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Abstract

The algebra and arithmetic of vector-valued modular forms on Γ0(2)

by

Richard Gottesman

In this thesis, we investigate the module structure and the arithmetic of vector-valued modular

forms. We show that for certain subgroups H of the modular group, the module M(ρ) of vector-

valued modular forms for a representation ρ of H is a free module of dimension dim ρ. In the

case when ρ is an irreducible two-dimensional representation of Γ0(2), we compute a basis for

M(ρ) using the modular derivative. We then express the component functions of an element F

of M(ρ) of minimal weight in terms of the Gaussian hypergeometric series, a Hauptmodul of

Γ0(2), and the Dedekind η-function. This allows us to obtain explicit formulas for the Fourier

coefficients of F . We say that a function f whose Fourier coefficients are algebraic numbers

has unbounded denominators if the sequence of the denominators of the Fourier coefficients

of f is unbounded. We show that if ρ has certain properties then the Fourier coefficients of a

normalization of each of the component functions of F are algebraic numbers. Moreover, we

show that both component functions of this normalization have unbounded denominators. We

then prove that if X is any vector-valued modular form for ρ whose component functions have

Fourier coefficients that are algebraic numbers then both of the component functions of X have

unbounded denominators.
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Chapter 1

Introduction

1.1 Motivation

Vector-valued modular forms play a fundamental role in number theory. Two ex-

amples include the theory of Jacobi forms [8] and the work of Borcherds [4]. Vector-valued

modular forms have been effectively studied from different perspectives including algebraic ge-

ometry ([5], [6]), vector-valued Poincaré series ([16], [17]), and a Riemann-Hilbert approach

([12]). The arithmetic of the Fourier coefficients of vector-valued modular forms for a represen-

tation of the modular group Γ have been intensively studied by Cameron Franc, Chris Marks,

and Geoff Mason ([9], [11], [19]). One of the motivations for their work is the unbounded

denominator conjecture of Atkin and Swinnerton-Dyer ([1]). Atkin and Swinnerton-Dyer gave

examples of modular forms on noncongruence subgroups whose Fourier coefficients have un-

bounded denominators. Franc and Mason have shown in [9] that if ρ is a two-dimensional irre-

ducible representation of Γ such that ker ρ is a noncongruence subgroup then any vector-valued
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modular form for ρ whose Fourier coefficients are algebraic numbers has the property that the

denominators of the Fourier coefficients of each of its component functions is unbounded. Their

technique involves showing that a minimal weight vector-valued modular form for ρ satisfies a

second order differential equation whose coefficients are modular forms on Γ. This differential

equation can be described using a single parameter that depends on ρ.

The focus of this thesis is the study of the module structure together with the arith-

metic properties of vector-valued modular forms for a two-dimensional irreducible represen-

tation ρ of Γ0(2). In this thesis, we show that the module of vector-valued modular forms for

such a ρ is a free module. We then study the modular linear differential equation that is satis-

fied by a vector-valued modular form of minimal weight. In contrast to the case when ρ is a

representation of Γ, this differential equation is dependent on three parameters, instead of one.

These additional parameters present an interesting and important challenge when studying the

arithmetic of two-dimensional vector-valued modular forms on Γ0(2). In this work, we make

progress towards proving that if ρ is a two-dimensional irreducible representation of Γ0(2)

such that ker ρ is a noncongruence subgroup then any vector-valued modular form for ρ whose

Fourier coefficients are algebraic numbers has the property that the denominators of the Fourier

coefficients of each of its component functions is unbounded. Indeed, we prove this conjecture

is true for a certain class of representations.
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1.2 Overview of the thesis

In chapter two, we define vector-valued modular forms and study the module structure

of vector-valued modular forms. We use ideas from commutative algebra to show in Theorem

2.2.2 that the module of vector-valued modular forms is Cohen-Macaulay. We then show in

Theorem 2.2.3 that for certain subgroups H of the modular group Γ, the module of vector-

valued modular forms M(ρ) for a representation ρ of H is free of rank dim ρ. In particular, we

show that the module of vector-valued modular forms for a representation ρ of Γ0(2) is a free

module. We note that the results we obtained in chapter one were also obtained using other

methods by Cameron Franc and Luca Candelori. (see [5], [6]).

In chapter three, we show how to use the modular derivative to compute a basis for

the module of vector-valued modular forms M(ρ) with respect to a two-dimensional irreducible

representation ρ of Γ0(2). Let k0 denote the least integer for which Mk0(ρ) 6= 0 and let F denote

a nonzero element in Mk0(ρ). We prove in Theorem 3.0.1 that F and Dk0F := q d
dq(F)− k0

12 E2F

form a basis for Mk0(ρ).

In chapter four, we show that F satisfies an ordinary differential equation on the com-

plex upper half-plane whose coefficients are modular forms on Γ0(2). We then use a Haupt-

modul of Γ0(2), which we denote by J, to transform this differential equation into a second

order ordinary differential equation on P1(C). The singularities of this differential equation oc-

cur at 0,1, and ∞ and they are all regular. A differential equation of this form can be solved

3



explicitly using the Gaussian hypergeometric function. In Theorem 4.1.7, we express the two

component functions of F in terms of the Dedekind η-function, the Hauptmodul J, and the

Gaussian hypergeometric function evaluated at J−1. In the appendix, we prove that the function

J is a Hauptmodul and compute its first and second derivatives. These properties are used in

chapter four. We also establish a certain integrality property related to J. This property is used

in chapter five.

In chapter five, we study the arithmetic properties of the Fourier coefficients of vector-

valued modular forms with respect to ρ. To do so, we put some stipulations on ρ to ensure that

a certain normalization F ′ of the component functions of F have Fourier coefficients which

are algebraic numbers. In Theorem 5.2.14, we show that if two sets of prime numbers S and

S̃ that are determined by ρ are infinite then the denominators of the Fourier coefficients of

each of the component functions of F ′ are unbounded. In Theorem 5.2.17, we prove that for

a certain class of representations ρ, S and S̃ are infinite. Consequently, each of the sequences

of denominators of the Fourier coefficients of the component functions of F ′ are unbounded.

We show in Theorem 5.3.7 that if S and S̃ are infinite and if X is any vector-valued modular

form for ρ whose component functions have Fourier coefficients that are algebraic numbers

then the sequence of the denominators of the Fourier coefficients of each of these component

functions are unbounded. In Theorem 5.3.8, we prove that for a certain class of representations

ρ, every vector-valued modular form for ρ whose Fourier coefficients are algebraic numbers

has the property the sequence of the the denominators of the Fourier coefficients of each of its

component functions are unbounded.

4



Chapter 2

The module of vector-valued modular

forms

2.1 Preliminaries on vector-valued modular forms

Let H denote the complex upper-half plane, let k ∈ Z, and let Γ = SL2(Z). Let T :=

 1 1

0 1

 .

If F : H→ Ct is a holomorphic function and if γ =

 a b

c d

 ∈ Γ then

F |kγ(τ) := (cτ+d)−kF
(

aτ+b
cτ+d

)
.

In this way, Γ acts on holomorphic functions on H. Indeed, if γ1,γ2 ∈ Γ then F |kγ1γ2 =

(F |kγ1)|kγ2. Let H denote a finite index subgroup of Γ and let ρ denote a finite-dimensional

complex representation of H. Let d denote the dimension of ρ.

5



Definition 2.1.1. A vector-valued modular form F of weight k with respect to ρ is a holomor-

phic function F : H→ Cd which is also holomorphic at all of the cusps of

H\(H
⋃
P1(Q)) and such that for all τ ∈ H and for all

 a b

c d

 ∈ H,

F
(

aτ+b
cτ+d

)
= (cτ+d)k

ρ


 a b

c d


F(τ). (1)

The above equation can also be expressed as F |kγ = ρ(γ)F for all γ ∈H. We now describe what

it means for F to be holomorphic at a cusp of H\(H
⋃
P1(Q)). Our exposition closely follows

[10]. As H is a finite index subgroup of Γ, the subgroup
⋂

γ∈Γ

γ−1Hγ is a finite index subgroup of

Γ. Therefore there exists a smallest positive integer N for which T N ∈
⋂

γ∈Γ

γ−1Hγ. We now fix

some γ ∈ Γ and we will explain what it means for F to be holomorphic at the cusp γ ·∞. Let

h ∈ H such that γT N = hγ. Then

(F |kγ)|kT N = F |k(γT N) = F |k(hγ) = (F |kh)|kγ = (ρ(h)F)|kγ = ρ(h)(F |kγ).

Let A be an invertible matrix such that Aρ(h)A−1 is in modified Jordan canonical form. A matrix

is in modified Jordan canonical form if it is a block diagonal matrix whose blocks are of the form

λ

λ
. . .

. . . . . .

λ λ


.

The number λ is an eigenvalue of ρ(h). We note that

((AF)|kγ)|kT N = A(F |kγT N) = Aρ(h)(F |kγ) = Aρ(h)A−1(AF)|kγ.

6



Mason and Knopp have proven (see Theorem 2.2 in [15]) that the component functions of

(AF)|kγ corresponding to the block above (whose row and column size we denote by m) have

the form 

h1

h2 + τh1

h3 + τh2 +
(

τ

2

)
h1

...

hm + τhm−1 +
(

τ

2

)
hm−2 + · · ·+

(
τ

m−1

)
h1


where

hi(τ) = ∑
n∈Z

an(i)q
n+µ
N ,λ = e2πiµ,qN = e

2πiτ
N .

We say that F (or equivalently AF) is meromorphic, holomorphic, or cuspidal at the cusp

γ ·∞ if the qN-expansion of each hi has respectively only finitely many nonzero coefficients an

for which Re(n+ µ) < 0, no nonzero coefficients an for which Re(n+ µ) < 0, and no nonzero

coefficients an for which Re(n+µ)≤ 0. We note that this definition is independent of the choice

of µ. If at least one of the component functions of AF contains a term with a nonzero power of

τ then we say that AF and F are logarithmic vector valued modular forms.

2.2 The module of vector-valued modular forms

We denote the collection of all weight k vector-valued modular forms with respect to ρ by

Mk(ρ). We let M(ρ) :=
⊕

k∈Z Mk(ρ). We emphasize that every vector-valued modular form for ρ

has a weight. Therefore the homogeneous elements of M(ρ) are exactly the vector-valued mod-

7



ular forms for ρ. Let Mt(H) denote the collection of all classical weight t modular forms on H

and let M(H) :=
⊕

t∈Z Mt(H). The ring of classical modular forms on H acts on M(ρ). In fact, if

m ∈Mt(H) and if F ∈Mk(ρ) then for any γ ∈H, (mF)|k+tγ = m|tγF |kγ = mρ(γ)F = ρ(γ)(mF).

Thus mF ∈Mk+t(ρ). In this way, M(ρ) has the structure of a Z-graded M(H)-module. If H = Γ

then the M(H)-module structure of M(ρ) is completely understood:

Theorem 2.2.1. (Marks-Mason, Gannon, Franc-Candelori) Let ρ denote a representation of Γ.

Then M(ρ) is a free M(Γ)-module of rank equal to the dimension of ρ.

Theorem 2.2.1 was proven by Chris Marks and Geoff Mason using vector-valued Poincaré

series ([20]), by Terry Gannon using a Riemann-Hilbert perspective ([12]), and by Cameron

Franc and Luca Candelori using an algebro-geometric approach ([6]). In general, M(ρ) is not

free as a M(H)-module. The purpose of the rest of this chapter is to prove the following two

theorems concerning the M(H)-module structure of M(ρ). We note that one may also obtain

these theorems from the works of Franc and Candelori (see [6], [5]) but using different methods

than those in this thesis.

Theorem 2.2.2. Let H denote a finite index subgroup of SL2(Z) and let ρ denote a representa-

tion of H. Then M(ρ) is Cohen-Macaulay as a M(H)-module.

Theorem 2.2.3. Let H denote a finite index subgroup of SL2(Z) and let ρ denote a represen-

tation of H. Suppose that there exist homogenous elements X and Y in M(H) which are al-

gebraically independent such that M(H) = C[X ,Y ]. Then M(ρ) is a free M(H)-module whose

rank equals the dimension of ρ. Moreover, there exists a M(H)-basis for M(ρ) which consists

of homogeneous elements of M(ρ).

8



The hypothesis of Theorem 2.2.3 is satisfied for only a few subgroups of Γ. In [21], Wagreich

classified those finitely-generated Fuchsian subgroups for which the graded ring of modular

forms is generated as an algebra by two or three elements. He then determines the algebra

structure of all such graded rings of modular forms. Examples of subgroups H which satisfy

the hypothesis of Theorem 2.2.3 are Γ,Γ0(2),Γ(2),and Γ(4).

We will use the following Lemma in the proof of Theorem 2.2.2 and Theorem 2.2.3.

Lemma 2.2.4. Let IndΓ
H(ρ) denote the induction of the representation ρ from H to Γ. Then

M(ρ) and M(IndΓ
H(ρ)) are isomorphic as Z-graded M(Γ)-modules. In particular, for all k ∈ Z,

Mk(ρ)∼= Mk(IndΓ
H(ρ)).

We postpone the proof of Lemma 2.2.4 until the end of the chapter. It was proven by Geoff

Mason and Marvin Knopp in [17] that if H = Γ and ρ(T ) has finite order then Mk(ρ) has finite

dimension, Mk(ρ) = 0 if k << 0, and M(ρ) 6= 0. These results of Mason and Knopp combined

with Lemma 2.2.4 imply that for any representation ρ of H for which ρ(T N) has finite order, we

have that Mk(ρ) has finite dimension, Mk(ρ) = 0 if k << 0, and M(ρ) 6= 0. Luca Candelori and

Cameron Franc (see [6], [5]) describe how to interpret Mk(ρ) as the space of global sections

of a certain holomorphic vector bundle. This interpretation allows them to show that for any

representation ρ, Mk(ρ) has finite dimension, Mk(ρ) = 0 if k << 0, and M(ρ) 6= 0. In particular,

there exists a unique integer k such that Mk(ρ) 6= 0 and M j(ρ) = 0 if j < k.

We now recall some definitions and theorems from commutative algebra that we will use in our

9



proofs of Theorem 2.2.2 and Theorem 2.2.3. Our reference is Benson’s text (see [2].)

Let A denote a commutative Noetherian ring and let M denote a finitely generated A-module.

Definition 2.2.5. An element a ∈ A is a non-zero-divisor for M if am = 0 for m ∈ M implies

m = 0.

Definition 2.2.6. An element a ∈ A is regular for M provided that 0 6= M, M 6= aM, and a is a

non-zero-divisor for M.

Definition 2.2.7. A sequence x1, ...,xr ∈ A is a regular sequence for M if x1 is regular for M

and if for all i with 2≤ i≤ r, xi is regular for M/(x1M+ ....+ xi−1M).

Definition 2.2.8. The depth of the module M is the length of the longest regular sequence for

M. The depth of the ring A is its depth as an A-module.

Definition 2.2.9. The Krull dimension of a commutative ring A is the maximum length n of

a chain of proper inclusions of prime ideals pn ⊂ pn−1 ⊂ ·· · ⊂ p1 ⊂ p0 or ∞ if there are such

chains of unbounded length.

Definition 2.2.10. If M is an A-module, the Krull dimension of the module M is defined to be

the Krull dimension of the ring A/AnnA(M) where AnnA(M) := {a ∈ A : aM = 0}.

Definition 2.2.11. The ring A or the module M is Cohen-Macaulay if its depth is equal to its

Krull dimension.

Definition 2.2.12. Let A and B denote commutative rings such that A⊂ B. We say that B is an

integral extension of A if every element of B is integral over A. If B is an integral extension of

A and finitely generated over A as a ring then we say that B is a finite extension of A.

10



We shall use the following result from commutative algebra. For a proof, see Corollary 1.4.5 in

Benson [2].

Theorem 2.2.13. If B is a finite extension of A then the Krull dimensions of A and B are equal.

Let E4 = 1+240∑
∞
n=1 σ3(n)qn ∈M4(Γ) and let ∆ = q(1−qn)24 ∈ S12(Γ).

Lemma 2.2.14. Let H denote a finite index subgroup of SL2(Z) and let ρ denote a representa-

tion of H. The sequence ∆,E4 is a regular sequence for the M(H)-module M(ρ).

Proof. It is clear that ∆ is a non-zero-divisor for M(ρ) since ∆ has no zeros in H. To prove that

∆ is regular for M(ρ), it suffices to show that M(ρ) 6= ∆M(ρ). Suppose that M(ρ) = ∆M(ρ). Let

X denote a non-zero element in M(ρ) of minimal weight. Then X = ∆V for some V ∈ M(ρ).

The weight of V is less than weight of X . This is a contradiction because of the minimality of

the weight of X . Hence M(ρ) 6= ∆M(ρ). We have thus shown that ∆ is regular for M(ρ). We will

now show that E4 is regular for M(ρ)/∆M(ρ). We have already shown that M(ρ)/∆M(ρ) 6= 0.

We now argue that E4 is non-zero-divisor for the module M(ρ)/∆M(ρ). Suppose that Y ∈M(ρ)

and E4(Y +∆M(ρ)) =∆M(ρ). Then E4Y ∈∆M(ρ). We write E4Y =∆Z for some Z ∈M(ρ). We

wish to show that Y ∈ ∆M(ρ) and it suffices to show that this is true when Y is homogeneous.

Let k denote the weight of Y . Let yi denote the i-th component function of Y , let zi denote the

i-th component function of Z, and let γ∈ Γ. Therefore E4yi = ∆zi and E4(yi|kγ) = ∆(zi|k−8γ). As

∆= q+O(q2) and E4 = 1+O(q), all the powers of q in yi|kγ occur to at least the first power. We

have thus shown that ∆−1(yi|kγ) contains no negative powers of q and is therefore holomorphic

at the cusp γ ·∞. Hence Y
∆

is holomorphic at all of the cusps. As ∆ does not vanish in H, we have

that Y
∆

is holomorphic in H. Hence Y
∆
∈M(ρ). Therefore Y ∈ ∆M(ρ) and Y +∆M(ρ) = ∆M(ρ).

11



We have now proven that E4 is a non-zero-divisor for the module M(ρ)/∆M(ρ). Finally, we

need to show that E4(M(ρ)/∆M(ρ)) 6= M(ρ)/∆M(ρ). Let X denote a nonzero element in M(ρ)

of minimal weight, which we denote by w. If M(ρ)/∆M(ρ) = E4(M(ρ)/∆M(ρ)) then there

exists some F ∈ M(ρ) such that X +∆M(ρ) = E4F +∆M(ρ). Let G ∈ M(ρ) such that X =

E4F +∆G. We may write F and G uniquely as a sum of their homogeneous components. Let

Fw−4 and Gw−12 denote the weight w− 4 and the weight w− 12 homogeneous components of

F and G. Then X = E4Fw−4 +∆Gw−12. We must have that Fw−4 6= 0 or Gw−12 6= 0 since X 6= 0.

