival of infalling cold clouds has received considerably less at-

tention compared to their outflowing counterparts. While the two appear to be similar

problems at first glance, they have in fact a crucial difference between them, which is

that infalling clouds continuously feel the force of gravity. This leads to very different

dynamical evolution of the infalling clouds, and also a more stringent criterion for sur-
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vival. Using 3D hydrodynamical simulations, we have studied the growth and survival of

such clouds, considering both a constant background as a well as a more realistic strat-

ified background. We have also developed a model for the dynamical evolution of these

clouds based on turbulent mixing layer theory, and shown that they are able to predict

the results of the simulations. These also agree well with analytical estimates. Our main

findings are:

• Not a Wind Tunnel: Infalling clouds do not correspond to wind tunnel setups,

where the velocity shear is initially large and decreases as the cloud gets entrained.

Instead, the velocity shear is initially small but increases as the cloud accelerates.

This means that criteria such as tcool,mix < tcc for survival are not applicable.

• Modelling Cloud Growth: An important component determining how fast the cloud

grows is the surface area of the cloud. We find that A ∝ m5/6. This is consistent

with either a mix between surface and tail growth or a fractal surface area. Com-

bining this with models of the inflow velocity allow us to model the growth time of

the clouds, as given in equations (4.22) and (4.23). We can hence evolve equations

(4.1) – (4.3) to model the evolution of cloud properties.

• Accretion Drag: Clouds falling due to gravity can experience an alternative form

of drag if they are growing via turbulent radiative mixing layers, since they are

effectively accreting low momentum gas. This drag is dominant over the usual

ram pressure drag as the clouds develop long tails along the direction of infall.

This leads to much lower predicted infall velocities compared to models which only

consider ballistic trajectories or ram pressure drag. In particular, the terminal

velocity vT ≈ gtgrow, where tgrow = m/ṁ is given by equation (4.25) for subsonic

infall.
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• Relationship between Speed and Growth Rates: The balance between gravity and

growth results in vT/cs,hot ∼ tgrow/tff . That is, the ratio of the terminal velocity

and the virial velocity is also the ratio of the the growth time to the free-fall time.

This is useful since infall velocities are measured observationally. The growth rate

of the cloud can then be deduced. We expect sub-virial velocities (vT < cs,hot) to

be indicative of considerable mass growth (tgrow < tff) in clouds. Observed sub-

virial infall velocities are otherwise difficult to explain with existing models. In an

isothermal atmosphere with constant gravity, we predict vT ≈ 0.6cs,hot, indepen-

dent of all other properties of the system, although convergence to this asymptotic

velocity can be slow.

• Criterion for Cloud Survival: The criterion for clouds to survive and grow is tgrow <

4tcc (equation (4.27)). The most important factor in determining cloud survival is

the cooling time. We find that the ratio of tgrow/tcc is almost independent of cloud

size (within a large practical range of parameter space). Hence, in order to survive

and grow, clouds need only be within regions where densities/pressure are high

enough such that cooling times are sufficiently short. For χ = 100, this criterion

can be written as

P > 3000 kBKcm−3
( g

10−8 cm s−2

)4/5
(4.47)

• Stratified Backgrounds and Cloud Size: In stratified environments, clouds that start

their infall beyond such survival ‘zones’ can still survive provided they are not

completely destroyed before reaching these zones. This favors larger clouds which

have longer cloud crushing times. Larger clouds are hence more likely to be observed

at distances where the above criterion is not satisfied.
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In summary, we have identified a new mechanism for the deceleration of clouds that

has not been considered in existing models, with important bearings on cloud survival,

growth, and dynamics. We have presented a model for cloud growth (equations (4.1) –

(4.3)), evolution (equations (4.22) and (4.23)), and survival (equation (4.27)) that agree

well with simulations. These results can be applied to range of systems with infalling cold

gas such as HVCs and clusters, and addresses important questions of survival, growth,

and sub-virial velocities that have been highlighted by observations. Future work will

refine this model with additional physics such as magnetic fields, cosmic rays and self-

shielding, as well as allowing the gas to cool down to lower temperatures.
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Chapter 5

Cloud Atlas: Navigating the

Multiphase Landscape of

Tempestuous Galactic Winds

My life amounts to no more than one drop in

a limitless ocean. Yet what is any ocean, but

a multitude of drops?

David Mitchell, Cloud Atlas

Galaxies comprise intricate networks of interdependent processes which together gov-

ern their evolution. Central among these are the multiplicity of feedback channels, which

remain incompletely understood. One outstanding problem is the understanding and

modeling of the multiphase nature of galactic winds, which play a crucial role in galaxy

formation and evolution. We present the results of three dimensional magnetohydrody-

namical tall box interstellar medium patch simulations with clustered supernova driven

outflows. Fragmentation of the interstellar medium during superbubble breakout seeds
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the resulting hot outflow with a population of cool clouds. We focus on analyzing and

modeling the origin and properties of these clouds. Their presence induces large scale

turbulence, which in turn leads to complex cloud morphologies. Cloud sizes are well

described by a power law distribution and mass growth rates can be modelled using tur-

bulent radiative mixing layer theory. Turbulence provides significant pressure support

in the clouds, while magnetic fields only play a minor role. We conclude that many of

the physical insights and analytic scalings derived from idealized small scale simulations

translate well to larger scale, more realistic turbulent magnetized winds, thus paving a

path towards their necessary yet challenging inclusion in global-scale galaxy models.

5.1 Introduction

Galaxies are complex ecosystems—extracting the most out of our ever growing body

of increasingly detailed observations requires understanding the inherently nonlinear,

dynamical structures that underlie them. A multitude of open problems still surround

galaxy formation and evolution today. One that sits at the very heart is the challenge to

understand the multiphase nature of not just the gas within galaxies and their surround-

ing environment (circumgalactic medium (CGM)), but also the flow of this material in

and out of galaxies and how this regulates galaxy evolution (often dubbed the Cosmic

Baryon Cycle). Galactic outflows driven by feedback mechanisms carry material out-

wards while inflowing gas provides fuel for new star formation. This cycling connects

processes on stellar (∼ pc) scales to galactic (∼ kpc) and cosmological (∼Mpc) scales,

weaving them into a tightly interdependent and highly multiscale tapestry.

Galactic winds, which play a central role in regulating the baryon cycle, have garnered

significant attention in recent years due to the clear evidence of their influence on galaxy

evolution. They are thought to be primarily driven by feedback processes originating
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from either massive stars (for lower mass haloes) or active galactic nuclei (AGN; at the

higher end of the mass spectrum), and are necessary ingredients for any realistic model

(see Somerville & Davé 2015; Naab & Ostriker 2017, for detailed reviews). The result is

the formation of large-scale outflows that transport material out of the galaxy while also

shaping the CGM (Tumlinson et al. 2017).

Observations of galactic winds reveal them to be cosmically ubiquitous across star

forming galaxies (Martin 1999; Rubin et al. 2014). They also exhibit a complex, multi-

phase structure consisting of cold (T ≲ 102K), cool (T ∼ 104K), warm (T ∼ 105K), and

hot (T ≳ 106K) gas components, with the various phases spanning a range of different

properties and dynamics (Veilleux et al. 2005; Strickland & Heckman 2009; Steidel et al.

2010; Rubin et al. 2014; Heckman & Thompson 2017; Bolatto et al. 2021). A better un-

derstanding of the formation, survival, and growth of cool gas clouds which make up the

most readily observable phase, as well as their interactions with the other gas phases, is

needed in order to provide vital insights into the mass transport mechanisms and overall

energetics of these outflows. This in turn is essential for constructing a comprehensive

picture of the multiphase nature of galactic winds and their impact on galaxy evolution.

In parallel, theoretical modeling and simulations of galactic winds have become in-

creasingly sophisticated, aiming to reproduce and understand the multiphase nature and

complex dynamics observed in these outflows. Chevalier & Clegg (1985) introduced an

early analytic model where mass and energy injection into a spherically symmetric re-

gion powered a hot outflowing wind. Building on this simple model, recent theoretical

work has included radiative cooling and gravity (Thompson et al. 2016), non-spherical

expansion (Nguyen & Thompson 2021), more realistic injection (Bustard et al. 2016;

Nguyen et al. 2023), and frameworks for coupled multiphase evolution (Huang et al.

2020; Fielding & Bryan 2022).

In this work, we focus on winds driven by stellar feedback, primarily in the form
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of energy released by core-collapse supernovae (SNe). While large scale cosmological

simulations are now approaching high enough resolutions where multiphase structures

are seen to develop self consistently in galactic winds (e.g., in TNG50 Nelson et al. 2019

and FIRE Anglés-Alcázar et al. 2017; Pandya et al. 2021), the detailed properties of

multiphase outflows are still most clearly seen in high resolution galaxy scale simulations

(e.g., Schneider et al. 2020; Steinwandel et al. 2022; Rey et al. 2023), or interstellar

medium (ISM) patch simulations (e.g., TIGRESS Kim et al. 2017; Kim & Ostriker 2018;

SILCC Gatto et al. 2017). The∼ pc-scale resolution of these simulations makes it possible

to resolve the energy injection by SNe and the resulting interactions with the surrounding

ISM (e.g., de Avillez 2000; Joung & Mac Low 2006; Hill et al. 2012). Such simulations

have also revealed a trove of complications surrounding the launching of these winds.

For example, the efficacy of this process is sensitive to the spatial distribution of SNe

(Creasey et al. 2013; Martizzi et al. 2015; Li et al. 2017; Smith et al. 2021) as well as

spatiotemporal clustering (Kim & Ostriker 2017; Fielding et al. 2018) and self-consistency

of treatments of star formation and feedback (Kim et al. 2017; Kim & Ostriker 2018).

The survival and growth of cool gas clouds entrained in these winds has also been a

hotbed of analytic and numerical studies in recent years. Theoretically, this picture was

initially problematic as these cool clouds should be quickly destroyed by hydrodynamic

instabilities during this process (Klein et al. 1994). The timescale for the acceleration of a

cool cloud is a factor of ≳10 times longer than the timescale for its destruction via Kelvin-

Helmholtz (KH) and Rayleigh-Taylor (RT) instabilities (Zhang et al. 2017). This was

also verified in simulations (Cooper et al. 2009; Scannapieco & Brüggen 2015; Schneider

& Robertson 2017). However, it was recently shown that under the right conditions,

these cool clouds can not only survive but even grow within the hot wind (Armillotta

et al. 2017; Gronke & Oh 2018, 2020a). This is possible when the cooling time of mixed

gas is shorter than the destruction timescale. Subsequent studies have shown that exact
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characterizations of this parameter space is complex (Li et al. 2020; Sparre et al. 2020;

Kanjilal et al. 2021; Farber & Gronke 2022; Abruzzo et al. 2022b). The mechanism that

drives this growth is the formation of a long tail structure of cool gas where mixing and

cooling takes place efficiently in turbulent radiative mixing layers at the interface of the

two gas phases (Ji et al. 2018; Fielding et al. 2020; Tan et al. 2021). Crucially, this requires

long simulation domains that were not captured in earlier simulations, highlighting the

importance of capturing the appropriate scales and boundary conditions that define such

problems.

The interplay between the cool and hot gas phases, and the role of various physical

processes such as radiative cooling, turbulence, and magnetic fields, are hence crucial

in determining the fate of cool gas clouds and their impact on the overall dynamics of

galactic winds (Fielding & Bryan 2022). Despite these advances, many aspects of galac-

tic wind simulations still rely on simplified models and assumptions, such as idealized

cloud geometries or time-constant wind properties. The next step forward is to study the

problem under more realistic conditions, incorporating the diverse range of physical pro-

cesses and interactions that govern the evolution of galactic winds and their multiphase

structures.

To that end, in this work we connect results from small scale idealized cloud crush-

ing simulations to large scale multiphase galactic winds by studying how clouds form,

evolve and interact with the wind. This mesoscale approach bridges the microscale

phenomena controlling individual clouds to the macroscale phenomena controlling galac-

tic/cosmological scale evolution by simultaneously resolving the lifespan of thousands of

individual clouds as well as the driving of the highly turbulent, temporally variable, hot

wind that they interact with. The basis of our study builds upon a series of simulations

following a similar design to those presented in Fielding et al. (2018), which capture the

dynamics in a vertically stratified patch of a galactic disc. In these simulations, clustered
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Figure 5.1: Volume rendering of the main simulation used in this work that demon-
strates the presence of numerous cool clouds (shown in opaque blue) embedded within
the hot outflow (shown in transparent orange) powered by the SNe (shown as the light
source) exploding within the disc mid-plane.
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SNe lead to the formation of superbubbles which propagate quickly enough to break out

of the galactic discs, providing a pathway for the energy and momentum released to vent

into the halo in the form of a strong galactic wind. The shredding and entrainment of

cool dense clumps are seen in these winds, and are expected to be important in the influ-

encing the structure and dynamics of the outflow. We extend the box asymmetrically so

as to follow the clouds in the outflow out to a larger height, as well as include additional

physics such as self-developed magnetic fields in the turbulent ISM. Figure 5.1 shows a

rendering from our simulation of cool structures (in blue) in the hot outflowing wind (in

orange). Our main focus is on analyzing the clouds in these winds. More specifically,

we investigate how they are formed during superbubble breakout and their properties

relative to predictions from idealized small scale simulations of turbulent mixing layers

and individual clouds.

The outline of this paper is as follows. In Section 5.2, we propose an analytic model

for the distribution and growth of cool clouds in an outflowing wind. In Section 5.3, we

provide a detailed description of our simulation setup. In Sections 5.4 and 5.5, we present

simulation results, with the former focusing on bulk properties of the outflow and the the

latter on analysis of the clouds. Lastly, we discuss some implications and complications

in Section 5.6 before summarizing and concluding in Section 5.7.

5.2 Seeding Clouds In Outflows

Despite the evergrowing body of work on small and large scale multiphase systems,

equivalent studies of intermediate scales remain lacking. There is therefore an imperative

to develop and validate models which bridge this gap. Here, we outline such a model

describing a population of cool clouds in hot outflowing winds, building on results from

work at smaller scales, which we then compare to simulations in following sections. In
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particular, we focus on two main components—the distribution of cloud sizes and the

rate at which they grow. Together, they enable us to better build and refine analytic

frameworks for modelling these systems. We will discuss each in turn, beginning with

the distribution of cloud sizes.

5.2.1 Cloud Size Distribution

Inverse power law distributions, where the probability of a quantity taking on some

value varies inversely with the power of that value, are widely observed in both the

physical and social sciences, with a large existing body of empirical evidence supporting

their existence (Newman 2005). They are commonly referred to as Zipf’s law in the

discrete case, or Pareto distributions in the continuous case. Their theoretical origins

are, however, much less certain. In particular, it is difficult to explain their seeming

universality. A ∼−2 exponent, which indicates that there is a constant contribution

from each logarithmic bin, is ubiquitous, even within astronomy (Guszejnov et al. 2018).

