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A Microscopic-Impedance Model for a Rotating-Disk Electrode 

Alan K. Hauser and John Newman 

Department of Chemical Engineering, University of California, and 
Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory, 

One Cyclotron Road, Berkeley, CA 94720 

Abstract 

A mathematical model is presented that can calculate the frequency response of 

the electrode-electrolyte interface accounting for adsorption/desorption reactions and 

electron-transfer processes. The working algorithm uses double-layer theory, 

incorporating potential and concentration dependent charge-transfer reactions, as well 

as including the solution's ohmic potential drop. Mass transfer to a rotating disk is 

accounted for using a Nernst stagnant diffusion layer, although emphasis is placed on 

the analysis of the reactions occurring wi thin the electrical double-charge layer. The 

microscopic model calculates the potentials and surface excesses of all the electroactive 

species present in the solution at the interfacial planes, making the algorithm a lumped-

parameter model. This approach makes its possible to determine easily the frequency 

dependence of the interfacial impedance for a general reaction mechanism. 

1. Introduction 

The concept of using ac-impedance techniques to study electrochemical systems has 

been known for over a hundred years. III However, much interest in this method has 

arisen in recent years due to the availability of computerized data-acquisition systems 

. keywords: reaction mechanisms, diffuse layer, rotating disk 
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allowing experiments to be carried out with ease. 12] With this has come controversy in 

the interpretation of the measured complex-plane impedance data,13] and previous 

theoretical work l4] does not always provide a complete and generalized explanation of 

such results. The goal of this work is to provide a theoretical framework for 

characterizing the electrical double layer and the coupled mass-transfer boundary layer 

next to a rotating disk, where emphasis is placed on the interfacial-reaction processes. 

A microscopic model has been developed that can calculate the frequency response 

of an electrode-electrolyte interface. The algorithm accounts for the potential and 

concentration-dependent adsorption/desorption reactions and electron-transfer 

reactions. The working model utilizes classical double-layer theory to describe the 

diffuse layer and also accounts for the ohmic potential drop and a Nernst-stagnant 

diffusion layer adjacent to the disk. Before describing our approach, a review of the 

double-layer literature will be given. This also will include a summary of the work 

previously done in this laboratory as it relates to the frequency dependence of the 

electrode impedance. 

1.1. Double-Layer Description and Review 

At the electrode-electrolyte interface, some species III solution may have a 

preference for being near the metal, which results in a small region at the interface with 

a nonzero charge density. The ions can be electrostatically attracted to the surface, or 

they may be bound by covalent (or specific) forces to the solid itself. Thermal agitation 

in the solution however tends to make the nonspecific ally adsorbed ions wander from the 

interface. The net effect of these two forces, electrostatic and thermal, must balance the 
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charge due to an excess or deficiency of electrons in a very thin layer « 0.01 nm) on the 

metal surface. This is because the entire electrode-electrolyte interface is electrically 

neutral, even though charge can accumulate at given planes within the interface. The 

array of specifically adsorbed charged species and oriented dipoles existing at the 

interface, along with the ions distributed in the diffuse part of the solution, form a 

double-charge layer. The remainder of this section will be devoted to reviewing the 

historical development of the physical models that have been used to analyze and 

explain the electrical double layer. t 

A thermodynamic treatment1sJ of the electrode-solution interface provides 

relationships among potential, surface tension, and the composition of the bulk solution 

for an ideally polarizable electrode. Analysis of the double layer enables the surface 

concentrations of various species at the interface to be determined. Additionally, the 

Lippmann equation can be used with the measured variation of surface tension with 

potential at constant composition to yield the surface charge. 

Although thermodynamics at times can be quite useful, we have resorted to a non­

thermodynamic approach because we are interested in the structure and detailed 

concentration and potential profile characteristics of the double layer. Microscopic 

models of the diffuse and inner parts of the double layer offer an explanation for the 

behavior of macroscopically measurable quantities and provide a useful picture of the 

structure of the interface. Structural concepts of the double layer go back to 

Helmholtz. 161 Diffuse-layer theory was first suggested by Gouyl7J and Chapman lsJ 

t Its structure only very loosely resembles two charged layers. 
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independen tly. 

The diffuse region of the double layer is regarded as part of the electrolytic 

solution, but the electrolyte is not electrically neutral. The distribution of ions adjacent 

to the charged surface is calculated using the approach of Debye and Hiickel.[gj In 

general terms, the Gouy-Chapman model of point charges in a structureless dielectric 

medium is thought of as an effective ion atmosphere adjacent to an ion of variable 

charge. Specifically, the model incorporates the Poisson equation, relating the potential 

variation to the charge density of an isotropic medium, in addition to using the classical 

Boltzmann distribution for relating the ionic concentrations to the potential. The 

analytic solution to these governing equations yields the desired concentration and 

potential profiles within the diffuse part of the double layer. 

Stern[lOj modified the Gouy-Chapman model by suggesting the importance of the 

finite size of ions next to the electrode. Thus, Stern proposed a plane of closest 

approach of Ions to the electrode surface, now commonly called the 

outer Helmholtz plane, as the inner limit of the diffuse layer. He also recognized that 

some ions might be held to the electrode in a rigid monolayer through operation of 

close-range forces, and thus implied the necessity for considering different distances of 

closest approach for cations and anions. 

Grahame,[llj in his well-known review, developed Stern's model in an important 

way by bringing out the idea that the specifically adsorbed ions are closer to the 

electrode surface than the plane of closest approach of nonspecifically adsorbed ions. 

