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Abstract

Much of social cognition involves reasoning about others’
minds: predicting their reactions, inferring their feelings, and
explaining their behavior. By representing mental contents like
beliefs, desires, and emotions, Bayesian Theory of Mind mod-
els have made progress in capturing how humans manage these
cognitive feats. But social life is not merely observation: hu-
mans must also plan to intervene on these same mental con-
tents. The present work models how people choose interven-
tions to influence others’ emotions. Building on a prior model
of people’s intuitive theory of emotions, we model how people
use their intuitive theory to evaluate and simulate the effects
of different interventions. We apply our model to data from
behavioral experiments requiring counterfactual and joint in-
terventions, and show a close alignment with human choices.
Our results provide a step towards a potentially unifying expla-
nation for emotion prediction and intervention, suggesting that
they could arise from the same underlying generative model.
Keywords: theory of mind; emotion; social cognition; deci-
sion making and planning

Introduction
Suppose that your younger sibling just broke their favorite toy
and you want to make them feel better. You carefully weigh
your options. You could get them a new version of the same
toy. Or, you could give them something of yours that they
have shown interest in. Which one do you pick?

Moments like these remind us of a key feature of human
decision making and planning: many of the actions that we
take in our daily life are designed to make someone feel
something specific. For our actions to be effective, we need
to consider the intricacies of other people’s beliefs, desires,
plans, and emotions. To think about, and interact with, oth-
ers, we are in essence using a mental model of their minds.
Our mental models of other minds are causal, integrating core
intuitions about factors such as effort, costs, constraints, and
rewards, and also flexible, able to be adapted to accommodate
idiosyncrasies of persons and situations.

Specifically, much of social cognition is oriented around
changing and regulating others’ emotions. We plan actions
with goals of cheering up, calming down, and comforting
those around us (Thoits, 1996; Tran et al., 2023). We may
attempt to induce feelings of guilt or shame as a way of pun-
ishing others (Nelissen & Zeelenberg, 2009), praise some-
one as a way of rewarding them (Wu et al., 2021), or por-
tray a tragic character to make an audience cry (Chandra et
al., 2023). These everyday social goals require a great deal
of cognitive sophistication. People need to consider the af-
fordances in the environment, reason over various possible
world states and how they might be reached, imagine why
someone might act one way or another, and predict how oth-
ers would emotionally react to hypothetical situations. In this

work, we focus on how people select situations that optimize
specific goals for other people’s emotions. We ask: to what
extent can a predictive model of people’s emotion be straight-
forwardly extended to do planning, instead?

Planning to evoke specific emotions necessarily involves
rational choice over a model that can predict others’ emo-
tional reactions to potential interventions. There have been
various proposals of how to model human-like predictions of
others’ emotions (Marsella et al., 2010; Ong et al., 2019), in-
cluding rule-based emotion schema (Izard, 2007; Ortony et
al., 1990), multi-agent computer simulations (Si et al., 2010;
Alfonso et al., 2015; Yongsatianchot & Marsella, 2016),
state-space transition dynamics (Thornton & Tamir, 2017),
large language models (Rashkin et al., 2018; Sap et al., 2019),
and intuitive theory-based probabilistic reasoning (Ong et al.,
2015; Saxe & Houlihan, 2017; Wu et al., 2018; Houlihan et
al., 2022).

The present research builds on recent modeling work
that frames emotion prediction as causal reasoning over a
Bayesian Theory of Mind (Houlihan et al., 2023; Ong et
al., 2021). While each modeling approach has advantages,
Bayesian Theory of Mind models present a distinct advan-
tage in interpretability, granular reasoning, and generalization
(Lake et al., 2017; Zhi-Xuan et al., 2022; Shu et al., 2021).
Furthermore, by explicitly instantiating causal relations be-
tween situational features and mental states such as beliefs,
desires, and emotions, they offer a finer degree of control
over possible interventions that these models afford — a point
we revisit in the discussion. We use the model of Houlihan
et al. (2023) to simulate observers’ predictions of other peo-
ple’s reactions to hypothetical situations, and apply it to the
task of generating interventions to make an agent feel a target
emotion. This is a hallmark of any causal model: the ability
to generate interventions, simulate the effects, and compute
counterfactuals (Pearl, 2009).

Using the model for planning provides a strong test for its
generalization capabilities, by extending it to a task it was not
initially designed or trained to do. Successful generalization
would reinforce the validity of the model of human emotion
understanding in general, and also suggest that causally struc-
tured generative models could support, and indeed might be
critical for, a model of planning to change emotions.