Take, for example, the stellar initial mass function, which has a roughly dN(m)/dm ∝

m−2.35 scaling at higher masses (Krumholz 2014). This has been attributed to turbulent

fragmentation (Padoan & Nordlund 2002; Hopkins 2013), where initially turbulent gas

fragments into clumps. In this case, fragmentation is driven primarily by gravitational

collapse.

Gronke et al. (2022) find in simulations of turbulent multiphase boxes that the cool

gas breaks up into droplets which follow a similar distribution. This setup is akin to a

population of clouds fully entrained in a turbulent background wind. They argue that

this power law, and in particular the −2 exponent, arises from competition between

fragmentation and growth, where growth is provided from both a multiplicative source

(cooling induced growth) as well as an additive source (coagulation of multiple smaller
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clumps with a larger clump).20 Fragmentation, on the other hand is driven solely by

the turbulent field. Likewise, Fielding et al. (2022) find the same mass distribution of

cool clumps in turbulent magnetized boxes where the multiphase medium is formed via

thermal instability.

While our setup differs from these more idealized ones, many features are similar.

Instead of a single large cloud in a turbulent velocity field, we have an ISM that is bro-

ken up by an expanding hot superbubble. While the ISM itself is initially turbulent, the

fractal expansion of the bubble surface through the multiphase ISM (Lancaster et al.

2021) fragments the swept up ISM in a scale free manner, eventually launching asym-

metric winds above and below the disc. It is the fragmentation of the initial ISM that

determines the distribution of cloud sizes, at least when the outflowing wind first breaks

out. The initial cloud mass population in the hot wind is thus seeded by the fragmented

ISM that the superbubble which birthed the wind itself has broken up. This leads to a

distribution that scales as:

dN

dm
∝ m−2. (5.1)

We will show that our simulations support this picture of cloud genesis via swept up ISM

shell fragmentation during superbubble breakout. This picture is fundamentally distinct

from the naive model in which preexisting cold clouds in the ISM are accelerated out of

the galaxy while remaining mostly intact.

What sets the lower and upper limits on cloud sizes in this model? Since the clouds are

formed during the breakup of the ISM, the largest cloud size is simply constrained by the

initial scale of the ISM, i.e., the scale heightH of the disc. The scale of the smallest clouds

is a more complex question. While fragmentation can lead to arbitrarily small clouds,

20In Gronke & Oh (2022), they explore the effects of coagulation further and identify a critical Mach
number below which coagulation dominates. This critical Mach number is small in our simulations,
suggesting that coagulation should not dominate.
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they should be rapidly destroyed in the hot turbulent wind below some critical size, where

growth due to cooling becomes ineffective. This survival threshold rcrit presents a natural

choice for the lower limit. However, the problem of what determines rcrit is a thorny one,

and there has been no shortage of recent investigations into the matter. We will briefly

review some of them.

For a cloud of size rcl with overdensity χ relative to its background and temperature Tcl

at rest embedded in a hot wind of temperature Thot moving at a velocity vwind, Gronke &

Oh (2018) identified a characterize size rcrit,cc above which the clouds survive till entrain-

ment and grow. This size corresponds to where the cloud crushing time tcc ∼
√
χrcl/vwind,

the timescale on which a cloud is destroyed by hydrodynamic instabilities (Klein et al.

1994), becomes longer than the cooling time of mixed gas tcool,mix ≡ tcool(Tmix), where

Tmix ∼
√
TclThot (Begelman & Fabian 1990). From their turbulent box simulations,

Gronke et al. (2022) found that there is also an additional empirically determined Mach

number dependence of the functional form f(Mturb) ∼ 100.6Mturb . They attribute this ad-

ditional Mach dependence to increased turbulent disruption, in contrast to the increased

survival times seen in cloud crushing simulations with high Mach winds which stems from

cloud compression (Scannapieco & Brüggen 2015; Bustard & Gronke 2022). The critical

size for survival is thus given by

rcrit,cc = 2 pc
T

5/2
cl,4Mwind

P3Λmix,−21.4

χ

100
f(Mturb), (5.2)

where Tcl,4 ≡ (Tcl/10
4 K), P3 ≡ nT/(103 cm−3 K), Λmix,−21.4 ≡ Λ(Tmix)/(10

−21.4 erg cm3 s−1),

and Mwind is the Mach number of the wind.

Alternatively, Li et al. (2020) and Sparre et al. (2020) lay out a survival criterion

tcool,wind < tlife, where tcool,wind is the cooling time of the hot background wind and tlife =
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f̄ tcc is the predicted cloud lifetime. f̄ is an empirically calibrated function, given by

f̄ = 10

(
rcl
1 pc

)0.3 ( nhot

0.01 cm−3

)0.3( Thot

106 K

)(
vwind

100 km s−1

)0.6

, (5.3)

where nhot is the density of the hot gas. At χ = 100, the difference between the two

criteria is small, and when comparing the two, attributed to different ways of defining

cloud survival (Kanjilal et al. 2021). At larger χ however, these criteria differs by orders

of magnitude. Abruzzo et al. (2022b) find that at χ > 100, the Li/Sparre criterion agrees

much better with simulation results, but also point out that tcool,wind cannot be physically

important since their results are unchanged when they artificially shut off wind cooling.

They instead propose a new criterion tcool,mix < tshear which captures the empirically

derived χ scaling of rcrit in a physically motivated model (Matthew Abruzzo et al. in

prep.). Here tshear ∼ rcl/vwind is the wind crossing time over the cloud, the idea being that

a cloud survives if mixed gas on the cloud surface is able to cool before being stripped

away. This criterion gives a cloud survival size

rcrit,shear ≡
√
χrcrit,cc. (5.4)

5.2.2 Theoretical Model for Cloud Growth

Assuming that the conditions are right for a cloud to survive and grow in a wind, we

can write its mass growth rate as

ṁ ∼ ρwindvinAcloud, (5.5)

where ρwind is the density of the hot wind, vin is the inflow velocity corresponding to the

mass flux from the hot background onto the cloud, and Acloud is the effective surface area
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of the cloud.

The first ingredient in this cloud growth model is Acloud. It is important here to

distinguish this effective surface area from the non-convergent surface area of the cool

gas (Fielding et al. 2020; Abruzzo et al. 2022b), which corresponds more closely to the

temperature isosurfaces we measure in our simulations below. Instead, a more accurate

characterization of Acloud is an effective surface area corresponding to some smooth en-

velope around the cloud (Gronke & Oh 2020a). In cloud crushing simulations, surface

area has an initial rapid growth stage associated with tail formation, followed by slower

isotropic growth (Gronke & Oh 2020a; Abruzzo et al. 2022b). This corresponds to Acloud

going from initially scaling as ∝ V (linearly with volume), to scaling as ∝ V 2/3. The ini-

tial exponential growth can be attributed to a tail formation phase where the high shear

mainly leads to mass growth in a growing tail downstream of the cloud. Eventually, the

cloud becomes entrained and the surface area scales much as a monolithic cloud would.

However, it was found in Gronke & Oh (2022) and Tan et al. (2023) that for clouds

which never get entrained (either because of large scale turbulence or gravitational ac-

celeration), and are hence subject to continuous shear, the cloud surface area instead

scales as Acloud ∝ V 5/6. This scaling can arise from the fractal nature of the mixing

surface, which has been measured in mixing layer simulations to have a fractal dimension

D ∼ 2.5 (Fielding et al. 2020), which would mean A ∝ V D/3 ∼ V 5/6. If we assume that

the smallest surviving clouds are the most spherical, we can model the effective cloud

surface area as

Acloud = Acrit

(
V

Vcrit

)5/6

, (5.6)

where Acrit and Vcrit are the spherical area and volumes respectively corresponding to the

critical cloud survival size rcrit, which we discuss below.

Next we discuss the second ingredient in the model, the inflow velocity vin. In plane
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parallel simulations of radiative turbulent mixing layers (Tan et al. 2021; Fielding et al.

2020), vin is found to scale as

vin ∼ v
3/4
turb

(
Lturb

tcool,min

)1/4

, (5.7)

where vturb is the turbulent velocity in the mixing layer, Lturb is the largest mixing scale

(typically the outer scale of the turbulence), and tcool,min is the minimum cooling time

in the simulation, which scales inversely with pressure (tcool,min ∝ P−1). Additionally,

these simulations find that the turbulent velocity scales with the relative shear velocity

in these setups, such that vturb ∼ frelvshear, where frel is some constant of proportionality

(Tan et al. (2021) report frel ∼ 0.3 and Fielding et al. (2020) find frel ∼ 0.1 − 0.2) that

varies with the geometry of the setup (e.g., Mandelker et al. (2020) find frel ∼ 0.2−0.3 in

supersonic streams). However, in cloud crushing setups, clouds eventually entrain, i.e.,

vshear goes to zero, yet these clouds continue to grow (Gronke & Oh 2020a), suggesting

that this relationship breaks down at lower values of vshear. This is likely due to continued

driving of mixing due to cooling, either via induced pulsations (Gronke & Oh 2022)

or is self-sustained as the cooling velocity drives ongoing turbulence after entrainment

(Abruzzo et al. 2022b). To account for this saturation at low shear velocities, we can

hence express the turbulent velocity as

vturb ≈ max(frelvshear, cs,cold). (5.8)

In our simulations, we find that frel ∼ 1/15.

For strong cooling regimes, Tan et al. (2021) calibrate the equations above to simu-
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lations of turbulent mixing layers and find that

vin ≈ 10 km s−1

(
vturb

50 km s−1

)3/4(
Lturb

100 pc

)1/4(
tcool,min

0.03 Myr−1

)−1/4

. (5.9)

The above scalings assume that we are in the subsonic to transonic regime where the rela-

tive velocity between the hot wind and the cloud does not exceed the hot gas sound speed.

The turbulent mixing velocity saturates as clouds become supersonic (Yang & Ji 2023),

which would change the scalings above. We also assume that we are in the rapid cooling

regime, where the cooling time is much shorter than the turbulent mixing time L/vturb,

i.e., the outer scale eddy turb over time (Damköhler number Da ≡ L/(vturbtcool,mix) > 1;

Tan et al. 2021).

To summarize, we have presented a model for seeding a population of growing clouds

into an outflowing wind. In this work, we will show that we can apply this to simulations

of a population of clouds in a more realistic outflowing wind environment that is turbulent

and also includes magnetic fields. We find that contrary to initial expectations, this

simple model is surprisingly effective.

5.3 Methods

In this work, we carry out 3D magnetohydrodynamical (MHD) simulations using the

publicly available code Athena++ (Stone et al. 2020) aimed at capturing the multiphase

dynamics in a vertically stratified patch of a galactic disc. SNe corresponding to a star

cluster are seeded by hand in the middle of the disc, which leads to the formation of a

superbubble that propagates rapidly enough to break out of the disc and release energy

and momentum into the halo in the form of a galactic wind. This builds upon the design

of a similar suite of simulations presented in Fielding et al. (2018) where additional
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details and discussion can be found. In our analyses in the following sections, we focus

on studying the formation and dynamics of a resulting population of cool material that

gets sown into the wind. Before that, we describe in this section our simulation setup,

implementations of various physics, and the initial conditions we adopt.

5.3.1 Setup

All simulations are run in three dimensions on Cartesian grids using the HLLD ap-

proximate Riemann solver and the third-order accurate Runge-Kutta time integrator.

Our simulation setup consists of a rectangular box with dimensions 512× 512× 2048 pc

and a fiducial resolution of 2 pc (we also discuss in this work a simulation run with

a higher resolution of 1 pc but which fails to drive a successful outflow). The box is

asymmetric—the mid-plane is located a quarter box length from the bottom—so as to

follow the outflow on the upper side out to a greater height. We use periodic boundary

conditions on the sides of the box, along the x and y directions. We adopt outflowing

boundary conditions (zero gradient with inflow explicitly disallowed) along the z direction

at the top and bottom. We also implement a density floor of n = 10−8 cm−3.

5.3.2 Source Terms

We include a background gravitational profile, driven turbulence, optically thin ra-

diative cooling, photoelectric heating, and SNe injection. Here, we provide more details

about the implementation of each of these in turn. We do not include any explicit

viscosity or thermal conduction. A γ = 5/3 equation of state is adopted throughout.
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Gravity

We first consider the density profile of a thin isothermal disc in hydrostatic equilib-

rium. We begin by assuming that the self-gravity of the gas is a subdominant component

of the total gravitational potential and is hence unimportant (i.e., ∼ 2πGΣgasz is small,

which is true for Σgas ≪ 1000M⊙/pc
2). We hence neglect self gravity in our simulations.

The spherical potential at a vertical height z above the disc and a radial distance R from

the center is

Φ(R, z) = −GM

r
= − GM

(R2 + z2)1/2
, (5.10)

and hence the gravitational acceleration is

g(R, z) = −∂Φ

∂z
= − GM

(R2 + z2)3/2
. (5.11)

For a thin disc, z << R,

g(R, z) ≈ −GM

R3
z = −Ω2z, (5.12)

where Ω = vcir/R is the angular velocity. Our equation of hydrostatic equilibrium is thus

dP

dz
= ρgz = −ρΩ2z. (5.13)

With P = c2i ρ (ci is the isothermal sound speed, related to the adiabatic sound speed by

c2s = γc2i ), we can easily solve this for the density profile:

ρ(z) = ρ0 exp

[
− z2

2H2

]
, (5.14)
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where H ≡ ci/Ω is the scale height and ρ0 is the mid-plane density at z = 0.

We can however drop the thin disc assumption and solve for the profile out to larger

z. We now have

g(R, z) = −GM

R3

R2

(R2 + z2)3/2
z = −Ω2 R2

(R2 + z2)3/2
z. (5.15)

Solving this gives us:

ρ = ρ0 exp

[
R2

H2

(
R2

(R2 + z2)1/2
− 1

)]
. (5.16)

These are the profiles we adopt in our simulations. We test systems in hydrostatic equi-

librium with this gravitational profile in Appendix B. Note we have assumed an external

spherical potential for simplicity. One could in principle construct the gravitational po-

tential with a disc component and a dark matter halo component along with self-gravity

for a more realistic treatment, which is important if one is going to distances ≫ 1 kpc

(Li et al. 2017). However, our simplified assumption is sufficient for our box size.