Grahame called the plane of closest approach of the electrical centers of these ions the 

inner Helmholtz plane (see figure 1). The plane of closest approach of the nonspecific ally 
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adsorbed ions (e.g., solvated ions) is again called the outer Helmholtz plane. Let us now 

discuss in more detail what is meant by specific adsorption. 

Specific adsorption refers to the nature of the forces that attract species toward the 

electrode surface, which are not purely coulombic. Bockris[I2[ defines it as the 

adsorption at the interface between an electronic and ionic conductor that is in excess or 

deficit of the amount which would be expected to be present at the interface from simple 

coulombic considerations. The measured concentration of specifically adsorbed ions is 

subject to chemical interpretation in terms of adsorption isotherms and the energies of 

specific adsorption, with either the charge or electrode potential as a correlating 

variable. Parsons,[I3[. [14[ in a series of fundamental investigations, treated the question 

of isotherm assignment associated with the calculation of the amount of specifically 

adsorbed ions. Finally, Delahay[I5[ discusses potential-dependent adsorption kinetics 

and how the double layer affects the rates of electrode processes. The microscopic model 

of the electrode-electrolyte interface that we will develop in section 2 has its origins in 

this approach. 

1.2. Theoretical Impedance Review 

Let us now turn our attention to a review of the work previously done in this lab 

as it relates to the frequency dependence of the interfacial impedance. The solution of 

the transport equations for the time-dependent part of the impedance, without a priori 

separation of the faradaic and double-layer charging current, had only been obtained for 

two simple cases,[16j. [I7[ until Appel solved these equations for a rotating-disk electrode 

(RDE) where forced convection occurs.[ISj He calculated the disk impedance, taking into 
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account the ohmic losses in the bulk solution, the resistance to diffusion valid at high 

Schmidt numbers, and the appropriate boundary conditions at the surface of the disk. 

Before the time-dependent disk impedance may be assessed, the steady 

distributions of current, potential, and concentrations can be obtained as Pierini, Appel, 

and Newman l19] did using superposition integrals. Their method consists of solving 

Laplace's equation in the bulk of the solution in the form of a series expression. Because 

of the thinness of the diffusion layer, the normal component of the current density at the 

surface of the disk remains unchanged through the diffusion layer. This assumption 

allows one to match the current obtained from the solution to the diffusion-layer 

superposition integral with the electrode-kinetic current using an iterative method. In 

addition to the factors in the steady problem, the dependence of the double-layer 

structure on composition and potential must be taken into account when solving for the 

ac part of the impedance. The computation of the oscillating behavior is a linear 

problem, in contrast to the steady behavior, but is still quite complex. 

Appei liSI emphasized that the charge-transfer rate equation and the double-layer 

effects enter as boundary conditions for the convective-diffusion equation for each species 

in solution. Though the double layer has a finite thickness and extends into the diffusion 

layer, the ratio of the double-layer thickness to the diffusion-layer thickness is of the 

order of 10-5. The concept of separating the diffusion layer and the double layer has 

been rigorously justified by Newman,120I for the case when the equilibrium double layer 

is perturbed by a steady-state current below the limiting current. Appel also assumed 

this to be true for the time-dependent part. 

.. 
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A rigorous treatment of the double layer is possible only if the concentrations of all. 

the ionic species just outside the double layer are known. Appel and Newman[21j 

pointed out that a change in the double-layer capacity is caused by the variations in the 

potential and the composition variations of the species in the solution, including the 

supporting electrolyte. The latter variations are caused by the influence of migration on 

the supporting electrolyte and the condition of electroneutrality outside the double 

layer. The authors included the effect of the supporting electrolyte in their time­

dependent calculations of the convective Warburg problem. 

It now should be obvious that the analysis of the impedance of an electrochemical 

cell requires knowledge of the interplay of many factors. The electrode reactions, 

diffusion, and double-layer charging are all important and were accounted for by 

Appel.[18j The results give the local current and overpotential distribution for both the 

real and imaginary parts over the entire disk. Because of the excessive computer time 

needed for the complex-calculation procedure, it was carried out only once for a single 

perturbation frequency. 

In the rotating-disk system, the nonuniform ohmic potential drop in the solution 

leads to an inherently nonuniform current distribution,[22j and this is accentuated under 

ac conditions. I231 In the latter reference, Newman showed that the nonuniform current 

distribution of a rotating disk causes the capacitive behavior of the disk to change with 

frequency. In the same paper, the author showed that the frequency dependence of the 

apparent capacity will be much smaller for a spherical electrode, tangent to an 

insulating plane, than for a disk embedded in an infinite, insulating plane, with the 

counterelectrode at infinity. Nisancioglu and Newmanl24J showed that it is possible, in 
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principle, to attain a uniform distribution of current on a rotating sphere below the 

limiting current even in the presence of concentration variations at the surface. The 

analysis also applies to a hemispherical cap on an insulating plane.[25[ Therefore, in 

order to reduce the "frequency-dispersion" effects of the disk due to the nonuniform 

current distribution, a rotating hemispherical electrode (RHE) is a preferred geometry, 

because the local impedance of the RHE is representative of the entire electrode surface. 

1.3. Present Analysis Approach 

A microscopic model based on fundamental governing equations of the electrode­

electrolyte interface is presented here. Instead of treating the double layer as a 

boundary condition to the mass-transfer problem as Appel[18[ did, we shall concentrate 

on analyzing the double layer, accounting for its finite thickness. A simplified Nernst 

diffusion layer also is applied. Another difference with Appel's approach is the emphasis 

of this work on the analysis of the reaction processes that take place within the double 

layer. Previously, only a simple electrode reaction was considered, and specific 

adsorption was not accounted for. Here, a detailed reaction mechanism consisting of 

any number of adsorption/desorption and electron-transfer reactions is accounted for. 

