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Abstract

Simulation and Optimization of Fused Deposition Modeling

by

Jingyi Wang

Doctor of Philosophy in Engineering- Mechanical Engineering

University of California, Berkeley

Professor Panayiotis Papadopoulos, Chair

Since their invention decades ago, various kinds of additive manufacturing (AM) methods
have emerged. In recent years additive manufacturing has been growing very rapidly as the
technology matures and the cost of production declines. One of the first AM methods, fused
deposition modeling (FDM) has evolved with more capable printers and novel materials
making significant progress towards industrialization of the process. However, as it stands
now, a lack of understanding of the fundamental physics during the additive manufacturing
process leads to some severe drawbacks. For example, additively manufactured parts can
suffer from low finish quality and prohibitively long production time.

Numerical simulation has been very helpful in understanding and designing traditional man-
ufacturing processes, such as metal forming and welding. It has huge potential in AM as
well. Gaining key knowledge pertaining to the printing process, such as the temperature
field change, will help build better printers and enable designers to achieve design goals
such as minimum residual stress or surface roughness. As a result, research interest in reli-
able, robust and efficient numerical models for additive manufacturing has surged in the last
decade.

The objective of this dissertation is to establish a coupled thermomechanical finite element
model that accurately simulates the FDM process and computes quantities of interest, such as
the shape error. The temperature and deformation history is taken into consideration when
depositing new material. The results of two-dimensional example problems are discussed and
compared with those from an uncoupled finite element model. In addition, a parameterized
PDE-constrained (partial differential equation) optimization study based on the simulation
model is performed. Algorithms designed with knowledge gained from the simulation are
proposed to find optimal solutions.
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Chapter 1

Introduction

Additive manufacturing (AM) builds objects by adding new material layer upon layer as
opposed to the traditional way of removing materials from the original workpiece. This
allows complicated topology to be printed in a much simpler way and shortens the design
cycle time at low cost by removing the need for expensive tooling [1, 2, 3, 4, 5, 6]. A
number of additive manufacturing methods have been developed in recent years, including
fused deposition modeling (FDM), selective laser sintering, etc. Faster, more powerful, and
integrated machines have been coming up online with more resources devoted to industry.
AM has been adopted widely in prototyping and is steadily making its way into medical,
aerospace, automotive and other industries [7, 8]. Due to its huge potential, AM has garnered
interest both in industry and academia. On the national level, America Makes, established
in 2012 and based in Youngstown, Ohio, which is the flagship Institute for Manufacturing
USA (the National Network for Manufacturing Innovation), is coordinating efforts across
the AM industry to promote the advancement and adoption of AM. National laboratories,
including Lawrence Livermore National Laboratory, Sandia National Laboratories and Los
Alamos National Laboratory, are conducting research on topics of additive manufacturing
process for metals [9, 10].

On the simulation software side, efforts have been made to develop CAE tools for additive
manufacturing. Software companies such as Autodesk and Ansys, provide continuum-scale
process simulation and post-processing analysis to help design the objects and the process
itself. However, such success is still limited and in its early stage as the AM process involves
multi-scale physical phenomena, such as rapidly evolving microstructures and deformation
caused by large and changing temperature gradients. Research is underway to connect mod-
els of different length scales by taking advantage of the latest supercomputers as computing
resources [9, 10, 11, 12, 13]. To that end, more progress needs to be made before AM models
become mainstream tools in industry.

In academia, a lot of research has focused on AM processes for metals, e.g., powder
bed fusion, where metal powders are melted and formed into shape with a high power
laser as the heat source. Groups at Lawrence Livermore National Laboratory have studied
multiscale models [10], one on the powder scale and the other on the continuous or medium
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scale to optimize the additive manufacturing process. More specifically, the continuum scale
model uses the finite element method to computationally build a complete part and predict
properties, such as residual stress. Phase change is incorporated into the heat transfer
calculations along with a sophisticated laser model. On the other hand, the powder scale
model focuses on the melt pool and microstructure simulation of the metal to reduce defects
in the printed object.

Most simulation methods for AM solve the transient heat transfer problem first and
compute the mechanical part based on the obtained temperature history subsequently, thus
leading to a weakly coupled model. Michaleris and coworkers [14, 15, 16] explored heat
transfer simulations of 3D metal deposition problem using two ways for adding new ele-
ments, namely quiet and inactive element activation which are explained in Section 2.3.1.
While the quiet element method is easier to implement and faster overall, inactive element
activation offers better accuracy and stability. Conduction, convection and radiation are all
considered in these works. The temperature history generated through these thermal anal-
yses is used for mechanical calculations, such as residual stress considering thermal-induced
strain. It is found that the inactive element method gives more accurate results. Kolossov et
al. [17] modeled the heat transfer and thermal field of selective laser sintering using a non-
linear 3D finite element model, which took into consideration the temperature dependence
of thermal conductivity and heat capacity. The results were compared with experimental
data obtained through infrared camera and matched well. Roberts et al. [18] used element
‘birth and death’, equivalent to the inactive element activation mentioned above, to simulate
the three-dimensional temperature field during the laser melting process. Again the model
was implemented using the finite element method. The results showed temperature peaks
occurring around newly-added elements. Zhang and Chou [19] developed a 3D finite element
model to simulate FDM and computed the residual stresses in order to evaluate part distor-
tion. The model used the inactive element method and calculated mechanical quantities at
each time step after the temperature field was determined. Prototype parts were built and
used to validate the simulation results.

Keller et al. [20] simulated the transient temperature field during a laser powder bed
fusion manufacturing process. It was used to study the microstructure formulation and
its thermodynamic driving forces. The temperature history obtained was then applied to
solidification simulations and compared to experimental results observed from electron and
X-ray diffraction analyses. Yang et al. [21] used the quiet element method to simulate
directed energy deposition of Ti-6Al-4V with a new criterion of element activation. Both
pointwise and global thermal and mechanical quantities were measured and compared. The
simulation results compared well with experiments using laser scanning.

Costa et al. [22] developed a thermo-kinetic finite element model of multilayer laser
powder deposition for the investigation of the microstructural transformations and hardness
variations that occur during the deposition of steel parts. The model is capable of computing
the final hardness distribution in the part. The temperature history was used for kinetic
phase transformation calculations. Hu et al. [23] developed a 3D finite element model using
a commercial code to study the molten pool thermal behavior in building a single-bead
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wall with laser-based additive manufacturing which had a closed-loop control component to
ensure a constant width of the molten pool. The results compared well with experiments
conducted through an infrared imaging system. Moreover, the traverse velocity was found to
have limited impact on the average temperature in the processing zone. Ji et al. [24] treated
latent heat with enthalpy and calculated temperature distribution with a 3D commercial
finite element model by solving the heat equation with convection and radiation. Zhang
et al. [25] developed a finite element model in a commercial code using the quiet element
method and thermomechanical calculations similar to the ones to be described in Section 3.5.
Heat source was included and calculated as the enthalpy change of acrylonitrile butadiene
styrene (ABS). Part distortion and residual stress were evident and found to be dependent
on toolpath.

Another key concern in AM simulation is the sheer volume of computing power required
for the simulation of complex geometries especially in three dimensions. A common technique
is to use adaptive mesh refinement to reduce the number of elements needed far away from
the heat source resulting in a coarser mesh for the already printed layers and elements. Other
researchers are studying parallelization in time to reduce computing cost [10].

Current optimization research of additive manufacturing has mostly been focused on
data-driven models where enough experiments with varying parameters can predict the out-
come of a different parameter combination [1, 26]. Some of the techniques used include the
Taguchi method, response surface methodology (RSM) and artificial neural network (ANN).
Due to its flexibility and efficiency in studying large numbers of parameter combinations,
finite element method is also widely adopted.

West et al. [27] proposed a process-planning method for aiding Stereolithography to
achieve a balanced objective among geometric tolerances, surface finishes, and part build
time. It relied on empirical data and included process variables such as part orientation and
layer thickness. An adaptive slicing algorithm was proposed with the method. Vastola et al.
[28] used a finite element model to investigate the effect of beam size, beam power density,
beam scan speed and chamber bed temperature on residual stress. The simulation model
was similar to the uncoupled thermomechanical ones to be introduced in Section 3.5 with
a fixed Lagrangian mesh. Cho et al. [29] used a multilayer perception neural network to
select the optimal parameters for Stereolithography, a type of additive manufacturing tech-
nology. Gockel et al. [30] developed process mapping based on finite element method of a
solidification microstructure process for deposition of single beads of Ti-6Al-4V via electron
beam wire-feed AM processes. The mapping was to optimize process variable combina-
tions to generate constant beta grain size and morphology. Strano et al. [31] investigated
the surface roughness and morphology for Steel 316L alloy parts made by Selective Laser
Melting (SLM). The real surface roughness at different sloping angle was investigated and a
mathematical model was proposed to efficiently predict its value. The model took into con-
sideration the increasing presence of particles on the top surface in addition to the staircase
effect. Nickel et al. [32] used uncoupled thermal and mechanical finite element analysis to
examine the deposition pattern effect on the deflection of manufactured parts by shape de-
position manufacturing. The deposition pattern included raster, spiral from inside to outside
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and spiral from outside to inside. A strong correlation between the patterns and deflections
was demonstrated. Krol et al. [33] investigated support structure for metal-based AM using
finite element simulations. The heat transfer problem was solved and subsequently residual
stress was computed. It was shown that a fractal adaptation of the support layout and an
optimization of block supports could be done efficiently to achieve comprehensive objectives,
e.g., lowering residual stress to avoid failure during manufacturing. By choosing the finite
element method, a large number of results can be calculated and compared easily. A process
map was created by Vasinonta et al. [34] from numerical models of laser-based material
deposition of thin-walled structures. The model used finite elements to solve the heat trans-
fer problem with temperature-dependent conductivity and specific heat. The effects of wall
height, laser power, deposition speed and part preheating on melt pool length were investi-
gated. The map was applied to the Laser Engineered Net Shaping (LENS) process at Sandia
National Laboratories.

Using the Taguchi technique Anitha et al. [35] conducted experiments and concluded
that layer thickness had the most effect on surface roughness. More layers produce better
surface roughness, while road width and printing speed also play a role. Slower printing
speed in general also helped improve surface quality. Similar conclusions are drawn in other
literature as well [36, 37, 38, 39, 40]. Part orientation, road width, layer thickness, air gap and
raster angle were optimized for dimensional accuracy using the Taguchi method in [41, 36].
Here, shrinkage along the length, width and diameter of the hole of the fabricated part was
observed compared to the designed value. It was concluded that decreasing layer thickness
helps to reduce dimensional error.

Onwubolu et al. [42] developed a functional relationship between process parameters and
tensile strength for FDM process. The tensile strength data were gathered through exper-
iments. Then, using the group method of data handling (GMDH), five process parameters
were considered layer thickness, orientation, raster angle, raster width, and air gap. It was
found that smaller layer thickness would improve tensile strength while being the more costly
in time. Sood et al. [43] similarly investigated the effect of these five processing parameters
on the compressive strength of FDM-built parts. Quantum-behaved particle swarm opti-
mization and artificial neural network were used to predict compressive strength for other
parameters. Thrimurthulu et al. [39] studied the optimum part orientation to improve part
surface finish while maintain a reasonable build time. Adaptive slicing is applied in the
optimization process.

Chacón et al. [44] characterized the effect of build orientation, layer thickness and feed
rate on the mechanical performance of FDM-produced polylactic acid (PLA) samples. Ten-
sile and three-point bending tests were carried out to find the mechanical response. The
mechanical properties strengthened with layer thickness and against the feed rate for the
upright orientation. For on-edge and flat orientation however, they were found to be of
small significance. Domingo-Espin et al [45] studied building orientation, as well as other
parameters, to determine how they affect on the mechanical response by testing FDM-made
specimen. Lee et al. [46] used the Taguchi method to investigate the effect of process
parameters on the elastic performance of the part through experiments. Similar studies
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with different parameters and methods focusing on mechanical properties can be found in
[8, 47, 48, 49, 50, 51]. Dynamic mechanical properties are also dependent on the parameters,
as studied in [52, 53].

Alafaghani et al. [54] examined the influence of FDM processing parameters on the final
parts characteristics including mechanical properties and dimensional accuracy. Parame-
ters studied were building directions, infill percentage, infill patterns, print speed, extrusion
temperatures and layer height. Finite element model for the test specimen that took into
account porosity of the FDM printed structure was also proposed. Zhang et al. used the
finite element model described earlier in [25] to study parameters effect on part distortions.
The results showed that part distortions were related to the stress accumulation during the
deposition. Three parameters were considered, layer thickness, scan speed and road width.
In general distortions increased with both road width and layer thickness and decreased with
speed [55].

Other optimization efforts include topology optimization for FDM since much more com-
plicated small-scale features can be manufactured using additive manufacturing technologies
[56, 57] while the manufacturing process demands novel constraints on the optimization.

As already discussed, most of the research on the continuum scale modeling of additive
manufacturing employs decoupled or weakly coupled thermomechanical calculations and pre-
defined element addition paths. While these models lead to faster simulations, they might
not work for applications that demand high accuracy in predicting quantities such as residual
stress and shape error. Furthermore, to the best of our knowledge, the optimization efforts
of the AM process rely on experimental data and statistical analysis thus limiting the input
directly from simulation tools. In this work, a novel continuum-scale coupled thermome-
chanical finite element model is proposed for the fused deposition modeling manufacturing
process in two dimensions, which can provide more comprehensive understanding of the cou-
pling effect of temperature and deformation. The model also takes into consideration the
deformation which occurs when adding new elements during the printing process to more ac-
curately represent the overall process. Two optimization methods are explored based on the
simulation including both discrete and continuous parameters. The first one is a gradient-less
local search method called the method of local variants. It is straightforward and guaranteed
to converge to a local minimum. The speed of convergence depends on the step size in the
parameter space. The second method is based on the parameterization of the finite element
model for continuous parameters. We use gradients computed throughout the simulation to
find the optimization path and propose a gradient descent with line search algorithm. Unlike
previous empirical optimization approaches, these simulation-based algorithms give insight
into how the parameters through physical phenomenon affect the objectives of interest. In
addition to rectangular geometries in two-dimension, we discuss ways to better simulate and
optimize the approximation of curvatures as well. Detailed discussion on a parameter, the
number of layers, is presented since it plays an important role in designing the optimization
process for the curved geometry cases.
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Chapter 2

Finite Element Model for Fused
Deposition Modeling

2.1 Introduction

Finite element modeling has proven to be extremely powerful in simulating manufacturing
and other engineering applications and is the dominant method in the technical literature
for additive manufacturing simulation [58]. The fully-coupled continuum level thermome-
chanical problem solves simultaneously the linear momentum balance, angular momentum
balance and the energy balance [59] for the displacement and temperature field. The cou-
pling between thermal and mechanical effects can happen on several levels. For example, the
stress constitutive law may depend both on strain and temperature. Thermal-induced strain
is another important coupling factor. Also the heat source in FDM, unlike the laser melting
process, is the hot material itself. The two-dimensional finite element model introduced in
this section is based on the theory of continuum mechanics with coupled thermomechani-
cal equations and incorporates dynamic element creation to simulate the fused deposition
modeling process [60]. In order to build parts with curvature, slicing algorithms and partial
elements are introduced. The simulation model developed in this chapter is the basis of the
optimization study in Chapter 4.

2.2 Simulation Model

2.2.1 Balance Laws and Constitutive Assumptions

The kinematics relations used throughout the dissertation are introduced first. As shown in
Figure 2.1, let X be the material point positions of the reference configuration, denoted by
V . A motion x̄ assigned to each material point X and time t is such that

x = x̄ (X, t) , (2.1)
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Figure 2.1: Kinematic mapping between reference and current configurations

where x is the position of the same material point at time t. The motion considered as a
function of X at a given time t is the deformation and v is called the deformed configuration.
A basic hypothesis of continuum mechanics is that the motion x̄ is one-to-one and onto for
a fixed t. The deformation gradient, denoted by F , is defined as

F =
∂x

∂X
= 1 +

∂u

∂X
, (2.2)

where u = x−X is the displacement and 1 the mixed identity tensor. A sufficient condition
for the invertibility is

J = detF > 0, (2.3)

where J denotes the determinant of the deformation gradient F . To describe the deformation
and strain, define by C the right Cauchy–Green deformation tensor and E the Lagrangian
strain tensor as

C = F TF ,

E =
1

2
(C − I),

(2.4)

where I is the identity tensor in the reference configuration. An important and unique
decomposition of the deformation gradient is the right polar decomposition

F = RU , (2.5)

whereR is a rotation which can defined byRTR = I, det(R) = 1, and U is the right stretch
tensor, which is positive-definite and symmetric. Details on how to obtain the decomposition
can be found in [61].

The linear and angular momentum balance equations over the reference configuration are
written as

ρ0a = ∇·P + ρ0b,

PF T = FP T ,
(2.6)
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where P is the first Piola–Kirchhoff stress tensor, ρ0 the mass density per unit referential
volume, b the body force per unit mass, a the acceleration, and ∇· the divergence relative
to the referential coordinates.

The energy balance equation takes the form

ρ0ė = ρ0r −∇·q0 + P ·Ḟ , (2.7)

in terms of the internal energy per unit mass e, the heat supply per unit mass r, and the
heat flux vector q0 over the geometry of the reference configuration.

The local referential form of the Clausius–Duhem inequality can be stated as

ψ̇ + θ̇η − P ·Ḟ +
q0 · ∇θ
θ

6 0. (2.8)

Here η and
ψ = ρ0e− θη, (2.9)

are the entropy and Helmholtz free energy per unit volume, respectively, ∇ denotes the
gradient relative to the referential coordinates and θ is the temperature.

