
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Online, Time-Varying and Multi-Period Optimization with Applications in Electric Power 
Systems

Permalink
https://escholarship.org/uc/item/4h26j341

Author
Mulvaney-Kemp, Julie

Publication Date
2022
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4h26j341
https://escholarship.org
http://www.cdlib.org/


Online, Time-Varying and Multi-Period Optimization with Applications in Electric Power
Systems

by

Julie Mulvaney-Kemp

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Industrial Engineering and Operations Research

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Javad Lavaei, Chair
Professor Shmuel Oren

Professor Duncan Callaway

Fall 2022



Online, Time-Varying and Multi-Period Optimization with Applications in Electric Power
Systems

Copyright 2022
by

Julie Mulvaney-Kemp



1

Abstract

Online, Time-Varying and Multi-Period Optimization with Applications in Electric Power
Systems

by

Julie Mulvaney-Kemp

Doctor of Philosophy in Engineering - Industrial Engineering and Operations Research

University of California, Berkeley

Professor Javad Lavaei, Chair

Decision-makers often face environments which vary over time and deal with uncertainty as a
result. Problems with temporal variation differ based on how frequently they are solved and
what information about the present or future is available to the decision-maker; each class
of problem poses distinct challenges and requires tailored solutions. In this dissertation, we
design and analyze methods to support decision-makers in these settings, with an emphasis
on applications in electric power systems.

Online optimization, in which a player makes a sequence of decisions aimed at minimizing the
damage inflicted by their adversary, is the first class of problems considered. Here, we shed
light on online nonconvex optimization problems in which algorithms are evaluated against
the optimal decision at each time using the notion of dynamic regret. The adversary’s loss
functions are arbitrarily nonconvex but have global solutions that are slowly time-varying.
To address this problem we first analyze the region around the global solutions to define
time-varying target sets. Then, we introduce two algorithms and prove that the dynamic
regret for each algorithm is bounded by a function of the temporal variation in the optimal
decision. The first algorithm assumes the decision-maker has some prior knowledge about
the initial loss function. The second algorithm makes no assumption about prior knowledge,
and instead it relies on random sampling and memory to find and then track the target sets
over time. In this case, the landscape of the loss functions determines the likelihood that
the dynamic regret will be small. Numerical experiments validate these theoretical results
and highlight the impact of a single low-complexity problem early in the sequence.

Time-varying optimization, in which a series of linked problems are solved sequentially using
information about past decisions, but not considering the future, is the second class of
problems considered. Specifically, we analyze the optimality behavior of solution trajectories
for optimal power flow (OPF) with time-varying load. Despite its nonlinearity, time-varying
OPF is commonly solved every 5-15 minutes using local-search algorithms. Failing to obtain
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the globally optimal solution of power optimization problems jeopardizes the grid’s reliability
and causes poor financial and environmental outcomes. An empirical study on California
data shows that, with enough variation in the data, local search methods can solve OPF to
global optimality, even if the problem has many local minima. To explain this phenomenon,
we introduce a backward mapping that relates the time-varying OPF’s global solution at
a given time to a set of desirable initial points. We show that this mapping could act
as a stochastic gradient ascent algorithm on an implicitly convexified formulation of OPF,
justifying the escape of poor solutions over time. This work is the first to mathematically
explain how temporal data variation affects the complexity of solving power operational
problems.

Multi-period optimization under uncertainty, in which decisions for the entire time horizon
are made at once, is the third and final class of problems considered. Within this class, we fo-
cus on the decision-making problem facing hybrid power plant operators when participating
in wholesale electricity markets with the goal of enabling researchers to accurately incorpo-
rate these resources into simulations of future electricity systems. To this end, a stochastic
optimization model is developed to maximize the revenue of the plant, which consists of
a renewable generator and an energy storage resource that appear as a single, combined
unit to the market, while limiting risk due to uncertainty in market prices and generation
levels, through price-quantity bid curves. The uncertainty is represented by scenarios, and
a detailed methodology is provided for creating scenarios which both reflect the type of in-
formation a hybrid operator would have and only require the limited data which is available
in simulation settings. This work advances existing models by allowing greater cooperation
between the generator and storage components while also enforcing market limits on bid
curves’ complexity. Further, the approach ensures economically-sound behavior even when
faced with unforeseen events.
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Chapter 1

Introduction

Decision-makers regularly face environments which evolve over time and deal with uncer-
tainty as a result. Problems with temporal variation differ based on how frequently they
are solved, what information about the present or future is available to the decision-maker,
how actions at one time influence the landscape of the future, and whether that landscape is
designed by an adversary, among other dimensions. Each class of problem poses distinct chal-
lenges and requires tailored solutions. In this dissertation, we design and analyze methods
to support decision-makers in these time-varying settings, with an emphasis on applications
in electric power systems.

The electricity sector is a compelling and timely focus area because it is a vast complex
network of infrastructure, policies and actors that is undergoing a transformation. As gen-
eration profiles shift away from a few large conventional power plants toward a multitude
of smaller distributed energy resources, the size of problems facing system operators in-
creases. Further, uncertainty within these problems is growing as variable renewable energy
sources comprise increasing shares of generation capacity and climate change makes weather,
and therefore electricity generation from these sources, less predictable [107]. To this field,
this dissertation contributes analysis which may help to find better system operating points
more quickly and a tool which enables researchers to incorporate a new type of participant
in models of future electricity markets.

The decision-making problems studied in this dissertation can be posed as static opti-
mization problems in the form of

P(θ) := min
x∈Rn

f(x; θ)

subject to x ∈ X (θ) (1.1)

or sequences of such problems, {P(θt)}Tt=1. Here, x is the n-dimensional decision variable
which the decision-maker selects from the feasible space X (θ) with the objective of mini-
mizing the function f( · ; θ) : Rn −→ R ∪ {∞}. The vector θ ∈ Rm represents the problem
parameters which may or may not be known to the decision-maker and may directly or
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indirectly influence the problem formulation. The following chapters each address a class of
problems within this framework:

• Chapter 2, “Dynamic Regret Bounds for Constrained Online Nonconvex
Optimization Based on Polyak- Lojasiewicz Regions,” focuses on online non-
convex optimization problems. In this class of problem sequences, the feasible space
is known to the decision-maker and independent of θ, that is, X (θ1) = X (θ2) = · · · =
X (θT ) = X . When selecting xt, the decision-maker is oblivious to θt and therefore
f( · ; θt), as well, but has information about {θk}t−1

k=1. In fact, θt may be chosen by an
adversary after xt is selected. However, the adversary’s choice of θt is limited in the
following way: the optimal solution to P(θt) must be in a neighborhood of the optimal
solution to P(θt−1). This chapter analyzes the nonconvex landscapes of {P(θt)}Tt=1,
proposes algorithms for selecting xt based on knowledge of θt−1, and proves theoretical
bounds on the algorithms’ performance.

• Chapter 3, “Smoothing Property of Load Variation Promotes Finding Global
Solutions of Time-Varying Optimal Power Flow,” focuses on time-varying opti-
mal power flow problems, an important problem sequence for power systems operations
in which electricity supply and demand are matched throughout the network, ideally
in the lowest-cost way, while respecting various physical, operational, and security con-
straints. In this setting, θt, and therefore f( · ; θt) and X (θt), depends on the choice
of xt−1 and is known to the decision-maker when selecting xt. Each problem, P(θt),
is difficult and decisions must be made expeditiously, so the decision-maker may be
resigned to selecting a locally-optimal decision, instead of a globally optimal decision.
Since each local solution to P(θ1) spawns a different instance of P(θ2), there are multi-
ple possible time-varying problem sequences and corresponding locally-optimal decision
sequences (also called trajectories). This chapter explores local solution trajectories
for time-varying optimal power flow problems both empirically and analytically and
explains how temporal variation in {θt}Tt=1 enables these trajectories to avoid poor
solutions over time.

• Chapter 4, “Hybrid Power Plant Bidding in Models of Future Electricity
Systems,” focuses on a static multi-period problem of making bidding decisions in an
electricity market. The market participant operates a “hybrid” power plant composed
of a renewable generator and a battery. In this setting, decisions for the entire time
horizon are made in advance and the single objective function f( · ; θ) is the summation
of costs at each time step. Here, θ is stochastic due to uncertainty in future weather
conditions and market prices. This chapter provides a methodology for designing
a discrete set of scenarios which approximate the distribution of θ and formulates
P(θ) as a stochastic optimization problem. Further, the approach manages risk and
ensures economically-sound bidding behavior even when θ falls outside of the developed
scenario set, as may occur during a low-probability extreme event.
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Each chapter is designed to be self-contained – they each contain background, motivation,
and key definitions for the topic at hand – and can be read independently, if desired.

1.1 Related Publications

This dissertation includes material that has been previously published in the following loca-
tions:

• Chapter 2
Main paper:

1. Julie Mulvaney-Kemp, Salar Fattahi and Javad Lavaei, “Smoothing Property
of Load Variation Promotes Finding Global Solutions of Time-Varying Optimal
Power Flow,” IEEE Transactions on Control of Network Systems, 2021

Related paper:

1. Julie Mulvaney-Kemp, Salar Fattahi and Javad Lavaei, “Load Variation Enables
Escaping Poor Solutions of Time-Varying Optimal Power Flow,” IEEE Power &
Energy Society General Meeting (PESGM), 2020

– PESGM Best-of-the-Best Paper Award - Power System Operations, Planning,
and Economics, 2020

– INFORMS Energy, Natural Resources and the Environment (ENRE) Best
Student Paper Award, 2020

• Chapter 3
Main paper:

1. Julie Mulvaney-Kemp, SangWoo Park, Ming Jin and Javad Lavaei, “Dynamic
Regret Bounds for Constrained Online Nonconvex Optimization Based on Polyak-
Lojasiewicz Regions,” IEEE Transactions on Control of Network Systems, 2022

Related paper:

1. SangWoo Park, Julie Mulvaney-Kemp, Ming Jin and Javad Lavaei, “Diminish-
ing Regret for Online Nonconvex Optimization,” American Control Conference
(ACC), 2021
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Chapter 2

Dynamic Regret Bounds for
Constrained Online Nonconvex
Optimization Based on
Polyak- Lojasiewicz Regions

2.1 Introduction

Nonconvex optimization is ubiquitous in real-world applications, such as the training of
deep neural nets [76], matrix sensing/completion [17, 16], state estimation of dynamic sys-
tems [101], and the optimal power flow problem [132]. Moreover, most of these practical
problems are solved sequentially over time with time-varying input data, leading to online
(real-time) versions of the aforementioned examples [6, 101, 112].

In this paper, we study an online nonconvex optimization (ONO) problem whose loss
(objective) function changes over discrete time periods, namely,

minimize
x∈S

ft(x) (2.1)

where t ∈ Z+ denotes the time and S ⊆ Rn is the time-invariant convex feasible region. At
each time t = 1, . . . , T in this ONO framework, the decision maker first chooses an action
xt ∈ S while oblivious to the loss function ft : S → R. Once the action is played, it is
evaluated against ft, which may be chosen by an adversary in response to the action. Then,
the decision maker is granted access to the loss function and its gradient.

The performance of a decision maker, or equivalently an algorithm, in online settings is
typically evaluated by a metric called regret [50]. In this paper, we exclusively focus on the
strictest version of regret, dynamic regret, which is defined as

Regd
T (x1, ...,xT ) :=

T∑
t=1

ft(xt)−
T∑
t=1

f ∗
t , (2.2)
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where f ∗
t denotes the global optimal objective value of (2.1). Dynamic regret (also called

non-stationary regret) compares the decision maker’s actions to an optimal action at each
time t. In comparison, static regret (also called stationary regret or simply regret) compares
the decision maker’s actions to the best fixed action in hindsight:

Regs
T (x1, ...,xT ) =

T∑
t=1

ft(xt)−min
y∈S

T∑
t=1

ft(y). (2.3)

In general, nonconvex optimization problems are NP-hard. Therefore, commonly used
local search algorithms, such as first-order and second-order descent algorithms, may con-
verge to a spurious local minimum (i.e., a local minimum that is not globally optimal). As
a result, dynamic regret can be arbitrarily high in a general setting due to the inability to
efficiently find a near-optimal point xt. Existing works in online optimization literature have
derived regret bounds in terms of various quantities, such as the temporal variation in the
loss functions [10, 57, 19], the temporal variation in the gradients of the loss functions [57,
79], and the temporal variation in a decision sequence (also called path length or path varia-
tion) [131, 48, 57, 123, 79, 126]. Details on many of these variation measures used to bound
dynamic regret can be found in [90], where the online convex optimization problem is ana-
lyzed. The existing regret bounds for ONO typically either focus on static regret [122, 83, 51,
127] or require the loss functions to be weakly pseudo-convex which is a restrictive condition
that excludes spurious local minima [39]. Dynamic regret for unconstrained ONO is studied
in [75], under the assumptions that an initial point near the optimal solution is known, the
loss function is strongly convex around the optimal solution, and the decision maker has ac-
cess to second-order information. In [96], the authors of this paper established probabilistic
nonconvexity regret bounds for a variation of the ONO problem in which ft is known to the
decision maker at time t, future loss functions are unknown but fixed, the global minima are
“sufficiently superior” to all local minima, and limit points of a continuous-time projected
gradient algorithm can be found precisely. Finally, [30] and [35] explored how variability
in the input data can help ONO solution trajectories escape non-global local solutions over
time, but they did not study dynamic regret and focused on asymptotic regret.

The main goal of this paper is to analyze how the quality of the obtained solutions evolves
in ONO settings where the global solution changes slowly over time. To this end, we first
develop mathematical tools for characterizing the landscape of constrained nonconvex opti-
mization problems and analyze the behavior of the projected gradient descent algorithm on
such problems. There are many conditions in the literature that guarantee linear convergence
of local search algorithms. In the unconstrained case when S = Rn, the Polyak- Lojasiewicz
(PL) condition has been proven to be weaker than other common assumptions (such as
strong convexity, essential strong convexity, weak convexity, and restricted secant inequal-
ity) that guarantee linear convergence [62]. Despite its favorable characteristics, requiring
that a function satisfy the PL condition still significantly restricts the type of nonconvex
functions that one can study. For instance, functions satisfying the PL condition cannot
have local minima which are not globally optimal.
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We leverage the generalization of the PL condition for constrained optimization, called the
proximal-PL condition (originally proposed in [62]), to study dynamic regret minimization in
a nonconvex setting. The first contribution of this paper is to establish a target set for each
time instance with the property that once the algorithm finds a point in the corresponding
target set at a given time, the global minimizers of future problems can be found efficiently.
These time-varying target sets are defined with respect to the proximal-PL condition and
the global solution. We show several important properties of these sets, including linear
convergence to the global minimizer and quadratic growth.

The design and regret analysis of two online algorithms constitute the second contribution
of this paper. Specifically, we equip local search algorithms with memory, random explo-
ration, and multiple gradient queries and establish dynamic regret bounds for each algorithm
in terms of the path length and squared path length of the optimal decision sequence, when
the difference between consecutive points in this sequence is bounded appropriately. The
first algorithm assumes that the decision maker has some prior knowledge about the initial
function and can start at a point that is within its target set. This algorithm ensures bounded
dynamic regret by producing decisions which track the time-varying target sets. The sec-
ond algorithm obviates this initial condition assumption by using random exploration. In
this case, dynamic regret depends on when the decision maker first finds a point within the
corresponding target set, as after that time all decisions will track the time-varying target
sets. Therefore, the relative volume of the time-varying target sets with respect to the en-
tire feasible domain–a measure of how favorable the loss function landscape is–influences
the likelihood that the dynamic regret will be small. In particular, a single low-complexity
problem in the sequence can have a large influence on the outcomes.

The remainder of this paper is organized as follows. In Section 2.2, we analyze the
optimization problem for each fixed time step, focusing on a neighborhood of the global
solution. In Section 2.3, we introduce ONO algorithms, derive bounds on their dynamic
regret, and support the analysis with empirical results. Finally, we conclude the paper in
Section 2.4.

2.1.1 Notations

Let || · || indicate the ℓ2-norm of a vector and | · | represent the cardinality of a set. The
symbols Rn and Z+ denote the space of n-dimensional real vectors and the set of positive
integers, respectively. The globally optimal objective value of the optimization problem at
time t is denoted by f ∗

t . If there is a unique global optimum at time t, it will be denoted as
x∗
t , in which case ft(x

∗
t ) = f ∗

t . The indicator function IS(x) returns zero if x belongs to the
set S and infinity otherwise. We define the projection operator as follows:

ΠS(x) := argmin
y∈S

∥x− y∥. (2.4)

The tangent cone of a convex set S at x is denoted as TS(x). The sublevel set Lt is defined
as Lt(α) := {x ∈ S|ft(x) < α}. Finally, P[·] denotes the probability of the argument.
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2.2 Theoretical Results for a Fixed Time Step

2.2.1 Properties of the Problem Structure

Throughout this paper, we make the following assumptions on the problem structure:

1) The time-invariant feasible region S ⊂ Rn is a compact, convex set known to the decision
maker.

2) ft is continuously differentiable on S, but potentially nonconvex in x with many local
minima, for all t ∈ {1, 2, . . . , T}.

– This assumption ensures that the magnitude of the gradient is bounded above by a
positive constant M1 for all t ∈ {1, 2, . . . , T}. That is, supx∈S,1≤t≤T ||∇ft(x)|| ≤M1.

3) ft has a unique global minimum x∗
t over S for all t ∈ {1, 2, . . . , T}.

4) The first derivative of ft is L-Lipschitz continuous on S for all t ∈ {1, 2, . . . , T}, implying
the following inequality for some constant L:

ft(y)−ft(x)≤⟨∇ft(x),y−x⟩+
L

2
||y−x||2, ∀x,y∈S. (2.5)

2.2.2 Proximal Polyak- Lojasiewicz Regions

In the context of unconstrained optimization problems, a differentiable function ft satisfies
the Polyak- Lojasiewicz (PL) condition [97] if the following condition holds for some param-
eter µ > 0:

1

2
||∇ft(x)||2 ≥ µ(ft(x)− f ∗

t )︸ ︷︷ ︸
PL inequality

, ∀x ∈ Rn. (2.6)

If a function satisfies the PL condition and the magnitude of its gradient is small at some
x, then the function value at x will be close to the global minimum. This is the reason
why the PL condition is also referred to as the gradient domination condition [36]. For a
general (unconstrained) nonconvex optimization problem, first-order methods such as gra-
dient descent may not converge to a global minimizer. However, if a function ft satisfies the
Polyak- Lojasiewicz condition, then every stationary point is a global minimizer. Moreover,
PL is one of the most general conditions under which gradient descent offers linear conver-
gence to a global minimizer [62]. Note that, in general, functions satisfying the PL condition
may not have a unique global minimizer.

The top plot in Figure 2.1 shows an example of a nonconvex function that satisfies the
PL condition. On the other hand, the function in the bottom plot of Figure 2.1 manifests
spurious local minima and therefore cannot satisfy the PL inequality for all x for any µ > 0.
However, for a given µ, we can identify a subset of R that satisfies the PL inequality. The
idea of focusing on regions where the PL inequality is satisfied, rather than only considering
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Figure 2.1: The top figure shows the nonconvex function f1(x) = x2 + 3 sin2(x), which sat-
isfies the PL inequality with the parameter µ = 1/32 for all x ∈ R [62]. The bottom figure
shows an example of a nonconvex function that satisfies the PL inequality with the param-
eter µ = 1/32 only for x ∈ {[−55.9,−10.2] ∪ [−5.4, 5.4] ∪ [10.2, 55.9]}. The function for the
bottom figure is given below:

f2(x) =


− 1

3π
x3 − 5

2
x2 − 6πx− 17

6
π2, if x < −π

x2 + 3 sin2(x), if− π ≤ x ≤ π
1
3π
x3 − 5

2
x2 + 6πx− 17

6
π2, if π < x

functions which satisfy the PL inequality over Rn, leads to our definition of time-varying
target sets in Section 2.2.3.

Next, we return to considering constrained optimization problems. Constrained opti-
mization can be cast in the framework of unconstrained optimization by appending the
objective function with IS, an indicator function of a convex set S. This indicator function
is non-smooth and convex. Subsequently, a natural generalization of gradient descent to the
constrained case is the proximal gradient method, whose iteration is described by

xk+1
t = argmin

y

[
⟨∇ft(xk

t ), y − xk
t ⟩+

∥y − xk
t ∥2

2s
+ IS(y)− IS(xk

t )
]

(2.7)

for every k ∈ Z+, where s is a positive constant. It can be shown that the above algorithm
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is equivalent to the projected gradient descent algorithm:

xk+1
t = ΠS(x

k
t − s∇ft(xk

t )). (2.8)

A matching generalization of the PL inequality, namely the proximal-PL inequality, was first
proposed in [62].

Definition 2.1. (Proximal-PL inequality) For a function ft, define the proximal-gradient
norm with parameter β > 0 as

Dt(x, β) = −2βmin
y

[
⟨∇ft(x),y − x⟩+

β∥y − x∥2

2
+ IS(y)− IS(x)

]
We say that a point x ∈ S satisfies the proximal-PL inequality with the parameters µ > 0
and β > 0 if

1

2
Dt(x, β) ≥ µ(ft(x)− f ∗

t ). (2.9)

Note that by virtue of the equivalence between equations (2.7) and (2.8), the proximal-
gradient norm can also be expressed as follows:

Dt(x, β) = −2β

[
⟨∇ft(x),ΠS(x−

1

β
∇ft(x))− x⟩+

β

2
∥ΠS(x−

1

β
∇ft(x))− x∥2

]
. (2.10)

While [62] considers functions that satisfy the proximal-PL inequality at all points in
S, in this work we instead identify a subset of the entire space that satisfies the inequality.
Hereby, we define the time-varying proximal-PL region, denoted Pt(µ, β), as the set of all
x ∈ S satisfying the proximal-PL inequality with the parameters µ > 0 and β > 0. That is,

Pt(µ, β) :=

{
x ∈ S

∣∣∣ 1

2
Dt(x, β) ≥ µ(ft(x)− f ∗

t )

}
. (2.11)

In the remainder of the paper, we assume that the parameters µ and β are chosen to guaran-
tee existence of an open set containing x∗

t for each t ∈ {1, . . . , T} such that the intersection
of this set with S lies in the proximal-PL region. That is, there exists an open set SP

t (µ, β)
such that x∗

t ∈ (SP
t (µ, β) ∩ S) ⊂ Pt(µ, β).

2.2.3 Time-Varying Regions of Attraction and Target Sets

A proximal-PL region can span over multiple regions of attraction associated with different
local minima. Also, note that a region of attraction (RoA) is algorithm dependent. In this
paper, we define RoAs (with respect to the global minimizer) that respect the proximal-
PL inequality under the projected gradient descent method and also under the projected
gradient flow system, a continuous version of the former.
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Definition 2.2. Let RPD
t and RPC

t denote the subsets of the discrete and continuous RoAs
that are contained within the proximal-PL region at time t:

RPD
t (µ, β, s) :=

{
x | xk+1

t = ΠS(x
k
t − s∇ft(xk

t )),

x0
t = x, lim

k−→∞
xk
t = x∗

t and {xk
t }∞k=0 ⊂ Pt(µ, β)

}
(2.12)

RPC
t (µ, β) :=

{
x | ẋt = ΠTS(xt)(−∇ft(xt)),xt(0) = x,

lim
ℓ→∞

xt(ℓ) = x∗
t and xt(ℓ) ∈ Pt(µ, β) ∀ℓ ≥ 0

}
(2.13)

One can view the continuous-time RoA as the limit of the discrete-time RoA as we take
the step size towards zero. The continuous-time RoA does not depend on any step-size, and
therefore is directly related to the properties of the function. The discrete-time RoA is a
function of the step size and therefore is algorithm-dependent.