This generalized approach allows a proposed mechanism to be changed easily to account 

for experimental observations. Only the species and the number of equations change for 

different mechanisms; the form of the equations is not altered. 

Finally, we desire a simple, yet adequate model so that the impedance of the 

system may be calculated over a wide frequency range at different electrode potentials, 

as opposed to Appel's complex model that was used for only a single frequency. The 
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advantage of such a model is that the frequency dependence of the impedance may be 

calculated with relatively little computer time, so that impedance measurements may be 

analyzed. 

2. Governing Equations 

A one-dimensional model of the electrode-electrolyte interface is shown in figure 1. 

This schematic represents the metal electrode, the inner and diffuse regions of the 

double layer, and the diffusion boundary layer. A qualitative description of the 

historical evolution of this physical model was given in the previous section. Here, we 

would like to present the salient features illustrated in figure 1, before describing the 

interface under alternating-current conditions. 

As mentioned before, the double layer is a small region (thickness is of the order of 

1 nm, depending upon the ionic strength of the solution) at the metal-solution interface, 

where a large electric field and a nonzero charge density exist. Accumulation of charge 

ql occurs at the inner Helmholtz plane due to specific adsorption of one or more of the 

ionic species in solution. The distance of closest approach of the specifically adsorbed 

layer of ions is denoted by Yl = dM - 1. The plane of closest approach of the 

nonspecific ally adsorbed ions is located at distance Y2 = dM - 1 + dl - 2 from the electrode 

surface. This outer Helmholtz plane represents the thickness of the inner or compact 

region of the double layer. Thus, the OHP forms the boundary between the inner and 

the diffuse layer. 

A diffuse charge q2 exists outside the compact layer as a result of the strong 

electric field which causes the ions to be distributed according to Boltzmann's law. The 

Debye length)" characterizes the thickness of the diffuse region, and the distance beyond 



10 

-

~. 
r 

IHP OHP -
~--Inner Layer -I--Diffuse Layer 

-

~------Double Layer-----~4Electrolyte .. 

m o 00 

Figure 1. Schematic of the electrode-electrolyte interface illustrating the notation used 
in the microscopic model. 

• 
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the diffuse layer to the reference electrode is denoted by Dj , the diffusion boundary-layer 

thickness of species i. Finally, the interfacial region as a whole is electrically neutral at 

steady-state conditions 

(1) 

where q is the charge density on the metal side of the interface, and no large-scale 

separation of charge can occur. For alternating current, equation 1 will be shown to be 

generalized later. 

Next, we would like to examine the response of the double-layer to an alternating-

potential perturbation. The alternating current can pass from the electrode to the 

solution either by means of faradaic-electrode reactions or by charging the double-layer 

capacity. Thus, in figure 1 the electronic-conducting current density i is seen to be 

._2.!L . 
a - at + 'e- , (2) 

the sum of the charging current density and the electron-transfer-current density i _. A 
e 

charge balance on the inner Helmholtz plane yields the transient current density 

(3) 

where ia is the adsorption current density due to the adsorption/desorption reactions 

that occur between the IHP and the OHP. Finally, a charge balance on the diffuse layer 

gIves 

aq2 . . 
--=a -a at a 

(4) 

where q2 is the charge in the diffuse part of the double layer and , IS the transient, 

ionic-conducting current density passed through the electrolyte. 
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Because of the capacitive effect of the double layer in the presence of an alternating 

or unsteady current density, it has been customary to represent the impedance of the 

interface as a capacitor in parallel with a resistor representing the resistance of the 

charge-transfer process. Even though, it is sometimes possible to use an equivalent 

circuit to illustrate the system behavior for a specific frequency range for which the 

circuit IS valid, we must note however, the variation of the impedance of an 

electrochemical system with frequency cannot adequately be accounted for by a finite 

series of resistors, capacitors, and inductors. Therefore, the microscopic model of the 

interface as shown in figure 1 should prove to be a more fruitful approach for 

characterizing the impedance of the double layer. Table 1 summarizes the equations 

and variables found in the microscopic model for n specifically adsorbed species at the 

inner Helmholtz plane and m species in the diffuse layer and solution. The potential and 

concentrations are not solved for as continuous functions, but instead are determined 

only at the interfacial planes, making this a lumped-parameter model. 

2.1. Cell Potentials 

The first equation In table 1 is for the measurable cell potential, Vset ' gIven by 

Vset = <I>~ - <l>R~' where <I>~ is the potential of the working metal electrode and <l>R~ is 

the potential of a real reference electrode (e.g., a saturated calomel electrode, SeE) 

placed in the bulk solution. To obtain detailed kinetic information about reaction 

mechanisms, we must break down Vset into theoretical potential differences that affect 

the individual elementary reactions. The cavity potential) 1/J, therefore, is introduced to 

characterize the electrical state of the interfacial region, where the potential-dependent 
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Table 1. Summary of governing equations in lumped-parameter, microscopic model. 