Assuming general thermalelasticity while guided by Equation (2.8) and the principle of
equipresence [62], the free energy ψ, the first Piola–Kirchhoff stress P , the entropy η and
the heat flux q0 assume the constitutive forms

ψ = ψ̄ (F , θ,∇θ) ,
P = P̄ (F , θ,∇θ) ,
η = η̄ (F , θ,∇θ) ,
q0 = q̄0 (F , θ,∇θ) .

(2.10)

The frame-indifference principle is commonly used in continuum mechanics to guide the
derivations of constitutive relations. It states that the physical laws should be independent of
the new frame of reference. Consider a frame-rotation given byQ, following [61, Section 57.1]
the transformation law for F and P under such rotation is

F+ = QF P+ = QP , (2.11)

while q0 and ∇θ are invariant vector fields with

q+
0 = q0 ∇θ+ = ∇θ. (2.12)

Frame-indifference implies the response of Equation (2.10) should satisfy

ψ̄ (F , θ,∇θ) = ψ̄ (QF , θ,∇θ) ,
P̄ (F , θ,∇θ) = QT P̄ (QF , θ,∇θ) ,
η̄ (F , θ,∇θ) = η̄ (QF , θ,∇θ) ,
q̄0 (F , θ,∇θ) = q̄0 (QF , θ,∇θ) ,

(2.13)
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for all rotations Q and all (F , θ,∇θ). Therefore taking Q = RT in (2.13) and recalling (2.4)
and (2.5), the reduced constitutive functions are

ψ = ψ̄ (C, θ,∇θ) ,
P = F P̄ (C, θ,∇θ) ,
η = η̄ (C, θ,∇θ) ,
q0 = q̄0 (C, θ,∇θ) .

(2.14)

Next, the Coleman–Noll procedure is applied to the frame-indifferent constitutive equa-
tions 2.14. The basic hypothesis of the procedure is that the body force b and heat supply
r are arbitrarily assignable, which are then applied to Equation (2.8). The detailed deriva-
tions can be found in [61, Section 57.2]. With the thermodynamic restrictions imposed, the
constitutive relations in Equation (2.14) reduce to

ψ = ψ̄ (C, θ) ,

P = P̄ (C, θ) = 2F
∂ψ̄ (C, θ)

∂C
,

η = η̄ (C, θ) = −∂ψ̄ (C, θ)

∂θ
,

q̄0 (C, θ,∇θ) · ∇θ 6 0, for all (C, θ,∇θ) ,

(2.15)

The second Piola-Kirchoff stress S is defined as

P = FS. (2.16)

From Equation (2.15)2, it is concluded that

S = S̄ (C, θ) = 2
∂ψ̄ (C, θ)

∂C
. (2.17)

The results in Equation (2.15) also lead to the introduction of the elasticity tensor, denoted
by C, that describes the dependence of the stress tensor S on C. Using Equation (2.17), C
is defined as

C (C, θ) =2
∂S̄ (C, θ)

∂C
= 4

∂2ψ̄ (C, θ)

∂C2
. (2.18)

By (2.15) and (2.17), the Gibbs relation is obtained by differentiating ψ with respect to
time

ψ̇ =
1

2
S ·Ċ − ηθ̇. (2.19)

Further, by Equation (2.9)
ψ̇ + ηθ̇ = ρ0ė− θη̇, (2.20)

and therefore a second Gibbs relations is obtained from (2.19) and (2.9) as

ρ0ė =
1

2
S ·Ċ + θη̇. (2.21)
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It is obvious based on the definitions (2.4) and (2.16) that

1

2
S ·Ċ = S ·Ė = P ·Ḟ . (2.22)

Substituting Equation (2.21) into the energy balance (2.7) leads to

θη̇ = −∇q0 + ρ0r. (2.23)

Next, differentiate ψ twice and define the following quantities

M (C, θ) = 2
∂2ψ̄ (C, θ)

∂C∂θ
c (C, θ) = −θ∂

2ψ̄ (C, θ)

∂θ2
. (2.24)

Here, M is the stress-temperature modulus and c is the heat capacity. Further, differenti-
ating η with respect to time and multiplying by θ based on the constitutive relations (2.15)
and (2.24) leads to

θη̇ = θ
∂η̄ (C, θ)

∂C
·Ċ + θ

∂η̄ (C, θ)

∂θ
θ̇

=− θM (C, θ)·Ė + c (C, θ) θ̇.

(2.25)

Here Equation (2.24) and 1
2
Ċ = Ė based on (2.4) are applied. By Equations (2.25) and (2.23)

the energy balance (dropping explicit dependency notations for brevity) can take the follow-
ing form

cθ̇ = −∇·q0 + ρ0r + θM ·Ė. (2.26)

Moreover, assume that the heat flux observes Fourier’s law, given as

q0 =−K∇θ, (2.27)

where K is the conductivity tensor. Convection heat transfer, usually the dominant form of
heat transfer in liquids and gases, is also used in the model at the boundary. The heat flux
q̄ is calculated as

q̄ = h (θ∞ − θ) , (2.28)

where h is the convection coefficient and θ∞ is the ambient temperature. Some literature
[14] considers radiation heat transfer given by the Stefan-Boltzmann law as well, in the form

qrad = εσ
(
θ4 − θ4

∞
)
, (2.29)

where ε and σ are the surface emissivity and the Stefan-Boltzmann constant. The effect
of radiation here is less prominent as FDM involves a much lower temperature of 500K
compared to the metal melting methods of 2000K. Therefore it is not included in the
calculations and analysis.

In order to further specify the constitutive relations, the reference state is chosen as

(C, θ) |0 = (I, θ0) , (2.30)
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where the subscript 0 denotes the reference state and θ0 is the reference temperature. For
a configuration to be natural at θ0, meaning it can withstand small perturbations in strain
and temperature, several conditions need to be satisfied. The derivations are deferred to [61,
Section 58.2] and the conclusions are described briefly here. First, barring external forces,
the residual stress should vanish. Second, the elasticity tensor C should be symmetric and
positive-definite. Last, the heat capacity c needs to be nonnegative. It is easy to verify they
all hold with the specified constitutive law for Helmholtz energy later in Equation (2.41).

For the scale and condition of the problems considered in the dissertation, the model is
simplified by assuming infinitesimal deformations with respect to the reference state. This
will prove to be consistent with the results in Chapter 3. To this end, define the relative
displacement gradient as

H =
∂u

∂X
. (2.31)

The infinitesimal deformation assumption gives

F =1 +
∂u

∂X
= 1 +H ,

E =
1

2

(
∇u+ (∇u)T

)
+ o(|H|2),

(2.32)

as |H| → 0, where

lim
|H|2→0

|o(|H|)|
|H|

= 0, (2.33)

and |H| denotes any norm of H .The infinitesimal strain ε hence is defined as

ε =
1

2

(
∇u+ (∇u)T

)
, (2.34)

where ε is equivalent to E under the infinitesimal deformation assumption. The determinant
of the deformation gradient F under infinitesimal strain J simplifies to

J = 1 + trε, (2.35)

where tr denotes trace.Expanding S (C, θ) about the reference state (I, θ0) in deformation
while fixing temperature, and using Equation (2.18) gives rise to

S̄ (C, θ) |θ=θ0 =S|0 +
∂S̄ (C, θ)

∂C
|0 (C − I) + o(|C − I|) C → I,

=C|0E + o(|E|) E → 0.
(2.36)

Here the zero residual stress condition for the reference state is applied. Further by Equa-
tion (2.16) and (2.32),

P̄ (C, θ) |θ=θ0 = S̄ (C, θ) |θ=θ0 + o(|H|) |H| → 0. (2.37)
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Therefore the stress measures coincide under infinitesimal deformation. From here on it is
denoted as σ, and

σ = P = S. (2.38)

Since the stress measures differ only by the magnitude of the displacement gradient, Equa-
tion (2.38) holds true for temperature away from the reference temperature as well. Using
Equation (2.18) and (2.38) in Equation (2.36), and ignoring the higher order terms, for an
isothermal expansion about the reference temperature of the stress, its relation with the
strain is

σ (ε, θ) |θ=θ0 = C0ε. (2.39)

The notation C0 is used to indicate the elasticity tensor at the reference temperature. In
addition, assuming isotropic material properties and through a standard derivation given in
[61, Section 59.3], further simplification is made to Equation (2.39) and the conductivity
tensor in Equation (2.27)

C0ε =2µε+ λ(trε)I,

K =kI,
(2.40)

where k is the conductivity and assumed to be constant and uniform, µ and λ are the
material elastic moduli obtained from experiments at the given temperature. Though the
conductivity depends on temperature, the change in value within the temperature range
considered is negligible based on experimental data from literature [63]. As a result it is
assumed to be constant.

Notably no assumption is made on temperature changes due to the fact that FDM pro-
cess incurs large variation in temperature. Usually the material used in FDM is a type of
strong, durable thermoplastics such as acrylonitrile butadiene styrene (ABS), polycarbonate
(PC) or ULTEMTM 9085 Resin [64]. Enhancements are made to these materials through
various techniques such as blending them with metals to form composites [65]. Hence, the
constitutive model for a specific material can be very complicated and hard to obtain with-
out sufficient experimental data. Following [66], the Helmholtz free energy is chosen as the
constitutive law for a typical material used in FDM within the deformation and temperature
range targeted, according to

ψ(ε, θ) = ψ̃(ε, θ) = f (θ)
1

2
ε·C0ε+ κα ln(1 + trε)(θ0 − θ) + c̄(θ − θ0 − θ ln

θ

θ0

), (2.41)

where κ = λ+ 2
3
µ is the isothermal bulk modulus, α is the coefficient of thermal expansion,

and c̄ is the specific heat at reference temperature. The function f (θ) in Equation (2.41)
represents the dependency of elasticity tensor on temperature. Since infinitesimal deforma-
tion is assumed in this dissertation, this function reflects the impact of temperature field
on the mechanical response of the system. The function f will be specified when the test
problems are described in Chapter 3. Following Equation (2.26) and Equation (2.34), the
balance laws can be written as

ρ0a = ∇·σ + ρ0b,

cθ̇ = −∇·q0 + ρ0r + θM ·ε̇,
(2.42)
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while the angular momentum balance ensures the stress σ is symmetric [61]. Combining
Equations (2.15), (2.41) and (2.38), the stress-strain relation becomes

σ = f (θ)C0ε+ κ0α0 (θ0 − θ)
1

1 + trε
I. (2.43)

It is worth pointing out that Equation (2.43) derived from the specific Helmholtz free en-
ergy in Equation (2.41) satisfies the conditions from isothermal linear elasticity given in
Equation (2.39) provided f(θ0) = 1.

Substituting Equation (2.41) into (2.24), the stress-temperature modulus M is given by

M =
∂f

∂θ
C0ε− κ0α0

1

1 + trε
I. (2.44)

Finally, the specific heat c can also be derived from Equations (2.24) and (2.41) as

c = −∂
2f

∂θ2
θ

1

2
ε·C0ε+ c̄. (2.45)

2.2.2 Finite Element Method

Given the simplified balance laws in the referential configuration in Equation (2.42), the
continuous Lagrangian finite element model is developed accordingly. The integral form of
the balance laws can be written as∫

Ω0

∇·σ dV =

∫
Ω0

ρ0(a− b) dV,∫
Ω0

cθ̇ dV +

∫
Ω0

∇·q0 dV =

∫
Ω0

ρ0r dV +

∫
Ω0

θM ·ε̇ dV,
(2.46)

where Ω0 is the referential domain of interest. Consider the solution space for both displace-
ment and temperature,

L2 (Ω) =

{
v : defined on Ω and

∫
Ω

|v|2 dx <∞
}
,

H1 (Ω) =

{
v ∈ L2 (Ω) :

∂v

∂xi
∈ L2 (Ω) for i = 1, ...d

}
,

H1
0 (Ω) =

{
v ∈ H1 (Ω) : v = v̄ on ΓN

}
,

(2.47)

where d = 2 is the number of space dimensions, H1 the Sobolev space of order 2, and ΓN the
Dirichlet boundary. Weight functions ξ for the linear momentum balance and ζ for energy
balance belong to the same space satisfying corresponding Dirichlet boundary conditions in
H1

0 (Ω). Multiplying with weight functions and using the divergence theorem, the weighted



14

residual for the balance laws are∫
Ω0

∂ξ

∂X
· σ dV =

∫
Γu
N,0

ξ · p̄ dA+

∫
Ω0

ξ · ρ0(b− a) dV,∫
Ω0

ζcθ̇ dV −
∫

Ω0

∂ζ

∂X
· q0 dV =

∫
Ω0

ζρ0r dV +

∫
Ω0

ζθM ·ε̇ dV −
∫

Γt
N,0

ζq̄ dA,

(2.48)

where ΓtN,0 represents the part of the boundary with Neumann boundary conditions on tem-
perature, and ΓuN,0 represents the part with Neumann boundary conditions on displacement.
The solution is approximated using piecewise polynomials on isoparametric elements. A
quantity v(X, t) can be approximated as vh(X, t) by basis functions φi(X) of the solution
space according to

vh(X, t) =
n∑
i=1

φi(X)vi(t), (2.49)

where the subscript h denotes the approximation and vi are the corresponding coefficients
for the basis functions. To form the discretized matrix form of the finite element method,
for a typical Lagrangian element e with domain Ωe

0 in the reference configuration, at time
t = tn+1, the nodal values at the vertices of an element of the quantity, denoted by

[
v̂en+1

]
,

can be expressed in vector form as[
ve1 ve2 ... venen

]T
n+1

, (2.50)

where nen is the number of nodes in each element. For a variable with d degrees of freedom,[
v̂en+1

]
will have d × nen number of entries. To simplify the notation, for the approximate

solution of v we write vh (X, tn+1) |Ωe
0

= ven+1. Apply this now to both displacement-and-
temperature-like variables in two-dimensions and the interpolation of variables are given
as

uh (X, tn+1) |Ωe
0

= uen+1 = [N e
u]
[
ûen+1

]
,

ah (X, tn+1) |Ωe
0

= aen+1 = [N e
u]
[
âen+1

]
,

ξh (X, tn+1) |Ωe
0

= ξen+1 = [N e
u]
[
ξ̂en+1

]
,

θh (X, tn+1) |Ωe
0

= θen+1 = [N e
t ]
[
θ̂en+1

]
,

ζh (X, tn+1) |Ωe
0

= ζen+1 = [N e
t ]
[
ζ̂en+1

]
,

(2.51)

where
[
ûen+1

]
,
[
âen+1

]
,
[
ξ̂en+1

]
,
[
θ̂en+1

]
,
[
ζ̂en+1

]
are the nodal values at the vertices of the

element ordered in vector form as in (2.50). The interpolation matrices are given as

[N e
u] =

[
N e

1 0 N e
2 0 ... N e

nen 0
0 N e

1 0 N e
2 ... 0 N e

nen

]
,

[N e
t ] =

[
N e

1 N e
2 ... N e

nen

]
,

(2.52)
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with the subscript u denoting displacement and θ for temperature. First-order differential
terms are written as vectors and the dot product can be computed with vector multiplication.
Angular momentum balance ensures symmetric ξ as mentioned in Section 2.2.1. The vector
form of these terms in two-dimensions, omitting dependencies on X and tn+1, are then given
as [

∂ξen+1

∂X

]
=
[
ξe1,1 ξe2,2 ξe1,2 ξe2,1

]T
n+1

,[
∂ζen+1

∂X

]
=
[
ζe,1 ζe,2

]T
n+1

.

(2.53)

This transfer from tensor to matrix form is usually called a “Voigt notation”. Similarly we
write the components of the stress vector σen+1 as[

σen+1

]
=
[
σe11 σe22 σe12 σe21

]T
n+1

. (2.54)

The subscripts of the entries in (2.53) are defined by

ξei,j =
∂ξei
∂Xj

ηe,i =
∂ηe

∂Xi

. (2.55)

For (2.54) the subscript of an entry represents its row and column number in the matrix
form. The matrix forms of M e

n+1 and ε̇en+1 are[
M e

n+1

]
=
[
M e

11 M e
22 M e

12 M e
21

]T
n+1

,
[
ε̇en+1

]
=
[
ε̇e11 ε̇e22 ε̇e12 ε̇e21

]T
n+1

. (2.56)

The dot product between them can then be expressed as
[
M e

n+1

]T [
ε̇en+1

]
. The matrix

interpolation forms of the gradient are given as[
∂ξen+1

∂X

]
= [Be

u]
[
ξ̂en+1

] [
∂ζen+1

∂X

]
= [Be

t ]
[
ζ̂en+1

]
, (2.57)

where
[
ξ̂en+1

]
and

[
ζ̂en+1

]
are defined in Equation (2.51). The gradient operator matrices

[Be
u] and [Be

t ] can be written as

[Be
u] =


N e

1,1 0 ... N e
nen,1 0

0 N e
1,2 ... 0 N e

nen,2

N e
1,2 0 ... N e

nen,2 0
0 N e

1,1 ... 0 N e
nen,1


n+1

,

[Be
t ] =

[
N e

1,1 N e
2,1 ... N e

nen,1

N e
1,2 N e

2,2 ... N e
nen,2

]
n+1

,

(2.58)

where N e
i,j =

∂Ne
i

∂Xj
.
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Substituting all interpolations into the weak form (2.48), one finds that∫
Ωe

0

[
ξ̂en+1

]T
[Be

u]
T [σen+1

]
dV =

∫
Γu
N,0∩∂Ωe

0

[
ξ̂en+1

]T
[N e

u]T
[
p̄en+1

]
dA∫

∂Ωe
0\Γu

N,0

[
ξ̂en+1

]T
[N e

u]T
[
pen+1

]
dA+

∫
Ωe

0

[
ξ̂en+1

]T
[N e

u]T ρ0([bn+1]− [N e
u]
[
âen+1

]
) dV,∫

Ωe
0

[
ζ̂en+1

]T
[N e

t ]T cen+1

[
ˆ̇θen+1

]
dV =

∫
Ωe

0

[
ζ̂en+1

]T
[Be

t ]
T [qe0,n+1

]
dV

+

∫
Ωe

0

[
ζ̂en+1

]T
[N e

t ]T ρ0r dV +

∫
Ωe

0

[
ζ̂en+1

]T
[N e

t ]T θen+1

[
M e

n+1

]T [
ε̇en+1

]
dV

−
∫

Γt
N,0∩∂Ωe

0

[
ζ̂en+1

]T
[N e

t ]T
[
q̄en+1

]
dA−

∫
∂Ωe

0\Γt
N,0

[
ζ̂en+1

]T
[N e

t ]T
[
qen+1

]
dA,

(2.59)
where ΓuN,0∩∂Ωe

0 is the part of the element boundary which (potentially) intersects with the
Neumann boundary ΓuN,0 for displacement and ∂Ωe

0\ΓuN,0 is the rest of the element boundary.
The notation for the temperature is similar.

