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ABSTRACT
Objectives: As the real-world electronic health record (EHR) data continue to grow exponentially, novel methodologies involving artificial intelli-
gence (AI) are becoming increasingly applied to enable efficient data-driven learning and, ultimately, to advance healthcare. Our objective is to
provide readers with an understanding of evolving computational methods and help in deciding on methods to pursue.

Target Audience: The sheer diversity of existing methods presents a challenge for health scientists who are beginning to apply computational
methods to their research. Therefore, this tutorial is aimed at scientists working with EHR data who are early entrants into the field of applying AI
methodologies.

Scope: This manuscript describes the diverse and growing AI research approaches in healthcare data science and categorizes them into 2 dis-
tinct paradigms, the bottom-up and top-down paradigms to provide health scientists venturing into artificial intelligent research with an under-
standing of the evolving computational methods and help in deciding on methods to pursue through the lens of real-world healthcare data.
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INTRODRUCTION

The synergies between the fast-growing real-world health
data and the recent rapid advancement in computational sci-
ences and artificial intelligence (AI) are changing how we
understand and can improve healthcare. Real-world data are
defined as “the data relating to patient health status and/or
the delivery of health care routinely collected from a variety
of sources,”1 such as claims data from payers, electronic
health records (EHRs) data from healthcare systems, patient-
reported data from registries, and the real-time continuous
streams of data generated by wearable technologies.2 Since
these data detail individual patients’ health statuses, medical
interventions received, trajectory or progression of diseases,
and patients’ experiences, they represent unique sources of
information with which to improve healthcare, largely
through complementing clinical trials, supporting regulatory
decision-making, and optimizing or personalizing patient
care.3–5

EHR data are a type of real-world data that are particularly
enriched with comprehensive patient-level clinical details.
Since the adoption of EHR systems worldwide, EHR data
have become a fast-growing, abundant, and ubiquitous real-
world source to study continuous longitudinal patient health
and healthcare systems themselves. EHR data comprise differ-
ent modalities, including unstructured data (eg, imaging, text,

and video) and structured data, and have distinctive charac-
teristics, such as irregular time series, high dimensionality,
longitudinal nature, incompleteness or missingness, and low-
resource characteristics (Figure 1). Irregular time series refers
to how patients may receive clinical care at varying time inter-
vals, which would then lead to clinical data (eg, different labo-
ratory test results and other measurements) being captured at
different frequencies; high-dimension and longitudinal nature
describe the possibility of patients with complex diseases and
long histories of care received within the same healthcare sys-
tem; incompleteness or missingness in data arises from
patients who are no longer with the same healthcare system,
data not reported nor observed due to the lack of a medical
reason for those measurements, or just simply missing at ran-
dom; low-resource refers to the significant lack of gold stand-
ard annotated data sets available as these data are
particularly labor intensive and costly to generate in highly
specialized medical domains.

Due to their unique characterization and increasing com-
plexity as they accumulate, EHR data can be challenging to
study using traditional methods involving manual reviews or
statistical methods. The advancement of AI computational
methods with high computing power and novel algorithms to
process complex big data have led to a rapidly developing
research field intersecting AI and healthcare.6–8 However,
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healthcare scientists who are early entrants into the field of
applying computational methods to their research may find it
challenging due to its rapidly developing and diverse methods.
Moreover, growing healthcare big data warrant attention and
discussion on ways to better utilize it efficiently and effec-
tively. Therefore, this review aims to provide health scientists
interested in applying AI computational methods to the study
of real-world data with an understanding of relevant current
research approaches, which we have categorized into top-
down and bottom-up paradigms. Furthermore, we propose a
decision-helping tool to help health scientists identify suitable
computational methods to pursue. We begin by introducing
building-block concepts such as types of machine learning,
classical machine learning algorithms, deep learning neural
networks, and techniques useful in low-resource data fol-
lowed by the respective discussions of the top-down and
bottom-up paradigms in AI computational methods, their
applications and limitations, and emerging research
opportunities. Lastly, we provide a table of example programs
focusing on AI computational methods in healthcare as a
resource for health scientists learn in-depth knowledge and
technical skills.

