
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Methods and applications in large-scale variational inference

Permalink
https://escholarship.org/uc/item/4h33m2dp

Author
Liu, Runjing

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4h33m2dp
https://escholarship.org
http://www.cdlib.org/

Methods and applications in large-scale variational inference

by

Runjing Liu

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Statistics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Jon D. McAuliffe, Chair
Professor Michael I. Jordan

Professor Martin J. Wainwright

Summer 2021

Methods and applications in large-scale variational inference

Copyright 2021
by

Runjing Liu

1

Abstract

Methods and applications in large-scale variational inference

by

Runjing Liu

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Jon D. McAuliffe, Chair

This dissertation can be viewed as a collection of case studies in applying variational inference
to analyze large data problems. The largest, most computationally difficult data problem
we tackle is the task of cataloging light sources imaged by astronomical surveys (Chapter 2).
For some surveys, the size of the raw data is on the scale of petabytes. To do inference,
we employ two recent advances in variational inference: amortization and the wake-sleep
algorithm.

The data analysis problems in Chapters 3, 4, and 5 are more tractable. The analyses in
these chapters are exploratory in nature. However, such exploratory data analyses often
require fitting either several related models or fitting the same model on subsamples of the
data. Repeatedly solving for variational optima after each model or data perturbation may
be unnecessarily expensive, particularly for exploratory settings where approximate optima
might suffice. In these chapters, we present the notion of local sensitivity which we use
to quickly extrapolate, from an initial variational optimum, the posterior quantities that
would be obtained after a model or data perturbation. Our approach is particularly apt for
sensitivity analysis, where the goal is to understand how conclusions might change should a
different model be specified or should different data be observed.

Finally, Chapter 6 considers probabilistic machine learning problems where the training
objective is an expectation over a discrete latent variable. The standard reparameterization
and backpropagation method for computing stochastic gradients do not apply in this setting.
Many alternative stochastic gradient estimators have been proposed specifically for this
problem. Chapter 6 outlines a technique to lower the variance of any gradient estimator by
employing a general statistical method called Rao-Blackwellization.

i

To Chuangmin, Haiying, Lindsay, and Helen

ii

Contents

Contents ii

List of Figures iv

List of Tables viii

1 Introduction 1

2 Variational inference for deblending crowded starfields 13
2.1 The generative model . 16
2.2 Variational inference . 18
2.3 The wake-sleep algorithm . 23
2.4 Empirical comparison of ELBO and sleep objectives 26
2.5 Results on the M2 globular cluster . 28
2.6 Conclusion . 33
2.7 Supplemental results . 34

3 Local sensitivity in Bayesian nonparametrics 40
3.1 Stick-breaking Dirichlet processes . 41
3.2 Variational approximation for Dirichlet processes 45
3.3 Local sensitivity . 51
3.4 Function-valued prior perturbations . 56
3.5 Computing the sensitivity . 58
3.6 Results . 60
3.7 Limitations of local sensitivity . 78
3.8 Conclusion . 80
3.9 Supplemental details . 82

4 Measuring cluster stability using the linear bootstrap 88
4.1 Data . 89
4.2 Model . 89
4.3 Variational inference . 91
4.4 Clutering stability measures . 92

iii

4.5 The linear bootstrap . 94
4.6 Results . 95
4.7 Conclusion . 97

5 Cross-validation with a Swiss army infinitesimal jackknife 99
5.1 Genomics experiment: modeling . 99
5.2 Genomics experiment: results . 104
5.3 Conclusion . 106

6 Rao-Blackwellized stochastic gradients for discrete distributions 107
6.1 Method . 109
6.2 Theory . 110
6.3 Related Work . 112
6.4 Experiments . 113
6.5 Conclusion . 123
6.6 Experiment technical details . 124

Bibliography 125

iv

List of Figures

2.1 Tiling a 10× 10 pixel image into 2× 2 tiles. 19
2.2 An example image with four tiles and four stars illustrating the relationship

between the tile latent variables and the full-image catalog. To construct the
full-image catalog, we index into the appropriate row of the triangular array on
each tile. 20

2.3 The neural network architecture. For cataloging M2, the input is an 8×8 padded
tile, and the network returns distributional parameters for latent variables con-
tained in the center 2× 2 tile. 23

2.4 (Top row) The ELBO as the optimization progresses for six random restarts.
(Bottom row) In red, modal locations from ELBO-optimized and sleep-optimized
variational posteriors, for one of the six restarts. In blue, the true locations. . . 27