This simplifies to[
ξ̂en+1

]T ∫
Ωe

0

[Be
u]
T [σen+1

]
dV =

[
ξ̂en+1

]T ∫
Γu
N,0∩∂Ωe

0

[N e
u]T
[
p̄en+1

]
dA

+
[
ξ̂en+1

]T ∫
∂Ωe

0\Γu
N,0

[N e
u]T
[
pen+1

]
dA+

[
ξ̂en+1

]T ∫
Ωe

0

[N e
u]T ρ0 [bn+1] dV

−
[
ξ̂en+1

]T (∫
Ωe

0

[N e
u]T ρ0 [N e

u] dV

)[
âen+1

]
,

[
ζ̂en+1

]T (∫
Ωe

0

[N e
t ]T cen+1 [N e

t ] dV

)[
ˆ̇θen+1

]
=
[
ζ̂en+1

]T ∫
Ωe

0

[Be
t ]
T [qe0,n+1

]
dV

+
[
ζ̂en+1

]T ∫
Ωe

0

[N e
t ]T ρ0r dV +

[
ζ̂en+1

]T ∫
Ωe

0

[N e
t ]T θen+1

[
M e

n+1

]T [
ε̇en+1

]
dV

−
[
ζ̂en+1

]T ∫
Γt
N,0∩∂Ωe

0

[N e
t ]T
[
q̄en+1

]
dA−

[
ζ̂en+1

]T ∫
∂Ωe

0\Γt
N,0

[N e
t ]T
[
qen+1

]
dA.

(2.60)
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Since
[
ξ̂en+1

]
and

[
ζ̂en+1

]
are arbitrary vectors, it follows that∫

Ωe
0

[Be
u]
T [σen+1

]
dV =

∫
Γu
N,0∩∂Ωe

0

[N e
u]T
[
p̄en+1

]
dA+

∫
Ωe

0

[N e
u]T ρ0 [bn+1] dV

−
∫

Ωe
0

[N e
u]T ρ0 [N e

u] dV
[
âen+1

]
+

∫
∂Ωe

0\Γu
N,0

[N e
u]T
[
pen+1

]
dA,∫

Ωe
0

[N e
t ]T cen+1 [N e

t ] dV
[
ˆ̇θen+1

]
=

∫
Ωe

0

[Be
t ]
T [qe0,n+1

]
dV +

∫
Ωe

0

[N e
t ]T ρ0r dV

+

∫
Ωe

0

[N e
t ]T θen+1

[
M e

n+1

]T [
ε̇en+1

]
dV −

∫
Γt
N,0∩∂Ωe

0

[N e
t ]T
[
q̄en+1

]
dA

−
∫
∂Ωe

0\Γt
N,0

[N e
t ]T
[
qen+1

]
dA.

(2.61)
Fourier’s law is applied to the heat flux, as in Equation (2.27) and the Neumann boundary
condition for heat flux is set to convection heat transfer, as given in Equation (2.28)[

q̄en+1

]
= h

(
[θ∞]−

[
θ̂en+1

])
. (2.62)

Starting from Equation (2.61), the element equations in matrix form can be written as

[M e
u]
[
âen+1

]
+
[
Re
u,n+1

([
ûen+1

]
,
[
θ̂en+1

])]
=
[
F e
n+1

]
+

∫
∂Ωe

0\Γu
N,0

[N e
u]
[
pen+1

]
dA,

[T e]
[
ˆ̇θen+1

]
+ [M e

t ]
[
θ̂en+1

]
+
[
Re
t,n+1

([
ûen+1

]
,
[
θ̂en+1

])]
=[

Qe
n+1

]
−
∫
∂Ωe

0\Γt
N,0

[N e
t ]T
[
qen+1

]
dA,

(2.63)
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where

[M e
u] =

∫
Ωe

0

[N e
u]T ρ0 [N e

u] dV,

[
Re
u,n+1

]
=

∫
Ωe

0

[Be
u]
T [σen+1

]
dV,

[
F e
n+1

]
=

∫
Ωe

0

[N e
u]T ρ0 [bn+1] dV +

∫
Γu
N,0∩∂Ωe

0

[N e
u]T
[
p̄en+1

]
dA,

[
T e
n+1

]
=

∫
Ωe

0

[N e
t ]T cen+1 [N e

t ] dV,

[M e
t ] =

∫
Ωe

0

k [Be
t ]
T [Be

t ] dV −
∫

Γt
N,0∩∂Ωe

0

[N e
t ]T h [N e

t ] dA,

[
Re
t,n+1

]
=

∫
Ωe

0

[N e
t ]T θen+1

[
M e

n+1

]T [
ε̇en+1

]
dV,

[
Qe
n+1

]
=

∫
Ωe

0

[N e
t ]T ρ0rn+1 dV −

∫
Γt
N,0∩∂Ωe

0

[N e
t ]T h [θ∞] dA.

(2.64)

Assembling over the entire domain with the assembly operator A
e

gives

[Mu] [ân+1] +
[
Ru,n+1

(
[ûn+1] ,

[
θ̂n+1

])]
= [Fn+1] ,

[T ]
[
ˆ̇θn+1

]
+ [Mt]

[
θ̂n+1

]
+
[
Rt,n+1

(
[ûn+1] ,

[
θ̂n+1

])]
= [Qn+1] .

(2.65)

The global matrices and vectors in Equation (2.65) are

[Mu] = A
e

[M e
u] ,

[Ru,n+1] = A
e

[
Re
u,n+1

]
,

[Fn+1] = A
e

[
F e
n+1

]
,

[Tn+1] = A
e

[
T e
n+1

]
,

[Mt] = A
e

[M e
t ] ,

[Rt,n+1] = A
e

[
Re
t,n+1

]
,

[Qn+1] = A
e

[
Qe
n+1

]
.

(2.66)

The terms, A
e

∫
∂Ωe

0\Γu
N,0

[N e
u]
[
pen+1

]
dA and A

e

∫
∂Ωe

0\Γt
N,0

[N e
t ]T
[
qen+1

]
dA, which describe the

cumulative inter-element jump in tractions and heat flux are neglected, as is customary in
continuous Galerkin finite element approximations. In future element-level derivations, these
terms are ignored. The global unknown variables un+1 and θn+1 are ordered in vector form,
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denoted by [ûn+1] and [ûn+1], as

[ûn+1] =
[
u1 u2 ... unnod

]T
n+1

,
[
θ̂n+1

]
=
[
θ1 θ2 ... θnnod

]T
n+1

, (2.67)

where nnod is the total number of nodes of the entire mesh. For the time-stepping scheme, the
Newmark integrator [67] based on truncated Taylor series expansion is used for displacement
and backward Euler scheme is used for temperature. At time step tn+1, the scheme is given
in Equation (2.68) in the global vector form

[ûn+1] = [ûn] + [v̂n] ∆tn +
1

2
{(1− 2β) [ân] + 2β [ân+1]}∆t2n,

[v̂n+1] = [v̂n] + {(1− γ) [ân] + γ [ân+1]}∆tn,[
θ̂n+1

]
=
[
θ̂n

]
+
[
ˆ̇θn+1

]
∆tn.

(2.68)

Apply integration rules (2.68) to Equation (2.65) and again write them in vector forms
as

1

β∆t2n
[Mu] [ûn+1] +

[
Ru,n+1

(
[ûn+1] ,

[
θ̂n+1

])]
=

[Fn+1] + [Mu]

{
([ûn] + [v̂n] ∆tn)

1

β∆t2n
+

1− 2β

2β
[ân]

}
,

1

∆tn
[Tn+1]

[
θ̂n+1

]
+ [Mt]

[
θ̂n+1

]
+
[
Rt,n+1

(
[ûn+1] ,

[
θ̂n+1

])]
= [Qn+1] +

1

∆tn
[Tn+1]

[
θ̂n

]
.

(2.69)
While there is no subscript n + 1 for matrices such as [Mu] and [Mt], they do change over
time in the sense that the integration domain changes from step to step. Coefficients β = 1

4
,

γ = 1
2

are chosen which makes the Newmark scheme equivalent to the Trapezoidal rule. Since
γ > 1

2
introduces artificial damping, it is avoided here. With the time-stepping methods, the

discretized form of ε̇en+1 in Equation (2.64)6 can be specified with Newmark integrator. It is
noted that

ε̇ =
∂ε

∂t
=

∂

∂t

(
∂u

∂X

)
=

∂

∂X

(
∂u

∂t

)
. (2.70)

Therefore the discrete form is interpolated as[
ε̇en+1

]
= [Be

u2]
[
v̂en+1

]
= [Be

u2]

(
2

∆tn

([
ûen+1

]
− [ûen]

)
− [v̂en]

)
, (2.71)

which makes it consistent in order of accuracy with the element-level uen+1 itself and

[Be
u2] =


N e
i,1 0 ... N e

nen,1 0
0 N e

i,2 ... 0 N e
nen,2

1
2
N e
i,2

1
2
N e
i,1 ... 1

2
N e
nen,2

1
2
N e
nen,1

1
2
N e
i,2

1
2
N e
i,1 ... 1

2
N e
nen,2

1
2
N e
nen,1

 . (2.72)



20

As seen in Equation (2.69), the discrete PDE system is nonlinear and implicit and thus
requires an iterative solution method. Let Un+1 = [un+1 θn+1]T , write the discretized
system (2.69) at time tn+1 as

fn+1 (Un+1) = 0. (2.73)

Then the Newton-Raphson method states that the (k+ 1)st iterative solution is of the form

∆U
(k)
n+1 = −

[
Jn+1

(
U

(k)
n+1

)]−1

fn+1

(
U

(k)
n+1

)
,

U
(k+1)
n+1 = U

(k)
n+1 + ∆U

(k)
n+1,

(2.74)

where Jn+1 is the Frechet derivative of fn+1. The iteration stops when
∣∣∣U (k+1)

n+1 −U
(k)
n+1

∣∣∣2 <
tol, with tol a given small positive scalar value, e.g. 10−7. To apply the Newton-Raphson
iteration , the fully discretized derivatives of Equation (2.65) are derived. At time step tn+1

and for the kth iteration for an element e we have∫
Ωe

0

[N e
u]T ρ0 [N e

u]
[
â
e,(k)
n+1

]
dV +

∫
Ωe

0

[Be
u]
T
[
σ
e,(k)
n+1

]
dV −

∫
Ωe

0

[N e
u]T ρ0 [bn+1] dV

−
∫
∂Ωe

0∩Γu
N,0

[N e
u]T
[
p̄en+1

]
dA+

∫
Ωe

0

[N e
u]T ρ0

4

∆t2n
[N e

u] dV
[
∆û

e,(k)
n+1

]
+

∫
Ωe

0

[Be
u]
T

[(
∂σ

∂ε

)e,(k)

n+1

]
[Be

u2] dV
[
∆û

e,(k)
n+1

]
+

∫
Ωe

0

[Be
u]
T

[(
∂σ

∂θ

)e,(k)

n+1

]
[N e

t ] dV
[
∆θ̂

e,(k)
n+1

]
= 0.

(2.75)
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In addition,∫
Ωe

0

[N e
t ]T c

e,(k)
n+1 [N e

t ] dV
[
ˆ̇θ
e,(k)
n+1

]
+

∫
Ωe

0

k [Be
t ]
T [Be

t ] dV
[
θ̂
e,(k)
n+1

]
−
∫

Ωe
0

[N e
t ]T ρ0r dV−∫

Ωe
0

[N e
t ]T θ

e,(k)
n+1

[
M

e,(k)
n+1

]T [
ε̇
e,(k)
n+1

]
dV +

∫
∂Ωe

0∩Γt
N,0

[N e
t ]T
[
q̄en+1

]
dA+

∫
Ωe

0

[N e
t ]T
[(

∂c

∂θ

)e,(k)

n+1

]
θ̇
e,(k)
n+1N

e
t dV

[
∆θ̂

e,(k)
n+1

]
+

∫
Ωe

0

[N e
t ]T

c
e,(k)
n+1

∆tn
[N e

t ] dV
[
∆θ̂

e,(k)
n+1

]
+

∫
Ωe

0

k [Be
t ]
T [Be

t ]− [N e
t ]T θ

e,(k)
n+1

[(
∂M

∂θ

)e,(k)

n+1

]T [
ε̇
e,(k)
n+1

]
[N e

t ]

 dV
[
∆θ̂

e,(k)
n+1

]
−

∫
Ωe

0

[N e
t ]T
[
M

e,(k)
n+1

]T [
ε̇
e,(k)
n+1

]
[N e

t ] dV
[
∆θ̂

e,(k)
n+1

]
+∫

∂Ωe
0∩Γt

N,0

[N e
t ]T
[(

∂q̄

∂θ

)e,(k)

n+1

]
[N e

t ] dA
[
∆θ̂

e,(k)
n+1

]
+

∫
Ωe

0

[N e
t ]T
[(

∂c

∂ε

)e,(k)

n+1

]
θ̇
e,(k)
n+1 [Be

u2]− [N e
t ]T θ

e,(k)
n+1

[
M

e,(k)
n+1

]T 1

∆tn
[Be

u2] dV
[
∆û

e,(k)
n+1

]
−

∫
Ωe

0

[N e
t ]T θ

e,(k)
n+1

[(
∂M

∂ε

)e,(k)

n+1

]T [
ε̇
e,(k)
n+1

]
[Be

u2] dV
[
∆û

e,(k)
n+1

]
= 0.

(2.76)
When solving the equations, displacement and temperature are combined as[

∆Û
(k)
n+1

]
=
[
∆û

(k)
n+1 ∆θ̂

(k)
n+1

]T
. (2.77)

In matrix form we have

[M e
u]
[
â
e,(k)
n+1

]
+
[
R
e,(k)
u,n+1

]
−
[
F e
n+1

]
+
[
K

e,(k)
u,n+1

] [
∆û

e,(k)
n+1

]
+
[
K

e,(k)
t,n+1

] [
∆θ̂

e,(k)
n+1

]
= 0,

[T e]
[
ˆ̇θ
e,(k)
n+1

]
+ [M e

t ]
[
θ̂
e,(k)
n+1

]
+
[
R
e,(k)
t,n+1

]
−
[
Qe
n+1

]
+
[
A
e,(k)
u,n+1

] [
∆û

e,(k)
n+1

]
+
[
A
e,(k)
t,n+1

] [
∆θ̂

e,(k)
n+1

]
= 0,

(2.78)
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where[
K

e,(k)
u,n+1

]
=

∫
Ωe

0

[N e
u]T ρ0

4

∆t2n
[N e

u] dV +

∫
Ωe

0

[Be
u]
T

[(
∂σ

∂ε

)e,(k)

n+1

]
[Be

u2] dV,

[
K

e,(k)
t,n+1

]
=

∫
Ωe

0

[Be
u]
T

[(
∂σ

∂θ

)e,(k)

n+1

]
[N e

t ] dV,

[
A
e,(k)
u,n+1

]
=

∫
Ωe

0

[N e
t ]T
[(

∂c

∂ε

)e,(k)

n+1

]
θ̇
e,(k)
n+1 [Be

u2] dV

−
∫

Ωe
0

[N e
t ]T θ

e,(k)
n+1

[
M

e,(k)
n+1

]T 1

∆tn
[Be

u2] dV

−
∫

Ωe
0

[N e
t ]T θ

e,(k)
n+1

[(
∂M

∂ε

)e,(k)

n+1

] [
ε̇
e,(k)
n+1

]
[Be

u2] dV,

[
A
e,(k)
t,n+1

]
=

∫
Ωe

0

[N e
t ]T
[(

∂c

∂θ

)e,(k)

n+1

]
θ̇
e,(k)
n+1 [N e

t ] dV +

∫
Ωe

0

[N e
t ]T

c
e,(k)
n+1

∆tn
[N e

t ] dV

+

∫
Ωe

0

k [Be
t ]
T [Be

t ] dV −
∫

Ωe
0

[N e
t ]T
[
M

e,(k)
n+1

]T [
ε̇
e,(k)
n+1

]
[N e

t ] dV

−
∫

Ωe
0

[N e
t ]T θ

e,(k)
n+1

[(
∂M

∂θ

)e,(k)

n+1

]T [
ε̇
e,(k)
n+1

]
[N e

t ] dV

+

∫
∂Ωe

0∩Γt
N,0

[N e
t ]T h [N e

t ] dA.