BUILDING-BLOCK CONCEPTS
Machine learning: supervised, unsupervised, and

semisupervised learning

Supervised learning refers to training (fitting) algorithms, or
models, using data annotated with ground truth labels (gold
standard data).9 These ground truth labels in EHR data
require clinically trained individuals equipped with domain
knowledge to be generated. Hence, EHR data remain largely
unlabeled and unannotated, and it can be labor intensive,
costly, and time consuming to create ground truth labels for
sufficient amounts of training data. In contrast to supervised
learning, unsupervised learning refers to situations when algo-
rithms are used to recognize patterns in data without any
ground truth labels.9 This approach is often used to identify
subgroups in data. Semisupervised learning is a hybrid

approach in which algorithms are trained using only small
amounts of gold standard-labeled data while the rest of the
data remain unlabeled or with “silver-standard” labels that
may be easily obtained but at a lower quality compared to
gold standard labels.10 EHR data particularly benefit from
semisupervised learning due to its low-resource nature.

Classical machine learning algorithms

Classical machine learning algorithms are a set of data-driven
algorithms that can fit data based on statistical and mathe-
matical rules.9,11 Training classical machine learning algo-
rithms often requires feature engineering, which is a
preprocessing step that can involve data transformation and
selection of important features (covariates) based on domain
knowledge. Feature engineering may improve the performan-
ces and interpretability of the resulting machine learning mod-
els. Compared with advanced algorithms such as artificial
neural networks, machine learning algorithms are generally
more interpretable and require much less computational
resources and data to train. Machine learning algorithms
commonly applied in the medical domain include regressions,
support vector machines, random forests, and many others.

Artificial neural networks

In contrast to the classical machine learning algorithms, artifi-
cial neural networks are deep learning algorithms consisting
of multiple (deep) layers of neural networks which, through
learning layers of nonlinear functions, allow for better repre-
sentation learning and pattern recognition of input data.12

Minimal human-involved feature engineering is required,
making deep learning algorithms more suitable for high-
dimensional and longitudinal data than classical machine
learning algorithms. Furthermore, with multiple layers of neu-
ral networks, deep learning algorithms, compared with classi-
cal machine learning algorithms, may be better able to study
data characterized with complex representations, such as
EHR data. However, deep learning algorithms generally
require much larger magnitude of datasets and computational
resources. The deep learning algorithms commonly applied in

Figure 1. Sample data to show EHR data characteristics. Examples A, B, and C are hypothetical patient encounters with the healthcare system. The filled

circles indicate any encounter with the healthcare system including visits, hospitalizations, or telemedicine visits. The empty circle indicates a patient that

stopped receiving services from the healthcare system. The “X” marks the deceased status of the patient. Example A shows that the patient had regular

encounters with the provider or healthcare system over time, while examples B and C are patients that have irregular encounters over time and across

different lengths of time. For each encounter (filled circle), there may be different types of EHR data recorded. For instance, as shown in the inset figure

above, there could commonly be diagnosis, medication, and procedure codes and hospitalization information (if applicable) being recorded for each

encounter. In addition, laboratory tests and results are often available as well as patient demographics. In the inset figure, the bars symbolize the high

dimensionality of EHR data—each bar indicates 1 code or data for each type of EHR data. The highlighted bars indicate the specific codes or data

recorded during 1 encounter for 1 particular patient. EHR: electronic health record.
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the medical domains include convolutional neural networks
for image processing, transformer-based models for clinical
texts, and recurrent neural networks for sequential data.13–16

Evolving techniques for low-resource data: transfer

learning and semisupervised learning

In low-resource data like EHR data where gold standard
labels do not exist or are difficult to obtain, techniques that
leverage available unlabeled data can be very helpful. Trans-
fer learning has been gaining popularity in the healthcare
domain in recent years.17,18 This methodology involves learn-
ing generalizable patterns from source domain data that
remained unlabeled during the initial training phase, termed
pretraining.19 Subsequently, the algorithm, leveraging the pre-
viously learned generalizable knowledge, is thereby fine-tuned
to perform separate but related tasks in the target domain
data. Its applications to EHR big data have been important
for studying unstructured data, including images and clinical
texts.