Stratified Turbulence

We drive turbulence on large scales so that the mass-weighted velocity dispersion

δv ≡ ⟨v2⟩1/2 ≈ 10 km/s, which is roughly the sound speed of 104K gas and consistent

with observed velocity dispersions in the ISM. The turbulent kinetic energy injection

rate is thus Ėturb ≈ ρδv3L2
box where L2

box is the horizontal box length. The turbulence is

driven on the scale of the disc scale height with power distributed evenly between wave

numbers k = 2 to k = 3. The turbulence is constrained to follow a Gaussian profile

with scale height H ∼ 80 pc (we test this implementation of constrained turbulence in

Appendix C). We drive the turbulence every 5 × 10−3 crossing times tcross. The driven
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Figure 5.2: Cooling curves along with our fit and heating curves for ⟨nH⟩ = 100 cm−3

at several different pressures (e.g., P4 is P = 104kB cm−3 K).

turbulence in Athena++ adopts an Ornstein-Uhlenbeck process to smoothly vary the

velocity perturbations over some correlation time (Lynn et al. 2012), which we set to

8 Myr. Turbulence along with heating and cooling leads to the formation of a turbulent

multiphase ISM which we allow to form for 60 Myrs (roughly a turnover time) prior to

any supernova explosions.
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Cooling/Heating

The net cooling rate per unit volume is formulated as

ρL = n2Λ− nΓ, (5.17)

where Λ is the cooling function and Γ is the heating rate. Our cooling function Λ(T )

combines the collisionally ionized equilibrium (CIE) cooling curve in Gnat & Sternberg

(2007) for T ≥ 104K with the cooling function for T ≤ 104K in Koyama & Inutsuka

(2002). We obtain our cooling curve by performing a piece-wise power law fit over ∼ 50

logarithmically spaced temperature bins, starting from a temperature floor of 10K up

to a maximum temperature of 1010K. We also include a photoelectric heating (PEH)

rate Γ = 10−26(⟨nH⟩/ cm−3) erg s−1, where we have scaled the solar value by the average

mid-plane density to approximate the scaling of PEH with higher star formation rates

in denser regions. This approach is similar to those used in Kim & Ostriker (2017) and

Fielding et al. (2018), which run similar setups. We assume solar metallicity (X = 0.7,

Z = 0.02). We also use a fixed mean molecular mass µ, for a fully ionized plasma. This

has a ≤ 2 factor of error in the temperature of neutral/partially ionized gas below 104K,

but should should not affect our overall conclusions. Figure 5.2 shows the aforementioned

cooling curves along with our fit and heating curves for ⟨nH⟩ = 100 cm−3 at several

different pressures (e.g., P4 is P = 104kB cm−3 K).

We also adopt an additional constraint on the simulation timestep over the standard

CFL constraint where we require that that the timestep is less than or equal to one

quarter of the shortest single-point cooling time tcool across the whole domain. This is to

ensure good coupling between cooling and the hydrodynamical evolution.

Finally, we develop and implement an extended version of the fast and robust exact

cooling algorithm described in Townsend (2009) to include heating (See Appendix D for
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Figure 5.3: The SNe rate as as function of the stellar population age. This consists
of the core-collapse SNe rate (< 44 Myr) and the Ia rate (> 44 Myr).

full details).
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Supernova Injection

We include both core-collapse supernova and Ia rates using the piece-wise power law

fits given in Hopkins et al. (2023). The combined SNe rate is

RSN/M∗

Gyr−1M−1
⊙

=



0 (t < t1)

a1(t/t1)
s1 (t1 ≤ t ≤ t2)

a2(t/t2)
s2 (t2 ≤ t ≤ t3)

a3(t/t3)
s3 (t > t3),

(5.18)

where s1 ≡ ln (a2/a1)/ ln (t2/t1), s2 ≡ ln (a′2/a2)/ ln (t3/t2), s3 = −1.1, (a1, a2, a
′
2, a3) =

(0.39, 0.51, 0.18, 0.0083) and (t1, t2, t3) = (3.7, 7.0, 44) Myr. The time of the first Ia is set

to be after the time of the last CCSNe (t = t3). For M ≡ M∗/M⊙, the SNe number per

initial solar mass nSN ≡ NSN/M is thus given by

nSN(t) =



0 (t < t1)

a1
s1+1

t1
1Gyr

[(t/t1)
s1+1 − 1] (t1 ≤ t ≤ t2)

nSN(t2) +
a2

s2+1
t2

1Gyr
[(t/t2)

s2+1 − 1] (t2 ≤ t ≤ t3)

nSN(t3) +
a3

s3+1
t3

1Gyr
[(t/t3)

s3+1 − 1] (t > t3).

(5.19)

The time where n supernovae have gone off is hence

tSN(M,n) =


t1

[
n(s1+1)

Ma1(t1/1Gyr)

]1/(s1+1)

(n ≤ n1)

t2

[
(n−n1)(s2+1)
Ma2(t2/1Gyr)

]1/(s2+1)

(n1 ≤ n ≤ n2)

t3

[
(n−n2)(s3+1)
Ma3(t3/1Gyr)

]1/(s3+1)

(n ≥ n2).

(5.20)
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We deposit 1051 ergs per SN as pure thermal bombs. While one could determine the

amount of thermal and kinetic energy injected by each SN (see Martizzi et al. (2015),

who calibrated their model to high resolution simulations of individual SN remnants),

this would matter only for the first couple of SNe. Since the SNe are clustered tightly

both in space and time, most of them barring the first few occur in the hot and low

density remnant of the previous SNs, assuming that ∆tSN < tPE (tPE being the timescale

over which the SNR reaches pressure equilibrium or mixes with the ambient ISM) so that

a coherent bubble can be driven (Fielding et al. 2018). Hence their cooling radii rcool

are around an order of magnitude larger than the injection radius rinj, which means that

most of the energy from the SN is transferred to the surrounding gas.

We assume a spherical geometry for the injection site with radius rinj = 20pc. We

assume a stellar ejecta mass of 8.72M⊙ for core-collapse SN and 1.4M⊙ for Ia. We also

assume that all SN go off at the origin, since the cluster radius Rcl = 10pc is relatively

small.

While out of the scope of this work, we note that in reality, stars far from the disc

center could have a disproportionate effect in driving winds. For instance, Ia at late times

from stars that settle high above the disc or OB (binary) runaways (e.g., Steinwandel

et al. 2022). This is mainly due to the dual effects of a larger rcool in the lower density

region along with the lower scale height contributing to a large rcool/H ratio.

For each cell with center within the sphere radius, we then inject energy from the SN

uniformly. Note that there will be some error due to resolving the volume of the sphere,

but the error is small as long as we resolve the injection radius by more than a few cells.
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5.3.3 Initial Conditions

We adopt a circular velocity vcir = 175 km/s and galactic radial distance R = 1kpc,

which corresponds to a scale height H = 66pc. The box is initially filled with T = 104K

gas with a mid-plane density n = 100 cm−3 at z = 0. The average density within one scale

height is ⟨n⟩ = 86 cm−3. Using ⟨n⟩ ≡ Σg/(2Hµmp), this corresponds to a gas surface

density Σg ≈ 175M⊙ pc−2. For a a star formation efficiency ϵ∗ ≡ Mcl/πh
2Σg ∼ 0.1

(as found in Grudić et al. (2018)), this corresponds to a star cluster mass Mcl ∼ 2.5 ×

105M⊙. For comparison, the simulation from the suite of TIGRESS simulations under

the SMAUG project with the highest star formation rate (R2) has Σg ≈ 74M⊙ pc−2 (Kim

et al. 2020a). We initialize a magnetic field aligned along the x-direction with plasma

beta β ≡ Pgas/PB = 100 everywhere. However, through cooling and turbulent dynamo

amplification, β ∼ 1 is rapidly achieved in the ISM.

5.4 Results: Breakout and Wind Outflow

In this section, we provide context for the winds that contain our clouds, setting the

stage for our main focus—a closer look at cloud properties—in the next section. There is

already a large body of existing work studying these SN driven outflows—we concentrate

mainly on analysis meant to highlight the most salient points that are relevant to these

clouds.

5.4.1 Superbubble Breakout

Supernovae (SNe) are powerful energetic events that release a tremendous amount of

energy (∼ 1051 ergs) and mass into their surrounding environments. However, individual

SNe are ineffective at driving galactic winds because most of this energy is radiated
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Figure 5.4: The various stages of a superbubble breakout, driven by clustered SNe.
As the first SNe go off, a hot bubble expands outwards, propagating through the
multiphase ISM, leading to a complex fractal structure. As the superbubble eventually
breaks out of the disc, the ISM fragments and breaks up, thus seeding the hot outflow
with cool clouds.

away before it can break out of the disc. Spatiotemporal clustering of SNe resolves this

problem, and is motivated by the fact that stars form primarily in clusters. When multiple

supernova explosions occur in the same region of space and over a relatively short period

of time, they can overlap and form superbubbles. These superbubbles are able to drive

the expansion of the material outwards from the cluster, breaking out of the disc before

the cluster runs out of SNe. After superbubble breakout the hot material inside is able to

vent its energy into the halo and power an outflowing galactic wind. As the superbubble

propagates through the clumpy multiphase environment, it sweeps around higher-density

regions, resulting in a surface that is fractal in nature. This complex interplay leads to

the fragmentation and break up of the ISM, seeding the hot wind with a population of

cool clouds. Figure 5.4 illustrates this by showing temperature slices at various stages of

the process described above.
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Figure 5.5: Time slices of temperature from our fiducial simulation where the breakout
successfully launches a wind above the disc, despite the outflow being interrupted in
the middle.
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Figure 5.6: Time slices of temperature from a simulation where the breakout is not
successful in launching a wind on the top side and is disrupted too early by cold gas
in the ISM. This causes the breakout to cool and fall back towards the disc, a cycle
which is repeated several times.
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Figure 5.7: The outwards mass flux over time at four different heights showing the
initial breakout and outflow above the disc. This then reverses sides twice over the
timespan of the SNe. Dashed line represents negative values, while the red shaded
region highlights the time window after the SNe rate peaks in which we analyze wind
embedded clouds in the next section.
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5.4.2 Asymmetric Outflows

By virtue of having to make its way through a multiphase ISM, the expansion and

eventual break out of the superbubble can exhibit great asymmetry in terms of driving

outflows above and below the disc. This can be self-reinforcing—whichever side breaks

through first is then free to vent into the low density halo, creating a channel of lower

resistance for the hot gas to funnel through and leading to a weak or non-existent outflow

on the opposite side. In addition, turbulent motions in the ISM can exacerbate or reverse

this asymmetry. For example, if cold material in the ISM moves over the cluster region,

it ‘caps’ and inhibits the path of the hot expanding wind, much like turning off a valve,

resulting in a redirection towards the other side of the disc. In this manner, an outflowing

wind can be quenched at the base on one side midway during the lifetime of the cluster

SNe. While we did not investigate this in further detail, we observed that this was

a common occurrence in our simulations—due to the nature of the setup, a wind that

breaks out on one side pushes the ISM radially outwards in the plane of the disc. Because

of the periodic boundary conditions, this leads to a build up of ISM material on the sides

which then falls back towards the cluster. This sloshing motion often eventually halts

the wind and drives it to the opposing side. In a more realistic larger scale setup, this

indicates that dynamical interactions between different star clusters could complicate

wind driving, either reinforcing or disrupting outflows depending on their spatiotemporal

separations.

Figures 5.5 and 5.6 show slices from two very similar simulations differing primarily

in the random seeding of turbulent driving in which the breakout succeeds and fails in

driving an outflowing wind, respectively. In Figure 5.5, we see that the wind breaks out

on the topside and that fragments of the ISM become entrained in the hot outflowing

wind, whereas it fails to do the same on the bottom side, which is apparent when looking
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at the two panels at later times. Meanwhile, in Figure 5.6, the wind initially break outs

out but is first briefly interrupted, causing the hot wind to cool and fall back towards

the disc, before breaking out again and then being stopped a second time, again leading

to an overall cooling of the hot material which falls back disc-wards. This demonstrates

the way winds can fail to be launched.

We can look at this more quantitatively by tracking how the mass flux in the simu-

lation evolves over time. In Figure 5.7, we show the outwards mass flux per unit area at

four different heights in our box as a function of time for our fiducial simulation shown in

Figure 5.5. The blue and orange lines show the mass fluxes below and above the disc re-

spectively at 0.5 kpc, while the red and teal lines are at 1 and 1.5 kpc above the disc. The

dashed orange line shows when the mass flux becomes negative, i.e., material is falling

back to the disc. We can see that the breakout is initially on the top side which launches

a strong outflowing wind. As the outflow is interrupted at the base, the wind loses its

power source, and begins to slow and dissipate. Meanwhile, the outflow is directed to

the bottom side of the disc. This eventually reverses again nearing the end of the cluster

SN period. The red region highlighted in Figure 5.7 shows the time range in which we

analyze clouds in Section 5.5. This choice corresponds to a time period right after the

peak of the SNe rate (see Figure 5.3).

5.4.3 Turbulent Winds

Figures 5.8, 5.9, and 5.10 show the range of quantities we track in our simulations, and

allow us to make some general statements about the outflowing winds. Figure 5.8 shows

slices of temperature, outflow velocity, number density, pressure and magnetic plasma

beta for a single time snapshot corresponding to the middle panel of Figure 5.6. This

shows the general picture of clustered SNe driving a hot outflowing wind which contains a
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Figure 5.8: Slices of temperature, outflow velocity, number density, pressure and
magnetic plasma beta for a single time snapshot. Clustered SNe drive a hot outflowing
wind which contains a population of cool clouds in this wind.
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Figure 5.9: Slices of the velocities in the three axis-aligned directions. The vertical
velocities vz reflect the bulk outflow velocity, while the velocities vx and vy parallel to
the disc plane reflect the strong turbulence in the wind.
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Figure 5.10: Slices of the passive scalars we have used in this simulation. We use
a total of 5 passive scalars. The first two are introduced right before the first SN
explosion. All cold gas (T < 5 × 103K) is dyed with passive scalar s0, and all cool
gas (5× 103K < T < 2× 104K) is dyed with passive scalar s1. Passive scalars s2 and
s3 track how much of the gas in a cell was ever hot or cold. Lastly, passive scalar s4
tracks all SN injected gas. Beyond the disc and the injection site, s2 and s3 are close
to unity everywhere, indicating that there is strong mixing between phases.
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Figure 5.11: 2D volume weighted histograms of temperature, pressure, magnetic
plasma beta, and turbulent mach number with height 14 Myr after the first SN.
These reflect wind properties: T ∼ 107K, P/kb ∼ 104.5 cm−3 K, β ∼ 102 − 103, and
Mturb ∼ 0.25.
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population of cool clouds, which we focus our analysis on in the next section. Figure 5.11

is composed of 2D histograms that show how these properties vary with height.

These are taken from a single time slice 14 Myr after the first SN, in the middle of

the red shaded region shown in Figure 5.7. The histograms are volume weighted and

hence largely reflect wind properties, especially at heights above 0.5 kpc. The top-most

panel shows that the wind has a temperature of T ∼ 107K, along with cool clouds that

have a temperature of T ∼ 104K. In the second panel from the top, it can be seen

that pressure drops off rapidly away from the disc. The pressure in the wind is roughly

P/kb ∼ 104.5 cm−3 K . In terms of non-thermal components in the wind, both magnetic

fields and turbulence are small compared to thermal pressure. We can see from the third

panel that although the disc is strongly magnetized with plasma beta β ∼ 1, the wind

itself has a very weak magnetic field with β ∼ 102 − 103. Lastly, the bottom-most panel

shows that above 0.5 kpc, the turbulent mach number in the wind Mturb ∼ 0.25. This

brings us to a discussion of the nature of turbulence and mixing in the wind, where we

will also define how Mturb is computed.