Thus we have found a nonzero element of M(ρ) (namely, Fw−4 or Gw−12) whose weight is less

than the weight of X . This is a contradiction. Thus M(ρ)/∆M(ρ) 6= E4(M(ρ)/∆M(ρ)). We have

shown that E4 is regular for M(ρ)/∆M(ρ) and our proof is complete.

The proofs of Theorem 2.2.2 and Theorem 2.2.3 require some results about M(H). We prove

them now.

Lemma 2.2.15. If H is a finite index subgroup of Γ then M(H) is a free M(Γ)-module whose

rank equals [Γ : H].

Proof. Let α denote the trivial representation of H. Lemma 2.2.4 implies that M(α) = M(H)

and M(IndΓ
Hα) are isomorphic M(Γ)-modules. Moreover, Theorem 2.2.1 implies that M(IndΓ

Hα)

is a free M(Γ)-module of rank equal to dim IndΓ
Hα= [Γ : H]. Thus M(H) is a free M(Γ)-module

of rank [Γ : H].

Lemma 2.2.16. If H is a finite index subgroup of Γ then M(H) is a Noetherian ring.

Proof. Lemma 2.2.15 states that there exist b1, ...,b[Γ:H] ∈M(H) such that M(H)=
⊕[Γ:H]

i=1 M(Γ)bi =

M(Γ)[b1, ...,b[Γ:H]] = C[E4,E6][b1, ...,b[Γ:H]]. Let X1, ...,X[Γ:H] denote indeterminates.
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Let φ : C[E4,E6][X1, ...,X[Γ:H]]→C[E4,E6][b1, ...,b[Γ:H]] be the map that sends each Xi to bi. The

surjectivity of φ implies that C[E4,E6][b1, ...,b[Γ:H]] =M(H) is a quotient of C[E4,E6][X1, ...,X[Γ:H]].

The ring C[E4,E6][X1, ...,X[Γ:H]] is Noetherian and therefore any quotient of it is also Noethe-

rian. We have thus shown that M(H) is Noetherian.

Lemma 2.2.17. M(H) is a finite extension of M(Γ). Moreover, M(H)0 = C and M(H) is finitely

generated as a C-algebra.

Proof. We need to show that M(H) is an integral extension of M(Γ) and that M(H) is a fi-

nite ring extension of M(Γ). We see that M(H) is a finite ring extension of M(Γ) because

M(H) = C[E4,E6][b1, ...,b[Γ:H]] = C[E4,E6,b1, ...,b[Γ:H]]. We now show that M(H) is an inte-

gral extension of M(Γ). Let {γi : 1 ≤ i ≤ [Γ : H]} denote a complete set of right coset rep-

resentatives of H in SL2(Z) where γ1 denotes the identity element in SL2(Z). If f ∈ Mk(H)

then f is a root of the polynomial P(z) := ∏
[Γ:H]
i=1 (z− f |kγi). The polynomial P(z) is monic

and we will show that it is an element of M(SL2(Z))[z]. Let γ ∈ SL2(Z) and let γσ(i) denote

the unique element in the set {γi : 1 ≤ i ≤ [Γ : H]} such that γγi ∈ Hγσ(i). Let P(z)|kγ denote

the polynomial obtained by acting via |kγ on each of the coefficients of P(z). We have that

P(z)|kγ = ∏
[Γ:H]
i=1 (z− f |kγiγ) = ∏

[Γ:H]
i=1 (z− f |kγσ(i)) = P(z). Thus P(z) ∈M(SL2(Z))[z] since its

coefficients are invariant under |kγ for any γ ∈ SL2(Z). We have thus shown that M(H) is a

finite extension of M(SL2(Z)).

The holomorphic modular forms of weight zero for H give maps from the compact Riemann

surface H\(H
⋃
P1(Q)) to C. Any such map is bounded and is therefore constant.

13



Thus M(H)0 = C. The fact that M(H) = C[E4,E6,b1, ...,b[Γ:H]] demonstrates that M(H) is

finitely generated as a C-algebra.

Lemma 2.2.18. The Krull dimension of the M(H)-module M(ρ) is equal to two.

Proof. The Krull dimension of the M(H)-module M(ρ) is defined to be the Krull dimension of

the ring M(H)/AnnM(H)(M(ρ)). As the zeros of a nonzero holomorphic function are isolated,

AnnM(H)M(ρ) = 0. Therefore the Krull dimension of M(ρ) is equal to the Krull dimension of

M(H). We have shown in Lemma 2.2.17 that M(H) is a finite extension of M(SL2(Z)). It now

follows from Theorem 2.2.13 that the Krull dimension of M(H) is equal to the Krull dimension

of M(SL2(Z)). We conclude our proof by noting that the Krull dimension of M(SL2(Z)) =

C[E4,E6], is equal to two since the Krull dimension of a polynomial ring in two variables is

equal to two.

We now prove that M(ρ) is Cohen-Macaulay as a M(H)-module (Theorem 2.2.2).

Proof. (Proof of Theorem 2.2.2.)

We have shown that the Krull dimension of the M(H)-module M(ρ) is equal to two and that

M(ρ) has a regular sequence of length two. Therefore the depth of M(ρ) is at least two. More-

over, the depth is at most the Krull dimension (see page 50 in [2]), which is equal to two. Hence

the depth and the Krull dimension of M(ρ) are both equal to two.

We need the following result from commutative algebra to prove Theorem 2.2.3. This result is

stated and proven in Benson’s book [2].
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Theorem 2.2.19. (Theorem 4.3.5. in [2]) Let A denote a commutative Noetherian ring and let

M denote a finitely generated A-module. Assume that A =
⊕

∞
j=0 A j and M =

⊕
∞
j=−∞ M j are

graded, A0 = K is a field, and A is finitely generated over K by elements of positive degree.

Then the following statements are equivalent:

(i): M is Cohen-Macaulay.

(ii): If x1, ...xn ∈ A are homogenous elements generating a polynomial subring K[x1, ...,xn] ⊂

A/AnnA(M), over which M is finitely generated, then M is a free K[x1, ...,xn]-module. Moreover,

there exists a K[x1, ...,xn]-basis for M consisting of homogeneous elements of M.

Remark 1: We first note that if j is sufficiently negative then M j = 0 since M is finitely gen-

erated as an A-module. The fact that there exists a K[x1, ...,xn]-basis for M consisting of ho-

mogeneous elements of M follows from the proof of Theorem 4.3.5 in [2] but this fact does

not appear (at least explicitly) in the statement of Theorem 4.3.5 in [2]. In the proof that (i)

implies (ii) in Theorem 4.3.5, Benson shows that if y1, ...,yt are homogeneous elements of M

whose images form a K-vector space basis for M/(x1M + · · ·+ xnM) then y1, ...,yt form a ba-

sis for M as a K[x1, ...,xn]-module. We now explain why there exist homogeneous elements

y1, ...,yt of M whose images form a K-vector space basis for M/(x1M + · · ·+ xnM). Benson

shows in his proof of Theorem 4.3.5 that M/(x1M + · · ·+ xnM) has Krull dimension zero. We

note that M/(x1M+ · · ·+ xnM) is a finitely generated A-module since M is a finitely generated

A-module. We also note that M/(x1M + · · ·+ xnM) is a graded A-module since M is a graded

A-module and each of the xi are homogeneous. It follows from the graded form of Noether

normalization (Theorem 2.2.7 in Benson [2]) and the fact that M/(x1M+ · · ·+ xnM) has Krull
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dimension zero that K ⊂ A/AnnA(M/(x1M+ · · ·+xnM)) and M/(x1M+ · · ·+xnM) is a finitely

generated K-module. Because K is a field, M/(x1M + · · ·+ xnM) is a K-vector space of finite

dimension. The fact that M0 = K ⊂ A/AnnA(M/(x1M+ · · ·+ xnM)) together with the fact that

M/(x1M + · · ·+ xnM) is a graded A-module imply that M/(x1M + · · ·+ xnM) is a graded K-

module. Thus M/(x1M+ · · ·+ xnM) is a graded K-vector space of finite dimension. Therefore

there exist a finite number of homogeneous elements in M whose images form a K-vector space

basis for M/(x1M + · · ·+ xnM). This finite collection of homogenous elements in M form a

K[x1, ...,xn]-basis for M.

Remark 2: If x1, ...,xn ∈A are homogenous elements generating a polynomial subring K[x1, ...,xn]⊂

A/AnnA(M) over which M is finitely generated then n is equal to the Krull dimension of M. This

is explained in the graded form of Noether normalization (Theorem 2.2.7 in Benson [2]).

We will apply Theorem 2.2.19 by taking A = M(H) and M = M(ρ). We proceed with the proof

of Theorem 2.2.3.

Proof. (Proof of Theorem 2.2.3) We begin by showing that the hypotheses of Theorem 2.2.19

are satisfied if we take A := M(H) and M := M(ρ). It was shown in Lemma 2.2.16 that M(H)

is a Noetherian ring. We need to show that M(ρ) is finitely generated as a M(H)-module. The-

orem 2.2.1 implies that M(IndΓ
Hρ) is a free M(Γ)-module whose rank equals the dimension of

IndΓ
Hρ. Lemma 2.2.4 states that M(ρ) and M(IndΓ

Hρ) are isomorphic as M(Γ)-modules. Thus

M(ρ) is a free M(Γ)-module of rank dim(IndΓ
Hρ). As M(H) contains M(Γ) and the index of H

in SL2(Z) is finite, M(ρ) is finitely generated as a M(H)-module. We have shown in Lemma
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2.2.17 that M(H)0 = C and that M(H) is finitely generated as a C-algebra. In fact, the hypoth-

esis of Theorem 2.2.3 assumes that there exist homogeneous elements X and Y in M(H) which

are algebraically independent such that M(H) = C[X ,Y ]. It is also well-known that there are no

nonzero modular forms of negative weight on a finite index subgroup of Γ. We have thus shown

that the hypotheses of Theorem 2.2.19 are satisfied when A is taken to be M(H) and M is taken

to be M(ρ).

We established in Theorem 2.2.2 that M(ρ) is Cohen-Macaulay as a M(H)-module. We now

apply Theorem 2.2.19 to conclude that statement (ii) in Theorem 2.2.19 is true since we have

shown that statement (i) in Theorem 2.2.19 is true. We have explained in the previous paragraph

that M(ρ) is finitely generated over M(H) = C[X ,Y ]. Thus the hypothesis of statement (ii) in

Theorem 2.2.19 is satisfied by X and Y . Therefore the conclusion of statement (ii) is also true

since we have proven that statement (ii) is true. Thus M(ρ) is free as a C[X ,Y ] =M(H)-module.

We seek to compute the rank of M(ρ) as a M(H)-module, which we denote by r. We have

proven in Lemma 2.2.15 that M(H) is a free M(Γ)-module of rank [Γ : H]. This fact together

with the fact that M(ρ) is a free M(H)-module of rank r implies that M(ρ) is a free M(Γ)-

module of rank r[Γ : H]. However, we already explained in the beginning of this proof why M(ρ)

is a free M(Γ)-module of rank equal to dim IndΓ
Hρ= [Γ : H]dim ρ. Hence [Γ : H]dim ρ= [Γ : H]r

and r = dim ρ. We have thus shown that M(ρ) is free as a M(H)-module of rank dim ρ if M(H)

is a polynomial ring in two variables.
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It remains to prove Lemma 2.2.4. Let n denote the index of H in Γ and let g1, ...,gn denote a

complete set of left coset representatives of H in Γ. We extend ρ to a function on Γ, which

we also denote by ρ, by setting ρ(γ) = 0 if γ 6∈ H. With respect to our choice of left coset

representatives, we recall that for any g ∈ H,

IndΓ
Hρ(g) =



ρ(g−1
1 gg1) ρ(g−1

1 gg2) · · · ρ(g−1
1 ggn)

ρ(g−1
2 gg1) ρ(g−1

2 gg2) · · · ρ(g−1
2 ggn)

...
...

. . .
...

ρ(g−1
n gg1) ρ(g−1

n gg2) · · · ρ(g−1
n ggn)


.

In this section, we sometimes write Ind ρ for IndΓ
Hρ.

Definition 2.2.20. Let k ∈ Z and let F ∈Mk(ρ). We define

Ind F :=



F |kg−1
1

F |kg−1
2

·

·

·

Fk|g−1
n


In what follows, it will be convenient to take g1 to be the identity element and we take g1 = e
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from this point forwards. We define a map π : Mk(Ind ρ)→Mk(ρ) as follows:

π





G1

G2

·

·

·

Gn





:= G1.

where each Gi is a function from H to Cd . We recall that d = dim ρ. We extend the map Ind to

all of M(ρ) and the map π to all of M(Ind ρ) by linearity. We shall prove the following theorem

about the map Ind.

Theorem 2.2.21. If k ∈ Z then the the map Ind : Mk(ρ)→Mk(Ind ρ) is a vector space isomor-

phism. The map Ind extends to M(ρ) and is a Z-graded M(Γ)-module isomorphism from M(ρ)

to M(Ind ρ).

We will first prove some results about the maps π and Ind before we prove Theorem 2.2.21.

Proposition 2.2.22. If F ∈Mk(ρ) then IndΓ
HF ∈Mk(IndΓ

H ρ).

Proof. We note that as F is holomorphic in H then for each γ ∈ Γ, F |kγ is holomorphic in H

and therefore IndΓ
HF is holomorphic in H. Let N denote the smallest positive integer for which

T N ∈
⋂

γ∈Γ

γ−1Hγ and let qN = e
2πiτ

N . As F is holomorphic at all the cusps of H/(H
⋃
P1(Q)), we

have that for each γ ∈ Γ, no negative powers of qN occur in the component functions of F |kγ.

Thus IndΓ
HF is holomorphic at the cusp SL2(Z)/(H

⋃
P1(Q)). It now suffices to prove that for
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each g ∈ Γ, (IndΓ
HF)|kg = (IndΓ

Hρ)(g)IndΓ
HF . Equivalently, we will show that for each integer i

with 1≤ i≤ n,

(F |kg−1
i )|kg =

n

∑
t=1

ρ(g−1
i ggt)F |kg−1

t .

Fix an index i with 1 ≤ i ≤ n. Then there exists a unique index j for which g−1
i gg j ∈ H. We

then have that F |kg−1
i gg j = ρ(g−1

i gg j)F. Therefore

F |kg−1
i g = (F |kg−1

i gg j)|kg−1
j = (ρ(g−1

i gg j)F)|kg−1
j = ρ(g−1

i gg j)(F |kg−1
j ).

We now have that

n

∑
t=1

ρ(g−1
i ggt)F |kg−1

t = ρ(g−1
i gg j)F |kg−1

j = F |kg−1
i g = (F |kg−1

i )|kg.

We have thus proven that (IndΓ
HF)|kg = (IndΓ

Hρ)(g)IndΓ
HF .

Proposition 2.2.23. If F ∈Mk(Ind ρ) then π(F) ∈Mk(ρ).

Proof. Let F ∈Mk(Ind ρ) and let F1, ...,Fn denote the functions from H to Cd such that

F =



F1

F2

·

·

·

Fn



.
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We note that π(F) = F1. Let g ∈ H. There exists a unique index j for which g−1
1 gg j ∈ H. As

g1 = e and g ∈ H, we must have that g j = e. The assumption that F ∈Mk(Ind ρ) implies that

F1|kg =
n

∑
t=1

ρ(g−1
1 ggt)Ft = ρ(e−1ge)F1 = ρ(g)F1.

As F is a holomorphic function in H, F1 is also holomorphic in H. Let N denote the smallest

positive integer for which T N ∈
⋂

γ∈Γ

γ−1Hγ and let qN = e
2πiτ

N . As F is holomorphic at the cusp

SL2(Z)/(P1(Q)
⋃
H), there are no negative powers of qN in any of the component functions of

F1. Let γ ∈ Γ. Then the component functions of F1|kγ contains no negative powers of qN since

F1|kγ = ∑
n
t=1 ρ(γ)1,tFt and each of the component functions Ft contain no negative powers of qN .

We have thus shown that F1 is holomorphic at all of the cusps of H \(H
⋃
P1(Q)) and conclude

that F1 ∈Mk(ρ).

We observe that π◦ Ind = id. Thus π is surjective.

Proposition 2.2.24. The map π is a bijection.

Proof. As π is surjective, it suffices to show that π is injective. We first show that the restriction

of π to Mk(Ind ρ) is injective. Let F ∈Mk(Ind ρ) such that π(F) = 0. We write

F =



F1

F2

...

Fn


where each Fi is a function from H to Cdim ρ. We claim that F = 0. Suppose not. Then there

exists some index i with Fi 6= 0. Let g ∈ giHg−1
1 . Then g−1

i gg j ∈ H if and only if g1 = g j. Thus
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Fi|kg = ∑
n
t=1 ρ(g−1

i ggt)Ft = ρ(g−1
i gg1)F1. As π(F) = F1 = 0, we have that Fi|kg = 0. Hence

Fi = (Fi|kg)|kg−1 = 0, a contradiction. We have thus shown that the restriction of π to Mk(Ind ρ)

is injective.

Now, let F ∈ M(Ind ρ) for which π(F) = 0. We may write F uniquely as a sum of its ho-

mogeneous components: F = ∑i Gi,Gi ∈Mi(Ind ρ). As π(F) = ∑i π(Gi) = 0, π(Gi) ∈Mi(ρ),

we have that for each i, π(Gi) = 0. Hence Gi = 0 as the restriction of π to each Mi(Ind ρ) is

injective. Thus F = 0.

Corollary 2.2.25. The maps π and Ind are C-vector space isomorphisms and are inverse to

each other.

Proof. The maps π and Ind are linear. We have shown that π is a bijection and it is therefore

an isomorphism. As π ◦ Ind is the identity map, Ind is the inverse of π and it is therefore an

isomorphism.

We now proceed with the proof of Theorem 2.2.21.

Proof. (Proof of Theorem 2.2.21). All that we have left to check is that Ind is a graded M(Γ)-

module map. Let l,k ∈ Z. If f ∈Ml(Γ) and F ∈Mk(ρ) then we must show that

Ind( f F) = f Ind F.

We note that if i is any index then

( f F)|k+lg−1
i = f |lg−1

i F |kg−1
i = f (F |kg−1

i ).
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We have that

Ind( f F) =



( f F)|k+lg−1
1

( f F)|k+lg−1
2

·

·

·

( f F)k+l|g−1
n



=



f (F |kg−1
1 )

f (F |kg−1
2 )

·

·

·

f (Fk|g−1
n )



= f IndF.
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Chapter 3

The modular derivative and a basis for

vector-valued modular forms

We proved in Theorem 2.2.3 that if M(H) is a polynomial ring in two variables then M(ρ) is

a free M(H)-module whose rank equals the dimension of ρ. It is proven in the appendix that

the hypotheses of Theorem 2.2.3 are satisfied when H = Γ0(2). The purpose of this section to

use the modular derivative Dk to describe a basis for M(ρ) as a M(Γ0(2))-module when ρ is a

two-dimensional irreducible representation of Γ0(2).