Semisupervised learning, particularly approaches to inte-
grate silver-standard labels and self-supervised learning, has
also been increasingly applied in the health data science in
recent years. For instance, EHR structured data and the con-
cepts of unified medical language systems have been used as
silver-standard labels in research involving clinical notes that
are unstructured and unlabeled.20,21 Self-supervised learning
is another increasingly used technique, commonly used during
the “pretraining” phase.22 It can be considered a type of semi-
supervised learning as the algorithms are trained with data
without human-involved annotations. Instead, the labels are
automatically generated by manipulating the data themselves.
For instance, predicting the rotation angle of rotated images
or the masked words in a sentence. This allows the algorithms
to learn high-level representations of the data and is often
applied during the pretraining phase in transfer learning,
which can jumpstart other downstream training.23

The building-block concepts above introduced machine
learning frameworks, classical machine learning, neural net-
work algorithms, and techniques particularly relevant to low-
resource healthcare data. Generally, AI computational meth-
odologies comprise combinations of these building blocks at
different stages where applicable. Specifically, the availability
of computational resources, the complexity of the research
questions and the data, and whether a sufficient amount of
training data with or without accessible gold standard labels
is available are important considerations when developing
computational methods. We categorized the common major
AI computational methods in the healthcare domain into
top-down and bottom-up paradigms based on the data and
annotation needed, training technique, and function of the
resulting algorithm (Figure 2).

BOTTOM-UP PARADIGM

There have been a number of prior studies summarizing the
evolving landscape surrounding real-world EHR data, but the
majority focused on the bottom-up paradigm of AI computa-
tional methods.24–29 The bottom-up paradigm approach
refers to a situation where a computational tool, method, or
algorithm is trained from scratch specifically to address a par-
ticular research question involving only “small data,” mean-
ing a portion of the entire EHR big data (Figure 2). However,

all training data included require ground truth labels, and the
resulting algorithm is specialized in 1 specific task (Figure 2).

In contrast to the top-down paradigm, bottom-up para-
digm approaches only utilize a subset of the available EHR
data and do not involve pretraining or fine-tuning processes
during model training (Figure 3). As a result, this approach is
particularly useful when computational resources are limited
as the pretraining phase in top-down approaches can be sig-
nificantly more computationally demanding. Furthermore,
bottom-up approaches can be more efficient when the
research questions involve simpler or few tasks and adequate
computational resources as well as sufficient training data
with ground truth labels are available (Figure 4).

Applications of bottom-up paradigm approaches in medi-
cine have been predominately centered around developing
predictive models to forecast new onsets or recurrences of dis-
ease, disease progressions or trajectories, adverse event devel-
opments, and outcomes such as hospitalizations or
mortality.30–41 These predictive models identify patients likely
to develop undesirable outcomes and allow clinicians to pro-
vide timely care or interventions, in turn optimizing health-
care for individual patients.

Another major area of AI research is focused on developing
algorithms to support the classification or identification of
phenotypic disease characteristics embedded in EHR.40–45

Such applications can be useful for supporting safety surveil-
lance of therapeutics or monitoring for potential secondary
complications in patients. Other research efforts involve com-
paring various computational methods including classical
machine learning, deep learning artificial neural networks,

Figure 2. Comparing bottom-up and top-down learning approaches. The

bottom-up approaches are driven by specific research questions, require

annotated data, and the resulting algorithm is specialized for specific

tasks (eg, predicting prolonged hospitalization, phenotype classification).