(2.79)

Assemble again the elemental matrices, similar to Equation (2.65), to obtain the fully
discretized form of the kth iterative PDEs at time step tn+1

[Mu] [ân+1] +
[
R

(k)
u,n+1

]
− [Fn+1]

+
[
K

(k)
u,n+1

] [
∆û

(k)
n+1

]
+
[
K

(k)
t,n+1

] [
∆θ̂

(k)
n+1

]
= 0,

[T ]
[
ˆ̇θn+1

]
+ [Mt]

[
θ̂n+1

]
+
[
R

(k)
t,n+1

]
− [Qn+1]

+
[
A

(k)
u,n+1

] [
∆û

(k)
n+1

]
+
[
A

(k)
t,n+1

] [
∆θ̂

(k)
n+1

]
= 0.

(2.80)

Combined with the time integration schemes, the solution for this iteration and time step
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are computed via

4

∆t2n
[Mu] [ûn+1]− [Mu]

{
4

∆t2n
([ûn] + [v̂n] ∆tn) + [ân]

}
+
[
R

(k)
u,n+1

]
− [Fn+1]

+
[
K

(k)
u,n+1

] [
∆û

(k)
n+1

]
+
[
K

(k)
t,n+1

] [
∆θ̂

(k)
n+1

]
= 0,

1

∆tn
[T ]
[
θ̂n+1

]
− 1

∆tn
[T ]
[
θ̂n

]
+ [Mt]

[
θ̂n+1

]
+
[
R

(k)
t,n+1

]
− [Qn+1]

+
[
A

(k)
u,n+1

] [
∆û

(k)
n+1

]
+
[
A

(k)
t,n+1

] [
∆θ̂

(k)
n+1

]
= 0.

(2.81)

2.3 Mesh Generation and Slicing Algorithms

2.3.1 Fixed Lagrangian Mesh

The nature of additive manufacturing demands effective algorithms for adding elements over
time that reflect the changing domain and boundaries of the printed object. It is crucial to
build and assemble matrices efficiently to avoid large increase in computation cost. Most
studies to date involve simulations based on a predetermined Lagrangian mesh without
tracking the deformation during the printing process. Among them two distinctive methods
have been applied to simulate the addition of new materials/elements.

The first one uses the so-called “quiet” elements where a referential mesh of the entire
final printed structure is constructed at the beginning and adopted throughout the process.
The elements that are not yet printed at a given time, i.e., the “quiet” elements, are as-
signed artificial material properties to minimize their impact on the thermal and mechanical
computations of the already printed ones. For example, thermal conductivity and specific
heat for the “quiet” elements can be multiplied by a small scaling factor to reduce their
contributions to heat transfer and temperature field. This method requires minimum change
to the data structure and element connectivity as no new elements are being added, and
thus is easy to implement. However, it inevitably introduces errors into the results. Indeed
prior work shows that the errors are noticeable even in simple heat transfer cases [14]. The
scaling factors can also cause ill-conditioning in the algebraic system and produce inaccurate
results, hence may be challenging to choose and justify.

The second method employs “active/inactive” elements, where the entire final printed
structure is meshed but only the already printed elements are included in the current time
step calculation. This leads to changing size of the system and connectivity between nodes
and elements. Most of the research reviewed in Chapter 1 uses such an “active/inactive”
element method. While the number of “active” elements changes with time, the locations
of newly added elements are computed before the simulation begins based on the path
of material deposition. In other words, no deformation of previous layers and elements
is dynamically considered when introducing new elements. This works well for uncoupled
problems since only the heat transfer equations are solved with the added elements so the
elements have no deformation.
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Figure 2.2: Boundary edges of two-dimensional wall

In this dissertation, the “active/inactive” element method is used to build the fixed
reference configuration upon which the coupled Lagrangian finite element problem is solved.
The new elements in the deformed configuration are added on top of the deformed layers
and elements to account for existing deformation. This leads to initial displacement for the
iterative solvers when new elements are first added. The element addition in the deformed
configuration is left to Section 2.3.2, and the mesh generation in the reference configuration
is explained first.

A preliminary example of the evolution of the fixed reference configuration when building
a simple two-dimensional wall object is illustrated first. Taking the y-direction as the building
direction and the x-direction as the layer direction, the boundary of the wall is shown in
Figure 2.2. The wall has a total height of 0.024m and a width of 0.036m. The first step of
the printing is to slice the domain into a given number of layers, in this example 60 layers,
as shown in Figure 2.3. The layer thickness is set to be uniform in this dissertation and thus
is directly determined by the height of the object and the number of layers.
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Figure 2.3: Two-dimensional wall sliced

Each layer is then discretized into two-dimensional quadrilateral-shaped elements. The
height of each element is determined by the layer thickness while the width relies on the
number of elements chosen in the x-direction (here set to 40) and total width of the wall.
The rate of the deposition is prescribed, and its value depends on the particular FDM process
being simulated. Given the width of the element, the time-step size can be computed so that
it takes exactly one time step to lay down one element. The deposition is assumed to always
occur from the left end to the right end for each layer. Starting with a base bottom layer, as
time proceeds, material, represented by elements, is added to the existing layers. Figures 2.4a
to 2.4f show the referential mesh at different time steps from 200 to 1200 during the process of
building the two-dimensional wall. The deposition speed is set to 75mm/s and corresponds
to 0.012s time step for each element.

Due to the simple geometry, at each time step a new element is always added. New
elements are assumed to become a continuous part of the already printed object and share
the existing nodes and edges from previous layers and neighboring elements. For the new
nodes, the x-direction coordinates are given by the position of the extrusion head at the time
step while the y-direction coordinates are computed based on the area of the new element.
Details of the algorithm for adding elements is described in the appendix (Algorithm 5).
Since this is the fixed referential mesh, while it evolves with the time steps, no deformation
occurs. In the deformed configuration, however, new element addition needs to take into
account the displacement of existing layers and elements. This is discussed in Section 2.3.2.

Often times, real applications involve curved surfaces and edges and thus require complex
slicing algorithms to approximate the curvature. For this reason, a second preliminary
example with more complicated geometry is described next. As shown in Figure 2.5, a two-
dimensional wall with a quarter-circular hole at the top-right end is the object. The width
and height of the wall are again 0.036m and 0.024m while the radius of the hole is 0.008m.
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(a) Two-dimensional wall elements at time step 200 (b) Two-dimensional wall elements at time step 300

(c) Two-dimensional wall elements at time step 500 (d) Two-dimensional wall elements at time step 700

(e) Two-dimensional wall elements at time step 1000 (f) Two-dimensional wall elements at time step 1200

Figure 2.4: Two-dimensional wall building with elements added at different time steps
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Figure 2.5: Example of two-dimensional wall with curved edges

It is clear that the printed geometry will not be exact around the hole due to the nature of
layered manufacturing.

First the wall is sliced into a given number of layers, as in the earlier example. The
x-direction ending positions for each layer now are no longer the same at the top part of the
wall and are governed by the slicing algorithm, which determines how the curved edges are
approximated. The curve approximation leads to geometric error and the slicing algorithm
is crucial as to how large such an error would be. Here two choices of slicing algorithms
deemed most suitable for the simulation and optimization problems in this dissertation are
discussed. Other algorithms can be adapted and fit into the framework as well. For the
purpose of effective simulation and optimization, the slicing algorithm adopted should be
numerically stable and efficient.

For the description of the slicing algorithm, it is assumed that the curve function is known
(here a quarter-circular curve). A naive slicing algorithm approaches the curve from one side
with boundary nodes right on the curve, as shown in Figure 2.6.

Here, the x-direction coordinates of the nodes at the boundary can be fully determined
by their y-direction coordinates using the curve function. The printed edges remain on the
material side of the curve and never cross it. Hence the name ‘one-sided’ is adopted for this
method.

Another potential method is to minimize the area difference enclosed by the curve and
the layered step edges which requires more complicated calculations at each element on the
boundary. This leads to frequent intersections between the ideal curve and printed edges,
as shown in Figure 2.7. In addition, this method uses the coordinate information in both
dimensions of the relevant nodes to determine the size and width of the elements on the
curved boundary. This method is thus called ‘minimum-area’. Once the boundary of the
printed structure is determined, each layer is discretized with uniform bilinear quadrilateral
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Figure 2.6: One-sided approximation of two-dimensional wall with curved edges

Figure 2.7: Minimum-area approximation of two-dimensional wall with curved edges

elements internally, similar to the solid wall case. At the boundary, elements with different
widths are used in order to accurately match it, as can be seen in Figure 2.8. Such a boundary
(vs interior) element would have the same height but a smaller area compared to a regular
one. Hence, it is called a partial element.

To design and implement the two slicing algorithms and corresponding element addition
methods, nodal level-set functions are introduced to implicitly represent the geometry and
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Figure 2.8: Two-dimensional wall elements with curved edges

determine whether an element is being cut through by the curve and hence needs to be
adjusted to better fit it. Using level-set functions [68] is an implicit way of describing the
boundary of a geometry and has been popular in tackling computational geometry and
evolving boundary problems. Suppose the curve being approximated in two-dimension is
given by f (x, y) = 0 where x and y are coordinates in both directions. A level-set function
φ (x, y) at position (x, y) in space can be defined to determine whether the node is ‘inside’
f , on f or ‘outside’ f . The most apparent choice for φ is f itself and, in this case, φ = 0
represents the curve. In this dissertation, φ is fully given by the specific problem and chosen
to be f .

Contrary to the solid wall case where at each time step a new element is added, there
now exist time steps with no new element deposition or partial element creation. This is
based on the assumption that the extrusion head still moves at constant speed from left
to right for each layer with the same time discretization when no element is added. When
deciding whether an element should be added, the level-set function values for each of its
vertex is calculated. If φ > 0 for all four vertices, the entire element is material and should
be added. On the other hand, φ < 0 for all four vertices leads to no element addition. An
element is considered to be on the boundary if the values of φ at the vertices change sign. If
so, slicing algorithms are called to decide whether to add a partial element or a full element
or no element. Upon deciding to add a partial element, its width is determined by the
bilinear interpolation of level-set function values at the vertices and again the specific slicing
algorithm employed to approximate the curved boundary. The procedure is summarized in
the appendix (Algorithm 4). As for the slicing algorithms, the two methods discussed earlier
are presented in detail in the appendix as well. The one-sided slicing algorithm is given in
Algorithm 6 while the minimum-area slicing algorithm is given in Algorithm 7. All twelve
viable cases for the level-set function signs at the four vertices of an element referenced in
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the algorithms are showed in Figure 2.9 and 2.10.
If not constrained, the partial elements can be very narrow relative to the full element

(Figure 2.8). These poor aspect-ratio elements when deployed in the simulation problems
in Chapter 3 would cause inaccurate deformation and temperature results. Since the model
takes into account previous deformation, this would also affect the element addition process
and give rise to even larger errors. Therefore an empirical threshold on the minimum area of
the partial element is imposed to ensure accurate solutions and convergence of the iterative
solver. It is found through testing that avoiding elements with areas smaller than 40% of a
full element’s provides the desired properties. Elements with area not meeting this threshold
are rejected and instead during those time steps no new element are added. Obviously
this artificial restriction causes inexact approximation at some parts of the curve. But
it is a necessary compromise for the current model. Once the areas of the elements and
where they should be deposited for the final printed structure are decided, the referential
mesh at different time steps can be constructed. Based on the deposition speed, temporal
discretization is designed such that each element width, whether full or partial, takes one
corresponding time step to travel.

For the curved geometry, changing the number of layers leads to different approximations
of the curves. This is due to the intrinsic macro-scale discreteness in the layered manufac-
turing process. To be able to later establish a reasonable measure of shape error, how these
slicing algorithms would affect the printed geometries is examined in Chapter 4. Here it is
mentioned that to better understand how the layer number alters the geometry, the one-sided
slicing algorithm is chosen for the simulations.

2.3.2 Deformed mesh

Since a coupled thermomechanical problem is solved at each time step in the model, defor-
mation from previous layers must be taken into consideration when depositing new materials
in the current or deformed configuration. The newly added elements will initially inherit
displacement due to continuity of the material. The element addition algorithm handles this
by conserving area added in two dimensions within a time step and connecting the elements
with existing neighboring nodes. The infinitesimal deformation assumption ensures such con-
tinuity treatment of the nodes is reasonable. Using the same wall building example shown
in Figure 2.4, it is illustrated next how such element addition in the deformed configuration
works.

A new element is about to be added at the end of time step tn on top of the deformed
layers as in Figure 2.11. Its rightmost node is a new node. The position of the new node at
the beginning of the iteration at time tn+1 can be computed by the amount of material printed
during that time step and the position of the extrusion head. As shown in Figure 2.12, the
star sign marks the x-direction position of the new node of the new element, which is given by
the position of the extrusion head. Its y-direction coordinate in the deformed configuration
is calculated based on the known area of the new element and the deformed coordinates of
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(a) case 1 (b) case 2

(c) case 3 (d) case 4

(e) case 5 (f) case 6

Figure 2.9: Different cases for level-set function values at vertices of the element 1
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(a) case 7 (b) case 8

(c) case 9 (d) case 10

(e) case 11 (f) case 12

Figure 2.10: Different cases for level-set function values at vertices of the element 2
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Figure 2.11: Deformed and reference elements at tn

existing nodes (Figure 2.13). The initial displacement of the new node with respect to the
reference configuration is evident.

However, it is reasonable to assume zero initial stress and strain when a new element
is first added which can then serve as the reference state for the element satisfying Equa-
tion (2.30). To address this, the initial displacement and temperature values are stored as
‘history variables’. Figure 2.14 shows the zoomed-in view of the newly added element where
the arrows mark the initial displacement at the vertices. The displacement history variables
are subtracted from the nodal displacement values when computing strain on element levels
and temperature history values are used as reference temperatures for each element as in
Equation (2.82).

ue = u− uhis

θe0 = θhis.
(2.82)

Here, uhis and θhis denote the displacement and temperature history variables. The element-
level computations use ue for strain as mentioned. This treatment also allows the model
to capture large accumulated displacement but maintain small strain, in line with the in-
finitesimal strain assumption. The history variable vectors for each element in matrix form
are [

uhis,e
]

=
[
ue1,t0,e ue2,t0,e ... uenen,t0,e

]
,

[
θhis,e

]
=
[
θe1,t0,e θe2,t0,e ... θenen,t0,e

]
,

(2.83)
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Figure 2.12: Printer head position marked at tn+1

where uei,t0,e is the displacement of the ith node of the element, nen is the number of nodes
per element and t0,e denotes the time when the element is first added. Likewise θei,t0,e is the
average temperature of the element when it is first created.

Although the history variables remain the same for every element throughout the sim-
ulation, their sizes change due to the evolving domain. As a result, at time step tn, the
element-level history variables are denoted as uhis,en and θhis,en for displacement and tem-
perature, respectively. The global history variable matrices

[
uhisn

]
and

[
θhisn

]
are stored as

two-dimensional arrays with the dimension of {nel, ndim× nen} and {nel, nen}, where nel
is the number of elements, ndim is the dimension of the displacement variable.

To apply this framework to specific simulations, typical material properties used in FDM
and an appropriate constitutive law need to be chosen. Specifically the coefficients in the
constitutive laws for the Helmholtz free energy need to be consistent with experimental data
to present meaningful simulation results. Moreover, numerical issues such as computation
cost for a large scale problem requires careful design of the implementation. These are
discussed in Chapter 3.
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Figure 2.13: Initial positions of new element at tn+1

Figure 2.14: Initial deformation uhis
n+1 marked by arrows at tn+1
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Chapter 3

Simulation Setup and Results

3.1 Introduction

The materials used in FDM are typically thermoplastics which upon printing are transitioned
into molten state in a liquefier head at a high temperature (around 500K) and then deposited
through a nozzle layer upon layer at given positions determined by the printing machine
software. Upon deposition, the material cools down rapidly and solidifies to form the desired
geometries [69, 70, 71]. Printing pattern can be designed for many machines so that the
material gets deposited in a particular order. For example, in two dimensions printing can
go from the left end to the right end of the object or vice versa. Support materials are often
necessary when building parts such as a ball that do not have large bottom support. These
support materials would be removed when printing is done.

Some studies have developed mathematical and computational models for the extrusion
process, which share similarities with injection molding. Bellini et al. [72] developed a
mathematical model to analyze the liquefier dynamics in order to establish control strategies
for flows during the extrusion process of the material. Crockett et al. [73] investigated
an analytical model for the liquid-solid transition in stereodeposition. Here a flow rule
for viscosity was used to establish differential equations for bead width and contact angle.
Solidification clearly impacts the material properties as well as the geometry but much
remains to be understood about the transition dynamics. Venkataraman et al. [74] developed
a methodology for characterizing the compressive mechanical properties of fused deposition
of ceramics filament feedstocks to avoid potential buckling during the extrusion process of
fused deposition of ceramics. Ramanath et al. [75] researched the melt flow behavior of
Poly-ε-caprolactone (PCL) in the melt flow channel of the FDM, in particular the thermal
behavior, pressure drop and velocity gradient. Both mathematical and simulation models
have been developed and results concur that pressure drop depends on the nozzle diameter
and angle variation along the melt flow channel. These parameters can be tuned to satisfy
design objectives.

The simulation model developed in Chapter 2 in its current capacity does not account for
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the extrusion process and how it might change material properties. Nevertheless, it is worth
exploring in the future for more comprehensive models. In this chapter, the constitutive law
for the Helmholtz free energy is specified and additional numerical issues such as the condition
number of the algebraic system are addressed. The model is then deployed on simulations
to understand the displacement and temperature change during the FDM process as well as
the coupling effect between them.