.. 
Variables Equations Number 

t:11/J2 Cell Potential, Vael 1 

t:11/JM-l Gauss's Law at IHP 1 

t:11/Jl-2 Gauss's Law for Diffuse Region 1 

t:11/J diJ! Diffusion Potential 1 

t:11/JIR Ohmic Drop 1 

r· l I, Material Balance at IHP n 

ci,2 Boltzmann Distribution m 

r· d I, Modified Boltzmann equation m 

ci,O Material Balance at OHP m 

n + 3m + 5 

charge-transfer reactions occur. The cavity (also called Volta or outer) potential 

represents the electrical state due to long-range interactions and is a preferred definition 

of local potential relative to a reference electrode state because it has meaning in all 

phases (even between phases of dissimilar composition). 

The measured cell potential is expressed in terms of cavity potentials as 

Vset = 1/Jc;. - 1/J~ because the difference in electrical state of phases a and a' with 

identical composition, temperature, and pressure is given by the electrical potential 
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difference (either the quasi-electrostatic potential or the cavity potential) between the 

two phases. The total cell potential may be rewritten 

Vset = (tP~ - tPtHP) + (tPtHP - tPOHP) + (tPOHP - tPo) 

+ (tPo - tPg) + (tPg - tP~) . 
These microscopic potential differences are discussed in the appendix. 

(5) . 

The first potential difference on the right in equation 5, ~ tPM-l = tP~ - tPtHP' IS 

the kinetic driving force for electron-transfer reactions. The second potential difference, 

~ tPl-2 = tPtHP - tPOHP' is the kinetic driving force for adsorption/desorption reactions. 

The third potential difference term in equation 5, ~ tP2 = tPOHP - tPo, is the potential 

difference across the diffuse region. The distance from the outer limit of the diffuse layer 

to the placement of the reference electrode in the bulk solution gives rise to a potential 

difference, ~ tP,oln = tPo - tPg. This potential difference can be split into two terms: the 

diffusion potential ~ tPdilf and the ohmic potential difference ~ tPIR. The diffusion 

potential is given by the following approximate form of the more general expression 

given in reference [5] 

~tPdil! = L E Zk Dk (ck 00 - CkQ) . 
~oo k ' J 

(6) 

The ohmic loss, written in terms of the normal current density iz , is given by 

b • 

~tPIR = J .::.. dz 
o I'i, 

(7) 

where z is the axial direction away from the electrode and I'i, is the conductivity. The 0 

refers to just outside the diffuse layer, and b denotes the bulk. 

In order to express the ohmic drop, ~tPIR = A ·Ro·i, In terms of lumped 

parameters, it is necessary to specify a geometry because the components of the ohmic 
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drop, the area A and the ohmic-resistance Ro, both depend on the electrode geometry_ 

For a rotating disk, the primary resistance[261 is 1/4Kooro, and the area is 1rr8-

Therefore, (A -Ro)diBk = 1rro/4Koo' and the ohmic potential drop can be rewritten as 

(8) 

where the total current density i is given by equation 2 to be the sum of the double-

layer charging-current density and the electron-transfer-current density i __ In contrast 
e 

to the disk, the area of a hemispherical electrode is given by A = 21rr8 , and its primary 

resistance l241 is Ro = 1/21rKooro _ Therefore, (A -RohemB = ro/Koo _ 

The last term in equation 5, ~ 1/1rel = 1/1: - 1/1~, is a metal-electrolyte' cavity 

potential difference located in the bulk solution_ Finally, equation 5 for the total, 

measurable cell potential can be expressed as 

(9) 

2.2. Gauss's Law 

To complete our discussion of the potential variables and their corresponding 

equations found in table 1, Gauss's law must be introduced_ From Maxwell's 

relations,1271 the variation in the electric field is related to the charge distribution in the 

system by Poisson's equation 

V-(EE) = - V-(E V~) = Pe , (10) 

where Pe is the electric charge density per unit volume and the electric field E IS 

expressed as the negative gradient of the electrostatic potential ~, a scalar quantity_ 
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At the interface between two phases, the tangential component of the electric field 

is continuous. The relationship between the normal components of the electric field in 

the two phases can be obtained by applying equation 10 to a "pill box" enclosing a 

portion of the interface (see figure 1, where the three charge densities are enclosed by 

dotted lines). By means of the divergence theorem, equation 10 can be written in terms 

of in tegrals over the surface and the volume of an arbitrary region: 

~ €E'dS = J Pe dV . (11) 

This is an expression of Gauss's law, which says that the integral of the outward normal 

component of €E over the surface of a closed region is equal to the charge enclosed. 

Linear potential profiles are assumed in the double layer due to its thinness, and the 

normal component of the electric field within region j reduces to Enj = - t::..1/J) d j. 

Application of this result to the inner Helmholtz plane in figure 1 gives the relationship 

between the potential difference and the charge per unit area at plane 1: 

€1-2 €M-1 
-d- t::..1/J1-2 - -d- t::..1/JM-1 = q1 . (12) 

1-2 M-1 

The charge q1 accumulates due to specifically adsorbed ions and is related to the surface 

concentrations of these species at the IHP by 

q1 = F ~ Zli,l 
i 

(13) 

Next, a similar form of Gauss's law describes the charge build-up q2 in the diffuse 

part of the double layer 

(14) 

Again, the electric field on the metal side of the space-charge region is related to its 

respective potential difference, and the electric field at the outer limit of the diffuse 
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region is negligible. Here, q2 is related to the surface concentrations of the species in the 

diffuse layer, rj,d' 

A third form of Gauss's law may be written at the metal side of the interface 

yielding 

€M-l b._I, = q = -Fr_ 
d 'f/M-l e ' 
M-l 

(15) 

where q is the surface charge on the metal. The electric field within the metal phase is 

zero because the potential of the metal electrode is a constant. Equation 15 is not used 

as independent equation in the model, and therefore is not included in table 1. Let us 

now turn our attention from the equations for the potential variables to the equations 

for the surface concentrations. 

