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AN ELEMENTARY RESULT ON

INFINITE AND FINITE DIRECT SUMS OF MODULES

GEORGE M. BERGMAN

Abstract. Let R be a ring, and consider an R-module M given with two (generally infinite) direct sum
decompositions, A ⊕ (

⊕
i∈I Ci) = M = B ⊕ (

⊕
j∈J Dj), such that the submodules A and B, and the

Dj , are all finitely generated. We show that there then exist finite subsets I0 ⊆ I, J0 ⊆ J, and a direct
summand Y ⊆

⊕
i∈I0

Ci, such that A⊕ Y = B ⊕ (
⊕

j∈J0
Dj).

We then note some ways that this result can and cannot be generalized, and pose some related questions.

1. The result

Throughout this note, R will be an associative unital ring, and ‘module’ will mean unital left R-module.
An easy observation is

Lemma 1.1 (≈ [4] Lemma 2.1, p.33). Given a module with a direct sum decomposition S ⊕ T, and a
submodule P thereof containing S, one has P = S ⊕ (T ∩ P ). �

The next proposition will be key to the proof of our main result, Theorem 1.3. I am grateful to Pace
Nielsen and Mauricio Medina-Bárcenas for this version of the proposition, stronger than the one in an earlier
draft of this note, and leading to a stronger version of Theorem 1.3, which answers a question I had previously
posed.

Proposition 1.2 (P. Nielsen, M. Medina-Bárcenas). Suppose we are given a module with a direct sum de-
composition B ⊕ V, and a submodule which admits a direct sum decomposition A⊕X, such that

(1.1) A ⊆ B ⊆ A⊕X ⊆ B ⊕ V

(with no assumption on whether X ⊆ V ).
Then we have the direct sum decomposition

(1.2) B = A⊕ (X ∩B),

in which the summand X ∩B is also a direct summand in X; precisely:

(1.3) X = (X ∩B) ⊕ (X ∩ (A⊕ V )).

Proof. We apply Lemma 1.1 on the one hand to the first three terms of (1.1), and on the other hand to
the last three terms, in each case taking the leftmost term for S, the direct summand attached to it in
the rightmost term for T, and the middle term for P. The application to the first three terms of (1.1)
gives (1.2), while the application to the last three gives

(1.4) A⊕X = B ⊕ (V ∩ (A⊕X)).

Substituting (1.2) into the right-hand side of (1.4) gives

(1.5) A⊕X = A⊕ (X ∩B)⊕ (V ∩ (A⊕X)).

We now make a third application of Lemma 1.1, this time taking for S the middle summand X ∩ B on
the right-hand side of (1.5), for T the sum of the other two terms on that side, and for P the module X,
which, in view of the left-hand side of (1.5), is contained in the right-hand side, and which clearly contains
our chosen S. The result is

(1.6) X = (X ∩B) ⊕ ((A⊕ (V ∩ (A⊕X))) ∩X).
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To get (1.3), it will suffice to show that the terms at which (1.3) and (1.6) differ are the same; i.e., that:

(1.7) X ∩ (A⊕ V ) = (A⊕ (V ∩ (A⊕X))) ∩X.

Here ⊇ is immediate, since the right-hand side can, essentially, be obtained from the left by shrinking V
to V ∩ (A⊕X). To get the reverse inclusion, consider any element of the left-hand side, and let us write it

(1.8) a + v = x, where a ∈ A, v ∈ V, x ∈ X.

If we rewrite the above equation as

(1.9) v = −a + x,

we see that v belongs to V ∩ (A⊕X), hence a + v belongs to A⊕ (V ∩ (A⊕X)), and since a + v = x,
this element in fact belongs to (A⊕ (V ∩ (A⊕X))) ∩X, as required. �

We can now prove

Theorem 1.3. Suppose M is a module having two (generally infinite) direct sum decompositions,

(1.10) A⊕ (
⊕

i∈I Ci) = M = B ⊕ (
⊕

j∈J Dj),

where the submodules A and B and each of the Dj are finitely generated.
Then there exist finite subsets I0 ⊆ I and J0 ⊆ J, and a direct summand Y in the module

⊕
i∈I0

Ci,
such that

(1.11) A⊕ Y = B ⊕ (
⊕

j∈J0
Dj).

Proof. Since A is finitely generated, it is contained in the sum of a finite subset of the modules on the
right-hand side of (1.10), which we may take to include B. That is,

(1.12) A ⊆ B ⊕ (
⊕

j∈J0
Dj), where J0 ⊆ J is finite.

Since B and the Dj are all finitely generated, we can now, again in view of (1.10), get

(1.13) B ⊕ (
⊕

j∈J0
Dj) ⊆ A⊕ (

⊕
i∈I0

Ci), where I0 ⊆ I is finite.