3.2 Constitutive Law

In Section 2.2 the general temperature-dependent linear elastic constitutive law for the mate-
rial used is introduced. A lot of research has been done on modeling thermoplastics, leading
to the models able to capture the entire stress-strain curve until failure. It is stressed that
the best choice for a specific constitutive model should be based on the problem and specific
material used and ideally verified with experimental data [63, 76, 77]. The model chosen here
is used as an example to demonstrate the coupled effect of temperature and displacement
on the quantities of interest. Due to the assumption of infinitesimal deformation, its use is
limited. However, results with this model are able to illustrate the qualitative features of
the FDM-manufactured objects and provide insights into the optimization procedure within
a reasonable range of displacement gradient and temperature. To that end, following the
derivations from [66] with the addition of infinitesimal deformation assumption, a model
that encompasses more complex dependence of elasticity tensor on temperature is proposed.
The function f(θ)C0 in Equation (2.41) takes the form

f (θ)C0 = f̃ (θ)C0,m =

[
b

(
θ − θg
θ0,m − θg

)a
+

(
1

θ0,m

− ab

θ0,m − θg

)
θ − b+

abθ0

θ0,m − θg

+
c

(θ0,m − θm)2
(θ − θ0)2

]
C0,m

(3.1)

Here, a, b, c, θg, θ0,m, θm are coefficients of the constitutive law that can be estimated through
experimention. In physical terms, θg can be interpreted as the glass transition temperature.
In order to expand the flexibility of the model and better correlate experimental results,
the reference temperature θ0,m used to compute the elasticity tensor, is allowed to differ
from the temperature for the reference state θ0, and its corresponding elasticity tensor is
denoted as C0,m. Notice that, mandated by consistency to isothermal elasticity, f̃(θ0,m) = 1.
The elasticity tensor is assumed to be isotropic and computed based on Equation (2.40)
with µ and λ the elastic moduli at θ0,m. The constitutive model is suitable for the case of
infinitesimal deformation and large temperature gradient. It is essential for this constitutive
law to have a good correlation with experiments in terms of elastic modulus as this is central
to how the mechanical response changes with temperature. The elastic modulus E(θ) here
is defined as the first row and column component of the elasticity tensor C(θ)1,1. Thus,
the aforementioned coefficients are chosen and compared with published experimental data
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of a polycarbonate material used in FDM printing by Stratasys [78]. Figure 3.1 shows the
experimental data points from [78] and the curve with manually chosen coefficients based
on trial and error within the range of temperature used. At a relatively low value of 325K
the elastic modulus decreases slightly with temperature. It then experiences a sudden drop
around the glass transition temperature followed by a plateau as the temperature continues
to increase. The constitutive model is not accurate when the temperature is relatively low,
but can track the behavior closely once the temperature moves closer to the glass transition
temperature. The temperature range for the simulation problems is set to be 370 − 500K.
Therefore the model generates realistic elastic modulus and thus mechanical response. The
specific heat which also varies with temperature based on Equation (2.43) gives negligible
changes against temperature.

Figure 3.1: Elastic modulus vs temperature

The material coefficients are listed in Table 3.1. The elastic moduli µ and λ can be
computed through the elastic modulus E0,m and the choice of Poisson’s ratio 0.35.
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Material coefficients Numerical values Unit
a 0.32 N/A
b 0.82 N/A
c -0.5 N/A
θ0,m 300 K
θm 500 K
θg 375 K
E0,m 2300 MPa

Table 3.1: Material coefficients for the constitutive law

A simplified constitutive model that captures the essence of the correlation between
elastic modulus and temperature while produces realistic elastic modulus is proposed next.
Its form is given in Equation (3.2)

ψ(ε, θ) = ψ̃(ε, θ) =

[
b

(
θ

θ0,m

)a
+ b (a− 1) + (1− ab) θ

θ0,m

]
1

2
ε·C0,mε

+ κ0α0 ln(1 + trε)(θ0 − θ) + c̄

(
θ − θ0 − θ ln

θ

θ0

)
.

(3.2)

The result with the chosen coefficients, listed in Table 3.2, is plotted in Figure 3.1 as well.
Due to its easy implementation and ability to capture the general modulus change, the
simplified constitutive law is employed in the simulation problems.

Material coefficients Numerical values Unit
a -5.5 N/A
b 1. N/A
θ0,m 475 K
E0,m 250 MPA

Table 3.2: Material coefficients for the simplified constitutive law

In addition, the remaining material properties used in the simulation are listed in Ta-
ble 3.3.

Material properties Numerical values Unit
k 0.3 W/(mK)
h 30 W/(m2K)
c̄ 1670 J/(Kkg)
ρ0 1060 kg/m3

α 10−4 1/K

Table 3.3: Material properties for the simulation model
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3.3 Numerical Implementation

Dirichlet boundary conditions are imposed by fixing the corresponding displacement and
temperature degrees of freedom at prescribed values. Free surface conditions are equivalent
to zero traction and make the equivalent nodal forces equal to zero. Convection heat transfer
is implemented as a boundary condition according to Equation (2.62). The convection
coefficient h is assumed to be constant throughout the process. However, depending on
the cooling mechanism being simulated, free convection and forced convection may lead to
dramatically different values for h [79]. In the literature, convection coefficients often come
in the order of 10W/m2K [14, 80].

The printing of a layer is treated as a nonstop process in time to emulate the real condi-
tions. As mentioned in Section 2.3.1 and 2.3.2, at the beginning of the deposition, the element
addition algorithm decides whether and where to add a full element, a partial element or
no element on the reference configuration. The discrete system of PDEs are constructed on
the referential mesh at the current time step. It is then solved iteratively for the coupled
displacement and temperature given an initial guess for the solution. If a new element is
added, its initial displacement in the deformed configuration, as explained in Section 2.3.2,
serves as the starting point for the iteration. If no new element is added, solutions from
the last time step are used. In this dissertation, the printing is always directed from the
left end to the right end of a layer. Once a layer is finished, the extrusion head needs to
move back to the starting point of the next layer. A small time interval, around one-fifth of
the time for printing one layer, is added between the end of one layer and the beginning of
the next to represent this motion. This time interval is discretized with the same time step
size. The hanging nodes created from partial elements are treated as redundant degrees of
freedom with their values being a linear interpolation of the values at the vertices of the full
edge they lie on. Figure 3.2 shows an example of a hanging node and its two neighboring
nodes. Let xh, x1 and x2 denote the coordinates of the hanging node, node 1 and node 2,
respectively. The length percentage ξ is defined and obtained through

x = ξx1 + (1− ξ)x2. (3.3)

This ratio ξ is then used to compute quantities other than length. Assuming linear interpo-
lation for the values at the hanging node, for a quantity f ,

f (xh) = ξf (x1) + (1− ξ)f (x2) . (3.4)

The element-level calculations for the partial elements are the same as the full elements.
Equation (3.4) is imposed similar to Dirichlet boundary conditions when solving the eventual
linear system. The degrees of freedom of the hanging nodes are removed, just as the ones
with fixed displacement and temperature. Boundary conditions are active on the partial
edges that are exposed to them.
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Figure 3.2: Hanging node and its surrounding nodes

As mentioned before, reducing computation time for simulation of additive manufactur-
ing is a major focus of the current research effort [10]. Since our model is presently confined
to two-dimension problems, runtime has not reached a critical point where optimization be-
comes unfeasible. Nevertheless, steps are taken to help reduce computing time and better
organize the code’s data structure. The simulation model is implemented in both Python
and C++ with the C++ version running all problems as it is substantially faster. Element
and node additions do not require destruction and reconstruction of new arrays every time.
Instead, vectors and matrices are pre-allocated at the beginning with sufficient size to cover
the final geometry and avoid expensive memory operations. The linear solver package UMF-
PACK [81] is used to solve the final asymmetric linear system. Effective solves require sparse
matrices generated from the model to be stored in a compressed column data structure [82].
The positions of existing entries in the global sparse matrices stored in compressed column
form do not remain the same as new entries from new elements spread out across rows and
columns and therefore change the column-wise order. Consequently, in addition to keeping
track of the length of current elements and nodes, the sorting indices of element-level matrix
entries that would put them into global column-wise ascending order are also stored and
updated whenever necessary. This allows us to avoid the expensive sorting operations over
the entire global matrices.

Typically, nodal temperature drops from approximately 500K (close to melting point
coming out of extrusion head) to 300−373K ambient temperature, resulting in a 200K
change in value. At the same time, a small length scale problem, as the ones shown in
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this dissertation, might involve an object with the length and width on the scale of 1cm,
and with simulated layer thickness of around 0.3mm. This, while satisfying the infinitesimal
deformation assumption, leads to a displacement in the range of 10−7m. Since the cou-
pled displacement and temperature vectors are solved together, the huge order of magnitude
difference between them might induce a large condition number and accumulate numerical
errors as more layers are printed. To improve the condition number, the length dimension is
scaled by an appropriate number. Figure 3.3 shows an example where only two elements are
added on top of an existing base layer. We calculate its condition number of the eventual
sparse matrixA such thatAU = b, where U = [u θ]T at the last time step. Various values
of the scaling factor c̃ are chosen so that X̂ = 1

c̃
X where X̂ is the scaled position vectors.

The displacement is scaled accordingly as well by c̃û = u where û is the scaled displacement.
This amounts to selective diagonal preconditioning for the displacement degrees of freedom.

Figure 3.3: Test example for condition number

Figure 3.4 illustrates how the condition number changes with the scaling factor. As
expected, a c̃ < 1 can help lower the condition number as it brings the length scale closer to
the temperature one. Yet if the scaling factor c is too small, such benefits disappear. Hence
10−4 is picked for the following simulations.
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Figure 3.4: Condition number vs length scaling

3.4 Simulation Problems and Results

3.4.1 Problem Description and Mesh Test in the x-direction

A typical simulation problem with the proposed model and material constitutive law is
described next. Convergence tests with respect to mesh size based on the problem are
conducted to ensure accuracy of the model. The object to be printed is a two-dimensional
wall, whose shape is given as the reference configuration in Figure 3.5 with width of 20mm
and height of 10mm. The wall is first discretized by 40 elements in the x-direction while
the number of elements in the y-direction is dictated by the layer thickness and chosen to be
30. A typical layer thickness for FDM can be between 0.25− 0.4mm, which the height of an
element satisfies. The bottom of the wall is subjected to Dirichlet boundary conditions with
zero nodal displacement and constant temperature at ambient value of 373K. The three
other sides of the wall are free of traction and under convection heat transfer conditions
with θ∞ at ambient temperature. The initial temperature of the hot material is set at
500K of depostion. A base layer at the bottom whose reference temperature is at the
ambient temperature is assumed to be present at the beginning of the simulation with no
initial stress or strain. The time step size for one element is set to 0.006s and therefore
the equivalent printing speed is 83mm/s. The time interval between layers is set to 0.036s,
roughly one-sixth of the time it takes to print one layer. The simulation stops when the last
element is added and the results at that time are plotted from Figures 3.5 to 3.7b. Figure 3.5
plots the deformed and referential boundary at the last time step, where the displacement
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is magnified by 10 times to better illustrate the result. Small deformation can be observed
while the general shape of the deformed configuration is close to the desired one.

Figure 3.5: Deformed and reference shape of the two-dimensional wall with 10 times the actual displacement

The temperature filled contour after the last element is added is shown in Figure 3.6 where
a clear pattern of gradually dropping temperature as height decreases is evident. Based on
the simulation condition and stopping time, a large part of the wall remains at a fairly high
temperature.

Figure 3.6: Temperature filled contour of the wall

Figure 3.7a illustrates the displacement in the x-direction. Positive displacement occurs
on the left side of the wall while on the right side negative displacement can be seen. The
displacement decreases to zero towards the bottom as it is fixed. The displacement pattern
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in the y-direction is shown in Figure 3.7b. Negative y-direction displacement is present in
most part of the object with the exception of the lower part of the two side edges. The
cooling during the printing process explains the overall contraction, while the fixed bottom
boundary and new elements inheriting displacement from existing layers and elements cause
the small positive y-direction displacement.

(a) Displacement in x direction filled contour of the wall

(b) Displacement in y direction filled contour of the wall

Figure 3.7: Displacement filled contour at the end of element addition of the wall

This is demonstrated in the zoomed-in view of the relevant elements in Figure 3.8. First,
for the bottom base layer, it has zero initial displacement and is already at ambient tem-
perature. Since it does not experience cooling but rather small amount of heating due to
the hot material added on top of it, the base layer experiences no reduction in area. The
shrinking of elements above it towards the center of the wall in x-direction forces upper
nodes of the base layer to also have positive x-direction displacement on the left side and
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negative on the right. Thus its height at the two sides is pushed up to exhibit minor positive
y-displacement as the bottom nodes are fixed. Second, beyond the base layer, the leftmost
elements shrinking in area due to cooling leads to decrease in their edge lengths in the x-
direction. In order to preserve both material continuity and mass/area, new elements added
on top initially gain positive y-displacement. Such positive displacement competes with the
overall reduction in height due to cooling and is inherited by layers up above. At the current
time step, the wall remains mostly at elevated temperature from new elements with high
temperature being added continuously. It is worth noting that once the temperature cools
down sufficiently, such positive y-displacement vanish at the top part of the side edges as
observed in Figure 3.14 and 3.29.

Figure 3.8: Displacement at the bottom leftmost part of the wall

The displacement and temperature distribution pattern matches intuitive considerations
as the object contracts with decreasing temperature. The overall shrinking in area agrees
with published results in literature [11, 58, 25] as well.

A convergence test on mesh size is conducted to verify the model. In this case, however,
changing the mesh size in the y-direction would result in a different dynamic problem with
different number of layers. Therefore, the same problem described above is run with varying
mesh size in the x-direction to show consistent results can be reached with the choice of
number of elements. For consistency, overall the time to print one layer is kept the same and
the layer thickness is unchanged as well. Table 3.4 shows the result of maximum temperature
and maximum contraction of the top surface when the last element is added. As can be seen
in the Figures 3.9, 3.10, and the data from the table, these values changes are minimal as
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mesh is refined. Therefore our pick of number of elements in x direction nx = 40 provides
good and consistent results.

∆x(m) max T (K) change in max T max contr (m) change in max contr
6.67 ∗ 10−4 498.203 NA −2.6558× 10−5 NA
5.00 ∗ 10−4 498.483 0.056% −2.6920× 10−5 1.3%
4.00 ∗ 10−4 498.662 0.036% −2.7471× 10−5 2.0%
3.33 ∗ 10−4 498.790 0.026% −2.7178× 10−5 0.7%

Table 3.4: Convergence study of a two-dimensional wall problem

Figure 3.9: Maximum temperature vs element width in the x-direction in the reference configuration
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Figure 3.10: Maximum contraction vs element width in the x-direction in the reference configuration

3.4.2 Simulation Model Problems and Results

In this section, two simulation problems based on the setup in Section 3.4.1 are described,
which also form the foundation for the optimization study in Chapter 4. The first one
is a two-dimensional wall problem with width 20mm and height 10mm. The referential
domain is discretized with 40 elements in the x-direction and 38 in the y-direction for a
layer thickness of 0.263mm. The deposition time for one element is set to 0.006s, equivalent
to a printing speed of 83mm/s. After the wall is finished building, another 240s of time
is simulated to let the temperature of the entire wall cool down reasonably to ambient
temperature. This matches a reali-life FDM printing process and provides a comparable
condition for measuring shape error subsequently. Figure 3.11 shows the deformed and
reference configuration of the wall, where the displacement is 5 times the actual value to
better illustrate the deformation. Figure 3.12 displays the temperature change of the top-
right node of the wall against time after the deposition is completed. In this case, the time
this node is first added happens to be the time the deposition ends. Therefore, the total time
plotted is 240s and the temperature decreases throughout the cooling process to the ambient
temperature value. At the designated time of 240s after deposition ends, the temperature
has sufficiently cooled down with maximum value around 376K.
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Figure 3.11: Deformed and reference shape of the two-dimensional wall with 5 times the actual displacement

Figure 3.12: Temperature change with time of the top-right node of the wall

Figures 3.13 and 3.14 depict the displacement filled contours of the solutions at the last
time step. The deformation is more pronounced with similar pattern shown in Section 3.4.1.
As an example, the y-displacement change with respect to time of the middle node at the top
edge is shown in Figure 3.15. The time axis of the curve starts when the deposition is com-
pleted and runs 240s until the simulation ends. The y-displacement initially drops quickly in
the negative as the temperature cools down rapidly before stablizing as time proceeds. The



50

consistent increase in magnitude of the negative y-displacement further illustrates how the
wall shrinks as it cools down. It is worth noting that the infinitesimal deformation assump-
tion is valid in these results. The maximum absolute value in the y-direction displacement
is 7.5× 10−5m which is 0.75% compared to the original y-direction height at 10−2m.

Figure 3.13: Displacement in the x-direction filled contour of the wall

Figure 3.14: Displacement in the y-direction filled contour of the wall
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Figure 3.15: Displacement change in the y-direction with time of the middle node at the top edge of the wall

The second problem is again a two-dimensional wall (width 15mm, height 10mm), but
now with a quarter-circular hole of radius 3mm at the top right end. The referential domain
is discretized with full elements of the width 0.375mm and height 0.25mm, while the partial
elements have varying width. The simulation is run with partial elements and the one-sided
slicing algorithms described in Chapter 2 until the temperature field becomes uniform and
close to ambient temperature with 240s after deposition itself is finished. Figure 3.16 shows
the temperature history of the top-right node, i.e., the last-added node. The time starts
when the node is first created and ends when the cooling stops 240s after the deposition is
finished. Unlike the solid wall case, there is a small gap between when the node is created
and the deposition is completed as marked on the figure. Nevertheless, the temperature
gradually cools down to the ambient temperature value. The displacement information at
the last time step is shown in Figures 3.17 to 3.19.
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Figure 3.16: Temperature change with time of the last-added node of the wall with hole

Figure 3.17: Deformed and reference shape of the two-dimensional wall with hole
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Figure 3.18: Displacement in the x-direction filled contour of the wall with hole

Figure 3.19: Displacement in the y-direction filled contour of the wall with hole

The filled contour plots are made in Python with matplotlib. The interpolation method
for plotting is set to ‘linear’. Although the geometry is different, the ‘wall with hole’ prob-
lem reflects similar displacement pattern with positive x-displacement on the left part and
negative on the right. Negative y-direction displacement is again prominent throughout the
object. As an example, the y-displacement of the last-added node is plotted against time
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once the node is created, as shown in Figure 3.20. The initial negative displacement re-
sulting from previous layers and elements continues to decrease, which implies the object is
shrinking overall.