2.5 An illustration of local optima in the ELBO objective. To move an estimated
location to a correct location, the optimization path must traverse a region where
the negative ELBO is larger than the current configuration. In contrast, the sleep
objective is quadratic in the estimated location, and the gradient does not vanish. 28

2.6 Estimated catalogs on four 10×10 subimages from M2. Blue dots are stars from
the HST catalog used as ground truth. Starnet-WS, PCAT, and DAOPHOT
estimated stars are shown as red, cyan, and orange crosses, respectively. 30

2.7 True positive rate (left) and positive predicted value (right) of various cataloging
procedures on M2, plotted against r-band magnitude. Smaller magnitudes cor-
respond to brighter stars. 31

2.8 Flux distributions for the r-band observations of M2. The flux distribution of
the HST catalog in grey. Estimated distributions by DAOPHOT, PCAT, and
StarNet-WS catalogs overlaid. For PCAT, the flux distribution is from a single
catalog sample. 32

2.9 The empirical distribution of z-scores for logit-locations (left) and log-fluxes (right)
under the StarNet-WS variational posterior. 32

2.10 The SDSS field containing M2. In red, the subregion x0 considered in the main
text. The subregion xtest in blue. 35

v

2.11 True positive rate (left) and positive predicted value (right) of various methods
on the M2 test subregion. StarNet-init is the network fit on the original M2
subregion (the same network as StarNet-WS in the main text). StarNet-refit ran
two further wake-sleep cycles on the M2 test subregion. 36

2.12 Sensitivity of performance metrics to Poisson mean parameter on number of stars
(µ in Equation 2.1). 37

2.13 The prior density of r-band magnitude for various power law slopes α. 37
2.14 Sensitivity of performance metrics to flux prior parameter α. 38
2.15 Sensitivity of estimated flux distribution to flux prior parameter α. 38
2.16 (Left) Detections on a sparse field. In this example, StarNet correctly identifies

the star (blue). Without a galaxy model, StarNet also classifies galaxies (green)
as one or multiple stars. (Right) The true positive rate of StarNet and PHOTO
as a function of true magnitude. 39

3.1 The iris data in principal component space and GMM fit at α = 6 62
3.2 The expected number of clusters as α varies in the the GMM fit of the iris data 63
3.3 Sensitivity of the expected number of in-sample clusters in the iris data set to

three multiplicative perturbations with unit L∞-norm. (Left) the multiplicative
perturbation φ in grey. The influence function Ψ in purple, scaled to also have
unit L∞-norm. (Middle) the original prior density P0 and the perturbed prior
density Pt = P0 × exp(tφ) at t = 1. (Right) the effect of the perturbation on the
change in expected number of in-sample clusters as t→ 1. 65

3.4 Sensitivity of the expected number of in-sample clusters in the iris data set to
the worst-case multiplicative perturbation with unit L∞-norm 66

3.5 (Left) An example gene and its expression measured at 14 unique time points
with three biological replicates at each time point. (Right) The cubic B-spline
basis with 7 degrees of freedom, along with three indicator functions for the last
three time points, T = 72, 120, 168 . 67

3.6 Inferred clusters in the mice gene expression dataset 68
3.7 The inferred co-clustering matrix of gene expressions at α0 = 6. 68
3.8 Differences in the co-clustering matrix at α = 1 (top row) and α = 11 (bottom

row), relative to the co-clustering matrix at α0 = 6. We compare differences
obtained with the linearly approximated variational parameters against changes
observed after refiting . 69

3.9 Effect on the co-clustering matrix after a multiplicative functional perturbation.
The perturbation φ (top left, in grey) is a difference of two Gaussian bumps scaled
to have L∞ norm equal to two. φ is chosen such that the Gaussian bumps roughly
align with the two largest modes of the influence function (top left, purple . . . 70

3.10 The multiplicative perturbations φα(·) that corresponds to decreasing (left) or
increasing (right) the α parameter by five . 71

3.11 The inferred individual admixtures at α0 = 3 . 73

vi

3.12 The expected number of (thresholded) populations in the thrush data as α varies.
We computed the linear approximation at α0 = 3, and we compare the results
under the linearly approximated variational parameters with the results observed
after refitting . 74

3.13 The expected number of loci per population as α varies 75
3.14 Sensitivity of inferred admixtures for several outlying individuals 77
3.15 Inferred admixtures after the worst-case perturbation to individuals “A” (see