Next, we define a region that we call the target set. In subsequent sections, we will show
that if our proposed algorithm enters the target set at any time t, then it is possible to
approach the global minimizer and track it at all subsequent times.

Definition 2.3. (Target set) We define our target set for time t to be a subset of a sublevel
set around the global minimizer that belongs to both RPD

t (µ, β, s) and RPC
t (µ, β, s):

Tt(µ, β, s) := Lt(αt) ∩RPD
t (µ, β, s) (2.14)

where αt is the largest α satisfying the following condition:

Lt(α) ∩RPD
t (µ, β, s) ⊆ RPC

t (µ, β) (2.15)

All points in each target set are feasible, satisfy the proximal-PL inequality, and lead to
the global solution under the continuous and discrete projected gradient descent methods
initialized at those points. Theorem 2.1 will show that these target sets are invariant, and
Lemma 2.1 will show that their sizes are nonnegligible. One useful way to measure the size
of a target set is with respect to the global solution.

Definition 2.4. (Reach) Define the reach of a target set as the maximum distance between
the global minimum and any point in the target set:

ρt(µ, β, s) := max
x∈Tt(µ,β,s)

∥x∗
t − x∥. (2.16)

2.2.4 Properties of Target Sets

In [62], the authors showed the linear convergence of the proximal-gradient algorithm when
applied to functions satisfying the proximal-PL condition. In this paper, we show that
initializing the proximal-gradient algorithm in the corresponding target set ensures linear
convergence to the global minimum, regardless of whether the proximal-PL inequality is
satisfied for all feasible points. Additionally, there is an open ball around the global solution
whose intersection with the feasible set S is also contained in the corresponding target set.
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Theorem 2.1. Given µ > 0, β ≥ L and a fixed instance of t, consider the problem of
minimizing ft over S (Problem (2.1)) via the projected gradient descent method (2.8) with
the step size s. If x0

t ∈ Tt(µ, β, s), then the projected gradient descent method with 0 < s <
min( 1

µ
, 1
β
) converges linearly to the optimal value f ∗

t , i.e.,

ft(x
N
t )− f ∗

t ≤ (1− µs)N [ft(x
0
t )− f ∗

t ], (2.17)

and xN
t ∈ Tt(µ, β, s), where N ∈ {0, 1, 2, . . . } indicates the number of iterations.

Proof. The proof is similar to that of Theorem 5 in [62]. Let Ft(x) := ft(x) + IS(x). By
using the Lipschitz continuity of the gradient of ft, one can write:

Ft(x
1
t ) = ft(x

1
t ) + IS(x0

t ) + IS(x1
t )− IS(x0

t )

≤ ft(x
0
t ) + IS(x0

t ) + ⟨∇ft(x0
t ),x

1
t − x0

t ⟩+
L

2
||x1

t − x0
t ||2 + IS(x1

t )− IS(x0
t )

Then, noting that x0
t ∈ Tt(µ, β, s) ⊂ S and L ≤ 1/s, we obtain an upper bound of the form:

Ft(x
1
t ) ≤ ft(x

0
t ) + ⟨∇ft(x0

t ),x
1
t − x0

t ⟩+
1

2s
||x1

t − x0
t ||2 + IS(x1

t )− IS(x0
t )

= ft(x
0
t )−

s

2
Dt(x

0
t , 1/s)

where the equality follows from the definition of xk+1
t and the proximal-gradient norm.

Finally, we upper bound the equation above by using the facts that x0
t satisfies the proximal -

PL inequality with parameters µ and β and that Dt(x
0
t , 1/s) ≥ Dt(x

0
t , β) since 1

s
≥ β [62]:

Ft(x
1
t ) ≤ ft(x

0
t )− µs[ft(x0

t )− f ∗
t ].

Since x1
t is feasible by the definition of projection, we have

ft(x
1
t ) ≤ ft(x

0
t )− µs[ft(x0

t )− f ∗
t ],

which subsequently implies

ft(x
1
t )− f ∗

t ≤ (1− µs) [ft(x
0
t )− f ∗

t ]. (2.18)

Repeating the process for N steps, we have the final result:

ft(x
N
t )− f ∗

t ≤ (1− µs)N [ft(x
0
t )− f ∗

t ].

Further, by showing a non-increasing objective value in (2.18), it holds that x1
t ∈ Lt(αt).

The definition of RPD
t (µ, β, s) in (2.12), paired with knowledge that x0

t ∈ RPD
t (µ, β, s),

guarantees that x1
t ∈ RPD

t (µ, β, s). Therefore, x1
t ∈ Lt(αt) ∩ RPD

t (µ, β, s) = Tt(µ, β, s),
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proving that the target set is invariant under the projected gradient descent method.
Theorem 2.1 also gives a lower bound on f ∗

t after N iterations:

f ∗
t ≥

ft(x
N
t )−

(
1− µs

)N
ft(x

0
t )

1−
(
1− µs

)N , ∀N ∈ Z+. (2.19)

For unconstrained problems, a function satisfying the PL condition implies that it also
satisfies the quadratic growth condition [62]. Next, we prove a similar relationship between
the proximal-PL inequality and quadratic growth.

Theorem 2.2. (Quadratic growth) The following inequality holds:√
ft(x)− f ∗

t ≥
√
µ

2
∥x− x∗

t∥, ∀x ∈ RPC
t (µ, β). (2.20)

Proof: See Appendix 2.A.
While the proof of Theorem 2.2 relies on the continuous version of the projected gradient

flow algorithm, this paper does not require implementing or solving this continuous dynam-
ical system. The algorithms in Section 2.3 use the discrete-time projected gradient descent
algorithm. The next lemma establishes what we will refer to as the robustness property of a
target set.

Lemma 2.1. (Robustness of a target set) The target set Tt(µ, β, s) includes a feasible ball
of radius at least r around the global solution for some r > 0. That is, ∃µ, β, s, r > 0 :
Tt(µ, β, s) ⊇ (B(x∗

t , r) ∩ S) for all t ∈ {1, . . . , T}, where B(x∗
t , r) := {y ∈ Rn |∥x∗

t−y∥2 ≤ r}.

Proof: See Appendix 2.B and Appendix 2.C.

Assumption 2.1. There exists a constant M2 such that

ft(x)−f ∗
t ≤M2∥x−x∗

t∥2, ∀x ∈ Tt(µ, β, s), t=1, . . . , T. (2.21)

Note that if x∗
t is in the interior of S at every t = 1, . . . , T , then this assumption is

automatically satisfied due to the assumption that ∇ft is L-Lipschitz. Specifically, it holds
with M2 = L/2, which can be derived by substituting x = x∗ and ∇ft(x∗

t ) = 0 into (2.5). In
the general case, this assumption is similar to ft being 2-order calm at x∗

t relative to the set
Tt(µ, β, s) [32, 70, 72].

2.2.5 Visualization of a Proximal-PL Region and Target Set

To develop intuition about proximal-PL regions and target sets, it is beneficial to visualize
these sets in an example. Consider the optimization problem

min f(x1, x2) = x41 − 4x31 + x21 + 2x1 +
3

2
sin(2πx1)

+ x42 − 4x32 + x22 + 2x2 +
3

2
sin(2πx2) + 28.87

s.t. − 1 ≤ x1 ≤ 3, −1 ≤ x2 ≤ 3 (2.22)
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which is depicted in Figure 2.2a. This problem has the optimal value of 0 at x∗ = (2.75, 2.75)
and includes many spurious local solutions.

The proximal-PL region and target set for this problem with the parameters µ = 0.5,
β = 250 > L and s = 1

2β
are depicted in Figure 2.2b and Figure 2.2c, respectively. The

proximal-PL region includes a neighborhood of the global solution, as well as points far from
the global solution. However, many points in the feasible set do not satisfy the proximal-PL
inequality, in particular those near stationary points. Observe that the target set is a subset
of RPD,RPC and the proximal-PL region. The symmetry in Figure 2.2b and Figure 2.2c
is a result of the symmetry in the loss function f .

2.3 Online Projected-Gradient Descent with Random

Exploration

In this section, we leverage the results developed in Section 2.2 to study the ONO prob-
lem (2.1). We introduce and analyze two algorithms for different scenarios:

1. Scenario 1: An initial point in the target region around the global solution x∗
1 is known.

2. Scenario 2: No information about the loss functions or their minimizers is known in
advance.

2.3.1 Scenario 1 - Known Desirable Initial Point

Algorithm 2.1 provides a natural approach to solving the ONO problem (2.1) in the setting
where a suitable initial point is known. At each time t, the decision maker performs St

iterations of projected gradient descent on ft, with the final iteration becoming the decision
maker’s action at t + 1. The assumption is that the decision maker has enough knowledge
about the problem at t = 1 to select an initial point in the corresponding target set and that
the change in the global optimum between time steps is upper-bounded based on parameters
reflecting the functions’ landscapes. The latter assumption restricts the adversary’s choice of
loss function and can be regarded as requiring the global solution sequence to have steadiness.
This assumption is formalized next.

Assumption 2.2. (Steadiness of global solution) The change in the global optimum between
consecutive time steps is upper-bounded by r̄ < r, where r is as defined in Lemma 2.1. That
is, for t = 1, . . . , T − 1,

||x∗
t+1 − x∗

t || ≤ r̄, (2.23)
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(a) Topology of the objective function f
over the feasible set. Observe that this
problem has many local minima.

(b) Points in the grey region satisfy the
proximal-PL inequality for the function
f over the set S = [−1, 3] × [−1, 3] with
parameters µ = 0.5 and β = 250, while
points in the white regions do not. The
unique optimal solution x∗ = (2.75, 2.75)
is identified by a red star.

(c) Illustration of the target
set and other sets critical to
its definition, where points are
colored based on the most re-
strictive set to which they be-
long. (Recall that Target Set ⊂
(RPD ∩RPC) ⊂ S.) The red
dashed circle demonstrates the
robustness property established
in Lemma 2.1. The length of the
black dashed line is the reach of
the target set.

Figure 2.2: Visualization of the proximal-PL region and the target set for the optimization
problem (2.22).
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where µ, β, s, and r collectively satisfy the robustness property in Lemma 2.1 and ρt(µ, β, s)
is defined in (2.16). Furthermore, assume that St is large enough to satisfy the inequalities:√

2M1 · ρt(µ, β, s) · (1− µs)St

µ
≤ r − r̄ (2.24a)

St >
log(µ)− log(4M2)

log(1−µs)
. (2.24b)

Note that this assumption only limits the change in the global minimizer; the overall
landscape of the function can change arbitrarily. Under this assumption, we will establish
a deterministic dynamic regret bound for Algorithm 2.1. To aid in establishing this bound,
we first prove two lemmas:

i. one showing the convergence in terms of the variables x,

ii. another one proving that once the chosen action xt is within the target region at time
t, all successive actions chosen by the algorithm will also lie within the target region
of their respective time.

Lemma 2.2. Consider a sequence {xt}Tt=1 generated by Algorithm 2.1. Under Assump-
tions 2.1 and 2.2, if xt ∈ Tt(µ, β, s) for any t ∈ {1, 2, . . . , T − 1}, then

∥xt+1 − x∗
t∥ ≤ γ∥xt − x∗

t∥ (2.25)

where

γ = max
t=1,...,T

√
2M2(1− µs)St

µ
<

1√
2
. (2.26)

Proof: From the convergence rate in Theorem 2.1 (specifically equation (2.18)), we have

ft(xt+1)− f ∗
t ≤ (1− µs)St

[
ft(xt)− f ∗

t

]
Applying the quadratic growth inequality from Theorem 2.2 and taking the square root of
all sides, we obtain

∥xt+1−x∗
t∥≤

√
ft(xt+1)−f ∗

t

µ/2
≤

√
(1−µs)St

(
ft(xt)−f ∗

t

)
µ/2

.

Then, using the definition of M2 (2.21), we arrive at

∥xt+1−x∗
t∥≤

√
2M2(1− µs)St

µ︸ ︷︷ ︸
=γt

∥xt − x∗
t∥. (2.27)

Then γt <
1√
2

since St > log(µ/(4M2))/ log(1−µs).
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Algorithm 2.1 Online Projected Gradient Descent with Desirable Initialization

Require: x1 ∈ T1(µ, β, s), 0 < s < min{ 1
µ
, 1
β
}

1: for t = 1, 2, . . . , T do
2: Play xt

3: Set z0 = xt

4: for i = 1, ..., St do
5: Query ∇ft(zi−1)
6: Perform projected gradient descent update:

zi = ΠS [zi−1 − s∇ft(zi−1)]
7: end for
8: Set xt+1 = zSt

9: end for

The above lemma proves that given a sufficiently large St, we can make γ arbitrarily close
to zero, implying that the iterates can become arbitrarily close to the global minimizers at
different times. The trade-off is between accuracy and computation time, which is driven
by St. There is also an intuitive trade-off between the step size s and computation time:
smaller step sizes require more algorithmic iterations.

Lemma 2.3. Consider a sequence {xt}Tt=1 generated by Algorithm 2.1. Under Assump-
tions 2.1 and 2.2, if xt ∈ Tt(µ, β, s) for any t ∈ {1, 2, . . . , T − 1}, then xt+1 ∈ Tt+1(µ, β, s).

Proof: It is desirable to show that ∥xt+1 − x∗
t+1∥ < r, which ensures that xt+1 ∈ B(x∗

t+1, r).
By Lemma 2.1 (the robustness property of target sets), we have B(x∗

t+1, r) ⊂ Tt+1(µ, β, s).
One can write:

∥xt+1 − x∗
t+1∥ ≤ ∥xt+1 − x∗

t∥+ ∥x∗
t − x∗

t+1∥
≤ ∥xt+1 − x∗

t∥+ r̄

≤ ∥xt+1 − x∗
t∥+ r −

√
2M1ρt(µ, β, s)(1−µs)St

µ

≤

√
2
(
ft(xt+1)− f ∗

t

)
µ

+r−

√
2M1ρt(µ, β, s)(1− µs)St

µ

≤

√
2(1−µs)St

(
ft(xt)− f ∗

t

)
µ

+ r −

√
2M1ρt(µ, β, s)(1−µs)St

µ

≤ r +

√
2M1(1−µs)St

µ

(√
∥xt − x∗

t∥ −
√
ρt(µ, β, s)

)
≤ r
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where the second and third inequalities use Assumption 2.2, the fourth inequality applies
Theorem 2.2, the fifth inequality is due to Theorem 2.1, the sixth inequality applies the
bounded gradient assumption from Section 2.2.1, and the last inequality is due to (2.16).

Now, we present a dynamic regret bound for Algorithm 2.1.

Corollary 2.1. Consider a sequence {xt}Tt=1 generated by Algorithm 2.1. Under Assump-
tions 2.1 and 2.2, the dynamic regret satisfies the following inequality for every constant
η > 0:

RegdT (x1,...,xT )≤ min{A(1, T ), B(1, T )}, (2.28)

where

A(t1, t2) :=
M1

1− γ

t2∑
t=t1+1

∥x∗
t − x∗

t−1∥+
M1ρt1(µ, β, s)

(1− γ)
(2.29a)

B(t1, t2) :=
L+ η

1−2γ2

t2∑
t=t1+1

∥x∗
t − x∗

t−1∥2 +

∑t2
t=t1
∥∇ft(x∗

t )∥2

2η
+

(L+ η)ρt1(µ, β, s)
2

(2−4γ2)
(2.29b)

Proof: The proofs that A(1, T ) and B(1, T ) each upper-bound the dynamic regret obtained
by Algorithm 2.1 will follow the same lines of reasoning as Theorem 1 and Corollary 1
of [90] and Theorem 2 of [126], respectively. In these works, similar results are proved for
strongly convex functions. In the nonconvex setting considered in this paper, we will utilize
Lemma 2.2 and Lemma 2.3 in our proofs.

Proof of the inequality RegdT (x1,...,xT ) ≤ A(1, T ): By the Intermediate Value The-
orem, there exists y ∈ {z | z = ωxt + (1− ω)x∗

t , 0 ≤ ω ≤ 1} such that ft(x) − ft(x
∗
t ) =

∇ft(y)T (xt−x∗
t ). Therefore, by applying the bounded gradient assumption in Section 2.2.1,

we have

Regd
T (x1, ...,xT ) ≤M1

T∑
t=1

∥xt − x∗
t∥. (2.30)
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Next we establish an upper bound on the summation in (2.30):

T∑
t=1

∥xt − x∗
t∥ = ∥x1 − x∗

1∥+
T∑
t=2

∥xt − x∗
t∥

≤ ∥x1 − x∗
1∥+

T∑
t=2

∥xt − x∗
t−1∥+

T∑
t=2

∥x∗
t − x∗

t−1∥

≤ ∥x1 − x∗
1∥ − γ∥xT − x∗

T∥+ γ
T∑
t=1

∥xt − x∗
t∥+

T∑
t=2

∥x∗
t − x∗

t−1∥

=⇒
T∑
t=1

∥xt − x∗
t∥ ≤

∥x1 − x∗
1∥ − γ∥xT − x∗

T∥
1− γ

+
1

1− γ

T∑
t=2

∥x∗
t − x∗

t−1∥ (2.31)

≤ ρ1(µ, β, s)

1− γ
+

1

1−γ

T∑
t=2

∥x∗
t − x∗

t−1∥ (2.32)

The first inequality invokes the triangle inequality. The second inequality applies Lemma 2.2
for each t = 1, . . . , T and re-indexes the summation. This application of Lemma 2.2 is derived
by recursively applying Lemma 2.3 to the requirement that x1 ∈ T1(µ, β, s). We rearrange
terms to arrive at (2.31) and then apply the definition of the reach of the target set (2.16)
to achieve the final inequality. Combining (2.32) with (2.30) completes the proof.

Proof of the inequality RegdT (x1,...,xT ) ≤ B(1, T ): Beginning with the L-Lipschitz conti-
nuity of ∇ft and basic fact that (∥∇ft(x∗

t )∥ − η∥xt − x∗
t∥)2 ≥ 0, one can write:

T∑
t=1

ft(xt)− f ∗
t ≤

T∑
t=1

∥∇ft(x∗
t )∥∥xt − x∗

t∥+
L

2
∥xt − x∗

t∥2

≤ 1

2η

T∑
t=1

∥∇ft(x∗
t )∥2 +

L+η

2

T∑
t=1

∥xt−x∗
t∥2. (2.33)

Following similar steps to those used to bound
∑T

t=1 ∥xt − x∗
t∥ above, we can establish the

following bound:

T∑
t=1

∥xt−x∗
t∥2 ≤

∥x1−x∗
1∥2

1−2γ2
+

2
∑T

t=2 ∥x∗
t−x∗

t−1∥2

1−2γ2
. (2.34)

Combining (2.34) with (2.33) and using the definition of the reach of the target set (2.16)
completes the proof.

Observe that the dynamic regret is a function of the temporal variation in the optimal
decision, a common measure of variation discussed in the introduction. A(1, T ) is a function
of the path length, while B(1, T ) depends on the squared path length. The (squared) path
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length is weighted by a function of γ that is large when γ is close to 1/
√

2 and is approxi-
mately one when γ is close to 0. Again, this trade-off between the strength of the dynamic
regret bound and computation time is driven by St. If some function ft does not have a
unique global minimum, as stated in Section 2.2.1, but instead has multiple disconnected
global minimizers each satisfying Assumptions 2.1 and 2.2 for their associated target sets,
Corollary 2.1 holds under the updated criteria that x1 is in the union of target sets (each
target set corresponding to a global minimizer at t = 1).

2.3.2 Scenario 2 - Blind Initialization

The initialization scenario described in Scenario 1 – that a point in the target region is
known at the initial time – is difficult to satisfy in practice. The reason is that the decision
maker may have no information about how their adversary will design f1. In this case, it
is advantageous to explore the landscape of ft before selecting decision xt+1. Algorithm 2.2
explores by running the projected gradient descent algorithm from multiple initial points,
which are sampled uniformly at random from S and stored in the set Wt.

The goal of exploration is to find a point in a time-varying target set. The decision maker
cannot verify when this occurs, however, since they do not have knowledge of the landscape
of the function. As a result, Algorithm 2.2 utilizes memory, in the form of the set Mt, to
make available at time t+ 1 points which may be in the target set at time t. Once a point in
a time-varying target set is sampled, memory ensures that the decision maker has at least
one initial point (a point in the set Yt) in the target set of each future time step. Specifically,
if yk

t is in the target set for time t, the first while loop condition paired with the construction
of Mt+1 guarantees that zk

∗ is used as an initial point at time t + 1, and the second while
loop condition ensures that zk

∗ is in the target set for time t+ 1. This tracking guarantee is
formalized in the following lemma.

Lemma 2.4. Consider sequences {xt}Tt=1 and {Yt}Tt=1 generated by Algorithm 2.2. Under
Assumptions 2.1 and 2.2, if zk

0 ∈ (Tt(µ, β, s) ∩ Yt) for any t ∈ {1, 2, . . . , T − 1}, then zk
∗ ∈

(Tt+1(µ, β, s) ∩ Yt+1).

Proof: The number of iterations Ikt is at least as large as St. Therefore, applying the same
logic as the proof of Lemma 2.3, we know that zk

Ikt
∈ Tt+1(µ, β, s). By Theorem 2.1, we have

ft(z
k
0) ≥ ft(z

k
1) ≥ · · · ≥ ft(z

k
St

) ≥ ft(z
k
Ikt

) with zk
i = zk

i+1 only if zk
i = x∗

t . This implies that

zk
∗ = zk

Ikt
. It remains to show that zk

∗ ∈ Yt+1. If zk
∗ = xt+1, then zk

∗ ∈ Yt+1. Otherwise, since

zk
0 ∈ Tt(µ, β, s), it holds that ck ≤ f ∗

t + ϵ ≤ cK + ϵ, which implies zk
∗ ∈ Mt+1 ⊂ Yt+1. As a

result, zk
∗ ∈ Yt+1, which completes the proof.