2.3. Boltzmann Distribution Equations 

The definition of the surface excess of an ionic species in the diffuse layer 

liS 

rj,d = J (Cj - Cj,3) dy (16) 
112 

is used with the Boltzmann distribution 

(17) 

to yield the following expression 

r· d = 2 A C· o{ exp [ - .!L b.1/J"]- I} I, I, 2RT * 
(18) 

where Cj,O = Cj,3' The modified Boltzmann distribution equation 18 is rigorously valid 

only for the special case where the magnitudes of the ionic charges are all the same. 



The Debye length A characterizes the thickness of the diffuse region and is given by 

[ 
T 

]

1/2 
eR 

A= 2 2 . 
F ~ Zi Ci,O , 

18 

(19) 

If there are m species present in the diffuse part of the double layer, then there are 

m equations 18 for the m surface concentrations, fi,d, and m lumped-parameter 

equations for the concentrations at the OHP, Ci 2, given by , 

[ 
-zF 1 

Ci,2 = Ci,O exp R ~ ~ tP2 . (20) 

2.4. Material Balances 

The material balances are the remaining equations in table 1 to be discussed. 

Before presenting these equations for all species at the interface, let us briefly review 

how the stoichiometry of an electrochemical reaction is accounted for. This accounting 

procedure is important since we will show that the transient response of the flux of 

species i is a function of the potential and surface-concentration dependent rates of 

reaction occurring within the double layer. The general accounting method as outlined 

here for any charge-transfer reaction accounts for not only electron-transfer reactions 

but also metal surface reactions (e.g., heterogeneous, nonelectron-transfer alloy 

reactions) and adsorption/desorption reactions. These reactions may be represented by 

the general form 

~ (1ft) M z. + ~ (IHP)' ~i + ~ (OHP) Ui 0 
L.J si,1 i{m) L.J si,1 Mi (adB) L.J si,1 i (8oln) - , 
iii 

(21 ) 

where every species i in reaction I is represented. The stoichiometric coefficients, the 

ionic charge number, and the symbol for the chemical formula of the species are given 

.. 
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by si I, Zi' and Mi , respectively. The first term in equation 21 represents only those , 

species in the solid phase, composed of electrons and metallic atoms, that participate in 

the metal surface reactions. The second term represents the species at the 

inner Helmholtz plane, which can participate In the electron-transfer and 

adsorption/desorption reactions. The third term represents the speCIes at the 

outer Helmholtz plane and in the bulk solution. 

Although equation 21 is general in nature, we need to specify its limitations. Only 

two types of charge-transfer reactions can be accounted for in the present model of the 

interface. Species in the first type of reaction, electron-transfer reactions, are 

represented by the first two terms in equation 21 and must be either in the solid phase 

or be adsorbed species at the IHP. Species at either the OHP or in the solution cannot 

participate the electron-transfer reactions because the rate of these reactions is 

dependent on the potential difference tl.tPM-l. The number of electrons nl transferred in 

reaction I can be determined based on stoichiometry and the charge number of the 

species (see equation 26 in table 2). Species in the second type of allowed reaction, 

adsorption/desorption reactions occurring between the IHP and the OHP, are 

represented by the second and third terms in equation 21. The charge ZI transferred in 

the adsorption reaction I is given by equation 30 in table 3. 

IHP Material Balance 

The material balancel5! for a species at the inner Helmholtz plane is 

(22) 

where JiB IS the surface flux of species i, NfM
-

1
) is the normal component of the flux 
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between the metal and IHP, and NP-2) is the normal component of the flux evaluated 

between the IHP and the OHP. For the present one-dimensional model, the radial 

surface flux Ji8 is zero. 

We should now like to express the fluxes Nr-1
) and NP-2) in terms of the 

stoichiometry given in equation 21. The flux next to the electrode surface Nr- 1
) is 

related to the rate r, of the electron-transfer reaction i, by equation 23 in table 2. The 

Table 2. Equations for the model calculation of the flux and the current density 
associated with the electron-transfer reactions. 

Flux: - E sfj)r_ , 
I ' e, 

Electron-transfer-reaction rate expression: 

-8 (lHP) [niF 1 8 
kb,1 If fi,I,,1 exp -/3, RT tl.1/JM-I tl.f p,l 

Si,l < 0 

p,l L..J 1,1 , n,l L..J 1,1 tl. f = f max - E f i,l , 
i 

s = [~ s{IHP) 1 
i "I> 0 

s = [ - ~ s(IHP) 1 
i .1 < 0 

" 

Electron-transfer current density: 

Stoichiometric relationship: n, - - ~ sllH,P)z. _ 
~ I, 1 

I 

~ slm)z· 
L..J 1,1 I 
i 

(23) 

(24) 

(25) 

(26) 
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adsorption/desorption flux NP-2) between the IRP and the ORP is given by equation 27 

in .table 3, where rl is the rate of the adsorption/desorption reaction I, written as a 

function of the adsorption-current density, ia,I' in equation 28. The kinetic expressions 

used for the rate of the charge-transfer reactions are modified forms of the Butler-

Volmer equation. The electron-transfer and adsorption rates of reaction are dependent 

on the potential t:J.'l/JM-I and t:J.'l/JI-2 (equations 24 and 28), respectively. In both 

equations for reaction I, forward and back reaction rate constants, k I and kb' must be 

specified. Other input parameters in this expression include the symmetry factor, (31' 

Table 3. Equations for the model calculation of the flux and the current density 
associated with the adsorption/desorption reactions. 

