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ABSTRACT OF THE DISSERTATION

The Influence of Spatial Structure and Trophic Interactions on Ecological Communities

by

Matthew Douglas Green

Doctor of Philosophy, Graduate Program in Evolution, Ecology, and Organismal Biology
University of California, Riverside, September 2022
Dr. Kurt E. Anderson, Chairperson

The central theme of my dissertation is the influence of spatial structure and
trophic interactions on ecological community dynamics and subsequent patterns of
community diversity. I studied this phenomenon in different ecological contexts. In a
synthesis of protist microcosm experiments, I studied how spatial network structure
influenced predator-prey persistence (chapter 1). Subsequently, I shifted my focus to
Sierra Nevada, CA high elevation aquatic systems. In high elevation lake-stream
networks, I investigated whether patterns of macroinvertebrate diversity matched
predictions from established stream ecology frameworks and the underlying processes
driving these diversity patterns (chapter 2). Lastly, in order to understand how spatial
structure and trophic interactions interactively structure communities, I studied how
macroinvertebrate and zooplankton communities in Sierra Nevada streams and lakes are

structured along spatial gradients and as a function of the presence of fish (chapter 3).
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Introduction
Ecological communities exist in spatially structured landscapes and the processes that
regulate communities and ecosystems are modified by the underlying spatial arrangement
of habitats. Ecologists’ subjectivity in defining spatial and temporal scales has led some
to conclude that the community concept should be abandoned, because drawing
generalities contingent on arbitrarily defined scales has caused much confusion and
debate (Lawton 1999, Ricklefs 2008). From my perspective, community ecologists have
not yet adequately addressed the pervasive influence of scale, despite a legacy of spatial
perspectives (Gause 1934, Huffaker 1958, MacArthur 1958, Hutchinson 1959) and
widespread recognition of its fundamental importance (Wiens 1989, Levin 1992, Leibold
and Chase 2018).

A major goal of community ecology is to generalize the processes responsible for
generating variation in biodiversity along spatial and environmental gradients. System-
specific frameworks have been one avenue for explaining biodiversity responses to
environmental gradients. However, system-specific frameworks have been largely
context dependent and difficult to generalize, which requires new frameworks that focus
on core ecological processes structuring biodiversity across ecosystems. Recent syntheses
in community ecology propose that four major processes structure biodiversity: dispersal
(the movement of individuals through space), speciation (the formation of new species),
niche selection (changes in species relative abundances owing to abiotic and biotic
conditions that give rise to deterministic fitness differences between species), and

ecological drift (changes in species relative abundances that are random with respect to



species identities; Vellend 2010, 2016, Leibold and Chase 2018, Leibold et al. 2020).
Syntheses based around these four mechanisms are collectively known as the Theory of
Ecological Communities (TEC; Vellend 2010, 2016), which has been demonstrated as a
useful approach to linking patterns in biodiversity with processes (Siqueira et al. 2020,
Leibold et al. 2020). Importantly, ecologists are now faced with the task of generalizing
the TEC framework by disentangling the relative importance of the four constituent
processes in structuring communities (Chase and Myers 2011) and linking these four
processes to system specific frameworks of community assembly.

Multiscale frameworks in community ecology (e.g., metacommunity ecology,
community assembly, and the theory of ecological communities) integrate ecological
processes across scales. These frameworks largely emphasize the “horizontal” structure
of communities, or species interactions (e.g., competition) within a guild, with little
attention given to food webs and the “vertical” structure of communities, or trophic
interactions (e.g., predation and mutualism) among different guilds (Holt 2009, Gravel et
al. 2011, Leibold and Chase 2018). The incorporation of food webs into multiscale
frameworks demonstrate that trophic interactions can modify the relative importance of
ecological processes and community structure (Huffaker 1958, Piechnik et al. 2008,
Chase et al. 2009, Stier et al. 2013, Fahimipour and Anderson 2015, Livingston et al.
2017).