Bringing together the inclusions (1.12) and (1.13), and putting ⊆ B ⊕ (
⊕

j∈J Dj) on the far right (in

view of (1.10)), we have a chain like (1.1), with B ⊕ (
⊕

j∈J0
Dj) in the role of the B of (1.1),

⊕
i∈I0

Ci

in the role of X, and
⊕

j∈J\J0
Dj in the role of V ; so we can apply Proposition 1.2. The conclusion (1.2)

of that proposition (with sides reversed) gives us a decomposition (1.11), with Y = (
⊕

i∈I0
Ci) ∩ (B ⊕

(
⊕

j∈J0
Dj)), and the line after (1.2) tells us that this Y is indeed a direct summand in X =

⊕
i∈I0

Ci

(with a complement that can be described using (1.3), though I haven’t included that description in the
statement of the Theorem). �

Note that if, rather than being given a module M with two internal direct-sum decompositions, we are
given an isomorphism i between two external direct sums of families of modules,

(1.14) A⊕ (
⊕

i∈I Ci) ∼= B ⊕ (
⊕

j∈J Dj),

with A, B and the Dj again all finitely generated, then we can apply the above theorem, taking for M
the left-hand side of (1.14), and regarding the inverse images in M of the summands on the right-hand
side of that isomorphism as submodules of M which give a second internal direct sum decomposition of M.
Theorem 1.3, applied to that pair of decompositions shows that given an isomorphism (1.14), there exist
finite subsets I0 ⊆ I and J0 ⊆ J, and a direct summand Y in the module

⊕
i∈I0

Ci such that

(1.15) A⊕ Y ∼= B ⊕ (
⊕

j∈J0
Dj).

2. Remarks

Theorem 1.3 was motivated by a question posed to the author by Z. Nazemian; roughly: if Q and P are
finitely generated projective modules over a ring R, such that every direct summand of a module P a for a
natural number a is isomorphic to P b for a natural number b, and if Qm ⊕ (

⊕∞
i=1 P ) ∼= Qn ⊕ (

⊕∞
i=1 P )

for some natural numbers m and n, then must Qm ⊕ P k ∼= Qn ⊕ P l for some natural numbers k and l ?
I obtained an affirmative answer, and eventually generalized the proof to get a result which, with help from
Pace Nielsen, became Theorem 1.3. (Nazemian’s question had some further hypotheses which I don’t state
above. If the answer had been a counterexample, then, of course, it would have been important to find one
that satisfied those hypotheses; but since a positive result was found, the fewer hypotheses the better.)

I have no cases of Theorem 1.3 in mind in which the Ci are not finitely generated; they are not so assumed
simply because the proof does not need such an assumption.
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There are several papers in the literature proving relationships among expressions of a module as finite
and/or infinite direct sums; cf. [1], [4], [5], [6]. All of these, however, have strong assumptions either on
the base-ring (e.g., in [1], that it is what the authors call a separative exchange ring), or on the summand
modules (e.g., in [5], that they have semilocal endomorphism rings). I am not aware of any previously known
results with hypotheses as weak as those of Theorem 1.3.

The phrase “An elementary result” in the title of this note is half tongue-in-cheek. Theorem 1.3 is indeed
elementary in that it does not call on any deep definitions or results, and its statement and proof are not
long. But finding these involved much frustrating trial and error, and I still don’t have good intuition about
them. In the next section we will note, inter alia, variants of that theorem involving some not-so-elementary
hypotheses.

Mauricio Medina-Bárcenas redevelops in [7] the results of the preceding section via results on modular
lattices with appropriate completeness conditions.

3. Some ways our result can and cannot be generalized, and some questions

In the finite relation (1.11) that we obtain in Theorem 1.3 from the generally infinite relation (1.10), the
summands A, B and the Dj (j ∈ J0) are modules occurring in that original relation, but Y is a direct
summand in a finite sum of such modules. Can we get a similar result in which all the summands are (at
least up to isomorphism) terms from the original relation?

An easy example shows that we cannot. Let R be a field k, let I and J both be countably infinite
sets, let each Ci and each Dj be a k-vector-space of dimension 2, and let A and B be finite-dimensional
k-vector-spaces, one of odd and the other of even dimension. Note that both sides of (1.14) are then k-vector
spaces of countably infinite dimension, so (1.14) holds; and this isomorphism can, as noted, be turned into
a relation (1.10). But if we form the direct sum of A with some finite sum of the Ci and Dj , and likewise
of B with some finite sum of the Ci and Dj , one of these sums will be odd-dimensional and the other
even-dimensional; so no variant of (1.11) or (1.15) without a term like Y can hold.