Flux: NP-2) _ _ " slOHP)r 
L.J .,1 a,1 _ "sIIHP)r 

L.J .,1 a,1 
I I 

Rate expression: 

, (IHP) , (OHP) [ ZIF l' 
- k 1,1 If r i:f Ci:~ exp (1-(31) R T t:J.'l/JI-2 t:J. r .,1 

si,1 > 0 

_,(/HP) _,(OHP) [ ZIF l' k II r· .,1 c· .,1 exp -(3 -- A'I/J t:J. r p,1 
6,1. ',1 ',2 I R T 1-2 

• 
Si,1 < 0 

Current density: ". - F " z .. NP-2) 'a - L.J 'a,1 L.J -. • 
I 

Stoichiometric relationship: ZI - - E sl,~HP)Zi -

i 

" SlIHP)Z' 
L.J ',1 • 
i 

(27) 

(28) 

(29) 

(30) 
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and the maximum number of active sites available at the inner Helmholtz plane r max' 

Finally, we should like to consolidate our notation by rewriting the material 

balance equation 22 in terms of the general reaction rate rl as 

ari,l _ 
at - - f sl:rp

) rl (31) 

where a general form for rl is given by 

,(lHP) ,(OHP) 
r
l 

- k II r .,1 C .,1 
f,1 i,l i,2 

i 

8i,1 > 0 

_,(lHPJ _,(OHP) [ Z/F 1 ' 
kb,1 If ri,l·,1 Ci,2',1 exp - fi, RT tltPl tlr p,l , 

(32) 

8i,1 < 0 

Additionally, the material-balance equation 22 or 32 can be multiplied by FZi and 

summed over all species i yielding the current density relationship given by equation 2. 

OHP Material Balance 

One additional equation is needed for each concentration ci,O at the outer limit of 

the diffuse layer to complete the set of equations presented in table 1. The final 

material balance equation at the OHP describes the relationship between the 

stoichiometry of the adsorption/desorption reactions and the mass-transfer in the 

diffusion layer. The conservation equation for each species in the diffuse part of the 

double layer is 

ar· d 
-.!z..=... - MI-2) - N. ( - 0) at -. . Z - , (33) 

where the flux N/l-2) is given in table 3 by equation 27 and Ni(z = 0) is the flux at the 
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inner limit of the diffusion layer. The flux is given by 

F N· = - z·D·-e·V4> - D·Ve· + e·v , , 'RT ' '" (34) 

where the terms on the right are due to migration, diffusion, and convection, 

respectively. The latter flux couples the microscopic model to the macroscopic mass-

transfer boundary-layer problem. For the simplified treatment of mass-transfer effects 

in this paper, equation 34 reduces to 

D· 
N.(z=O) = -~(e. -e·o) , , fJ . 1,00 I, , (35) 

where "8 i is the Nernst diffusion layer thickness for a rotating disk given by 

(36) 

Remaining Material Balance 

For completeness, we should like to present the material balance for the metal 

phase 

ar· ( ) a'; m = Mm) - MM-l) = - ~ s.,j rl , (37) 

where rl represents both metal-phase reactions and electron-transfer reactions. We are 

not considering metal phase or alloy reactions in this work; therefore, a more general 

form than is given by equation 37 will not be given here. 

3. Method of Solution 

We are interested III calculating the frequency response of the interfacial 

impedance for a specified reaction mechanism. The set of n + 3m + 5 governIng 

equations summarized III table 4 must therefore be solved for the unknown 
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concentrations and potentials usmg a numerical procedure. The first step of the 

calculational procedure is to separate the problem into a dc and ac part by writing each 

model variable in terms of a steady-state and transient contribution. 

Each of the variables (A.-if) i' rj,l> rj,d, Cj,2' Cj,o) is represented by the following 

equationt , 

x = X + X exp( jwt). (38) 

The second term on the right side of equation 38 is the time-dependent, small-signal 

perturbation or fluctuation around the steady-state dc level, X, of the variable. The 

perturbation frequency w in radls is given by w = 27r f for which f is in Hz, and 

j2 = -1. The time-independent phasor X is given by 

X = I X I exp(j <p) (39) 

and is characterized by the magnitude of the perturbation I X I and phase angle <p. 

Substitution of an expression of the form of equation 39 for each variable into the 

governing equations yields a set of steady-state equations and another set of equations 

for the complex variables. The second set of ac equations is no longer time dependent, 

but is expressed in the frequency domain (e.g., jwx replaces oxlot). Before one can 

solve for the complex variables, a solution to the nonlinear steady-state problem first 

must be obtained. Thus, the dc form of the equations given in table 4 is solved using an 

iterative Newton-Raphson multidimensional procedure. These results are then used in 

the ac calculational procedure. Before discussing the ac-linearization procedure, let us .. 
first review the numerical procedure used for solving the steady-state problem. 

t Strictly speaking, one takes the real part of such complex expressions: 

X = X + Re{x exp(jwt)}. 
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Ta.ble 4. Summary of the equations in the microscopic model of the interface. 

