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Exploring pH Dependent Host/Guest Binding Affinities

Thomas J. Paul†, Jonah Z. Vilseck†, Ryan L. Hayes†, Charles L. Brooks III†,‡,*

†Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States

‡Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States

Abstract

When the electrostatic environment surrounding binding partners changes between unbound and 

bound states, the net uptake or release of a proton is possible by either binding partner. This 

process is pH-dependent in that the free energy required to uptake or release the proton varies with 

pH. This pH-dependence is typically not considered in conventional free energy methods where 

the use of fixed protonation states is the norm. In the present paper, we apply a simple two-step 

approach to calculate the pH-dependent binding free energy of a model cucubit[7]uril host/guest 

system. Using λ-dynamics with an enhanced sampling protocol, adaptive landscape flattening, 

pKa shifts and reference binding free energies upon complexation were determined. This 

information enables the construction of pH-dependent binding profiles which accurately capture 

the pKa shifts and reproduce binding free energies at the different pH conditions that were 

observed experimentally. Our calculations illustrate a general framework for computing pH-

dependent binding free energies, but also point to some issues in modeling the molecular charge 

distributions within this series of molecules with CGENFF. However, by introducing some minor 

charge modifications to the CGenFF force field we saw significant improvement in accuracy of the 

calculated pKa shifts.
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Introduction

Chemical properties of small molecule guests noncovalently encapsulated by macrocyclic 

hosts, such as cucurbiturils, octa-acids, and cyclodextrins, may change due to an altered 

microenvironment and isolation of the guest molecule away from solvent.1-7 For example, 

encapsulation may reduce the likelihood of guest molecule aggregation and nonspecific 

adsorption, it enhances thermal and photostability, and prevents bi-molecular interactions 

such as oxidation.8, 9 In the pharmaceutical industry, it is estimated that about 40% of drugs 

currently on the market and 60% of compounds in research and development suffer from 

poor water solubility.10, 11 Formulation of hydrophobic drug molecules with macrocyclic 

hosts can provide desirable enhancements in solubility. Additionally, 60-80% of all orally 

administered drugs are either weak acids or bases, in which the protonation state can be 

altered by changes in the electrostatic environments in the cell or receptor.12-16 When 

protonation state changes are observed as a result of binding, the binding free energy is said 

to be pH-dependent, because the observed binding free energy will change in response to the 

surrounding pH.16 Different macrocyclic hosts feature different electrostatic interior 

environments, thus, an appropriate guest’s acid-base equilibrium can be tuned or shifted 

based on the macrocyclic container selected to encapsulate the guest.17

The Cucurbit[n]urils (CBn) family of macrocyles has been studied extensively due to its 

dramatic effect on the acid-base equilibria of encapsulated guests.17 CBn are water-soluble 

macrocyclic containers consisting of n glycoluril molecules that have a rigid hydrophobic 

cavity, are barrel-shaped, and have two highly negative portals lined by carbonyl groups 

(Figure 1).18, 19 Based on these properties, CBns display a high selectivity and affinity for 

guest molecules with complementary polarity, size, and shape.20 Due to its unique structural 

characteristics, CBn interacts with its guests through ion-dipole as well as hydrophobic 

interactions.21 Based on their remarkable binding properties and the reversible nature of the 

host-guest formation, applications have been realized in fields including sensing, catalysis, 
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materials, and drug delivery.22-29 Compared to the other CBns, the modest water solubility 

of Cucurbit[7]uril (CB7) (~5 mM in pure water)7, makes it an ideal host to study various 

physicochemical aspects of its guests, such as binding thermodynamics.17

Recently, computational free energy methods such as thermodynamic integration (TI)30-32 

and free energy perturbation (FEP)33-35 have been used to calculate binding free energies, 

however, they typically utilize fixed protonation states for the bound and free forms of the 

binding partners (ligands, proteins, etc…). The use of fixed protonation states is a limiting 

assumption that may lead to errors due to coupling between ligand and proton binding and it 

is therefore important to assign the correct pKa and protonation state to obtain accurate 

binding free energies.16 Methods have been developed, such as various flavors of constant 

pH molecular dynamics (CpHMD)36-38, which allow the protonation state of multiple 

titratable groups to fluctuate as changes occur in their respective electrostatic environments. 