Figure 3.14 for perturbation). 79
3.16 An individual (n = 26) for which the linearly approximated variational parame-

ters poorly captured the change in admixture observed after refitting as t→ 1 . 80
3.17 An example where linearizing the posterior quantity itself outperforms linearizing

the variational parameters only . 81

4.1 Mice gene expression observations over time (left) and B-spline basis of degree 3
and 7 degrees of freedom (right). 90

4.2 Cluster quality . 95
4.3 Standard deviations of elements of the co-clustering matrix for a randomly se-

lected subset of genes. Pairs with standard deviations < 0.03 on both axes are
not shown. 96

4.4 Distribution of KL divergence relative to the warm start 97
4.5 Results with an initial optimum based on only 10 random restarts rather than 200 97

5.1 B-spline bases with various degrees of freedom. Time is measured in hours. . . 100
5.2 Observations from six genes in blue. In red, fits from the first stage regression;

light red lines are samples from the approximate posterior. In green, the cluster
centroid to which that each gene belongs. 103

5.3 Comparison of held-out accuracies. Here k refers to the number of data points
left out. 105

5.4 Comparison of compute time. 106

6.1 The loss function at each iteration in the Bernoulli experiments. Each line is an
average over 20 trials from the same initialization. Zero categories summed is the
original estimator, while eight categories summed returns the exact gradient. . 114

6.2 The distribution of gradient estimates from REINFORCE+ in the Bernoulli ex-
periments. We examine the gradients at η = 0 and η = −4, as a function of k, the
number of categories summed. Summing out categories reduces variance. The
reduction is large at η = −4 where the variational distribution is concentrated on
just one category. (Note there is still some random noise when we sum out all 8
categories here, because of the random control variate.) 115

vii

6.3 Results for Gaussian mixture model experiment. (Left) Simulated data. (Right)
Solid lines display the negative ELBO per iteration using REINFORCE+, for
k categories summed. Zero categories summed is the original REINFORCE+

estimator, while 10 categories summed returns the analytic gradient. Dashed
lines show performance when n ∈ {2, 4} draws of the REINFORCE+ estimator
are averaged at each iteration to reduce variance. Each line is an average over 20
trials from the same initialization. 117

6.4 (Left) Negative ELBO per iteration in the N-mixture experiment. We compare
the REINFORCE+ estimator with its Rao-Blackwellization, using either k = 1
or k = 3 categories summed. Vertical lines denote standard errors over 10 trials
from the same initialization. (Right) Negative binomial variational distribution
q at convergence. 118

6.5 Results on the semisupervised MNIST task. Plotted is test set negative ELBO
evaluated at the MAP label. Paths are averages over 10 runs from the same
initialization. Vertical lines are standard errors. Our method (red) is comparable
with summing out all ten categories (black). 119

6.6 The conditional generation of MNIST digits. Each row displays five draws from
the learned generative model z ∼ N (0, I), x ∼ pθ(x|y, z), for a different digit y
in each row. 120

6.7 Examples of non-centered MNIST digits . 122
6.8 Results on the moving MNIST task. Plotted is test set negative ELBO evaluated

at the MAP pixel location. Paths are averages over 10 runs from the same
initialization. Vertical lines are standard errors. Our Rao-Blackwellization (red)
with summing out the top five categories exhibits the fastest convergence and
reaches a smaller negative ELBO than NVIL and REINFORCE+. 122

6.9 (Left column) The original MNIST digit. (Center column) The reconstructed
MNIST digit. (Right column) The learned probability distribution over the grid
of pixels. Brighter spots indicate higher probabilities. 123

viii

List of Tables

2.1 Performance metrics on M2. For probabilistic methods (StarNet and PCAT) the
“#stars” column refers to the mean number of stars under the (approximate)
posterior, while the right-most column displays the 5-th and 95-th percentiles
under the posterior. 31

2.2 The negative log-likelihood Equation 2.34 for various model estimates. PHOTO
provides estimates of background and PSF for every SDSS data release. We
compare PHOTO estimates with StarNet estimates obtained after two cycles of
wake-sleep. 33

2.3 Performance metrics on the M2 test subregion. StarNet-init is the network fit on
the original M2 subregion (the same network as StarNet-WS in the main text).
StarNet-refit ran two further wake-sleep cycles on the M2 test subregion. 34