In contrast to bottom-up approaches, the top-down paradigm starts from

developing a general-purpose algorithm that requires minimal or no

annotation and utilizes big EHR data. The resulting algorithm is versatile

(nonspecific) and can be further fine-tuned to perform specialized tasks.

EHR: electronic health record.
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Figure 3. Algorithm-training process for top-down and bottom-up paradigms. The top-down paradigm utilizes EHR big data available without the need of

ground truth labels during the pretraining phase, which can be computationally demanding. The resulting algorithm is a general-purpose model that can be

fine-tuned to specialize in specific tasks. The fine-tuning phase requires only a small fraction of the available data to have ground truth labels for

supervised training. The computational resource needed for model training during the fine-tuning phase is significantly less than the pretraining phase.

The bottom-up paradigm approaches do not involve pretraining and fine-tuning phases as described in the top-down paradigm approaches. In contrast,

the bottom-up paradigm approaches utilize “smaller data,” which are the data relevant to the research question of interest. In addition, all the data

involved in model training typically require ground truth labels for supervised training. The resulting model is then specialized for a specific task or

research question. The computational resource needed may be less than the pretraining phase in the top-down paradigm but may increase as model

complexity increases. EHR: electronic health record.

Figure 4. A Decision-making flow-chart for efficient data use and AI method development. To decide on suitable computational methods to pursue,

healthcare scientists may consider 3 key factors: availability of the computational resource, data resource, and the complexity of the research questions

itself. When computational resource is limited, the bottom-up approach may be more suitable, as top-down paradigm approaches are computationally

demanding. When computational resource is adequate but data resource is low, top-down paradigm approaches are worth considering. When data

resource is low, that is, low-resource data and only a very limited amount of data with ground truth labels is available, methods such as transfer learning in

the top-down approach that leverage other unlabeled data are ideal. However, when both computational resource and data availability are high, the

research question is complex, or versatile algorithms are required to perform multiple tasks, the top-down paradigm may be superior. If the research

question is relatively straightforward and the algorithm is performing single or very few tasks, the bottom-up paradigm approach may be more efficient.
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and statistical approaches (eg, conventional survival models)
or building universal frameworks to help streamline the appli-
cation of computational algorithms to real-world clinical
data.46–49 In the realm of unstructured EHR data, prominent
examples include convolutional neural networks that work
on medical imaging (eg, recognizing diabetic retinopathy),
recurrent neural networks that work on sequential time series
data such as electrocardiograms, speech decoding in para-
lyzed patients, and machine learning-based or recurrent neu-
ral networks to study clinical notes.13–16,50

While the bottom-up approaches may seem more straight-
forward and faster to develop, they can be limited when the
research questions are complex or involve multiple tasks to
complete, which are not uncommon in healthcare research
using real-world EHR data. For instance, there are 15 adverse
events of special interest that may be associated with novel
COVID-19 vaccines.51 An algorithm that can identify all 15
adverse events would be much more efficient than training
single models to identify each type of adverse event. However,
the complexity of algorithms increases as the difficulty of the
research questions increase, and such advanced algorithms
would require significantly more training data as well as
ground truth labels for sufficient generalized training. Fur-
thermore, sufficient amounts of training data often do not
exist or may be extremely difficult to obtain from EHR data.
As a result, there is a trade-off between the complexity of the
algorithm needed to address a research question and the
amount of obtainable training data and ground truth labels.
The trade-off could be even more apparent in models involv-
ing multimodal EHR data (structured data, texts, and
images). Lastly, making advanced models explainable and
interpretable may also become more challenging as the com-
plexity of the algorithm increases.

Another key shortcoming of bottom-up approaches relates
to utilization of the available data resource. While vast
amounts of EHR data are available and growing continu-
ously, the bottom-up approach may be inefficient as it only
utilizes a subset of data—for instance, a cohort of patients
with a particular disease of interest—for algorithm training
while leaving the rest of the EHR data unused. This can be
considered an inefficient use of data resource as the rest of the
EHR big data, although not directly related to a specific
patient cohort of interest, still contains comprehensive clinical
data representing clinical practices and medical knowledge
that are generalizable and transferable. Therefore, approaches
that allow learning from details embedded in the rest of the
EHR big data could support more efficient downstream algo-
rithm training and better utilization of available data
resources.