Food webs are a basic organizational unit for ecologists, yet until recently
consideration of how food webs interact across spatial scales has been largely absent

from the literature (Schoener 1989, Holt 1993, Polis et al. 1997, Holt and Hoopes 2005).



Classical studies in ecology have demonstrated the importance of spatial and
environmental heterogeneity on predator-prey persistence, where persistence is defined as
the duration of a species in a community before local or regional extinction occurs (Elton
1927, Nicholson 1933, Huffaker 1958, Pimentel et al. 1963). Local variability of trophic
dynamics can lead to increased stability at regional scales through a variety of
mechanisms such as rescue effects and dispersal, and thus increased persistence of food
webs (Leibold and Chase 2018). Increasingly, ecologists have incorporated spatial
perspectives from metacommunity ecology (Leibold and Chase 2018) and network theory
(Holland and Hastings 2008a, Gross et al. 2020) to mechanistically understand the
importance of spatial, environmental, and biotic factors on food web dynamics (Holyoak
and Lawler 1996, Holyoak 2000a, 2000c, Laan and Fox 2020). Despite progress,
theoretical studies of spatial trophic dynamics far surpass our empirical understanding.
Importantly, we currently lack experimental tests and/or syntheses of how multiple
spatial and environmental factors work in concert to influence predator-prey dynamics
and persistence.

The incorporation of trophic dynamics into multiscale community ecology
framework not only displays the influence of spatial structure on species persistence and
biodiversity, but also how trophic interactions can modify the relative importance of
ecological processes structuring communities (Chase and Leibold 2003, Leibold and
Chase 2018). The presence of predators in a metacommunity of prey species modifies the
effects of prey dispersal by either selectively feeding on a competitively dominant

species, resulting in increased prey diversity (Paine 1966, Kneitel and Miller 2003,



Cadotte et al. 2006) or by reducing overall prey abundance and diversity (Shurin 2001,
Chase et al. 2010). Predators alter the strength of environmental selection (Vellend 2010),
but the magnitude of predator effects may depend on how predators are influenced by the
environment. Predators can also influence community size and thereby increasing the
likelihood of extinction and ecological drift. Alternatively, predators feeding selectively
can act as an ecological filter which increases more deterministic processes. The relative
importance of ecological processes structuring communities is thus dependent on
predator and prey life history traits, habitat heterogeneity, and spatial structure.

In natural systems, the influence of spatial structure is generally studied in concert
with environmental factors to tease apart processes structuring biodiversity patterns
(Brown et al. 2017). Beta (B) diversity, or community dissimilarity, links local (o)) and
regional (y) scale diversity to reflect compositional turnover of species among
communities (Anderson et al. 2011). Species turnover, or B-diversity along
environmental gradients, is also an indicator of the strength of different forms of selection
in driving species composition and maintaining diversity at the regional scale (Anderson
et al. 2011). Species diversity and turnover along environmental gradients in space or
time have the potential to buffer or magnify the impact environmental change on
ecosystem functioning. Turnover in zooplankton species composition among Sierra
Nevada lakes maintains community biomass in the face of fish introduction at high
elevation but not at low elevation (Symons and Shurin 2016). The prevalence of different

assembly mechanisms should result in different patterns of B-diversity along



environmental, spatial, and temporal gradients, although the link has not been clearly
established, especially in freshwater systems and multitrophic communities.

Explicitly incorporating food webs into multiscale frameworks in community
ecology is a pressing need moving forward, and authors have suggested that multitrophic
interactions might be one of the great sources of unexplained variation in many
metacommunity and assembly studies (Leibold and Chase 2018). Linking theoretical and
experimental findings with natural systems will provide the most thorough and
convincing evidence to understand the effects of spatial structure and trophic interactions
in structuring complex ecological communities. My dissertation aims to contribute to the
aforementioned gaps in the literature.