3.1 Compute time of results on the mice data set. 72
3.2 Compute time of results on the thrush dataset. Timing results on perturbation

φ are reported for the worst-case perturbation “A” in Figure 3.14. Timing on
other considered φ are similar. 78

4.1 Median times to compute each bootstrap sample (or related quantities) 95

6.1 Accuracies and timing results on semi-supervised MNIST classification. Standard
errors of test accuracies are over 10 runs of each method. Standard deviations
of timing are over the 100 epochs of 10 runs. Training was run on a p3.2xlarge
instance on Amazon Web Services. 120

6.2 Timing results on the moving MNIST task. Standard deviations of timing are
over the 50 epochs of 10 runs. Training was run on a p3.2xlarge instance on
Amazon Web Services. 122

ix

Acknowledgments

I am extraordinarily grateful to all of my committee members, Jon McAuliffe, Michael Jor-
dan, and Martin Wainwright, for their guidance during my time at UC Berkeley.

Jon, as my PhD advisor, was the primary driver of my growth over the past five years.
I had the opportunity to work with Jon on a diverse array of research projects. In each
case, Jon was never short of helpful insights when I needed advice. I gained much technical
knowledge in working with Jon, and I hope that in some small way, I am able to emulate his
thoughtfulness in approaching statistical problems. Our work together appears in Chapters
2 and 6

Mike to me is the embodiment of academic scholarship. He inspires me to embrace all
that academic research has to offer by reading literature far and wide while boldly seeking
new ideas. Mike oversaw the work that appears in Chapters 3 through 6.

The inception of this dissertation is due to Ryan Giordano, who introduced me to varia-
tional inference. I could not have asked for a more patient mentor—Ryan took me under his
wing as a first year student who barely knew how to code, and it was through his repeated
code-reviews that I became passably competent in the end. Ryan always pushed me to set
the highest standards for myself and my work; I would not be the researcher I am today
without him. I would also like to mention the generosity of Tamara Broderick, who despite
not being my advisor (and has only ever met me virtually!), has always found time to give
feedback on my work. She patiently coached me through my first NeurIPS presentation,
and those sessions alone raised my bar for future talks. Ryan and Tamara are co-authors on
work that appears in Chapters 3, 4, and 5.

I am also indebted to Jeffrey Regier, who introduced me to astronomy applications of
variational inference. He took a chance on me after I emailed him out of the blue, inquiring
about his research interests. Since then, Jeff has been like another PhD advisor to me, and
he is one of the first people I turn to for advice. The fruits of our collaboration can be found
in Chapters 2 and 6.

There have been countless other individuals who have supported me over the years. I
would not have survived the first-year curriculum at UC Berkeley without the camaraderie
of Eli Ben-Michael and Jake Soloff. Late nights in Evans Hall with take-out from La Burrita
were a staple of those early PhD years.

This thesis is dedicated to my parents who are my role models in their courage, tenacity,
and work ethic. And to my sister, whom I love for her youthful spirit and moxie.

Finally, a dedication to my partner Helen Liu, who has made my life at UC Berkeley
wonderful in more ways than I could have imagined. I came to the Bay Area as a lonely
student, and will leave with a best friend. The warmth of her companionship is enough for
a lifetime, almost surely.

1

Chapter 1

Introduction

Graphical models provide a flexible framework for reasoning about complex systems. Ap-
plications range from processing images collected by astronomical surveys, to inferring tax-
onomy using genomic data, to forecasting the state of financial markets. Graphical models
represent relationships between variables as either joint or conditional distributions, and
they form the starting point for many statistical models. Some variables in the graph are
observed as data, while other variables are latent, or unobserved. Let x = (x1, ..., xn) be
observed variables and z = (z1, ..., zm) be latent variables. In Bayesian statistics, the central
quantity of interest is the posterior distribution p(z|x), the distribution of latent variables
conditional on observed data.

Algorithms for computing the exact posterior distribution, or posterior summaries such
as means and modes, are available for only a small subset of graphical models. Examples
include the Kalman filter for linear state space models (Kalman, 1960; Shumway and Stoffer,
2017) and the Viterbi algorithm for discrete-state hidden Markov models (Forney, 1973).
The Viterbi algorithm can be generalized to the max-product algorithm for inference on
tree-structured graphs (of which hidden Markov models are a special case).