Dispersed multiphase flow systems such as particles or droplets in liquid or gaseous

flows are common in various engineering fields (Balachandar & Eaton 2010). When the

mass fraction of the dispersed phase is comparable to that of the carrier phase, the back

reaction is non-negligible and the system is said to have two-way coupling. The nature

of this multiphase turbulence is still considered an open problem due to the involved

complexities. For example, it is unclear how particles can affect turbulence in the carrier

phase—studies have shown generally that small particles can attenuate turbulence by

dissipating energy for turbulent eddies, while larger particles can amplify turbulence

through mechanisms such as vortex shedding (Gai et al. 2020). Likewise, it is apparent

in our simulations that the presence of cloud fragments induces turbulence in the wind.

This arises firstly during the breakout phase as the superbubbles propagates through the
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multiphase ISM. Once this reaches the outflow phase, the flow of the hot wind around

the population of clouds similarly induces a large scale turbulent field on the scale of

the disc scale height. Figure 5.9 shows slices of the velocities in the three axis-aligned

directions. The vertical velocities vz reflect the bulk outflow velocity, while the velocities

vx and vy parallel to the disc plane reflect the turbulence in the wind. In this particular

slice, we can see that at low heights, the direction of the jet dominates the velocity field

for vx, but cascades to smaller scales at the wind flows out.

To examine the turbulence more closely, we apply a Gaussian filter to estimate the

turbulent velocity vturb. This method involves approximately removing large scale varia-

tions related to the bulk flow. This is done by convolving each velocity component with

a Gaussian kernel to estimate the bulk velocity along that component. Subtracting this

thus leaves the turbulent velocity of that component. While exact results depend on the

kernel size, qualitative conclusions remain unchanged (Abruzzo et al. 2022b). We choose

to use 16 pc, which sits comfortably within the range of sizes spanned by the cool clouds.

The i-th component of the turbulent velocity is hence defined here as

vi,turb(x) = vi(x)−
∫∫∫

fσ(x− r)ρ(rvi(r))d
3r∫∫∫

fσ(x− r)ρ(r)d3r
, (5.21)

where fσ(x) is the three-dimensional Gaussian filter. We weight the filter by density so

that the velocities within the cloud are not dominated by the that of the hot gas. The

right most panel of Figure 5.9 shows how the turbulent mach number using the above

definition for turbulent velocity (Mturb ≡ vturb/cs) varies in the slices. In general, the

turbulent mach number in the wind is high only close to the disc, and quickly weakens

away from it. On the other hand, the cool clouds have transonic internal turbulence. This

is shown more quantitatively in Figure 5.12, which shows a 2D histogram of Mturb and

temperature T at the same time snapshot as Figure 5.11, but only considering heights
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Figure 5.12: 2D histogram of turbulent mach number Mturb at heights above 0.5 kpc
estimated using a filtering method to account for bulk flows and temperature T . The
orange dashed line shows the average Mturb (∼ 1) within the orange shaded region
while the red dashed line shows the average Mturb (∼ 0.25) in the red shaded region.
These probe the cool clouds and the hot wind respectively.

207



Cloud Atlas: Navigating the Multiphase Landscape of Tempestuous Galactic Winds Chapter 5

above 0.5 kpc. The orange dashed line shows the average Mturb (∼ 1) within the orange

shaded region which represents the cool clouds, while the red dashed line similarly shows

the average Mturb (∼ 0.25) in the red shaded region which represents the hot wind. In

all, there is significant turbulence both within the clouds and in the outflowing wind.

This means that these environments are more similar to the turbulent boxes studied in

(Gronke et al. 2022) rather than idealized laminar wind tunnel setups. This is critical

because it is turbulence that drives mixing between the phases and hence their coupling.

Finally, Figure 5.10 shows slices of the passive scalars we have used in this simulation,

and also illustrates the amount of mixing between phases happening in these winds. We

use a total of 5 passive scalars. These passive scalars track gas with certain properties.

The first two are introduced right before the first SN explosion. All cold gas (T <

5× 103K) is dyed with passive scalar s0, and all cool gas (5× 103K < T < 2× 104K) is

dyed with passive scalar s1. This is to track how much cloud material was originally cold

and cool ISM material. Passive scalars s2 and s3 track how much of the gas in a cell was

ever hot or cold, similarly starting from right before the first SN, so as to quantify the

amount of mixing. Lastly, passive scalar s4 tracks all SN injected gas, which similar to

s0 and s1, tracks how much cloud material was from the SN. In the following section, we

use s0, s1, and s4 to quantify the original temperatures of cloud material. Here, we will

just point out how beyond the disc and the base of the jet, s2 and s3 are close to unity

everywhere. This means that all gas not close to the injection point or part of the ISM

has at some point been cold or hot.
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COLD COOL WARM HOT

Figure 5.13: Distribution of the following gas phases: hot gas (T > 5× 105K), warm
gas (2 × 104K < T < 5 × 105K), cool gas(5 × 103K < T < 2 × 104K) and cold gas
(T < 5× 103K). Cold gas is located within the ISM while cool gas extends to clouds
that are contained in the wind, which is made up of the volume filling hot phase.
Warm gas exists mainly in interfacial mixing layers.
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5.4.4 Mass and Energy Flux Phase Distribution and Cloud En-

trainment

Finally, we can look at the fraction of the wind’s mass and energy flux carried by the

different phases. To do so, we first concretely define four phases of interest. These phases

are the hot gas (T > 5× 105K), the warm gas (2× 104K < T < 5× 105K), the cool gas

(5 × 103K < T < 2 × 104K) and the cold gas (T < 5 × 103K). Figure 5.13 shows the

general location or each of these phases. Cold gas is only located within the ISM. Cool

gas is found in the ISM and the clouds that are contained in the wind, which is made

up of the volume filling hot phase beyond the disc. Warm gas is found in the interfacial

mixing layers.

Figure 5.14 shows the temperature velocity distributions at different heights above

the disc over the time period identified in Figure 5.7, weighted by mass flux in the top

row and energy flux in the bottom row. The PDFs fM(u,w) and fE(u,w) are weighted by

mass and energy flux respectively, where u ≡ log(vout) and w ≡ log(T ) in units of km/s

and K. The PDFs fq for each quantity q is defined as 1
⟨q⟩

d2q
dudw

where ⟨q⟩ is the average

over both time and the horizontal slice, such that
∫
fq dudw = 1. We define the mass flux

to be ρvz and the energy flux to be Ezvz where Ez = ρ(1
2
v2z + eth) and eth is the specific

internal energy. The horizontal grey dashed lines demarcate the boundaries between

the phases defined above. Consistent with previous work, the hot phase dominates the

energy loading while there is significant mass loading by the cool phase (Fielding et al.

2018; Kim et al. 2020a,b). The grey dotted line shows the sound speed of the gas at each

temperature—the outflow velocity of the wind is transonic with a Mach number close

to unity. We also see that the cool material gets more entrained at increasing heights,

indicating that there is momentum transport from the hot to the cool phase, which has

been found to be driven by mixing rather than ram pressure acceleration (Melso et al.
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Figure 5.14: Temperature-velocity joint PDFs at different heights above the disc,
weighted by mass flux in the top row and energy flux in the bottom row. The horizontal
grey dashed lines demarcate the boundaries between the phases defined above. The
hot phase dominates the energy transport while there is significant mass contained
in the cool phase. The grey dotted line shows the sound speed of the gas at each
temperature—the wind is transonic with a Mach number close to unity. Cool material
gets more entrained at increasing heights.
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2019; Schneider et al. 2020; Tonnesen & Bryan 2021).

5.5 Results : Clouds

In this section we focus our attention on analysis of the clouds embedded within the

hot wind and their properties. We first discuss how we define and identify clouds, followed

by how we measure related cloud properties. We then compare these measurements

directly with the model discussed in Section 5.2. This includes size distributions and

various scaling relations associated with cloud growth rates. Finally, we explore other

interesting aspects of cloud properties relating to non-thermal support, material origins,

and wind alignment.

5.5.1 Cloud Identification

In order to map out and catalogue the properties of clouds embedded in the hot

outflowing wind, we must first define them. We identify clouds by applying a threshold

at T = 105.5K, represented by the red dashed line the upper panel of Figure 5.15. Any

gas below this threshold is thus considered ‘cloud material’. The lower center panel of

Figure 5.15 shows this cool material identified from the corresponding temperature slice.

While we use a fixed threshold, we find that cloud identification in our simulations is

generally insensitive to the exact value used.21 We can understand this physically—most

cloud gas is at a temperature ∼ T = 104K, while most of the wind is at T > 106K. Gas

at intermediate temperatures mainly exists only at the thin interfaces between these two

phases in turbulent radiative mixing layers. This can be seen visually in the temperature

21Instead of arbitrarily choosing a a threshold value, we also explored using a non parametric approach
such as Otsu’s image segmentation algorithm (Otsu 1979), which determines a threshold for separating
two classes by maximizing(minimizing) the variance between(within) them, in our case for the distribu-
tion of log(T ). This approach gives a similar value close to log(T (K)) = 5.5, but the exact value varies
with different time slices.
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slice in the lower left panel of Figure 5.15 (also see the ‘warm’ panel in Figure 5.13). It

is hence not surprising that the identification of clouds is understandably robust to the

choice of threshold provided that this threshold temperature lies in the mixing region.

The simple approach of using a fixed threshold is thus as effective as it is because of

the strong biphasic nature of the wind and the clouds. This can be seen in the upper

panel of Figure 5.15 which shows the temperature distribution in the wind at a single

time snapshot, along with the threshold value used. Using a constant threshold also

allows for more consistency over multiple time slices. We can thus define a single cloud

as a collection of cells that fall below the threshold and that are interconnected (where

connected is defined as sharing at least one corner). Except for the analysis on cloud

size distributions, where we account for clouds that intersect the periodic dimensions and

hence wrap around, we ignore clouds that are touching the borders of our simulation.

This means we naturally exclude disc material. We also only consider clouds that have

a volume greater than 16 cells. The bottom right panel of Figure 5.15 shows an example

of these clouds arbitrarily colored by their cloud identification number. We also compile

our catalog over multiple time snapshots (a total of 10 spanning 8 Myr).

5.5.2 Measuring Cloud Properties

For each identified cloud, we measure a number of properties as follows. The position

of the cloud is computed as the volume weighted centroid of cloud material. Individual

cloud properties such as velocity vcl, density ρcl, thermal and magnetic pressures Pcl and

PB,cl are volume averaged over cool (< 1.01 × 104K) gas in the cloud. Temperature is

density weighted, so that Pcl = ρclTcl. Passive scalars are also density weighted. We

define the local background environment of a cloud as any hot (> 106K) wind gas within

a cube centered on the cloud that has a length on each side equal to twice that of the
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Figure 5.15: Top panel: Histogram of gas cell temperatures from a single snapshot.
Most of the gas is in the volume filling hot wind, with a peak at T = 104K correspond-
ing to cool clouds. The red dashed line represents our threshold value for identifying
cloud material. Bottom Panel: From left to right: slices plots of temperature, cloud
material, and identified clouds.
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Figure 5.16: Bottom Panel: Meshes representing the temperature isosurface of a range
of identified clouds. The cloud in the top left is shown in greater detail in the top
panel. Top panel: Zoom-in of a a cloud surface colored by vϕ. The wind direction
relative to the cloud is denoted by a red arrow. The inset shows the surface area
weighted histogram of vϕ. vturb is the standard deviation of this distribution.
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longest axis of the tight bounding box that contains the cloud, and also require that

there are at least 16 such cells in this volume. Corresponding wind properties such as

the background wind velocity vw are averaged in the same way as cloud properties. The

turbulence in the wind vturb,w is taken to be the rms velocity in the wind frame in this

environment.

We adopt a geometric approach towards characterizing the turbulence on the surface

of a cloud, which involves measuring quantities on a temperature isosurface constructed

using the marching cubes algorithm described in Lewiner et al. (2003). This isosurface

is represented by a mesh of triangular faces. Figure 5.16 shows examples of this mesh in

the lower panel for various clouds. The cloud in the upper left is shown in greater detail

in the upper panel.

To measure the turbulence in the mixing layer on this surface, we use the method

described in Abruzzo et al. (2022b), which they demonstrate provides a measure of tur-

bulence that is comparatively robust to gradients in the laminar component of the back-

ground wind as compared to the other approaches of characterizing turbulence that they

explored (filtering methods and velocity structure functions). The outline of the method

is as follows: Consider a point on the temperature isosurface that is at the centroid of

one of the triangular faces which constitute the mesh. Working in the cloud frame, we

linearly interpolate the velocity v and the logarithmic density ρ at that point. We de-

fine a set of axes n̂, ŵ and ϕ̂, where n̂ is the inwards direction normal to the surface,

ŵ is the direction of the component of the background wind vwind in the surface plane

(ŵ ≡ vw/|vw|;vw ≡ vwind− (vwind · n̂)n̂), and ϕ̂ is the direction on the surface orthogonal

to both n̂ and ŵ, i.e., ϕ̂ ≡ n̂× ŵ. These definitions are physically motivated—the nor-

mal direction captures turbulent radiative mixing layer driven accretion, while the wind

direction captures the coherent flow of the background wind. Picking out the ϕ̂ direction

thus allows us to disentangle the turbulence from these flows. The velocity component
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is hence simply vϕ ≡ v · ϕ̂. We thus estimate vturb to be the area weighted standard

deviation of vϕ. The upper panel of Figure 5.16 shows how vϕ varies over the surface

of a cloud. The top right inset shows a surface area weighted histogram of vϕ on this

surface. As expected, the distribution is normal and centered on zero. vturb for this cloud

is simply the standard deviation of this distribution. The inflow velocity through this

surface is similarly given by vin ≡ v · n̂.

In Appendix E, we detail how we estimate cloud growth rates ṁ, comparing the

effectiveness of various methods of doing so. Ultimately, we use the net inwards mass

flux on the temperature isosurface (ṁsurface ≡
∑

surface ρvin∆A) with a scaling factor

calibrated to match the total cooling luminosity, so ṁ ∼ fscaleṁsurface. Appendix E also

presents an important caveat that these methods fail when the cloud is not actually

growing, and thus do not reflect the transition to the cloud destruction regime. Instead,

we show that we can estimate this scale from the cloud size distribution.

5.5.3 Cloud Model

Now that we have discussed how we identify clouds and measure their properties,

we are ready to make specific comparisons between these measured properties with the

components of the model as outlined in Section 5.2. We first compare the analytic

formulation for the distribution of cloud sizes with that of the simulations. We then

compare the cloud growth model with the predicted scalings for the surface area and

associated mass flux as given in equations (5.1) – (5.8).

Distribution of Cloud Sizes

We begin by looking at the distribution of cloud sizes in the wind. In Section 5.2, we

discuss how we expect a distribution of dN/dm ∝ m−2 due to turbulent fragmentation.
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Figure 5.17: Cumulative cloud volume distribution at various time slices. The top
panel is from the fiducial run, while the bottom panel is from the failed wind run.
The pink regions indicate where clouds are resolved by less than 16 cells. Grey regions
show the expected power law scaling of −1. Grey dashed lines show expected lower
(for survival) and upper bounds on cloud sizes.
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This is equivalent to a cumulative distribution that scales as N(> m) ∝ m−1. Instead

of a mass scaling, we consider instead the volume scaling dN(> V )/dV since the frag-

mentation process is not driven by a density dependent process, although the difference

made by this choice does not affect the results.