Let E2(τ) = 1−24∑
∞
n=1 σ(n)qn. If k ∈ Z then Dk acts on holomorphic functions and meromor-

phic functions from H to Cn as follows:

DkA :=
1

2πi
dA
dτ
− k

12
E2A = q

d
dq

A− k
12

E2A
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The modular derivative Dk has the lovely property (section 10.5 in [18]) that for all γ ∈ Γ,

Dk(A|kγ) = (DkA)|k+2γ.

If F ∈Mk(ρ) and if γ ∈ H then (DkF)|k+2γ = Dk(F |kγ) = Dk(ρ(γ)F) = ρ(γ)DkF. Thus DkF ∈

Mk+2(ρ). Similarly, if m∈Mk(H) then Dkm∈Mk+2(H). The linear maps Dk : Mk(ρ)→Mk+2(ρ)

and Dk : Mk(H)→Mk+2(H) are quite useful. We shall use the notation θ to denote D0 = q d
dq =

1
2πi

d
dτ

. The goal of this section is to prove the following theorem.

Theorem 3.0.1. Let ρ : Γ0(2)→ GL2(C) be an irreducible representation. Let k denote the

least integer for which Mk(ρ) 6= 0 and let F denote a nonzero element in Mk(ρ). Then F and

DkF form a basis for M(ρ) as a M(Γ0(2))-module.

We will use the following two results to prove Theorem 3.0.1. We give their proofs immediately

after the proof of Theorem 3.0.1.

Theorem 3.0.2. Let ρ be an irreducible representation of a finite index subgroup H of Γ. Let F

be a nonzero vector valued modular form of weight k ∈ Z with respect to ρ. Then the component

functions of F are linearly independent over C.

Theorem 3.0.3. If ρ is an irreducible representation of a finite index subgroup H of Γ for which

−I ∈ H then there exists an integer k such that ρ(−I) = (−1)kI and the weights of all the

homogeneous elements in M(ρ) are congruent to k modulo two.

Let G(τ) :=−E2(τ)+2E2(2τ). Then G∈M2(Γ0(2)) (see Example 4 in Chapter IX in [14]) and

E4 ∈M4(Γ0(2)). The modular forms G and E4 are algebraically independent and M(Γ0(2)) =

C[G,E4]. This fact is well-known and we provide a proof of it in the appendix. In particular,
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M2(Γ0(2)) = CG and M4(Γ0(2)) = CG2⊕CE4. Therefore Theorem 2.2.3 implies that M(ρ) is

a free M(Γ0(2))-module. We now proceed with the proof of Theorem 3.0.1.

Proof. (Proof of Theorem 3.0.1) Let F1,F2 be a homogeneous basis for M(ρ). The crux of

our proof is to show that the weights of F1 and F2 are not equal. We proceed by contradiction

and suppose that the weights of F1 and F2 are equal. Then there exist a,b,c,d ∈ C such that

DkF1 = aGF1 +bGF2 and DkF2 = cGF1 +dGF2. We rewrite this pair of equations as follows: DkF1

DkF2

=

a b

c d

G

 F1

F2

 .
If P an invertible matrix then we have that

P

 DkF1

DkF2

= P

a b

c d

G

 F1

F2

= P

a b

c d

P−1GP

 F1

F2

 .

We may put the matrix

a b

c d

 in Jordan canonical form and we now choose P so that P

a b

c d

P−1 =

∗ ∗
0 λ

 for some λ ∈ C. We define the functions A1 and A2 by

 A1

A2

= P

 F1

F2

 .
As P is invertible, the functions A1 and A2 are a basis for M(ρ). We now have that DkA1

DkA2

= P

 DkF1

DkF2


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= P

a b

c d

P−1GP

 F1

F2



= P

a b

c d

P−1G

 A1

A2



=

∗ ∗
0 λ

G

 A1

A2



=

 ∗

λGA2

 .
Thus DkA2 = λGA2. Therefore the two component functions of the vector-valued function

A2 satisfy an ordinary differential equation of order one and must be linearly dependent. As

A2 is part of a basis for M(ρ), A2 6= 0. Theorem 3.0.2 states the component functions of any

nonzero vector-valued modular form with respect to an irreducible representation are linearly

independent. We have thus shown that the components of A2 are both linearly dependent and

independent, a contradiction. We conclude that the weights of F1 and F2 are not equal.

Let k denote the least integer for which Mk(ρ) 6= 0 and let F ∈Mk(ρ) such that F 6= 0. We have

shown that the weights of a M(Γ0(2))-basis for M(ρ) cannot be equal and therefore Mk(ρ) =

CF . We may therefore take F to be an element of a basis for M(ρ). Let B denote a homogenous

element in M(ρ) such that F and B form a basis for M(ρ). We claim that the weight of B,

which we denote by w, is equal to k+2. It follows from Theorem 3.0.3 that Mk+1(ρ) = 0. Thus

w≥ k+2. If w > k+2 then DkF = mF for some m ∈M2(Γ0(2)). But then the two component
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functions of F would satisfy an ordinary differential equation of order one and therefore be

linearly dependent. This would contradict Theorem 3.0.2 as F 6= 0 and ρ is irreducible. Thus

the weight of B is k + 2. We then have that DkF = αF + γB where α,γ ∈ M(Γ0(2)). We

observe that γ ∈M0(Γ0(2)) = C. If γ = 0 then DkF = αF and so the two component functions

of F are linearly dependent. The irreducibility of ρ together with Theorem 3.0.2 ensure that

the component functions of F are linearly independent. Hence γ 6= 0. We thus have that B ∈

spanM(Γ0(2))(F,DkF). As M(ρ) is spanned by F and B, it is also spanned by F and DkF . Finally,

as M(ρ) is a free module of rank two over M(Γ0(2)), an integral domain, and F and DkF span

M(ρ), we conclude that F and DkF form a basis for M(ρ).

We now give the proof of Theorem 3.0.2.

Proof. (Proof of Theorem 3.0.2) Let f1, ..., fn denote the components of F and let E denote

the C-span of f1, ... fn. We view E as a right H-module via the action: g · fi := fi|kg. The fact

that E is a H-module is immediate from the fact that F is a vector-valued modular form. Let

W denote the right H-module that furnishes ρ. This means that (w · γ1) · γ2 = w · (γ1γ2) for

all w ∈W and γ1,γ2 ∈ H and that there exists a C-basis e1, ...,en of W such that for every i,

ei · γ = ∑
n
j=1 ρ(γ)i, je j. We define a map ψ : W → E by setting ψ(ei) = fi and extending linearly.

We now check that the map ψ is a map of H-modules. Let g ∈ H and let gi, j denote the i-th

row and j-th column entry of ρ(g). We have that ψ(ei) · g = fi · g = fi|kg = ∑
n
j=1 ρ(g)i, j f j =

∑
n
j=1 gi, jψ(ei) = ψ(∑n

j=1 gi, jei) = ψ(ei · g). As ψ is a H-module map, ker ψ is a H-submodule

of W . As ρ is irreducible, ker ψ is equal to either 0 or W. As each fi = ψ(ei) and F 6= 0, we

have that E 6= 0. Thus ker ψ 6=W and so ψ is injective. It is clear that ψ is surjective and thus ψ
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is an isomorphism. Hence the elements f1, ..., fn are linearly independent over C.

We end this section with the proof of Theorem 3.0.3.

Proof. (Proof of Theorem 3.0.3) Let W denote the right H-module that furnishes ρ. As ρ(−I)2 =

1, the eigenvalues of ρ(−I) are 1 and −1. Let W 1 denote the +1-eigenspace and W−1 denote

the −1-eigenspace. We note that ρ(−I) is in the center of Im ρ since −I is in the center of H.

Hence W 1 and W−1 are right H-submodules of W. As ρ is irreducible, every right H-submodule

of W is either W or 0. Hence there exists some k ∈ Z such that W (−1)k
=W and W (−1)k+1

= 0.

Thus ρ(−I) = (−1)kI. Finally, if B is a nonzero vector-valued modular form of weight j then

(−1) jB = B| j− I = ρ(−I)B = (−1)kB and thus j and k have the same parity.
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Chapter 4

Hypergeometric Series

4.1 Differential Equations

From this point forwards, ρ will denote a complex irreducible representation of Γ0(2) of di-

mension two and k0 will denote the least integer for which Mk0(ρ) 6= 0. Let F ∈ Mk0(ρ) such

that F 6= 0. We proved in Theorem 3.0.1 that F and Dk0F form a basis for M(ρ) as a M(Γ0(2))-

module. In particular, Mk0(ρ) = CF . Hence F is determined by ρ up to multiplication by a

nonzero complex number. In this section, we will use Theorem 3.0.1 to compute an ordinary

differential equation that F satisfies. We will then solve this differential equation explicitly

using the Dedekind η-function, the Gaussian hypergeometric series 2F1, and a Hauptmodul of

Γ0(2).

We recall that G(τ) := −E2(τ) + 2E2(2τ) where E2(τ) := 1− 24∑
∞
n=1 σ(n)qn. We have that

M(Γ0(2)) = C[G,E4]. As Dk0+2(Dk0(F)) ∈ Mk0+4(ρ), we may apply Theorem 3.0.1 to write
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Dk0+2(Dk0F)=C1(Dk0F)+C2F where C1 ∈M2(Γ0(2))=CG and C2 ∈M4(Γ0(2))=CG2⊕CE4.

The modular forms C1 and C2 are invariants of ρ. Let a,b,c ∈ C be the complex numbers such

that C1 =−aG and C2 =−(bG2+cE4).We have shown that F satisfies the differential equation

Dk0+2(Dk0F)+aGDk0F +(bG2 + cE4)F = 0. (2)

We note that one can recover the representation ρ from the differential equation (2) as Γ0(2)

acts on the space of solutions to the differential equation

Dk0+2(Dk0S)+aGDk0S+(bG2 + cE4)S = 0 (3)

by sending a solution S of (3) to S|k0γ for any γ ∈ Γ0(2). It would be interesting to determine

which tuples (k0,a,b,c) correspond to irreducible ρ.

We sometimes use the notation D2
k to denote Dk+2 ◦Dk. We recall that θ := D0 = q d

dq = 1
2πi

d
dτ
.

We make use of the Dedekind η-function to solve the differential equation (2). A good reference

for the Dedekind η-function and its properties is [7]. The function η2 is holomorphic in H and it

does not vanish in H. Let ω denote the character of Γ for which η2|1g = ω(g)η2. Let F0 := F
η2k0

.

We observe that for all g ∈ Γ0(2),

F0|0g = (η−2k0 |k0g)(F |k0g) = ω
−k0(g)η−2k0ρ(g)F = (ρ⊗ω

−k0)(g)η−2k0F = (ρ⊗ω
−k0)(g)F0.

Thus F0 is a meromorphic vector-valued modular form of weight zero with respect to the repre-

sentation ρ0 := ρ⊗ω−k0 . We note that F0 is holomorphic in H since η is holomorphic in H and

η never vanishes in H. We now compute a differential equation that F0 satisfies.
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Lemma 4.1.1. Let F0 := F
η2k0

. Then

D2(D0(F0))+aGD0(F0)+(bG2 + cE4)F0 = 0. (4).

Proof. Let f denote a function on H, let k ∈Z, and let g = f
η2k . To prove the lemma, we observe

that because η never vanishes in H, it suffices to show that

η
2k(D2

0(g)+aGD0(g)+(bG2 + cE4)g) = D2
k( f )+aGDk( f )+(bG2 + cE4) f .

To show that the equation above holds, it suffices to prove that Dk( f ) = θ( f
η2k )η

2k and that

D2
k( f ) = η2kD2

0(
f

η2k ). We recall that θ(η) = 1
2πi η

′
= 1

24 E2η (Section 5.8 in [7]). Thus θ(η2k) =

2kη2k−1θ(η) = kE2η2k

12 . Hence Dk(η
2k) = θ(η2k)− k

12 E2η2k = 0. If t, l ∈ Z and if α,β are holo-

morphic functions then

Dt+l(αβ) = θ(αβ)− t + l
12

E2αβ

= αθ(β)+βθ(α)− t + l
12

E2αβ

= α(θ(β)− t
12

E2β)+β(θ(α)− l
12

E2α)

= αDtβ+βDlα.

We now have that

Dk( f ) = Dk

(
η

2k · f
η2k

)
=

f
η2k Dk(η

2k)+η
2k

θ

(
f

η2k

)
= η

2k
θ

(
f

η2k

)
.

Thus

D2
k( f ) = Dk+2(Dk( f ))
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= Dk+2

(
η

2k
θ

(
f

η2k

))
= θ

(
f

η2k

)
Dk(η

2k)+η
2kD2

(
θ

(
f

η2k

))
= η

2kD2

(
θ

(
f

η2k

))
= η

2kD2
0

(
f

η2k

)
.

We now explain how to make a change of variables to solve the differential equation (4). This

technique can be found in a paper of Kaneko and Zagier [13]. The modular curve

Γ0(2)\(H
⋃
P1(Q)) is a compact Riemann surface of genus zero. In a fundamental region, its

cusps are 0 and ∞ and its elliptic point is 1+i
2 . There exists a complex-analytic isomorphism

from Γ0(2)\(H
⋃
P1(Q)) to P1(C). A function with this property is called a Hauptmodul of

Γ0(2). We define the function J by setting J(τ) := 3 G(τ)2

E4(τ)−G(τ)2 . The function J is a modular

function and it induces a complex-analytic isomorphism from Γ0(2)\(H
⋃
P1(Q)) to P1(C),

which we sometimes also denote by J. A proof that J is a Hauptmodul is given in the appendix.

We will solve the differential equation (4) that F0 satisfies by writing F0 locally as a function of

J. The function J enjoys the property that J(τ1) = J(τ2) if and only if Γ0(2) · τ1 = Γ0(2) · τ2.

This fact implies that if τ ∈ H such that τ is not an elliptic point of Γ0(2) then there exists a

connected and simply connected open set Uτ containing τ for which Uτ ⊂ H and the restriction

of J to Uτ is injective. In particular, Uτ does not contain an elliptic point. Consequently, if τ∈H

which is not an elliptic point then there exists a unique function H such that F0|Uτ
= H ◦ J.
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We note that H is holomorphic since J|Uτ
is biholomorphic and F0 is holomorphic. The next

theorem computes the differential equation that H satisfies.

Theorem 4.1.2. Let τ0 ∈ H such that τ0 is not an elliptic point of Γ0(2). Let Uτ0 denote a

connected and simply connected open set containing τ0 for which Uτ0 ⊂ H and the restriction

of J to Uτ0 is injective. Let F0 =
F

η2k0
and let H denote the function for which F0|Uτ0

= H ◦J. We

have that for all τ ∈Uτ0 ,

H
′′
(J(τ))+

7J(τ)−6aJ(τ)−3
6J(τ)(J(τ)−1)

H
′
(J(τ))+

(b+ c)J(τ)+3c
J(τ)(J(τ)−1)2 H(J(τ)) = 0 (5)

The proof of Theorem 4.1.2 uses the following propositions whose proofs are given in the

appendix of this thesis.

Proposition 4.1.3.

θ(J) = (1−J)G.

Proposition 4.1.4.

θ
2(J) = G2(1−J)(

3−7J
6J

)+
1
6

E2θ(J).

We will also need to use the fact that E4
G2 =

J+3
J in our proof of Theorem 4.1.2. This fact can be

derived using elementary algebra (or from the Riemann-Roch Theorem) since J := 3G2

E4−G2 . We

now proceed with the proof of Theorem 4.1.2.

Proof. (Proof of Theorem 4.1.2) We have that D0F0 = θF0 and D2
0F0 = (θ− 1

6 E2)(θF0) =

θ2F0− 1
6 E2θF0. Therefore

D2
0F0 +aGD0F0 +(bG2 + cE4)F0 = θ

2F0 +(aG− 1
6

E2)θF0 +(bG2 + cE4)F0 = 0.
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We have that

θ(F0)(τ) = θ(H ◦J)(τ)

=
1

2πi
(H ◦J)′(τ)

= H
′
(J(τ)) · 1

2πi
J
′
(τ)

= H
′
(J(τ)) · (θJ)(τ)

= H
′
(J(τ)) ·G(τ)(1−J(τ)).

Therefore

θ
2(F0)(τ)

= θ((H
′ ◦J) ·θJ)(τ)

= θ(H
′ ◦J)(τ) · (θJ)(τ)+(H

′ ◦J)(τ) · (θ2J)(τ)

= H
′′
(J(τ)) ·θ(J)(τ) ·θ(J)(τ)+(H

′ ◦J)(τ) · (θ2J)(τ)

= H
′′
(J(τ)) · (1−J(τ))2G2(τ)

+H
′
(J(τ)) ·G2(τ)(1−J(τ))

(
3−7J(τ)

6J(τ)

)

+
1
6

E2(τ)H
′
(J(τ))θ(J)(τ)

= G2(τ)

(
H
′′
(J(τ))(1−J(τ))2 +(H

′
(J(τ))) · (1−J(τ)) · 3−7J(τ)

6J(τ)

)

+
1
6

E2(τ)θ(J)(τ)H
′
(J(τ)).

Thus

D2
0F0(τ)+aG(τ)D0F0(τ)+

(
bG2(τ)+ cE4(τ)

)
F0(τ)
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= θ
2F0(τ)+

(
aG(τ)− 1

6
E2(τ)

)
θF0(τ)+

(
bG2(τ)+ cE4(τ)

)
F0(τ)

= G2(τ)

(
H
′′
(J(τ))(1−J(τ))2 +H

′
(J(τ)) · (1−J(τ))

(3−7J(τ)
6J(τ)

))

+
1
6

E2(τ)θ(J)(τ)H
′
(J(τ))

+
(

aG(τ)− 1
6

E2(τ)
)

H
′
(J(τ)) ·G(τ)(1−J(τ))

+G2(τ)

(
b+ c

E4(τ)

G2(τ)

)
H(J(τ))

= G2(τ)

(
H
′′
(J(τ))(1−J(τ))2 +H

′
(J(τ)) · (1−J(τ))

(3−7J(τ)
6J(τ)

))

+aG(τ)H
′
(J(τ)) ·G(τ)(1−J(τ))

+G2(τ)

(
b+ c

E4(τ)

G2(τ)

)
H(J(τ))

= G2(τ)H
′′
(J(τ))(1−J(τ))2

+G2(τ)H
′
(J(τ))((1−J(τ))

(
a+

3−7J(τ)
6J(τ)

)

+G2(τ)

(
b+ c

E4(τ)

G2(τ)

)
H(J(τ))

= G2(τ)H
′′
(J(τ))(1−J(τ))2

+G2(τ)H
′
(J(τ))(1−J(τ))

(
a+

3−7J(τ)
6J(τ)

)
+G2(τ)

(
b+ c

J(τ)+3
J(τ)

)
H(J(τ)).