Since Algorithm 2.1 is a deterministic algorithm, the dynamic regret bound established
in Corollary 2.1 is deterministic too. Algorithm 2.2 relies on sampling, and therefore its
associated regret bound should be probabilistic. In the following culminating theorem, we
provide an upper bound on the dynamic regret accrued using Algorithm 2.2 and a lower
bound on the probability with which this bound holds.
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Algorithm 2.2 Online Projected Gradient Descent with Random Exploration

Require: x1 ∈ S, M1 = ∅, m1 = 0, 0 < s < min{ 1
µ
, 1
β
}

1: for t = 1, 2, . . . , T do
2: • Play xt

3: • Create Wt = {w1
t , . . . ,w

q
t} by uniformly sampling q random points from S

4: • Set Yt =Wt

⋃
Mt

⋃
{xt} := {y1

t , ...,y
q+mt+1
t }

5: for k = 1, 2, . . . , q +mt + 1 do
6: • Initialize zk

0 = yk
t , zk

∗ = yk
t , ck =∞, bk = −∞

7: • Set i = 1
8: while ck − bk > ϵ or i ≤ St do
9: • Query ∇ft(zk

i−1)
10: • Compute zk

i = ΠS
[
zk
i−1 − s∇ft(zk

i−1)
]

11: • Query cki = ft(z
k
i )

12: if cki < ck then
13: • zk

∗ = zk
i , ck = cki

14: end if
15: • bki =

(
ft(z

k
i )−(1−µs)i ft(zk

0)
)
/(1−(1−µs)i)

16: • Update bk = max{bk, bki }
17: • Update i = i+ 1
18: end while
19: • Set Ikt = i
20: end for
21: • Let K = argmink ck, and set xt+1 = zK

∗
22: • Store in memory all other points in {zk

∗}
q+mt+1
k=1 which could be in the proximal-PL

region at time t:
Mt+1 ={zk

∗ :ck≤cK + ϵ, k∈{1, ..., q+mt+1} \K}
23: mt+1 = |Mt+1| (Note: mt+1 ≤ qt)
24: end for

Theorem 2.3. Consider a sequence {xt}Tt=1 generated by Algorithm 2.2. Under Assump-
tions 2.1 and 2.2, the dynamic regret satisfies the following probabilistic bound for all T̄ ∈
{1, . . . , T}:

P
[
RegdT (x1, . . . ,xT ) ≤ RegdT̄−1(x1, . . . ,xT̄−1) + min{A(T̄ , T ), B(T̄ , T )}

]
(2.35)

≥ 1−
T̄∏
t=1

(
1−Vol(Tt(µ, β, s))

Vol(S)

)q

,

where Vol(·) indicates the volume of the set. This theorem relates the dynamic regret at
time T to the dynamic regret at an earlier time T̄ , the variation within the optimal decision
sequence after T̄ , and the relative sizes of the target sets through T̄ .
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Proof: The probability that a point located in the time-varying target set Tt(µ, β, s) appears
in Yt by time T̄ is related to the volumes of Tt(µ, β, s) and S because, at each time step, q
initial points are selected from S uniformly at random. Hence,

P
[
Yt ∩ Tt(µ, β, s) ̸=∅ for some t∈{1, . . . , T̄}

]
(2.36)

≥ P
[
Wt ∩ Tt(µ, β, s) ̸=∅ for some t∈{1, . . . , T̄}

]
= P

[
T̄⋃
t=1

q⋃
i=1

wi
t ∈ Tt(µ, β, s)

]
= 1−P

[
wi

t /∈Tt(µ, β, s) ∀t=1, . . . , T̄ ,∀i=1, . . . , q
]

= 1−
T̄∏
t=1

(
1− Vol(Tt(µ, β, s))

Vol(S)

)q

(2.37)

Now, we will show that if Yt∩Tt(µ, β, s) ̸=∅ for some t∈{1, . . . , T̄}, then the dynamic regret
is upper bounded by the expression in (2.35). Applying Lemma 2.4 and Corollary 2.1 yields
that

Regd
T (x1, . . . ,xT ) =

T̄−1∑
t=1

(ft(xt)− f ∗
t ) +

T∑
t=T̄

(ft(xt)− f ∗
t )

=Regd
T̄−1(x1, . . . ,xT̄−1) +

T∑
t=T̄

(ft(xt)− f ∗
t )

≤Regd
T̄−1(x1, . . . ,xT̄−1)+ min{A(T̄ , T ), B(T̄ , T )} (2.38)

This completes the proof.
Observe that the strength of this probabilistic bound depends on the landscape of loss

functions around the global solution through the volume of the target sets. In particular, one
can analyze the role that a “lower-complexity problem” at some time T̄ plays in determining
the complexity of the entire online nonconvex optimization. As an extreme but important
case, suppose that there is a time T̄ ∈ {1, . . . , T} such that fT̄ is convex. Then the dynamic
regret bound (2.35) holds with probability 1 since Tt(µ, β, s) = S. In other words, the exis-
tence of a single convex problem, in between the sequence of nonconvex problems, is enough
to break down the NP-hardness of solving nonconvex problems for all future times, under
the steadiness of the global solution assumption. On the other hand, if the global solution
is extremely “sharp” at all times, it is unrealistic to expect any algorithm with limited com-
putation time to find the global solution. Thus, dynamic regret could be arbitrarily large
in this case. Indeed, the target set of a sharp minima is small and therefore the probability
of satisfying the dynamic regret bound in (2.35) is low, as expected. If some function ft
does not have a unique global minimum, as stated in Section 2.2.1, but instead has multiple
disconnected global minimizers each satisfying Assumptions 2.1 and 2.2 for their associated
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target sets, Theorem 2.3 holds with the union of target sets (each target set corresponding
to a global minimizer at t) replacing the single target set Tt(µ, β, s).

Choices for the step size s, number of iterations St, and number of samples q, represent
trade-offs between regret bound strength and computation time. As discussed in Section
2.3.1, a smaller step size requires more algorithmic iterations to satisfy Assumption 2.2.
Increasing the number of iterations may increase the time to execute the while loop (line
8). However, larger values of St improve the upper bound on dynamic regret in (2.35) by
reducing γ. Increasing the number of random initial points improves the probability with
which (2.35) holds, but also increases computation time of in the inner for loop, which is
executed up to qt+ 1 times.

2.3.3 Empirical Study of Algorithm 2.2

The objective of this section is to support the results of Section 2.3.2 through numerical
analysis. We will illustrate the performance of Algorithm 2.2 on online function sequences
which satisfy the assumptions in Section 2.2.1 and Assumptions 2.1 and 2.2. To demon-
strate the role that a single comparatively low-complexity problem can play in a sequence
of nonconvex problems, we will consider two cases:

A) “No low-complexity problem”: In this case, {ft : R2 → R}40t=1 each have many local
minima over S = [−1, 3]× [−1, 3] and the target sets’ volumes represent between 2.47%
and 4.14% of the feasible space. The geometry of f1, . . . , f6, which are representative
of the entire sequence, is shown in Figure 2.3.

B) “Lower-complexity problem at time 4”: In this case, {f̄t : R2 → R}40t=1 is identical to
Case A at every time period except t = 4. The target set corresponding to f̄4 covers
20.7% of the feasible space. Meanwhile, x∗

4 is the same in both scenarios.

The parameter choices and key problem constants for these two online optimization problems
are summarized in Table 2.1.

S µ β s ϵ r St(max) L M1 ∥x∗
t−x∗

t−1∥
[−1, 3]2 0.5 289 0.0031 0.1 0.29 7060 289 140 0.22

Table 2.1: Parameter and constant values for the empirical study of Algorithm 2.2

We conducted 500 trials of Algorithm 2.2 on Case A and Case B for 3 different sam-
pling rates: q = 1, q = 2, and q = 5. Figure 2.4 plots the empirical probability that
Yt ∩ Tt(µ, β, s) ̸= ∅ versus the theoretical lower bound provided in Theorem 2.3. (Note
that, by Lemma 2.4, this is the same as the probability that Yt ∩ Tt(µ, β, s) ̸= ∅ for some
t̄∈{1, . . . , t}.) For the same value of q, the two cases are identical for t = 1, 2, 3 and diverge
at t = 4 as a result of the “easy” problem in Case B. These results support Theorem 2.3.
A gap between the lower bound and observed likelihood of initializing in the target region
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Figure 2.3: Contour plots of f1, . . . , f6 for Case A. The red star marks the unique global
minimum of each function.

is expected, since the lower bound does not account for the possibility that xt or a memory
point may be in the subsequent target set. The dynamic regret and optimality gap over time
is shown in Figure 2.5. Regret accumulates quickly until the target set is found and then
accumulates slowly as Algorithm 2.2 starts tracking the global solution.

2.4 Conclusion

In this paper, we defined proximal-PL regions and target sets, characterized their proper-
ties, and used this new knowledge to propose and analyze algorithms for online nonconvex
optimization problems. Linear convergence to the global minimizer and quadratic growth
are the two key properties of the target sets that we established. Since dynamic regret can
be arbitrarily large when there are no restrictions on the loss functions, we constrain con-
secutive functions to have global solutions which are not too far apart, but do not limit the
variation in the loss functions otherwise. In this setting, we propose two online algorithms.
Algorithm 2.1 is relevant when the decision maker has a good initial point, and it provides
a deterministic dynamic regret upper bound as a function of the temporal variation in the
optimal decision sequence. Algorithm 2.2 utilizes exploration and memory to be relevant
regardless of the initial point. It provides a probabilistic dynamic regret upper bound, which
is also a function of the temporal variation in the optimal decision sequence. The strength
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of this probabilistic bound depends on the loss function landscapes. For example, the bound
holds with probability 1 in the special case where one of the loss functions in the sequence
is convex. Empirical studies support these bounds.
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Figure 2.4: Empirical validation of Theorem 2.3 probability bound
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Figure 2.5: Empirical regret resulting from Algorithm 2.2
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Appendix

2.A Proof of Theorem 2.2

Take the function f to be any ft, t ∈ {1, . . . , T}. Define the function g(x) :=
√
f(x)− f ∗

and

ẋ(ℓ) = ΠTS(x(ℓ))

(
− 1

β
∇f(x(ℓ))

)
, ∀ℓ ≥ 0 (2.39)

with x(0) = x. Then, by the fundamental theorem of calculus, we have√
f(x)− f ∗ = g(x)−g(x∗) = −

∫ ∞

0

d

dℓ
g(x(ℓ)) dℓ = −

∫ ∞

0

∇f(x(ℓ))

2g(x(ℓ))
· ẋ(ℓ) dℓ (2.40)

The following lemma will be used to establish a lower bound on the term inside the
integral.

Lemma 2.5. Consider the projected gradient flow (2.39) with x(0) ∈ S. There exists a
unique solution x(ℓ) to this projected dynamical system, and

〈
∇f(x(ℓ)), ẋ(ℓ)

〉
=
−1

2β
· lim
h→∞
D(x(ℓ), h)−β ∥ẋ(ℓ)∥2

2
. (2.41)

Proof: The existence and uniqueness of the solution of the projected dynamical system
(2.39) is guaranteed by [92, Thm. 2.5] under the assumptions in Section 2.2.1. Let {x(ℓ)}ℓ≥0

denote the unique solution to (2.39), and

xϵ(ℓ) := ΠS

(
x(ℓ)− ϵ

β
∇f(x(ℓ))

)
= argmin

y∈S

[
⟨y − x(ℓ),∇f(x(ℓ))⟩ϵ+

β∥y − x(ℓ)∥2

2

]
Then, it follows from [53, Sec III Prop. 5.3.5] that

lim
ϵ↓0

xϵ(ℓ)− x(ℓ)

ϵ
= ΠTS(x(ℓ))

(
− 1

β
∇f(x(ℓ))

)
,
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where TS(x(ℓ)) is the tangent cone of S at x(ℓ) ∈ S. By the definition of the proximal-
gradient,

lim
h→∞
D(x(ℓ), h) = lim

ϵ↓0
D(x(ℓ), β/ϵ)

= lim
ϵ↓0

−2β

ϵ
·min

y∈S

[
⟨∇f(x(ℓ)),y−x(ℓ)⟩+ β

2ϵ
∥y−x(ℓ)∥2

]
= lim

ϵ↓0

−2β

ϵ2
·min

y∈S

[
⟨∇f(x(ℓ)),y−x(ℓ)⟩ϵ+β

2
∥y−x(ℓ)∥2

]
= lim

ϵ↓0

−2β

ϵ2
[
⟨∇f(x(ℓ)),xϵ(ℓ)−x(ℓ)⟩ϵ+β

2
∥xϵ(ℓ)−x(ℓ)∥2

]
= −2β

[
⟨∇f(x(ℓ)), ẋ(ℓ)⟩+β

2
∥ẋ(ℓ)∥2

]
,

where the last equation is due to the continuity of ∥ · ∥2. Rearranging the above equation
yields the desired result.

Returning to the proof of Theorem 2.2, next we establish a lower bound on the term
inside the integral in (2.40).

−∇f(x(ℓ))

2g(x(ℓ))
· ẋ(ℓ) = − 1

2g(x(ℓ))

〈
∇f(x(ℓ)),ΠTS(x(ℓ))

(
− 1

β
∇f(x(ℓ))

)〉
=

1

2g(x(ℓ))

(
1

2β
lim
h→∞
D(x(ℓ), h)+

β

2

∥∥∥∥ΠTS(x(ℓ))

(
− 1

β
∇f(x(ℓ))

)∥∥∥∥2
)

≥ 1

2g(x(ℓ))

(
D(x(ℓ), β)

2β
+
β

2

∥∥∥∥ΠTS(x(ℓ))

(
− 1

β
∇f(x(ℓ))

)∥∥∥∥2
)

≥ 1

2g(x(ℓ))

(
µ

β
g(x(ℓ))2 +

β

2

∥∥∥∥ΠTS(x(ℓ))

(
− 1

β
∇f(x(ℓ))

)∥∥∥∥2
)

≥
√
µ

2

∥∥∥∥ΠTS(x(ℓ))

(
− 1

β
∇f(x(ℓ))

)∥∥∥∥ .
The first equality follows from the definition of the gradient flow system and the second
equality is due to Lemma 2.5. The first inequality holds because of Lemma 1 of [62]. The
second inequality applies the fact that x(t) satisfies the proximal-PL inequality with the
parameters µ and β. The third inequality is the result of the arithmetic-geometric mean
inequality. Finally, substituting this lower bound into (2.40) gives√

f(x)− f ∗ ≥
√
µ

2

∥∥∥∥∫ ∞

0

ΠTS(x(ℓ))

(
− 1

β
∇f(x(ℓ))

)
dℓ

∥∥∥∥
=

√
µ

2

∥∥∥∥∫ ∞

0

ẋ(ℓ) dℓ

∥∥∥∥ =

√
µ

2
∥x− x∗∥.

This completes the proof.



CHAPTER 2. DYNAMIC REGRET BOUNDS FOR CONSTRAINED ONLINE
NONCONVEX OPTIMIZATION BASED ON POLYAK- LOJASIEWICZ REGIONS 28

2.B Proof of Lemma 2.1

In this proof, the dependency of the sets RPD
t and RPC

t on the parameters (µ, β, s) has been
omitted in order to simplify notation. The assumption at the end of Section 2.2.2 establishes
the existence of r1 > 0 such that (B(x∗

t , r1) ∩ S) ⊂ Pt(µ, β). It can be concluded from
Proposition 8.5 and Lemma 8.3 in [49], and the initial assumptions that ft is continuously
differentiable and S is compact, that the projected gradient flow system described in (2.13)
converges to the set of critical points of (2.1) and the sublevel sets of ft are invariant under
this system. Define l̄t as the second-lowest objective value among all critical points of (2.1).
Since f ∗

t < l̄t, there exists an r2 > 0 such that

(B(x∗
t , r2) ∩ S) ⊂ Lt(l̄t) and

(B(x∗
t ,min{r1, r2}) ∩ S) ⊂ RPC

t .

Meanwhile, Lemma 2.6 (see Appendix 2.C) and its proof show that there exists an open
set SD

t ⊂ RAD
t such that x∗

t ∈ SD
t ⊂ (B(x∗

t , ϵ) ∩ S) for arbitrary ϵ. Take ϵ = r1. Then by
definition of an open set, for some r3 > 0,

(B(x∗
t , r3) ∩ S) ⊆ SD

t ⊂ RPD
t .

If αt > f ∗
t , then Lt(αt) ⊇ (B(x∗

t , r4) ∩ S) for some r4 > 0, and r = min{r1, r2, r3, r4}
satisfies Lemma 1. Thus, it remains to show that ∃α′

t > f ∗
t satisfying statement (2.15), since

αt ≥ α′
t. Define r̄ := min{r1, r2, r3} and take α′

t = f ∗
t + r̄µ/2. By Theorem 2.2,

∥y − x∗
t∥2 ≤ r̄ ∀y ∈ Lt(α

′
t)

which is equivalent to

Lt(α
′
t) ⊂ (B(x∗

t , r̄) ∩ S).

Therefore, Lt(α
′
t) = Lt(α

′
t) ∩RPD

t ⊂ RPC
t , completing the proof.

2.C Capture property

Lemma 2.6. Let f be a continuously differentiable function on a compact, convex set S.
Let {xk} be a sequence of points in S satisfying f(xk+1) ≤ f(xk) generated by the projected
gradient descent method xk+1 = ΠS(x

k − s∇f(xk)), which is convergent in the sense that
every limit point of such sequences is a stationary point of f(x). Let x∗ be a local minimum
of minx∈S f(x), which is the only stationary point within some open set. Then there exists
an open set B containing x∗ such that if xk̄ ∈ B for some k̄ ≥ 0, then xk ∈ B for all k ≥ k̄
and {xk} → x∗.
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Proof: Let ρ > 0 be a constant such that

f(x∗) < f(x), ∀x ̸= x∗ with ∥x− x∗∥ ≤ ρ.

For every δ ∈ [0, ρ], define

ϕ(δ) = min
{x|δ≤∥x−x∗∥≤ρ}

f(x)− f(x∗).

Note that ϕ(δ) is a monotonically non-decreasing function of δ, and that ϕ(δ) > 0 for all
δ ∈ (0, ρ]. Given any ϵ ∈ (0, ρ], let r ∈ (0, ϵ] be such that

∥x− x∗∥ < r ⇒ ∥x− x∗∥+
1

β
∥∇f(x)∥ < ϵ.

Consider the open set

B = {x ∈ S | ∥x− x∗∥ < ϵ, f(x) < f(x∗) + ϕ(r)}.

We claim that if xk ∈ B for some k, then xk+1 ∈ B. In order to prove the claim, assume that
xk ∈ B. Then,

ϕ(∥xk − x∗∥) ≤ f(xk)− f(x∗) < ϕ(r),

where the first inequality is due to ϕ(∥xk − x∗∥) = min{x|∥xk−x∗∥≤∥x−x∗∥≤ρ} f(x) − f(x∗) ≤
f(xk)− f(x∗) and the second inequality is due to the fact that xk ∈ B. Since ϕ(·) is mono-
tonically non-decreasing, the above statement implies that ∥xk − x∗∥ < r, which means
that

∥xk − x∗∥+
1

β
∥∇f(xk)∥ < ϵ. (2.42)

We also know that

∥xk+1 − x∗∥ = ∥(xk+1 − xk) + (xk − x∗)∥
≤ ∥xk+1 − xk∥+ ∥xk − x∗∥

= ∥ΠS(x
k − 1

β
∇f(xk))− ΠS(x

k)∥+ ∥xk − x∗∥

≤ ∥
(
xk − 1

β
∇f(xk)

)
− xk∥+ ∥xk − x∗∥ (2.43)

= ∥ 1

β
∇f(xk)∥+ ∥xk − x∗∥ < ϵ

where equation (2.43) follows from the non-expansive property of the projection opera-
tor (when projected onto convex sets) and the final inequality follows from applying equa-
tion (2.42). Therefore by induction, this implies that if xk̄ ∈ B for some k̄, we have xk ∈ B
for all k ≥ k̄. Let B be the closure of B. Since B is compact, the sequence {xk} will have at
least one limit point, which by assumption must be a stationary point of minx∈S f(x). The
only stationary point of minx∈S f(x) within B is x∗ since ∥x − x∗∥ < ϵ ≤ ρ for all x ∈ B.
Hence, xk → x∗.
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Chapter 3

Smoothing Property of Load
Variation Promotes Finding Global
Solutions of Time-Varying Optimal
Power Flow

3.1 Introduction

Optimal power flow (OPF) is a large-scale optimization problem at the core of the daily
operation of power systems world-wide. OPF aims to find a cost-minimizing operating point
for a power system, subject to various operational and security constraints [91]. The OPF
problem is challenging because of its nonconvexity and the frequency at which it is solved [8].
Because demand across the system is constantly in flux, the OPF problem is solved every
few minutes to match the system’s power generation with its latest demand profile. Noncon-
vex constraints in the AC model of OPF are the main impediment to solving the problem
efficiently and optimally. Physical laws govern these constraints, indicating nonconvexity
is inherent to the problem. In power systems [13, 128] and in machine learning [129], such
nonconvexity is known to give rise to poor local solutions. To realize the vision of sustainable
and resilient power grids, there is a pressing need to address the nonconvexity and timescale
of both existing and emerging optimization problems for the control and operation of the
grid. Since these problems are all built upon the power flow equations, we focus on OPF in
this paper.

With the goal of addressing the underlying nonconvexity of the problem, a recent line
of research has focused on approximating the problem as a single or sequence of convex
optimization problems. These works include quadratic convex [22], second-order conic pro-
gramming [66], and semidefinite programming [73, 108, 61] relaxations. Despite desirable
theoretical guarantees, the convex relaxations of OPF suffer from two major drawbacks:
1) Their global guarantees often come at the expense of higher runtimes or overly compli-
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cated implementations; 2) They do not account for the time-varying nature of demand. This
time-varying property poses additional constraints on the ramping capabilities of generators,
which in turn gives rise to coupled optimization problems.

On the other hand, research on multiperiod OPF, such as [68, 45], and dyanamic OPF,
such as [42, 23], endeavors to solve multiple such time-coupled OPF problems simultane-
ously. This leads to large problem formulations which are still nonconvex in nature. As a
result, solution strategies for these problems often rely on the convex relaxations discussed
previously in combination with receding horizon approaches or nonlinear programming algo-
rithms, which lack global optimality guarantees [68]. Another drawback is that the data for
all time periods must be specified at the outset. In practice, forecasts may not be adequately
accurate far in advance.

Real-time OPF is another approach which targets the timescale of OPF. In [110] a real-
time algorithm is used to track the optimal solution every few seconds in between traditional
OPF updates, which occur on a slower timescale ranging from every 5 to 30 minutes. It uses
new measurements of the decision variables’ values and constraints at every time step in
order to compute a correction and track the optimal solution. The correction is computed
by solving a quadratic optimization problem with one iteration of a quasi-Newton algorithm.
This has the advantage of responding quickly to fluctuations, but does not replace the need
to solve OPF on the traditional timescale. Other faster-timescale approaches to OPF-related
problems include [26, 12, 38].

In this work, which is positioned between MPOPF and real-time OPF, we consider time-
varying OPF with ramping constraints in an online fashion, where the load profile changes
over time. Unlike the previous convexification techniques, we solve the problem sequentially
using a simple local-search algorithm. Due to the nonconvex nature of the problem, the
local-search algorithm may return a spurious (non-global) local solution, thus leading to a
potentially large optimality gap. Previously in [34], we made the observation that for a
small system with time-varying demand, the solution trajectories of the time-varying OPF
stemming from four initial local solutions could converge over time. Here, we present an
extensive empirical study on a larger system with 16 spurious solutions using California load
data, and show that all feasible local solution sequences (also called trajectories) converge in
cost and value to the best solution. Notably, this phenomenon occurs despite the fact that
the problem has multiple point-wise poor local minima at key times. For this system, we
show that there is an escaping period in which different local solution trajectories converge
to a solution with lowest cost, followed by a tracking period in which the local trajectories
closely track the global solution.

This observation leads to an important phenomenon in time-varying OPF: load variation
enables the local solution trajectories to avoid poor solutions over time.1 In other words,
despite the highly nonconvex nature of the OPF problem at any given time, our numerical
algorithm acts on an implicitly smoothed and well-behaved variant of the problem, thereby

1Note that with constant (time-invariant) load, all the local solution trajectories will remain unchanged
over time.
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avoiding the undesirable local solutions over time. We will formalize this statement in the
paper by providing a backward-in-time mapping from the globally optimal solutions of OPF
at a given time (namely, end of the escaping period) to the set of desirable initial points. By
leveraging its special structure, we show that the proposed backward mapping may act as
a stochastic gradient ascent algorithm on an implicitly convexified formulation of the OPF
problem, which in turn explains why local solution trajectories could avoid poor solutions
over time. This work is the first studying the role of data variation in reducing the complexity
of power optimization problems. Since it relies on simple local search methods, the solution
techniques have extremely low memory and time complexities and can also be implemented
in a distributed setting to accommodate the distributed nature of future grids [5].