Figure 5.17 shows the cumulative size distribution of clouds at different times in the

simulation. We show these distributions for two different runs—our fiducial run and the

run with the failed wind discussed in the previous section. As a reminder, the latter has

a higher resolution of 1 pc. Pink regions indicate where clouds are resolved by less than

16 cells (and hence not included in the catalog of cloud properties). Grey regions show

the −1 power law scaling for comparison.

The upper panel shows distributions that start from when the superbubble first breaks

out from the disc. The number of clouds in the wind increases over time as the disc

continues to fragment. We note that the N(> V ) ∝ V −1 power law distribution is seen

even at early times, supporting the argument that this is a result of the disc fragmentation

process during the process of superbubble breakout. The lower panel covers a narrower

time range that corresponds to the analysis window we identified in the previous section

where the wind briefly breaks out. Here, the cumulative size distribution appears slightly

steeper and is more consistent with N(> V ) ∝ V −1.2. It is possible that this slightly

steeper slope is related to the higher resolution and presence of magnetic fields, but more

likely it is due to the brief and weak nature of the wind—these clouds show very different

growth scalings which we discuss below, and as seen in the previous section, the entire

wind quickly cools and falls back to the disc. We have checked that the these distributions

do now show any consistent trends with height in these simulations.

Both distributions exhibit a flattening at small scales somewhat above the resolution

limit, which is expected for clouds below the critical radii for sustained growth discussed

in Section 5.2. To estimate these critical radii we take a typical set of parameters for these
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winds. For example, in our fiducial simulation, these are Mwind,rel ∼ 0.4, Mturb,wind ∼ 0.5,

P3 ∼ 30 and χ ∼ 400. Figure 5.18 shows the distributions of Mwind,rel and χ along with

their means. This gives a cloud survival size of rcrit,shear ∼ 5 pc. We do the same for

the simulation with the failed wind. These nicely match the scales below which we see

the distributions flatten. The vertical grey dashed lines in Figure 5.17 show the upper

and lower bound volume estimates corresponding to rcrit,shear and the disc scale height

H ∼ 66 pc respectively. Ideally, the smallest surviving clouds should be resolved by

multiple cells to achieve first order convergence in terms of total cloud mass. With a

resolution of 2 pc and 1 pc, we resolve rcrit,shear by a factor of ∼ 2 and ∼ 4.

Cloud Surface Area

The isosurface method detailed above allows us to compare the scaling of the cloud

surface area as a function of cloud size to the model scaling in equation (5.6). We take the

cloud surface area Acl to be the area of the isosurface. We define this to be with respect

to a measurement scale of 2 pc when constructing the isosurface, since the isosurface area

varies with this choice of scale (Fielding et al. 2020). We do not expect this area to be

the same as Acloud from equation (5.6), since its magnitude in part depends on the choice

of scale and temperature of the isosurface (refer back to Section 5.2 for more discussion),

but we do expect the scaling with size to remain the same. Figure 5.19 shows a 2D

histogram of Acl and cloud radius rcl (the radius of a sphere with equivalent volume),

along with the Acl ∝ V 5/6 ∝ r
5/2
cl scaling from equation (5.6). We find that most of

the clouds agree with this scaling, except for the largest clouds which appear to have a

steeper slope closer to Acl ∝ r
11/4
cl . We discuss this further below.
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Figure 5.18: Distributions of the Mach number of the wind relative to the cloud (top)
and cloud overdensity relative to the wind (bottom). Dashed lines show population
means.
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Figure 5.19: Surface area of clouds plotted against their size. Most clouds follow a

V 5/6 or r
5/2
cl scaling denoted by the dashed orange line, although this relation appears

to steepen for a handful of the largest clouds.

222



Cloud Atlas: Navigating the Multiphase Landscape of Tempestuous Galactic Winds Chapter 5

Cloud Growth

We can also see how well the scalings in equations (5.7) and (5.9) hold up. For

reference, we expect the inflow velocity vin to scale as

vin ∝ v
3/4
turb

(
Lturb

tcool

)1/4

(5.22)

in the strong cooling regime where the mixing time Lturb/vturb is longer than the cooling

time of mixed gas tcool,mix (Tan et al. 2021). For a typical cloud, Tmix ∼ 105.5K and

P3 ∼ 30, giving tcool,mix ∼ 0.15 Myr. In the mixing layers, vturb ∼ cs,cool ∼ 15 km/s. This

suggests that we are in the strong cooling regime if Lturb > 2 pc. We discuss this in further

detail shortly, but Lturb is usually taken to be the outer scale of the turbulence, where

mixing is the most effective, hence we expect our clouds to comfortably fall within this

strong cooling regime. In fact, this criterion from Tan et al. (2021) is likely oversimplified

since the cooling curve drops off sharply above 105K—it is reasonable to expect that the

requirement of Lturb might be even smaller.

To compare cloud properties with these scalings, we define

vin ≡ ṁ/(ρwindAcl) (5.23)

following equation (5.5) but using the isosurface area and the associated mass flux through

it. Figure 5.20 demonstrates the vin scaling with, rcl, vturb, and Pw respectively. Here

we use Pw as proxy for the characteristic mixing layer cooling time tcool since it scales

inversely with Pw, and we will discuss how rcl relates to Lturb. More specifically, each

panel show the scaling of vin divided by the expected scalings of the other variables so as

to remove any cross-dependencies. Each grey point in the panels represents individual

clouds, while red crosses mark a corresponding binned scatter plot to more easily visualize
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Figure 5.20: Scalings of the inflow velocity vin with various parameters—the cloud
size, turbulent velocity, and pressure (as a proxy for the cooling time). Observed
scalings appear to match theoretical expectations.
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trends in the data (Cattaneo et al. 2019). Orange lines show the scalings we expect from

our model in Section 5.2.

The top panel of Figure 5.20 shows vin/(v
3/4
turbP

1/4
w ) plotted against rcl. In previous

work, it has been common to set the outer turbulent length scale Lturb to be either the

box size (in the case of turbulent mixing layers) or the cloud size (for cloud simulations).

In the latter, Lturb is in fact set to the initial cloud size and fixed for the rest of the

simulation, even if the cloud grows in mass and volume by over an order of magnitude or

fragments into many pieces. Here, we expect that if Lturb ∼ rcl, then we should see that

vin/(v
3/4
turbP

1/4
w ) ∝ r

1/4
cl . However we see in Figure 5.20 that there is no scaling with rcl,

save for the slight drop-off at large cloud sizes due to the steeper scaling of the surface

area there.

Despite this, we find that vin still scales with cloud size, but this is because in our

measurements, vin ∝ v
3/4
turb ∝ r

1/4
cl . Figure 5.21 shows this scaling, which is consistent

with subsonic Kolmogorov turbulence. There are two possible interpretations here. The

first is that our method of measuring vturb is sensitive to the scale of the cloud, and

that the scaling comes from measuring velocity differences at the surface on cloud scale

separations. The second, which we lean towards, is that that the turbulent length scale

here is not set independently by each individual cloud, but is instead a common scale

over all the clouds. This is motivated by the observation that all the clouds are evolving

in the same common turbulent wind, where the turbulent velocity field has been driven

on the outer scale of the entire system of clouds (∼ the disc scale height H). The idea

that Lturb is set by the outer turbulent scale and not the size of each individual cloud

is also consistent with previous work. For example, Gronke et al. (2022) use the initial

cloud size as Lturb for a turbulent box. They note that this choice becomes ambiguous in

their simulations due to mass growth and cloud fragmentation/coagulation—in principle,

at late times, Lturb approaches the driving scale of turbulence in their simulation Lbox.
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Figure 5.21: The turbulent velocity measured on the cloud surface scales with the
cloud size in a manner that is consistent with subsonic Kolmogorov turbulence.
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Abruzzo et al. (2022b) directly measure velocity structure functions around wind tunnel

clouds and also find that Lturb ∼ the initial cloud size even as their clouds grow.

The remaining panels in Figure 5.20 hence assume that there is no explicit dependence

of vin on rcl besides that from vturb. The middle panel shows the scaling of vin/P
1/4
w , which

is consistent with the expectation of scaling as v
3/4
turb. Again, there is a drop-off at higher

values of vturb, but this is similarly attributed to the higher surface area for the largest

clouds that we divide by to get vin (leading to a slope shallower by a power of −1/4 since

vturb scales with cloud size). The lowest panel of Figure 5.20 shows the scaling of vin/v
3/4
turb

with Pw, where we see the 1/4 scaling with cooling time characteristic of turbulent mixing

layer growth in the strongly cooling regime.

Finally, combining all of the above, we can put in some numbers and directly compare

to the model presented in Section 5.2 for the mass growth rate of clouds (equations (5.5),

(5.6) and (5.9)). The orange dashed line in Figure 5.22 shows our model with the typical

values in our wind: P3 ∼ 30, T ∼ 107K, Lturb ∼ H ∼ 66 pc, and rcrit,shear ∼ 5 pc. For

vturb, we use the orange dashed line from Figure 5.21, so vturb ∼ 10(rcl/10 pc)1/3 km/s.

Note there are no scaling factors here. We find that the model agrees extremely well with

the estimated mass growth rates of the clouds in the simulation. Here, it is important

to highlight some complications in the simulation data here that are not immediately

obvious. Our model predicts an overall scaling of ṁ ∝ r
11/4
cl , arising from Acloud ∝ r

5/2
cl

and vin ∝ r
1/4
cl . However, for large clouds, we have seen that the entirety of this rcl scaling

is encapsulated by the surface area scaling. The model still working well here suggests

that either the clouds are growing slower than expected given their surface area, or that

our measurement of the surface area of these largest clouds overestimates the effective

surface area. In addition, we have assumed that ρwind is independent of rcl, but we find

that there is a selection effect stemming from clouds in higher pressure environment being

found in patches of the wind which are being compressed. Since these patches are smaller
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Figure 5.22: Mass growth rates compared to the analytic model presented in Sec-
tion 5.2, which is shown by the orange dashed line, show good agreement.
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Figure 5.23: The inflow velocity here is shown to scale linearly with pressure in the
simulation run which fails to generate a strong wind.

in scale, corresponding clouds are likewise smaller. This artificially makes the slope of ṁ

in Figure 5.22 visibly shallower at small cloud sizes.

‘Growth’ in a Failed Wind

It is also interesting to see what happens when the superbubble breakout fails to

generate a strong wind. As seen in Figure 5.6, after the superbubble breaks out briefly

and vents the hot gas, the hot material quickly begins to cool and falls back to the disc.

Repeating the analysis above, we find that while the surface area to volume scaling above
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Figure 5.24: The turbulent velocity on the cloud surface scales with the relative
velocity between the cloud and the wind when shear is high, but levels off as clouds
get entrained to the sound speed of the cool gas.

still holds, vin in the cooling wind is independent of both cloud size and turbulent velocity,

suggesting that the cool clouds are not growing via the same turbulent mixing mechanism.

In Figure 5.23, we show that instead, vin scales linearly with Pw (i.e., inversely with the

cooling time), consistent with the picture above that the growth is instead directly driven

by large scale cooling and condensation of the wind.
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Dependence of Turbulent Mixing on Wind Shear

Lastly, we look at the scaling between the turbulent velocity vturb in the mixing

layer on the cloud surface with the relative shear velocity between the cloud and the

surrounding wind vrel. As discussed in Section 5.2, plane parallel turbulent mixing layer

simulations find that vturb ∝ vrel, close to linear. However, cloud crushing simulations ob-

serve that turbulence persists even when the cloud is entrained. We find results consistent

with both findings and well represented by equation (5.8). This is shown in Figure 5.24.

At high shear (high vvel), there is a strong scaling of vturb with vrel shown by the orange

dashed line, consistent with vturb ∼ frelvrel with frel ∼ 1/15. However, as vrel gets smaller,

vturb levels off at roughly the sound speed of the cool gas, shown by the teal dashed line.

This supports the picture that the KH instability is but one way of generating turbulence

in the mixing layer, and that turbulence can continue to persist and drive mixing even

when clouds become entrained in the wind.

5.5.4 Non-thermal Pressure Support

Figure 5.25 illustrates the lack of thermal pressure balance between the clouds and the

background wind and the contributions of the two main sources of non-thermal pressure

support in the clouds: magnetic pressure and turbulent pressure. The top left panel

shows a slice of thermal pressure normalized by the mean over the entire slice. The

clouds appear generally as under-pressured regions relative to their surroundings. The

top right panel shows this more clearly, where the orange dashed line shows the mean

pressure of cool gas in the orange shaded region, and the red dashed line represents

the mean pressure in the hot gas marked by the red shaded region. The strong dip in

the intermediate region where the cooling time is short indicates that the mixing layer

itself is not well resolved (Fielding et al. 2020). From left to right, the bottom row of
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Figure 5.25: Top Row: On the left, we show a slice of pressure normalized by the
mean. We see that that clouds appear generally under-pressured as compared to their
surroundings. This is shown more clearly on the right, where the orange dashed line
shows the mean pressure of cool gas in the orange shaded region, and the red dashed
line represents the mean pressure in the hot gas marked by the red shaded region.
Bottom Row: From left to right: histograms of the ratios of (i) the ratio of thermal
pressures in the cloud and the surrounding wind, (ii) the ratio of magnetic pressure
and thermal pressure in the cloud, and (iii) the ratio of turbulent pressure and thermal
pressure in the cloud.
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histograms show ratios of (i) thermal pressures in the cloud and the surrounding wind,

(ii) magnetic pressure and thermal pressure in the cloud, and (iii) turbulent pressure and

thermal pressure in the cloud. From the upper right and lower left panels, we see that just

looking at thermal pressures, clouds are under-pressured relative to their environment by

a factor of 2. Magnetic pressure support is not large enough to make up the different, with

the magnetic plasma beta only being ∼ 4. This is despite having β ∼ 1 in the ISM prior

to the onset of the SN driven wind. Instead, the missing pressure support is provided by

turbulent pressure, which we define as ρcl⟨v2⟩cl. The turbulent pressure is roughly equal

too the thermal pressure (which is equivalent to having a turbulent velocity equal to the

sound speed of the cool gas). Hence, pressure support in the cloud is provided mostly in

equal parts by thermal and turbulent pressure support, with a minor contribution from

magnetic pressure. Taken together the total pressure of the clouds is, on average, equal

to the hot wind pressure.