For general graphical models, approximate methods are required. Markov Chain Monte
Carlo (MCMC) methods construct a sequence of random variables that converge in distri-
bution to the exact posterior. The sequence of random variables is defined by a transition
kernel specially chosen such that the stationary distribution of the chain is the exact pos-
terior. Many recent advances in MCMC involve developing “black-box” methods which are
model agnostic and hence can be applied to generic graphical models with little additional
modification. Hamiltonian Monte Carlo (HMC) and the related no-U-turn sampler (NUTS),
both of which apply to any model with a differentiable joint probability density, are two such
examples (Neal, 2012; Betancourt and Girolami, 2013; Hoffman and Gelman, 2014).

However, sampling from the exact posterior requires a theoretically infinite number of
steps. In practice, a finite number of steps are run. Various diagnostics have been proposed
to evaluate convergence (Gelman and Rubin, 1992; Gelman et al., 2013), some of which
require several runs of MCMC. In many applications, the chain may be slow to mix, and the
runtime is prohibitive for large datasets of interest (Chapter 2).

CHAPTER 1. INTRODUCTION 2

Alternatively, variational methods use optimization for inference, rather than sampling.
Variational inference defines a family of of approximating distributions Q and seeks the
distribution q∗ ∈ Q that is as close as possible to the exact posterior in KL divergence
(Jordan et al., 1999; Wainwright and Jordan, 2008; Blei et al., 2017). When the distributions
in Q are parameterized by a real-valued vector η ∈ Rd, posterior inference amounts to solving
the numerical optimization problem,

η∗ = argmin
η∈Rd

{
KL
[
qη(z) ‖ p(z|x)

]}
. (1.1)

Minimizing the KL divergence is equivalent to maximizing the evidence lower bound, or
ELBO (Blei et al., 2017):

L(η; x) := Eqη(z)

[
log p(x, z)− log qη(z)

]
. (1.2)

Notice that the ELBO does not depend on the marginal distribution p(x) or the posterior
distribution p(z|x), both of which are intractable.

The class of distributions Q is chosen such the KL minimization problem is straightfor-
ward to solve using standard numerical optimization techniques. Typically, the family of
distributions Q is constructed by breaking statistical dependencies. In the extreme case,
mean-field variational inference, the posterior distribution is approximated by a distribution
that fully factorizes over the latent variables,

qη(z) =
m∏
i=1

qη(zi).

By casting the posterior inference problem as a numerical optimization problem, the vari-
ational approach can leverage the vast literature on large-scale numerical optimization (No-
cedal and Wright, 2006). On large data sets, solving the optimization problem (Equation 1.1)
can be orders of magnitude faster than running MCMC.

The approaches we develop in this dissertation all have a common goal of reducing the
runtime of variational methods in order to make inference feasible for their respective data
applications. However, with the exception of Chapter 6, our contributions lie not in devel-
oping novel optimization techniques or improving existing optimization routines per se. In
fact, for all the data problems encountered in this dissertation, the optimization problem
(Equation 1.1) was solved with well-studied algorithms such as stochastic gradient descent
or quasi-second order methods such as limited-memory BFGS.

Rather, Chapters 2 through 5 of this dissertation consider situations where optimization
must be re-run either when new data is observed, the model is perturbed, or the existing
data is subsampled. Chapter 2 employs variational inference to catalog astronomical surveys.
These surveys scan the sky over many nights. With the arrival of each new data point, a
traditional variational approach requires a new solution to Equation 1.1. To avoid repeated,
expensive optimization, we instead use an amortized approach. Here, a neural network maps

CHAPTER 1. INTRODUCTION 3

data points to variational distributions. After the initial cost of fitting the neural network,
producing an approximate posterior on new data requires only a forward pass through the
network. The amortization enables our method, called StarNet, to scale variational inference
to the petabytes of data collected by some modern surveys.

In analyzing a data set, it is generally good statistical practice to understand how con-
clusions drawn from the data might be affected by potentially subjective modeling choices.
In Bayesian statistics, this includes determining the sensitivity of resulting inferences to pos-
sible prior choices. A conceptually straightforward way to evaluate prior sensitivity would
be to refit the variational posterior for each plausible choice of prior. However, each refit
requires a new solution to Equation 1.1. To avoid expensive refitting, we employ local sensi-
tivity (Gustafson, 1996) to linearly approximate the refitting process. Local prior sensitivity
in Bayesian models has been adopted specifically for variational methods in Giordano et al.
(2018). Forming the linear approximation incurs a one-time cost of computing and invert-
ing the Hessian matrix of the ELBO. In our applications, we solve the linear system with
the conjugate gradient algorithm (Nocedal and Wright, 2006), which requires only Hessian-
vector-products and allows us to avoid instantiating the full Hessian in memory. Chapter 3
applies these ideas to a Dirichlet process mixture model, and we evaluate the sensitivity of
posterior inferences to the Dirichlet process stick-breaking distribution.