Our approach of using strong generalization across tasks
to underscore the value of causal models closely parallels
previous arguments for causal models in intuitive physics
(Battaglia et al., 2013), and is directly motivated by recent
work in Theory of Mind (Ho, Saxe, & Cushman, 2022).
Action understanding and Theory of Mind have often been
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Figure 1: (A). The emotion prediction model of Houlihan et al. (2023). (B). Our proposed planning model. We generate
interventions by simulating the effects of each intervention on the target emotion, normalizing all of the predicted intensities
through a softmax function to obtain a probability distribution over interventions.

successfully modeled as inverse planning, where inferences
about goals are obtained by inverting a causal model of
how mental contents give rise to action (Baker et al., 2009;
Jara-Ettinger et al., 2016; Gerstenberg & Tenenbaum, 2017).
Bayesian inverse planning models have been used to account
for human inferences about beliefs and desires (Baker et al.,
2017), preferences (Jern et al., 2017), prosocial intent (Ull-
man et al., 2009), and moral judgments (Gerstenberg et al.,
2018; Kleiman-Weiner et al., 2015). However, these mod-
els have been primarily used to fit human predictions about
other people. Recent work has argued that our theories of
Theory of Mind should be informed by functions beyond just
prediction (Ho, Saxe, & Cushman, 2022), and our paper fol-
lows in a recent line of work using inverse planning models
as models of social decision making, in domains such as ped-
agogy (Ho et al., 2017; Gweon, 2021) and impression main-
tenance (Yoon et al., 2020). Given that we are planning over
an inverse planning-based model of emotions, our work can
be construed as an application of inverse inverse planning
(Chandra et al., 2023), which has been used to explain key
features of human expression and depiction.

Using a causal generative model enables mental simulation
of a range of hypotheticals and counterfactuals. In this work
we model how people modify and craft scenarios to elicit spe-
cific emotional experiences in others, by asking them to plan
over the situations that others encounter and the actions that
others make. The underlying idea is that abstract reasoning
over a generative Theory of Mind forms the computational
basis for more constrained social cognition (such as planning
how to modify an environment to change the emotions of a
specific person, predicting how people will react to events, or

inferring people’s mental contents from their behavior).

Methods
Experimental setting
As mentioned, we are interested in interventions and deci-
sions taken with the goal of inducing an emotion in an agent.
To that end, we use the GoldenBalls game show as a test
bed for all of our experiments and models. In GoldenBalls,
a group of contestants play a sequence of games involving
strategic deception and honesty. In the final segment, the
only two players who have managed to avoid being elim-
inated play a variation of a one-shot prisoner’s dilemma.
Each player makes a choice to cooperate (“split”) or defect
(“steal”) in private, and then the two players simultaneously
reveal their choices. If both players choose “split” they each
win half of the jackpot. If one player steals and the other
splits, the player who chose “steal” wins the entire pot leav-
ing the opposing player with nothing. If both steal, both play-
ers leave with nothing. All of our experimental paradigms are
based on this implementation of the prisoner’s dilemma.

The Split or Steal game implemented by GoldenBalls of-
fers several experimental advantages. The game state can be
described by a small number of variables, making modeling
tractable, while the emotional variability present in the game
is rich and naturalistic. The televised and highly-public na-
ture of the game makes factors like reputation and humiliation
much more salient than if the game were completely anony-
mous (although we collect emotion predictions for an anony-
mous variant in Experiment 2). Finally, GoldenBalls has been
used in previous studies of emotion prediction (Houlihan et
al., 2022, 2023), and our model directly builds on the work of
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Houlihan et al. (2023).
To study planning for emotions, we focus on the interven-

tions that the GoldenBalls game affords.The final round of
a GoldenBalls episode can be represented as the actions of
the two players, along with the amount of money at stake.
Therefore, intervening on the GoldenBalls “world” consists
of modifying the values of at most three variables. This gives
us tractability in modeling while preserving some of the rich-
ness present in real-world social interactions.

Note that our interventions allow for directly manipulating
a player’s actions, which is not typically a naturalistic affor-
dance. However, as previously discussed, people’s capacity
for abstract, hypothetical reasoning over a Theory of Mind is
likely what enables more grounded action planning that gen-
eralizes well across a wide variety of social cognitive tasks.