For CpHMD simulations utilizing λ-dynamics, the protonation state of a titrating residue is 

described by a continuous variable lambda (λ), where the dynamics of λ and the system are 

coupled. The success of these λ-dynamics based CpHMD methods has been shown for pH 

dependent systems involving, protein folding39, 40, aggregation41, chaperon activity42, and 

the effect of electrostatics on protein stability43. Additionally, the successful predictions of 

pKa values of titratable groups within proteins44-46 and nucleic acids47-49 as well as pH 

dependent conformational changes have also been demonstrated50. Therefore, based on 

previous successes, we sought to apply a simple two-step approach to predict the pH 

dependent binding free energy for a model host/guest system, between a set of 

benzimidazole derivatives and CB7. In the first step, a pKa is determined for each guest 

molecule in the presence of CB7, based on the difference in relative stability of the 

protonated forms of the benzimidazole derivatives in a free and bound state. Next, binding 

free energies of the unprotonated benzimidazole derivatives is computed and used along 

with the pKa information obtained in the first step to predict the binding energy as a function 

of pH.51 Recently, a similar two-step approach was successfully applied by Shen and 

coworkers to study the allosteric modulation of inhibitor selectivity for an important drug 

target related to Alzheimer’s disease, β-secretase.52

This host/guest system has been studied previously by B. R. Brooks and coworkers, where 

they utilized an enveloping distribution method53, 54 enhanced with Hamiltonian replica 

exchange55, 56 to compute pKa shifts and used a virtual bond algorithm (VBA)57 to 

determine absolute binding free energy.58 Their computed pKa values and binding free 

energies obtained for CB7:benzimidazole (BZ) were overestimated (pKa=12.7, ΔGbind=

−17.5 kcal mol−1) due to overstabilization of the protonated state BZH+. This 

overstabilization was attributed to the use of overpolarized partial charges of the host and 

protonated BZ molecule when parametrized with the CGenFF59 force field. However, using 

the same force field parameters (BZ is a known molecule within the force field), our two-

step approach more accurately reproduced experimental values for both the pKa shift as well 

as the binding free energy of BZ. Furthermore, our approach was successfully extended to 

the rest of the BZ derivatives (Figure 1) studied by the Nau and coworkers1. This accounted 

for pH dependent binding free energy changes originating from altering the structure of BZ, 

by the addition of small pendent groups such as amido or furan moieties. We use a different 

approach that employs simulations with adaptive landscape flattening (ALF)60, where 
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sampling is iteratively optimized by flattening free energy barriers. By reducing the free 

energy barriers on either side of the thermodynamic cycle, trapping of individual states is 

avoided and sampling is more evenly distributed across all unprotonated and protonated 

states. This allows us to increase the accuracy of our pKa and binding free energy 

predictions with little to no loss of efficiency.

Theory

Based on the binding polynomial formalism developed by Wyman61 and Tanford62 a general 

description for ligand association can be used to represent the binding of a titratable ligand 

to a receptor,

R + {L}
Kapp {RL} (1)

where the ligand and receptor:ligand complex may contain different protonated forms of the 

titratable ligand and/or receptor. Since CB7 itself does not titrate within a typical biological 

pH range and the ligand has a single titratable site, equation (1) can be rewritten as;

Kapp = [LR] + [HLR+]
[R]([L] + [HL+])

(2)

where concentrations are reported rather than activities, assuming ideal dilute solution 

behavior. Based on a thermodynamic cycle used to describe proton-linked binding of the 

ligand to CB7 (shown in the SI; Figure S1) and acid dissociation constants for the free and 

bound forms equation (2) can be rewritten in terms of the overall change in free energy of 

binding ΔG (pH).

ΔG(pH) = ΔGref − kBT ln( 1 + 10pKac − pH

1 + 10pKaf − pH
) (3)

The pH dependence of the binding affinity can be obtained from the pKa of the free (pKa
f)

and bound (pKa
c) ligand and the unprotonated binding free energy (ΔGref).

Utilizing λ-dynamics63, 64 with enhanced sampling (ALF)60, free energies differences (ΔG) 

between the unprotonated and protonated ligands were calculated in bound and unbound 

states. From the resulting free energy change (ΔΔG) one can convert these quantities to 

relative ΔpKa using the relationship between ΔG and the equilibrium constant Ka.