We have shown that

0 = G2(τ)

(
H
′′
(J(τ))(1−J(τ))2 +H

′
(J(τ))(1−J(τ))

(
(6a−7)J(τ)+3

6J(τ)

)

+

(
b+ c

J(τ)+3
J(τ)

)
H(J(τ))

)
.
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It is shown in the appendix that G2(τ) = 0 if and only if τ is an elliptic point. Thus if τ is not an

elliptic point then

0 = H
′′
(J(τ))(1−J(τ))2 +H

′
(J(τ))(1−J(τ))

(
(6a−7)J(τ)+3

6J(τ)

)
+

(
(b+ c)J(τ)+3c

J(τ)

)
H(J(τ)).

As Uτ0 does not contain any elliptic points, the above equation holds for all τ in Uτ0 . Finally, we

divide the above equation by (1−J(τ))2 and we obtain the differential equation (5).

Let Vτ0 := J(Uτ0) and let Y := J(τ). We have shown that

D2
0F0(τ)+aG(τ)D0F0(τ)+

(
bG2(τ)+ cE4(τ)

)
F0(τ) = 0 for all τ ∈Uτ0

if and only if every Y ∈Vτ0 satisfies the differential equation

H
′′
(Y )+

7Y −6aY −3
6Y (Y −1)

H
′
(Y )+

(b+ c)Y +3c
Y (Y −1)2 H(Y ) = 0 (6).

Our goal is now to solve the differential equation (6). We will need some background on second

order ordinary differential equations and we closely follow Chapter 6 of [3]. It is immediate

from examining the equation (6) that its singularities occur at Y = 0,1,∞.

Definition 4.1.5. (Sections 6 and 12 in [3]) Let z0 ∈ C. A second-order differential equation

w′′(z)+ p(z)w′(z)+q(z)w(z)= 0 for which p(z) and q(z) are analytic in a deleted neighborhood

of z0 has a regular singular point at z0 if p(z) has at worst a simple pole at z= z0 and q(z) has at

worst a double pole at z = z0. We say that ∞ is a regular singular point of w′′(z)+ p(z)w′(z)+

q(z)w(z) = 0 if and only if t = 0 is a regular singular point of the differential equation in t
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obtained by making the substitution z = 1
t for the differential equation w′′(z) + p(z)w′(z) +

q(z)w(z) = 0.

It is now immediate that 0 and 1 are regular singularities of the differential equation (6). We

state a useful criterion (Theorem 9 in [3]) for determining when ∞ is a regular singular point of

w′′+ p(z)w′+q(z)w = 0.

Theorem 4.1.6. (Theorem 9 in [3]) Infinity is a regular singular point for w′′+ p(z)w′+q(z)w=

0 if and only if the coefficients of p and q have power series expansions, convergent for suffi-

ciently large |z|, of the form p(z) = ∑
∞
n=1

pn
zn , q(z) = ∑

∞
n=2

qn
zn . Equivalently, ∞ is a regular singu-

lar point for w′′+ p(z)w′+q(z)w = 0 if and only if p has a zero of at least the first order at ∞

and q has a zero of at least the second order at ∞.

Hence ∞ is a regular singularity of the differential equation (6). The singularities of (6) are

0,1,∞ and these singularities are all regular. The method of Frobenius provides a way to find

a power series solution to the differential equation w′′+ p(z)w′+q(z)w = 0 in a neighborhood

of a regular singular point z0. One writes w = (z− z0)
v(1+∑

∞
n=1 cn(z− z0)

n) and then one

solves for v and recursively computes the coefficients cn. One often rewrites the differential

equation w′′+ p(z)w′+ q(z)w = 0 as (z− z0)
2w′′+(z− z0)P(z)w′+Q(z)w = 0 where P(z) =

(z− z0)p(z) = ∑
∞
k=0 Pk(z− z0)

k and Q(z) = (z− z0)
2q(z) = ∑

∞
k=0 Qk(z− z0)

k are convergent in

a neighborhood of z0. Then

0 = (z− z0)
2w′′(z)+(z− z0)P(z)w′(z)+Q(z)w(z) = (z− z0)

v(v(v−1)+P0v+Q0+O(z− z0)).

Therefore v satisfies the indicial equation at z0:

v(v−1)+P0v+Q0 = 0.
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It is well-known that if the difference of the roots of the indicial equation is not an integer

then one can find a basis consisting of power series for the space of solutions to w′′+ p(z)w′+

q(z)w = 0 in a neighborhood of z0. We remark that P0 = limz→z0 P(z) = limz→z0(z− z0)p(z) and

Q0 = limz→z0 Q(z) = limz→z0(z− z0)
2q(z). In the differential equation (6), p(Y ) = 7Y−6aY−3

6Y (Y−1)

and q(Y ) = (b+c)Y+3c
Y (Y−1)2 . At the regular singular point 0, P0 = limY→0Y p(Y ) = 1

2 and Q0 =

limY→0Y 2q(Y ) = 0. The indicial equation at 0 is Y (Y − 1) + 1
2Y = 0. Therefore the indicial

roots at 0 are 0 and 1
2 . At the singular point 1, P0 = limY→1(Y −1)p(Y ) = 2−3a

3 , and

Q0 = limY→1(Y −1)2q(Y ) = b+4c. Therefore the indicial equation at 1 is Y (Y −1)+ 2−3a
3 Y +

b+4c = 0.

We have shown that the differential equation (6) is Fuchsian since all of its singularities are

regular. In fact, this type of differential equation is a Riemann differential equation since it is

a second order differential equation with exactly three singularities, all of which are regular.

The standard technique to solve a Riemann differential equation of order two which is not

in Gauss normal form is to make a change of variables to obtain a differential equation in

Gauss normal form. We proceed in this manner and define the function W (Y ) via the equation

H(Y ) = Y λ(Y −1)rW (Y ) where λ is an indicial root of (6) at 0 and r is an indicial root of (6)

at 1. We recall that the indicial roots at 0 are 0 and 1
2 and we make the choice of setting λ = 0.

We also recall that the indicial roots at 1 are the roots of the quadratic equation:

r(r−1)+
(

2−3a
3

)
r+(b+4c) = 0.
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We have that

H(Y ) = (Y −1)rW (Y )

H
′
(Y ) = r(Y −1)r−1W (Y )+(Y −1)rW

′
(Y )

H
′′
(Y ) = r(r−1)(Y −1)r−2W (Y )+2r(Y −1)r−1W

′
(Y )+(Y −1)rW

′′
(Y )

Thus

0 = H
′′
(Y )+

7Y −6aY −3
6Y (Y −1)

H
′
(Y )+

(b+ c)Y +3c
Y (Y −1)2 H(Y )

= r(r−1)(Y −1)r−2W (Y )+2r(Y −1)r−1W
′
(Y )+(Y −1)rW

′′
(Y )

+
7Y −6aY −3

6Y (Y −1)

(
r(Y −1)r−1W (Y )+(Y −1)rW

′
(Y )
)

+
(b+ c)Y +3c

Y (Y −1)2 (Y −1)rW (Y )

= (Y −1)rW
′′
(Y )+W

′
(Y )
(

2r(Y −1)r−1 +
7Y −6aY −3

6Y (Y −1)
(Y −1)r

)
+W (Y )

(
(Y −1)r (b+ c)Y +3c

Y (Y −1)2 + r(Y −1)r−1 7Y −6aY −3
6Y (Y −1)

+ r(r−1)(Y −1)r−2
)
.

In the computation below, we will use the fact that r satisfies the equation r(r−1)+(2−3a
3 )r+

(b+4c) = 0 to get that 6b+6c+7r−6ar+6r(r−1) = 6b+6c+7r−6ar−6(b+4c)−2r(2−

3a) =−18c+3r. We have that

0 = Y (Y −1)W
′′
(Y )+W

′
(Y )
(

2rY +
7Y −6aY −3

6

)
+W (Y )

(
(b+ c)Y +3c

Y −1
+

r(7Y −6aY −3)
6(Y −1)

+
r(r−1)Y

Y −1

)
= Y (Y −1)W

′′
(Y )+W

′
(Y )
(

Y
(

2r+
7−6a

6

)
− 1

2

)
+W (Y )

(
(Y (6b+6c+7r−6ar+6r(r−1))+18c−3r

6(Y −1)

)
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= Y (Y −1)W
′′
(Y )+W

′
(Y )
(

Y
(

2r+
7−6a

6

)
− 1

2

)
+W (Y )

(
Y (−18c+3r)+18c−3r

6(Y −1)

)
= Y (Y −1)W

′′
(Y )+W

′
(Y )
(

Y
(

2r+
7−6a

6

)
− 1

2

)
+W (Y )

(
r−6c

2

)
.

We conclude that

0 = Y (Y −1)W
′′
(Y )+W

′
(Y )
(

Y (2r+
7−6a

6
)− 1

2

)
+W (Y )

(
r−6c

2

)
. (7)

The differential equation (7) is an example of a differential equation in Gauss normal form:

Y (Y −1)W
′′
(Y )+W

′
(Y )((A+B+1)Y −C)+ABW (Y ) = 0 (8)

If A−B 6∈ Z then a basis for the space of solutions to the differential equation (8) in a neighbor-

hood of ∞ (see Section 12 in [3]) is

Y−A
2F1(A,1+A−C,1+A−B;Y−1),and Y−B

2F1(B,1+B−C,1+B−A;Y−1)

where we recall that

2F1(α,β,γ;z) := 1+
∞

∑
n=1

(α)n(β)n

(γ)n
· z

n

n!
,(α)n :=

n−1

∏
i=0

(α+ i)

In our case,

A+B+1 = 2r+
7−6a

6
, AB =

r−6c
2

, C =
1
2
.

We note that A and B are the roots of the quadratic polynomial x2− x(2r+ 1−6a
6 )+ r−6c

2 . We

recall that H(Y ) = (Y −1)rW (Y ) and conclude that if A−B 6∈ Z then

(Y−1)rY−A
2F1(A,1+A−C,1+A−B;Y−1) and (Y−1)rY−B

2F1(B,1+B−C,1+B−A;Y−1)

form a basis for the space of solutions to the differential equation (6). As Y = J(τ), we have
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that if A−B 6∈Z then a basis for the space of solutions in a neighborhood of ∞ to the differential

equation

D2
0 f +aGD0 f +(bG2 + cE4) f = 0

is

(J(τ)−1)rJ(τ)−A
2F1(A,1+A−C,1+A−B;J(τ)−1)

and

(J(τ)−1)rJ(τ)−B
2F1(B,1+B−C,1+B−A;J(τ)−1).

Finally, we have that if A−B 6∈ Z then a basis for the space of solutions in a neighborhood of ∞

to the differential equation

D2
k0

f +aGDk0 f +(bG2 + cE4) f = 0

is η2k0(τ)(J(τ)−1)rJ(τ)−A
2F1(A,1+A−C,1+A−B;J(τ)−1) and

η2k0(τ)(J(τ)− 1)rJ(τ)−B
2F1(B,1+B−C,1+B−A;J(τ)−1). We have thus found a basis of

solutions to the differential equation (2) that the component functions of F satisfy.

The main focus of this thesis is the study of vector-valued valued modular forms which are

not logarithmic. To avoid logarithmic vector-valued modular forms, we must assume that ρ(T )

is diagonalizable. Henceforth, ρ will always denote a two-dimensional irreducible com-

plex representation of Γ0(2) for which ρ(T ) is diagonalizable. If ρ(T ) is diagonalizable

then its eigenvalues are distinct. To see this, we use the fact that Γ0(2) is generated by T and

V :=

1 −1

2 −1

 . Indeed, if K is any group such that there exist M,N ∈ K for which K = 〈M,N〉
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and if α : K→ GL(W ) is a two-dimensional irreducible complex representation then the eigen-

values of α(M) must be distinct if α(M) is diagonalizable. We argue by contradiction and

suppose that the eigenvalues of α(M) are not distinct. Then α(M) is a scalar matrix and it

commutes with α(N). Let v ∈W such that v 6= 0 and v is an eigenvector for α(M). Then the

1-dimensional space Cv is a K-invariant subspace of W . But this is a contradiction as α is irre-

ducible and has dimension two. Thus the eigenvalues of α(M) are distinct.

We now use the fact that the eigenvalues of ρ(T ) are distinct to show that A−B 6∈ Z. Let m1

and m2 denote complex numbers with |m1| ≤ |m2| for which the eigenvalues of ρ(T ) are e2πim1

and e2πim2 . Let X ∈ GL2(C) such that

Xρ(T )X−1 =

e2πim1 0

0 e2πim2

 .
We recall that χ denotes the character associated to the modular form η2. As χ(T ) = e

2πi
6 and

ρ0 = ρ⊗χ−k0 ,

Xρ0(T )X−1 =

e2πi(m1−
k0
6 ) 0

0 e2πi(m2−
k0
6 )

 .
We note that the eigenvalues of ρ(T ) are distinct if and only if the eigenvalues of ρ0(T ) are

distinct, which is the case exactly when m1−m2 6∈ Z. The function XF0 is a vector-valued

modular form with respect to Xρ0X−1 since F0 is a vector-valued modular form with respect to

ρ0. Let h1 denote the first and h2 denote the second component function of XF0. We have thate2πi(m1−
k0
6 ) 0

0 e2πi(m2−
k0
6 )


h1(τ)

h2(τ)

=

h1(τ+1)

h2(τ+1)

 .
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Let ĥ1(τ) := h1(τ)e−2πi(m1−
k0
6 )τ and let ĥ2(τ) := h2(τ)e−2πi(m2−

k0
6 )τ. Then ĥ1(τ+1) = ĥ1(τ) and

ĥ2(τ+1) = ĥ2(τ). Therefore ĥ1(τ) = ∑n∈Z anqn and ĥ2(τ) = ∑n∈Z bnqn.

Thus h1(τ) = q(m1−
k0
6 )

∑n∈Z anqn and h2(τ) = q(m2−
k0
6 )

∑n∈Z bnqn. As F is holomorphic at ∞, F0

is meromorphic at ∞ and therefore an = 0 if n << 0 and bn = 0 if n << 0. Let l1 and l2 denote

the unique complex numbers such that h1(τ) = ql1 ∑
∞
n=0 cnqn with c0 6= 0 and

h2(τ) = ql2 ∑
∞
n=0 dnqn with d0 6= 0. We note that l1− (m1− k0

6 ) ∈ Z and l2− (m2− k0
6 ) ∈ Z.

Hence l1− l2 6∈ Z since m1−m2 6∈ Z. The component functions h1 and h2 of XF0 are solutions

of the differential equation that the component functions of F0 are solutions of. Therefore h1

and h2 are solutions of the differential equation

D2(D0g)+aGD0g+(bG2 + cE4)g = 0.

We note that h1 and h2 cannot be linearly dependent because l1− l2 6∈ Z. Thus the functions

h1 and h2 form a basis for the space of solutions to the above differential equation. If we sub-

stitute h1 = ql1 ∑
∞
n=0 cnqn into the above differential equation then we get that 0 = D2(D0h1)+

aGD0h1+(bG2+cE4)h1 = ql1(l2
1 +(a− 1

6)l1+b+c+O(q)). Hence l2
1 +(a− 1

6)l1+b+c = 0.

Similarly, l2
2 +(a− 1

6)l2 +b+ c = 0. Thus l1l2 = b+ c and l1 + l2 = 1
6 −a.

The functions h1 and h2 both have what we call a pure q-expansion. We say that a function

has a pure q-expansion if the function can be written in the form qν
∑n∈Z αnqn for some com-

plex number ν. The only functions in the set {g : D2(D0g)+ aGD0g+(bG2 + cE4)g = 0} =

{z1h1 + z2h2 : z1,z2 ∈ C} = {z1ql1 ∑
∞
n=0 cnqn + z2ql2 ∑

∞
n=0 dnqn : z1,z2 ∈ C} which have a pure

q-expansion are those which are scalar multiples of h1 or scalar multiples of h2.
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We now relate the numbers A and B to l1 and l2 in order to establish that A−B 6∈Z. We recall that

A and B are the roots of the polynomial x2−x(2r+ 1−6a
6 )+ r−6c

2 . Let D denote the discriminant

of this polynomial. We recall that l1l2 = b+ c and l1 + l2 = 1
6 −a. We have that

D = (2r+
1−6a

6
)2−2(r−6c)

= 4r2 +
1
36

+a2−4ar− a
3
− 4r

3
+12c

= 4(r(a+
1
3
)− (b+4c))+

1
36

+a2−4ar− a
3
− 4r

3
+12c

=−4(b+ c)+(a− 1
6
)2

=−4l1l2 +(−l1− l2)2

= l2
1 −2l1l2 + l2

2

= (l1− l2)2.

We use the quadratic formula to see that A and B are the numbers r + 1
2(

1
6 − a±

√
D) =

r + 1
2(l1 + l2± (l1− l2)). Thus {A,B} = {r + l1,r + l2}. We now fix the values of A and B

by choosing to set A = r + l1 and B = r + l2. Thus A−B = l1− l2 ≡ m1−m2 (mod Z) since

l1 ≡ m1 +
k0
6 (mod Z) and l2 ≡ m2 +

k0
6 (mod Z). Hence A−B 6∈ Z since m1−m2 6∈ Z.

We know that (J(τ)−1)rJ(τ)−A
2F1(A,1+A−C,1+A−B;J(τ)−1) and

(J(τ)−1)rJ(τ)−B
2F1(B,1+B−C,1+B−A;J(τ)−1) form a basis for the space of solutions to

the differential equation

D2(D0g)+aGD0g+(bG2 + cE4)g = 0
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since we have previously shown that to be the case if A−B 6∈ Z. We also know that h1 and h2

form a basis for the space of solutions to this differential equation. The leading power of q for

h1 is l1 = A− r and the leading power of q for h2 is l2 = B− r.

We now show that the functions (J(τ)− 1)rJ(τ)−A
2F1(A,1+ A−C,1+ A− B;J(τ)−1) and

(J(τ)−1)rJ(τ)−B
2F1(B,1+B−C,1+B−A;J(τ)−1) have pure q-expansions and we compute

their leading power of q. To do so, we shall apply Newton’s binomial theorem which states that

if α ∈ C and if |x| < 1 then (1+ x)α = ∑
∞
n=0
(

α

n

)
xn. We note that |q| < 1 because τ ∈ H. This

observation will justify our application of Newton’s binomial theorem.