TOP-DOWN (REPRESENTATION LEARNING)
PARADIGM

The top-down representation learning approach describes a
strategy involving vast amounts of data from the source
domain to create a general-purpose tool, method, or algo-
rithm that is “versatile,” meaning it is not yet specialized like
algorithms developed under the bottom-up paradigm but can
be further fine-tuned to address specific unmet research (medi-
cal) needs (Figures 2 and 3). In contrast to bottom-up
approaches where only a subset of EHR data would be
needed for algorithm training, top-down approaches require
significantly more data, all the EHR big data available, during

the pretraining phase, but only a much smaller amount of
data with ground truth labels would be needed during the
fine-tuning phase (Figure 3).

Transfer learning, as explained above, is an exemplary top-
down learning approach. When using the self-supervised
learning technique during the pretraining phase using EHR
big data as the source, the algorithm is trained to learn gener-
alizable fundamental knowledge agnostically across diseases
and therapeutic areas in medicine. Such fundamental knowl-
edge can help “jumpstart” other relevant downstream train-
ings. The resulting algorithm is general-purpose and can be
efficiently trained to specialize in specific research questions
through fine-tuning using several-orders-of-magnitude less
data compared to bottom-up paradigm approaches (Figure 3).
However, computational resource is often more demanding
for top-down approaches compared with bottom-up
approaches owing to the pretraining phase, where a large
amount of big data is required. However, top-down
approaches are worth considering when diverse tasks or
research questions are of interests, adequate computational
resource is available, but only very limited training data with
ground truth labels are available (Figure 4).

Such top-down representation learning approaches com-
bining transfer learning and self-supervised learning techni-
ques have been widely adopted in medical imaging
applications using convolutional neural networks
(Table 1).22,52,53 In recent years, they have also been applied
in natural language processing, where large language models
were trained on vast numbers of documents and then fine-
tuned to perform a variety of downstream tasks including
document classification, name entity recognition, relation
extraction, summarization, and natural language understand-
ing. The most widely adopted breakthrough application in
medicine was the transformer-based models including bidirec-
tional encoder representations from transformer (BERT) and
the recent popular generative pretrained transformers
(GPT).54,55 Several BERT models have been pretrained using
the unstructured EHR text data clinical notes, and they have
achieved marked improvement in a variety of downstream
tasks including supporting patient outcome prediction and
phenotype detection using only very limited training data
(Table 1).56–59

Top-down paradigm approaches have also been extended
to structured EHR data to learn contextualized representa-
tions of medical codes (eg, diagnosis, medication, and labora-
tory test codes) assigned chronologically to individual
patients during each clinical encounter using BERT-based
algorithms (Table 1).60–64 The pretrained algorithm using
structured EHR data with a standardized data model is a
general-purpose model that can be easily shared with
researchers from other institutions and is much more accessi-
ble and generalizable compared with bottom-up paradigm
algorithms or algorithms involving unstructured EHR data.
Furthermore, it may have the potential to achieve few-shot
learning, where very few training data are needed during the
fine-tuning training phase (Table 1). This is crucial in address-
ing the low-resource challenges in the medical domain.

Transfer learning has shown marked improvements in effi-
ciency and model performance across various domains and
data modalities, including both unstructured and structured
EHR data. However, this strategy may be limited in terms of
3 key aspects: first, the source and target domains are best
related to each other; otherwise, negative transfer can arise,
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leading to suboptimal performances of tasks in the target
domain.19 Second, due to the large scales of data required
during the pretraining phase, computational costs and time
can be significantly more demanding compared with those for
algorithms developed following the bottom-up paradigm.
Third, the implementations and algorithm development could
be much more complex and challenging, which would require
highly trained individuals to perform.