ΔG = − RT ln Ka (4)

pKa = − log Ka (5)
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ΔG = 2.303 RT pKa (6)

ΔpKa = ΔΔG
2.303 RT ; ΔΔG = Fbias

free − Fbias
bound

(7)

The free energy difference between the fixed bias (this is the difference in bias between the 

unprotonated and protonated forms) Fbias
free − Fbias

bound on either side of the thermodynamic 

cycle was used to calculate ΔpKa upon host/guest complexation (SI; Figure S1). A detailed 

explanation of the fixed and variable biases can be found here.60, 65 In brief, the fixed bias 

adjusts the energetic end points of all states to have similar free energies, which optimizes 

sampling during our simulations. Additionally, the fixed bias can be used as an indicator for 

how stable, relative to the reference, a certain species is (protonated or unprotonated) within 

a free and bound state. The ΔpKa calculated based on equation (7) is then added to the 

reference pKa value (experimentally determined, pKa
f from equation 3) to obtain a pKa for 

each ligand in a bound state (pKa
c from equation 3).

Computational Methods

The CB7 structure used in this study was obtained from a crystal structure (PDB ID: 

6F7W)66 describing a host-guest complex with dimethyllysine within a sugar binding 

protein. Benzimidazole (BZ) and its derivatives (protonated and unprotonated) were 

constructed and geometrically optimized using the Gaussian g0967 software at the 6-31G* 

level utilizing density functional theory B3LYP68. Figure 1 shows the five ligands that make 

up the guest component as well as the structure of CB7, which is the host component of the 

system. The resulting optimized ligand structures were rigidly docked into the cavity of the 

CB7 structure using Autodock Vina version 1.5.669 with an exhaustiveness value set to 20. 

This docking procedure produced 5-20 poses for each ligand where the top ranked poses 

among the different ligands were similar in position and interaction. The resulting complex 

structures (Figure 2) were used as the initial structures for the λ-dynamics simulations 

utilizing a newly developed method for accelerating alchemical sampling called Adaptive 

Landscape Flattening (ALF)60. In this approach, iterative runs of λ-dynamics (MD) 

simulations are performed, which allows for the construction of free energy profiles in λ-

space that can be flattened by the addition of fixed and variable biases. A three-state model, 

incorporating proton tautomerization (shown in SI, Figure S5), was used to describe the 

protonation states of the guest molecules used in this study. For example, BZ was modeled 

in an unprotonated form by two separate states (State 1:N1—H or State 2:N2—H), where the 

protonated form was model by a single state(State 3:both N1—H and N2—H). For all the 

guest molecules, the protonated form is symmetric with respect to both charge and atom 

type for the N1 and N2 atoms within the benzimidazole core. The convpdb.pl tool from the 

MMTSB toolset70 was used to solvate the host/guest complex in a cubic box of explicit 

TIP3P water71, with enough space to provide a 12 Å buffer between the edge of the box and 

the host molecule. This produced final box dimensions of 38.2 x 38.2 x 38.2 Å3. An 

appropriate number of counter ions (Na+ and Cl−) were added to neutralize the charge and 
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achieve an ionic strength of 150mM NaCl. The entire system was then energy minimized for 

400 steps utilizing a steepest decent method, followed by 500 steps of adopted basis 

Newton-Raphson minimization to remove any steric clashes.

Simulations were carried out in three phases. During the first phase, 100-150 iterations of 

200 picoseconds of λ-dynamics were performed, where in the initial iteration all biases 

equal 0, which allows for a gradual refinement of the fixed and variable biases. The first 100 

picoseconds of simulation time were treated as equilibration and were discarded from the 

bias refinement. Results from the previous 10 iterations are combined using WHAM72 to 

obtain an estimate of the λ-space free energy landscape. In the second and third phases, the 

same fitting procedure was used, however with fewer iterations (phase 2 = 10 and phase 3 = 

5) and longer simulation times of 1 and 5 nanoseconds, respectively. Results from the last 5 

iterations are combined in WHAM72 and new biases are obtained. Finally, 5 independent 

production simulations were performed of 50 ns each with the optimized biasing potential. 

This allowed for determination of statistical uncertainties, i.e. the square root of the sum of 

squared standard deviations from either side of the thermodynamic cycle. New biasing 

potentials were calculated from the 50 ns production runs and used to determine the pKa 

shifts because these fixed biases correspond to the free energy differences between the 

tautomeric states at each site. Using this approach, free energies were obtained for the 

molecule of interest within a solvated environment for both free and complexed forms.