In the appendix, we show that J(q) = 1
64q(1+O(q)). We now apply Newton’s binomial theorem

to get that for each integer n, J(τ)−n = (64q)n(1+O(q)). Thus

2F1(A,1+A−C,1+A−B;J(τ)−1) = 1+ ∑
n≥1

(A)n(1+A−C)n

(1+A−B)nn!
J(τ)−n = 1+O(q)

and

2F1(B,1+B−C,1+B−A;J(τ)−1) = 1+ ∑
n≥1

(B)n(1+B−C)n

(1+B−A)nn!
J(τ)−n = 1+O(q).

We again apply Newton’s binomial theorem to get that

J−A(q) = (64q)A(1+O(q)),J−B(q) = (64q)B(1+O(q)),(J−1)r = (64q)−r(1+O(q)).

It now follows that

(J(τ)−1)rJ(τ)−A
2F1(A,1+A−C,1+A−B;J(τ)−1)= (64q)A−r(1+O(q))= (64q)l1(1+O(q))
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has a pure q-expansion and that

(J(τ)−1)rJ(τ)−B
2F1(B,1+B−C,1+B−A;J(τ)−1)= (64q)B−r(1+O(q))= (64q)l2(1+O(q))

has a pure q-expansion. We previously explained why any function which has a pure q-

expansion and which is a solution of the differential equation D2(D0g) + aGD0g + (bG2 +

cE4)g = 0 must be a scalar multiple of h1 or h2. Hence h1 must be a scalar multiple of

(J(τ)−1)rJ(τ)−A
2F1(A,1+A−C,1+A−B;J(τ)−1) since both functions have leading expo-

nent l1 and (J(τ)−1)rJ(τ)−B
2F1(B,1+B−C,1+B−A;J(τ)−1) must be a scalar multiple of

h2 since they both have the same leading exponent l2. Thus there exist unique nonzero complex

numbers κ1 and κ2 such that

XF0 =

h1

h2

=


κ1(J(τ)−1)rJ(τ)−A

2F1(A,1+A−C,1+A−B;J(τ)−1)

κ2(J(τ)−1)rJ(τ)−B
2F1(B,1+B−C,1+B−A;J(τ)−1)

 .

We substitue C = 1
2 and we get that

F(τ) = η
2k0(τ)F0(τ)

= η
2k0(τ)X−1(XF0)(τ)

= X−1


κ1η2k0(τ)(J(τ)−1)rJ(τ)−A

2F1(A, 1
2 +A,1+A−B;J(τ)−1)

κ2η2k0(τ)(J(τ)−1)rJ(τ)−B
2F1(B, 1

2 +B,1+B−A;J(τ)−1)

 .

We now record what we’ve proven below.

Theorem 4.1.7. Let ρ denote an irreducible complex representation of Γ0(2) of dimension two

such that ρ(T ) is diagonalizable. Let k0 denote the least integer for which Mk0(ρ) 6= 0 and let F
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denote a non-zero element in Mk0(ρ). Let e2πim1 and e2πim2 denote the eigenvalues of the matrix

ρ(T ) with |m1| ≤ |m2|. Let X ∈ GL2(C) such that Xρ(T )X−1 =

e2πim1 0

0 e2πim2

. Let a,b, and

c denote the unique complex numbers such that

D2
k0

F +aGDk0F +(bG2 + cE4)F = 0.

Let r denote a complex number such that r(r−1)+(2−3a
3 )r+(b+4c) = 0. Let A and B denote

the roots of the quadratic polynomial x2−x(2r+ 1−6a
6 )+ r−6c

2 . Then there exist unique nonzero

complex numbers κ1 and κ2 such that

F(τ) = X−1


κ1η2k0(τ)(J(τ)−1)rJ(τ)−A

2F1(A, 1
2 +A,1+A−B;J(τ)−1)

κ2η2k0(τ)(J(τ)−1)rJ(τ)−B
2F1(B, 1

2 +B,1+B−A;J(τ)−1)

 .
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Chapter 5

The arithmetic of vector-valued

modular forms

5.1 The Fourier expansions of the component functions of F

In the previous chapter, we proved that there exist unique nonzero complex numbers κ1 and κ2

such that

F(τ) = X−1


κ1η2k0(τ)(J(τ)−1)rJ(τ)−A

2F1(A, 1
2 +A,1+A−B;J(τ)−1)

κ2η2k0(τ)(J(τ)−1)rJ(τ)−B
2F1(B, 1

2 +B,1+B−A;J(τ)−1)

 .

We wish to study the arithmetic properties of the Fourier coefficients of the component functions

of F. It is too much to ask that these Fourier coefficients be algebraic numbers since κ1 and κ2

need not be algebraic numbers. Nevertheless, we will study the q-series expansions of the
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functions:

η
2k0(J(τ)−1)rJ(τ)−A

2F1(A,
1
2
+A,1+A−B;J(τ)−1)

η
2k0(J(τ)−1)rJ(τ)−B

2F1(B,
1
2
+B,1+B−A;J(τ)−1).

We will show that if ρ has certain properties then the q-series coefficients of these two functions

are algebraic numbers.

Definition 5.1.1. We let {h(K)}∞
K=1 and {h̃(K)}∞

K=1 denote the sequences for which

J−A(J−1)r
2F1(A,

1
2
+A,1+A−B;J(τ)−1) = 64A−rqA−r

(
1+

∞

∑
K=1

h(K)qK

)

and

J−B(J−1)r
2F1(B,

1
2
+B,1+B−A;J(τ)−1) = 64B−rqB−r

(
1+

∞

∑
K=1

h̃(K)qK

)
.

Remark: The fact that there exist such sequences {h(K)}∞
K=1 and {h̃(K)}∞

K=1 will be justified

in this section.

Definition 5.1.2. Let F ′ :=

η2k0qA−r(1+∑
∞
K=1 h(K)qK)

η2k0qB−r(1+∑
∞
K=1 h̃(K)qK)

 .
The vector-valued function F ′ may be obtained from XF by normalizing both of the component

functions of XF to have their leading Fourier coefficients equal one. In fact,

F ′ =

64r−Aκ
−1
1 0

0 64r−Bκ
−1
2

XF.

Definition 5.1.3. Let E :=

64r−Aκ
−1
1 0

0 64r−Bκ
−1
2

X and let ρ′ = EρE−1.
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For each k ∈ Z, the map Z 7→ EZ gives an isomorphism from Mk(ρ) to Mk(ρ
′) and an isomor-

phism from M(ρ) to M(ρ′). Thus F ′ ∈ Mk0(ρ
′). It is convenient (although not necessary) to

phrase our results in terms of vector-valued modular forms for ρ′. We will show in this section

that if ρ has certain properties then for each integer k, there is a basis for Mk(ρ
′) whose compo-

nent functions have the property that all of their Fourier coefficients are algebraic numbers.

We are particularly interested in the arithmetic properties of the Fourier coefficients of F ′.

Definition 5.1.4. Let {d(K)}∞
K=1 and {d̃(K)}∞

K=1 denote the sequences of numbers for which

F ′ =

q
k0
12+A−r(1+∑

∞
K=1 d(K)qK)

q
k0
12+B−r(1+∑

∞
K=1 d̃(K)qK)

 .
Remark: The fact that the sequences {d(K)}∞

K=1 and {d̃(K)}∞
K=1 exist will be justified in this

chapter.

To effectively study the Fourier coefficients of F ′, we will give formulas for h(K) and h̃(K) in

Theorem 5.1.9. In section two of this chapter, we will use the formulas in Theorem 5.1.9 to

study the denominators of the Fourier coefficients of the component functions of F ′. In partic-

ular, we will show that the sequence of the denominators of the Fourier coefficients of each of

the component functions of F ′ is unbounded provided ρ satisfies a certain hypothesis. In the

last section of this chapter, we show that if ρ satisfies a certain hypothesis then the sequence of

the denominators of the Fourier coefficients of the component functions of every vector-valued

modular form for ρ′ is unbounded provided the Fourier coefficients are algebraic numbers.
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To give formulas for h(K) and h̃(K), it will also be important to use the Hauptmodul K := 64J

because K ∈ 1
q Z[[q]]×. A proof of this fact is given in Lemma 6.2.1 in the appendix.

We will express h(K) and h̃(K) in terms of several sequences, which we will now define.

Lemma 6.2.1 implies that for each integer k≥ 0, K−k ∈ qkZ[[q]]×. We also show in the appendix

that K= q−1(1+O(q)). This fact together with Lemma 6.2.1 imply that for each positive integer

t, (q−1K−1−1)t ∈ qtZ[[q]].

Definition 5.1.5. For each integer k ≥ 0, let {D(s,k)}∞
s=0 denote the sequence of integers such

that

K−k =
∞

∑
s=0

D(s,k)qs = qk +
∞

∑
s=k+1

D(s,k)qs.

Definition 5.1.6. For each integer t > 0, let {C(t,d)}∞
d=0 denote the sequence of integers for

which

(q−1K−1−1)t =
∞

∑
d=0

C(t,d)qd =
∞

∑
d=t

C(t,d)qd .

Definition 5.1.7. We define

g(m,n) :=
(

r
n

)
(−1)n24m+6n(2A)2m

(1+A−B)mm!
, g̃(m,n) :=

(
r
n

)
(−1)n24m+6n(2B)2m

(1+B−A)mm!
.

Definition 5.1.8. We define

f (k) := ∑
n,m≥0
n+m=k

g(m,n), f̃ (k) := ∑
n,m≥0
n+m=k

g̃(m,n).

Theorem 5.1.9. There exist sequences {h(K)}∞
K=1 and {h̃(K)}∞

K=1for which

J−A(J−1)r
2F1(A,

1
2
+A,1+A−B;J(τ)−1) = 64A−rqA−r

(
1+

∞

∑
K=1

h(K)qK

)
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and

J−B(J−1)r
2F1(B,

1
2
+B,1+B−A;J(τ)−1) = 64B−rqB−r

(
1+

∞

∑
K=1

h̃(K)qK

)
.

Moreover,

h(K) = ∑
d,s≥0

d+s=K

(
d

∑
t=0

C(t,d)
(

A− r
t

))( s

∑
k=0

f (k)D(s,k)

)

= f (K)+
K−1

∑
k=0

f (k)D(s,k)+ ∑
d,s≥0

d+s=K
s<K

(
d

∑
t=0

C(t,d)
(

A− r
t

))( s

∑
k=0

f (k)D(s,k)

)

and

h̃(K) = ∑
d,s≥0

d+s=K

(
d

∑
t=0

C(t,d)
(

B− r
t

))( s

∑
k=0

f̃ (k)D(s,k)

)

= f̃ (K)+
K−1

∑
k=0

f̃ (k)D(s,k)+ ∑
d,s≥0

d+s=K
s<K

(
d

∑
t=0

C(t,d)
(

B− r
t

))( s

∑
k=0

f̃ (k)D(s,k)

)
.

Proof. We have that

2F1(A,
1
2
+A,1+A−B;J−1) = 1+

∞

∑
m=1

(A)m(
1
2 +A)m

(1+A−B)mm!
J−m = 1+

∞

∑
m=1

26m(A)m(
1
2 +A)m

(1+A−B)mm!
K−m

We note that (A)m(A+ 1
2)m =

(
2−m

∏
m−1
j=0 (2A+2 j)

)(
2−m

∏
m−1
j=0 (2A+1+2 j)

)
= 2−2m(2A)2m.

Therefore

2F1(A,
1
2
+A,1+A−B;J−1) = 1+

∞

∑
m=1

24m(2A)2m

(1+A−B)mm!
K−m.

Similarly,

2F1(B,
1
2
+B,1+B−A;J(τ)−1) = 1+

∞

∑
m=1

24m(2B)2m

(1+B−A)mm!
K−m.

As J = 1
64q(1+O(q)), J−1 = 64q(1+O(q)). We may therefore apply Newton’s binomial the-

orem and we have that:

J−A(J−1)r = J−AJr(1−J−1)r = Jr−A(1−J−1)r
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= Jr−A

(
1+

∞

∑
n=1

(
r
n

)
(−1)nJ−n

)

= 64A−rKr−A

(
1+

∞

∑
n=1

(
r
n

)
(−1)n26nK−n

)
.

Thus

J−A(J−1)r
2F1(A,

1
2
+A,1+A−B;J(τ)−1)

= 64A−rKr−A

(
1+

∞

∑
n=1

(
r
n

)
(−1)n26nK−n

)(
1+

∞

∑
m=1

24m(2A)2m

(1+A−B)mm!
K−m

)

= 64A−rKr−A

1+
∞

∑
k=1

 ∑
n,m≥0
n+m=k

(
r
n

)
(−1)n24m+6n(2A)2m

(1+A−B)mm!

K−k


We recall that

g(m,n) :=
(

r
n

)
(−1)n24m+6n(2A)2m

(1+A−B)mm!
=

(−1)n(−r)n

n!
· (−1)n24m+6n(2A)2m

(1+A−B)mm!

=
24m+6n(−r)n(2A)2m

(1+A−B)mm!n!
.

We also recall that

f (k) := ∑
n,m≥0
n+m=k

g(m,n).

We have thus shown that

J−A(J−1)r
2F1(A,

1
2
+A,1+A−B;J(τ)−1) = 64A−rKr−A

(
1+

∞

∑
k=1

f (k)K−k

)
.

Similarly,

J−B(J−1)r
2F1(B,

1
2
+B,1+B−A;J(τ)−1)

= 64B−rKr−B

(
1+

∞

∑
n=1

(
r
n

)
(−1)n26nK−n

)(
1+

∞

∑
m=1

24m(2B)2m

(1+B−A)mm!
K−m

)
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= 64B−rKr−B

1+
∞

∑
k=1

 ∑
n,m≥0
n+m=k

(
r
n

)
(−1)n24m+6n(2B)2m

(1+B−A)mm!

K−k

 .

We recall that

g̃(m,n) :=
(

r
n

)
(−1)n24m+6n(2B)2m

(1+B−A)mm!
=

24m+6n(−r)n(2B)2m

(1+B−A)mm!n!
.

We also recall that

f̃ (k) := ∑
n,m≥0
n+m=k

g̃(m,n).

We have thus shown that

J−B(J−1)r
2F1(B,

1
2
+B,1+B−A;J(τ)−1) = 64B−rKr−B

(
1+

∞

∑
k=1

f̃ (k)K−k

)
.

For each integer k ≥ 0, we recall that {D(s,k)}∞
s=0 denotes the sequence of integers such that

K−k =
∞

∑
s=0

D(s,k)qs = qk +
∞

∑
s=k+1

D(s,k)qs.

Therefore

J−A(J−1)r
2F1(A,

1
2
+A,1+A−B;J(τ)−1)

= 64A−rKr−A

(
1+

∞

∑
k=1

f (k)K−k

)

= 64A−rKr−A

(
1+

∞

∑
k=1

f (k)

(
qk +

∞

∑
s=k+1

D(s,k)qs

))

= 64A−rKr−A

(
1+

∞

∑
s=1

qs

(
f (s)+

s−1

∑
k=0

D(s,k) f (k)

))
.

Similarly,

J−B(J−1)r
2F1(B,

1
2
+B,1+B−A;J(τ)−1)
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= 64B−rKr−B

(
1+

∞

∑
k=1

f̃ (k)K−k

)

= 64B−rKr−B

(
1+

∞

∑
k=1

f̃ (k)

(
qk +

∞

∑
s=k+1

D(s,k)qs

))

= 64B−rKr−B

(
1+

∞

∑
s=1

qs

(
f̃ (s)+

s−1

∑
k=0

D(s,k) f̃ (k)

))
.

We now compute the q-expansions of Kr−A and Kr−B. We may use Newton’s binomial theorem

because K−1 = q(1 + O(q)). We let X(q) be the function for which K−1 = q(1 + X(q)). It

follows from Lemma 6.2.1 that X(q) ∈ qZ[[q]]. We have that

Kr−A = (q(1+X))A−r = qA−r(1+X)A−r = qA−r

(
1+

∞

∑
t=1

(
A− r

t

)
X t

)

and

Kr−B = (q(1+X))B−r = qB−r(1+X)B−r = qB−r

(
1+

∞

∑
t=1

(
B− r

t

)
X t

)
.

For each positive integer t, we recall that {C(t,d)}∞
d=0 denotes the sequence of integers for

which

(q−1K−1−1)t = X t =
∞

∑
d=0

C(t,d)qd =
∞

∑
d=t

C(t,d)qd .

Hence

Kr−A = qA−r

(
1+

∞

∑
t=1

(
A− r

t

)
X t

)

= qA−r

(
1+

∞

∑
t=1

(
A− r

t

)(
∞

∑
d=t

C(t,d)qd

))

= qA−r

(
1+

∞

∑
d=1

qd

(
d

∑
t=0

C(t,d)
(

A− r
t

)))
.

Similarly,

Kr−B = qB−r

(
1+

∞

∑
d=1

qd

(
d

∑
t=0

C(t,d)
(

B− r
t

)))
.
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We have that

J−A(J−1)r
2F1(A,

1
2
+A,1+A−B;J(τ)−1)

= 64A−rKr−A

(
1+

∞

∑
s=1

qs

(
f (s)+

s−1

∑
k=0

D(s,k) f (k)

))

= 64A−rqA−r

(
1+

∞

∑
d=1

qd

(
d

∑
t=0

C(t,d)
(

A− r
t

)))(
1+

∞

∑
s=1

qs

(
f (s)+

s−1

∑
k=0

D(s,k) f (k)

))
.

We also have that

J−B(J−1)r
2F1(B,

1
2
+B,1+B−A;J(τ)−1)

= 64B−rKr−B

(
1+

∞

∑
s=1

qs

(
f̃ (s)+

s−1

∑
k=0

D(s,k) f̃ (k)

))

= 64B−rqB−r

(
1+

∞

∑
d=1

qd

(
d

∑
t=0

C(t,d)
(

B− r
t

)))(
1+

∞

∑
s=1

qs

(
f̃ (s)+

s−1

∑
k=0

D(s,k) f̃ (k)

))
.

We have thus shown that there exist sequences {h(K)}∞
K=1 and {h̃(K)}∞

K=1 for which

J−A(J−1)r
2F1(A,

1
2
+A,1+A−B;J(τ)−1) = 64A−rqA−r

(
1+

∞

∑
K=1

h(K)qK

)

and

J−B(J−1)r
2F1(B,

1
2
+B,1+B−A;J(τ)−1) = 64B−rqB−r

(
1+

∞

∑
K=1

h̃(K)qK

)
.