Figure 3.20: Displacement change in the y-direction with time of the last-added node of the wall with hole

The temperature manages to cool down in the end, 240s after deposition finishes, to a
maximum value of 374K.

A small oscillation in the y-displacement is also observed in both problems. This is
because when a new node is added, its initial position often register opposite displacement
to those of the existing nodes of the same element to compensate their displacement so that
continuity and mass conservation are maintained. And such displacement passes on to the
next element and layer. This stems from both the physical phenomenon of heat-coupled
deformation during the printing process and the element addition algorithms of our choice.
To show that it is unrelated to time-step size, the first problem discussed in this section, the
two-dimensional wall, is simulated with half the time-step size, the same mesh and deposition
speed. This translates to two time-steps for one new element while the total time remains
the same. Figure 3.21 is the filled y-displacement contour of the same wall problem with
this time-step treatment, and displays similar deformation pattern as in Figure 3.14. The
problem would not be exactly the same numerically as the new element and nodes are created
during the first of the two time-steps and then solved twice. Neverthless, the solution from
this different approach of element addition shows that time discretization does not affect the
small oscillation in the y-displacement observed.
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Figure 3.21: Displacement in the y-direction filled contour of the wall with smaller time-step size

3.5 Uncoupled Thermomechanical Model

In this section, an uncoupled thermomechanical model widely used in research and applica-
tions is briefly introduced and compared to the model developed in this paper by simulating
the same problem. As described in [80], the uncoupled model solves the heat transfer problem
on a predetermined Lagrangian mesh with elements being activated when the corresponding
material is projected. The heat transfer equation corresponding to a rigid conductor is given
as

cθ̇ = −∇·q0 + ρ0r, (3.5)

where c is the volumetric heat capacity, and the external heat supply is represented by ρ0r.
In order to highlight the coupling effect on the solutions, the constitutive relations for both
models are kept the same whenever suitable. In addition, the same mesh generation and
element addition algorithms introduced in earlier sections are applied. However, since the
displacement is not solved at each time step, element addition in the deformed configuration
no longer encounters deformation from previous layers and existing elements. Displacement
history variables are no longer in use either.

The temperature history computed by this model on the fixed reference configuration
is then used to determine the mechanical response. The stress equilibrium is governed by
Equation (3.6)

∇ · σ = 0, (3.6)

where σ is the stress. Usually a simple constitutive law for the material is assumed for elastic
strain and stress as shown in Equation (3.7),

σ = Cεe, (3.7)

where εe is the elastic strain and C is the elasticity tensor. Here C is assumed to be
temperature-dependent and can be described in the same way as in Equation (2.43). The
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thermally induced strain εT is given by

εT = α (θ − θ0) I, (3.8)

where α the thermal expansion coefficient and θ0 the reference temperature where no thermal-
induced strain occurs. The total strain ε is subsequently

ε = εe + εT . (3.9)

The same problem of two-dimensional wall building is simulated with both models. The
wall has a width of 20mm and a height of 10mm with 40 elements in the x-direction and
a layer thickness of 0.25mm in the reference configuration. The printing speed is set at
100mm/s with an interval time of 30ms between layers. The wall is allowed to cool down to
ambient temperature for 240s after deposition is finished. First, the results of the coupled
model are shown. Figure 3.22 shows the deformed and reference configuration where small
but visible deformation is present. The displacement in the figure is 5 times the actual
value to display it clearly. Figure 3.23 and Figure 3.24 are the filled contour plots of the
displacement in x and y direction with results showing similar contraction of the wall as the
ones presented in Section 3.4.

Figure 3.22: Deformed and reference shape of the two-dimensional wall with 5 times the actual displacement:
coupled model
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Figure 3.23: Displacement in the x-direction filled contour of the wall: coupled model

Figure 3.24: Displacement in the y-direction filled contour of the wall: coupled model

Next the same problem is solved with the uncoupled model described earlier in this
section. Since enough time steps are taken for the temperature to come down, the final tem-
perature field would naturally be almost identical from both models with maximum values
around 375K and ambient temperature 373K. The maximum temperature difference at all
nodes 240s after printing finished is negligible at 0.06632K. The deformation solutions, on
the other hand, show the critical difference between the two methods. It is noted that the
uncoupled method possesses no means of the thermal or mechanical history of the manu-
facturing process as its deformation is solved statically, which leads to the same strain and
stress given the same current temperature distribution regardless of how the temperature or
displacement evolved. The temperature field at the final step solved from the heat transfer
equation is used to gain the displacement. Figure 3.25 illustrates the deformed boundary
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of the wall together with the referential one, where the displacement is 5 times the actual
value. Figure 3.26 and Figure 3.27 plot the displacement in x and y direction respectively.

Figure 3.25: Deformed and reference shape of the two-dimensional wall with 5 times the actual displacement:
uncoupled model

Figure 3.26: Displacement in the x-direction filled contour of the wall: uncoupled model
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Figure 3.27: Displacement in the y-direction filled contour of the wall: uncoupled model

The zoomed-in views of the deformation from the two models are shown in Figure 3.28
and 3.29. The displacement is five times the actual values in the plots to highlight their
differences. It is clear that the uncoupled model produces more even displacement throughout
the domain, especially in the y direction across each layer as no temperature or deformation
history is taken into account. The coupled model shows larger negative y-displacement at
the middle of the wall in x-direction. Deformation history plays an important role in the
coupled model as seen in the y-displacement filled contour in Figure 3.24. A pattern of
minor oscillation across the x-direction is observed due to new element compensating for the
deformation of the existing layers and elements. Such phenomenon is non-existent for the
uncoupled model. In all, both models predict shrinkage and small deformation while the
deformation patterns differ somewhat. It is worthwhile to explore the coupled model when
higher accuracy of deformation is desired. It also allows the small deformation assumption
to hold with larger accumulated displacement because of the use of history displacement
variables.

Figure 3.28: Detailed deformed and reference shape of the two-dimensional wall: uncoupled model
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Figure 3.29: Detailed Deformed and reference shape of the two-dimensional wall: coupled model
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Chapter 4

Optimization

4.1 Introduction

Fused deposition modeling, whether used for polymer, ceramics or metal sometimes creates
undesirable internal and surface defects. Potential errors include overflow at the start and end
of a segment due to acceleration and deceleration of material extrusion, curve approximation
error from staircase effect etc. Many process variables can be optimized to better achieve
the design goal [83, 84, 85]. They can be material properties like viscosity and thermal
conductivity or machine specific parameters like filament diameter and nozzle size. Based
upon the finite element simulation model developed in Chapter 2, focus of our optimization
is on the operation parameters such as layer thickness and head speed [86].

In contrast to existing optimization research work as outlined in Chapter 1, a different
approach is taken here to tackle the optimization of FDM process as a PDE-constrained
optimization problem. In the previous chapters, a general framework for finite element sim-
ulation of two-dimensional FDM manufacturing process is developed. The fully discretized
finite element model is parameterized to incorporate potential optimization parameters. The
system of PDEs as derived in Chapter 2 at time step tn+1 can be written as

rn+1

(
un+1,un,vn,θn+1,θn,u

his
n+1,θ

his
n+1,µ, tn+1

)
= 0, (4.1)

where rn+1 is the set of discretized PDEs that describe the system at tn+1, un+1 the displace-
ment at the current time step, un,vn the displacement and velocity at the previous time
step, θn+1,θn the temperature at current and previous time step, uhisn+1 the displacement
history variable, θhisn+1 the temperature history variable, and µ the optimization parameters.
The history variables are introduced in Section 2.3.2.

As mentioned before, various objectives have been studied including surface roughness
and residual stress. In this dissertation, attention is focused on a measure of shape error that
computes the dimensional deviation caused by deformation during the printing process from
the desired shape. Shape error or closely related surface roughness is a major problem of AM
processes and efforts have been taken to address it through process map or post-processing
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treatment as reviewed above [87]. Here the shape error is defined on the particular edges of
interest in two dimensions. The two simulation problems solved in Section 3.4.2 are used to
illustrate the shape error definition.

The general definition of our objective function f0 is

f0 (u,θ,µ, t) =

[∫
Γt
S

(
d (u)− d̄

)2
dl
] 1

2

Lc

(∫
Γt
S
dl
) 1

2

, (4.2)

where ΓtS refers to the edges of interest, d (u) − d̄ is a difference measure in position at
a point and Lc is a critical length dependent on the problem to make f0 dimensionless.
Notice that f0 depends only on u explicitly. The objective function is evaluated through
one-dimensional Gaussian quadrature with consistent spatial discretization with the mesh
itself. The discretized form is

f0,h =

[∑n
i=1

∑m
j=1

(
d (uj)− d̄

)2
wj

∆li
2

] 1
2

Lc (
∑n

i=1 ∆li)
1
2

, (4.3)

where n is the number of discretized edges and m is the order of quadrature used. Standard
Gaussian quadrature with nodes between [−1, 1] is used with ∆li

2
being the Jacobian, where

linear elements for the edges are assumed in accordance with the bilinear elements.
For the first example problem, the two-dimensional wall problem, ΓtS is the top edge,

and d (u)− d̄ is defined as the difference between the y-coordinate of a quadrature point in
the deformed configuration and its designed height with same x-coordinate in the reference
configuration as shown in Figure 4.1. The displacement is exaggerated to five times the
original values to more clearly display the shape error definition. The reference (black)
edges have zero shape error while the deformed ones (blue) deviate from their ideal height
due to the thermomechanical deformation. The critical length Lc is chosen to be the height
of the wall.

Figure 4.1: Measurement of shape error for two-dimensional wall with 5 times the actual displacement

For the second problem, the wall with a circular hole, d (u)− d̄ is defined as |x−x0|− r,
where x0 is the center of the circle and r is its radius, and ΓtS is the step-edge approximation,
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or the ‘error edges’, of the quarter-circle hole. The ‘error edges’ are defined as the edges
formed by connecting the middle points of the actual printed step edges approximation of
the circular hole, as shown in Figure 4.2. This guarantees a total edge length that would
converge to πr/2 instead of 2r as the mesh is refined. A zoomed-in view is given in Figure 4.3
with 50 elements in the x-direction for a full layer and 40 elements in the y direction. The
critical length Lc here is chosen to be the radius of the circle.

Figure 4.2: Error edges for two-dimensional wall with hole

The discussion on optimization methods is divided into two parts, one focusing on a
discrete parameter, i.e., the layer thickness, and the other on continuous parameters, e.g.,
convection coefficient, as they show different properties and thus offer different insights into
the best approaches to optimization.
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Figure 4.3: Error edges for two-dimensional wall with hole zoomed in

4.2 Layer Thickness Optimization

An obvious optimization parameter is the layer thickness, which presents a challenge to
the optimization problem since given the height of the printed object, it corresponds to a
discrete variable, which is the number of layers, an integer. This is particularly an issue for
approximating curves and measuring the associated shape errors because a major source of
the shape error defined in Section 4.1 comes from pure geometric error in the deposition.
Therefore, to optimize the number of layers therefore, a good understanding of its impact
on the objective function needs to be established.

In order to argue that the geometric error comes from the choice of layer thickness, the
artificial shape error caused by discretization in the x-direction needs to be evaluated and
reduced as much as possible. This is a non-issue for the two-dimensional wall problem as no
slicing algorithm for curvature is needed and the pure geometric error is zero. For the wall
with a quarter-circle hole, however, different slicing algorithms result in drastically different
results. To appreciate this, consider the geometry shown in Figure 4.2 and fix the number of
layers at 34. Without solving the thermomechanical equations, the pure geometric objective
function, the shape error, defined in Section 4.1 can be evaluated and plotted against the
number of elements in the x-direction for a full layer. The two different slicing algorithms
discussed in Chapter 2, one-sided and minimum-area are used to construct the referential
mesh. The results are plotted in Figure 4.4 for the one-sided method and Figure 4.5 for the
minimum-area method.
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Figure 4.4: Shape error vs number of elements in x-direction with one-sided slicing and 34 layers

Figure 4.5: Shape error vs number of elements in x-direction with maximum-area slicing
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It is clear that one-sided slicing provides a near constant shape error as it only relies on y-
coordinates of the boundary elements and nodes, given by the number of layers, to determine
the width of the partial element and thus the shape error, making it mostly independent on
the discretization in the x-direction. However, due to the 40% limit on the area of partial
elements, some fluctuations are still visible but nevertheless too small to meaningfully change
the potential optimization steps. The minimum-area slicing algorithm, on the other hand,
relies on the x-coordinates of the vertices of the boundary elements and therefore is not ideal
in isolating the effect on the objective function. The error as seen in Figure 4.5 shows shape
error oscillations with respect to the x-size of the mesh. ‘Error edges’ with selected number
of elements in the x-direction of 40 and 50 are plotted in Figure 4.6. Clear differences in
the positions of ‘error edges’ lead to diverging shape errors. An alternative minimum-area
slicing algorithm independent of mesh in the x-direction might resolve this issue, but here
throughout the optimization of the simulation problems the one-sided slicing algorithm is
preferred and chosen to get a better understanding of how layer thickness affects the shape
error.

Figure 4.6: Shape error of 40 and 50 elements in the x-direction with 40 layers with minimum-area slicing

The effect of the number of layers on the geometric shape error is examined next. Since
the number of elements in the x-direction does not fundamentally alter the pure geometric
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shape error, a good aspect ratio for the quadrilateral elements can be maintained while shape
error is calculated with different number of layers. To this end, let ∆x and ∆y be the width
and height of a full element in the reference configuration, respectively. Fewer elements in
the x direction is more advantageous in terms of computing time but reduces the aspect ratio
of ∆x/∆y which can lead to errors if too small. Therefore, a compromised value should be
sought. Figure 4.7 shows how the number of elements in both x and y directions change to
maintain an aspect ratio of 1.0 and is linear by definition. For this case, Figures 4.8 and 4.9
display the shape error decreasing with smaller elements, where the element size measure

∆h is calculated as ∆h = (∆x2 + ∆y2)
1
2 . Particularly, it converges to 0 with an order of

O(∆h).

Figure 4.7: Number of elements in x direction vs number of layers with one-sided slicing
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Figure 4.8: Shape error vs number of layers with one-sided slicing for aspect ratio of 1.0

Figure 4.9: Log shape error vs log number of layers with one-sided slicing for aspect ratio of 1.0

Taking a closer look at Figure 4.8 between 30 and 60 layers, which are within the range
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Figure 4.10: Shape error vs number of layers with one-sided slicing with smaller range

of the number of layers in real applications given the height of the wall, the finely resolved
shape error is plotted in Figure 4.10. Here another key effect of this discrete parameter is
exhibited, which is the large number of local minimum and maximum values that are crucial
to the optimization outcome. To better understand this phenomenon, the cases of layer
number 40 and 41 layers are examined in Figure 4.11 where both the ‘error edges’ and the
target curve are plotted. It is clear that the majority of the shape error occurs around the
horizontal part of the approximation of the quarter-circle. The discreteness of the number of
layers means that the horizontal approximation varies a lot depending on whether the height
of the horizontal curve is an integer multiple of the layer thickness. In turn such errors cause
the local shape error to fluctuate. The errors of these two cases are shown in Figure 4.11
and amount to an against-the-trend jump of 10% from 40 to 41 layers.

In addition, the fact that |x− x0| − r is the integrand along the ‘error edges’ magnifies
such local changes. This is because |x−x0|− r itself is very small in value by definition and
prone to small changes with x. These factors contribute to the difficulty of optimization of
layer thickness using local methods that are likely to become stuck on local minima. At the
same time without effective gradient a more naive and exhaustive optimization method has
to be adopted. However, it is possible to design efficient and effective optimization of the
number of layers without having to build out the contour of the entire parameter domain.
The shape errors maintains a clear trend with respect to the number of layers, allowing the
optimization algorithm to potentially “climb out” of the local minima by taking a larger
step size. Algorithms that reflect the knowledge gained in this section are proposed in
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Figure 4.11: Shape error of 40 and 41 layers with one-sided slicing

Sections 4.4.1 and 4.4.2.

4.3 Continuous Parameters

The sensitivities of the continuous optimization parameters µ can be obtained through care-
ful differentiation of the entire fully discretized PDEs with respect to them. This allows for
gradient-based optimization methods to be designed and employed on them. The formal
optimization problem is written as

minimize
µ

f0 (u,θ,µ, t)

subject to r (u,θ,µ, t) = 0

fi(µ) 6 bi, i = 1, . . . ,m,

(4.4)

where f0 is the objective function, r the discretized PDEs, fi the constraints, u the displace-
ment, θ the temperature and m the number of constraints. First-order sensitivities of the
quantities of interest

dfi
dµ

, i = 0, 1, ...m, (4.5)

can be derived for given objective functions and constraints. In our particular case the
objective is shape error defined in Equation (4.2).
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Following Section 2.2, the sensitivities are calculated based on the fully discretized forms
of the governing equations (4.1) both in space and time. At time tn+1, the displacement
and temperature variables are written as un+1 and θn+1. The sensitivity of the shape error
objective with respect to parameters can be written as

df0

dµ
(un+1) =

∂f0

∂un+1

∂un+1

∂µ
, (4.6)

since f0 is dependent only on displacement explicitly. The first term on the right hand
side in Equation (4.6) ∂f0

∂un+1
can be computed by differentiating Equation (4.3). The state

sensitivities ∂un+1

∂µ
at time step tn+1 however rely implicitly on sensitivities from all the

previous time steps that need to be calculated and tracked through the simulation.
From Equation (4.1), differentiate both sides of the equation with respect to µ to gain

drn+1

dµ

(
un+1,un,vn,θn+1,θn,u

his
n+1,θ

his
n+1,µ, tn+1

)
= 0,

∂rn+1

∂un+1

∂un+1

∂µ
+
∂rn+1

∂un

∂un
∂µ

+
∂rn+1

∂vn

∂vn
∂µ

+
∂rn+1

∂θn+1

∂θn+1

∂µ
+
∂rn+1

∂θn

∂θn
∂µ

+
∂rn+1

∂uhisn+1

∂uhisn+1

∂µ
+
∂rn+1

∂θhisn+1

∂θhisn+1

∂µ
+
∂rn+1

∂µ
= 0.