Simulations were carried out with CPT dynamics using domain decomposition 

(DOMDEC73) on graphics processing units (GPUs) within the CHARMM74, 75 molecular 

simulation package, development version 44a1. A friction coefficient of 10 ps−1 was applied 

to all atoms to maintain a constant temperature. The Leapfrog Verlet integrator was used 

with a integration time step of 2 fs in conjunction with a c = 5.565 (implicit constraint 

coefficient)76. All hydrogen bond lengths were constrained using the SHAKE77 algorithm. 

Electrostatic and van der Waals interactions were truncated with force switching (fswitch 

and vfswitch, respectively) between 10 and 12 Å. Furthermore, a soft-core Lennard Jones 

potential was employed for all free energy calculations to modulate the van der Waals 

interactions with respect to λ.60 Linear scaling by λ was applied to all guest molecule non-

bonded energy terms. Bonds, angles, dihedrals, and improper intramolecular energies were 

not scaled by λ to maintain physically reasonable geometries at intermediate λ values. Both 

CB7 and the ligand set were parameterized using the CGenFF59 forcefield within the 

ParamChem78, 79 program. In order to explore the effects of a different charging scheme, 

RESP80-82 charges were used along with CGenFF59 parameters to test the charge 

dependency on the computed free energy (SI; Figure S4 and Table S1).

The underlying physics behind λ-dynamics have been discussed in detail elsewhere.63, 65, 76 

In brief, the λ-dynamics framework employs the BLOCK facility in CHARMM which 

partitions your molecular system into blocks and allows for the use of coefficients that scale 

the interaction energies between these blocks. Environment atoms, including CB7, counter 

ions, and TIP3P water, were loaded to the first block while the protonation states of the 

guest molecules were loaded into subsequent blocks (4 in total). A holonomic constraint was 

used on λ (between 0 and 1; 0 < λ < 1) to maintain physically relevant endpoints during our 

simulations where λ is transformed into another variable θ. This work used the λNexp 
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functional form for defining λ as a function of θ (see implicit constraint coefficient above 

c=5.5). Each θ was assigned a fictitious mass of 5 amu·Å2 and was propagated dynamically 

by the equations of motion, then converted back to λ values used for energy evaluation. λ 
was saved every 10 steps to compute the relative free energies. Populations were determined 

by counting the amount of time each state was sampled based on a threshold of λ ≥ 0.99, 

this was used to approximate physical end states (λ = 1).60, 83 NOE restraints using a flat-

bottom potential with a force constant of 25 kcal/mol·Å2 applied at separations greater than 

1.0 Å were imposed on the heavy atoms (two separate carbon atoms) connecting the pendant 

groups off the benzimidazole core.

Binding free energies were calculated for the unprotonated guest molecules using a dual-

topology approach within the λ-dynamics framework. This approach differs from traditional 

CpHMD due to the use of whole ligand topologies that describe the alchemical state at a 

single site. Additionally, a thermodynamic cycle (SI; Figure S2) was used that describes the 

host/guest binding process for this study.

Results and Discussion

Inspired by a recent SAMPL384 challenge, a community wide blind competition to predict 

the binding affinities of various host-guest system, we sought to apply a two-step approach 

to predict the binding affinities of a host guest system for which the protonation state of the 

ligand was likely to change upon binding. Figure 1 shows the structure of the host (CB7) and 

the ligands (BZ, ABZ, CBZ, FBZ, and TBZ) used within this study. Previous studies have 

used the CB7:BZ complex as a model system to study the pH-dependency of binding and, 

thus, was chosen for this work’s benchmarking efforts.16, 58

Experimentally determined pKa and binding constants have been obtained by the Nau group 

utilizing UV titrations where they showed pKa shifts ranging from 2.5 to 4 pH units for BZ 

and its derivatives upon complexation with CB7.1 Furthermore, they saw enhancements in 

photostability and solubilities of BZ and its derivatives upon encapsulation.1 Additionally, 

binding constants were determined under basic conditions where the unprotonated species 

should dominate in both the free and bound forms. Experimentally determined pKa shifts 

and binding affinities are shown in Tables 1 and 2, respectively.