5.5.5 Cloud Origins: Passive Scalars

The passive scalars we have employed reveal some interesting points about the origins

of these clouds. Figure 5.26 shows a histograms of concentrations of passive scalars in

our clouds which track the amount of cloud material that was originally (right before the

first SN) cold ISM gas, cool ISM gas, or mass injected by SN events. We find that most

of the cloud is comprised of gas that was originally part of the cool ISM, supporting

the fragmentation origin of the cloud, with a small fraction originating from the cold

ISM gas. It should also be noted that in both cases, this gas likely mixed and cooled

to different temperatures, either in the wind or cloud, as evidenced by the other passive

scalars in Section 5.4 which showed that almost all gas had at some point been either

cold or hot.
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Figure 5.26: Histogram showing that most clouds are comprised of gas that was
originally part of the cool ISM pre-SN, with a small amount from the cold ISM. The
contribution from SN injected mass is negligible.
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Figure 5.27: The angular separation between cloud and wind velocities is well de-
scribed by an exponential distribution with a scale angle of ∼ 25◦.

5.5.6 Cloud-Wind Alignment

Idealized setups involving clouds accelerated in a laminar wind or infalling under

gravity often show an initial spherical cloud developing a pronounced head-tail structure,

a morphological prediction that observations have widely been compared to (e.g., Putman

et al. 2012). Clouds being accelerated in a highly turbulent wind exhibit far more complex

structures, with the turbulence generating ‘tails’ that result in a rich diversity in cloud

morphologies, as can be seen in the lower panel of Figure 5.16, where all clouds are

pictured with the bulk flow in the upwards direction. Only a minority show similarities
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to classic head tail structures. In general, the head-tail paradigm serves only as a first

order indicator of the direction of bulk velocities. We can quantify the alignment between

clouds and a turbulent wind by looking at the angular separation between cloud and local

wind velocities. This is shown in Figure 5.27, where we find that this angular separation

follows an approximately exponential distribution with a scale angle of ∼ 25◦. While

most clouds are well-aligned with the wind, a handful are significantly misaligned. This

is consistent with observations of clouds in the Fermi Bubbles (Di Teodoro et al. 2020

for example look at two aligned clouds, but to our knowledge there have not been any

studies of the misaligned ones).

5.6 Discussion

5.6.1 Connection to Small Scale Simulations

It is exciting that the physical insights and analytic scalings derived from small scale

idealized simulations translate well to larger scales. This was first demonstrated in Tan

et al. (2023) for individual infalling clouds, and now for a population of clouds in turbulent

magnetized outflows in this work. In particular, these models build from the ground up

upon the back of work on the physics of interfacial turbulent radiative mixing layers (e.g.,

Ji et al. 2019; Fielding et al. 2020; Tan et al. 2021), minimizing the need for empirical

tuning of parameterized models. This success is promising for the future use of physically

informed subgrid models in larger scale simulations. Nonetheless, some nebulous points

remain—we briefly discuss issues of cloud survival/destruction and magnetic fields here,

and limitations and caveats in a later part of this section.

In systems where the density contrast χ is high (≥ 103), there is still remaining un-

certainty around the cloud survival criterion. In this work, we have presented a criterion
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based on the idea that the characteristic cooling time of the mixing layers must be signifi-

cantly shorter than the shear timescale that is motivated by and consistent with results of

wind tunnel simulations at high χ (Abruzzo et al. 2022a). This criterion predicts clouds

must be larger than the Gronke et al. (2022) criteria by a factor of
√
χ in order to grow,

and is consistent with phenomenological criteria (e.g., Sparre et al. 2020; Li et al. 2020).

However, there remains further investigation required to pin down the relevant physical

processes that determine cloud survival in high χ environments like multiphase outflows.

We do not investigate cloud mass loss rates in this work. The methods we use

to estimate cloud growth rates break down for clouds that are getting destroyed (see

Appendix E). Incorporating cloud destruction rates into this model would improve the

coupling between the phases, and is especially important in parameter regimes where

clouds are not expected to grow. Similarly, this also requires more work on the small

scale simulation side.

A final point on the topic of cloud survival, while not directly relevant to this work but

important to keep in mind, is that Farber & Gronke (2022) show that the story is more

complicated when Tcloud < 104K. This is mainly due to the shape of the cooling curve,

which Abruzzo et al. (2022a) also showed plays an important role. However, the survival

criteria they find is equivalent to the Gronke & Oh (2018) criterion when Tcloud ≳ 104K

as it is in our simulations.

What about magnetic fields? This perennial question has been the subject of many

wind tunnel simulations of cool clouds (e.g., Gregori et al. 1999; McCourt et al. 2015;

Grønnow et al. 2018; Hidalgo-Pineda et al. 2023). Despite that, their effect remains un-

clear. For example, Gregori et al. (1999) find that destruction can be enhanced by more

rapid acceleration while McCourt et al. (2015) find that they aid survival via magnetic

draping inhibiting shear instabilities (see also Banda-Barragán et al. 2018; Ji et al. 2019;

Grønnow et al. 2022). Sparre et al. (2020) find some enhancement in cloud survival for
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β ∼ 10, while Li et al. (2020) find no effect for β ∼ 106. Hidalgo-Pineda et al. (2023)

find that for small β (∼ 1), much smaller clouds are able to survive. However, β is

large in our winds and only significant in the disc—we hence conclude that it is unlikely

that magnetic fields play a significant role in influencing cloud acceleration or survival

in multiphase outflows. Magnetic fields don’t seem to inhibit mass growth rates either

(Gronke & Oh 2020a; Hidalgo-Pineda et al. 2023), although morphologically clouds are

reported to have very different filamentary structures as compared to their hydrodynam-

ical counterparts (e.g., Tonnesen & Stone 2014; Gronke & Oh 2020a; Jung et al. 2023).

Our model does not include magnetic fields, supporting their lack of impact on growth

rates. Understanding why this is so is an interesting avenue for future work. While we

do not compare to a hydrodynamical run without magnetic fields, we do not observe

clear filamentary structures—which we attribute to a combination of a weakly magne-

tized wind and turbulence. In general, turbulence in the wind is the main generator of

complex morphologies seen in the clouds.

5.6.2 Implications for Galaxy/Cosmological Scale Simulations

Having demonstrated that much of the insight garnered from small-scale simulations

translates to more realistic larger-scale systems we can now address how these processes fit

into the overall landscape of galaxy formation and global-scale simulations. The impact

of capturing these multi-scale multiphase effects has been seen in isolated galactic scale

simulations with self-consistently generated multiphase winds, which find that properties

of the hot wind including temperature, density, and pressure fall off slower than expected

with distance, and also travel slower than single-phase adiabatic winds (Fielding et al.

2017b; Schneider et al. 2020). These effects are consistent with expectations of mass,

momentum and energy exchange between cool clouds and the surrounding wind (Fielding
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& Bryan 2022). The total cool gas mass flux in Schneider et al. (2020) decreases with

distance, suggesting that the cool gas is being destroyed and mass loading the hot phase,

even for largest clouds. This may be understood by applying the rcrit,shear criterion for

cloud growth as opposed to rcrit,cc. In addition, they find that cool clouds are under-

pressurized by up to a factor of 10. While we find that turbulent pressure support is

significant, this cannot fully account for the large factor. Given that we also find that

regions of phase space where the cooling time is shortest are the most underpressurized,

this can likely be attributed to lower resolutions (Fielding et al. 2020). Additional detailed

studies of multiphase winds at even higher resolutions (or with conditions in which it is

easier to resolve rcrit,shear) will be helpful in shedding further light on how the multiphase

interactions shape the overall evolution of the winds.

Recent large cosmological simulations also exhibit galactic winds with self-consistently

generated cool phases. While most have insufficient resolution to resolve any clouds,

certain zoom-in and high resolution simulations can do so, albeit marginally. For example,

multiphase galactic winds are seen in TNG50 (Nelson et al. 2019) and FIRE-2 (Pandya

et al. 2021). The latter characterized the multiphase nature of the outflow by analyzing

the contribution to fluxes from each phase and found results broadly consistent with our

findings and past tall-box ISM patch simulations (e.g., Fielding et al. 2018; Kim et al.

2020a).

Correctly capturing the multiphase nature of galactic winds is not only essentially for

accurately modeling the winds themselves, but as recent work has shown, may also be

essential for capturing the correct regulation of star formation and thus galaxy evolution.

When winds are able to separate into multiple phases, the hot phase, which has very high

specific energy, heats and stirs the CGM, which prevents new star forming material from

entering the galaxy (Fielding et al. 2017a), and the cold phase ejects material directly out

of the ISM. Standard galactic feedback models cannot capture the high specific energy
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phase in particular and as a result may be missing important regulation mechanisms, as

was recently shown using regulator and semi-analytic models (Carr et al. 2022; Pandya

et al. 2022), as well as isolated galaxy simulations (Smith et al. 2023). It is uncertain if

cosmological simulations will ever achieve the resolutions necessary to properly capture

the physical scales relevant to multiphase wind launching and dynamics. In which case,

simulations and models such as those presented in this work are important in being able

to bridge the gap towards achieving the capability to include realistic multiphase outflows

using subgrid techniques.

5.6.3 Implications for Observations

A key missing piece in our understanding of galaxy evolution is the amount of mass

and energy carried by winds from the ISM into the CGM and beyond. Most observations

of galactic winds come from probes that are sensitive to cool gas with T ∼ 104K (e.g.,

Heckman et al. 1990; Martin 1999; Rubin et al. 2014), although in some rare nearby cases

the hot phase is observable in X-ray (e.g., Lopez et al. 2020, 2023). Translating from

observed quantities to an inferred mass flux is a difficult and uncertain process, however in

almost all cases the inferred mass flux is orders of magnitude smaller than what standard

theoretical models predict (e.g., McQuinn et al. 2019; Concas et al. 2022). Resolving

this profound conflict between theory and observations requires a better treatment and

understanding of multiphase outflows on both sides. Here, we have shown that the nature

of feedback is likely to be dramatically different from standard single-phase galactic

feedback models, which in part helps to relieve this tension. We can, however, also use this

multiphase wind picture to help refine our understanding and modeling of observations.

In order to make the most of galactic wind observations, particularly new and planned

spatially resolved emission observations (e.g., Reichardt Chu et al. 2022), new observa-
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tional modeling paradigms that take the multiphase nature of galactic winds into account

are required. In particular, our finding is that the vast majority of the readily observable

cool gas is in the form of clouds with a fairly well-understood size distribution and a

relatively small volume-filling fraction. Furthermore, because we have shown the prop-

erties of these cool clouds are closely coupled to the energy containing hot phase, with

the two phases shaping each other’s properties, future multiphase models may be able to

constrain not only the mass flux (cool phase) but also the energy flux (hot phase).

Our findings also provide insight into the nature of the CGM. Observations in the

CGM suggest that the cool phase is not in pressure equilibrium with the hot phase

(Werk et al. 2014). One way of accounting for this discrepancy is the addition of non-

thermal components. As previously discussed, our results suggest that turbulence within

clouds is a significant contributor to pressure support, while magnetic fields are a minor

actor, although other candidates such as cosmic rays may also provide further cold phase

pressure support (Butsky et al. 2020).

5.6.4 Further Considerations

Despite modelling and simulating a more realistic turbulent magnetized multiphase

system, we ultimately still make simplifying assumptions. The following are some such

limitations and caveats, many of which are each interesting enough in their own right to

warrant exploration in future work.

Additional Physics

The most obvious and direct of these is the inclusion of additional underlying physics

which were not incorporated into this work, but could possibly affect such systems, such

as significantly modifying the dynamics or thermodynamics of the outflow. Detailed

241



Cloud Atlas: Navigating the Multiphase Landscape of Tempestuous Galactic Winds Chapter 5

treatments and investigations of these processes are thus needed to accurately access their

impact and importance, in order that they can be properly accounted for when modelling

the behavior of multiphase winds. One such source of uncertainty that could potentially

have a large impact is cosmic rays, which have been found to modify the behavior of

multiphase winds (Huang et al. 2022; Armillotta et al. 2022). They can provide an

additional source of non-thermal pressure support and affect cooling (Butsky et al. 2020),

or accelerate clouds directly (Wiener et al. 2019). Explicit viscosity (e.g., Li et al. 2020;

Jennings & Li 2021) and thermal conduction (e.g., Brüggen & Scannapieco 2016; Li et al.

2020) have also not been included here (although we expect that in turbulent mixing

layers, mixing is generally dominated by turbulent diffusion (Tan et al. 2021), explicit

conduction can affect observables (Tan & Oh 2021)). The inclusion of non-equilibrium

cooling as well as more sophisticated non-equilibrium chemical evolution models could

potentially be important, especially for predictions of observables such as ion column

densities (Sarkar et al. 2022). We assume solar metallicity and abundances everywhere.

This is clearly an oversimplification. When metallicities of clouds and their environment

differ, the mixing can have significant implications for observables (Gritton et al. 2014;

Heitsch et al. 2022). Dust survival or depletion in these systems is also important to

understand, in particular at lower temperatures (Farber & Gronke 2022). Closely tied

to this is self-shielding. While we assume that the whole box is optically thin, leading

to clouds with T ∼ 104K, more massive clouds with NHI > 1017 cm−2 are likely able to

self-shield and hence posses cold cores (Farber & Gronke 2022). In fact, molecular gas

is observed both in the Milky Way (Di Teodoro et al. 2020; Noon et al. 2023) and other

systems such as M82 (Walter et al. 2002).
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Geometry

Besides being limited in terms of spatial extent, the nature of our setup lacks the

correct geometry to track the outflowing wind further into the halo. While wind proper-

ties are often converged with resolution, local box simulations like this are limited by the

Cartesian geometry of the setup which restrict the reliability of quantitative predictions

of wind properties, which are often not converged with respect to box height instead.

In particular, such a geometry which lacks the inverse squared distance scaling does not

allow the adiabatic expansion and corresponding subsonic to supersonic transition of

steady state winds that are a hallmark of predictions from analytic galactic wind models

like Chevalier & Clegg (1985) (Martizzi et al. 2016; Fielding et al. 2017b). This in part

motivated our focus on a cloud-centric analysis, rather than an extended look at asso-

ciated wind properties such as mass and energy loading that are typically done in such

setups.

5.6.5 Looking Forward

A natural next step is to apply and test cloud models further downstream in the

wind. Analytic models of cloud growth/destruction as they are carried out in the wind

such as the framework outlined in Fielding & Bryan (2022) can easily be extended and

applied to populations of clouds in the manner we have done here. While we have

determined a physically motivated initial distribution, validating the time evolution of

such a distribution coupled to an expanding wind is the natural next step (Anthony Chow

et al., in prep). Additionally, the scope of the simulations can be expanded by exploring

the effects of the different mechanisms listed above (such as cosmic rays) on the outflow.

This will provide us with a more comprehensive understanding of the physical processes

that drive multiphase galactic winds. Finally, understanding the impact of varying the
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properties of the galactic environment, such as gas surface density and metallicity, on the

outflow will allow us to test the robustness of our results and determine the degree to

which they are dependent on specific initial assumptions. In the long term, such models

can inform subgrid approaches to modelling unresolved multiphase outflows in large scale

galactic and cosmological simulations, allowing us to study the macro impacts on galaxy

formation and evolution.