3.2 Empirical Study of Time-Varying OPF

In this section, we analyze the local solution trajectories of time-varying OPF primarily
for a 39-bus system. A secondary analysis on a 9-bus system is also shared to highlight
that the observed behavior is not unique to the 39-bus system. The solution trajectories of
time-varying OPF are constructed by sequentially solving a series of optimization problems
with time-varying demand levels using a local-search algorithm. California load data and
synthetic load scenarios are used to determine demand levels over time. To prevent the
solution from changing abruptly over a short period of time, the sequential optimization
problems are coupled via so-called ramping constraints, as we explain below.

3.2.1 Model and Algorithm Details

To examine the behavior of different local solution trajectories, we consider a modified version
of the IEEE 39-bus system, as introduced in [13]. Specifically, the real and reactive power
demands are reduced by 50%, voltage limits tightened from +/-6% to +/-5%, and the cost
functions associated with all generators are assumed to be linear. The OPF problem for this
system with a generation cost-minimizing objective and fixed demand values is known to
have 16 local solutions. In this work, we take into account the time-varying nature of the
load and scale all demands proportionally to a given load profile. Finally, we introduce the
ramping constraints that limit the change in power generation for each generator over time.

Starting from the 16 known initial local solutions, we constructed the sequences of lo-
cal trajectories using the MATPOWER optimization toolbox [130] and fmincon sequential
quadratic programming solver2 in the following procedure. We ran Algorithm 3.1 for all 16
initial local solutions and obtained 16 different solution sequences, which are called discrete
local trajectories [34].

2Note that unlike many interior point methods that require strictly feasible initial points, fmincon

sequential quadratic programming gives a second-order critical point even if the initial point is not strictly
feasible.
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Algorithm 3.1 Algorithm for obtaining discrete local trajectories

Input: Power system model with a fixed initial point x0, demand curve, ramping constraint
specifications

Output: Discrete local trajectory {xt}Kt=0

1: Initialization : t = 1
2: for every 15-minute time increment over 24 hours do
3: Set demand constraints for each bus according to the demand curve at time t.
4: Set generator production limits based on xt−1 and the ramping constraint.
5: Solve the resulting cost-minimization OPF problem with fixed demand and initial

point xt−1 using fmincon. Upon feasibility, collect the solution as xt.
6: end for
7: return {xt}Tt=0

3.2.2 Behavior of Discrete Local Trajectories for a 39-bus
System with California Data

In this example, the shape of the demand curve is based on the California’s net load for
an average day in August 2019 [15] (Fig. 3.2.1). The reported actual hourly net load data
was interpolated linearly to produce a net load estimate for each 15-minute interval within
24 hours. The curve is normalized and shifted so that time 0 represents 3:00 a.m. Here,
the maximum magnitude of allowable change in power generation between two consecutive
time steps is 10% of the capacity of each generator. All 16 discrete local trajectories remain
feasible throughout the span of twenty-four hours. (This is not guaranteed, as local search
may not always find a feasible point or such point may not even exist.) Fig. 3.2.2 shows the
point-wise distance between these feasible trajectories and the feasible trajectory with the
lowest cost (labeled as Trajectory 2 ). Interestingly, all 16 trajectories converge to Trajectory
2 within nine hours.

Based on this observation, one may speculate that the problem becomes devoid of spuri-
ous local solutions over time. This is not the case for the considered problem. We uniformly
searched the feasible region of the problem without ramping constraints and verified that
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Figure 3.2.1: Average daily net load for California during August 2019 [15]
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Figure 3.2.2: Solution convergence for points on discrete local trajectories

there are multiple point-wise spurious local solutions for the point-wise (single time instance,
without ramping constraints) OPF problem at different times. In particular, there are many
local solutions around the escape time (hour 9) when the discrete local trajectories merge
into one trajectory. Fig. 3.2.3 shows the normalized objective cost values for different discrete
local trajectories, alongside the costs of the discovered point-wise local solutions. Despite
the existence of multiple sub-optimal operating points at different times, the discrete local
trajectories initialized at various local solutions result in the lowest cost values over time.
Fig. 3.2.4 examines the active and reactive power generation for two representative genera-
tors. This figure shows that the problem has point-wise local solutions with a wide range of
generation levels, highlighting the importance of finding the solution with the lowest cost.

Observe that most of the spurious point-wise local solutions have sharp and random
nature. In other words, they appear at different time-steps with various cost values, and
then quickly disappear after a short period of time. This implies that the landscape of
OPF may be highly nonconvex at any given time step. However, it can be observed that our
numerical algorithm is not affected by such sharp local solutions. To explain this phenomena,
we will show in Section 3.4 that the data variation enables the solver to act on a smoothed
version of the problem that is devoid of sharp local minima.

3.2.3 Behavior of Discrete Local Trajectories for a 9-bus System
with California Data

In this example, we consider a modified version of the IEEE 9-bus system with 4 known local
solutions to the OPF problem, as introduced in [13]. Specifically, the active and reactive
power demands are reduced by 40% and the lower bounds on reactive power compensation are
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Figure 3.2.3: Cost for points on discrete local trajectories and point-wise local solutions (for
a single instance of OPF), relative to the cost of the best trajectory

tightened to -5 Mvar. The demand data is a normalized and shifted version of California’s net
load for an average day in May 2019 [15] (Fig. 3.2.5a). Fig. 3.2.5b shows the relative objective
cost values for different discrete local trajectories, alongside the costs of the discovered point-
wise local solutions, produced using Algorithm 1 with a 5% ramping constraint. Again, we
observe that the load variation enables all trajectories to converge to the optimal trajectory.

3.2.4 Impact of Load Variation on 39-bus System

Next, we consider discrete local trajectories for three different load profiles on the same
39-bus system. Isolating the impact of load variation enables insight into how variation
creates trajectories that avoid poor solutions, as occurred in the previous examples. The
three demand curves used are sinusoidal functions with amplitudes representing 5%, 10% and
12% deviation from the initial load, as shown in the left column of Fig. 3.3.1. The ramping
constraint (i.e., maximum magnitude of allowable change in power generation between two
consecutive time steps) is 5% of the capacity of each generator. In each scenario, all 16
discrete local trajectories remain feasible throughout the time horizon (100 steps).

The results show that larger magnitudes of data variation lead to fewer poor solutions over
time. At 5% variation, 4 trajectories remain at 4 different poor solutions, while the remaining
12 trajectories converge to the best solution. At 10% variation, 3 trajectories converge to the
same poor solution, while the remaining 13 trajectories converge to the best solution. At 12%
variation, all 16 trajectories converge to the best known solution. These results are displayed
in the center column of Fig. 3.3.1, which shows the distance between each trajectory and
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Figure 3.2.4: Real and reactive power output of select generators: points on discrete local
trajectories and point-wise local solutions

the trajectory with the lowest cost, along with discovered point-wise local solutions. The
search for point-wise local solutions is done every fourth time step due to the significant
computational effort required to repeatedly solve the problem from a range of initial points.
Fig. 3.3.1 (right column) compares the number of point-wise local solutions with the number
of distinct3 trajectories over time. In these three cases, the number of distinct trajectories
decreases until it plateaus at the minimum number of point-wise local solutions found over the
entire period. This offers one potential explanation of how load variation creates trajectories
that escape poor solutions: In exploring a range of static problems, you may encounter one
or more times at which the problem has a favorable landscape4. At such times, the coupled
problem may escape a poor solution. Eventually, the number of poor trajectories is limited
by the number of spurious point-wise local solutions of the most favorable landscape.

3.3 Mathematical Analysis of Time-Varying OPF

The case study in Section 3.2 reveals an important property of the time-varying OPF prob-
lem: In the escaping period, different discrete local trajectories converge to the operating

3Solutions are considered distinct if the real or reactive power output at any generator differs by at least
1 MW or 1 MVAr, respectively, or if the voltage magnitude or angle at any bus differs by at least 10−3 p.u.
(345V) or 10−3 radians, respectively.

4The number of spurious point-wise local solutions is an indicator of how difficult a given static OPF
problem is. If only one point-wise local solution is found, the problem may be convex. However, the search
is not exhaustive, so other local minima with small regions of attraction may exist.
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(a) Average daily net load for California during May 2019 [15]
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Figure 3.2.5: Data and results for an empirical study on a 9-bus system

point with the lowest cost. Then, in the tracking period, the discrete local trajectories track
these globally optimal operating points, even if the load profile changes gradually over time.
Such tracking period has been studied in [86, 111], but the striking feature of power systems
is the existence of escaping periods.

To better understand this phenomenon, we analyze the problem structure mathemati-
cally. First, we reformulate the time-varying OPF as an unconstrained optimization problem
to enable the analysis. Using the derived unconstrained problem, we introduce a backward
mapping that characterizes the dynamics of the discrete local trajectories over time. We
show that the convergence of different local trajectories can be explained by the expansive
property of this backward mapping. Finally, in Section 3.4 we draw a novel connection
between our derived mapping and stochastic gradient ascent and use this insight to explain
that the behavior of the trajectories may be driven by some low-complexity averaged model
over a period, rather than the high-complexity OPF problems at each step.
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Figure 3.3.1: Three scenarios highlighting the role of load variation. The three plots for each
scenario are (left to right): load profile input, resulting discrete local trajectories and point-
wise local solutions (for a single instance of OPF), comparison of the number of point-wise
local solutions to the number of distinct discrete local trajectories.

3.3.1 Unconstrained Model for OPF with Fixed Demand

The AC model of OPF in a single time instance with fixed and predefined demand values
can be written compactly as an optimization problem with both equality and inequality
constraints:

min
x∈Rp

f(x) (3.1a)

s.t. h(x) = d ∈ Rn (3.1b)

g(x) ≤ 0 ∈ Rm (3.1c)

Here, x is the concatenation of the voltage angle and magnitude at each bus, as well as the
real and reactive power generation outputs for each generator. The equality constraint (3.1b)
ensures that the generated power meets the demand, where d is the vector of real and reactive
demand at each bus, and respects the underlying structure and physical constraints of the
network. The remaining constraints in the problem—including the upper and lower bounds
on the voltage magnitudes and degrees, power generation, and line flows—are captured
by the inequality constraint (3.1c). It is easy to verify that p > n. We refer the reader
to [91], [13] and [73] for more information on the exact formulation of the problem. Note
that f(x), h(x), and g(x) are continuously differentiable (piecewise linear cost functions can
be reformulated as such).

In order to analyze this optimization problem theoretically, it is desirable to convert it
to an unconstrained problem. First, we enforce the inequality constraints (3.1c) through a
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penalty in the objective function:

min
x∈Rp

f(x) + β

m∑
i=1

(
[gi(x)]+

)2
(3.2a)

s.t. h(x) = d ∈ Rn (3.2b)

where β > 0 serves as the penalization parameter, gi(·) is the ith element of g(·), and
[y]+ denotes max(y, 0). This choice of quadratic penalty function is inexact, meaning that
problem (3.2) is an approximation of problem (3.1). However, as β increases, each global
minimizer of (3.1) approaches a global minimizer of (3.2) under mild regularity conditions [9].
Second, we use the implicit function theorem [9] to complete the transformation to an un-
constrained model. Consider a feasible point x⋆ satisfying the Karush-Kuhn-Tucker (KKT)
conditions for (3.2). Assuming that constraint qualifications hold at x⋆, this vector can be
partitioned into two sub-vectors x⋆

B ∈ Rn and x⋆
R ∈ Rp−n such that the Jacobian of h(x⋆)

with respect to xB is invertible. Therefore, the implicit function theorem guarantees the ex-
istence of a unique differentiable function ϕ(·) such that xB = ϕ(xR) in a local neighborhood
of x⋆. Given such function, Problem (3.2) can be re-written as (see [9]):

min
xR∈Rp−n

f(ϕ(xR),xR) + β
m∑
i=1

(
[gi(ϕ(xR),xR)]+

)2
(3.3)

Enforcing the equality constraint (3.1b) directly using the implicit function theorem instead
of through penalization will be advantageous when we move to the time-varying setting.
Namely, it avoids amplifying the demand variation as scaling by a large penalization param-
eter would do. This is not an issue for the inequality constraint (3.1c) because it does not
vary in time.

Remark 3.1. Note that (3.3) cannot be formulated explicitly, due to the unknown nature
of the local solution x⋆ and the function ϕ(xR). Instead, this formulation serves as an
intermediate step to analyze the behavior of discrete local trajectories over time. In other
words, one would solve the OPF problem directly in practice, and the surrogate problem (3.3)
is designed to understand the properties of OPF.

3.3.2 Unconstrained Model for Time-Varying OPF

The above analysis reveals that, under some technical conditions, the OPF problem with
fixed load can be modeled as an unconstrained optimization problem (with a controllable
approximation error). In this subsection, we extend our analysis to time-varying OPF where
demand changes over time and the problem must respect ramping constraints. As previously
stated, ramping constraints ensure that the solution does not change too drastically from one
time step to the next. One way to softly impose ramping constraints is through a proximal
method, which penalizes the distance between the current and previous solutions in the
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objective function of the optimization [31]. Time-varying OPF with K equally-spaced time
steps t0 = 0, t1 = ∆t, ..., tK = K∆t (∆t > 0) can be written as the following sequence of
optimization problems:

min
xRk∈Rp−n

ftk(ϕtk(xRk),xRk) + α
∥∥∥xRk − x⋆

Rk
tk−1

∥∥∥2
2

+ β
m∑
i=1

([gi
(
ϕtk(xRk),xRk

)
]+)2 (3.4)

for k = 1, ..., K, where α > 0 is a penalization parameter and x⋆tk−1
=

[(
x⋆

Bk
tk−1

)⊤ (
x⋆

Rk
tk−1

)⊤]⊤
denotes an arbitrary local solution to Problem (3.4) obtained at time tk−1. In light of its
dependence on xRk , xBk is not regularized in this approximated model. Due to the time-
varying nature of the demand, the functions ftk(·) and ϕtk(·) may change over time, hence
they are indexed by time step.

To simplify the analysis, assume that the partition (Bk, Rk) does not change over time,
i.e., we have Bk = B and Rk = R for k = 1, ..., K. Then problem (3.4) can be written as

min
z∈Rp−n

Fk(z) + β
m∑
i=1

(
[Gk,i(z)]+

)2
︸ ︷︷ ︸

Γk(z)

+α ∥z− zk−1∥22 (3.5)

for k = 1, ..., K, where z = xRk , zk−1 = x⋆
Rk
tk−1

, Fk(z) := ftk(ϕtk(z), z), and Gk,i(z) :=
gi (ϕtk(z), z). If the partition changes, then the time interval [0, K∆t] should be divided into
sub-intervals, each with a constant partitioning of x. In this case, the argument presented
in Section 3.4 applies to each sub-interval.

3.3.3 Backward-In-Time Mapping

The above analysis reveals that a local-search algorithm used to solve the time-varying OPF
implicitly aims to recover a stationary point of the unconstrained problem (3.5). Therefore,
we focus on (3.5) in our subsequent analysis. Consider a given time step T∆t, representing
the end of the escaping period. Then, a sequence of stationary points {zk}Tk=1 for (3.5)
satisfies

0 = ∇Γk(zk) + 2α(zk − zk−1) (3.6)

for every k = 1, 2, . . . , T (where ∇ is the gradient operator). Note that Γk(·) is differentiable.
Therefore, given the solution zk−1, this equation defines an implicit nonlinear formula for
obtaining zk which cannot be written in closed form. However, going backward in time, one
can express zk−1 in terms of zk:

zk−1 = zk +
1

2α
∇Γk(zk) := Mk(zk) (3.7)
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This gives rise to the following end-to-end backward mapping from zT to the initial point z0

via the composition operator ◦:

z0 = M1 ◦M2 ◦ · · · ◦MT (zT ) (3.8)

Provided that the mapping M1 ◦ · · · ◦MT (zT ) is expansive enough when applied to a
small neighborhood of a global solution of OPF at time T∆t, a large set of initial points
(even multiple local solutions of OPF at time 0) are guaranteed to converge to that small
neighborhood of the globally optimal solution of the problem at time T∆t. This expansive
nature of the mapping implies the escape of spurious local solutions between time 0 and
time T∆t. The global solutions at future times after T∆t will be tracked successfully if the
data variation is not too high [86]. This expansive property can be observed in the empirical
study conducted in Section 3.2 on the modified IEEE 39-bus and 9-bus system under both
California load data and synthetic sinusoidal loads.

3.4 Connection to Stochastic Gradient Ascent

This section aims to explain how data variation plays a key role in escaping spurious local
solutions of time-varying OPF. Specifically, we will show that the backward mapping (3.7)
can be treated as a variant of stochastic gradient ascent on a smoothed version of the function
ΓT (z). This gives rise to the following important observation:

A certain level of stochasticity in {Γk(z)}Tk=1 over time may enable the stationary points
{zk}Tk=1 to escape “sharp” local minima over time.

To explain this phenomenon, we first introduce the smoothing property of the stochastic
gradient descent (SGD) algorithm.

Smoothing property of SGD: Recently, [65] proposed an alternative viewpoint to SGD
and its ability to avoid spurious sharp local minima. Given an initial point z0, suppose our
goal is to find a global minimum of a (time-invariant) function Γ(z) using SGD. Accordingly,
the iterations of SGD can be written

zk+1 = zk − η(∇Γ(zk) + ωk) ∀k ∈ {0, 1, 2, . . . } (3.9)

where ωt is a bounded random variable with zero mean and η is a predefined step size.
Upon defining z̃k = zk − η∇Γ(zk), one can write the above iterations (3.9) in terms of the
intermediate sequence {z̃k}:

z̃k+1 = z̃k − ηωk − η∇Γ(z̃k − ηωk),∀k ∈ {0, 1, 2, . . . } (3.10)

To analyze the average behavior of SGD, consider the evolution of Eωk
(z̃k+1), where the

expectation is taken over ωk conditioned on {ω0, . . . , ωk−1}. Hence,

Eωk
[z̃k+1] = z̃k − η∇Eωk

[Γ(z̃k − ηωk)] ,∀k ∈ {0, 1, 2, . . . } (3.11)
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Therefore, on average, SGD acts as the exact gradient descent on the surrogate function
Eωk

[Γ(z̃k − ηωk)]. Comparing this function with Γ(z), one can verify that the former is
a smoothed version of the latter, where the smoothness is due to the convolution of Γ(z)
with the probability density function of the random variable ωk. As illustrated in [65], such
convolution may give rise to (one-point) strong convexity of Eωk

[Γ(z̃k − ηωk)] with respect to
the globally optimal solution, which in turn guarantees the convergence of {z̃k} (and hence
{zk}) to a small neighborhood around the global solution, even in the presence of sharp
local minima. A key takeaway from this observation is that Γ(z) can possess multiple sharp,
poor local minima, and yet its smoothed version Eωk

[Γ(z̃k − ηωk)] may be devoid of such
solutions.

Time-varying optimization and time-varying OPF: Returning to time-varying
OPF and the backward mapping (3.7), we assume that the variation in {∇Γk(z)}Tk=1 follows
a stochastic process indexed by the time k. In particular, we write ∇Γk(z) − ∇Γk+1(z) =
ζk(z) + ωk, where ζk(z) is a deterministic, time-varying function and ωk is a bounded ran-
dom variable with zero mean. Such assumption is realistic in power systems, where demand
can be modeled as a deterministic, time-varying function capturing the average demand be-
havior, together with an additive stochastic term accounting for its random nature. The
iteration (3.7) is equivalent to

zk =zk+1 +
1

2α
∇ΓT (zk+1)

+
1

2α

T−1∑
τ=k+1

(∇Γτ (zk+1)−∇Γτ+1(zk+1))︸ ︷︷ ︸
ζτ (zk+1)−ωτ

(3.12)

which can be written as the following dynamical model:

zk = zk+1 +
1

2α
∇ΓT (zk+1) +

1

2α
νk+1(zk+1) (3.13a)

νk+1(zk+1) = νk+2(zk+1) + ζk+1(zk+1)− ωk+1 (3.13b)

where νk+1(zk+1) is referred to as the variation process. In particular, (3.13b) defines ex-
plicit dynamics for the variation process comprised of three parts. The first term νk+2(zk+1)
captures the correlation between the variation processes at times tk+1 and tk+2. The second
term ζk+1(zk+1) captures the bias that is added to the variation process at time tk+1. Lastly,
the third term ωk+1 ∼ W (zk+1) is an independent noise injected into the variation process
at time tk+1 (also referred to as effective noise). Comparing (3.13) with (3.9), one can verify
that (3.13) reduces to stochastic gradient ascent if νk+2(zk+1) + ζk+1(zk+1) = 0. Therefore,
if ωk+1 dominates the first two terms, (3.13) resembles an approximate version of stochastic
gradient ascent applied to ΓT (z); otherwise, it is a biased and correlated version of SGD [20].
Similar to (3.11), this implies that, on average, the points generated via the backward map-
ping (3.7) would be close to the iterations of the gradient ascent on the smoothed version of
ΓT (z). Now, assume that despite the possible existence of multiple spurious and sharp local
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minima in {Γk(z)}Tk=1, the smoothed version of ΓT (z) after convolution is strongly convex.
This together with the expansive nature of gradient ascent on strongly convex functions [103]
yields that the end-to-end backward mapping (3.8) is expansive, and the discrete local tra-
jectories can escape poor local solutions over time. We formalize and rigorously analyze this
intuition in the next subsection.

3.4.1 Theoretical Analysis of Dynamics

For simplicity of notation, we define η = 1
2α

. Furthermore, suppose that z∗ denotes the
globally minimum point of ΓT (z). Without loss of generality, ∥v∥ is used to refer to the
2-norm of the vector v. We make the following assumptions for the dynamical model (3.13):

Assumption 3.1 (Smoothness). The following statements hold:

- The function ΓT (z) is L-smooth, i.e., we have

∥∇ΓT (x)−∇ΓT (y)∥ ≤ L∥x− y∥ ∀x,y ∈ Rp−n. (3.14)

- The functions ζτ (z) are l-Lipschitz for τ = 1, · · · , T − 1, i.e., we have

∥ζk(x)− ζk(y)∥ ≤ l∥x− y∥ ∀x,y ∈ Rp−n. (3.15)

Assumption 3.2 (Implicit Convexity). There exists z∗ such that the following statements
hold:

- (One-point strong convexity of convolution) For every y, there exists c > 0 such that

⟨z∗ − y,−∇Eω∼W (y) [ΓT (y − ηω)]⟩ ≥ c∥y − z∗∥2 (3.16)

- (Bounded one-point curvature of convolution) For every y, there exists c′ > 0 such that

⟨z∗−y,−
T−1∑

τ=k+1

Eω∼W (y) [ζτ (y−ηω)]⟩≥−c′∥y − z∗∥2 (3.17)

for every k ∈ {0, . . . , T − 2}.

The existence of L and l which satisfy Assumption 3.1 can be verified for the uncon-
strained model of the time-varying OPF. Meanwhile, Assumption 3.2 implies that the con-
voluted variant of the objective function at time T is one-point strongly convex. We note that
such assumption may not be easily verifiable for the time-varying OPF. However, our simula-
tions strongly support the fact that most of the spurious local solutions in time-varying OPF
have a sharp nature, and therefore, they are likely to be absent in the convoluted (smoothed)
landscape of the problem.