Finally, a frequentist approach to data analysis requires consideration of the randomness
inherent in the data collection process. The bootstrap is a technique to assess the variability
of the model fit with respect to randomness in data collection, while cross-validation eval-
uates the ability of the model to extrapolate to unseen data. In the context of variational
inference, both the bootstrap and cross-validation require solving Equation 1.1 for each sub-
sample of the data. When a single solve is already computationally expensive, the linear
growth of computation with the number of bootstrap samples or cross-validation folds may
be undesirable. In lieu of refitting the model for each bootstrap sample or cross-validation
fold, Chapters 4 and 5 present an application of the the infinitesimal jackknife (IJ) (Jaeckel,
1972; Efron, 1982), which linearly approximates the results from repeated optimizations. As
with evaluating prior sensitivity, forming the linear approximation incurs a one-time cost
of computing and inverting a Hessian matrix. However, subsequent IJ approximations to
each bootstrap sample or cross-validation fold require only a single matrix-vector multipli-
cation followed by a vector-vector addition. On the applications studied in Chapters 4 and
5, the computational trade-off is extremely favorable, with the IJ running up to an order of
magnitude faster than computing the refits.

The final chapter of this dissertation (Chapter 6) presents a technique to lower the vari-
ance of stochastic gradients of the ELBO. Lower variance stochastic gradients leads to faster
convergence of stochastic gradient descent and thus improves the runtime of variational
methods. We consider the case where z is a discrete random vector (or has some compo-
nents that are discrete). In such cases, the reparameterization trick (Kingma and Welling,
2013; Rezende et al., 2014) does not apply. The stochastic gradient estimators that do
apply, such as the REINFORCE estimator (Williams, 1992), are often too high-variance
to be used in practice without additional modification. We propose a variance reduction

CHAPTER 1. INTRODUCTION 4

technique that applies to any discrete-distribution stochastic gradient estimate, such as RE-
INFORCE. We prove the variance reduction by showing that our technique is an instance of
Rao-Blackwellization.

The remainder of the introduction presents a conceptual overview of the methodologies we
use and develop. Each has the purpose of scaling variational inference to the data problems
encountered in this dissertation.

Amortization scales inference to data with replicated structure

A common class of models encountered in Bayesian statistics and statistical machine learn-
ing involve a collection of n observations, x1, ..., xn, each with a local latent variable zi.
Optionally, the model may have a global latent variable β. The joint distribution factorizes
as

p(x1:n, z1:n, β) = p(β)
n∏
i=1

p(xi, zi|β). (1.3)

In mean-field variational inference, each latent variable is independent in the approximate
posterior. The variational distribution fully factorizes:

qλ,φ(β, z1:n) = qλ(β)
n∏
i=1

qφi(zi). (1.4)

The global variational parameter λ governs the distribution of β; the local variational pa-
rameters φ = (φ1, ..., φn) govern the distribution of the local latent variables z1, ..., zn.

With the factorization of the joint likelihood (Equation 1.3) and the mean-field assump-
tion (Equation 1.4), the ELBO decomposes as

L(λ,φ;x1:n) = Eqλ,φ
[

log p(x1:n, z1:n, β)− log qλ,φ(β, z)
]

= Eqλ,φ
[

log
p(β)

qλ(β)
+

n∑
i=1

log
p(xi, zi|β)

qφi(zi)

]
. (1.5)

Variational inference optimizes Equation 1.5 for λ and φ.
In the presence of a global latent variable, the optimization is not separable – each φi is

coupled to λ by the terms Eq[log p(xi, zi|β)] in the objective. Therefore, when a new obser-
vation xn+1 is added to the dataset, the optimization of φn+1 requires all previous φ1, ..., φn
and λ to be updated. In applications where data is collected online, re-optimizing the ELBO
for all parameters, global and local, whenever a data point arrives may be inefficient.