Moreover, we have proven that

h(K) = ∑
d,s≥0

d+s=K

(
d

∑
t=0

C(t,d)
(

A− r
t

))(
f (s)+

s−1

∑
k=0

f (k)D(s,k)

)

= f (K)+
K−1

∑
k=0

f (k)D(s,k)+ ∑
d,s≥0

d+s=K
s<K

(
d

∑
t=0

C(t,d)
(

A− r
t

))(
f (s)+

s−1

∑
k=0

f (k)D(s,k)

)
.
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We have also proven that

h̃(K) = ∑
d,s≥0

d+s=K

(
d

∑
t=0

C(t,d)
(

B− r
t

))(
f̃ (s)+

s−1

∑
k=0

f̃ (k)D(s,k)

)

= f̃ (K)+
K−1

∑
k=0

f̃ (k)D(s,k)+ ∑
d,s≥0

d+s=K
s<K

(
d

∑
t=0

C(t,d)
(

B− r
t

))(
f̃ (s)+

s−1

∑
k=0

f̃ (k)D(s,k)

)
.

The following result about F ′ will be quite useful.

Proposition 5.1.10.

F ′ =

q
k0
12+A−r(1+O(q))

q
k0
12+B−r(1+O(q))

 .
Proof. We have that

F ′ =

64r−Aκ
−1
1 0

0 64r−Bκ
−1
2

XF

=

64r−Aκ
−1
1 0

0 64r−Bκ
−1
2


κ1η2k0(J−1)rJ−A

2F1(A, 1
2 +A,1+A−B;J−1)

κ2η2k0(J−1)rJ−B
2F1(B, 1

2 +B,1+B−A;J−1)



=

64r−Aκ
−1
1 0

0 64r−Bκ
−1
2


κ1η2k064A−rqA−r(1+∑

∞
K=1 h(K)qK)

κ2η2k064B−rqB−r(1+∑
∞
K=1 h̃(K)qK)



=

η2k0qA−r(1+∑
∞
K=1 h(K)qK)

η2k0qB−r(1+∑
∞
K=1 h̃(K)qK)



=

q
k0
12+A−r(1+O(q))

q
k0
12+B−r(1+O(q))

 .
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We remark that we have thus shown that there exist sequences {d(K)}∞
K=1 and {d̃(K)}∞

K=1 for

which

F ′ =

q
k0
12+A−r(1+∑

∞
K=1 d(K)qK)

q
k0
12+B−r(1+∑

∞
K=1 d̃(K)qK)

 .

We shall now place some assumptions on ρ to ensure that all of the Fourier coefficients of F ′ are

algebraic numbers. One way to proceed is to study those representations ρ for which ρ(T ) has

finite order. Henceforth, we shall always assume that ρ(T ) has finite order. This assumption

implies that ρ(T ) is diagonalizable. We recall that A = r+ l1, B = r+ l2, l1 ≡m1 +
k0
6 (mod Z),

and l2 ≡ m2 +
k0
6 (mod Z). Therefore A−B = l1− l2 ≡ m1−m2 (mod Z). We have previously

shown that the irreducibility of ρ implies that m1−m2 6∈ Z. Thus A−B 6∈ Z. The assumption

that ρ(T ) has finite order implies that the eigenvalues e2πim1 and e2πim2 of ρ(T ) are roots of

unity and that m1,m2 ∈ Q. Because m1,m2 ∈ Q and k0 ∈ Z, we have that l1, l2 ∈ Q. Thus

A−B = l1− l2 ∈Q\Z. The fact that l1, l2 ∈Q also implies that Q(A) = Q(r) = Q(B).

Theorem 5.1.11. If ρ(T ) has finite order and if r ∈Q then all of the Fourier coefficients of both

of the component functions of F ′ are elements of Q(r) and are therefore algebraic numbers.

Moreover, for each k ∈ Z, there exists a basis of Mk(ρ
′) consisting of vector-valued modular

forms whose component functions have Fourier coefficients which are elements of Q(r) and

thus are algebraic numbers.

Proof. We recall that η = q
1
24 ∏

∞
n=1(1− qn) ∈ q

1
24 Z[[q]]×. Therefore the Fourier coefficients

of the component functions of F ′ are algebraic numbers if and only if for all K, h(K) and
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h̃(K) are algebraic numbers. The formulas for h(K) and h̃(K) in Theorem 5.1.9 show that

h(K) ∈ Q(A,r) = Q(r) and h̃(K) ∈ Q(B,r) = Q(r). Thus if r ∈ Q then all of the Fourier co-

efficients of both components of F ′ are elements of Q(r) and are therefore algebraic num-

bers. For each integer k, the map Z 7→ EZ gives an isomorphism from Mk(ρ) to Mk(ρ
′). Thus

M(ρ′) =M(Γ0(2))F ′
⊕

M(Γ0(2))Dk0F ′. The fact that the Fourier coefficients of the component

functions of F ′ are elements of Q(r) together with the fact that E2 ∈ Z[[q]] imply that all of the

Fourier coefficients of the component functions of Dk0F ′ are elements of Q(r) and are therefore

algebraic numbers. Finally, for each integer k, there exists a basis of Mk(Γ0(2)) consisting of

modular forms with integral Fourier coefficients since M(Γ0(2)) = C[E4,G] and E4,G ∈ Z[[q]].

In fact, a basis for Mk(Γ0(2)) consisting of vector-valued modular forms whose component

functions have Fourier coefficients which are algebraic numbers is {GaEb
4 F ′ : 2a+ 4b = k−

k0,a,b≥ 0,a,b ∈ Z}
⋃
{GaEb

4 Dk0F ′ : 2a+4b = k− k0−2,a,b≥ 0,a,b ∈ Z}.

5.2 Unbounded Denominators: The Minimal Weight Case

In this section, we study the arithmetic of the Fourier coefficients of the component functions

of F ′. These Fourier coefficients are algebraic numbers but they need not be rational numbers.

We therefore need to define the numerator and the denominator of an algebraic number. Let Z

denote the ring of algebraic integers. It is well-known that if ζ is an algebraic number then there

exists a positive integer N such that Nζ ∈ Z.

Definition 5.2.1. If ζ is a nonzero algebraic number then the denominator of ζ is the smallest
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positive integer Z such that Zζ∈Z and the numerator of ζ is defined to be the algebraic integer

Zζ.

We say that an integer Z is a denominator of ζ if Zζ ∈ Z. The collection of denominators of

ζ form a non-zero ideal of Z and is therefore generated by a smallest positive integer, which is

the denominator of ζ. We observe that there does not exist an integer j > 1 which divides both

the denominator and numerator of ζ in the ring Z. To see why, we notice that if there exists

some integer j > 1 which divides the denominator N of ζ and which also divides Nζ in the ring

Z then N
j ζ ∈ Z, which contradicts the minimality of N.

Definition 5.2.2. Let p denote a prime number. We say that an algebraic number ζ is p-integral

if p does not divide the denominator of ζ.

We shall have occasion to use the following lemma.

Lemma 5.2.3. Let p denote a prime number. The collection of all algebraic numbers which are

p-integral form a ring.

Proof. Let ζ1 and ζ2 denote algebraic numbers which are p-integral. Let n1 denote the denom-

inator of ζ1 and let n2 denote the denominator of ζ2. Then n1n2(ζ1ζ2) = (n1ζ1)(n2ζ2) ∈ Z and

n1n2(ζ1+ζ2) = n2(n1ζ1)+n1(n2ζ2)∈Z. Thus both the denominator of ζ1ζ2 and the denomina-

tor of ζ1+ζ2 divide n1n2. We note that p - n1 and p - n2 since ζ1 and ζ2 are p-integral. Therefore

p - n1n2. Thus p does not divide the denominator of ζ1ζ2 and p does not divide the denominator

of ζ1 + ζ2 since the denominator of ζ1ζ2 and the denominator of ζ1 + ζ2 both divide n1n2. We

conclude that ζ1ζ2 and ζ1 +ζ2 are p-integral.
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The following Lemma will be quite useful when studying the denominators of the Fourier co-

efficients of F ′.

Lemma 5.2.4. Let M denote a square-free integer. Let p denote an odd prime number for which

M is not a quadratic residue mod p. Let X ∈Q(
√

M) such that X 6∈Q. Let Z denote the smallest

positive integer such that ZX is an algebraic integer and let Y := ZX. Let y and z denote the

integers for which Y = x+y
√

M
2 . Let R ∈ Q. If p - y then p does not divide the numerator of any

element in the set {(X +R)t : t ≥ 1}.

Remark: We note that y 6= 0 since Y 6∈Q. We also note that y and z have the same parity since

Y is an algebraic integer.

Proof. Let σ denote the non-trivial element in Gal(Q(
√

M)/Q) and let N denote the norm

map from Q(
√

M) from Q. Let OQ(
√

M) denote the ring of integers of Q(
√

M). We pro-

ceed by contradiction and suppose that there exists some positive integer t such that p di-

vides the numerator of (X +R)t = (Y+RZ
Z )t = Z−t

∏
t−1
i=0(Y +RZ + iZ) in the ring OQ(

√
M). Then

p |∏t−1
i=0(Y +RZ + iZ) in the ring OQ(

√
M) and p - Zt in the ring OQ(

√
M). Thus p - Z. We have

that N(p) = p2 |∏t−1
i=0 N(Y +RZ + iZ) in the ring Z. Thus p | N(Y +RZ + jZ) for some integer

j with 0≤ j ≤ t−1. Therefore

0≡ 4N(Y +RZ + jZ) = 4N
( x

2
+RZ + jZ +

y
2

√
M
)
= (x+2(R+ j)Z)2−My2 (mod p).

As p - y, M is a quadratic residue mod p. This is a contradiction and our proof is now complete.

We recall that Q(A) = Q(B) = Q(r) and l1, l2 ∈ Q since ρ(T ) has finite order. We note that
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a,b+c∈Q since l1l2 = b+c and l1+ l2 = 1
6−a. We recall that r satisfies the quadratic equation

r2 +(−1−3a
3 )r+b+4c = 0. We have that Q(−1−3a

3 ,b+4c) = Q(b+4c) = Q(c).

Thus [Q(c)(r) : Q(c)] ≤ 2. We are most interested in the case when c ∈ Q. If c ∈ Q and if

[Q(r) : Q] = 2 then we will be able to apply Lemma 5.2.4 to analyze the denominators of the

Fourier coefficients of F ′.

Hypothesis 5.2.5. Throughout the rest of this paper, we shall assume that ρ(T ) has finite

order, c ∈ Q and that [Q(r) : Q] = 2.

Definition 5.2.6. Let M denote the square-free integer for which Q(r) = Q(
√

M).

We have previously shown that A−B ∈Q\Z. We therefore make the following definition.

Definition 5.2.7. Let u,v ∈ Z with v > 1, gcd(u,v) = 1 such that A−B = u
v .

Definition 5.2.8. Let S denote the set of odd prime numbers p for which M is not a quadratic

residue mod p and p≡ u (mod v).

Definition 5.2.9. Let S̃ denote the set of odd prime numbers p for which M is not a quadratic

residue mod p and p≡ −u (mod v).

It follows from the quadratic reciprocity law and Dirichlet’s theorem on primes in arithmetic

progressions that if S is infinite then S has positive density in the set of prime numbers and if S̃

is infinite then S̃ has positive density in the set of prime numbers.

We will show that if S is infinite then every sufficiently large element in S divides the denomina-

tor of at least one Fourier coefficient of the first component of F ′. We will also show that if S̃ is
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infinite then every sufficiently large element in S̃ divides the denominator of at least one Fourier

coefficient of the second component of F ′. At the end of this section, we will give examples of

representations for which we can prove that S and S̃ are infinite. We begin with the following

proposition.

Proposition 5.2.10. Assume that S is an infinite set. Let K denote an integer such that pK :=

u+Kv ∈ S. If m+ n ≤ K and if m 6= K then for all sufficiently large K, g(m,n) is pK-integral

and pK does not divide the numerator of g(m,n). Consequently, for all sufficiently large K, f (k)

is pK-integral provided k < K.

Proof. We recall that

g(m,n) :=
24m+6n(−r)n(2A)2m

(1+A−B)mm!n!
=

24m+6n(−r)n(2A)2m

(1+ u
v )mm!n!

=
vm24m+6n(−r)n(2A)2m

∏
m
j=1(u+ jv)m!n!

.

We will show that if K is sufficiently large then pK does not divide the numerator of (−r)n,

pK does not divide the numerator of (2A)2m, and pK does not divide any of the integers vm,

24m+6n,∏m
j=1(u+ jv),m!,n!. Lemma 5.2.3 will then imply that g(m,n) is pK-integral.

The stipulations m+n≤K and m 6=K imply m≤K−1 and n≤K. In particular, pK = u+Kv >

u+mv≥ u+ jv for any j with 1≤ j ≤m. Thus pK does not divide any of the positive elements

in the set {u+ jv : 1 ≤ j ≤ m}. We note that 0 6∈ {u+ jv : 1 ≤ j ≤ m} since gcd(u,v) = 1 and

v > 1. It is possible that some element(s) in the set {u+ jv : 1 ≤ j ≤ m} are negative since u

might be negative. Nevertheless, only finitely many elements in the set {u+ jv : 1 ≤ j ≤ m}

are negative since v > 0. Because u and v are fixed, we may choose a sufficiently large K such

that pK does not divide any of the negative elements in the set {u+ jv : 1 ≤ j ≤ m}. For such
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a K, pK does not divide any element in the set {u+ jv : 1 ≤ j ≤ m}. Because pK is prime,

pK - ∏
m
j=1(u+ jv). In particular, we have shown that pK - ∏

K−1
j=1 (u+ jv).

If K is sufficiently large then pK > K and thus pK > m and pK > n. Because pK is prime,

pK - m! and pK - n!. If K is sufficiently large then pK - v and so pK - vm for any m. We recall

that Q(A) = Q(r) = Q(
√

M). Let x1,y1,x2,y2 ∈ Z such that 2A = x1+y1
√

M
2 and −r = x2+y2

√
M

2 .

We note that y1 6= 0 and y2 6= 0 since A,r 6∈Q. If K is sufficiently large then pK - y1 and pK - y2

and it then follows from Lemma 5.2.4 that pK does not divide the numerator of (2A)2m for any

m and pK does not divide the numerator of (−r)n for any n. Moreover, if K is sufficiently large

then pK also does not divide the denominators of 2A and −r. Hence pK does not divide the

denominators of (2A)2m and (−r)n for any n and m. Finally, pK - 24m+6n since pK is an odd

prime. We have shown that pK does not divide the numerator of (−r)n(2A)2m and that pK does

not divide any of the integers vm, 24m+6n, ∏
m
j=1(u+ jv), m!, and n!. We conclude that g(m,n) is

pK-integral by applying Lemma 5.2.3.

If k < K and if m+n = k then we have shown that g(m,n) is pK-integral. Hence if k < K then

f (k) := ∑
n,m≥0
n+m=k

g(m,n) is a sum of pK-integral numbers and is therefore pK -integral.

Theorem 5.2.11. Assume that ρ satisfies Hypothesis 5.2.5. Assume that S is an infinite set. If

K is sufficiently large then f (K) is not pK-integral and pK f (K) is pK-integral.

Proof. We have that f (K) = g(K,0) + ∑
m+n≤K

m6=K

g(m,n). We have shown in Proposition 5.2.10

that g(m,n) is pK-integral if m + n ≤ K and if m 6= K. We apply Lemma 5.2.3 to get that
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∑
m+n≤K

m6=K

g(m,n) is pK-integral. It now suffices to show that g(K,0) is not pK-integral. We note

that g(K,0) = vK24K(2A)2K

∏
K
j=1(u+ jv)K!

. We have previously shown that if K is sufficiently large then vK ,24K ,

K!, and ∏
K−1
j=1 (u+ jv) are not divisible by pK and that pK does not divide the numerator nor

the denominator of (2A)2K . Therefore pK ‖ (u+Kv)∏
K−1
j=1 (u+ jv) = ∏

K
j=1(u+ jv). We con-

clude that pK but not p2
K divides the denominator of g(K,0). Hence f (K) is not pK-integral and

pK f (K) is pK-integral.

Theorem 5.2.12. Assume that ρ satisfies Hypothesis 5.2.5. Assume S is infinite. If K is suffi-

ciently large then the denominator of h(K) is divisible by pK . Moreover, h(J) is pK-integral if

J < K. Hence every prime in S which is sufficiently large divides the denominator of h(K) for

some K.

Proof. We recall that:

h(K) = f (K)+
K−1

∑
k=0

f (k)D(s,k)+ ∑
d,s≥0

d+s=K
s<K

(
d

∑
t=0

C(t,d)
(

A− r
t

))( s

∑
k=0

f (k)D(s,k)

)
.

We have shown that f (K) is not pK-integral and that f (k) is pK-integral if k < K. Moreover, the

numbers D(s,k) and C(t,d) are integers. Thus for all s≤K−1, ∑
s
k=0 f (k)D(s,k) is pK-integral.

We recall that A− r = l1 ∈Q. Let y,z ∈ Z such that l1 =
y
z . Then

(A−r
t

)
=
(l1

t

)
=

∏
t−1
j=0(y− jz)

zt t! . We

note that t ≤ d ≤ K and K < pK if K is sufficiently large. Therefore pK - t! if K is sufficiently

large. We also note that pK - z if K is sufficiently large and thus pK - zt . Thus if K is sufficiently

large then
(A−r

t

)
is pK-integral for all t ≤ K. Hence for all d ≤ K, ∑

d
t=0C(t,d)

(A−r
t

)
is pK-
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integral. Thus h(J) is pK-integral if J < K. We have also shown that

h(K)− f (K) =
K−1

∑
k=0

f (k)D(s,k)+ ∑
d,s≥0

d+s=K
s<K

( d

∑
t=0

C(t,d)
(

A− r
t

))( s

∑
k=0

f (k)D(s,k)
)

is pK-integral. Because f (K) is not pK-integral, h(K) is not pK-integral.

Theorem 5.2.13. Assume that ρ satisfies Hypothesis 5.2.5. Let p̃K :=−u+Kv. Assume that S̃

is infinite. If K is sufficiently large then p̃K divides the denominator of h̃(K). Moreover, h̃(J) is

pK-integral if J < K. Thus the set of primes that divide the denominator of h̃(K) for some K is

infinite and has positive density within the set of primes.

Proof. The proof is completely analogous to the proof of Theorem 5.2.12. We note that Q(B) =

Q(A) = Q(r) = Q(
√

M) and B−A = −u
v . We also have that

g̃(m,n) :=
24m+6n(−r)n(2B)2m

(1+B−A)mm!n!
=

24m+6n(−r)n(2B)2m

(1+ −u
v )mm!n!

=
vm24m+6n(−r)n(2A)2m

∏
m
j=1(−u+ jv)m!n!

.