Variables Equations Number 

t::.1/J2 Vael - t::.1/J M -1 + t::.1/J 1-2 + t::.1/J2 + t::.1/J diff + t::.1/J /R + t::.1/J r ef 1 

t::.1/J M-1 €1 €O 1 
d t::.1/J1-2 - d t::.1/JM-1 = F E Zkr k,l 
10k 

t::.1/J1-2 €1 1 ',.>.~ 

- d t::.1/J1-2 = F E zkr k,d 
1 k 

1.;-

t::.1/J diff t::.1/J diff 
F 1 - - E zkDk(Ckoo - CkO) 

K " 00 k 

<\ 

t::.1/J/R 1r'o 1 
t::.1/J/R = -- F E nl' f I 

4Koo I ' ,~ ~ 

r' l ari,l n I, - -E 8i~r)'1 at I 

ci,2 [ z.1' ] m 
Ci,2 = Ci,O exp - ~ T t::.1/J2 

r· d 

2 ~ c',o { exp [ - 2~ t> ¢2]- 1 } 

m I, 

r· d -I, 

.. ' 
ci,O ar· d E (OHP) Di ( ) m --!.I.::.. 

at - - 8i,1 '0,1 +"8 ci,oo - ci,O 
I i 

5+n+3m 
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3.1. Numerical-Solution Technique 

A multivariable Newton-Raphson method is used to solve iteratively the set of 

nonlinear dc equations. Each equation is linearized using a Taylor expansion given by 

(40) 

where x j represents all the variables that the particular equation is a function of. Note 

that f = 0 for the correct solution. The multidimensional Newton's method!28] requires 

the equations to be cast into a form of 

E Bij ~Xj = G i , (41) 
j 

where G i = f(x ~ is the error vector, Bij = - [:/]. is the coefficient matrix, and 
J Zj 

~x j = x j - x; is a vector containing the difference variables. The derivatives Bij are 

derived analytically and then prescribed into code. Even though this process can 

become tedious for detailed reaction mechanisms, the algorithm was developed in a 

general fashion allowing mechanisms to be easily changed, facilitating the mechanistic 

study. Initial guesses are made for each variable x; and are iterated upon until the 

convergence criteria are met. Specifically, Newman's!2g! MATINV subroutine is used to 

decompose, invert the matrix, and solve the set of equations. 

3.2. Linearization of AC Problem 

The governing equations of the microscopic interfacial model must be split into a 

set of steady-state and a set of transient equations, as was stated earlier. The resulting 

ac equations, expressed in the frequency domain, are summarized in table 5. The 

equations involve the complex variables, the potential and concentration phasors, which 
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are represented by X = Re{x} + jIm {X}. Splitting the complex variables into real 

and imaginary parts yields twice as many frequency-coupled equations. The same 

numerical technique to solve the set of nonlinear dc equations is used to solve the set of 

ac equations as a function of frequency at a given cell potential. However, an iterative 

procedure is not necessary since a linear-response analysis is applied. 

The linearized ac equations found in table 5 follow directly from the nonlinear 

equations given in table 4 by using a Taylor expansion for each variable in the problem. 

Linearization of the rate of reaction rl, given by equation 33, yields 

arl _ arl ~ or/ _ 
r/ = E a~t/J. ~t/J i + ~ ~ r i,l + ~ ~ C i,2 
i) ) ),1 ) ),2 

(42) 

A similar equation is used to linearize the flux expressions given in tables 2 and 3. 

The final equation in table 5 is not obtained directly from the corresponding 

equation in equation 4. Instead, the well-known l301 convective-Warburg impedance 

function for a rotating disk, -1/0'(0), is used with the ac flux Ni = - Di (dcJdz)z_o 

to yield 

-
C i,O , (43) 

where the prIme denotes differentiation with respect to e = z / Di . The dimensionless 

impedance function can be approximated l311 by the relation for a stagnant Nernst layer: 

-1 
0:v<0) = 

tanh 

where the dimensionless perturbation frequency is given by 

(44) 

(45) 
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,,. 
Table 5. Summary of the ac equations in the microscopic model of the interface. 

Variables Equations Number 

2 

2 

~ 1iJ 1-2 2 

~ 1iJ diD 2 

~liJIR 
- 1I'

r o [ - . f M- 1 - 1 ~t/J IR = -4- FE nlr /,1 + JW -d- ~t/J M-l 
Koo I M-l 

2 

--r· 1 I, 2n 

-c i,2 -c i,2 
- [CiO ziF -] - Ci,2 ~ - -- ~t/J2 

Ci,O RT 

2m 

r· d I, -r· d I, 

2m 

-
C i,O -jwri,d 

~ !OHP) - DJ6i _ 
- - L.J 8 1,1 r G,I + { J C i,O 

I -=L 
0'(0) 

2m 

1O+2n+6m 
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4. Determination of the Impedance 

The impedance Z of the electrochemical system is the ratio of the sinusoidal 

potential perturbation to the current perturbation response at a steady-state potential. 

The potential-perturbation phasor is given by Vset = I Vset I since the phase angle, 

rp = 0, is measured relative to the potential reference signal, and a potentiostatic mode 

is being simulated. t The alternating-current response is given by i = I i I exp(jrp). 

Equation 2 for the total ac current and equation 15 may be used yielding 

-:- . €M-l - -:-
I = JW -d- t:J.1/J M-l + I e- , (46) 

M-l 

where 8q/8t has been replaced with jwq. The ac-electron-transfer current density can 

be expressed in terms of the linearized reaction rate by T _ = E T -I = F E nlrl· 
e 1 e. 1 

The total electrochemical impedance is given by 

Vset I I Z = ~ = Z exp(-jrp) -
I 

Re { Z } + j 1m { Z} , (47) 

where the magnitude of the impedance, 

I I I V set I V { }2 2 
Z = 1 71 = Re Z + 1m { Z } (48) 

is expressed in ohm ·cm2. The phase shift between the current and the potential is given 

by rp = arctan (1m { Z } /Re { Z }). The impedance can now be obtained by multiplying 

by the complex conjugate of the current density. 

t Of course, the impedance calculations are independent of this choice of operating 
mode. 
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5. Conclusions 

A generalized algorithm based on fundamental governmg equations has been 

presented that calculates the frequency response of the electrode-electrolyte interface. 