The main theme of my dissertation is understanding the role that space and
trophic interactions plays in maintaining species persistence and structuring community
diversity. I will address the following three aims: (1) to examine the role spatial
structure, productivity, and trophic interactions play in determining predator and prey
persistence in experimental microcosms; (2) to investigate whether patterns of
macroinvertebrate diversity matched predictions from established stream ecology
frameworks and the underlying processes driving these diversity patterns; and (3) to
understand how spatial structure and trophic interactions interactively structure aquatic
communities.

Overall, the present dissertation links ecological theory to empirical studies
allowing for a better understanding the role space and trophic interactions play in

determining community persistence and diversity. Empirical test of theoretical models in



spatial trophic ecology are needed, as our theoretical understanding far surpasses our
empirical understanding. Although such multiscale and large spatial experimental
studies can be logistically challenging and difficult to synthesize, my hope is that the
present extension of spatial community ecology research will inspire researchers to
expand upon this work and tackle empirically many unresolved theoretical ideas in

spatial food web ecology.
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Abstract
Predator-prey systems are notoriously extinction prone in isolated and controlled habitats,
but spatial and environmental heterogeneity can enhance predator-prey persistence.
Metacommunity and food web theory predicts that aspects of spatial heterogeneity (i.e.,
metacommunity size and spatial connectivity) and environmental variability (i.e.,
productivity) influence predator-prey persistence through a variety of mechanisms such
as statistical stabilization, colonization-extinction dynamics, and trophic interactions.
However, we currently lack explicit tests of how these spatial factors act in concert across
different spatial networks configurations and sizes. Such investigations are required to
understand the robustness of predictions across a range of spatial systems, environmental
variation, and predator-prey systems. Here, we synthesized data from protist predator-
prey microcosm experiments to ask how: 1) metacommunity size, 2) spatial connectivity,
3) productivity, and 4) predator identity influence predator-prey persistence, measured
through extinction times, colonization/extinction dynamics, and occupancy patterns of
both predators and prey. We found that time to prey extinction increased with
productivity and decreased with both metacommunity size and connectivity, contrary to
predictions. Consistent with theoretical predictions, metacommunity size and productivity
positively affected prey occupancy and contrary to predictions, connectivity negatively
influenced prey occupancy. For predator persistence, both patterns of occupancy and time
to predator extinction responded similarly to spatial and environmental factors.
Productivity showed a hump shaped relationship with predator persistence and both

spatial factors had positive effects on predator persistence. Further, metacommunity size
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and connectivity had positive effects on predator occupancy, and productivity showed a
hump-shaped relationship with predator occupancy. From our analyses of mechanisms,
trophic interactions drove variation in spatial occupancy patterns, where the strength and
direction of predator-prey occupancy relationships varied among productivity levels and
predator-prey combinations due to differences in the importance of top-down and
bottom-up effects. Observed predator occupancy patterns matched expectations derived
from metacommunity theory, while prey occupancy patterns were better explained by its
relationship with predator occupancy and thus trophic interactions. Taken together, these
results highlight that spatial network structure has a complex, spatially contingent
relationship with predator-prey persistence and mechanisms have detectable and

important roles across a range of spatial networks and conditions.

Introduction
Classical studies in ecology have demonstrated the importance of spatial and
environmental heterogeneity on predator-prey persistence, where persistence is defined as
the duration of a species in a community before local or regional extinction occurs (Elton,
1927; Huffaker, 1958; Nicholson, 1933; Pimentel et al., 1963). Increasingly, ecologists
have incorporated spatial perspectives from metacommunity ecology (Leibold & Chase,
2018) and network theory (Gross et al., 2020; Holland & Hastings, 2008) to
mechanistically understand the importance of spatial, environmental, and biotic factors
on food web dynamics (Holyoak, 2000a, 2000b; Holyoak & Lawler, 1996; Laan & Fox,

2020). Despite progress, theoretical studies of spatial trophic dynamics far surpass our
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empirical understanding. Importantly, we currently lack experimental tests and/or
synt