We recall that {d(K)}∞
K=1 and {d̃(K)}∞

K=1 denote the sequences for which

F ′ =

q
k0
12+A−r(1+∑

∞
K=1 d(K)qK)

q
k0
12+B−r(1+∑

∞
K=1 d̃(K)qK)

 .
Theorem 5.2.14. Assume that ρ satisfies Hypothesis 5.2.5. If S is infinite then for all sufficiently

large K, pK divides the denominator of d(K) and d(i) is pK-integral if i < K. Thus if S is infinite

then the set of primes that divide the denominator of at least one Fourier coefficient of the first

component function of F ′ is infinite and has positive density within the set of primes. If S̃ is
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infinite then for all sufficiently large K, p̃K divides the denominator of d̃(K) and d̃(i) is p̃K-

integral if i < K. Thus if S̃ is infinite then the set of primes that divide the denominator of at

least one Fourier coefficient of the second component function of F ′ is infinite and has positive

density within the set of primes.

Proof. We recall that η = q
1
24 ∏

∞
n=1(1− qn) = q

1
24 (1+O(q)) ∈ q

1
24 Z[[q]]×. Therefore η2k0 =

q
k0
12 (1+O(q)) ∈ q

k0
12 Z[[q]]×. We define the sequence of integers {e(K)}∞

K=1 by setting η2k0 =

q
k0
12 (1+∑

∞
K=1 e(K)qK). We have that

η
2k0(τ)(J(τ)−1)rJ(τ)−A

2F1(A,
1
2
+A,1+A−B;J(τ)−1)

= q
k0
12 (1+

∞

∑
i=1

e(i)qi)64A−rqA−r

(
1+

∞

∑
K=1

h(K)qK

)
.

Thus 1+∑
∞
K=1 d(K)qk = (1+∑

∞
i=1 e(i)qi)(1+∑

∞
K=1 h(K)qK).

Hence d(K) = h(K)+∑
K−1
i=0 e(i)h(K− i). We note that each e(K− i) is an integer. We have

proven that h(K) is not pK-integral but h(i) is pK-integral if i < K. Therefore d(i) is pK-integral

if i < K and d(K) is not pK-integral. The proof that if K is sufficiently large then d̃(i) is pK-

integral if i < K and p̃K divides the denominator of d̃(K) is completely analogous.

Lemma 5.2.15. If m1−m2 ∈ 1
2 Z\Z then S = S̃, S is infinite, and S has density 1

2 within the set

of primes.

Proof. In this case, v = 2 and

S = S̃ = {p : p is odd and M is not a quadratic residue mod p}.

The quadratic reciprocity law and Dirichlet’s theorem on primes in arithmetic progressions
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imply that since M is not a perfect square, S is an infinite set and has density 1
2 in the set of

primes.

Lemma 5.2.16. If ρ is induced from a character of Γ(2) then m1−m2 ∈ 1
2 Z\Z.

Proof. Assume that ψ is a character on Γ(2) such that ρ = IndΓ0(2)
Γ(2) ψ. Let ψ̃ : Γ0(2)→ C be

the function defined by setting ψ̃(g) := ψ(g) if g ∈ Γ(2) and ψ̃(g) := 0 if g 6∈ Γ(2). We note

that Γ(2) is an index two subgroup of Γ0(2) and {I,T} is a basis of left coset representatives

for Γ(2) in Γ0(2). Then ρ(T ) is similar to the matrix

 ψ̃(T ) ψ̃(T 2)

ψ̃(I) ψ̃(T )

 =

 0 ψ̃(T 2)

1 0

 .
Thus the trace of ρ(T ) is equal to zero since the trace of ρ(T ) is equal to the trace of the matrix 0 ψ̃(T 2)

1 0

 . As ρ(T ) is a diagonalizable matrix with eigenvalues e2πim1 and e2πim2 , we have

that 0 = trace(ρ(T )) = e2πim1 + e2πim2 . Thus e2πi(m1−m2) =−1. Hence m1−m2 ∈ 1
2 Z\Z.

Theorem 5.2.17. Let ρ denote a two-dimensional irreducible representation of Γ0(2) which is

induced from a character of Γ(2). Assume that ρ satisfies Hypothesis 5.2.5. Then S is infinite

and S has density 1
2 in the set of prime numbers. Moreover, every sufficiently large prime

number in S divides the denominator of at least one Fourier coefficient of the first and of the

second component functions of F ′.

Proof. The hypothesis that ρ is induced from a character of Γ(2) implies m1−m2 ∈ 1
2 Z \Z.

Therefore S = S̃. Lemma 5.2.15 implies that S is infinite and has density one half in the set of

primes. The conclusion of the theorem now follows from Theorem 5.2.14.
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5.3 Unbounded Denominators: The General Case

In the previous section, we proved that if ρ satisfies Hypothesis 5.2.5 and if S and S̃ are infinite

then the denominators of the Fourier coefficients of each of the component functions of F ′ are

unbounded. In this section, we will prove the analogous result for vector-valued modular forms

of any weight in Theorem 5.3.7. Our method of proof follows very closely Chris Marks’ paper

[19]. In [19], Marks proved a similar result for three-dimensional vector-valued modular forms

with respect to certain three-dimensional representations of Γ. Our proof that the denominators

of the Fourier coefficients of each of the component functions of F ′ are unbounded uses entirely

different ideas than those in [19].

Definition 5.3.1. Let Z denote a vector-valued modular form whose component functions have

Fourier coefficients which are algebraic numbers. We say that Z has bounded denominators

if the sequence of the denominators of the Fourier coefficients of each component function of

Z are bounded. If Z does not have bounded denominators, we say that Z has unbounded

denominators.

Remark: We proved in Theorem 5.1.11 that for each integer k, there exists a basis for Mk(ρ
′)

consisting of vector-valued modular forms whose component functions have Fourier coeffi-

cients in Q.

Definition 5.3.2. Let L denote a number field or Q. The notation Mk(ρ
′)L denotes those vector-

valued modular forms in Mk(ρ
′) whose component functions have all of their Fourier coeffi-

cients in L. The notation Mk(Γ0(2))L denotes those modular forms in Mk(Γ0(2)) whose Fourier
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coefficients all belong to L. We define M(ρ)L :=
⊕

k∈Z Mk(ρ)L and M(Γ0(2))L :=
⊕

k∈Z Mk(Γ0(2))L.

We will need to use the fact that if f ∈ M(Γ0(2))L then there exists a positive integer N such

that N f ∈ Z[[q]]. To do so, we first prove the following lemma.

Lemma 5.3.3. Let f = ∑
∞
n=0 anqn ∈ Mk(Γ0(2)). Let r(k) = dim Mk(Γ0(2)). Let R denote the

Z[1
2 ,

1
3 ]-module generated by a0, ...,ar(k)−1. Then all an ∈ R and f = ∑2a+4b=k ca,bGaEb

4 where

each ca,b ∈ R.

Proof. This proof follows the proof of Theorem 4.2 in Lang’s book on modular forms [18].

We proceed by induction on k. The result is clear if k = 2 and if k = 0 since dim M2(Γ0(2)) =

dim M0(Γ0(2)) = 1. Now, let k denote an even integer for which k > 2 and let f = ∑
∞
n=0 anqn ∈

Mk(Γ0(2)). Then f − a0G
k
2 has a zero at ∞. We have shown in the appendix that E4−G2 has

a simple zero at ∞ and no other zeros. Therefore there exists some g ∈Mk−4(Γ0(2)) such that

f −a0G
k
2 = (E4−G2)g. We write g = ∑

∞
n=0 bnqn. Let Rg denote the Z[1

2 ,
1
3 ]-module generated

by b0, ...,br(k)−1. We have that Rg⊂R since E4−G2 = 192q(1+O(q))∈ 192qZ[[q]]×. We apply

the inductive hypothesis to g and have that all bn ∈ Rg ⊂ R and that g = ∑2a+4b=k−4 ca,bGaEb
4

with ca,b ∈ Rg ⊂ R. Thus f = a0G
k
2 +(E4−G2)g can be written as an R-linear combination of

elements in the set {GaEb
4 : a,b≥ 0,2a+4b = k}. Therefore every an ∈ R. This completes the

inductive step and our proof is now complete.

Lemma 5.3.4. Let L denote a number field or Q. Let Mk(Γ0(2))L := Mk(Γ0(2))∩L[[q]]. Then

{GaEb
4 : a,b≥ 0,2a+4b = k} is a basis for the L-vector space Mk(Γ0(2))L. If f ∈Mk(Γ0(2))L

then there exists a positive integer N such that N f ∈ Z[[q]].
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Proof. The fact that {GaEb
4 : a,b≥ 0,2a+4b = k} is a basis for the L-vector space Mk(Γ0(2))L

is immediate from Lemma 5.3.3. Let f ∈Mk(Γ0(2))L.

Then f =∑2a+4b=k ca,bGaEb
4 where each ca,b ∈C. Lemma 5.3.3 and the fact that f ∈Mk(Γ0(2))L

imply that each ca,b ∈ L. Therefore there exists a positive integer Na,b such that Na,bca,b ∈ Z. Let

N = ∏2a+4b=k Na,b. Then each Nca,b ∈ Z and N f = ∑2a+4b=k Nca,bGaEb
4 ∈ Z[[q]].

We shall need to compute the q-series expansion of Dk0F ′ in this section and we do so in the

following Lemma.

Lemma 5.3.5. Let t1(K) := d(K)(K+A−r)+∑
K−1
n=1 2k0σ(n)d(K−n) and let t2(K) := d̃(K)(K+

B− r)+∑
K−1
n=1 2k0σ(n)d̃(K−n). Then

Dk0F ′ =

q
k0
12+A−r(A− r+∑

∞
K=1 t1(K)qK)

q
k0
12+B−r(B− r+∑

∞
K=1 t2(K)qK)

 .
Moreover, for all integers K, t1(K), t2(K) ∈ L. In particular, Dk0F ′ ∈Mk0+2(ρ

′)L.

Proof. We recall that E2 = 1−24∑
∞
n=1 σ(n)qn. Let F ′1 and F ′2 denote the first and second com-

ponent functions of F ′. We have that

Dk0(F
′

1) = Dk0

(
q

k0
12+A−r(1+

∞

∑
K=1

d(K)qK)

)

= θ

(
q

k0
12+A−r(1+

∞

∑
K=1

d(K)qK)

)

− k0

12
E2

(
q

k0
12+A−r(1+

∞

∑
K=1

d(K)qK)

)

= q
k0
12+A−r

θ

(
1+

∞

∑
K=1

d(K)qK

)
+

(
1+

∞

∑
K=1

d(K)qK

)
θ(q

k0
12+A−r)

− k0

12
(1−24

∞

∑
n=1

σ(n)qn)

(
q

k0
12+A−r(1+

∞

∑
K=1

d(K)qK)

)
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= q
k0
12+A−r(

∞

∑
K=1

Kd(K)qK)+(
k0

12
+A− r)q

k0
12+A−r

(
1+

∞

∑
K=1

d(K)qK

)

− k0

12
q

k0
12+A−r(1+

∞

∑
K=1

(d(K)−
K−1

∑
n=1

24σ(n)d(K−n))qK)

= q
k0
12+A−r(A− r+

∞

∑
K=1

t1(K)qK)

In a similar manner, we have that Dk0F ′2 = q
k0
12+B−r(B− r+∑

∞
K=1 t2(K)qK).

The assumption that ρ(T ) has finite order implies that A− r ∈ Q and B− r ∈ Q. We have

previously shown that for all integers K ≥ 1, d(K) ∈ L and d̃(K) ∈ L. It now follows from the

formulas for t1(K) and t2(K) that for each integer K ≥ 1, t1(K) ∈ L and t2(K) ∈ L. Hence all of

the Fourier coefficients of both of the component functions of Dk0F ′ belong to L.

Lemma 5.3.6. Assume that ρ satisfies Hypothesis 5.2.5. Let M denote the square-free integer

for which Q(
√

M)=Q(r) and let L=Q(
√

M). Then M(ρ′)L =M(Γ0(2))LF ′
⊕

M(Γ0(2))LDk0F ′.

In particular, M(ρ′)L is a free M(Γ0(2))L-module of rank two.

Proof. This proof follows the proof of Lemma 4.1 in Marks’ paper [19]. We have shown in

Theorem 5.1.11 that F ′ ∈Mk0(ρ
′)L and Dk0F ′ ∈Mk0+2(ρ

′)L.

Hence M(Γ0(2))LF ′
⊕

M(Γ0(2))LDk0F ′ ⊂M(ρ′)L. To prove the theorem, we need to show that

the reverse inclusion holds. We recall that M(ρ′)L :=
⊕

k∈Z Mk(ρ
′)L. Thus it suffices to prove

that if k ∈ Z then Mk(ρ
′)L ⊂ M(Γ0(2))LF ′

⊕
M(Γ0(2))LDk0F ′. Let Z ∈ Mk(ρ

′)L. Let Z1 and

Z2 denote the first and second component functions of Z and let F ′1 and F ′2 denote the first and

second component functions of F ′. We know that

M(ρ′) = M(Γ0(2))F ′
⊕

M(Γ0(2))Dk0F ′. Therefore Z = m1F ′+m2Dk0F ′ where

m1 ∈ Mk−k0(Γ0(2)),m2 ∈ Mk−k0−2(Γ0(2)). It suffices to show that m1 ∈ Mk−k0(Γ0(2))L and
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m2 ∈Mk−k0−2(Γ0(2))L. We have previously shown that

F ′ =

F ′1

F ′2

=

q
k0
12+A−r(1+∑

∞
K=1 d(K)qK)

q
k0
12+B−r(1+∑

∞
K=1 d̃(K)qK)


and

Dk0(F
′) =

Dk0F ′1

Dk0F ′2

=

q
k0
12+A−r(A− r+∑

∞
K=1 t1(K)qK)

q
k0
12+B−r(B− r+∑

∞
K=1 t2(K)qK)

 .
We write m1 = ∑

∞
n=0 m1(n)qn and m2 = ∑

∞
n=0 m2(n)qn. The equation Z = m1F ′+m2Dk0F ′ im-

plies that there exist sequences {Z1(n)}∞
n=0 and {Z2(n)}∞

n=0 such that

Z =

Z1

Z2

=

q
k0
12+A−r

∑
∞
n=0 Z1(n)qn

q
k0
12+B−r

∑
∞
n=0 Z2(n)qn

 .
In fact,

Z1 = q
k0
12+A−r

∞

∑
n=0

Z1(n)qn

= m1F ′1 +m2Dk0F ′1

= q
k0
12+A−r

∞

∑
n=0

m1(n)qn(1+
∞

∑
K=1

d(K)qK)+q
k0
12+A−r

∞

∑
n=0

m2(n)qn(A− r+
∞

∑
K=1

t1(K)qK).

Thus Z1(N) = m1(N) + ∑
N−1
n=0 m1(n)d(N − n) + (A− r)m2(N) + ∑

N−1
n=0 m2(n)t1(N − n). Simi-

larly, Z2(N) = m1(N) +∑
N−1
n=0 m1(n)d̃(N − n) + (B− r)m2(N) +∑

N−1
n=0 m2(n)t2(N − n). HenceZ1(0)

Z2(0)

=

1 A− r

1 B− r


m1(0)

m2(0)

 and for all N ≥ 1, we have that

Z1(N)

Z2(N)

=

1 A− r

1 B− r


m1(N)

m2(N)

+N−1

∑
n=0

m1(n)d(N−n)+m2(n)t1(N−n)

m1(n)d̃(N−n)+m2(n)t2(N−n)

 .
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To show that m1,m2 ∈M(Γ0(2))L, we must show that for all nonnegative integers N,

m1(N) ∈ L and m2(N) ∈ L. We proceed by induction on N. Our inductive hypothesis is that

for all nonnegative integers n < N, m1(n),m2(n) ∈ L. We recall that because ρ is irreducible,

B−A 6∈ Z and thus B−A 6= 0. Hence the matrix

1 A− r

1 B− r

 is invertible. The assumption that

ρ(T ) has finite order implies that A− r,B− r ∈Q. Thus1 A− r

1 B− r


−1

=
1

B−A

B− r r−A

−1 1

 ∈ GL2(Q).

The assumption that Z ∈M(ρ)L implies that for all integers n ≥ 0, Z1(n),Z2(n) ∈ L. We have

previously shown that F ′ ∈ M(ρ)L and that for all integers K ≥ 1, d(K), d̃(K) ∈ L We also

proved in Lemma 5.3.5 that for all integers K, t1(K), t2(K) ∈ L. We now treat the base case

where N = 0. We have thatm1(0)

m2(0)

=
1

B−A

B− r r−A

−1 1


Z1(0)

Z2(0)

 .
Hence m1(0),m2(0) ∈ L since Z1(0),Z2(0) ∈ L, B− r,r−A,B−A ∈Q. Let N denote a positive

integer. Assume that for all nonnegative integers n with n < N, m1(n),m2(n) ∈ L.

Then1 A− r

1 B− r


m1(N)

m2(N)

=

Z1(N)

Z2(N)

−N−1

∑
n=0

m1(n)d(N−n)+m2(n)t1(N−n)

m1(n)d̃(N−n)+m2(n)t2(N−n)

 ∈ L2.

Thus m1(N),m2(N) ∈ L since

1 A− r

1 B− r

 ∈ GL2(Q). This completes the inductive step and

our proof is now complete.
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Theorem 5.3.7. Let ρ denote a two-dimensional irreducible representation of Γ0(2) for which

ρ(T ) has finite order, c ∈Q and [Q(r) : Q] = 2. Let k ∈ Z and let Z denote a nonzero element in

Mk(ρ
′)L. Let Z1 and Z2 denote the first and second component functions of Z. If S is infinite then

the sequence of the denominators of the Fourier coefficients of Z1 is unbounded. If S̃ is infinite

then the sequence of the denominators of the Fourier coefficients of Z2 is unbounded.

Proof. This proof follows closely the proof of Prop 4.3 in Marks’ paper [19]. Let Z denote a

nonzero element in Mk(ρ
′)L. Then DkZ ∈Mk+2(ρ

′)L. We have proven in Lemma 5.3.6 that

M(ρ′)L = M(Γ0(2))LF ′
⊕

M(Γ0(2))LDk0F ′.

Therefore there exist m1,m4 ∈Mk−k0(Γ0(2))L, m2 ∈Mk−k0−2(Γ0(2))L, and m3 ∈Mk+2−k0(Γ0(2))L

such that  Z

DkZ

=

m1 m2

m3 m4


 F ′

Dk0F ′

 .
We note that m1m4−m2m3 ∈M2k−2k0(Γ0(2))L.

We have that:  m4Z−m2DkZ

−m3Z +m1DkZ

=

 m4 −m2

−m3 m1


 Z

DkZ



=

 m4 −m2

−m3 m1


m1 m2

m3 m4


 F ′

Dk0F ′



=

 (m1m4−m2m3)F ′

(m1m4−m2m3)Dk0F ′

 .
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Thus m4Z−m2DkZ = (m1m4−m2m3)F ′. We recall that Z1 and Z2 denote the first and second

component functions of Z and F ′1 and F ′2 denote the first and second component functions of F ′.