Computational model
Houlihan et al. (2023) defined a model that takes in a spec-
ification of the game state (the actions of the players and
the amount of money at stake) as input, and outputs a dis-
tribution of predicted emotion intensities conditional on that
game state. Briefly, their model consisted of three sequen-
tial components designed to emulate how observers predict
players’ emotional reactions. Component (1) uses inverse
planning to infer what mental contents were likely to have
motivated a player’s action. This yields a joint distribution
over a player’s beliefs about their opponent, inferred reputa-
tional consequences for acting prosocially or competitively,
preferences for selfish and social outcomes, and desires to
manage other people’s inferences. Component (2) computes
a joint distribution over appraisal variables that encode eval-
uative features of the situation, combining the outcome of the
game with the beliefs and preferences of the player inferred
via inverse planning. Each appraisal variable represents an
expected, achieved, or counterfactual utility for monetary fea-
tures, first-order social features such as fairness and inequity
aversion, or higher-order reputational features such as the
player’s inference of how much people observing the game
will believe that the player’s action was motivated by selfish
or prosocial goals. Component (3) transforms the computed
distribution over appraisal variables into predicted intensities
of 20 emotions.

More formally, their prediction model infers a joint dis-
tribution p(e | a1,a2, j), where e ∈ [0,1]20 is the intensity of
20 target emotions that the target agent (player 1) is ex-
pected to feel (see Figure 3 for the full list of emotion la-
bels), a1 ∈ {split, steal} and a2 ∈ {split, steal} are the actions
of the target player and the opposing player, respectively, and
j is the size of the jackpot. Since we are only interested in
a target emotion et , we obtain the distribution p(et |a1,a2, j)
by marginalizing over all of the other emotions. We note
that for more sophisticated planning that involves maximiz-
ing or minimizing several emotions jointly, another approach
should be considered that preserves the covariance between
predicted emotions.

Importantly, their model was designed and trained exclu-

sively for prediction, not planning interventions. The novel
contribution of the current work is to use the prediction model
(Figure 1A) as a way to simulate the effects of interventions,
in service of selecting the intervention that best produces the
desired emotional state (Figure 1B). The expected effect of
intervention I = (a1,a2, j) on et is given by E[et | a1,a2, j].
This expectation is calculated by assuming the game state and
player actions are defined according to I, running the predic-
tive model forward to generate predicted emotion intensities,
and then averaging over the predictions.

We use the softmax choice function (Luce, 2005) to de-
cide between interventions. That is, for each interven-
tion I, our model selects that intervention with probability
p(I) ∝ exp(β ·E[et |I]) p0(I), where β is the inverse tempera-
ture parameter that controls the “rationality” of the decision
maker. We choose p0(I) to be the uniform distribution over
interventions.

We emphasize that while our model would work with any
black box emotion predictor, our overall hypothesis is that
emotion intervention is built on an intuitive theory of others’
emotions that is abstract, generative, and causally structured,
just as human Theory of Mind is.

Baselines While our goal is to understand whether a causal
model of emotions can be applied to planning interventions,
it’s possible that not all components of the model are nec-
essary for planning. As such, we consider two alternative
baselines, corresponding to ablations of the full model.

The social lesioned model is a model that predicts interven-
tions solely based on two monetary features: achieved utility
(how much money was won or lost by the target player), and
prediction error (how much money was won or lost by the
target player relative to their expected payout), thus ignoring
social values (e.g. inequity aversion) and reputational factors.
We implement this model by applying the same planning pro-
cedure to the SocialLesion model of (Houlihan et al., 2023).

The second is a purely statistical model (the Uncon-
ditional model) that samples interventions from a prior
p(I) = p(a1) · p(a2) · p(J), without conditioning on the par-
ticular emotion. We set each of these prior probabilities to
empirical frequencies calculated from Experiment 2. The
purpose of this baseline is to test for variability in interven-
tions between emotions: if people choose the same interven-
tions irrespective of which emotion they were trying to elicit,
then we would expect this model to account well for human
judgments.

Experiment 1
Previous work has shown that participants have strong intu-
itions about the emotions that specific outcomes in Golden-
balls will elicit (Houlihan et al., 2023). Our first preregistered
experiment instead asks them to leverage these intuitions to
plan interventions to elicit a target emotion, to test whether
the choices they make align with predictions made by our
model1. To do so, we first focus on the simplest possible in-

1Preregistered at: https://aspredicted.org/j2mc4.pdf
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Figure 2: Model predictions versus human choices in Experiment 1 for (A) our proposed model, (B) a model that makes
interventions based solely on the monetary features, and (C) a model that chooses interventions based on empirical frequencies
collected from humans. For each target emotion to be elicited and original game state, we plot the probability that the model
assigns to any given intervention on that original game state, against how likely humans are to select the same intervention. Our
model significantly outperforms all other models in accounting for player interventions.

tervention: changing only one player’s actions.