Under these two assumptions, we present the main theorem of this paper.
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Theorem 3.1. Suppose that c ≥ c′ and there exists r ≥ 1 such that ∥ωt∥ ≤ r for every t.
Define λ := η(c− c′), and assume that 2η2L < 1. Then, under Assumptions 3.1 and 3.2, the
following inequality holds:

∥zT−z∗∥2≤ 1

1−2η2L

(
D+

E
[
∥z0 − z∗∥2

]
(1 + λ)T−1

+
8η2r2T 2

(1 + λ)T−1

)
(3.18)

where

D =

(
4

λ
+

4

λ2

)
η3r2l + 16

(
1 +

1

λ

)2
η2r2(1 + 2λ)2

λ2
(3.19)

A proof for Theorem 3.1 is provided in appendix 3.A. A number of observations can be
made based on this theorem. Not surprisingly, the provided bound on ∥zT−z∗∥ depends on
the accuracy of the initial point ∥z0 − z∗∥. However, the effect of this initial accuracy dimin-
ishes exponentially fast with respect to T . Moreover, as T → ∞, the following asymptotic
inequality holds:

∥zT−z∗∥2 ≤ D
1− 2η2L

(3.20)

which is independent of the initial point. Another implication of this asymptotic bound
is that, for any value of T , Theorem 3.1 can only guarantee the convergence of zT to a
neighborhood of z∗. This is not surprising if we consider the non-diminishing nature of η
and its connection to SGD, as delineated in the introduction of Section 3.4. Indeed, similar
results on SGD show that, with non-diminishing step-sizes, the iterations of the algorithm
may only converge to a neighborhood of the globally optimal solution [65]. Finally, it is
worthwhile to study how D depends on different parameters of problem, namely η, r, l, L,
and c− c′. Equation (3.19) reveals that D is a decreasing function of c− c′. Combined with
Assumption 3.2, this implies that one-point strong convexity of Γt(z) for t = 1, . . . , T has a
favorable effect on ∥zT−z∗∥. Similarly, it can be seen from (3.18) and (3.19) that ∥zT−z∗∥
decreases as l, L, and the noise values’ magnitude (characterized by r) shrink. However,
notice that Assumption 3.2 may not be satisfied for small values of noise. Finally, D does not
have a monotone behavior with respect to η. In particular, it can be verified that D →∞ if
η →∞ or η → 0+. Recalling (3.5) and η = 1

2α
, this implies that over- or under-regularization

may lead to large values for ∥zT−z∗∥. This observation is in line with Example 1 of [34],
which shows that both small and large regularization may cause the solution trajectory to
remain trapped at spurious local solutions of a time-varying optimization.

3.4.2 Illustrative Example on a 2-bus System

In this subsection, we analyze the effect of the load variation on the landscape of a 2-bus
system. Our goal is to visualize the smoothing effect of the load variation on the objective
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Figure 3.4.1: The 2-bus system. Here, i =
√
−1.

function, thereby verifying the assumption on the implicit one-point strong convexity of the
convoluted objective function. Consider the simple 2-bus system illustrated in Figure 3.4.1.
Assume that both buses are equipped with generators, and they are connected via a single
line with admittance g− ib. The time-varying load connected to the first bus has both active
and reactive power demands, while the time-varying load connected to the second bus is
purely active. At any given time k, the point-wise OPF (without ramping constraints) can
be formulated as follows5:

min f1(P
g
1 ) + f2(P

g
2 ) (3.21a)

s.t. P g
1 −P l

1;k = |v1|2g+|v1||v2|b sin(∆θ)−|v1||v2|g cos(∆θ) (3.21b)

P g
2 −P l

2;k = |v2|2g+|v1||v2|b sin(∆θ)−|v1||v2|g cos(∆θ) (3.21c)

Qg
1−Ql

1;k = |v1|2g−|v1||v2|g sin(∆θ)−|v1||v2|b cos(∆θ) (3.21d)

Qg
2 = |v2|2g−|v1||v2|g sin(∆θ)−|v1||v2|b cos(∆θ) (3.21e)

V min ≤ |v1| ≤ V max, V min ≤ |v2| ≤ V max (3.21f)

Pmin
1 ≤ P g

1 ≤ Pmax
1 , Pmin

2 ≤ P g
2 ≤ Pmax

2 (3.21g)

Qmin
1 ≤ Qg

1 ≤ Qmax
1 , Qmin

2 ≤ Qg
2 ≤ Qmax

2 (3.21h)

where P g
i , Qg

i , |vi|, ∆θ are the variables for active power generation, reactive power gener-
ation, voltage magnitude at bus i, and angle difference between buses 1 and 2 respectively.
Moreover, P l

i;k, Ql
i;k are the active and reactive load parameters at bus i and time k, re-

spectively. To simplify our subsequent analysis, we assume that the voltage magnitudes at
both buses are equal to the their nominal values, i.e., |v1| = |v2| = 1. Therefore, accord-
ing to (3.21b)-(3.21e), the variables (P g

1 , P
g
2 , Q

g
1, Q

g
2) can be written in terms of the angle

differences ∆θ. In other words, P g
1 = p1(∆θ, P

l
1;k), P g

2 = p2(∆θ, P
l
2;k), Qg

1 = q1(∆θ,Q
l
1;k),

5For simplicity, we omit the apparent power flow limits on the line connecting the two buses. Moreover,
to streamline our subsequent analysis, we avoid the index k for the variables.
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Qg
2 = q2(∆θ) where

p1(∆θ, P
l
1;k) = P l

1;k + g + b sin(∆θ)− g cos(∆θ)

p2(∆θ, P
l
2;k) = P l

2;k + g + b sin(∆θ)− g cos(∆θ)

q1(∆θ,Q
l
1;k) = Ql

1;k + g − g sin(∆θ)− b cos(∆θ)

q2(∆θ) = g − g sin(∆θ)− b cos(∆θ)

Based on these simplifications, the OPF at time k can be re-written as

min f1(p1(∆θ, P
l
1;k)) + f2(p2(∆θ, P

l
2;k)) (3.22a)

s.t. Pmin
1 ≤ p1(∆θ, P

l
1;k) ≤ Pmax

1 , (3.22b)

Pmin
2 ≤ p2(∆θ, P

l
2;k) ≤ Pmax

2 (3.22c)

Qmin
1 ≤ q1(∆θ,Q

l
1;k) ≤ Qmax

1 , (3.22d)

Qmin
2 ≤ q2(∆θ,Q

l
2;k) ≤ Qmax

2 (3.22e)

Moreover, suppose that the upper and lower bounds on the active and reactive power gen-
erations are chosen such that all inequality constraints in (3.22) remain inactive, except for
lower bound on the reactive power generation, i.e., Qmin

1 ≤ q1(∆θ,Q
l
1;k). Similar to (3.1), we

convert (3.22) to an unconstrained optimization by removing this constraint, and instead,
penalizing its violation in the objective function. Based on these modifications, we arrive at
the following nonconvex and unconstrained optimization problem:

min
∆θ

Γk(∆θ) =f1
(
p1(∆θ, P

l
1;k)
)

+ f2
(
p2(∆θ, P

l
2;k)
)

+ β
([
Qmin − q1(∆θ,Ql

1;k)
]+)2

(3.23)

Suppose that g − ib = 0.01 − i0.1 and Qmin = −0.181. Moreover, suppose that f1(P
g
1 ) =

2(P g
1 )2 + 2P g

1 + 1 and f2(P
g
2 ) = 0.1(P g

2 )2 + 0.1P g
2 + 1. Finally, the penalization parameter β

is set to 500. Figure 3.4.2a illustrates the objective function at the final time T as a function
of ∆θ for the choices of P l

1;T = P l
2;T = 0.5, and Ql

1;T = Ql
2;T = 0. Note that the objective

function has one global minimum, one strict local minimum, and one local maximum within
the interval −2 ≤ ∆θ ≤ 1.5.

Next, we illustrate the effect of load variation on the landscape of this optimization prob-
lem and verify Assumption 2. We empirically compute the function Eω∼W (∆θ) [ΓT (∆θ − ηω)]
introduced in Assumption 3.2 when the active and reactive loads are chosen according to
the following rules:

- P l
1;k and P l

2;k are chosen uniformly at random from the interval [0.005, 0.55].

- Ql
2;k = 0 and Ql

1;k is chosen uniformly at random from the interval [−0.02, 0.18].

Setting η = 2, for every k = 0, 1, . . . , N = 10, 000 we randomly generate the active and
reactive load values based on the aforementioned rules, and compute Γk(∆θ) and ∇Γk(∆θ).
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Figure 3.4.2: (a) The objective function at t = T , (b) instances of the objective function
for different values of the load, (c) the convoluted and pointwise objective functions, (d)
realizations of ∆θ − ηω showing the effective noise of the load variation at different ∆θ
points.

Figure 3.4.2b shows realizations of Γk(∆θ) for different values of k. Then, for every k =
0, 1, . . . , N − 1, we compute the gradient difference ∇Γk(∆θ) − ∇Γk+1(∆θ), capturing the
effects of the bias ζk(∆θ) and the effective noise wk ∼ W (∆θ). Since the load distribu-
tion is the same at every time, we have E[Γk(∆θ)] = E[Γk+1(∆θ)]. Hence ζk(∆θ) = 0 for
every k. Finally, we approximate Eω∼W (∆θ) [ΓT (∆θ − ηω)] with its empirical counterpart
1
N

∑N−1
k=0 ΓT (∆θ − ηωk(∆θ)).6 The resulting function for −2 ≤ ∆θ ≤ 1.5 is depicted in Fig-

ure 3.4.2c. It can be seen that, unlike ΓT (∆θ), the convoluted function is devoid of spurious
local minimum. In fact, it is one-point strongly convex, thereby verifying Assumption 3.2
on the implicit convexity of the convoluted objective function.

3.4.3 The Effect of Expected Gradient on The Noise Variance

Another interpretation of the smoothing effect of the noise is based on the average behavior
of the objective function. The expected objective function takes the expectation directly over
the load’s randomness, whereas the convoluted objective function’s expectation is taken over
a random perturbation of the variables. Because the demand distribution has a direct and
immediate physical interpretation, while the effective noise does not, the expected objective
function and its gradient are easier to compute or approximate. We will show that the
variance of the effective noise Eω∼W (∆θ)[∥w∥2] at a given point ∆̂θ depends on the gradient
of the expected objective function. In other words, a large gradient of the expected objective
function at ∆̂θ leads to a high variance Eω∼W (∆̂θ)[∥w∥

2], which in turn yields a smoother

Eω∼W (∆̂θ)

[
ΓT (∆̂θ − ηω)

]
. Figure 3.4.2d precisely shows this behavior. In particular, the

local minimum ∆θ = 0.6 of ΓT (∆θ) disappears in Eω∼W (∆θ) [ΓT (∆θ − ηω)] due to the high
variance of the additive noise ω at ∆θ = 0.6 (shown with red circles). On the other hand,

6Note that, due to the law of large numbers, the empirical average converges to the expected value as N
tends to infinity.
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the additive noise at the global minimum ∆θ = −1.4 is infinitesimal due to the fact that the
gradient of the average function remains close to zero at ∆θ = −1.4. We will now formalize
this intuition.

To better elucidate the relationship between the effective noise variance and the expected
gradient of the objective function, consider an n-bus system with the following properties:

- Every bus i is equipped with a generator.

- The upper and lower bound constraints on the reactive power generations, and the
upper bound constraints on the apparent power flows at different lines are inactive.

- The voltage magnitudes are set to their nominal values.

The above assumptions are made to simplify our subsequent presentation. Note that the
problem is still highly nonconvex due to the nonconvex power balance equations and the
upper and lower bounds on the active power generations. Let pi;k(θ) = P g

i − P l
i;k be the net

power injection at bus i at time k, where θ ∈ RN−1 is a vector collecting the angles at different
buses, except for the slack bus. Then the unconstrained objective function can be defined as
Γk(θ) =

∑ng

i ci(pi;k(θ) + P l
i;k), where ci(pi;k(θ) + P l

i;k) is a linear combination of the cost of
generation and the penalties on the violation of the lower and upper bound constraints on
the active power generation at generator i. Moreover, suppose that P l

i;k = P̄i + γi, where P̄
is a vector collecting the nominal loads, and γ is an isotropic random vector with a known
distribution P such that E[γ1] = · · · = E[γn] = γ̄ ̸= 0. In other words, the variations
in the load are biased. For simplicity of presentation, we abuse the notation and write
Γ(θ; P̄ + γk) = Γk(θ), where γk ∼ P is a realization of the randomness in the load at time
k. Define the linearization of Γ(θ; P̄ + γ) around P̄ as

Γlin(θ; P̄ + γ) = Γ(θ; P̄ ) +∇PΓ(θ; P̄ )
⊤
γ (3.24)

For small values of γ, the linearized function Γlin(θ; P̄ + γ) is a good approximation of
Γ(θ; P̄ + γ). In particular, under mild conditions on Γ, the Mean Value theorem implies
that Γ(θ; P̄ + γ) = Γlin(θ; P̄ + γ) + O(γ2). Note that while Γlin is linear in terms of γ, it is
potentially nonconvex with respect to θ. Define effective noise of the linearized functions as

ωk
lin(θ; P̄ , γk, γk−1) = ∇θΓ(θ; P̄ + γk)−∇θΓ(θ; P̄ + γk−1) (3.25)

for every k = 1, . . . , T . Again, ωk
lin is an accurate approximation of the true effective noise,

provided γ is sufficiently small. Note that the bias term in (3.25) is zero since the right-hand
side of (3.25) has zero mean. Moreover, we can drop the time index k, since the distribution
of ωk

lin(θ; P̄ , γk, γk−1) does not depend on k, as γk and γk−1 are independent and identically
distributed. With these definitions, we present our next proposition.
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Proposition 3.1. Suppose that at time T , the objective function of the time-varying OPF
corresponds to Γ(θ; P̄ ) with an stationary point θ̃. Then,

Eγ,γ̃∼P

[
∥ωlin(θ̃; P̄ , γ, γ̃)∥2

]
≥ 2Varγ∼P(γ)

N


∥∥∥Eγ∼P

[
∇θΓlin(θ̃; P̄ + γ)

]∥∥∥
γ̄

2

(3.26)

The proof of this proposition is deferred to appendix 3.B. Note that a larger variance of
the effective noise leads to a higher smoothing effect, which in turn facilitates the satisfaction
of Assumption 2. In essence, Proposition 3.1 implies that this smoothing effect (captured
by the variance of the effective noise) is controlled by the average behavior of the objective
function. In particular, suppose that the point θ̃ is not a stationary point of the expected

objective function. Therefore, we have
∥∥∥Eγ∼P

[
∇θΓlin(θ̃; P̄ + γ)

]∥∥∥ > 0, and the above propo-

sition implies that the generalized variance of the effective noise at θ̃ increases with the norm
of the gradient of the expected function at θ̃, thereby leading to a higher smoothing effect
of the load variation and the elimination of the spurious local minima. This partly explains
the high variance of the effective noise at the local minimum of the objective function for
the 2-bus system described in Subsection 3.4.2, and the elimination of its spurious local
minimum.

Based on our results, it is possible to eliminate the spurious local solutions in a point-wise
OPF problem by adding a synthetically generated noise to the load, thereby elevating the
data variation in the problem. This effect of random perturbation in the load values can
be observed in Fig. 3.4.2c, where it is shown that randomness in the load can eliminate the
spurious local minimum and maximum, while keeping the global minimum intact.

However, in practice deriving a class of variation sequences which guarantee convergence
is not tractable, due to the nonconvex relationship between the load variation and the “effec-
tive noise”. This is not surprising, considering the NP-hardness of the time-varying OPF in
its worst case. However, even without such a guarantee, computing a discrete OPF trajec-
tory for a load sequence which starts and ends with the load of the target problem may often
succeed for a straightforward choice of load variation such as a sinusoidal function, uniform
variation, or random walk. Fig. 3.4.3 shows two examples on the modified 39-bus system of
scaling load by a uniform random walk for 100 time steps with a 20% ramping constraint.
As with the sinusoidal load in Fig. 3.3.1, we observe that some or all initializations lead to
the optimal solution over time, depending on the specific variation.

3.5 Conclusion

This paper studies time-varying optimal power flow (OPF) problems, in which a set of
optimization problems are solved sequentially due to load data variation over time. The
solution to each OPF is obtained using local search initialized at the solution to the previous
OPF. We offer a case study on a 39-bus system under California data, where the OPF at
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Figure 3.4.3: Numerical studies on the modified 39-bus system with a synthetic load created
by a uniform random walk. This type of noise injection could be used to help find the global
solution to a static OPF problem.

the initial time has 16 locally optimal solutions leading to 16 solution trajectories. We show
that, in this experiment, all trajectories converge to the best solution trajectory, even though
OPF has many local minima at most times.

To understand this highly desirable property, we analyze the optimization landscape of
the time-varying OPF. Our developed theory is based on the underlying structure of time-
varying OPF problems. Despite the generality of our theoretical results, its application
relies on assumptions which may not be satisfied for all power systems. Developing a more
interpretable set of conditions for our developed theory is left as an important direction of
future research. In this work, we introduce the notions of escaping period and tracking period,
examine the role of data variation and the easiest intermediate problem, study the behavior
of the time-varying OPF during the escaping period via a backward-in-time mapping, and
relate it to the SGD algorithm. By modeling the data variation as a biased noise, we prove
that enough data variation enables escaping poor solutions of time-varying OPF over time.
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Appendix

3.A Proof of Theorem 3.1

For simplicity of notation, we reverse the order of time, changing T − t to t. Then, the
dynamics (3.13) can be written

zt = zt−1 + η∇Γ0(zt−1) + η
t−1∑
k=1

ζk(zt−1)− η
t−1∑
k=1

ωk (3.27)

We will extensively use the following sequences of intermediate points in our analysis:

yt = zt + η∇Γ0(zt) + η
∑t

k=1
ζk(zt) (3.28)

ỹt = yt − η
∑t−1

k=1
ωk (3.29)

It is easy to verify that the above definitions together with (3.27) gives rise to the following
recursive equation:

yt = yt−1 − η
t−1∑
k=1

ωk + η∇Γ0

(
yt−1 − η

t−1∑
k=1

ωk

)
+η
∑t

k=1
ζk

(
yt−1 − η

t−1∑
k=1

ωk

)
(3.30)

which in turn implies

yt =ỹt−1 − ηωt−1 + η∇Γ0 (ỹt−1 − ηωt−1) + η

t∑
k=1

ζk (ỹt−1 − ηωt−1) (3.31)

Define the filtration Ft−1 = σ{ω1, . . . , ωt−2} and the following stochastic process:

Gt = (1 + λ)−t

(
∥yt − z∗∥2 − 2(b1 + b2t+ b3t

2)

λ

)
(3.32)

where b1 := 2η3r2L, b2 := 2η3r2l, and b3 := 4η2r2(1+2λ)2

λ
. Our next lemma provides a lower

bound on E[∥yt − z∗∥2|Ft−1] in terms of ∥yt−1 − z∗∥2.
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Lemma 3.1. The following inequality holds:

E
[
∥yt − z∗∥2|Ft−1

]
≥(1 + λ)∥yt−1 − z∗∥2 − (b1 + b2t+ b3t

2) (3.33)

Proof. Based on (3.31), one can write

E
[
∥yt − z∗∥2|Ft−1

]
= E

[∥∥∥ỹt−1 − z∗ − ηωt−1 + η∇Γ0 (ỹt−1 − ηωt−1) + η
t∑

k=1

ζk (ỹt−1 − ηωt−1)
∥∥∥2∣∣∣Ft−1

]
≥ ∥ỹt−1 − z∗∥2 + η2E

[
∥ωt−1∥2|Ft−1

]
+ E

[
∥η∇Γ0 (ỹt−1 − ηωt−1) + η

t∑
k=1

ζk (ỹt−1 − ηωt−1) ∥2|Ft−1

]

− 2η

(
E [⟨ηωt−1,∇Γ0(ỹt−1 − ηωt−1)⟩|Ft−1] + E

[
⟨ηωt−1,

t∑
k=1

Γ0(ỹt−1 − ηωt−1)⟩|Ft−1

])
+2η

〈
z∗ − ỹt−1,−∇E[Γ0(ỹt−1 − ηωt−1)|Ft−1]

〉
+ 2η

〈
z∗ − ỹt−1,−

t∑
k=1

E [ζk(ỹt−1 − ηωt−1)|Ft−1]
〉

≥∥ỹt−1 − z∗∥2−2ηE[⟨ηωt−1,∇Γ0(ỹt−1 − ηωt−1)⟩|Ft−1]︸ ︷︷ ︸
A

−2ηE
[
⟨ηωt−1,

t∑
k=1

Γ0(ỹt−1 − ηωt−1)⟩|Ft−1

]
︸ ︷︷ ︸

B

+ 2η⟨z∗ − ỹt−1,−∇E[Γ0(ỹt−1 − ηωt−1)|Ft−1]⟩︸ ︷︷ ︸
C

+2η⟨z∗ − ỹt−1,−
t∑

k=1

E[ζk(ỹt−1 − ηωt−1)|Ft−1]︸ ︷︷ ︸
D

⟩ (3.34)

Next, we will provide a separate lower bound for each term in the above inequality. First,
due to Assumption 3, we have

C ≥ 2ηc∥ỹt−1 − z∗∥2 and D ≥ −2ηc′∥ỹt−1 − z∗∥2 (3.35)

Furthermore, one can write

A = −2ηE[⟨ηωt−1,∇Γ0(ỹt−1 − ηωt−1)−∇Γ0(ỹt−1)⟩|Ft−1]

≥ −2ηE[∥ηωt−1∥∥Γ0(ỹt−1 − ηωt−1)−∇Γ0(ỹt−1)∥|Ft−1]

≥ −2η3r2L (3.36)
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where the first equality is due to the fact that E[⟨ηωt−1,Γ0(ỹt−1)⟩|Ft−1] = 0. Similarly, we
can write B ≥ −2η3r2lt. This implies that

E[∥yt − z∗∥2|Ft−1] ≥(1 + 2η(c− c′))∥ỹt−1 − z∗∥2 − 2η3r2(L+ lt)

=(1+2λ)∥ỹt−1−z∗∥2−(b1+b2t) (3.37)

This together with the definition of ỹt−1 gives rise to the following chain of inequalities

E[∥yt − z∗∥2|Ft−1] ≥(1 + 2λ)

∥∥∥∥∥yt−1 − η
t−2∑
k=1

ωk − z∗

∥∥∥∥∥
2

− (b1 + b2t)

≥(1 + 2λ)∥yt−1 − z∗∥2 − 2(1 + 2λ)∥yt−1 − z∗∥

∥∥∥∥∥η
t−2∑
k=1

ωk

∥∥∥∥∥− (b1 + b2t)

≥(1 + 2λ)∥yt−1 − z∗∥2 − 2ηr(1+2λ)t∥yt−1 − z∗∥ − (b1 + b2t) (3.38)

Now we consider two cases:

- If ∥yt−1 − z∗∥ ≥ 2ηr(1+2λ)t
λ

, then one can write

E[∥yt−z∗∥2|Ft−1]≥(1+λ)∥yt−1−z∗∥2−(b1+b2t) (3.39)

- If ∥yt−1 − z∗∥ < 2ηr(1+2λ)t
λ

, then one can write

E[∥yt − z∗∥2|Ft−1] ≥ (1 + 2λ)∥yt−1 − z∗∥2 − 4η2r2(1 + 2λ)2t2

λ
− (b1 + b2t) (3.40)

Combining the above two inequalities leads to

E[∥yt−z∗∥2|Ft−1] ≥ (1+λ)∥yt−1 − z∗∥2 − (b1+b2t+ b3t
2) (3.41)

□
The next lemma is at the crux of our proof for Theorem 3.1.