Online methods for variational inference have been proposed (Hoffman et al., 2010; Wang
et al., 2011; Hoffman et al., 2013). These methods keep a weighted running average of the
global variational parameter λ(n) that is updated with the arrival of each data point xn. When
xn+1 is observed, the ELBO (Equation 1.5) is optimized for φn+1 with the global variational

CHAPTER 1. INTRODUCTION 5

parameter fixed at λ(n). With the global variational parameter fixed, the problem becomes
separable: the optimal φn+1 does not depend on the previous local variational parameters
φ1, ..., φn or the previous data points x1, ..., xn. As n → ∞, λ(n) converges to a stationary
point of the ELBO (Hoffman et al., 2010, 2013).

However, numerical optimization is still required for each newly observed data point;
instead of a full re-optimization of the ELBO over the entire dataset x1, ..., xn+1, we need
an online update of φn+1 using only fresh data xn+1. A fundamental issue is that the the
number of variational parameters grows linearly with the number of data points n.

Amortized variational inference (Kingma and Welling, 2013; Zhang et al., 2019) avoids
direct optimization of the φi’s, and instead defines a function fω that maps each data point
xi to its local variational parameter φi. ω is a real-valued vector that parameterizes the
function. For example, fω may be a neural network, in which case ω are network weights.
The amortized variational distribution is

qλ,ω(β, z1:n|x1:n) = qλ(β)
n∏
i=1

qω(zi|xi)

where qω(zi|xi) := qφi(zi)
∣∣∣
φi=fω(xi)

. (1.6)

Unlike Equation 1.4, the variational distribution of zi now has explicit dependence on data
point xi.

Instead of optimizing φ1, ..., φn, the amortized approach optimizes ω, which is shared
across all data points. Recalling the ELBO from Equation 1.5, the amortized variational
approach solves

argmax
λ,ω

L
(
λ,
(
fω(xi)

)n
i=1

; x1:n

)
. (1.7)

Because ω is shared for all data points, the number of parameters to be optimized is constant
with respect to the number of data points n.

After fω∗ is fit by solving Equation 1.7 at x1, ..., xn, the local parameter for a new data
point xn+1 is estimated to be φn+1 = fω∗(xn+1). Only an evaluation of fω∗ is needed; re-
optimization is not required.

The computational speedup of the amortized approach may be substantial. Chapter 2 of
this dissertation applies amortized variational inference to catalog light sources in astronomi-
cal surveys. Here, x1, ..., xn are disjoint subimages of the sky; zi are the latent characteristics
(location, flux, color) of any light sources appearing in subimage xi. The mapping fω is a
convolutional neural network. In our implementation, finding an approximate variational
posterior required 20 minutes on a 40× 40 arcsecond patch of the sky. For comparison, the
Sloan Digital Sky Survey scans an 80 × 7200 arcminute region of the sky in a single night.
Without amortization, repeatedly optimizing the variational objective on each 40× 40 arc-
second patch would require several months to process one night of data collection.

On the other hand, in an amortized approach, inference after the initial 20 minute op-
timization requires only a forward pass through the neural network, a computation which

CHAPTER 1. INTRODUCTION 6

takes a tenth of a second on each 40 × 40 arcsecond region. Even over large regions the
inference can be fast, as it is straightforward to parallelize neural network evaluations on a
GPU.

Wake-sleep optimization takes advantage of complete data

We chose to employ neural networks for cataloging astronomical surveys partly due to their
success on other image classification tasks such as ImageNet (Russakovsky et al., 2015). On
such image classification tasks, the network is commonly fit in a supervised fashion with
large amounts of labeled observations. The lack of available labels may be a bottleneck to
neural network training in some settings. However, in astronomy applications, knowledge
of the physical system often give rise to reasonably realistic simulated data. For example,
Lanusse et al. (2017) and Hezaveh et al. (2017) trained neural networks on simulated images
to detect Einstein rings, a rare object found in astronomical surveys and important for dark
matter research. Because training data was generated from a simulator, ground truth labels
(i.e. ring exists or not) are known. Moreover, simulated data is useful because the network
can be trained on an essentially unlimited number of examples – the bottleneck is the amount
of computational resources, not the availability of labeled observations.

In our work, we also use simulated data to fit the amortized variational distribution
qω(z|x), which is encoded by a neural network fω. Instead of directly optimizing the ELBO,
we fit qω(z|x) using the wake-sleep algorithm (Hinton et al., 1995; Bornschein and Bengio,
2014; Le et al., 2020). The wake-sleep optimization objective takes advantage of simulated,
complete data (x, z) sampled from the model p. By fitting fω in a supervised fashion on
complete pairs (x, z) rather than on observations (x1, ..., xn) alone (as is the case in ELBO
optimization), we find that the resulting approximate posterior is better able to avoid shallow
local optima in the KL (Chapter 2).