(4.7)

State sensitivities ∂un+1

∂µ
, ∂θn+1

∂µ
at time tn+1 can be calculated implicitly based on Equa-

tion (4.7) with state sensitivities from the previous two time steps. Provided with the
correct initial conditions for sensitivities, the ones at the last time step needed for optimiza-
tion can be calculated. From Equation (4.7), all the remaining terms need to be examined
and computed. It is noted that ∂rn+1

∂un+1
, ∂rn+1

∂θn+1
in discretized matrix forms are already derived

when solving the PDEs with the Newton-Raphson iteration and given in Equation (2.79) at
the element level. The fully discrete sensitivities of ∂rn+1

∂un
, ∂rn+1

∂θn
, ∂rn+1

∂vn
can be obtained by

substituting the Newmark integration scheme into the fully discretized PDE system as in
Equation (2.69) and taking the appropriate differentiation. To deduce the detailed forms,
momentum and energy balances are denoted separately as r1 and r2. Here, r1,n+1 represents
the discrete form of linear momentum balance and r2,n+1 the discrete energy balance at time
step tn+1. Consequently, equation (4.1) can be rewritten as

r1,n+1

(
un+1,un,vn,θn+1,θn,u

his
n+1,θ

his
n+1,µ, tn+1

)
= 0,

r2,n+1

(
un+1,un,vn,θn+1,θn,u

his
n+1,θ

his
n+1,µ, tn+1

)
= 0.

(4.8)

The fully discretized matrix-vector forms of r1,n+1 and r2,n+1 are given in Equations (2.63)
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and (2.64). The element-level sensitivity matrices for ∂rn+1

∂un
, ∂rn+1

∂θn
, ∂rn+1

∂vn
are[

∂re1,n+1

∂un

]
= − 4

∆t2n
[M e

u] ,

[
∂re2,n+1

∂un

]
=

∫
Ωe

0

[N e
t ]T
[
θen+1

] [
M e

n+1

] 1

∆tn
[Be

u2] dV,[
∂re1,n+1

∂vn

]
= − 4

∆tn
[M e

u] ,

[
∂re2,n+1

∂vn

]
=

∫
Ωe

0

[N e
t ]T θen+1

[
M e

n+1

]
[Be

u2] dV,[
∂re1,n+1

∂θn

]
= [0] ,

[
∂re2,n+1

∂θn

]
= −

∫
Ωe

0

[N e
t ]T

ckn+1

∆tn
[N e

t ] dV.

(4.9)
Assemble Equations (4.9) over the entire domain, and the global matrix forms of the sensi-
tivities terms [

∂rn+1

∂un

]
,

[
∂rn+1

∂vn

]
,

[
∂rn+1

∂θn

]
(4.10)

are obtained.
For the so-called history variables, the sensitivities

∂ri,n+1

∂uhis
n+1

,
∂uhis

n+1

∂µ
,
∂ri,n+1

∂θhisn+1

∂θhisn+1

∂µ
, i = 1, 2

are calculated locally within each element to take advantage of their data structures.
Recall that uhis,en+1 for an element is created when it is first added and contains the dis-

placement at all vertices. The global matrix uhisn+1 thus is stored as a two-dimensional array
with the dimension of {nel, ndim×nvrt}, where nel is the number of elements, ndim is the
dimension of the displacement variable and nvrt is the number of vertices for each element.
It is then easier to calculate the history variable sensitivities at the element level and then

assemble into the global matrices. At the element level,
∂rei,n+1

∂uhis
n+1

,
∂rei,n+1

∂θhisn+1
i = 1, 2, can be calcu-

lated similarly in matrix form by differentiating the fully discretized form in Equations (2.63)
and (2.64) [

∂re1,n+1

∂uhisn+1

]
=−

[
Ke

u,n+1

]
[
∂re1,n+1

∂θhisn+1

]
=

∫
Ωe

0

[Be
u]
T

[(
∂σ

∂θhisn+1

)e
n+1

]
[N e

t ] dV[
∂re2,n+1

∂uhisn+1

]
=

∫
Ωe

0

[N e
t ]T
[(

∂c

∂u

)e
n+1

]
θ̇en+1 [Be

u2] dV−∫
Ωe

0

[N e
t ]T θen+1

[(
∂M

∂ε

)e
n+1

] [
ε̇en+1

]
[Be

u2] dV[
∂re2,n+1

∂θhisn+1

]
= [0] .

(4.11)

Equations (4.11) are the element-level fully discretized sensitivities for the history variables.
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Assuming now without losing substantial generality, that the dimension of µ is one, the
element level matrix form of [

∂uhis,en+1

∂µ

]
,

[
∂θhis,en+1

∂µ

]
(4.12)

are arranged in order as[
∂uhis,en+1,1

∂µ
...

∂uhis,en+1,nvrt

∂µ

]T
,

[
∂θhis,en+1,1

∂µ
...

∂θhis,en+1,nvrt

∂µ

]T
. (4.13)

The overall length of the vectors are ndim × nvrt and nvrt, respectively. If more than
one sensitivity parameters are considered, instead of vectors, matrices can be formed in lieu
of (4.13). The entries of the vectors in (4.13) ∂u

∂µ
and ∂θ

∂µ
at the time step when a particular

element is added. Denote on the element level[(
∂r1

∂µhis

)e
n+1

]
=

[
∂re1,n+1

∂uhisn+1

][
∂uhis,en+1

∂µ

]
+

[
∂re1,n+1

∂θhisn+1

][
∂θhis,en+1

∂µ

]
,

[(
∂r2

∂µhis

)e
n+1

]
=

[
∂re2,n+1

∂uhisn+1

][
∂uhis,en+1

∂µ

]
+

[
∂re2,n+1

∂θhisn+1

][
∂θhis,en+1

∂µ

]
.

(4.14)

Assembling over the entire domain the two vectors in Equation (4.14), the discretized vector
form of [

∂rn+1

∂uhisn+1

∂uhisn+1

∂µ
+
∂rn+1

∂θhisn+1

∂θhisn+1

∂µ

]
(4.15)

in Equation (4.7) is obtained. Similarly we may express the state sensitivities ∂un

∂µ
, ∂vn

∂µ
, ∂θn

∂µ

in vector form. For instance, using ∂un

∂µ
as an example, with[

∂un
∂µ

]
=

[
∂un,1
∂µ

...
∂un,nnod
∂µ

]T
, (4.16)

where nnod is the number of nodes in the entire mesh. Multiplying the global sensitivity
matrices from Equation (4.10) with the known sensitivities from previous time steps in the
form of (4.16), another part of Equation (4.7) is acquired.[

∂rn+1

∂un

∂un
∂µ

+
∂rn+1

∂vn

∂vn
∂µ

+
∂rn+1

∂θn

∂θn
∂µ

]
. (4.17)

Once the parameters are specified,
[
∂rn+1

∂µ

]
can be computed directly as well. This framework

can be applied potentially to any time-step independent and differentiable parameters. Here,
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it is applied to the convection coefficient h, a constant throughout the simulation. As a result,
a rather straightforward direct dependence of shape error on the parameter is presented as[

∂re1,n+1

∂h

]
= [0] ,[

∂re2,n+1

∂h

]
=

∫
Γt
N,0∩∂Ωe

0

[N e
t ]T
([
θ̂∞

]
−
[
θ̂en+1

])
dA,

(4.18)

where θen+1 is the element-level nodal temperature solution vector at time step tn+1 after
meeting the iteration stopping criterion. Assembling Equation (4.18) over the entire domain

and the global vector of
[
∂rn+1

∂µ

]
is obtained. Once all the matrix-vector forms of the terms

in (4.7) have been obtained, the state sensitivities at time step tn+1 can be solved for both
displacement and temperature.

Given the shape error of (4.2) as the objective function, the sensitivity with respect to
the convection coefficient is a scalar and many optimization methods work well with this
case. Initial conditions for ∂u

∂µ
and ∂θ

∂µ
are set to 0 as they do not depend on the convection

coefficient at the starting time t0.
The analytical sensitivities are tested against second-order centered finite difference

derivatives to ensure correct derivation. A simple two-dimensional wall example as given
in Chapter 3 is run with 40 elements in the x-direction and 30 in the y-direction for 240s
after the wall is completely built. Analytical sensitives for both un+1 and θn+1 match well
with the ones computed through finite difference calculations based on

∂un+1 (µi)

∂µi
=̇
un+1 (µi + ∆µi)− un+1 (µi −∆µi)

2∆µi
∂θn+1 (µi)

∂µi
=̇
θn+1 (µi + ∆µi)− θn+1 (µi −∆µi)

2∆µi
,

(4.19)

where µi is the ith component of the parameter µ.

4.4 Optimization Methods

In this section some viable optimization algorithms for both discrete and continuous param-
eters are discussed.

4.4.1 Gradient-less Optimization Method

Consider first gradient-less optimization methods as number of layers is a discrete and crucial
parameter. Based on Polak [88], a version of the method of local variants is proposed as
given in Algorithm 1. The algorithm starts with an initial point in the parameter space and
takes a series of steps towards the optimal solution. The initial step size and starting point
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are important, as the algorithm is proven to be able to reach a local minimum but is not
guaranteed to reach a global one.
Here, ρ0 gives the initial step size and µ0 represents the initial position. The smallest pos-

Algorithm 1: Method of local variations

1 Select a µ0 ∈ Rn such that the set C (µ0) = {f0(µ) 6 f0(µ0)} is bounded. Select a
ρ0 > 0.

2 Set i = 0, µ = µ0 and compute f0(µ). Let fmin = f0(µ), µn = µ.
3 while ρi > ρmin do
4 Set ρ = ρi
5 for j = 0; j < 2n; j + + do
6 Compute f0 (µ+ ρdj)
7 if f0 (µ+ ρdj) < fmin then
8 fmin = f0 (µ+ ρdj)
9 µn = µ+ ρdj

10 if fmin < f0(µ) then
11 µ = µn, i+ = 1
12 else
13 ρi/ = 2 (ρi− = 1)

sible step size is indicated by ρmin and can be extended to a vector if required by different
parameters. At each iteration, the algorithm starts from the current point z in the parameter
space and runs 2n simulations on neighboring points, n being the dimension of the param-
eter space, with the neighboring points in the parameter space given by the step size ρ and
directions dj. If any of the neighboring parameter combinations produce a smaller objective,
the parameters that produce the smallest one are selected and the algorithm moves to that
point. If no such point can be found, the step-size is reduced and new neighboring points
are computed until the step-size becomes smaller than ρmin. The quantity dj are the search
directions with one positive and one negative for each parameter dimension. The version
given in Algorithm 1 is the one for continuous parameters where the step-size can be repeat-
edly reduced by half. In the case of integer parameter like the number of layers, we reduce
the step-size |ρdj| by 1 subsequently.

The method of local variants is first applied to the two-dimensional wall problem intro-
duced in Section 3.4.2. The shape error is optimized over two parameters, namely layer
thickness and printing speed. The inequality constraints in Equation (4.4) are specified to
be the maximum and minimum values with practical requirements on the two parameters.
Specifically, the constraints on layer thickness ∆y and printing speed ∆x

∆t
are

0.2mm 6 ∆y 6 0.35mm

50mm/s 6
∆x

∆t
6 100mm/s.

(4.20)
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The parameter space for number of layers and printing speed is a well-defined rectangular
one upon which the method of local variants is applied, as shown in Figure 4.12. The initial
step size is set to 3 for number of layers and 5mm/s for the speed. The starting point in the
parameter space is set to ny = 40, which corresponds to 0.25mm for ∆y and v = 75mm/s.
Here ny denotes the number of layers and v the speed.

Figure 4.12: Two-dimensional wall parameter space
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Figure 4.13: Two-dimensional wall optimization path with method of local variants

Figure 4.14: Two-dimensional wall: filled contour plot of the objective function with respect to number of
layers and printing speed
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The simple constant constraints considered are not coupled with the objective calculations
and therefore do not interfere with the method of local variants itself. Rather, at each step,
after a new potential point in the parameter space is chosen by the algorithm, it is checked
against the constraints for viability. If the potential step is out of bound, it will be rejected.
A smaller step size that lands a new potential point right on the parameter space boundary
would be selected as one of the candidates for the algorithm instead.

The optimization path generated by the algorithm follows the rule of slower speed and
larger number of layers ny and eventually stops at the boundary governed by the constraints
as shown in Figure 4.13. The optimization result translates to printing more slowly and
slicing the wall more finely in order to reduce the shape error, both of which are intuitively
plausible. Meanwhile, as a trade-off it takes longer to manufacture the wall with more layers.

In the wall case the geometric error without any deformation is zero, therefore the ther-
momechanical response during the building process is responsible for the entirety of the
shape error. The proposed method successfully converges to the global minimum for the
objective function within the constraints. Figures 4.14 and 4.15 are the filled contour plot
and surface plot of the objective function with respect to the two parameters, respectively.
Evident in the figures is the smoothness of the objective function which leads to successful
convergence of the optimization procedure. Further, the objective function is monotonic in
both parameter directions within the given range, making it easy to find neighboring points
with a smaller objective function value.

Figure 4.15: Two-dimensional wall: surface plot of the objective function with respect to number of layers
and printing speed
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Next the method is applied to the problem of the two-dimensional wall with quarter-
circular hole described in Section 3.4.2. The constraints are set to

0.2083mm 6 ∆y 6 0.35mm

50mm/s 6
∆x

∆t
6 100mm/s.

(4.21)

The layer thickness 0.2083mm corresponds to 48 layers. The optimization path is shown in
Figure 4.16 where the initial step-size is 5mm/s for printing speed and 4 for the number
of layers. Starting from (0.075m/s, 36) (∆y = 0.28 mm), the optimization method creates
a path to (0.075m/s, 40) followed by continuously smaller speed until the boundary is hit
at (0.05m/s, 40). The step-size keeps decreasing to the smallest threshold (1 for number of
layers) as no neighboring point produces smaller objective function values and eventually the
optimization stops. Therefore, the optimal parameters given by the method of local variants
therefore are (0.05m/s, 40) which is the optimal solution, as can be seen in the filled contour
plot in Figure 4.17.

Figure 4.16: Two-dimensional wall with hole: optimization path with method of local variations
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Figure 4.17: Two-dimensional wall with hole: filled contour plot of the objective function with respect to
number of layers and printing speed

The geometric error no doubt plays a big role since the objective is no longer monotonic
with respect to layer thickness as discussed in Section 4.2. Such error is intrinsic to the
layered manufacturing process and is biased towards more layers with local minimums and
maximums throughout the domain. Hence the minimum within the constrained domain
might no longer be at the maximum number of layers on the boundary, as it turns out to
be with the choice of constraints. The geometric error patterns are inherited in the final
shape error even with the thermomechanical building process accounting for a bigger source
of the shape error. This is evident in their objective function surface plots in Figure 4.18 and
Figure 4.19. The pure geometric error matches the observed results in Figure 4.10. With a
bigger initial choice of step size and a reasonable or rather lucky choice of initial parameters,
the optimization method manages to advance to the correct solution.
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Figure 4.18: Two-dimensional wall with hole: surface plot of the objective function with respect to number
of layers and printing speed

Figure 4.19: Two-dimensional wall with hole: surface plot of the objective function with respect to number
of layers and printing speed with no deformation
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However, if the initial starting point is different at (0.075m/s, 44), with initial step size
of 2 for number of layers, the optimization path ends up at a different point and the path is
shown in Figure 4.20, arriving at a local minimum of (0.075m/s, 46) which produces larger
objective function value than the previous result. In this case, the method of local variants
fails to converge to a global minimum.

Figure 4.20: Two-dimensional wall with hole optimization path with method of local variations from another
initial position

In order to avoid being stuck on a local minimum with a relatively global large value,
several steps can be taken. First, multiple starting points in the parameter space can be
chosen and the best result out of their optimization solution gets selected. Second, a bigger
initial step-size can be employed. This works based on the observation that the local maxima
and minima generated by the geometric error do not disrupt the overall trend of the objective
function and can be overcome by a reasonably large step-size.