pKa Determination

In this study, we estimated the pKa shift of BZ and its derivatives induced by CB7 binding 

from λ-dynamics63 with enhanced sampling (ALF)60 simulations. We compare the relative 

stability of the protonated form both in the presence and absence of CB7. Experimental 

binding constants and pKa values suggest that the protonated form should be more 

energetically favored when bound to CB7 than when it is free in solution. This expected 

trend was observed. Table 3 shows the computed pKa values obtained after host/guest 

complexation using CGenFF59 parameters and partial charges. From the data generated 

using CGenFF-derived partial charges it is apparent that at neutral pH (7.0), BZ and its 

derivatives would be protonated except for ABZ, which is slightly more acidic in nature. The 

value of pKa
CGenFF for BZ was found to be 9.4, which is a shift of more than 3.5 pK units 
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from its reference value of 5.5. This indicates that the preferred protonation state of BZ 

depends on the surrounding environment. For example, at a neutral pH (7.0) BZ would be 

deprotonated in its free solvated form and would switch to a protonated state upon binding 

to CB7. This, in turn, increases the hydrogen bonding potential of BZ to interact with the 

carbonyl oxygen atoms located at the portal of CB7. Therefore, the induced shift in pKa has 

a stabilizing effect when BZ binds to CB7. The statistical uncertainty associated with the 

computed pKa was generally small for the sample size (n=5), but was larger for ABZ and 

CBZ. These ligands differ structurally from BZ due to the presence of an amido group 

positioned off the head group of the BZ core. The slow relaxation of the torsional degrees of 

freedom of the amido group yielded larger statistical fluctuations in the findings, which 

resulted in a higher standard deviation among the trials for those two derivatives. A possible 

approach to address this slow rotational degree of freedom is to allow dihedrals to scale by λ 
during the simulations thus, allowing free rotation along the dihedral that connects the amido 

group to the BZ core when that derivative is in the off state (λ<0.2, not interacting with the 

environment atoms). However, this concept has not been explored and most likely will be 

addressed in a subsequent study.

Modified CGenFF Partial Charges

Derivatives FBZ and TBZ produced the largest deviation from the experimental results and 

can be explained based on an apparent improper charge assignment to their protonated forms 

FBZ+ and TBZ+. During the partial charge assignment utilizing ParamChem78, 79 FBZ+ and 

TBZ+ were erroneously assigned a neutral charge whereas they should have been assigned a 

+1 charge. No manipulation of the mol2 file, e.g. explicitly defining bonds or changing 

SYBYL atom types resulted in a proper assignment of the +1 state for either one of these 

derivatives. Interestingly in the stream file generated by ParaChem78, 79 for FBZ+ and TBZ

+, both nitrogen atoms had large negative charges of −1.025e−. This high negative charge 

appears to be unphysical when compared to the charges obtained for the protonated forms of 

BZ+, ABZ+, and CBZ+, where the correct charge state (+1) and more reasonable nitrogen 

partial charge (−0.457 to −0.471) were observed. Simulations performed with the original 

CGenFF59 charge scheme for FBZ+ and TBZ+ produced unphysical pKa values shifted 

higher than 14. Therefore, we modified the partial charges for FBZ+ and TBZ+ by 

calculating the change in charge (Δq) between BZ:BZ+ and CBZ:CBZ+ and then applied an 

averaged Δq to the neutral form of FBZ and TBZ to generate the partial charges used for 

their protonated forms (the modified charges are included in the SI, Figure S6 and S7). The 

remaining unbalanced charge was then evenly distributed among the atoms present within 

the furan and thiazole moieties. Due to the fact that the Δq for BZ:BZ+ and CBZ:CBZ+ 

were similar in both magnitude and direction (AVG std < 0.02), and that their structures 

varied at the same position, we assumed Δq would be similar for the FBZ:FBZ+ and 

TBZ:TBZ+ constructs. This modified CGenFF charge scheme seems to have better 

reproduced pKa similar to those observed experimentally for FBZ and TBZ 

(experiment=8.6, computed≈10.0), however they are still elevated by ~1.4 pH units. This 

elevated pKa could be partially due to improper charge assignments within the imidazole 

core or due to the empirical approach of charge modification and redistribution described 

above. Nevertheless, the modified CGenFF charge, when compared to experimentally 
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determined pKa values, performed better (lower MUE) than the original CGenFF charges. 

The better performance of the modified CGenFF charges indicates that charge optimization 

procedures might be required for accurate pKa determination.