Thus m4Z1−m2DkZ1 = (m1m4−m2m3)F ′1 and m4Z2−m2DkZ2 = (m1m4−m2m3)F ′2. Suppose

by way of contradiction that the sequence of denominators of the Fourier coefficients of Z1 is

bounded. Then the sequence of denominators of the Fourier coefficients of

DkZ1 = q d
dq(Z1)− k

12 E2Z1 is bounded since E2 ∈Z[[q]]. We have proven in Lemma 5.3.4 that the

sequence of the denominators of the Fourier coefficients of any modular form in M(Γ0(2))L is

bounded. Thus the sequence of the denominators of the Fourier coefficients of m4Z1−m2DkZ1

is bounded since the same is true of the sequence of the denominators of the Fourier coefficients

of Z1, DkZ1, m4, and m2. Let N denote a positive integer for which

m1m4−m2m3 =
1
N qt(1+∑

∞
n=1 δnqn) with δn ∈ Z and t a non-negative integer. We have that

(m1m4−m2m3)F ′1 =
1
N

qt(1+
∞

∑
n=1

δnqn)qA−r+ k0
12 (1+

∞

∑
K=1

d(K)qK)

=
1
N

qt+A−r+ k0
12

(
1+

∞

∑
K=1

qK

(
d(K)+δK +

K−1

∑
i=1

d(i)δK−i

))
.

We recall that d(i) is pK-integral if i < K. Thus δK +∑
K−1
i=1 d(i)δK−i is pK-integral. However,

d(K) is not pK-integral. Thus d(K)+ δK +∑
K−1
i=1 d(i)δK−i is not pK-integral. We have proven

that (m1m4−m2m3)F ′1 has unbounded denominators if S is infinite. This is a contradiction since

m4Z1−m2DkZ1 = (m1m4−m2m3)F ′1 and we have shown that m4Z1−m2DkZ1 has bounded de-

nominators if Z1 has bounded denominators. Thus the assumption that Z1 has bounded denom-

inators is false and we conclude that if S is infinite then the sequence of denominators of the

Fourier coefficients of Z1 is unbounded. A completely analogous argument shows that if S̃ is

infinite then the sequence of denominators of the Fourier coefficients of Z2 is unbounded.
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Theorem 5.3.8. Let ρ denote a two-dimensional irreducible representation of Γ0(2) which is

induced from a character of Γ(2). Assume that ρ(T ) has finite order, c ∈ Q and [Q(r) : Q] = 2.

Let k ∈ Z and Z ∈Mk(ρ
′) whose component functions Z1 and Z2 have the property that all of

their Fourier coefficients are algebraic numbers. Then the sequence of the denominators of the

Fourier coefficients of Z1 and the sequence of the denominators of the Fourier coefficients of Z2

are both unbounded.

Proof. We have shown in Theorem 5.2.17 that if ρ is induced by a character of Γ(2) then S = S̃

and S is an infinite set. This theorem now follows from Theorem 5.3.7.

We recall that we have proven in Theorem 5.1.11 that any ρ which satisfies the hypotheses of

Theorem 5.3.8 (in fact, a weaker set of hypotheses is sufficient) has the property that for every

k ∈ Z, there is a basis for Mk(ρ
′) consisting of vector-valued modular forms whose component

functions have the property that all of their Fourier coefficients are algebraic numbers.
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Chapter 6

Appendix

6.1 A Hauptmodul and its first and second derivatives

The purpose of this section is to prove that J(τ) := 3 G2(τ)
E4(τ)−G2(τ)

is a Hauptmodul of Γ0(2) and

to provide proofs of Propositions 4.1.3 and 4.1.4. We shall also show that G and E4 are alge-

braically independent and that M(Γ0(2)) = C[G,E4]. We begin by providing some background

on the group Γ0(2) and on modular forms on Γ0(2).

The group Γ0(2) is an index three subgroup of SL2(Z). It is generated by T =

1 1

0 1

, and

V :=

1 −1

2 −1

 . As V 2 =−I, V 2 acts trivially on H. We note that V fixes 1+i
2 and therefore 1+i

2

is an elliptic point. In fact, τ ∈ H is an elliptic point for Γ0(2) if and only if τ ∈ Γ0(2) · 1+i
2 . In a

fundamental region, the cusps of the modular curve Γ0(2)/(H
⋃
P1(Q)) are 0 and ∞.
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We recall that E2(τ) := 1− 24∑
∞
n=1 σ(n)qn and that G(τ) := −E2(τ)+ 2E2(2τ) ∈ M2(Γ0(2)).

We write down the q-expansions for G, E4, and E4−G2:

G(τ) =−(1−24
∞

∑
n=1

σ(n)qn)+2(1−24
∞

∑
n=1

σ(n)q2n) = 1+24q+24q2 +O(q3)

E4 = 1+240
∞

∑
n=1

σ3(n)qn = 1+240q+2160q2 +6720q3 +O(q4)

E4−G2 = 192q+1536q2 +O(q3).

The valence formula for Γ0(2) states that if f ∈Mk(Γ0(2)) then

k
4
=

k[PSL2(Z) : Γ0(2)]
12

= v0( f )+ v∞( f )+ ∑
z∈Γ0(2)\H

vz( f )
nΓ0(2)(z)

where Γ0(2) := Γ0(2)/{I,−I} and nΓ0(2)(z) is equal to one or two or three if z is not an elliptic

point or z is Γ-equivalent to i or z is Γ-equivalent to e
2πi
3 , respectively. In particular, nΓ0(2)(z) = 1

if z is not an elliptic point and nΓ0(2)(z) = 2 if z is Γ-equivalent to 1+i
2 . The valence formula for

any finite index subgroup of Γ is given in Theorem 5.6.11 in [7].

We shall use the valence formula to computes the zeros of G2 and E4−G2. We see that

E4−G2 = 192q+O(q2) has a simple zero at the cusp ∞. As E4−G2 ∈M4(Γ0(2)), the valence

formula implies that (E4−G2)(τ) = 0 if and only if τ ∈ Γ0(2) ·∞. We now use the fact that V

fixes 1+i
2 to compute the zeros of G. We have that

G
(

1+ i
2

)
= G|2V

(
1+ i

2

)
=

(
2 · 1+ i

2
−1
)−2

G
(

V
(

1+ i
2

))
=−G

(
1+ i

2

)
.
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Therefore G(1+i
2 ) = 0. The valence formula implies that G(τ) = 0 if and only if

τ ∈ Γ0(2) · 1+i
2 . The valence formula also shows that any weight two modular form vanishes at

1+i
2 . Thus M2(Γ0(2)) = CG.

Proposition 6.1.1. Let k denote a nonnegative even integer. The set {GaEb
4 : 2a+4b = k,a,b≥

0,a,b ∈ Z} is a C-basis for Mk(Γ0(2)). Consequently, the modular forms G and E4 are alge-

braically independent and M(Γ0(2)) = C[E4,G].

Proof. There are [ k
4 ] + 1 elements in the set {GaEb

4 : 2a+ 4b = k,a,b ≥ 0,a,b ∈ Z}. If k is a

nonnegative even integer then dim Mk(Γ0(2)) = [ k
4 ]+1 (see page 265 in [7]). Thus to show that

the set {GaEb
4 : 2a+4b = k,a,b≥ 0,a,b ∈ Z} is a basis for Mk(Γ0(2)), it suffices to show that

the elements of this set span Mk(Γ0(2)). We show that this holds by induction on k. The result is

clear for k = 0 and k = 2 since dim M0(Γ0(2)) = C and dim M2(Γ0(2)) = CG. Let k denote an

even integer such that k≥ 4. We shall assume that the set {GaEb
4 : 2a+4b = t,a,b≥ 0,a,b∈Z}

spans Mt(Γ0(2)) for all nonnegative even integers t less than k.

Let f = ∑
∞
n=0 anqn ∈Mk(Γ0(2)). Then f −a0G

k
2 has a zero at ∞.

Let g = (E4−G2)−1( f − a0G
k
2 ). Then g ∈Mk−4(Γ0(2)) since E4−G2 has a simple zero at ∞

and has no other zeros. By the inductive hypothesis, g = ∑2x+4y=k−4 cx,yGxEy
4 where each of the

cx,y are complex numbers. Thus

f = a0G
k
2 +(E4−G2)g = a0G

k
2 + ∑

2x+4(y+1)=k
cx,yGxEy+1

4 − ∑
2(x+2)+4y=k

cx,yGx+2Ey
4

is in the C-span of the set {GaEb
4 : 2a+4b = k,a,b≥ 0,a,b ∈ Z}. This completes the inductive

step. We have thus proven that for each even k ≥ 0, {GaEb
4 : 2a+ 4b = k,a,b ≥ 0,a,b ∈ Z}

spans Mk(Γ0(2)) and is therefore a C-basis for Mk(Γ0(2)).
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If f ∈ Mk(Γ0(2)) then we recall that k
4 = v0( f ) + v∞( f ) + ∑z∈Γ0(2)\H

vz( f )
nΓ0(2)(z)

. This equation

shows that if f is nonzero then f cannot be expressed as a sum of modular forms of smaller

weights. We conclude that E4 and G are algebraically independent and that M(Γ0(2))=C[G,E4].

We shall now prove that J is a Hauptmodul.

Proposition 6.1.2. The modular function J(τ) := 3 G2(τ)
E4(τ)−G2(τ)

is a Hauptmodul of Γ0(2).

Proof. The modular forms G2 and E4−G2 are both modular forms of weight four and therefore

J is a modular function on Γ0(2). A modular function on a genus zero subgroup is a Hauptmodul

if and only if it has one simple pole and no other poles. This statement is true about the function

J since G2 does not vanish at the cusp ∞ and E4−G2 has a simple zero at the cusp ∞ and it has

no other zeros.

We now give the proof of Proposition 4.1.3. We will prove a bit more. Namely, we will show

that:

θ(J) = (1−J)G =
G(E4−4G2)

E4−G2

Proof. (Proof of Proposition 4.1.3.) The derivative of a modular function is a meromorphic

modular form of weight two. The differential operator θ = 1
2πi

d
dτ

= q d
dq preserves the order of

vanishing of a function at ∞. Therefore θ(J) has a simple pole at ∞. Moreover, θ(J) has no

poles elsewhere since J has no poles elsewhere. As E4−G2 has a simple zero at ∞, the function

(E4−G2)θ(J) is holomorphic and thus (E4−G2)θ(J) ∈M6(Γ0(2)) = CE4G
⊕

CG3. We now
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compute the numbers d1 and d2 for which (E4−G2)θ(J) = d1E4G+d2G3. We first compute the

first two coefficients in the q-expansion of (E4−G2)θ(J). As E4−G2 = 192q+1536q2+O(q3),

3
E4−G2 =

1
64q(1−8q+O(q2)). We have

J(τ) =
3G2

E4−G2 =
1

64q
(1−8q+O(q2))(1+48q+O(q2)) =

1
64

q−1(1+40q+O(q2)).

Therefore θ(J) = q d
dq(J) =−

1
64 q−1 +O(q). Hence

(E4−G2)θ(J) = (192q+1536q2 +O(q3))(− 1
64

q−1 +O(q)) =−3−24q+O(q2).

Thus

−3−24q+O(q2) = (E4−G2)θ(J)

= d1E4G+d2G3

= d1(1+240q+O(q2))(1+24q+O(q2))+d2(1+72q+O(q2))

= d1 +d2 +(264d1 +72d2)q+O(q2)

We have that d1 + d2 = −3, 264d1 + 72d2 = −24, and we obtain that (d1,d2) = (1,−4). We

have now shown that (E4−G2)θ(J)=G(E4−4G2). It now suffices to prove that E4−4G2

E4−G2 = 1−J.

The modular function E4−4G2

E4−G2 has a simple pole at ∞ since E4− 4G2 = −3+O(q) does not

vanish at ∞ and E4−G2 = 192q+O(q2) has a simple zero at ∞. The modular form E4−G2

has no other zeros and thus E4−4G2

E4−G2 is holomorphic except at ∞. We have previously shown

that J also has the property that it has a simple pole at ∞ and it has no other poles. As the

Riemann surface Γ0(2)\(H
⋃
P1(Q)) has genus zero, the Riemann-Roch theorem implies that
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the dimension of the vector space of meromorphic functions on Γ0(2)\(H
⋃
P1(Q)) which have

at most a simple pole at ∞ and which are holomorphic elsewhere is two. We can take a basis

for this space to be the constant function 1 and J. We have shown that E4−4G2

E4−G2 is in this space.

Therefore there exist complex numbers y and z such that E4−4G2

E4−G2 = y+ zJ. We compute y and z

by comparing the coefficients of q−1 and q0 in the q-expansions of E4−4G2

E4−G2 and J. We previously

computed that J= 1
64 q−1 + 40

64 +O(q). We also have that

E4−4G2

E4−G2 =
−3+48q+O(q2)

192q+1536q2 +O(q3)

=
−3+48q+O(q2)

192q(1+8q+O(q2))

=
1

192q
(−3+48q+O(q2))(1−8q+O(q2))

=
1

192q
(−3+72q+O(q2))

=− 1
64

q−1 +
3
8
+O(q).

Therefore z =−1 and 3
8 = y+ 40

64 z = y− 40
64 . Thus y = 1. We conclude that E4−4G2

E4−G2 = 1−J and

our proof of the proposition is now complete.

Remark: We have shown in the above proof that K= 64J= q−1(1+O(q)).

We need the following Proposition before giving the proof of Proposition 4.1.4.

Proposition 6.1.3.

θ(G) =
1
6
(E2G+E4−2G2)

Proof. As G ∈M2(Γ0(2)), D2(G) = θ(G)− 1
6 E2G ∈M4(Γ0(2)) = CE4

⊕
CG2. We now com-
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pute the numbers c1 and c2 such that θ(G)− 1
6 E2G = c1E4 + c2G2. We have that:

θ(G) = θ(1+24q+24q2 + · · ·) = 24q+48q2 +O(q3)

E2G = (1−24q−O(q2))(1+24q+O(q2)) = 1+O(q2)

θ(G)− 1
6

E2G = 24q+O(q2)− 1
6
(1+O(q2)) =−1

6
+24q+O(q2).

We now have that

−1
6
+24q+O(q2) = θ(G)− 1

6
E2G

= c1E4 + c2G2

= c1(1+240q+O(q2))+ c2(1+48q+O(q2))

= c1 + c2 +(240c1 +48c2)q+O(q2)

We get that c1+c2 =−1
6 and 240c1+48c2 = 24. Thus c1 =

1
6 and c2 =−1

3 and the proposition

is now proven.

We will also need to use the fact that E4(τ)
G2(τ)

= J(τ)+3
J(τ) in our proof of Proposition 4.1.4. We recall

that J= 3G2

E4−G2 . Therefore J+3
J = 1+ 3

J = 1+ E4−G2

G2 = E4
G2 . We now give the proof of Proposition

4.1.4. Namely, we show that:

θ
2(J) = G2(1−J)(

−7J+3
6J

)+
1
6

E2θ(J).

Proof. (Proof of Proposition 4.1.4) We will now use the formula θ(G) = 1
6(E2G+E4−2G2) to

compute θ2(J). We have that

θ
2(J) = θ(G(1−J)) =−θ(J)G+(1−J)θ(G)

85



=−G2(1−J)+
1
6
(E2G+E4−2G2)(1−J)

= G2(1−J)(−4
3
+

E4

6G2 )+
1
6

E2G(1−J)

= G2(1−J)(−4
3
+

J+3
6J

)+
1
6

E2θ(J)

= G2(1−J)(
−7J+3

6J
)+

1
6

E2θ(J).

6.2 An integrality result

Lemma 6.2.1. Let K := 64J= 192G2

E4−G2 . Then K ∈ 1
q Z[[q]]×.

Proof. We have that

G =−E2(τ)+2E2(2τ) =−(1−24
∞

∑
n=1

σ(n)qn)+2(1−24
∞

∑
n=1

σ(n)q2n)

= 1+24
∞

∑
n=0

σ(2n+1)q2n+1 +
∞

∑
n=1

(24σ(2n)−48σ(n))q2n.

Let P = ∑
∞
n=0 σ(2n+1)q2n+1 +∑

∞
n=1(σ(2n)−2σ(n))q2n. Then G = 1+24P and

G2 = 1+48P+242P2 ≡ 1+48P (mod 192).

Therefore

G2−E4 ≡ 48P−240
∞

∑
n=1

σ3(n)qn

≡ 48

(
P−

∞

∑
n=1

σ3(n)qn

)
(mod 192).

Thus to prove that G2−E4 ∈ 192Z[[q]], it suffices to show that

∞

∑
n=0

σ(2n+1)q2n+1 +
∞

∑
n=1

(σ(2n)−2σ(n))q2n = P≡
∞

∑
n=1

σ3(n)qn (mod 4).
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Equivalently, we must show that for all n≥ 0, σ(2n+1)≡ σ3(2n+1) (mod 4) and that for all

n≥ 1, σ(2n)−2σ(n)≡ σ3(2n) (mod 4). We observe that since any divisor of an odd integer is

odd, σ(2n+1) = ∑d|2n+1 d ≡∑d|2n+1 d3 = σ3(2n+1) (mod 4). To prove that σ(2n)−2σ(n)≡

σ3(2n) (mod 4), we first write n = 2en′ where n′ is odd and e≥ 0. We have that

σ(2n)−2σ(n) = σ(2e+1n′)−2σ(2en′)

= (σ(2e+1)−2σ(2e))σ(n′)

= (2e+2−1−2(2e+1−1))σ(n′)

= σ(n′).

We have that σ3(2n) = σ3(2e+1n′) = σ3(2e+1)σ3(n′) ≡ σ3(n′) (mod 4). Because n′ is odd,

σ3(n′)≡ σ(n′) (mod 4). Thus σ3(2n)≡ σ(n′) (mod 4). We have thus proven that for all n≥ 1,

σ3(2n) ≡ σ(n′) ≡ σ(2n)− 2σ(n) (mod 4). Hence G2−E4 ∈ 192Z[[q]]. Moreover, G2−E4 =

O(q) and thus G2−E4
192q ∈ Z[[q]]. We also have that G2−E4

192q = 1+O(q). We recall that the ele-

ments in Z[[q]]× are exactly those elements of Z[[q]] whose constant term is equal to 1 or −1.

Therefore G2−E4
192q ∈ Z[[q]]× and hence 192q

G2−E4
∈ Z[[q]]×. Finally, G2 = 1+O(q) ∈ Z[[q]]× and so

192G2q
E4−G2 = (64q)J ∈ Z[[q]]×. Thus J ∈ 1

64q Z[[q]]× and 64J= K ∈ 1
q Z[[q]]×.
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