A couple of people have pointed out to me that in Theorem 1.3, “finitely generated” can be everywhere
weakened to the condition called “dually slender” in [3], and “small” in [4, §2.9]. A module A is so called if

(3.1) Every homomorphism of A into an infinite direct sum of modules has image in a finite subsum,

equivalently, if

(3.2)
A is not the union of any countable strictly increasing chain of proper submodules,
A0 ⊂ A1 ⊂ · · · ⊂ Ai ⊂ . . . .

(To see this equivalence, first assume (3.1), and note that if we had A0 ⊂ A1 ⊂ . . . with union A, the
induced map A→

⊕
i∈ω A/Ai would give a contradiction to that assumption. Conversely, assuming (3.2),

suppose A had a homomorphism into a direct sum
⊕

I Ei, which did not land in a finite subsum. Then the
induced homomorphism into an appropriate countable subsum

⊕
n∈ω Ein (i0, i1, . . . distinct elements of I)

would have the same property; and we see that the kernels An of the induced homomorphisms A→
⊕

i>n Ei

(n ∈ ω) would contradict (3.2).)
In another direction, it is not hard to see that one can, in the statement and proof of Theorem 1.3, replace

modules with torsion-free abelian groups, and finitely generated modules with such groups having finite rank
(maximal number of linearly independent elements). More generally, one has the obvious analogous result
for torsion-free modules over any commutative integral domain.

One might try to embrace all of these versions in a statement about direct sums in an appropriate sort of
additive category; note that this would not in general be an abelian category, since the category of torsion-free
abelian groups does not have cokernels. Rather than trying, at this time, to give a “definitive” generalization
of Theorem 1.3, I hope that readers will be able to call on the proof, or note an appropriate modification
thereof, in cases they want to use.

In a different direction, I wonder about

Question 3.1. Can one get a result like Theorem 1.3, but with direct product modules A ×
∏

i∈I Ci and
B ×

∏
j∈J Dj in place of the direct sums A⊕

⊕
i∈I Ci and B ⊕

⊕
j∈J Dj ?

(The replacement of the binary operator “⊕ ” with “× ” above is just a formality. It is for the infinite
families that direct sums and direct products differ.)

A difficulty is that, unlike the situation for infinite direct sums, a finitely generated submodule of an infinite
direct product need not lie in a finite subproduct. (E.g., in an infinite product of 1-dimensional vector spaces
over a field, consider the 1-dimensional subspace generated by an element with infinite support.)

A quasi-cure for that problem is to replace the condition of finite generation by that of finite cogeneration.
Recall that a module is said to be ‘finitely cogenerated’ if every family of submodules thereof having zero
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intersection has a finite subfamily with zero intersection [8]. If a finitely cogenerated module is embedded in
a possibly infinite direct product of modules, we see that its projection onto some finite subproduct thereof
will indeed be an embedding. Using this, given an isomorphism

(3.3) A× (
∏

i∈I Ci) = M ∼= B × (
∏

j∈J Dj)

where A, B and the Di are finitely cogenerated, we can obtain a chain of embeddings

(3.4) A ↪→ B × (
∏

j∈J0
Dj) ↪→ A× (

∏
i∈I0

Ci) ↪→ B × (
∏

j∈J Dj),

where I0 and J0 are finite subsets of I and J.
But so far as I can see, we cannot say in (3.4), as we could in the proof of Theorem 1.3, that the composite

of two successive embeddings is the inclusion associated with the indicated direct product decompositions.
If we could, then since finite direct products of modules are the same as finite direct sums, we would be able
to apply Proposition 1.2 as before.

Actually, a formal dual of the approach of Theorem 1.3 should involve a chain of surjections, going in the
opposite direction to the embeddings of (3.4).

Mauricio Medina-Bárcenas [7] has formulated a result which dualizes in a different way the condition of
being a direct sum; whether his result is relevant to Question 3.1 is not clear. In any case, I don’t at present
see a way to answer Question 3.1.

A final question, about which I have not thought hard, is

Question 3.2. For what sorts of structures other than modules do analogs of Theorem 1.3 hold?

One finds that the development of that theorem works for not-necessarily-abelian groups (with ‘direct
sum’ taken to mean the subgroup of the direct product consisting of tuples with only finitely many non-
identity terms). I don’t know whether there are versions of the result that allow, say, semidirect products
in place of direct products. Results are obtained in [2] on direct decompositions of more general algebraic
structures, but, as in the other publications cited, a strong hypothesis (in this case called the exchange
property) is assumed.
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[7] Mauricio Medina-Bárcenas, personal communication.

[8] Wikipedia, https://en.wikipedia.org/wiki/Finitely_generated_module#Equivalent_definitions_and_finitely_

cogenerated_modules .

Department of Mathematics, University of California, Berkeley, CA 94720-3840, USA
Email address: gbergman@math.berkeley.edu