5.7 Conclusions

At the frontier of the field of galaxy formation and evolution lies the challenge to un-

derstand the multiphase nature of the environment and its implications. Galactic winds

are a key component of these complex ecosystems and can be driven by stellar feedback

channels. Observations reveal them to be common and also multiphase in structure.

Theoretical modeling and simulations of galactic winds have become increasingly so-

phisticated, aiming to reproduce and understand these outflows. In this work, we have

built on turbulent radiative mixing layer theory and applied this to understanding and

modelling the formation of multiphase outflows. We have run 3D MHD tall box patch

simulations with a clustered SN driven wind outflow, with a focus on analyzing and

modelling the properties of the resulting seeded cloud population. The main findings are

summarized as follows:

• Seeded by Fragmentation: During the breakout phase, the hot expanding bubble

propagates through a multiphase ISM. The multiphase nature of the ISM tends to

lead to asymmetric breakouts, and causes the outflows to fluctuate in power and

direction. More importantly, it also leads to the fragmentation of the ISM during

the breakout, which seeds the resulting hot outflowing wind with a population of

cool clouds. Consistent with this formation history, we find that clouds are mostly
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comprised of gas that was originally part of the cool (T ∼ 104K) ISM, rather than

from cold (T ≲ 102K) or hot material (T ≳ 106K).

• Turbulent Clouds & Winds: The uneven breakout and the presence of these clouds

induces large scale turbulence in the wind. The clouds gradually get entrained via

mixing induced accretion of momentum. The turbulent mach number in the hot

phase of the wind is ∼ 0.3, and magnetic pressure is extremely weak, meaning

thermal pressure is dominant. However, clouds have turbulent mach numbers ∼ 1

internally and at their surfaces where mixing occurs.

• Clouds Exhibit Complex Morphologies: This turbulent environment naturally leads

to complex cloud morphologies that do not always conform to the head-tail descrip-

tion. In some cases, clouds can appear to be extremely misaligned with the bulk

flow.

• Cloud Size Distribution: Cloud sizes are well described by a power law distribution

of dN/dm ∝ −2. While this has been observed in previous works, we find that this

scaling seems to hold even with the inclusion of magnetic fields in the ISM. The

lower and upper scale cutoffs are consistent with estimates of the cloud survival

radius and the scale height of the disc, respectively. We find that this scaling

appears early on during the SN breakout stage—consistent with the source of clouds

being the process of fragmentation of the ISM.

• Cloud Survival: The critical radius below which clouds can survive in a turbulent

wind are consistent with rcrit,shear which is given by equation (5.4). This criterion is

motivated by a combination of turbulent box simulations from Gronke et al. (2022)

and cloud simulations with high χ in Abruzzo et al. (2022b), who proposed that

the survival criteria is set by tcool,mix < tshear.
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• Cloud Growth: By combining analytic models for the surface area to volume rela-

tionship of clouds (Acl ∝ V 5/6) and mixing layer theory for the mass inflow velocity

vin, we can model the growth rate of clouds. We find that the model predictions are

a good match to what we observe in the simulations, including predicted scalings

and estimated ṁ.

• Role of Wind Shear: At high relative shear velocities between clouds and the sur-

rounding wind, there is a strong relationship between the shear and the turbulent

velocities which drive mixing and hence growth. However, as clouds get entrained,

the turbulence becomes independent of the shear and is roughly the sound speed

of the cool gas. The KHI is thus not the sole driver of turbulent mixing.

• Non-Thermal Pressure Support: Because turbulent velocities within these clouds

are high (roughly the sound speed within the cloud), turbulent pressure provides as

much support as thermal pressure. Surprisingly, even though the initial ISM had

plasma beta ∼ 1, clouds are much more weakly magnetized, likely due to significant

mixing with the hot high beta wind. These sources of non-thermal pressure support

bring the clouds into total pressure equilibrium with their surroundings, despite

having a factor of 2 lower thermal pressure.

In summary, we have shown that many of the physical insights and analytic scalings

from idealized small scale simulations translate well to larger scale, more realistic turbu-

lent magnetized winds. The multiphase component of these winds (a population of cool

embedded clouds) can hence be well modelled, allowing for physics informed subgrid

prescriptions which account for unresolved coupling between the various phases to be

utilized in galactic and cosmological simulations where resolution limits are prohibitive.

While refinements are required (e.g., the survival of molecular gas), moving forward,

proper treatment of the small scales in this manner promises to pave the way towards
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tackling burning questions that remain regarding the role of feedback in galaxy formation

and evolution.
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Chapter 6

Summary and Conclusions

The most important step a man can take.

It’s not the first one, is it? It’s the next one.

Always the next step, Dalinar.

Brandon Sanderson, Oathbringer

In broad strokes, the research presented in this dissertation has explored the physics

of the multiphase environments in and around galaxies. This encompasses the galaxies

themselves, the vast reservoir of material that surrounds them (known as the circum-

galactic medium (CGM)), and the flows that connect the two. These flows govern galaxy

growth and evolution by coupling the galaxies and their CGM. Outflows transport ma-

terial away from the galaxy, while inflows set the fuel budget for future star formation.

They hence comprise much of the machinery by which galaxies self-regulate.

A large focus of our work has been studying how the multiphase nature of these

systems, which observations have steadily uncovered, shape them. Despite being ubiq-

uitous, many uncertainties remain due to their surprisingly rich complexity. Combining

analytic theory with numerical simulations, we delved into their inner workings so as to
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SCALE

SURFACE CLOUD WIND

Figure 6.1: Snapshots from our simulations showing the hierarchy of scales in this summary.

understand and model them. We adopted a systematic approach, starting at the smallest

scales in the problem with a deep dive into the interfaces between phases and how they

determine bulk evolution. We then explored the connection between these mixing layers

and observables. Applying these results to larger scales, we looked at cold clouds moving

through hot backgrounds, both infalling under gravity and in turbulent outflowing winds.

Figure 6.1 depicts this laddering of scales in our simulations.

When first reviewing the literature on multiphase systems, we identified two impor-

tant areas that had not yet been addressed. Firstly, there was a lack of consensus on the

scalings of hot gas entrainment, stemming from a lack of understanding of the underly-
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ing physics at play. Secondly, cooling in the simulations was taking place in unresolved

interfaces. These interfaces were often only resolved by a single cell! Yet surprisingly,

simulations appeared to be remarkably robust to resolution.

We hence ran high resolution 1D and 3D Athena++ simulations zooming in on these

interfaces, known as radiative turbulent mixing layers (RTMLs). These layers arise wher-

ever multiphase gas, turbulence, and radiative cooling are present. In steady state, ther-

mal advection from the hot phase balances radiative cooling. We found that over-cooling

only happens if numerical diffusion dominates thermal transport, which in turn is set by

turbulent mixing; convergence is still possible even when the Field length (the lengthscale

on which conduction and cooling balance) is unresolved, explaining why simulations were

not sensitive to resolution. We showed that by exploiting parallels between mixing layers

and turbulent combustion, which has well-developed theory and abundant experimental

data, a deeper physical understanding of these fronts can be obtained. The key parameter

in these mixing layers is the the ratio of the outer eddy turnover time to the cooling time.

When the cooling time is shorter, the front fragments into a multiphase medium. Just as

for scalar mixing, the eddy turnover time sets the mixing rate, independent of small scale

diffusion. This is akin to stirring milk into your coffee, where the size and speed of the

stirring sets the mixing rate, rather than the molecular diffusion rate. For this reason,

thermal conduction often has limited impact on the net cooling in these interfaces. We

also showed that the entrainment rate and the effective emissivity can be understood in

detail by adapting combustion theory scalings. Mean density and temperature profiles

can also be reproduced remarkably well by mixing length theory.

These results have implications for the structure and survival of cold gas in many

settings and the resolution requirements for large scale galaxy simulations. This is a

concern as cosmological simulation are currently unconverged in cold gas properties.

Ultimately, the physics of these mixing layers set the mass and momentum transfer
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between the hot and the cold phase and thus impact not only the morphology of the

multiphase medium but also determine the fuel supply for future star-formation. Our

results indicate it is sufficient in the presence of turbulence to resolve just the driving

scales, hence relaxing resolution requirements significantly.

Although we showed that global mass, momentum and energy transfer between phases

mediated by RTMLs does not require extremely high resolutions or proper treatment of

thermal conduction for convergence, one issue remained with low resolution. To return to

the coffee analogy, even though molecular diffusion is not important in setting the overall

mixing rate, it is still the actual physical process responsible for mixing itself. This slow

molecular diffusion rate is compensated for by the large increase in interface surface

area during the stirring process. Similarly, for RTMLs, while hot gas entrainment rate

may not be sensitive to resolution, the actual interface structure is. This has important

bearings when computing observables such as line absorption and emission from these

simulations. Since RTMLs are are ubiquitous in multiphase gas, they can potentially

explain observations of ions such as OVI, which have significant observed column densities

despite short cooling times. It is hence important to get this right in order to be able to

test our models with observational data.

We have shown that properties such as temperature distributions, column densities

and line ratios in simulations are sensitive to resolution and thermal conduction. This

is because they probe the interface structure of the mixing layer. We hence develop a

prescription for applying a simple 1D conductive-cooling front model which quantitatively

reproduces 3D hydrodynamic simulation results for column densities and line ratios, even

when the RTML has a complex fractal structure. This enables subgrid absorption and

emission line predictions in large scale simulations. The predicted line ratios are in good

agreement with observations, while observed column densities require numerous mixing

layers to be pierced along a line of sight.
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After laying the groundwork for understanding and modelling RTMLs, we looked

towards applying them to larger scale systems. While there has been a plethora of work

on ‘wind tunnel’ simulations that study cold gas clouds in winds, the infall of this gas

under gravity is at least equally important, and fundamentally different since cold gas

can never entrain. Instead, velocity shear increases and remains unrelenting. We found

that there was a lack of work on the infalling case, despite the survival, growth and

dynamics of cold gas feeding the galaxy being fundamental to galaxy formation.

Hence, we looked at cold clouds falling through a hot background under gravity, both

in constant and stratified environments. We found that if these clouds are growing,

they can experience a drag force due to the accretion of low momentum gas, which

dominates over ram pressure drag. This leads to sub-virial terminal velocities, in line

with observations. We developed simple analytic theory and predictions that built upon

our earlier work. Importantly, we found that the survival criterion for infalling gas is

more stringent than in a wind, requiring that clouds actually grow faster than they

are destroyed (whereas in winds only the cooling time of the mixed gas needs to be

shorter than the destruction time). Additionally, in stratified environments, larger clouds

need only survive infall long enough until cooling becomes effective. We applied these

conclusions to realistic environments such as high velocity clouds in the MW and filaments

in clusters.

Lastly, wind tunnel simulations have been used to derive models for cloud survival

and growth, which in turn have been used to construct subgrid prescriptions for clouds

in galactic winds. However, current simulation work are highly simplified and assume

that (i) the cloud is a simple spherical cow, and that (ii) the hot gas wind properties

are laminar and time-constant. Hence, we looked at how well these models hold up in

realistic turbulent winds that are driven from the galaxy by clustered supernovae and

that evolve dynamically. Fragmentation of the interstellar medium during superbubble
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breakout seeds the resulting hot outflow with a population of cool clouds. We analyzed

and modelled the origin and properties of these clouds. We found that cloud sizes are well

described by a power law distribution and mass growth rates can be well modelled using

turbulent radiative mixing layer theory. Turbulence provides significant pressure support

in the clouds, while magnetic fields only play a minor role. We concluded that many of

the physical insights and analytic scalings derived from idealized small scale simulations

translate well to larger scale, more realistic turbulent magnetized winds, thus paving a

path towards their necessary yet challenging inclusion in global-scale galaxy models.

Recent work has shown that capturing the appropriate scales and boundary conditions

is critical in studying multiphase systems. While much of this work has been in the area

of galactic winds, outflows are but one step in the cycling of baryons, and similar studies

for the CGM and infalling clouds, and in general more realistic environments, are still

lacking. As evidenced by our work, multiphase systems are notoriously difficult to study

because they introduce new, much smaller scales that can significantly impact large scale

behavior. For instance, the interactions at the interfaces between phases can alter bulk

flow and phase properties. If we do not strive to understand the small scales, we will never

get the large scales right. In short, the multiphysics, multiscale and multiphase nature

of the environments around cold clouds render their exploration incredibly challenging.

This remains a rich area for future work.
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Appendix A

Code Verification Test: 1D Diffusion

Couple

We test the conduction module by considering the interface between two regions of dif-

ferent temperatures that is initially represented by a step function located at x = x0

when t = 0. The left side is at temperature T1, and the right side is at T2. The analytical

solution is then given by:

T (x, t) = T0 +
∆T

2
erf(

x− x0

2
√
αt

), (A.1)

where T0 is the mean of T1 and T2, and ∆T = T2−T1. This solution assumes that density

is fixed, so we turn off the hydrodynamics updates to the density field and velocity fields,

and only let the energy of the simulation cells evolve.

We choose the set of parameters listed in Table A.1, and ensure that the chosen value

Resolution T1 T2 x0 γ ρ κ Vm

512 100 500 40 5/3 0.75 1.5 10

Table A.1: Parameters used for the thermal conduction test.
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Figure A.1: Results of the implementation test for thermal conduction. The data
points from simulation at various times are shown to match the analytic solution,
given by the solid lines.
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of Vm is sufficiently high for a well converged solution. The results are shown in Fig. A.1,

which show that the simulation data is a good match to the analytical solution. The

code is also verified for a case where the density is not held constant in the resolution

tests for 1D thermal fronts described in §2.3, where the integrated cooling over a steady

thermal front is shown to converge to the expected analytical result.
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Hydrostatic Equilibrium Test

Figure B.1 is a simple test of the setup in hydrostatic equilibrium for two boxes at

different low resolutions (below fiducial). The box is at T = 104K throughout and a

mid-plane density of 10 cm−3. There is a density floor at 10−6 cm−3. In both cases, the

error over time is smaller, and smaller for the higher resolution box. These tests are

simple sanity checks of the initial conditions. In practice, outflowing gas quickly becomes

the dominant effect.
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Figure B.1: A test of the initial hydrostatic profile for two low resolution boxes.
We initialize 3D boxes with the analytical profiles at T = 104K and see how well
hydrostatic equilibrium is maintained. The error gets smaller at higher resolutions
and is negligible. There is a density floor at 10−6 cm−3.
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Constrained Turbulence Test

For our implementation of turbulence, we add a turbulent scale height constrain zturb.