Reference Binding Free Energy

Reference binding free energies (Table 4) (ΔGCompuuted) were computed for the 

unprotonated benzimidazole derivatives. To remain consistent with the pKa calculations, we 

performed simulations utilizing a dual-topology approach and CGenFF59 force field 

parameters and charges (modified for FBZ and TBZ as noted above) for the benzimidazole 

ligands. This resulted in high Pearson (0.9) and Spearman values (0.7) indicating good 

agreement with the experimentally determined binding free energies and their relative 

ranking, respectively. The largest error was obtained for derivative ABZ, where the 

calculated binding free energy deviated significantly from the experimental result by 2.3 

kcal/mol. This deviation was due to frequent shuttling of the propylthio group in and out of 

the hydrophobic cavity of CB7, which resulted in pushing the benzimidazole core and amido 

head group out of the binding pocket. The observed movement is consistent with NMR 

experiments that showed upfield shifts for the propylthio moiety, which suggests partial or 

temporary inclusion inside CB7.1 Within the simulations, this change in position 

significantly decreased the likelihood of forming a second hydrogen bond, originating from 

the amido head group, with the portal of CB7. Therefore, binding energies obtained for this 

group mirrored BZ where only one hydrogen bond, originating from the benzimidazole core, 

was possible.

Predicting the pH Dependent Free Energy Profile

Combining the pKa results obtained in the first step with the binding free energies 

determined for the unprotonated guests, in the second step using equation (3), we were able 

to predict the binding free energy of the guest molecules as a function of pH. Equation (3) 

provides a method for computing this pH dependence by applying a correction term to the 

reference binding free energy. This correction term changes with pH and thus can be used to 

construct a full pH dependent binding profile for each of the guest molecules. These profiles 

are shown in Figure 3. Examining the binding profiles within a biologically relevant pH 

region (5-9), a range of more than 3 kcal/mol was observed for all guest molecules. This 

observation indicates that if typical assumptions (fixed protonation states based on reference 

pKa values) were applied here, it would have resulted in major deviations in the binding free 

energies obtained (excepting high and low pH environments where binding free energies 

fluctuations are small). For example, if this assumption were made for the BZ:CB7 complex 

it would have resulted in a deviation in the binding free energy of 2.7 kcal/mol (Table 4 and 

5). Similar deviations were also observed for the other guest molecules and ranged from 0 to 

4.7 kcal/mol. For FBZ and TBZ, the calculated reference binding free energies were 

significantly decreased from the experimentally determined ones. This should have resulted 

in a decrease in accuracy for the predicted pH dependent binding free energies, however, this 

was not observed. Instead, the depressed reference binding free energy was compensated for 

by overestimating the pKa in a bound state, producing errors of opposite sign for each 

calculation. This indicates some cancellation of error within this two-step approach. 
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However, this contrasts with the results obtained for ABZ, where a depressed reference 

binding free energy was not compensated for by an increase in the calculated pKa.

Conclusion

In this study we sought to apply a simple two-step approach to predict the pH dependent 

binding free energy for a model host/guest system. In the first step, pKas were accurately 

reproduced for a variety of benzimidazole derivatives when in complex with CB7. The pKas 

were determined utilizing CGenFF59 partial charges (modified charges for FBZ+ and TBZ+) 

and parameters which produced results highly correlated with experiments with Pearson and 

Spearman values of 0.9 and 0.8, respectively. This was a substantial enhancement in 

accuracy over a previous study58 that used a different method and the same host/guest 

system. Charge modifications to the CGenFF59 force field were required for derivatives FBZ

+ and TBZ+, which resulted in a significant improvement in accuracy of their calculated 

pKas. These findings suggest that the charging model in ParamChem78, 79/CGenFF59 for this 

type of moiety is insufficient. Furthermore, the calculated pKas were very sensitive to the 

partial charge scheme employed. This conclusion is supported by work presented in the SI, 

where changing the partial charge scheme to RESP significantly altered the calculated 

pKa’s. These findings are in basic agreement with earlier studies from B. Brooks and co-

workers58, that also used fully explicit solvent simulation models, but are inconsistent with 

mixed implicit/explicit solvent models from McCammon and coworkers16 earlier studies. 