Procedure Participants were introduced to the structure of
the GoldenBalls game. They were told that they would first
see the original result of a round of GoldenBalls, and then
indicate what the players should have done differently, in or-
der to make a target player feel more of a particular emo-
tion. They were given three options: to change what ac-
tion the target player chose (flipping from steal to split or
vice versa), what action the opposing player chose, or to
leave both players’ choices the same. Crucially, they were
not allowed to manipulate both player’s choices simultane-
ously. The exact value of the jackpot, and the original de-
cisions of the players were randomized for each trial. Fol-
lowing previous work, we defined the jackpot sizes to be
{$77, $124, $61,430, $138,238}.

On each trial, participants were shown the target player and
the opposing player, instructed on which emotion they were
tasked to elicit, and were shown the original outcome of the
game. They then proceeded to choose an intervention out of
the three offered. We used a subset of 8 face stimuli for the
players from Houlihan et al. (2023), and randomized the faces
across trials so that no participant saw the same face twice.

We probed for interventions on 20 emotion labels (see Fig-
ure 3). Each target emotion was associated with four possible
original game states (whether each player “split” or “stole”)
that participants were asked to intervene on, resulting in a to-
tal of 80 stimuli.

Participants We recruited participants (n=300) from Pro-
lific. The task took approximately 6 minutes, for which par-
ticipants were compensated $1.50. We excluded the fastest
10% of participants from our analyses.

Results For each original game state S = (a1,a2, j), there
are three possible choices: S itself (corresponding to no in-
tervention), the state with the target player’s action changed:
(¬a1,a2, j), and the state with the opposing player’s action

changed: (a1,¬a2, j). The planning model uses the softmax
function so that the probabilities of choosing each of these
three interventions sum to 1. We select the value of β that
best fits the data through a random grid search procedure. All
subsequent analyses and experiments are run with β frozen.

Results are shown in Figure 2. Empirically, we find that the
model-predicted probability of an intervention aligns closely
with the empirical human probability of choosing that inter-
vention (r = 0.86). Furthermore, our model drastically out-
performs the two baselines on this same task (r = 0.46,0.12),
respectively for the SocialLesion and Unconditional models.

We fit multinomial mixed effects regressions with ran-
dom intercepts by participant, regressing the choice of inter-
vention against the probability that the model chooses that
same intervention. We find a significant effect for our model
(β = 2.36, SE = 0.07, p < 10−16).

Experiment 2
Experiment 1 showed that participant’s choices of what in-
terventions to take were well predicted by our computational
model. However, the space of interventions was heavily re-
stricted, only allowing for one of the player’s actions to be
modified.

To that end, in our second preregistered experiment, we
instead ask participants to design world states to elicit a tar-
get emotion2. Instead of acting to change a particular world
state, participants are now asked to create entirely new states.
This not only offers a conceptual replication and extension of
Experiment 1, it also allows us to test the generalization capa-
bilities of our model, by fixing the sole free parameter β and
generalizing to newly collected data.

Experiment 1 showed that there is a substantial amount of
between-emotion variability in the interventions that people
choose. However, the state space of the game (players’ ac-
tions and jackpot size) is too low dimensional to separate out

2Preregistered at https://aspredicted.org/z3sa8.pdf
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Figure 3: Distributions for interventions on player actions (left) and jackpot size (right) for Experiment 2. We use C to represent
cooperation and D for defection in the prisoner’s dilemma. These distributions were obtained by marginalizing over all other
variables, and the height of each bar indicates the marginal probability that the model or humans assign to that specific choice.
Our model accounts for most of the patterns seen in interventions on player choice, but notably, remains ambivalent about
jackpot size in cases where human participants almost unanimously choose to make the jackpot size large.

all of the 20 emotions that we probe for. To further distin-
guish between intervening on emotions such as Embarrass-
ment as opposed to Regret, we introduce a new variable that
allows participants to vary the reputational structure of the
game. Participants are introduced to two variants of Golden-
Balls — the public game (i.e. the variant shown in exp 1), in
which players engage in the prisoner’s dilemma on live tele-
vision and a studio audience, and the private game, in which
the game is played over the radio with players calling into
the station and communicating exclusively over a text inter-
face. Thus, in the private game, the players’ identities are
completely obscured from both the audience and each other.

Procedure Participants were first introduced to the struc-
ture of the GoldenBalls game. They were told that the task
was to design specific scenarios to make a player feel a tar-
get emotion, by selecting (1) the action of the target player
(whether the player split or stole) (2) the action of the op-
posing player, (3) the amount of money at stake (whether
the jackpot should be high or low), and (4) the reputational
structure of the game (whether the game should be pub-
lic or private). The exact values of the low / high jackpot
size were randomized between trials. We split the jackpot
sizes used in Experiment 1 into two groups: the low jack-
pot sizes were {$77, $124} and the high jackpot sizes were
{$61,430, $138,238}.