This is done by applying a Gaussian weight exp{(−z/zturb)
2} to the velocity perturba-

tions in the turbulent driver. We test our implementation of zturb by injecting decaying

turbulence with some scale height into a uniform periodic box, as shown in Fig. C.1. The

orange dashed line marks the expected kinetic energy as a function of height in the box

at the time of injection centered at zero (in practise due to zeroing the total momen-

tum, this has some shift), while the blue and red lines show early and late time values

from he simulation. At late times, there is some decay in kinetic energy since we do not

continuously drive, and the turbulence is uniform through the box as expected.
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Figure C.1: A test of constrained turbulence. The turbulence is injected at the start
of the simulation into a uniform box with periodic boundary condition. The orange
dashed line marks the expected kinetic energy as a function of height in the box at
the time of injection, while the blue and red lines show early and late time values from
the simulation.
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Extended Townsend Algorithm

Exact Integration Scheme

We first review the original Townsend algorithm (Townsend 2009). This is an algo-

rithm for computing the change in temperature due to isochoric radiative cooling over

some given time interval. It is based on an exact solution by noting that if one knows the

cooling function, one can in principle simply integrate this function over the given time

interval. The algorithm is as follows. We want to solve the following cooling equation:

dT

dt
= −(γ − 1)ρµ

kBµeµH

Λ(T ) (D.1)

We can define the dimensionless Temporal Evolution Function (TEF) as follows:

Y (T ) ≡ Λ(Tref)

Tref

∫ Tref

T

dT

Λ(T )
(D.2)

In principle, this only requires that 1/Λ(T ) be analytically integrable. This is basically a

normalized measure of the time taken to cool/heat from Tref to T . We can then integrate
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the cooling equation over a timestep such that the integrated cooling function becomes:

Tref

T n

Λ(Tn)

Λ(T ref)

[
Y (T n − Y (T n+1)

]
= − ∆t

tcool
(D.3)

where tcool is the single point cooling time defined as

tcool =
kBµeµHT

(γ − 1)ρµΛ(T )
(D.4)

and hence we can update the temperature as

T n+1 = Y −1

[
Y (T n) +

Tn

T ref

Λ(Tref)

Λ(T n)

∆t

tcool

]
(D.5)

In practice, this is done in 3 steps - computing the TEF, evolving it over the required

timestep, and then transforming back to the new updated temperature. In the next

section, we compute the TEF for the two most useful cases, piecewise power laws and

piecewise linear functions.

Temporal Evolution Functions

Piecewise Power Laws

Physically realistic cooling function often come in the form of piecewise power laws

that have been fitted to more complicated underlying models. The construction of the

TEF and its inverse for piecewise power laws is given in the appendix of Townsend (2009),

which are as follows. We assume the following functional form:

Λ(T ) = Λk

(
T

Tk

)αk

(D.6)
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for some temperature bin Tk ≤ T ≤ Tk+1. The TEF is then

Y (T ) = Yk +


1

1−αk

Λref

Λk

Tk

Tref

[
1− Tk

T

αk−1
]

αk ̸= 1

Λref

Λk

Tk

Tref
ln
(
Tk

T

)
αk = 1

(D.7)

The constraint that Y (T ) is continuous leads to the recurrence relation

Yk = Yk+1 −


1

1−αk

Λref

Λk

Tk

Tref

[
1− Tk

Tk+1

αk−1
]

αk ̸= 1

Λref

Λk

Tk

Tref
ln
(

Tk

Tk+1

)
αk = 1

(D.8)

with Yref = Y (Tref) = 0. For cooling(heating), Tref is any temperature higher(lower) than

the current temperature and we construct the TEF for decreasing(increasing) tempera-

tures. Hence for heating, we express the above recurrence relation as Yk+1 = Yk + . . . ,

starting from Tref < T . The inverse TEF is thus

Y −1(Y ) =


Tk

[
1− (1− αk)

Λk

Λref

Tref

Tk
(Y − Yk)

]1/(1−αk)

αk ̸= 1

Tk exp
[
− Λk

Λref

Tref

Tk
(Y − Yk)

]
αk = 1

(D.9)

Piecewise Linear Function

We can likewise compute the TEF and its inverse for piecewise linear functions of the

form

Λ(T ) = Λk + α(T − Tk), α =
Λk+1 − Λk

Tk+1 − Tk

(D.10)
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where α is the slope in the temperature bin Tk ≤ T ≤ Tk+1. The TEF is then:

Y (T ) =


Yk +

Λref

Tref

1
α
log
(

Λk

Λk+α(T−Tk)

)
α ̸= 0

Yk +
Λref

Tref

Tk−T
Λk

α = 0

(D.11)

and and its inverse is:

Y −1(Y ) =


Tk +

Λk

α

((
exp

[
αTref

Λref
(Y − Yk)

])−1

− 1

)
α ̸= 0

Tk +
Tref

Λref
ΛkY − Yk α = 0

(D.12)

The Extended Algorithm

The main benefit of the Townsend Algorithm is naturally that it is based on an

exact solution and hence not sensitive to errors associated with temporal resolution.

This makes it the best choice when using a simple treatment of cooling/heating that is

only a function of temperature and does not have a functional dependence on quantities

such as ionic abundances. One caveat is that thermal and hydrodynamical evolution

are decoupled over the course of a single timestep. It is still recommended to include a

further constraint on the timestep past the CFL condition that addresses this issue (for

example requiring that the timestep be below some fraction of the cooling time).

In Townsend (2009), the algorithm was only outlined for cooling. Including heating

is non-trivial because heating scales differently with density compared to cooling. This

means that the net cooling/heating function becomes density dependent, which means

that we can no longer optimize by pre-computing all TEFs. Another challenge is the

behavior of power laws near equilibrium points. As far as we know, the only attempt to

include heating and tackle this problem is in Zhu et al. (2017). In their implementation,

they assume piecewise linear functions and only one equilibrium point. We generalize

264



Extended Townsend Algorithm Chapter D

this further to generally work with piecewise power laws, as most cooling functions are

represented as such, and an arbitrary number of equilibrium points.

When calculating the net cooling/heating at a given density, we assume that the re-

sulting table itself represents a piecewise power law, instead of being a linear combination

of two piecewise power laws. The exception is that for bins that have a zero crossing,

we assume they are piecewise linear functions. One advantage of the piecewise functions

above is that we can use linear functions only for bins with equilibrium temperatures to

interpolate smoothly across the bin, where a power law formulation breaks down. This is

fine as long as we dot our i’s and cross our t’s when computing the TEF and its inverse.

Note that by construction, the TEF for any point with net zero cooling/heating will have

an infinite TEF. Hence in practise one should set the cooling/heating to some non-zero

tiny number with the appropriate sign. Furthermore, for cooling/heating, we use the

next higher/lower bin as the reference temperature and only calculate the TEF down/up

to the next equilibrium temperature, as we must always remain within a cooling/heating

region if we begin there.

In detail, we implement a new cooling module as a class that is initialized at the

beginning of the simulation with some specified cooling and heating table. It is assumed

that both cooling and heating are represented as piecewise power laws. The class gives

the user the ability to call a cooling function for some input temperature, density and

timestep and returns the new temperature in cgs units. The class also allows the user

to query the single point cooling time at some given temperature and density, along

with the minimum/maximum temperatures. For the cooling implementation, we use two

preallocated scratch arrays, one to hold temperatures and one to hold the net cooling.

At the start of the function, we first check that the temperatures are within the bounds

of the provided table. If it is not, we return the lower/upper bound instead. We then

populate the scratch arrays with a copy of the temperature table and the net cooling
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table for the given density. Next, we figure out which temperature bin we are in and

check if there is net cooling or heating in that bin. If the net value is zero, we return

the current temperature. We now case on whether there is net cooling or heating. For

either case, the steps are similar, but the directions in which we compute quantities are

opposite, along with the choice of some indexes. We first use the next bin over as the

reference bin, but check for the edge case where we are in an equilibrium bin. In that

case we modify the next bin to be at the equilibrium temperature and set the net cooling

in that bin to be zero. If we assume in a bin that cooling and heating have the following

power law forms:

Λ = Λ

(
T

Ti

)αi

Γ = Γi

(
T

Ti

)βi

(D.13)

then the equilibrium temperature in a bin that transitions from heating to cooling or

vice versa is then

Teq = Ti

(
Λi

nΓi

)1/(αi−βi)

(D.14)

We also flag the bin to be linear. We then calculate the TEF recursively downwards,

until either we reach the bounds or we reach another equilibrium temperature, in which

case we again modify the bin and flag it as a linear bin. We then compute the current

TEF and then the TEF after the timestep. Since the bins with equilibriums are linear,

there is some finite value of Y that if exceeded we immediately return the equilibrium

temperature there. We then compute the inverse TEF, accounting for the fact that we

might have crossed several bins. This gives us the new temperature.
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Figure D.1: The cooling and heating functions used in our test case, with n = 2. The
grey points show the values in each bin.

Testing

Figures D.1 and D.2 show a test of the above algorithm, where we have set up a simple

cooling and heating curve with n = 2 and computed the calculate new temperature as

a function of timestep for a range of starting temperatures. The black dashed lines in

Fig. D.2 mark the expected equilibrium temperatures.
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Figure D.2: The computed heating/cooling over time for a range of starting temper-
atures. Black dashed lines show the expected equilibrium temperatures.
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Estimating Cloud Growth Rates

Given the large time interval between full data outputs, and the resulting difficulty in

matching and tracking individual clouds across multiple snapshots, we would like to be

able to estimate the mass growth rate of an individual cloud based solely on its properties

from a single time snapshot alone.

Here we compare several methods of doing this, which we test by applying to a

controlled setup containing only a single cloud and where the mass growth rate of the

cloud is tracked explicitly with high time resolution. This provides a ‘ground truth’

which we can use to test our various estimators against. The setup consists of a cool

cloud, initially at rest, falling under gravity in a constant hot background as detailed in

Section 3 of Tan et al. (2023) (more specifically this setup corresponds to the Λ0 = 30

and rcl = 300 pc run). At fiducial resolution here, rcl is resolved by ∼ 12 cells.

We estimate the mass growth rate in three different ways. The first method is by

estimating the total cooling luminosity Q ≡
∫
ρLdV . If we then assume that radiative

cooling balances enthalpy flux (i.e., in the sub to transonic regimes; Ji et al. 2019), we

can estimate the mass growth rate as ṁQ ∼ Q/cpThot. This also assumes that the bulk

of the cooling luminosity comes from the mixed gas in the turbulent mixing layer and
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Figure E.1: The mass growth rate as a function of mass from the simulations(grey
points; smoothed result in blue) and from estimates using (i) total cooling luminosity
Q (both recorded and estimated) and (ii) mass flux through the bounding box of the
cloud.
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Figure E.2: The model applied to different choices of temperature for the isosurface
Tiso. The scaling factor fiso is seen to be dependent on Tiso.
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ṁ
 (c

od
e 

un
its

)

Sim
Qsim
Isosurface
Bounding Box

Figure E.3: The mass loss rate for a cloud being destroyed, compared with the various
methods to estimate mass growth rate. We find that these methods do poorly when
the cloud is not actually growing.
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Figure E.4: The ratio of ṁQ and ṁsurface as a function of cloud size. The value of 0.05
given by the orange dashed line is the final scaling value we use in our main analysis.
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that the contribution from the cool and hot gas components is negligible. In Figure E.1,

we show how this stacks up against the actual mass growth rate. The mass growth from

the simulation is represented by the solid blue line, which is obtained by smoothing the

instantaneous values of ṁ represented by the grey points. In this simulation, the cooling

in each cell per timestep is explicitly tracked, which using the method above corresponds

to a mass growth rate given by the red dashed line. However, this quantity is not similarly

tracked in our main simulations, and hence must be estimated instead by computing Qest

using the density and temperature of each cell, which gives us an estimate shown by

the orange dashed line. This does even better than Qsim because we explicitly avoid

contributions from cells within a percent of the temperature floor, to account for the lack

of explicit heating in this simulation.

The second method involves computing the mass flux through the bounding box of

the cool gas. By computing the net mass influx into the volume defined by the bounding

box, and assuming that this balances the mass flux from the hot to cool phase, we can

estimate the mass growth rate. This is shown by the teal dashed line in Figure E.1.

This estimate does surprisingly well despite its simplicity. While it works well in this

controlled experiment, it fails in our main simulations due to the turbulent nature of the

environment leading to fluctuating mass fluxes through the bounding box.

The third and last method is to compute the total mass flux through a temperature

isosurface ṁsurface. This is the isosurface we construct using the marching cubes algorithm

as described in the previous section. In order to measure the mass flux through this

surface, we interpolate the velocity and log density at the centroid of each triangular face

in the isosurface mesh. The mass flux through each face is given by the component of

this velocity that is normal to the face and in the inward mesh direction, multiplied by

the density and the area of the face (while this also includes the velocity of the surface

itself, this contribution should average to zero in the cloud frame). This gives us a total
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mass influx rate over the entire isosurface. However, just this quantity alone significantly

overestimates the mass growth rate. This is likely because translating this instantaneous

quantity into a mass growth rate directly assumes that all the flux becomes cool gas,

which does not hold here because our isosurface is itself sensitive to the velocity field.

To account for this, we determine a normalization constant fiso by calibrating to Qest.

The constant of proportionality fiso = 0.2 for Tiso = 5.0, which is our default choice.

Figure E.2 shows this model for isosurfaces of various temperatures, with log(T ) = 4.2,

5.0 and 5.5. We have used fmix = 0.17, 0.2 and 0.3 for them respectively. We expect fiso

to vary with the choice of isosurface temperature and the velocity field.

What if the cloud is not growing? Figure E.3 shows a run with weaker cooling

(Λ0 = 1) where the cloud is getting destroyed. Here, we see a drawback of the various

methods presented—they do not account for mass loss. Hence, these methods should

not generally extend to clouds that do not survive. The bounding box approach appears

to work well at later times, but this is because the accreting cloud is able to form a

steady inflow towards the cloud surface in this setup. In more turbulent environments,

the signal from this method is washed out by the much higher turbulent velocities in the

background.

Ultimately, the three different methods of estimating ṁ from instantaneous cloud

properties presented above give similar results that are good estimates of the actual

cloud mass growth rate, assuming that the clouds are growing. It should be stressed that

these are estimates—having multiple methods provides a cross check that allows us to

make this estimate of ṁ more reliably.

When measuring mass growth rates of the clouds in our main simulations, we thus use

the mass flux through a temperature isosurface ṁsurface, but normalized to match mass

growth rates estimated using the cooling luminosity ṁQ. This choice allows for more

consistency when discussing the scalings related to both the inflow velocity through this
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isosurface and its computed surface area.

The normalization is done by finding the constant of proportionality fiso discussed

above. In other words, we calibrate a scaling factor fiso such that ṁ ∼ fisoṁsurface, where

fiso ≡ ⟨ṁQ/ṁsurface⟩. Figure E.4 shows ṁQ/ṁsurface as a function of cloud size for the

clouds used in the analysis in Section 5.5, with fiso = 0.05 represented by the orange

dashed line being the scaling factor we adopt.
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Grønnow A., Tepper-Garćıa T., Bland-Hawthorn J., 2018, ApJ, 865, 64
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Hardee P. E., Stone J. M., 1997, ApJ, 483, 121

Heckman T. M., Thompson T. A., 2017, in Alsabti A. W., Murdin P., eds, , Handbook of Supernovae.
p. 2431, doi:10.1007/978-3-319-21846-5˙23

Heckman T. M., Armus L., Miley G. K., 1990, ApJS, 74, 833

Heitsch F., Putman M. E., 2009, ApJ, 698, 1485
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