FUTURE OUTLOOK

Real-world EHR data are predicted to play an integral part in
advancing healthcare across drug development, regulatory
decision-making, and clinical care. As the amount of EHR
data continue to grow exponentially, it is increasingly in
demand for advanced AI computational methods to help
unravel the intricate relationships between individual patient
health statuses, diseases, as well as medical interventions and

Table 1. Examples of top-down approaches with transfer learning and self-supervised pretraining strategies using EHR data

Author, year Model name Model adopted EHR data type Approximate data volume Few-shot

learning capability

Azizi et al, 202152 MICLe ResNet Images 224,000 images NA
Sowriraran et al, 202153 MoCo-CXR ResNet Images 224,000 images Yes
Alsentzer et al, 201956 Publicly Available Clinical

BERT
BERT Text 2 million documents NA

Li et al, 201959 EhrBERT BERT Text 1.5 million documents NA
Huang et al, 202057 ClinicalBERT BERT Text 2 million documents NA
Zhang et al, 202058 BERT-XML BERT Text 7.5 million documents NA
Shang et al, 201963 G-BERT BERT Structured data 30,000 distinct patients NA
Li et al, 202061 BEHRT BERT Structured data 1.6 million distinct patients NA
Rasmy et al, 202160 Med-BERT BERT Structured data 20 million distinct patients Yes
Pang et al, 202162 CEHR-BERT BERT Structured data 2.4 million distinct patients Yes
Park et al, 202264 MedGTX BERT Text and structured data 40,000 million distinct

patients
NA

Abbreviation: EHR: electronic health record.

Table 2. Example courses and training programs focusing on AI computational methods in healthcare across research-based development to real-world

applications

Program name Sponsoring organizations Course and program summary

Introduction to Biomedical and Health
Informatics80

American Medical Informatics
Association, Oregon Health and
Science University

Gain broad understanding across implementation and devel-
opment of informatics solutions for healthcare challenges.
Course covers topics including electronic health records,
data standard and interoperability, and novel technologies
such as machine learning and blockchain.

Clinical Decision Support81 American Medical Informatics
Association, University of Utah

Gain in-depth knowledge and state-of-the-art principles as
well as practices to develop effective clinical decision sup-
port tools, standard, implementation, and evaluation.

Artificial Intelligence in Healthcare82 Stanford University Gain fundamental understanding of clinical data, machine
learning, and evaluation of AI applications in healthcare.

Medical AI Bootcamps83 Harvard University, Stanford
University

Participate in team-based research projects, gain cutting-edge
knowledge in AI medical research and machine learning
technical skills.

Artificial Intelligence in Healthcare84 Massachusetts Institute of
Technology

Gain comprehensive understanding of the growing roles of AI
computational methods in health care focusing on real-
world applications of AI in health care management and
optimization.

Innovation with AI in Health Care85 Harvard University Gain understanding of fundamental concepts related to AI,
emerging modern methods, and potential roles of AI across
components of health care industry.

Designing and Implementing AI Solutions for
Health Care86

Harvard University Gain understanding of key technical concepts of emerging AI
methods including deep learning, reinforcement learning,
interpretable and explainable AI techniques, frameworks
for AI method development pipeline and real-world imple-
mentation as well as executions.

Medical Informatics Training Programs87 National Library of Medicine Gain knowledge and experiences in computational biology
using novel methods to better understand biological systems
and computational health sciences focusing on novel com-
putational methods for clinical and health data standards.

Abbreviation: AI: artificial intelligence.
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responses. In the last decade, the influx of applying AI compu-
tational methods to EHR data has led to successes in impact-
ing clinical care and improving patient outcomes. However,
the majority of them employed bottom-up approaches, which
could be limited by generalizability, insufficient training data,
and inefficient or underuse of available data. Transfer learn-
ing coupled with self-supervised learning techniques, a top-
down approach, provides a framework to address these key
shortcomings by creating a more general-purpose algorithm
providing knowledge in medicine and clinical practices
through learning from all the available EHR data. Such
general-purpose algorithms can then be fine-tuned to special-
ize in diverse sets of downstream tasks with the potential
capability of few-shot learning, meaning that they require sig-
nificantly smaller training datasets (Figure 3).