The microscopic model is a one-dimensional physical model of the double layer and 

accounts for a detailed reaction mechanism consisting of any number of potential and 

concentration-dependent adsorption/desorption and electron-transfer reactions 

occurring between the interfacial planes. The working model also utilizes classical 

double-layer theory to describe the diffuse layer, and a stagnant Nernst diffusion layer is 

applied to the mass-transfer boundary layer. The emphasis of this paper, however, has 

been on the mechanistic approach that easily allows a proposed mechanism to be 

changed to account for experimental observations. 

The set of nonlinear DC equations and the coupled linear AC equations governing 

the metal-solution interface can be solved numerically yielding the complex potential 

and concentration phasors at the interfacial planes; thus, making this a lumped­

parameter impedance model. This simple, yet adequate model is capable of calculating 

the impedance of an electrochemical system over a wide frequency range at different 

electrode potentials, so that impedance me"asurements may be analyzed. 
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c· 1 

D· I 

-e 

" 
E 

Eni 

f 
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List of Symbols 

area of electrode, cm 2 

concentration of species £ at OHP, moljcm3 

concentration of species i at the outer limit of the diffuse 
layer, mol/cm3 

concentration of species i in the bulk solution, mol/cm3 

double-layer capacity, F /cm2 

capacity of region j, F /cm2 

capacity of the diffuse layer, F /cm2 

capacity of region between the metal and the inner limit of 

the diffuse layer, F /cm2 

capacity of region between the metal and the inner Helmholtz 

plane, F /cm2 

distance between metal surface and the Inner Helmholtz 
plane, cm 

distance between the Inner Helmholtz plane and the outer 
Helmholtz plane, cm 

diffusion coefficient of species i, cm 2/s 

symbol for the electron 

electric field, V /cm 

normal component of the electric field at position j, V /cm 

frequency, Hz 

Faraday's constant, 96,487 C/equiv 
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J 

K 

m 

n 

q 

R 

t 

total current density, A/cm2 

current density of adsorption/desorption reaction I, A/cm2 

current density of electron-transfer reaction I, A/cm2 

= V=t imaginary number 

surface flux of species i, moljcm2 

forward and back rate constants for adsorption/desorption 
reaction 

dimensionless frequency 

number of species in the diffuse layer and electrolytic solution 

symbol for the chemical formula of species i 

number of species at the inner Helmholtz plane 

number of electrons involved in electrode reaction I 

flux of species i, moljcm2s 

surface charge density on the metal side of the double layer, 

C/cm2 

surface charge density at the inner Helmholtz plane, C/cm2 

surface charge density in the diffuse part of the double layer, 

C/cm2 

rate of charge-transfer reaction I, mol/cm2-s 

radius of disk, cm 

universal gas constant, 8.3143 J/mol-K 

primary solution resistance, ohm 

stoichiometric coefficient of species i in electrode reaction I 

time, s 
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T 

x 

x 

I xl 

z 

Greek symbols: 

r' l I, 

r· d I, 

r max 

6· 1 

absolute temperature, K 

specified total set poten tial (electrode potential relative to 
given reference electrode placed in the bulk solution), V 

magnitude of perturbation potential relative to given 
reference electrode, V 

dummy variable 

time-averaged part of X 

com plex part of X 

magnitude of perturbation X 

charge n urn ber of species i 

complex impedance, ohm 

the number of charge units in adsorption/desorption reaction 

transfer coefficient of reaction I 

surface concentration of species i at the IHP, moljcm2 

surface concentration of species i in the diffuse layer, 
mol/cm2 

maximum number of active surface sites, moljcm2 

diffusion boundary layer thickness for species i, cm 

permittivity, F /cm or e/V-cm 

zeta potential, V 

potential difference between electrode and lOner Helmholtz 
plane, V 

potential difference between lOner and outer Helmholtz 
planes, V 
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Ll1jJ diff 

-1/8'(0) 

v 

w 

n 

subscripts: 

m 

o 

00 

1 

2 

potential difference across the diffuse layer, V 

ohmic potential difference, V 

diffusion potential, V 

dimensionless Warburg impedance function 

conductivity of the bulk solution, ohm-1-cm-1 

Debye length, cm 

kinematic viscosity, cm2/s 

dimensionless axial distance 

3.141592654 

electric charge density per unit volume, C/cm3 

phase angle 

electric potential of the metal electrode, V 

potential of a real reference electrode placed m the bulk 
solution, V 

potential of a hypothetical reference electrode of a gIven 
kind, V 

perturbation frequency, rad/s 

angular rotation speed of disk, rad/s 

at the metal electrode surface 

just outside the diffuse part of the double layer 

in the bulk electrolyte, where there are no concentration 
variations 

at the inner Helmholtz plane 

at the outer Helmholtz plane 
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'" 
superscripts: 

(M-1) 

(1-2) 

(2) 

(IHP) 

(OHP) 

just outside the diffuse part of the double layer 

between metal and IHP 

between IHP and OHP 

between OHP and outer limit of diffuse layer 

at the inner Helmholtz plane 

at the outer Helmholtz plane 

time-average part 

com plex part 
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