Lemma 3.2. The following two statements hold:

i. Gt is a submartingale with a vanishing drift. More precisely, it satisfies the following
inequality

E[Gt|Ft−1]≥Gt−1−
1

(1+λ)(t−1)

(
2b2+2b3(2t−1)

λ

)
(3.42)

ii. E[Gt] ≥ G0 −
(
2
λ

+ 2
λ2

)
b2 −

(
4
λ

(
1 + 1

λ

)2)
b3
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Proof. One can write

E[Gt|Ft−1] = (1 + λ)−t ·
(
E[∥yt − z∗∥2|Ft−1]−

2(b1 + b2t+ b3t
2)

λ

)
(3.43)

Invoking Lemma 3.1 leads to

E[Gt|Ft−1] ≥(1 + λ)−t
(

(1 + λ)∥yt−1 − z∗∥2 − (b1 + b2t+ b3t
2)− 2(b1 + b2t+ b3t

2)

λ

)
=(1 + λ)−(t−1)∥yt−1 − z∗∥2 − (1 + λ)−(t−1)

(
2(b1 + b2t+ b3t

2)

λ

)
=(1 + λ)−(t−1)∥yt−1 − z∗∥2 − (1 + λ)−(t−1)

(
2(b1 + b2(t− 1) + b3(t− 1)2)

λ

)
− (1 + λ)−(t−1)

(
2(b2 + b3(2t− 1))

λ

)
=Gt−1 − (1 + λ)−(t−1)

(
2b2 + 2b3(2t− 1)

λ

)
(3.44)

This completes the proof of the first part. To prove the second part, we use the result of the
first part together with the tower property of the expectation to write

E[Gt] ≥ G0 −
(

2b2
λ

∑t−1

k=0
(1 + λ)−k

)
︸ ︷︷ ︸

A

−
(

4b3
λ

∑t−1

k=0
(k + 1)(1 + λ)−k

)
︸ ︷︷ ︸

B

It is easy to verify that

A ≤
(

2

λ
+

2

λ2

)
b2 and B ≤

(
4

λ

(
1 +

1

λ

)2
)
b3 (3.45)

This completes the proof. □
Proof of Theorem 3.1: From the second statement of Lemma 3.2, one can write

∥y0 − z∗∥2 ≤
(

2

λ
+

2

λ2

)
b2 +

(
4

λ

(
1 +

1

λ

)2
)
b3 + (1 + λ)−(t−1) E

[
∥yt−1 − z∗∥2

]
(3.46)

On the other hand, one can write

E
[
∥zt − z∗∥2

]
= E

[∥∥∥yt−1 − z∗ − η
∑t−1

k=1
ωk

∥∥∥2] (3.47)

≥ E
[
∥yt−1 − z∗∥2

]
− 2ηrtE [∥yt−1 − z∗∥]

Inequality (3.47) together with some simple algebra reveals that

E
[
∥yt−1 − z∗∥2

]
≤ 2E

[
∥zt − z∗∥2

]
+ 16η2r2t2 (3.48)
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Combining the above inequality with (3.46) results in

∥y0 − z∗∥2 ≤
(

2

λ
+

2

λ2

)
b2 +

(
4

λ

(
1 +

1

λ

)2
)
b3 + 2 (1 + λ)−(t−1) E

[
∥zt − z∗∥2

]
+ 16η2r2t2(1 + λ)−(t−1) (3.49)

Finally, it only remains to characterize the relationship between ∥y0 − z∗∥2 and ∥z0 − z∗∥2.
To this goal, one can write

∥y0 − z∗∥2 = ∥z0 − z∗ + η∇f0(z0)∥2

≥∥z0 − z∗∥2 − 2η⟨z0 − z∗, η∇f0(z0)⟩
=∥z0 − z∗∥2 − 2η⟨z0 − z∗, η∇f0(z0)− η∇f0(z∗)⟩
≥∥z0 − z∗∥2 − 2η2∥z0 − z∗∥∥∇f0(z0)−∇f0(z∗)∥
≥(1− 2η2L)∥z0 − z∗∥2 (3.50)

where the last inequality is due to Assumption 3.1. Combining (3.50) with (3.49) concludes
the proof. □

3.B Proof of Proposition 3.1

Due to the definition of Γlin(θ; P̄ + γ) in (3.24), one can write

Eγ∼P

[
∇θΓlin(θ̃; P̄+γ)

]
=

N∑
i=1

∇pi(θ)ci(pi(θ̃)+P̄i)∇θpi(θ̃)

+
N∑
i=1

∇pi(θ)∇Pi
ci(pi(θ̃) + P̄i)E[γi]∇θpi(θ̃)

=
N∑
i=1

∇pi(θ)∇Pi
ci(pi(θ̃) + P̄i)E[γi]∇θpi(θ̃) (3.51)

where the second equality follows from the assumption ∇θΓlin(θ̃; P̄ ) = 0. Let us define the
vector vi = ∇pi(θ)∇Pi

ci(pi(θ̃)+P̄i)∇θpi(θ̃). Therefore, one can write(
N∑
i=1

∥vi∥

)2

≥

∥∥∥∥∥
N∑
i=1

vi

∥∥∥∥∥
2

=

∥∥∥Eγ∼P

[
∇θΓlin(θ̃; P̄+γ)

]∥∥∥2
γ̄2

(3.52)

On the other hand, a simple calculation reveals that

ωk
lin

(
θ; P̄ , γ, γ̃

)
=∇θΓ(θ; P̄ + γ)−∇θΓ(θ; P̄ + γ̃)

=
N∑
i=1

∇pi(θ)∇Pi
ci(pi(θ̃)+P̄i)(γi − γ̃i)∇θpi(θ̃) (3.53)
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Upon defining the matrix V = [v1, v2, . . . , vN ], one can verify that ωk
lin(θ; P̄ , γ, γ̃) = V (γ− γ̃),

which implies that

Eγ,γ̃∼P

[∥∥∥ωlin

(
θ̃; P̄ , γ, γ̃

)∥∥∥2] = Eγ,γ̃∼P
[
∥V (γ − γ̃)∥2

]
= 2Varγ∼P(γ)trace

(
V V ⊤)

= 2Varγ∼P(γ)trace
(
V ⊤V

)
= 2Varγ∼P(γ)

(
N∑
i=1

∥vi∥2
)

(3.54)

This implies that

Eγ,γ̃∼P

[∥∥∥ωlin

(
θ̃; P̄ , γ, γ̃

)∥∥∥2] ≥ 2Varγ∼P(γ)

N

(
N∑
i=1

∥vi∥

)2

The above inequality combined with (3.52) completes the proof. □
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Chapter 4

Hybrid Power Plant Bidding in
Models of Future Electricity Systems

4.1 Introduction

In the quest to deeply decarbonize electricity sources, batteries and other energy storage
technologies are touted as a means of increasing electricity grid flexibility to balance the
variability of renewable power sources, namely solar and wind. One option for deploying
an energy storage resource (“ESR”), particularly battery storage, is to install it alongside
solar panels and wind turbines. So-called hybrid power plants (“hybrids”) – those operating
both renewable generation and storage resources at the same site – have drawn interest from
developers and policy-makers. At the end of 2021, almost 36 GW of generation and 3.2
GW (8.1 GWh) of storage were operating as hybrids across nearly 300 plants [11]. These
represent the first wave of projects of the 285 GW of solar, 17 GW of wind, and 207 GW
proposed as hybrids in interconnection queues. The trend toward hybrids is especially strong
in California, where 95% and 42% of proposed solar and wind capacity, respectively, are part
of hybrid power plants [100] and the independent system operator expects 5 GW and 2.8
GW of generation and storage capacity, respectively, built as hybrids by the end of 2025 [55].

Understanding how hybrids will impact wholesale electricity markets and system reliabil-
ity is of interest to many stakeholders, including developers, system operators, and regulators.
Developers want to understand where markets will be attractive for hybrids in the short,
medium, and long term, which market participation option(s) they should purse, and how to
operate a hybrid for maximum profits given market and renewable generation uncertainty.
System operators need to decide what options hybrids will have for participating in their
markets, and they seek information on how the various options will impact prices and system
reliability in order to make these decisions. In recent years the Federal Energy Regulatory
Commission has identified a need to define participation models for storage (Order 841 [37]),
a closely related asset.

Researchers try to gain insight into such stakeholder questions by simulating hypothetical
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future electricity markets under different assumptions. Production cost models are a key tool
used to evaluate the economic impact of decisions of dispatching a fleet of generators [56].
Building a production cost model requires visibility into generators’ marginal operating costs,
which define their market bids. For fossil fuel-based generators, operating costs are closely
tied to commodity prices; for renewable generators, marginal operating costs are near zero.
However, resources with the ability to store energy have an effective marginal cost based on
expectations of future prices. This makes it challenging to emulate hybrid operators’ views of
their marginal costs in any given hour. The primary goal of this paper is to enable researchers
to incorporate hybrids that participate in the market through price-quantity bidding curves,
similar to those of conventional resources, into production cost models with fidelity.

4.1.1 Participation Models for Hybrid Power Plants

A participation model defines the interface between an electricity market and a market
participant, in this case hybrids. It includes the information to be exchanged, such as
market bids, generation forecasts, and telemetry, and the responsibilities of each party. The
four general hybrid participation model options defined by [46] are shown in Figure 4.1.1.
This paper exclusively focuses on model (b) in which the hybrid is a “single, self-managed
resource.” That is, the hybrid power plant appears as a single combined system to the market
and is responsible for managing its dispatch schedule and storage state-of-charge levels using
market bids for combined resource. This option provides hybrid operators a great deal of
flexibility to maximize the plant’s value, limits the market operator’s computational burden
and places the responsibility for risk on the hybrid participant. A summary of wholesale
market participation options for hybrid resources in each ISO and RTO in the United States
is available in [54].

4.1.2 Capability Needed to Enable Research Agenda

The single, self-managed resource participation option is the most challenging for researchers
to represent in a production cost model, because it requires adopting an asset owner’s point
of view and integrating the two resources’ capabilities. Further, this challenge is distinct from
that of operating a hybrid under this model in a market. In the simulation environment, there
is limited data available, since it represents a hypothetical futuristic market being simulated
for the first time. Actual hybrid participants, on the other hand, would have a long record
of historical market prices, the performance of their past bids, and, in some markets, the
past bids of other market participants to inform their decisions. The goal is to create bids
which are consistent with those a hybrid participant would submit, without this knowledge of
historical market outcomes which would inform the hybrid’s strategy in practice. Developing
this capability is one step toward allowing researchers to analyze and plan future power
system market designs in which hybrids represent a large share of the system capacity and
to compare the benefits and risks of using a single, self-managed participation model for
hybrids to those of using a separate resource or market-managed model.
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Figure 4.1.1: Spectrum of participation models for hybrid resources, reproduced from [46].

4.1.3 Context

This work funded by the Department of Energy’s Office of Energy Efficiency & Renewable
Energy and Office of Electricity as part of a project examining how participation models will
impact hybrid dispatch, hybrid revenue, system efficiency and system reliability. Polaris’
Power System Optimizer was the production cost modeling software used in this project.
The subsequent sections will discuss specific requirements, challenges and design decisions
made in the context of this project in addition to broadly applicable models, algorithms and
analytic techniques.

4.1.4 Contributions

This work offers two main contributions to the challenge of representing hybrids operat-
ing as a single, self-managed resource in day-ahead wholesale electricity markets. The first
contribution addresses the challenge of decision-making under uncertainty. This challenge
is inherent to self-management, as market prices and renewable generator production are
unknown in advance, and is one hybrid operators will face today and in the future. It is
addressed with a comprehensive stochastic optimization model which reflects the decision-
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making process of a hybrid operator in the day-ahead market. This mixed-integer linear
programming model is informed by an extensive review of relevant literature and conver-
sations with industry experts. The second contribution addresses the research challenge
of incorporating a decision-making model into a futuristic system with limited historical
data. This challenge is critical to storage resources, which rely on expectations of market
prices in order to arbitrage between high and low price periods. It is addressed with a
detailed methodology for incorporating the proposed model into production cost models of
new electricity markets. The approach includes the creation of scenarios representing re-
newable generation and market prices, selection of modeling parameters, and a heuristic for
addressing the possibility of price spikes not reflected in the scenarios.

4.2 Hybrid Bidding Problem Formulation

The objective of this section is to design a decision-making model for a hybrid determining its
hourly bid curves for a day-ahead market under a single, self-managed resource participation
model. The model must reliably produce realistic bid curves based on the type and volume
of information available when simulating a new electricity market. Section 4.2.1 states the
criteria which the hybrid bidding model must satisfy. Section 4.2.2 evaluates relevant litera-
ture on the operation of hybrids, stand-alone storage and related assets and concludes that
a single model completely satisfactory for this setting has yet to be proposed. Sections 4.2.4
and 4.2.5 present the proposed model formulation in detail. Finally, section 4.2.6 discusses
the model and relates it to those in the literature and section 4.2.7 covers how to extend the
base model to a handful of special cases.

4.2.1 Model Requirements

The day-ahead bidding model should base decisions on a complete view of the hybrid’s
capabilities and the energy market opportunities. Specifically, it must:

1. set hourly price-dependent bid curves for a day-ahead energy market for a profit-seeking
PV-battery or wind-battery hybrid in a “single, self-managed resource” participation
model,

2. produce bid curves with a valid structure, that is, consist of a limited number of non-
decreasing marginal price steps,

3. reflect the technical capabilities and physical limitations of the generation and stor-
age resources and their shared point of interconnection to the grid without imposing
unnecessary restrictions,

4. consider day-ahead and intraday markets, as well as consequences for deviating from
market dispatch, when making day-ahead decisions,



CHAPTER 4. HYBRID POWER PLANT BIDDING IN MODELS OF FUTURE
ELECTRICITY SYSTEMS 61

5. account for uncertainty in renewable generation and market prices,

6. accommodate positive and negative prices,

7. consider the value of storage at the end of the 24-hour bidding horizon,

8. depend only on the type and volume of information available when simulating a new
electricity market, and

9. be computationally tractable.

In addition to the above requirements, an ideal model would also:

10. flexibly manage risk according to an individual developer’s risk tolerance,

11. easily generalize to other technologies beyond PV-battery and wind-battery, and,

Note that this model is focused on the energy market, and it need not consider ancillary
services or capacity markets. However, a straightforward extension of the proposed model
to include capacity markets is shared in Section 4.2.7.

4.2.2 Literature Review

Numerous approaches to market participation for hybrids and related resources have been
proposed in the literature. Since renewable energy generators typically have near zero
marginal cost, a major challenge of hybrid bidding centers on the ESR’s unknown opportu-
nity costs. References on stand-alone storage, therefore, can provide insights into addressing
this challenge. Table 4.2.1 summarizes key characteristics of recent works on how to of-
fer stand-alone storage in electricity markets. Hydro storage systems are the longest-studied
storage technology. When hydro reservoirs have stochastic inflows, the system model is more
similar to a hybrid than an ESR. Bidding strategies for hydro-electric producers are surveyed
by [109], where the problems classified as medium term are most relevant to this setting.
Virtual power plants (VPPs) and microgrids consist of multiple resources (e.g., generation,
storage, demand response) that may bid into the market as one, like a hybrid in a single,
self-managed resource participation model, though they differ from hybrids in their physical
coupling. Table 4.2.2 summarizes key characteristics of recent works on how to offer hybrids,
VPPs and microgrids as a single resource in electricity markets, along with select works on
hydro storage bidding.

Reviewing Table 4.2.2, there are five approaches which appear to be candidates. That
is, approaches which offer price-dependent offer curves instead of self-scheduling, consider at
least two sequential energy markets when making day-ahead decisions, and include uncer-
tainty in both day-ahead prices and generation levels. However, none of these approaches
completely satisfy the criteria in section 4.2.1. [81] requires a model of the environmental
states underlying the system, how these states evolve over time, and the distribution of prices
given the current state, which is unrealistic given the limited information available in the
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simulation environment considered here (requirement 8). The remaining candidates do not
meet requirement 2, since decreasing offer curves may be produced by [99], and neither [80],
[41], nor [58] limits the number of price steps in the bid curve. [41] also does not meet re-
quirement 8 because it requires scenarios on the ESR’s power generation/consumption, akin
to wind generation scenarios, which, in this paper’s setting, is not information the bidder is
considered to be able to predict in advance of solving this scheduling problem.

Ref. Year

Bid
struct-

ure

Day-ahead
price

formation

#
energy

markets

Uncertain
day-ahead

prices
Modeling
approach

Solution
method

[4] 2014 SS T 2 - SO, H LP, CP
[60] 2015 Curve T 2 ✓ SO Monotone Appx. DP

[117] 2015 SS T 1 ✓ SO, RO MILP
[52] 2016 SS T 1 ✓ SO NLP
[78] 2016 SS M 1 ✓ SO MILP
[89] 2016 Curve T 2 ✓ SO MILP
[105] 2017 Curve T 1 ✓ IGDT MINLP
[116] 2017 Curve M 1 ✓ Bi-level SO MILP
[14] 2018 Curve T 2 - H -
[21] 2018 SS T 2 ✓ SO DP
[25] 2018 SS M 1 - NE CP
[69] 2018 Curve T 2 ✓ SO MILP
[93] 2018 Curve M 1 - Bi-level SO MILP
[114] 2018 SS M 1 - DO QP, MILP
[3] 2019 Curve T 1 ✓ SO MILP
[24] 2019 SS T 1 - DO LP
[71] 2019 SS T 1 ✓ SO LP
[87] 2020 SS T 2 - DO MILP
[120] 2020 SS T 1 ✓ SO H, Stoch. Dual DP

[74] 2021 Curve M 2 - Bi-level DO MILP

Abbreviations: SS=self-schedule, T=price-taker, M=price-maker, H=heuristic,

(D/R/S)O=(deterministic/robust/stochastic) optimization, NE=Nash equilibrium,

IGDT=information gap decision theory,

(C/D/MI/N/L/Q)P=(convex/dynamic/mixed-integer/non-/linear/quadratic) programming

Table 4.2.1: Overview of recent works on stand-alone storage bidding or scheduling
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Ref. Year

Bid
struc-
ture

Day-ahead
price

formation

#
energy

markets

Uncertain
day-ahead

prices

Uncertain
gener-
ation

Modeling
approach

Solution
method

[67] 2003 SS T 1 - - DO DP
[40] 2008 SS T 2 ✓ ✓ SO MILP
[28] 2012 SS T 1 - - H -
[85] 2012 SS T 1 - - DO DP
[81] 2013 Curve T 2 ✓ ✓ SO ADDP
[104] 2013 SS T 2 ✓ ✓ SO MILP
[113] 2013 SS T 1 ✓ ✓ RO LP
[80] 2015 Curve T 2 ✓ ✓ SO, RO MILP
[82] 2015 SS T 1 - ✓ H -
[98] 2015 SS T 1 ✓ ✓ RO MILP
[99] 2016 Curve T 2 ✓ ✓ RO LP
[104] 2016 SS T 2 ✓ ✓ SO MILP
[29] 2017 Curve M 2 - ✓ SO MILP
[43] 2017 SS T 2 ✓ ✓ SO MILP
[94] 2017 SS T 2 - - DO LP
[63] 2018 SS T 2 ✓ ✓ SE MLCP
[1] 2018 SS T 1 - ✓ SO DP
[7] 2018 SS T 2 ✓ ✓ RO MILP
[64] 2018 SS T 1 - - DO DP
[18] 2019 SS T 2 - ✓ SO NLP
[44] 2019 SS T 3 - ✓ DO LP
[2] 2020 SS T 2 - ✓ SO NLP
[27] 2020 SS T 2 - - DO MILP
[41] 2020 Curve T 3 ✓ ✓ SO MILP
[84] 2020 SS T 1 - ✓ H -
[121] 2020 SS T 1 - ✓ DRO SOCP
[125] 2020 SS T 1 ✓ ✓ SO MILP
[58] 2020 Curve T 3 ✓ ✓ SO MILP
[88] 2021 SS T 1 - ✓ SO MILP
[119] 2021 SS T 1 ✓ ✓ RO MILP

Abbreviations: SS=self-schedule, T=price-taker, M=price-maker, H=heuristic,

(D/R/S)O=(deterministic/robust/stochastic) optimization, SE=Stochastic equilibrium,

DRO=distributionally RO, (AD)DP=(approximate dual) dynamic programming

(MI/N)LP=(mixed-integer/non-)linear programming

MLCP=mixed linear complementarity problem, SOCP=second-order conic programming

Table 4.2.2: Overview of recent works on hybrid bidding or scheduling
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4.2.3 Notation

In the following sections, a hybrid bidding model is formulated to satisfy the criteria listed
in Section 4.2.1. The model will make use of the following notation:
Subscripts

b ∈ B = {1, 2, . . . , NB} Index of day-ahead bidding curve breakpoint.

s ∈ S Index of scenario, where a scenario is the set of parameters defined in (4.1).

t ∈ T = {1, 2, . . . , NT} Index of time.

For convenience, a given time step t and the time period from 1 to NT will at times be
referred to as an “hour” and “day”, respectively, however NT is not required to be 24 and
the unit t represents can be arbitrary.
Superscripts

cha Index for charging mode of the ESR.

dis Index for discharging mode of the ESR.

DA Index for day-ahead market.

IN Index for intraday market.

SC Index for schedule across all markets.

DV Index for deviations from schedule across all markets.

min Index specifying the minimum allowable value for a variable.

max Index specifying the maximum allowable value for a variable.

Variables (also occasionally used as superscripts)

C State of charge of the ESR.

E Power produced by the ESR.

G Power produced by the generator.

Ḡ Potential power from the generator that is curtailed instead of produced.

H Power produced by the hybrid.

MODE Indicator of ESR operating status.

ϵ+/− Deviation of the hybrid above/below the scheduled power output.

ϵ Total deviation of the hybrid from the scheduled power output.

θ Supplementary variable to calculate CVaR.

ϕ Supplementary variable to calculate CVaR.

x Volume component of the (y, x) price-volume pairs which define the hybrid’s

day-ahead market bidding curve.
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Parameters

NS = |S| Number of scenarios.

NT = |T | Number of time periods.

NB = |B| Number of bidding curve breakpoints.

gen Maximum power output for the generator, given environmental conditions.

πs Probability of scenario s occurring.

η+/− Ratio for calculating positive/negative deviation prices.

poi Point of interconnection power capacity.

ψ ∈ {1, 0} Indicator of whether or not the ESR may charge from the grid.

ρDA Price of energy in the day-ahead electricity market.

ρceil Price ceiling in the day-ahead electricity market.

ρIN Difference between the price of energy in the intraday and day-ahead markets.

ρ+/− Price of positive/negative deviations from the combined market schedule.

ζ Risk-aversion factor.

σ ∈ (0, 1) Confidence level.

Λ Factor limiting energy volume in the intraday, relative to day-ahead, market.

µ ∈ (0, 1) Efficiency of the ESR.

Cstart Initial ESR state of charge.

O Operating cost per unit of energy.

y Price component of the (y, x) price-volume pairs which define the hybrid’s

day-ahead market bidding curve.