On each trial, participants were shown the target player and
opposing player, instructed as to which emotion to elicit, and
given the possible interventions to choose from. We probe
the same 20 emotions as in Experiment 1, and the identities
of each player were randomized between trials in the same
fashion.
Participants We recruited participants (n=250) from the
Prolific research platform. The task took approximately
6 minutes, for which participants were compensated $1.50.
We excluded the fastest 10% of participants from our analy-
ses.
Results All predictions were made with the value of β

learned in Experiment 1. To generate model predictions for
interventions, we plan over all 8 game states (a1,a2, j). Note
that the emotion prediction model was only trained to pre-
dict human judgments for the original (i.e. public) version of
GoldenBalls. At present, we do not generate model predic-
tions for the reputational structure manipulation, but rather
restrict modeling to the jackpot size and players’ actions.3

Results are shown in Figures 3 and 4. As with Exper-
iment 1, our model closely predicts the interventions that
humans make on the player choices. To quantify this fit,

3However, these reputational interventions may serve as useful
data for future elaborations of our model.
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Figure 4: Model and human predictions for the player action interventions of Experiment 2. The plots show the model proba-
bility versus human probability of selecting an intervention for (A) our proposed model, (B) a model that makes interventions
based on the monetary gain or loss for the target player, and (C) a model that chooses interventions according to a prior dis-
tribution, not conditioned on the particular emotion. Our model significantly outperforms all other models in accounting for
player interventions.

we compute the KL-Divergence DKL(p||q) = ∑x p(x) log p(x)
q(x)

between the distribution over interventions predicted by the
model and by humans for each emotion. We find that our
model shows the closest average alignment with the empirical
distribution over interventions for humans, with KL = 0.049,
dramatically outperforming the SocialLesion model and Un-
conditional model (KL = 0.12,0.29, respectively).

One key area of divergence between our model and peo-
ple is that people almost universally choose to set the jackpot
size to be high, but our model remains non-committal about
jackpot size for certain emotions. This is because the emotion
prediction model infers that these particular emotions depend
less on the size of the jackpot and more on other features of
the game, and so varying the size of the jackpot only slightly
influences the predicted emotion intensity.

Discussion and Future Directions
Our results suggest that when people are asked to de-
sign interventions that affect others’ emotions, their choices
are broadly consistent with model-based planning over a
causally-structured generative Theory of Mind. At the same
time, there still remains a substantial explanatory gap be-
tween the model and human data. Is this gap in performance
due to the emotion prediction model, or in the decision rule
built on top of the predictions? Future work should investi-
gate the extent to which deviations from human planning can
be mitigated by simply training a better prediction model—or
whether jointly training the model to do both prediction and
planning simultaneously is needed.

Because our goal was to test how a model exclusively
trained on prediction might generalize to planning, the model
has no explicit representation of goals, or is goal-directed in
any way. However, recent work has emphasized the goal-
directed nature of our representations (Ho, Abel, et al., 2022),
suggesting that our models adapt to the task at hand. As such,
we might expect that our internal predictive model is not only

able to predict people’s emotions and behavior, but also inte-
grate additional information or discard irrelevant information
when necessary, depending on the goal.

Our results support the conclusion that people in our task
are planning interventions by leveraging a causal model of
emotions with structured representations (such as beliefs and
desires), but they do not rule out other views regarding how
people mentally represent and use social information. While
the emotion prediction model employed in this work uses
structured latent representations, we treat the model as a
“black box”, and could theoretically obtain the same results
from a less structured model that does not explicitly repre-
sent mental contents such as beliefs, desires, and appraisals.
Further evidence could come from more aggressive tests of
generalization, asking people to intervene on situations that
the prediction model was not explicitly trained on. Another
avenue is to test interventions on intermediate states of the
model, such as interventions on agents’ beliefs or desires.
Doing so would distinguish models with explicit represen-
tations of beliefs and desires, without which these interven-
tions would not be possible. In general, a promising future
direction is to work towards further evidence for how people
predict or plan, by establishing or breaking links in the causal
chain of the model.

Finally, in this work we primarily focused on targeted in-
terventions in a limited domain, mostly consisting of chang-
ing the values of several binary variables. However, much
of human expression and storytelling involves constructing
worlds that are considerably less constrained. In storytelling,
the only limiting factor in the space of interventions is the
imagination of the author, but for it to be a good story, it
should still adhere to people’s abstract and causal intuitions
connecting situations with their expected emotional experi-
ences. A promising direction of future work is to extend our
model to model aspects of human storytelling, depiction, and
acting (Chandra et al., 2023).
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