Regardless, to our knowledge there exists no rigorous proof when such discrete parameter
and subsequent non-smooth objective function can converge quickly with the method of
local variants, therefore this method must be employed carefully depending on the specific
parameter being considered. Consequently, no particular algorithm is proposed for discrete
parameters beyond the number of layers which has been discussed in details in this section.
On the other hand, if differentiable parameters with gradients are considered, the vast and
well-researched optimization methods [89] can be tapped to help solve the problem.
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4.4.2 Fixed Discrete Parameter with Gradient-based
Optimization

As seen in Section 4.4.1, problems with curved geometries cause the number of layers param-
eter to behave undesirably with respect to the objective function and increase the difficulty
in finding a global minimum. Hence, another set of optimization approaches is explored
where the discrete parameter is fixed and the continuous parameters are optimized first.
Algorithm 2 provides the details, where µ denotes the single discrete parameter and y are
the continuous ones. The parameters are constrained, with µmin and µmax representing the
initial range on the discrete parameter while ymax and ymin for continuous ones. Taking
advantage of parallel processing, optimization on the continuous parameters is run at m dis-
tinct fixed discrete parameter values at the same time, with m being the number of processor
cores used. The search range of the discrete parameter is then narrowed by comparing the
optimized results and selecting the two smallest value of objective function produced. If
the maximum or minimum values of the discrete parameter happen to give the two smallest
objectives, the range is not narrowed but different values within the range are chosen and
run with gradient-based continuous optimization until either a smaller range can be found
or the search exhausts all internal values and the boundary values are thus picked.

Algorithm 2: Discrete parameter search

1 For the discrete parameter µ and m processors, set µmin and µmax based on physics.
s = 0

2 while µmax − µmin > 1 do
3 l = µmax − µmin
4 if s >= l/(m− 1) then
5 // Exhausted all values within the range, minimums at µmax or µmin
6 Break

7 Select m µi ∈ R, i = 0, 1, 2, 3...m− 1 and
µi = i ∗ (µmax − µmin)/(m− 1) + µmin + s,

8 For each µi, run optimization on the remaining parameters y with
gradient-based algorithm

9 Compare f0(µi,y), where y are optimized for µi. Choose two µi that give the
smallest f values and set them to be the new µmin and µmax.

10 if µmax − µmin = l then
11 s += 1
12 else
13 s = 0
14 if µmax − µmin < m then
15 m = µmax − µmin.

16 Optimal solution is either µmax or µmin
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The algorithm here is designed based on the gained knowledge of how the discrete pa-
rameter, in this case the number of layers would affect the shape-error objective function.
The main assumption is that the local minima and maxima will not change the general di-
rection of the shape error’s declining with increasing layers. This should allow the algorithm
to narrow the search range of the number of layers to a relatively small one and avoid the
high cost of an exhaustive search. The algorithm would still fail to efficiently find a steep
global minimum where its immediate neighbors produce much higher values without having
to search through all number of layers.

The parallelized code is implemented with Message Passing Interface (MPI). Building on
the work in Section 4.3, gradient-based optimization methods are explored for the continuous
parameters. The optimality conditions for constrained problems as given in Equation (4.4)
based on optimization theory requires solving the Karush–Kuhn–Tucker (KKT) conditions
[89]. Dealing with a small number of parameters in the current work, adjoint variables are not
used in the calculations here. Instead the optimality condition is written in a straightforward
way as

∂f0

∂U

∂U

∂µ
+
∂f0

∂µ
= 0, (4.22)

where U represents the coupled unknown variables that include both displacement u and
temperature θ. To get to the optimal solution, iterative methods are often used. Since
second-order derivatives are unavailable while only a small number of parameters are being
optimized, we opt for gradient descent method with line search to find the path to the
optimal solution. The search direction given by gradient descent is −df0

dµ
and the algorithm

is given in Algorithm 3 where a popular and effective backtracking approach is used in the
line search [89, 90]. The line search terminates when the sufficient decrease Wolfe condition,
also known as the Armijo rule, is satisfied.

f0 (µk + αpk) 6 f0 (µk) + cα

[
df0 (µk)

dµk

]T
pk. (4.23)

Algorithm 3: Gradient descent with line search

1 for k = 0, 1, 2, ... do

2 pk = −df0(µk)
dµk

/
∣∣∣df0(µk)

dµk

∣∣∣
3 choose ᾱ > 0, ρ ∈ (0, 1), c ∈ (0, 1)
4 Set α← ᾱ

5 while f0 (µk + αpk) > f0 (µk) + cα
[
df0(µk)
dµk

]T
pk do

6 α← ρα
7 αk = α
8 µk+1 = µk + αkpk
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Here c is a constant chosen based on the problem, ρ is typically 1
2

to half the step size
each iteration and α marks the length of the step. The constraints considered here form
simple rectangular boundaries in the parameter space. They are checked whenever a new
parameter combination is reached. Optimization steps that result in breaching the boundary
of the parameter space are either rejected or adjusted so the parameters land exactly on the
boundary. For more complicated constraints which are dependent on both the process and
the parameters, this algorithm would not suffice.

This optimization method is first applied to two-dimensional wall building with the num-
ber of layers and the convection coefficient h as parameters. The width of the wall is 20mm
and the height is 10mm with 40 elements in the x direction and print speed of 71.4mm/s.
The constraints on the two parameters are given as

0.20mm 6 ∆y 6 0.35mm,

20W/m2K 6 h 6 40W/m2K.
(4.24)

The parameter space in this case is shown in Figure 4.21.

Figure 4.21: Two-dimensional wall parameter space with convection coefficient

Taking a closer look at an example step where the parameters are (30W/m2K, 30), note
that based on derivations in Section 4.3, the gradient df0

dh
is found to be −1.33493×10−5. The

step is taken therefore based on the algorithm with ᾱ = 1, ρ = 0.5 and c = 0.1. Through
simulation f0(31, 30) = 0.00710. Together with f0(30, 30) = 0.00718, α = 1 already satisfies
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the Wolfe condition. The step length is then set at 1 and the next convection coefficient is
chosen to be 31.

Applying the line search gradient descent algorithm to five different number of layers in
parallel, optimized convection coefficients can be obtained for each of them separately. The
range for number of layers is set as (30, 50) initially at the constraint boundary and layer
numbers 30, 34, 40, 46, 50 are chosen as the zi in Algorithm 2. The optimized parameters in
the parameter space are shown in Figure 4.22 marked with objective function values.

Figure 4.22: Two-dimensional wall optimization path with convection coefficient at fixed number of layers
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Figure 4.23: Two-dimensional wall optimization: filled contour plot of number of layers and convection
coefficient

It is clear then that the cases of 46 and 50 layers provide the smallest shape errors and
thus become the new upper and lower bound for the number of layers parameter. Opti-
mization is run for 47, 48, 49 layers and by comparing results among them eventually the
algorithm arrives at the optimal solution (40W/m2K, 50). The filled contour plot and the
surface plot are shown in Figures 4.23 and 4.24, respectively. The smooth surface and its
monotonic relation with both parameters again explain why the optimal solution appears at
the boundary. The algorithm successfully converges to the optimal solution.
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Figure 4.24: Two-dimensional wall optimization: surface plot of number of layers and convection coefficient

The optimization algorithm is also applied to the problem of the two-dimensional wall
with a quarter-circular hole with the number of layers and convection coefficient as opti-
mization parameters. The width of the wall is again 15mm and the height is 10mm with
40 elements in the x-direction for a full layer and 3mm radius quarter-circle hole at the top
right, as in Chapter 3. The printing velocity is fixed at 85mm/s within the admissible range.
The constraints on the optimization parameters are given as

0.2083mm 6 ∆y 6 0.35mm,

20W/m2K 6 h 6 40W/m2K.
(4.25)

An example optimization step is described next with parameters (30W/m2K, 30). The an-
alytically calculated gradient with the continuous variable df0

dh
is −3.213 × 10−5. Based on

the algorithm, f0(31, 30) is taken as a trial step and its value is 0.07995, while f0(30, 30) is
0.07999. Therefore α = 1 satisfies the stopping criterion again and the next step in the op-
timization path is (31W/m2K, 30). Continuing the process, for the five cases of numbers of
layers 30, 34, 40, 44, 48 chosen within the (30, 48) range, an optimized convection coefficient
is found for each one, as shown in Figure 4.25.
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Figure 4.25: Two-dimensional wall with hole: optimization path with convection coefficient 1

Next, the process is repeated for a narrowed range of number of layers in the (40, 48)
range and the optimization problem is solved for layer numbers 42, 44, 46. The range nar-
rows further down to (40, 46) before it stops shrinking and the remaining numbers of layers
41, 43, 45 are chosen and optimized. Eventually the optimization result is obtained at 40
layers and 40W/m2K as they give the smallest objective. The optimal solution again is not
at maximum number of layers due to the geometric error of approximating curvature and the
discreteness of the number of layers. It is shown in the filled contour plots in Figures 4.26
and 4.27 that indeed the minimum objective is reached within the constraints.
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Figure 4.26: Two-dimensional wall with hole optimization: filled contour plot of number of layers and
convection coefficient

Figure 4.27: Two-dimensional wall with hole optimization: surface plot of number of layers and convection
coefficient
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The result here suggests that a larger convection coefficient, enabled by forced convection
helps the material to cool more rapidly and reduces the eventual shape error developed during
the printing and cooling process. Meanwhile, more layers in general would improve the
dimensional quality by shrinking the geometric error. However, it is cautioned that cooling
down faster does not necessarily leads to an improved geometry because it might cause the
newly added elements and layers to be distorted due to large deformation from previous
layers. Maintaining a temperature gradient during the printing process itself might lead to a
superior result. Further research with a wider range of parameters is needed to address this.
At the same time if every layer is cooled all the way down to ambient temperature before
another layer is printed, the continuity assumption between different layers might no longer
be a reasonable one.
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Chapter 5

Conclusion

In this dissertation, a coupled thermomechanical finite element simulation model for fused
deposition modeling, an additive manufacturing method is developed. The main contribu-
tions of this model are as follows:

• Simultaneous solutions of displacement and temperature to better understand the cou-
pling effect and underlying physics behind the FDM process,

• Evolving geometry that accounts for deformation history during the printing process
to better represent the printed geometry and more accurately capture mechanical be-
haviors,

• Complete implementation of the model in both Python and C++ with flexible consti-
tutive models.

This simulation model is then applied to an optimization study of the process parameters
on the shape error objective. To the best of our knowledge, parameterized optimization for
additive manufacturing has not been studied in details before. This work contributes to the
endeavor by:

• Establishing parameterized PDE-constrained optimization problem for FDM finite el-
ement model,

• Studying in detail the effect of number of layers on shape error, particularly the multi-
faceted geometric error that arises from both slicing algorithms and layer number
choices,

• Deriving and computing sensitivities for continuous parameters to take advantage of
well-known optimization methods,

• Proposing both gradient-less and gradient-based optimization algorithms and imple-
menting them,
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• Discussing optimal results from proposed algorithms and how they can lead to improved
design for both the manufacturing and design processes.

There exists many potential areas for further work that would expand on the base model
developed here. These include:

• Extension the model to 3D for real-life applications

• Study of additional optimization parameters like printing pattern

• Implementation of more detailed material models with matched experimental data.
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Appendix A

Numerical Algorithms

Algorithm 4 selects boundary elements based on nodal level-set function φ. When a node
is outside the region enclosed by the given curve φ > 0, while φ < 0 for a node inside.
Therefore if an element is entirely outside or inside the curve the values of φ at its four
vertices should maintain the same sign. When an element is at the boundary being cut by
the curve, a change of sign is expected. Here, X is nodal position and ∆x,∆y are the width
and height of the element. This algorithm is applied onto the reference configuration.

Algorithm 4: Level-set based boundary element

1 Given ∆x and ∆y, discretize the domain with linear quadrilateral elements.
2 for each potential element in the domain do
3 Find φ(x, y) based on the geometry function f (x, y)
4 if φ changes sign then
5 Mark this element as boundary element
6 Design partial element with X,φ,∆x and ∆y
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Algorithm 5 describes how a new element is added based on the position of the extrusion
head and the amount of material printed during a time step. Adding a partial element
requires more computations dependent on the slicing algorithms.

Algorithm 5: Adding element

1 Decide whether two new nodes or three new nodes need to be added
2 if adding full element then
3 if adding two new nodes then
4 Find two existing nodes xe1 and xe2
5 Given x1 and x2 for the new node, find y1 and y2 based on area ∆x∆y s.t. its

edge is parallel to the existing edge

6 else
7 Find the three existing nodes xe1, xe1 and xe2
8 Calculate the triangular area a1 based on xe1, xe1 and xe2
9 Given x1 for the new node, find y1 based on area ∆x∆y and a1

10 else
11 adding partial element
12 if adding two new nodes then
13 Find two existing nodes xe1 and xe2
14 Given x1 and x2 for the new node, find y1 and y2 based on the area of the

partial element a2 s.t. its edge is parallel to the existing edge

15 else
16 // Adding one node
17 Find the three existing nodes xe1, xe1 and xe2
18 Calculate the triangular area a1 based on xe1, xe1 and xe2
19 Given x1 for the new node, find y1 based on area of the partial element a2

and a1

Algorithm 6 and 7 detail the slicing algorithms of one-sided and minimum-area methods
in two dimension. The cases used are given in Figures 2.9 and 2.10. Here pe is the indicator
of whether an element is a partial element with pe = 0 for a complete element, pe = 1 for
partial element connected on the left side and pe = 2 for partial element connect on the
right. The x1 and x2 are the intermediate variables for calculating the width of the partial
element. The boolean is adding determines whether an element should be added or not.
The nodal level-set function values defined in Section 2.3.1 at the vertices are denoted as
siv where i = 0, 1, 2, 3 are the index of the four vertices of the two-dimensional quadrilateral
element. And tol area is the minimum area of a partial element allowed to ensure accuracy
and convergence of the solutions. The scalar ε is on the scale of 10−14 to better control
numerical issues caused by scalar values hitting machine precision.
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Algorithm 6: One-sided slicing algorithm

1 if case 1 then
2 pe = 1
3 width = s3v/(s3v − s2v)∆x

4 else if case 2 then
5 x1 = −s0v/(s1v − s0v)∆x
6 pe = 2
7 width = ∆x− x1

8 else if case 3 then
9 x1 = −s3v/(s2v − s3v)∆x

10 pe = 2
11 width = ∆x− x1

12 else if case 4 then
13 x1 = s0v/(s0v − s1v)∆x
14 pe = 1
15 width = x1

16 else if case 5 or 6 or 9 or 10 or 11 or 12 then
17 is adding = 0
18 else if case 7 then
19 x1 = −s0v/(s1v − s0v)∆x
20 x2 = −s3v/(s2v − s3v)∆x
21 pe = 2
22 width = (∆x−max(x1, x2))
23 if area < tol area then
24 is adding = 0

25 else if case 8 then
26 x1 = s0v/(s0v − s1v)∆x
27 x2 = s3v/(s3v − s2v)∆x
28 pe = 1
29 width = min(x1, x2)
30 if area < tol area then
31 is adding = 0

32 area = width∆y
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Algorithm 7: Minimum area slicing

1 Set area to ∆x∆y, width to ∆x. X direction position is given.
2 if case 1 then
3 x1 = s3v/(s3v − s2v)∆x, y1 = s1v/(s1v − s2v)∆y.
4 if y1 < ∆y/2 − ε then
5 pe = 1, width = (x1∆y + ∆x∆y − 2x1y1)/2/(∆y − y1).
6 if case 2 then
7 x1 = −s0v/(s1v − s0v)∆x, y1 = −s0v/(s3v − s0v)∆y.
8 if y1 > ∆y/2 + ε then
9 pe = 2, width = (∆y/2 − y1)/(∆y − y1)x1.

10 if case 3 then
11 x1 = −s3v/(s2v − s3v)∆x, y1 = s0v/(s0v − s3v)∆y.
12 if y1 < dy/2 − ε then
13 pe = 2, width = (∆x− (∆y/2 − y1)/(∆y − y1) ∗ x1).
14 if case 4 then
15 x1 = s0v/(s0v − s1v)∆x, y1 = −s1v/(s2v − s1v)∆y.
16 if y1 > ∆y/2 + ε then
17 pe = 1, width = x1 + (∆x− x1)/2/y1∆y.
18 if case 5 then
19 y1 = −s0v/(s3v − s0v)∆y, y2 = −s1v/(s2v − s1v)∆y
20 if y1 + y2 > ∆y then
21 is adding = 0.
22 if case 6 then
23 y1 = s0v/(s0v − s3v)∆y, y2 = s1v/(s2v − s1v)∆y.
24 if y1 + y2 < ∆y then
25 is adding = 0.
26 if case 7 then
27 x1 = −s0v/(s1v − s0v)∆x, x2 = −s3v/(s2v − s3v)∆x, pe = 2, width = (∆x− (x1 + x2)/2).
28 if case 8 then
29 x1 = s0v/(s0v − s1v)∆x, x2 = s3v/(s3v − s2v)∆x, pe = 1, width = (x1 + x2)/2.
30 if case 9 then
31 x1 = s3v/(s3v − s2v)∆x, y1 = −s0v/(s3v − s0v)∆y.
32 if y1 > ∆y/2 − ε then
33 is adding = 0
34 else
35 pe = 1, width = (∆y/2 − y1)/(∆y − y1)x1.
36 width = (∆y/2 − y1)/(∆y − y1)x1.
37 if case 10 then
38 x1 = s0v/(s0v − s1v)∆x, y1 = s0v/(s0v − s3v)∆y.
39 if y1 < ∆y/2 + ε then
40 is adding = 0.
41 else
42 pe = 1, width = (y1 − ∆y/2)/y1x1.
43 if case 11 then
44 x1 = −s0v/(s1v − s0v)∆x, y1 = s1v/(s1v − s2v)∆y.
45 if y1 < ∆y/2 + ε then
46 is adding = 0.
47 else
48 pe = 2, width = (∆x− ∆y(∆x− x1)/2/y1 − x1).
49 if case 12 then
50 x1 = −s3v/(s2v − s3v)∆x, y1 = −s1v/(s2v − s1v)∆y.
51 if y1 > ∆y/2 − ε then
52 is adding = 0.
53 else
54 pe = 2, width = ((∆y/2 − y1)/(∆y − y1) ∗ (x1 − ∆x) + ∆x).
55 if area < tol area then
56 is adding = 0
57 area = width∆y