4.2.4 Hybrid Power Plant Bidding Model Formulation

The goal of the hybrid operator is to maximize its total operating profits while managing
risk due to uncertainty. Uncertainty appears in the model to satisfy requirement 5 as a set
of scenarios, where any given scenario s consists of

πs and
{
ρDA
t,s , ρ

IN
t,s , gent,s, η

+
t,s, η

−
t,s, µ

cha
t,s , µ

dis
t,s , C

max
t,s , Cmin

t,s

}
t∈T . (4.1)

Implicit in this scenario definition is the assumption that the installed generation capac-
ity, Gmax

t , and rated charging and discharging power capacities of the storage, Echa,max
t and

Edis,max
t , are deterministic. If this is not the case, it is straightforward to index these quan-

tities by s too. The hybrid’s objective is formulated as

max
Γ

∑
s ∈ S

(
πs
(
revenues − costs︸ ︷︷ ︸

profits

))
+ ζ

(
θ − 1

1− σ
∑
s ∈ S

πsϕs︸ ︷︷ ︸
CV aR

)
, (4.2)
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where

revenues :=

NT∑
t=1

ρDA
t,s H

DA
t,s +

(
ρDA
t,s + ρINt,s

)
HIN

t,s + ρ+t,sϵ
+
t,s (4.3)

costs :=

NT∑
t=1

ρ−t,sϵ
−
t,s +OG

t G
SC
t,s +OESC,cha

t ESC,cha
t,s +OESC,dis

t ESC,dis
t,s (4.4)

Γ :=
{
{xt,b}t=NT , b=NB

t=1, b=1 , θ, {ϕs}NS
s=1,

{HDA
t,s , H

IN
t,s , H

SC
t,s , G

DA
t,s , G

IN
t,s , G

SC
t,s , E

DA
t,s , E

IN
t,s , E

SC
t,s , E

SC,dis
t,s , ESC,cha

t,s ,

MODEdis
t,s ,MODEcha

t,s , C
SC
t,s , ϵ

+
t,s, ϵ

−
t,s, ϵt,s}

t=NT , s=NS
t=1, s=1

}
(4.5)

and the deviation prices are defined as follows:

ρ+t,s =

{
η+t,s ·min{ρDA

t,s , ρ
DA
t,s + ρINt,s }, if min{ρDA

t,s , ρ
DA
t,s + ρINt,s } ≥ 0

η−t,s ·min{ρDA
t,s , ρ

DA
t,s + ρINt,s }, otherwise

(4.6)

ρ−t,s =

{
η+t,s ·max{ρDA

t,s , ρ
DA
t,s + ρINt,s }, if max{ρDA

t,s , ρ
DA
t,s + ρINt,s } ≤ 0

η−t,s ·max{ρDA
t,s , ρ

DA
t,s + ρINt,s }, otherwise

(4.7)

The objective function (4.2) balances performing well on average with limiting the extent
of poor performance in the worst cases. It does so by maximizing the expected profit from
participating in all three markets, satisfying requirement 4, plus the weighted conditional
value-at-risk (CVaR), which is equal to the expected profit of the least profitable (1− σ)×
100% of scenarios [102]. The weight ζ placed on the CVaR term and the choice of σ are
design parameters which should be selected based on the risk tolerance of the hybrid owner,
satisfying requirement 10. In general, it is desirable to limit one’s exposure to deviation
prices, which are used to settle differences between the delivered power and the schedule
determined by the day-ahead and intraday markets. The following lemma states that, given
appropriate choices of η+t,s and η−t,s, this model maintains the property that deviations always
close against the participant.

Lemma 4.1. If η+t,s < 1 and η−t,s > 1, then the day-ahead and intraday markets are at least
as attractive as the deviation prices at time t of scenario s. Specifically, the price for power
above the scheduled output is less than then the day-ahead and real-time market prices and
the price for power below the scheduled output is greater than the day-ahead and real-time
market prices. That is,

ρ+t,s ≤ min{ρDA
t,s , ρ

DA
t,s + ρINt,s } and (4.8)

ρ−t,s ≥ max{ρDA
t,s , ρ

DA
t,s + ρINt,s }, (4.9)

with equality if and only if the right-hand side is zero.
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Proof: This proof will show that the desired inequalities hold for all possible values of ρDA
t,s

and ρINt,s by considering three main cases and then the edge cases. To simplify the notation,
define ρ̄t,s = max{ρDA

t,s , ρ
DA
t,s + ρINt,s } and ρ

t,s
= min{ρDA

t,s , ρ
DA
t,s + ρINt,s }.

i. ρ
t,s
> 0: In this case, ρ+t,s = η+t,s · ρt,s < ρ

t,s
and ρ−t,s = η−t,s · ρ̄t,s > ρ̄t,s.

ii. ρ̄t,s > 0 and ρ
t,s
< 0: In this case, ρ+t,s = η−t,s · ρt,s < ρ

t,s
and ρ−t,s is as in Case 1.

iii. ρ̄t,s < 0: In this case, ρ+t,s is as in Case 2 and ρ−t,s = η+t,s · ρ̄t,s > ρ̄t,s.

Thus, it is proven that (4.8) and (4.9) hold strictly if ρ
t,s
̸= 0 and ρ̄t,s ̸= 0. Finally, by

inspection of (4.6) and (4.7), it is apparent that ρ+t,s = 0 if ρ
t,s

= 0 and ρ−t,s = 0 if ρ̄t,s = 0.

The hybrid operator is subject to constraints imposed by the hybrid’s physical infrastruc-
ture, market rules, and their risk management strategy. The first set of constraints primarily
pertain to the hybrid’s physical infrastructure and govern the power output of the hybrid,
H, the generator component, G, the storage component, E. These constraints are as follows:

max{−ψEcha,max
t ,−poi} ≤ HSC

t,s ≤ poi ∀t ∈ T , ∀s ∈ S (4.10)

HSC
t,s = HDA

t,s +HIN
t,s ∀t ∈ T , ∀s ∈ S (4.11)

Hk
t,s = Gk

t,s + Ek
t,s ∀t ∈ T , ∀s ∈ S, ∀k∈{SC,DA, IN} (4.12)

0 ≤ GSC
t,s ≤ Gmax

t ∀t ∈ T , ∀s ∈ S (4.13)

GSC
t,s = GDA

t,s +GIN
t,s ∀t ∈ T , ∀s ∈ S (4.14)

− Echa,max
t ≤ ESC

t,s ≤ Edis,max
t ∀t ∈ T , ∀s ∈ S (4.15)

ESC
t,s = EDA

t,s + EIN
t,s ∀t ∈ T , ∀s ∈ S (4.16)

The above constraints ensure that, in accordance with requirement 3, for each scenario and
each time interval, the schedule for the hybrid and each component is the sum of its activity
in the day-ahead and intraday market (4.11, 4.14, 4.16), the physical upper and lower bounds
are respected in the combined-market schedule (4.10, 4.13, 4.15), and the hybrid is truly the
sum of its parts (4.12).

The second set of constraints also supports requirement 3 by governing the storage com-
ponent’s operation:

MODEk
t,s ∈ {0, 1} ∀t ∈ T , ∀s ∈ S, ∀k ∈{cha, dis} (4.17)

MODEcha
t,s +MODEdis

t,s ≤ 1 ∀t ∈ T , ∀s ∈ S (4.18)

0 ≤ ESC,k
t,s ≤ Ek,max

t ·MODEk
t,s ∀t ∈ T , ∀s ∈ S, ∀k ∈{cha, dis} (4.19)

ESC
t,s = ESC,dis

t,s − ESC,cha
t,s ∀t ∈ T , ∀s ∈ S (4.20)
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Cmin
t,s ≤ CSC

t,s ≤ Cmax
t,s ∀t ∈ T ∪ {final}, ∀s ∈ S (4.21)

CSC
1,s = Cstart ∀s ∈ S (4.22)

CSC
t,s = CSC

t−1,s + µcha
t−1,s · E

SC,cha
t−1,s −

1

µdis
t−1,s

· ESC,dis
t−1,s ∀t = 2, . . . , NT , ∀s ∈ S (4.23)

CSC
final,s = CSC

NT ,s + µcha
NT ,s · E

SC,cha
NT ,s − 1

µdis
NT ,s

· ESC,dis
NT ,s ∀s ∈ S (4.24)

Constraints (4.17) and (4.18) encode the inability of the ESR to simultaneously charge
and discharge. Constraints (4.19) and (4.20) decompose the ESR’s power output into the
power output associated with the discharging mode and the power input associated with the
charging mode, at most one of which is non-zero. The storage state-of-charge at the beginning
of each time interval is managed by constraints (4.21-4.24). This requires that the model
define a realistic operating schedule for the ESR for each scenario. In many applications, the
parameters Cmin

t,s and Cmax
t,s may be fixed across time and scenarios, with Cmin

t,s = 0 and Cmax
t,s

equal to the ESR’s energy capacity. However, an operator may wish to set Cmin
t,s above zero

in most hours, since operating near zero state-of-charge can be detrimental to a battery’s
lifespan. Another use of these parameters is to require the state-of-charge at the end of the
time horizon to be a specific value or within a range, which can be achieved through the
choice of Cmin

final,s and Cmax
final,s.

The next set of constraints determines the positive and negative imbalances which will
be settled using deviation prices and are defined as follows:

ϵt,s = gent,s −GSC
t,s − Ḡt,s ∀t ∈ T , ∀s ∈ S (4.25)

0 ≤ Ḡt,s ≤ gent,s ∀t ∈ T , ∀s ∈ S (4.26)

0 ≤ ϵkt,s ∀t ∈ T , ∀s ∈ S, ∀k ∈ {+,−} (4.27)

ϵt,s = ϵ+t,s − ϵ−t,s ∀t ∈ T , ∀s ∈ S (4.28)

The total deviation for a specific time interval and scenario is the difference between the
generator’s output assuming no curtailment occurs, the scheduled generator contribution,
and the amount of curtailed power, as specified in constraints (4.25, 4.26). This total devia-
tion is decomposed into the magnitude of the positive or negative deviation (corresponding
to injecting more or less power than scheduled, respectively) in constraints (4.27, 4.28), so
that the appropriate prices can be applied in the objective function.

While market rules vary, the following constraints reflect universal market principles in
support of requirements 1 and 2:
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HDA
t,s = xt,b if yt,b−1 < ρDA

t,s ≤ yt,b ∀t ∈ T , ∀s ∈ S (4.29)

xt,b ≤ xt,b+1 ∀t ∈ T , ∀b = 1, . . . , NB − 1 (4.30)

max{−ψEcha,max
t ,−poi} ≤ HDA

t,s ≤ min{Edis,max
t +Gmax

t , poi} ∀t ∈ T , ∀s ∈ S (4.31)

− ΛGDA
t,s ≤ GIN

t,s ≤ ΛGDA
t,s ∀t ∈ T , ∀s ∈ S (4.32)

− ΛEcha,max
t ≤ EIN

t,s ≤ ΛEdis,max
t ∀t ∈ T , ∀s ∈ S (4.33)

Constraint (4.29) ensures that there are at most NB points on the bid curve for each time
interval, and scenarios are assigned to a bid curve segment based on their day-ahead price
for that time. The if statement in this constraint does not affect its linearity, because the
price components of the bidding pairs, {ytb}t∈T ,b∈B, are not variables in this optimization
problem. These price points are fixed in advanced based on the scenarios, through a proce-
dure explained in section 4.2.5, since determining prices and volumes simultaneously would
create a nonconvex decision problem [81]. The requirement that the bids be non-decreasing
and non-anticipative (requirement 2) is enforced by constraint (4.30). (More details on the
bid curve structure are found in section 4.2.5. Typically, market participants (who are not
virtual bidders) must submit bids which do not exceed their physical operating limits. For a
hybrid, this means that day-ahead bid quantities must not exceed the point of interconnec-
tion limits, as well as fall between the negative of the ESR’s rated charging power capacity
and the combined rated power capacity of the ESR and generator (4.31). Constraints (4.32)
and (4.33) limit the degree of participation in the intraday market. This may be enforced
by a market operator to ensure that the bulk of transactions are settled in the day-ahead
market and to limit bids seeking to arbitrage between the day-ahead and intraday markets.
It could also be imposed by the hybrid operator to limit their exposure to the more volatile
intraday market in a coarse way. If this is not relevant to a market or the hybrid’s strategy,
these two constraints must be dropped.

The final two constraints, which follow, are necessary to calculate the CVaR:

0 ≤ ϕs ∀s ∈ S (4.34)

θ − ϕs − profits ≤ 0 ∀s ∈ S (4.35)

4.2.5 Selecting Price Points {yt,b}t∈T ,b∈B Based on Jenks Natural
Breaks Partitioning

While the above model selects the volume components xt,b of the price-volume bidding pairs,
this section details the approach to selecting the price points yt,b. As depicted in Figure 4.2.1
and described in constraint (4.29), these price points partition the scenarios for a specified
time interval, such that the planned power output of the hybrid is the same for all scenarios
within a class of the partition. The proposed procedure for selecting price points for each
time interval is based on the day-ahead price scenarios, {πs, {ρDA

t,s }t∈T }s∈S , and has three
phases:



CHAPTER 4. HYBRID POWER PLANT BIDDING IN MODELS OF FUTURE
ELECTRICITY SYSTEMS 70

Figure 4.2.1: Bidding curve illustration for hour t highlighting the role of price points in the
grouping of scenarios.

i. Partition Phase: Using Jenks natural breaks algorithm (“Jenks”) [59], partition the
day-ahead price scenarios {ρDA

t,s }s∈S into classes {Pt,b}b∈B for every t ∈ T , which are
ordered in the sense that

P̄t,b := max
ρ∈Pt,b

ρ < min
ρ∈Pt,b+1

ρ := P t,b+1, ∀b = 1, . . . , NB − 1, ∀t ∈ T . (4.36)

Jenks minimizes the within-class variation so that the price scenarios forced to share
a common bid quantity via constraint (4.29) are as similar as possible. This is an
advantageous property which does not hold if you divide the price domain evenly or
assign the same number of price scenarios to each class, the approach used by [81]. The
author believes this to be a new application of Jenks, which was originally developed
for coloring choropleth maps.

ii. Adjustment Phase: There is a critical difference between prices above and below
the generator’s operating cost, OG

t . If prices are above this threshold, the generator
will not be curtailed. If prices are below this threshold, the generator may be curtailed
if it is not possible or profitable to charge the ESR. Therefore, all prices within the
same class should be uniformly above or uniformly below OG

t . This phase adjusts the
Jenks Natural Breaks partition, if necessary, using Algorithm 4.1 for every t ∈ T to
ensure this property holds.
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Algorithm 4.1 Adjustment phase procedure for selecting price points

Require: {Pt,b}b∈B , OG
t

1: for b = 1, . . . , NB do
2: if minρ∈Pt,b

ρ < OG
t < maxρ∈Pt,b

ρ then
3: Identify prices above the threshold: A = {ρ ∈ Pt,b | ρ ≥ OG

t }
4: Identify prices below the threshold: B = {ρ ∈ Pt,b | ρ < OG

t }
5: if b = 1 then
6: Reassign prices above the threshold to the next class: Pt,b = B, Pt,b+1 = Pt,b+1∪A
7: else if b = NB then
8: Reassign prices below the threshold to the prior class: Pt,b = A, Pt,b−1 = Pt,b−1∪B
9: else
10: Reassign prices in A or B based on which has lower combined probability:
11: if

∑
s|ρDA

t,s ∈B πs ≤
∑

s|ρDA
t,s ∈A πs then

12: Pt,b = A, Pt,b−1 = Pt,b−1 ∪B
13: else
14: Pt,b = B, Pt,b+1 = Pt,b+1 ∪ A
15: end if
16: end if
17: end if
18: end for

iii. Selection Phase: Select prices yt,b for the bidding curves in such a way that they
divide the classes. That is the selected prices must satisfy the following inequalities:

yt,0 < P t,1 and P̄t,b ≤ yt,b < P t,b+1 ∀b = 1, . . . , NB − 1, t ∈ T . (4.37)

Specifically, we chose to set the price points equidistant between adjacent classes, unless
it divides a class above the marginal cost of generation from one below it.

yt,b =


P t,1 b = 0

ρceil b = NB

OG
t P̄t,b < OG

t ≤ P t,b+1 and b ≥ 1

(P̄t,b + P t,b+1)/2 otherwise

(4.38)

A variation on this approach is to set the price points proportionally to the probability
of the adjacent classes, thereby generalizing the bid associated with high-probability
price scenarios to a wider range of market prices.

4.2.6 Discussion

First, it should be verified that the model meets the criteria stated in section 4.2.1. Require-
ments 1-5 and 10 were addressed through the model formulation. As all decision variables
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are bounded as a result of requirement 3 and the objective function is linear, the problem
will remain bounded even if there is a mixture of positive and negative prices, either across
time periods or across markets for the same time period, in accordance with requirement
6. Requirement 7 is covered in section 4.3.4. The uncertainty model here is well-suited for
simulation environments, as demanded by requirement 8, since it can easily accommodate
more or fewer scenarios depending on how much information is available. Section 4.3.5 ad-
dresses requirement 9 on tractability. The ESR is characterized by the rates and efficiency
with which it can charge and discharge energy, its energy storage capacity, and operating
(i.e., degradation) cost. Appropriate definitions of these parameters can reflect a multi-
tude of storage technologies. The generator has a similarly general characterization ensuring
requirement 11.

Compared with the existing literature, this model can be viewed as advancing the one
proposed in [41] in two significant ways. First, the bid curves here will have at most NB

marginal price steps. In contrast, [41], along with [80] and [58], may produce bid curves with
as many breakpoints as there are price scenarios. Price scenarios should reflect the underlying
uncertainty distribution, and restricting the number of scenarios to NB in order to comply
with market rules limiting the number of price steps competes with this priority. In [81],
scenarios are grouped into classes to limit the number of breakpoints by assigning the smallest
NS/NB scenarios to the first class, the next smallest NS/NB scenarios to the second class,
etc., regardless of their distribution. Compared with this approach, the one in section 4.2.5 is
more sophisticated and conscious of discontinuities in the optimal generator production and
curtailment around OG

t . Second, this model provides the hybrid operator greater flexibility
for the two components and between day-ahead and intraday markets without sacrificing the
principle that bids and planned operating schedules respect all physical limits. For example,
[41] constrains GIN

t,s ≥ 0 for all t ∈ T and s ∈ S, while this model allows the generator to
plan to adjust downward in the intraday market relative to day-ahead. This flexibility could
be used for a scenario in which no generation is expected in hour t, but GDA

t > 0 due to other
scenarios in the same price class. A second example of this enhanced flexibility is allowing the
generator to curtail its output. While this flexibility allows the hybrid to arbitrage between
day-ahead and real-time markets, it can only do so at a low volume, unlike virtual bidders,
due to the previously stated principle that HSC , GSC , ESC,cha/dis, and HDA all must reflect
the plant’s physical limits.

4.2.7 Model Cases and Extensions

The model in section 4.2.4 is flexible in types of hybrids and bids it can represent and
easily extensible to additional constraints and objectives. Guidance on modeling a number
of common situations is found below.

i. Self-scheduled bids: In this setting, the hybrid operator does not submit day-ahead bid
curves to the market, rather they submit hourly volumes which they plan to produce
regardless of the market price. The proposed bidding model can be tailored to create
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self-scheduled bids by settingNB = 1, yt,1 = mins∈S{ρDA
t,s }, and yt,2 = maxs∈S{ρDA

t,s }+1.
Then, xt,1 is the self-scheduled bid for hour t.

ii. AC versus DC coupling: Some hybrids are built with separate DC/AC converters for
the generation and storage components, these are known as AC-coupled, while others
only utilize one DC/AC converter in a DC-coupled configuration. The proposed model
can represent either configuration, if the appropriate input parameters are used. For
an AC-coupled hybrid, gen scenarios should represent the (potentially clipped) power
after the inverter and, for a DC-coupled hybrid, gen is the power before the DC/AC
inverter. For a DC-coupled hybrid, poi should be redefined as the minimum of the
point of interconnection power capacity and the shared DC/AC inverter power rating.

iii. ESR cycle limit: The proposed model addresses wear-and-tear on the ESR through its
associated operating cost parameters, OESC,dis

and OESC,cha
. However, one may wish to

directly limit the ESR use to a specific number of cycles to reflect a battery’s warranty
restrictions, for example. This can be accomplished by adding the following constraints
to the model:

NT∑
t=1

ESC,dis
t,s ≤ Cmax × {cycle limit} ∀s ∈ S (4.39)

NT∑
t=1

ESC,cha
t,s ≤ Cmax × {cycle limit} ∀s ∈ S. (4.40)

iv. Capacity market: The proposed model exclusively focuses on energy markets. If the
hybrid also participates in a capacity market which pays an additional amount, ρCAP ,
per unit produced during peak demand hours, this can be incorporated into the objec-
tive function with the following update to equation (4.3):

revenues :=

NT∑
t=1

ρDA
t,s H

DA
t,s +

(
ρDA
t,s + ρINt,s

)
HIN

t,s + ρ+t,sϵ
+
t,s + ρCAP

t,s HSC
t,s (4.41)

4.3 Simulating Hybrid Bids Within a Future

Electricity Market

Obtaining bids from the stochastic optimization model in section 4.2 for use in a production
cost model requires the development of scenarios and choice of model hyperparameters. The
production cost model considered is one of a hypothetical system, so there is no historical
record of market prices or the hybrid’s past bids. This section will present an approach
to setting all model inputs while discussing various trade-offs that researchers should be
aware of. The approach is designed to reflect the accuracy of information which would
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typically be available to a market participant, even if the researcher has access to better
data. Further, the approach aims to consistently produce bids which perform well and are
not overly sensitive to small changes in the model inputs. The approach is applied to the
project mentioned in section 4.1.3 and the specific parameter choices made for this project
are shared.

Sections 4.3.1, 4.3.2 and 4.3.3 cover the formation of scenarios, while section 4.3.4 dis-
cusses selecting hyperparameters for the model, including the number of scenarios. Im-
plementation of scenario formation algorithms and the decision-making model is covered in
section 4.3.5. Finally, section 4.3.6 proposes a heuristic for adding elasticity to the bid curves
to account for prices beyond the range considered by the price scenarios.

4.3.1 Generation Scenarios (gen)

This section describes how the generation scenarios are constructed to reflect the range of
plausible generation levels and their relative likelihood. As a reminder, the gen parameter
being built here represents the maximum power output possible for a generation given the
environmental conditions, i.e., the generation in the absence of curtailment.

Information available

In this setting, the researcher has access to the maximum generation levels which will be
used in the production cost model and day-ahead forecasts of these values for a time period
of at least several months, ideally longer. The bidder is allowed access to the day-ahead
forecast for the optimization horizon (periods 1, 2, . . . , NT ) and the empirical distribution of
forecasts and forecast errors for two consecutive periods for the full data set (Table 4.3.1).

Forecast Forecast Error Forecast Error for Preceding Period
F E1 E2

9.0 0.5 0.8
0.0 0.0 0.0
3.0 -2.0 -1.0
. . . . . . . . .

Table 4.3.1: Illustration of the empirical distribution of generation forecast accuracy (forecast
error = actual - forecast) and sequential correlations available to the bidder.

Monte Carlo scenario generation

Instead of relying on a single day-ahead generation forecast to inform decision-making, a set
of plausible scenarios are built around the forecast using the empirical distribution of forecast
errors. The approach described in this section accounts for two factors correlated with
forecast error: the forecast itself and the error in the preceding period. To understand the
correlation between forecast value and forecast error, consider a solar plant. This plant has
a forecasted generation of zero for many hours each day (i.e., the nighttime hours) and very
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Figure 4.3.1: Hourly data and best-fit line
for a wind plant in New York for 2019.
Note the correlation between consecutive
forecast errors.

small forecast error during such hours. How-
ever, when the forecasted generation is half of
the plant’s capacity there is uncertainty due to
weather. So, plausible scenarios for these two
hours (one with a forecast of zero and an hour
with a moderate forecast value) should not be
based on the same error distribution. Also, er-
rors in consecutive periods are positively corre-
lated, as demonstrated in Figure 4.3.1. To ad-
dress these two factors, the generation scenario
procedure outlined in Algorithm 4.2 samples uni-
formly from the distribution of errors in periods
with similar forecast values and similar error val-
ues in the preceding period. An example set of
scenarios created with this procedure is shown in
Figure 4.3.2a. Depending on amount and type of
data available and plant-specific knowledge, the
distribution could be based on additional factors
such as time of day, error trend, or season.