Additionally, six other simpler charging schemes were tested (not shown in the present 

study) which resulted in significant changes to the calculated pKa’s (difference of more than 

2 pK units). Therefore, based on our method, the accuracy of the calculated pKa is 

dependent on the partial charge scheme employed. Taken together, these studies suggest that 

care must be exercised in combining charging schemes and force fields, and solvent models, 

in arbitrary ways.

In the second step, binding free energies were obtained for the unprotonated guest molecules 

utilizing a dual-topology approach and CGenFF59 partial charges and parameters. The 

results obtained were accurate and highly correlated to the experimental values (Pearson = 

0.9 and Spearman = 0.7). Combining the pKa results with the binding free energies obtained 

with the CGenFF59 force field, a full description of the pH dependent binding behavior was 

obtained, and a range of more than 3 kcal/mol was observed for all guest molecules within a 

biologically relevant pH range. This observation indicates that if fixed protonation states 

were used errors of up to 3 kcal/mol are possible. With high accuracy, utilizing an explicit 

water model, this two-step approach successfully accounts for changes in the binding free 

energy during complex formation that are pH dependent.
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Figure 1. 
a) Structure of a glycoluril unit; b) cucurbit[7]uril (CB7), where the electrostatic surface is 

shown; and c) The ligand set consisting of benzimidazole and its derivatives. The site of 

protonation within the benzimidazole core is shown in red for all derivatives.
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Figure 2. 
The structure of CB7 and Albendazole (ABZ) complex generated from docking
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Figure 3. 
pH dependent binding free energies for each benzimidazole derivative as labeled. The red 

line represents the experimentally derived binding free energies for the protonated guest 

molecules while the blue line represents the predicted binding free energy utilizing our two-

step computational approach.
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Table 1.

Experimental pKa shifts of benzimidazole and its derivatives upon complexation with CB7. pKa results were 

taken from ref.1

Ligand pKa
Free pKa

Complex ΔpKa

BZ 5.5 9.0 3.5

ABZ 3.5 6.1 4.0

CBZ 4.5 7.0 3.8

FBZ 4.8 8.6 2.6

TBZ 4.6 8.6 2.5
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Table 2.

Experimental binding free energies of benzimidazole and its derivatives upon complexation with CB7.1 

ΔGref , exp
unprot  refers to the unprotonated binding free energy while ΔGexp

prot +  was calculated based on equation 

(3) for the protonated ligands at pH 7.0

Ligand ΔGref, exp
unprot ΔGexp

prot + (pH 7)

BZ −4.4 −7.1

ABZ −6.6 −6.7

CBZ −6.0 −6.4

FBZ −2.3 −4.5

TBZ −3.0 −5.2
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Table 3.

A comparison between the experimental pKa
1 after complexation and those computed using the CGenFF 

parameters and charges.

Ligand pKa
Complex pKa

CGenFF

BZ 9.0 9.4±0.2

ABZ 6.1 6.1±0.5

CBZ 7.0 7.8±0.8

FBZ* 8.6 10.4±0.2

TBZ* 8.6 10.0±0.3

MUE 0.9

Pearson (R) 0.9

Spearman 0.8

*
Note a modified charging scheme was used for FBZ and TBZ (see discussion below).
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Table 4.

A comparison between the experimental binding free energy1 for the unprotonated benzimidazole derivatives 

and those predicted using the CGenFF force field

Ligand ΔGref, exp
unprot

ΔGCGenFF

BZ −4.4 −4.4±0.0

ABZ −6.6 −4.3±0.5

CBZ −6.0 −5.7±0.5

FBZ −2.3 −0.3±0.7

TBZ −3.0 −0.8±0.5

MUE 1.4

Pearson (R) 0.9

Spearman 0.7
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Table 5.

A comparison between the experimental binding free energy for the protonated benzimidazole derivatives. 

ΔGexp
prot +  was obtained from equation (3) using the experimental pKa and binding free energies. ΔGPredicted

CGenFF

was obtained from equation (3) using the pKa and binding free energies computed using the CGenFF force 

field. Free energies are shown in kcal mol−1

Ligand ΔGexp
prot + (pH 7) ΔGPredicted

CGenFF (pH 7)

BZ −7.1 −7.6±0.2

ABZ −6.7 −4.3±0.7

CBZ −6.4 −6.9±0.9

FBZ −4.5 −5.0±0.7

TBZ −5.2 −4.9±0.6

MUE 0.8

Pearson (R) 0.5

Spearman 0.3
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