While top-down learning may seem like a rational
approach given the growing EHR big data, there are also sce-
narios where bottom-up approaches may be more suitable.
To help health scientists interested in applying AI computa-
tional methods, we have developed an easy decision tool to
help them decide if the bottom-up approach is sufficient or
whether their research questions would benefit from the top-
down paradigm approach (Figure 4). The decision tool is
focused on computational resource, the availability of suffi-
cient training data and ground truth labels, as well as the
complexity of the computational tasks or research questions.
Other factors, such as the level of training and experience the
healthcare scientist has in computational research, are worth
considering as the bottom-up paradigm may be simpler to
implement than top-down approaches. Additionally, the
availability of the pretrained models and if the resulting model
is for research or real-world applications may be important
deciding factors as well. The computational resources needed
could be drastically reduced when working with an existing
pretrained model and the implementation of its downstream
applications could also be easier. However, deploying larger
models to real-world applications (eg, integration into clinical
workflow) may be impractical due to the associated high com-
putational costs. Furthermore, if the interpretability of the
algorithm is of priority, researchers may consider starting
with bottom-up approaches with parsimonious algorithms
(eg, classical machine learning algorithms), which could be
easier to understand and consequently gain acceptance in the
medical community. However, it is also important to recog-
nize that models with high performances may have better util-
ity and potential in improving healthcare even if it is not fully
interpretable.65

This discussion introduced real-world EHR data, addressed
the commonly used bottom-up paradigm and highlighted
how top-down learning can be effective and efficient in fully
utilizing the big EHR data available. Although we put slightly
more emphasis on the use of structured EHR data owing to
its improved accessibility, much patient-level data pertinent to
patient health is only available as unstructured EHR data,
such as images or clinical text. For instance, the results of a
brain MRI and prior treatment exposures may only be found
in image formats or documented in clinical notes. Hence,
methods that can efficiently integrate multimodal data in
EHR may be increasingly vital to advance the field toward
learning holistic and deep representations of patients effi-
ciently.64,66–68 Furthermore, while AI research is rapidly
developing, we only discussed the commonly used AI compu-
tational methods and approaches that have been translated to

the medical realm. Other advanced algorithms worth noting
include reinforcement learning and generative adversarial net-
works, which have been applied in creating decision support
tools and drug discovery research.69,70 Reinforcement learn-
ing in particular may find increasing applications in medicine
to develop tools to identify or suggest personalized medical
interventions tailored to individual patients’ unique health
statuses and trajectories.69,71–73 Most excitingly, large lan-
guage models such as the recently released ChatGPT,
InstructGPT, GPT-4, and LLaMA are powerful models capa-
ble to perform complex natural language processing tasks and
their potential applications in the field medicine are gaining
high popularity rapidly74–77. Lastly, we also focused largely
on supervised learning, whereas unsupervised learning has
also been widely used in discovering potential novel pheno-
types using EHR data.40,41,78,79

In summary, as real-world EHR data, which encode com-
prehensive patient-level data for health statuses, disease pro-
gression, treatment intervention, and patient experiences,
continue to grow exponentially, methodologies and strategies
to efficiently learn from and utilize the wealth of knowledge
embedded in the data are becoming crucial in advancing
healthcare. In the present review, we introduced basic con-
cepts in computational methods and highlighted the advan-
tages and limitations of developing AI methods following
bottom-up or top-down representation learning paradigms.
Our decision-making tool enables health scientists interested
in engaging in computational research and real-world data to
choose more efficient and suitable approaches to pursue. Fur-
thermore, example programs and courses focusing on gaining
in-depth understanding across topics including fundamental
concepts in clinical data, AI computational methods and
applications in research as well as real-world implementation
have been provided to help health scientists venture into the
field of AI and medicine (Table 2).
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