Algorithm 4.2 Generation scenario s construction

Require: Forecasted generation values f1, , f2, . . . , fNT

Require: Hyperparameters ∆f and ∆e which define similarity thresholds for forecast and
error values, respectively

Require: Generator capacity Gmax
t

Require: Data set described in Table 4.3.1
1: Select error value for period 1 based on forecast*: e1 ∼ E1 | F ∈ [f1 −∆f , f1 + ∆f ]
2: Adjust e1 to ensure feasibility: e1 = min(Gmax

t ,max(0, e1 + f1))− f1
3: for t = 2, . . . , NT do
4: Select error value for period t based on forecast and error in preceding period*:

et ∼ E1 | (F ∈ [ft −∆f , ft + ∆f ], E2 ∈ [et−1 −∆e, et−1 + ∆e])
5: Adjust et to ensure feasibility: et = min(Gmax

t ,max(0, et + ft))− ft
6: end for
7: return gent,s = ft + et ∀t ∈ T

*If no points in the data set meet the conditional criteria, temporarily increase ∆e and/or
∆f until the distribution is nonempty.

Scenario reduction with fast forward algorithm

It is straight-forward and computationally inexpensive to create a large number of equally
likely generation scenarios using Algorithm 4.2. However, the stochastic optimization prob-
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lem in Section 4.2 will become computationally challenging if the number of scenarios is
too large. Further, many of the scenarios may be similar and the breadth and frequency of
possible outcomes could be well-represented by a smaller number of scenarios with varying
probabilities. This is the objective of scenario reduction methods.

The Fast Forward Selection (FFS) algorithm [47] is used in this project to perform sce-
nario reduction on the generation scenarios. FFS is considered the “state-of-the-art” [115],
and has been used in past research on energy storage bidding in electricity markets [69],
because it is effective and efficient [33]. FFS attempts to solve the optimal reduction prob-
lem though a greedy heuristic which recursively selects a single “best” scenario until the
desired number of scenarios have been selected. An example outcome of FFS is shown
in Figure 4.3.2. Alternative methods of scenario reduction include simultaneous backward
reduction [47], Latin hyper-cube sampling [81, 106], submodularity-based reduction [115],
importance sampling [95], and heuristic search [77].

Scenario weighting

The scenarios selected by FFS have an associated likelihood relative to each other, however
the probability of these scenarios relative to the original forecast still needs to be addressed.
In this project, the day-ahead forecast was assigned a probability of 0.8, and the selected
scenario probabilities were each scaled by 0.2 so that the set has a combined probability of
0.2. These values (0.8, 0.2) were selected based on a combination of experiments testing
how often the generated and selected scenarios were closer than the forecast to the actual
generation profile (closer in the sense that the ℓ2-norm of the difference is smaller) and
engineering insight. A modified approach would be re-weight the forecast and scenarios
before performing scenario reduction, and then include the forecast in the set of scenarios
provided to FFS. This modified approach would not guarantee that the original forecast is
used as a generation scenario in the decision-making model defined in Section 4.2 and was
rejected for this reason.

4.3.2 Price Scenarios

Creating meaningful price scenarios in a simulation environment is a unique challenge, be-
cause prices are an output of the production cost model and therefore there is not a record
of past prices. Price scenarios should predict both the shape of the price profile (e.g., when
the highest and lowest price hours will occur) and the magnitude of prices. The latter is
important because these scenarios will be used to set the price component of the bids, as
discussed in section 4.2.5. This section provides a methodology for creating price scenarios in
a simulation environment where bids for the entire study horizon must be submitted at one
time and there is no opportunity to use price results from one day to inform price scenarios
for a future day.



CHAPTER 4. HYBRID POWER PLANT BIDDING IN MODELS OF FUTURE
ELECTRICITY SYSTEMS 77

2 4 6 8 10 12 14 16 18 20 22 24

Time of day

0

50

100

150

A
v
e

ra
g

e
 h

o
u

rl
y
 o

u
tp

u
t

Day-ahead forecast

Observed value

(a) Twenty-five generation scenarios (thin lines) generated via Algorithm 4.2
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(b) Five generation scenarios (thin lines) chosen by FFS

Figure 4.3.2: Generation scenarios compared with the day-ahead generation forecast (thick
blue line) and realized generation level (thick orange line) for a wind plant in New York.
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Information available

In this setting, the researcher has access to the simulated day-ahead and intraday market
prices for a system which is identical, other than that the hybrids are in a system operator-
managed “separate independent resources” (abbreviated “2R”) participation model. This
is a version of option (a) in Figure 4.1.1 in which the assets are dispatched by the system
operator to minimize overall system cost, as opposed to being bid into the market by the
hybrid operator. These “2R prices” are available for the optimization horizon (periods
1, 2, . . . , NT ) and at least a few weeks prior. The approach is based on the assumption that
market prices will be similar under both participation models. The bidder is not allowed
to use the 2R prices for the optimization horizon directly as a price scenario, but they may
use this profile to design price scenarios reflective of those which a knowledgeable market
participant could hope to produce.

Day-ahead price scenarios meeting state-of-the-art forecast accuracy (ρDA)

A set of plausible price scenarios is built around the day-ahead “2R profile” by taking price
profiles of recent days and incrementally improving them until they meet a state-of-the-art
electricity price forecasting metric, where the 2R profile is treated as the ground truth. The
resulting price forecasts are representative of forecasts that a state-of-the-art price forecasting
method could produce and are treated as equally likely. Pseudocode for this approach is
provided in Algorithm 4.3.

Algorithm 4.3 Day-ahead price scenario development

Require: Baseline price data set (“DATA”), accuracy metric computation function (“MET-
RIC”), target accuracy metric value (“TARGET”), error reduction factor (“FACTOR”)

1: scenarios ← price profiles of comparative dates from DATA
2: TRUTH ← price profiles from DATA, organized to correspond with scenarios
3: while METRIC(scenarios, TRUTH)>TARGET do
4: Improve scenarios: scenarios ← TRUTH +(1−FACTOR)× (scenarios−TRUTH)
5: end while
6: return scenarios

This study selected the mean value of weekly-weighted mean absolute errors (WMAE) as
the metric and 5% as its target value, informed by the results presented in [118] and [124]. To
utilize WMAE, scenarios for at least seven days must be computed at once. Scenarios were
initialized to be the past ten weekdays, for each weekday, and the past six weekend days, for
each Saturday and Sunday. 0.05 was used as the error reduction factor. Figure 4.3.3 provides
an example of the final day-ahead price scenarios (those returned on line 6 of Algorithm 4.3)
compared with the initial, naive scenarios.
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Figure 4.3.3: Day-ahead price scenario development: The top graph shows how the initial
scenario set (ten most recent weekdays) for a given weekday compares to the true prices. For
the same date, the bottom graph shows the final price scenarios which, along with scenarios
for each day of a year, correspond to a mean WMAE of 4.9%.

Scenarios for the difference between intraday and day-ahead market prices (ρIN)

In this project a real-time market was not simulated, so Λ was set to zero and ρINt,s also took
a value of zero, for all t ∈ T and s ∈ S. An approach similar to that proposed for generation
scenarios could be utilized, with the following substitutions: F =day-ahead price, E1 =price
difference between the intraday and day-ahead markets, E2 =price difference between the
intraday and day-ahead markets in the preceding period. Alternative methods can be found
in the literature, including [41, 18, 69].

Scenarios for the deviation price ratios (η+/−)

As stated in Lemma 4.1, deviations will never be priced advantageously to the day-ahead
market if η+t,s < 1 and η−t,s > 1 for all t ∈ T and s ∈ S. In this project, the η+/− values were
designed to generally limit differences between the hybrid’s actual and scheduled output, as
opposed to reflecting deviation charges in a specific market structure. The choices η+t,s = 0.5
and η−t,s = 1.5 for all t ∈ T and s ∈ S accomplished this objective.
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4.3.3 Combined Scenarios

A symmetric scenario tree was created to pair each generation scenario with each day-
ahead price scenario. Since the day-ahead price scenarios are all equally likely, {πs}s∈S are
proportional to the generation scenario probabilities.

4.3.4 Hyperparameters

This section will discuss the selection of design parameters which the researcher must provide
to the bidding model in section 4.2. The parameters specific to a plant’s technology and
configuration, including poi, µ,O,Gmax, Echa/dis,max and Cmin/max, are not covered.

Risk parameters

Risk in the bidding model is managed through the parameters ζ, the weight applied to the
CVaR in the objective function, and σ, which regulates the scenarios CVaR represents. We
chose to fully consider financial risk by setting ζ = 1 and have CVaR be the expected profits
of the lowest 5% of scenarios by setting σ = 0.95.

Time horizon

The choice of NT depends on the market structure and storage duration. If the day-ahead
market covers 24 hours, clearly NT must be at least 24. Considering a longer time horizon
when making bidding decisions, even if the bids produced for t = 25, 26, . . . , NT are not
submitted to the market, is beneficial because the bids are based on a more complete view
of the opportunity costs of charging and discharging the ESR. For example, if NT = 24 and
ρDA
24,s > 0 then CSC

24,s will generally be zero or near zero since there is no opportunity in the
model for energy in storage at t = 24 to ever be sold. In practice, there will be another
day and automatically emptying the battery each night without considering it is not a wise
strategy. Requirement 7 can be satisfied by selecting NT to be sufficiently greater than the
number of binding time periods. The hybrids considered in this study had a storage duration
of four hours, so a one-day look-ahead period (NT = 48) was appropriate. Hybrids with
longer duration storage would benefit from modeling longer time horizons. Bidding model
simplifications may be used during the look-ahead period in order to satisfy computational
or memory limits, for example using self-scheduled bids or identical scenarios during the
look-ahead hours.

Number of scenarios (NS)

The aim is to create bids which are not overly sensitive to small changes in the model
inputs, chief among which are the scenarios. An example of a small change is including one
additional scenario created in the same manner as the rest. The price scenario methodology
introduced in 4.3.2 produces ten price scenarios for a weekday and six price scenarios for a
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weekend day. The options for changing the number of price scenarios are more limited than
for generation scenarios and have a smaller impact on the resulting bids due to their lower
variability (compare Figures 4.3.2 and 4.3.3). So, this section will focus on how to determine
the number of generation scenarios.

There are two numbers of generation scenarios which need to be determined: (1) the
number of equally-likely scenarios created using Algorithm 4.2 and (2) the number, NFFS,
to be selected by FFS and ultimately used as bidding model inputs. Selecting a large number,
say 500 or 1000, for (1) produces a more complete distribution and is less computationally
taxing than increasing the dimension of the bidding problem, especially since the scenarios
can be generated in parallel. Thus the more challenging problem is determining a good
value for NFFS. The trade-off is between bidding problem computation (increasing as NFFS

increase) and the resulting bid robustness to generation uncertainty (improving as NFFS

increases). As the specific terms of this trade-off will vary based on the setting and the
resources available, we share an approach to evaluating how many scenarios are enough:

Repeatedly solve the hybrid bidding problem in section 4.2 with increasing numbers of
generation scenarios (values ranging from 1 to 200 are used in Figure 4.3.4), and the
same price scenarios, for each of a small selection of dates (six are used in Figure 4.3.4).
As you grow the scenario set, be sure to only add scenarios (e.g., all scenarios in the
trial with 10 generation scenarios are used in the trial with 20 generation scenarios)
and note the computation times. By analyzing the rate at which bids converge to the
bids based on the greatest number of scenarios (x

(max)
t ), search for a value of NFSS that

is computationally tractable for the project and will produce bids which are acceptably
close to those based on much more information and very similar to those based on a
few more or a few less scenarios.

Figure 4.3.4 provides an example of this analysis, where the difference between two sets
of NT bid curves, one based on NFSS = k scenarios and one based on NFSS = max scenarios,
is measured as follows:

Average hourly bid difference :=

∑NT

t=1 ∥x
(k)
t − x

(max)
t ∥2∑NT

t=1 ∥x
(max)
t ∥2

. (4.42)

In this example, if you are comfortable with bids that are approximately 10-20% different
on average than the bids based on 200 generation scenarios, then you only need to use 10
generation scenarios moving forward. However, if you want bids that are within 5% of the
200-generation-scenario bids on average, Figure 4.3.4 suggests that close to 100 generation
scenarios are needed. Ultimately, we decided to use 20 generation scenarios after analyzing
Figure 4.3.4 and our computational resources.
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Figure 4.3.4: Experimental results for 6 days comparing bid curves based on 200 generation
scenarios to those based on 1-100 generation scenarios.

Initial state of charge
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Solution: Create several sets of offers for each day 
corresponding to different initial SOC conditions

s1

s2

s3

s5

s4

Band 5

Band 1

Band 4

Band 3

Band 2

Methodology for creating bids for each day:
Compute 24 hourly bids as if the state-of-charge at the start of hour 1 was s1. 
This is Bid Set 1.
Compute 24 hourly bids as if the state-of-charge at the start of hour 1 was s2. 
This is Bid Set 2.

The price scenarios, generation scenarios, and all other parameters (aside 
from initial SOC) are identical across these computations.

Methodology for selecting which bid set to use in the day-ahead market:
At noon the prior day, the production cost model projects what the initial SOC 
will be based on current SOC and cleared bids for the next 12 hours.
If this projection is in Band X, then Bid Set X is used in the market simulation 
and all other bid sets are ignored.

This software implementation emulates a market participant that changes strategy daily based on changing conditions. This
implementation is necessary for mimicking human behavior, but is unrelated to existing market design proposals.

Figure 4.3.5: Illustration of solution to
initial state of charge estimation challenge

Ideally, the initial state of charge parameter
Cstart is known precisely or can be estimated well.
In practice this is usually the case. Bids are typi-
cally submitted 12 hours in advance, so the state
of charge can be estimated based on the cur-
rent state of charge, current day’s bids and 12
hours of generation forecasts, as well as managed
using the intraday market. Current production
cost models do not allow for the co-simulation
of battery state of charge and hybrid participant
decision-making. A result of this software limi-
tation for multi-day studies is that bids for the
entire study horizon (weeks, or even years worth
of bids) must be submitted to the “market” in
advance. In this case, what value of Cstart should
be used for day 42, for example, given the uncer-
tainty in generation and dispatch for days 1-41?

As Figure 4.3.6 demonstrates, this choice has
a large influence on the bids for the first several
hours of the day. Bids resulting from five different
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Cstart values, and identical values for all other
parameters, are compared and show that a large Cstart allows the solar hybrid to deliver
power in hour 1 and then remain idle until the morning peak price hours (i.e., hour 7).
Conversely, hybrids with a low Cstart charge from the grid via negative quantity bids during
the early morning hours.

Figure 4.3.6: Sensitivity analysis of the initial state-of-charge parameter Cstart.

The solution implemented in this project was to create several sets of bidding curves for
each day, each corresponding to a different initial state of charge condition. As illustrated
in Figure 4.3.5, the approach begins by solving the bidding problem in section 4.2 five times
for Cstart = s1, s2, . . . , s5 and all other parameters held constant. Then, for each simulated
day-ahead market, the production cost model utilizes only the single set of bidding curves
corresponding to the band of the observed state of charge. For example, if the state of
charge at the end of day 41 in the simulations falls within band 2, then the bids for day 42
are based on Cstart = s2. The number and placement of the state of charge levels and their
corresponding bands is up to the individual researcher. A larger number of narrow bands
will improve the bids, but increase the computation and memory requirements. This study
used the values listed in Table 4.3.2; narrower bands near the extreme values were used to
guard against infeasible schedules early in the day.
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Cstart 2.5 12.5 30 50 70 87.5 97.5
Band [0, 5] (5, 20] (20, 40] (40, 60] (60, 80] (80, 95] (95, 100]

Table 4.3.2: Values used to define and select state-of-charge dependent bidding curve sets
(percentage of Cmax

1,s ).

4.3.5 Implementation

A MATLAB implementation of the hybrid power plant bidding model in section 4.2 with
the parameters discussed in section 4.3.4 (notably, NT = 48 and NS = 200 for a weekday)
was solved in, on average, 45 seconds using MATLAB’s mixed-integer linear programming
solver from its “optimization toolbox” and 24 seconds using Gurobi on a personal computer,
which satisfied the tractability demands of requirement 9.

4.3.6 Heuristic to Add Elasticity for High- and Low-price Events

The advantage of bidding curves over self-scheduled bids is the ability to be dispatched
differently if prices are higher or lower than your expectation. The day-ahead price scenarios
developed in section 4.3.2 allow for elasticity over the range of probable prices. However,
prices may spike outside of the range of day-ahead price scenarios in ways that are difficult
to predict, and the hybrid operator wants to capitalize on unexpectedly high and low prices.
This section presents a heuristic approach to extending the bids created by the section 4.2.4
model to address exceptionally high and low prices.

In the event of a high price, a hybrid operator wants to be dispatched at its maximum
possible power output. The challenges are to determine what constitutes a high-price event
and to ensure the resulting curve is logical with respect to the marginal cost of generation.
Figure 4.3.7 illustrates the proposed heuristic for high price events in both notable cases.
The details are found in Algorithm 4.4, which relies on two hyperparameters: yhigh sets an
absolute floor on what price is considered “high” and α establishes a high price as a multiple
of the highest hourly price among all scenarios over the time horizon. In this study, we used
α = 2 and set yhigh equal to the expected 80th percentile day-ahead price in the given month.

In the event of a low price, a hybrid operator wants to charge the ESR as much as possible.
Similar to high-price events, the challenges are to determine what prices are treated as “low”
and to ensure the final bidding curve is logical with respect to the marginal cost of generation
and potential grid charging restrictions. Figure 4.3.8 illustrates the proposed heuristic, which
is detailed in Algorithm 4.5, for two common cases. The user-defined hyperparameters are
ȳlow, which sets an absolute ceiling on what price is considered “low,” and α, which again
establishes a low price as a multiple of the highest hourly price among all scenarios over the
time horizon. In this study, we used α = 2 and set ȳlow equal to the expected 20th percentile
day-ahead price in the given month.
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(a) Case 1 (b) Case 2

Figure 4.3.7: Illustration of the high-price event heuristic (Algorithm 4.4) in two typical
cases.

(a) Case 1 (b) Case 2

Figure 4.3.8: Illustration of the low-price event heuristic (Algorithm 4.5) applied to two
common cases in which grid charging is allowed (ψ = 1).

4.4 Conclusion

Hybrid power plants are expected to contribute significant capacity to power systems in
the near future. To analyze and prepare for this future, researchers require the ability to
represent hybrids’ market actions in production cost models. This paper addresses this need
by modeling a hybrid operator’s day-ahead bidding decisions as a stochastic optimization
problem and then detailing methods for deploying the proposed model in a simulation envi-
ronment. The model builds upon those in the literature first by allowing for greater flexibility
of the generator and ESR individually, without lessening constraints on the combined hybrid
resource, in accordance with a single, self-managed resource participation model. Second,
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the model respects limits on a bid’s complexity through its number of breakpoints, with-
out restricting the number and distribution of price scenarios. The unique challenges of
developing price and generation scenarios for a hypothetical system are addressed through
algorithms and examples. Finally, the bid curves are adapted to provide favorable dispatch
in the face of low-probability prices events.

Algorithm 4.4 Bid curve extension for high-price events

Require: Model inputs and results: {{πt,s, gent,s, ρ
DA
t,s , Ḡt,s}s∈S , {xt,b, yt,b}b∈B, Edis,max

t , OG
t }t∈T

Require: Market price ceiling: ρceil

Require: Minimum price considered a high-price event: yhigh

Require: Factor defining a high-price event relative to the time horizon: α > 1
1: for t ∈ T do
2: Calculate the expected maximum possible power output:

xhight =

(∑
s∈S

πs

)−1(∑
s∈S

πt,s ·min{Edis,max
t + gent,s, poi}

)
(4.43)

3: if xhight > xt,NB
then

4: Insert (ρceil, xhight ) into the hour t bidding curve
5: Calculate the high-price event threshold:

ρhight = max

{
yhigh, α ·

(
max

s∈S,t∈T
ρDA
t,s

)
,

1

α
·
(

max
s∈S,t∈T

ρDA
t,s

)}
(4.44)

6: Calculate the expected curtailment of scenarios on the highest-price segment:

Ḡhigh
t =

∑
s∈S πt,sḠt,sI

[
yt,NB

≤ ρDA
t,s ≤ yt,NB+1

]∑
s∈S πt,sI

[
yt,NB

≤ ρDA
t,s ≤ yt,NB+1

] (4.45)

7: if maxs∈S ρ
DA
t,s < OG

t and ρhight > OG
t and Ḡhigh

t > 0 then {Case 2}
8: Update yNB

= OG
t

9: Insert (ρhight ,min{Ḡhigh
t +[xt,NB

]+, poi}) into the hour t bidding curve
10: else {Case 1}
11: Update yNB

= ρhight

12: end if
13: end if
14: end for
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Algorithm 4.5 Bid curve extension for low-price events

Require: Model inputs and results: {{πt,s, gent,s, ρ
DA
t,s , C

SC
t,s , E

DA
t,s }s∈S , {xt,b, yt,b}b∈B, E

cha,max
t , OG

t }t∈T
Require: Maximum price considered a low-price event: ȳlow

Require: Factor defining a high-price event relative to the time horizon: α > 1
1: for t ∈ T do
2: if xt,1 > −ψEcha,max

t then
3: Calculate the low-price event threshold:

ρlowt = min

{
ȳlow, α ·

(
min

s∈S,t∈T
ρDA
t,s

)
,

1

α
·
(

min
s∈S,t∈T

ρDA
t,s

)}
(4.46)

4: if mins∈S ρ
DA
t,s ≥ OG

t and xt,1 ≥ 0 then
5: if ρlowt ≥ OG

t then
6: Insert (OG

t , −ψE
cha,max
t ) into the hour t bidding curve

7: Calculate the expected curtailment if day-ahead dispatch is less than 0:

Ḡlow
t =

∑
s∈S πt,s ·

[
gent,s −min{Echa,max

t , Cmax
t,s − CSC

t,s }
]
+∑

s∈S πt,s
(4.47)

8: if 0 < Ḡlow
t < xt,1 then {Case 2}

9: Insert (ρlowt , Ḡlow
t ) into the hour t bidding curve

10: else if Ḡlow
t = 0 then

11: Calculate the expected rate of grid charging if ESR charges maximally:

xlowt =

(∑
s∈S

πt,s

)−1(∑
s∈S

πt,s ·
[
gent,s − Echa,max

t

]
+

)
(4.48)

12: Insert (ρlowt , ψ · xlowt ) into the hour t bidding curve
13: end if
14: else
15: Calculate expected ESR output for scenarios on the lowest-price segment:

Elow
t =

∑
s∈S ·πt,s · EDA

t,s · I
[
yt,1 ≤ ρDA

t,s ≤ yt,2
]∑

s∈S πt,s · I
[
yt,1 ≤ ρDA

t,s ≤ yt,2
] (4.49)

16: Insert (OG
t , [min{xt,1, Elow

t }]+), (ρlowt ,−ψEcha,max
t ) into the hour t bidding curve

17: end if
18: else {Case 1}
19: Insert (ρlowt , −ψEcha,max

t ) into the hour t bidding curve
20: end if
21: end if
22: end for
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