The wake-sleep algorithm applies to a special case of global/local models (Equation 1.3)
where β is a fixed (potentially unknown) model parameter, rather than a random variable.
In this case, we write the likelihood as

pβ(x1:n, z1:n) =
n∏
i=1

pβ(xi, zi),

and the exact posterior also factorizes:

pβ(z1:n|x1:n) =
n∏
i=1

pβ(zi|xi).

CHAPTER 1. INTRODUCTION 7

With β a model parameter, the ELBO (Equation 1.5) is a summation over n terms,

L(β, ω; x1:n) =
n∑
i=1

Eqω(zi|xi)

[
log

pβ(xi, zi)

qω(zi|xi)

]
(1.8)

=
n∑
i=1

{
log pβ(xi)−KL

(
qω(zi|xi) ‖ pβ(zi|xi)

)}
. (1.9)

For a fixed β, optimizing the ELBO for ω minimizes the KL divergence between qω(zi|xi)
and pβ(zi|xi) averaged over the observed data points x1, ..., xn.

One can optimize Equation 1.8 jointly for the model parameter β and the variational
parameter ω.1 Variational expectation-maximization (EM) (Neal and Hinton, 2000; Beal
and Ghahramani, 2002) is a technique that optimizes Equation 1.8 by block coordinate
ascent: it alternates between an “E-step” that optimizes ω and an “M-step” that optimizes
β.

The wake-sleep algorithm is closely related to variational EM in that it alternates between
optimizing the model parameter β and the variational parameter ω. The “wake” phase
optimizes β and is equivalent to the M-step of variational EM. The “sleep” phase optimizes
ω, but targets a different objective than the ELBO. The sleep phase minimizes

Lsleep(ω; β) = Epβ(x)

[
KL
(
pβ(z|x) ‖ qω(z|x)

)]
, (1.10)

for a fixed β.
Note the differences between Equation 1.9 and Equation 1.10. Firstly, the arguments to

the KL divergence are transposed – recall that the KL, being a divergence, is not symmetric.
Secondly, for a fixed β, ω is optimized such that divergence between pβ(z|x) and qω(z|x)
is small on average over all possible data points x ∼ pβ. Previously in Equation 1.9, the
average is over the n observed data points.

Chapter 2 shows that minimizing Equation 1.10 simplifies to solving

argmin
ω

Epβ(x,z)

[
− log qω(z|x)

]
. (1.11)

We minimize Equation 1.11 with stochastic gradient descent (SGD). This amounts to sam-
pling complete data (x, z) ∼ pβ(x, z) at each step and evaluating the loss − log qω(z|x). This
loss encourages qω(z|·) to map data x to distributions that place large mass on the corre-
sponding value of the latent variable z. Fitting with simulated, complete data enables the
neural network to see many examples, and in the problem of cataloging astronomical surveys
(Chapter 2), the resulting variational posterior is able to avoid shallow local optima in the
ELBO.

1 This can be viewed as a special case of variational inference where the variational distribution on β is
a point mass.

CHAPTER 1. INTRODUCTION 8

Local sensitivity extrapolates posterior statistics to model
perturbations

Statistical analysis typically involves fitting multiple models and assessing goodness-of-fit or
predictive performance. Even when a candidate model is chosen, it remains important to
evaluate the sensitivity of the resulting inferences to possibly arbitrary model choices.

A Bayesian approach requires the user to specify a prior distribution. In some applica-
tions, the prior is chosen for computational convenience. In other applications, a range of
priors may be plausible, and it may be unclear why some choices would be preferable over
others. Therefore, evaluating the sensitivity of posterior inferences to prior choices is a key
step in Bayesian data analysis.

A conceptually straightforward way to demonstrate prior sensitivity would be to compute
the posterior distribution (or posterior summaries of interest such as modes, medians, modes)
for various choices of the prior. In the context of variational inference, this amounts to re-
solving the optimization problem Equation 1.1 for each prior choice, which may be expensive.

Instead of refitting the variational approximation at each possible prior choice, we employ
local sensitivity (Gustafson, 2000) to approximate the refitting process. We use the local
sensitivity of a model fitted under some initial prior to predict the posterior summaries under
alternative priors. Local prior sensitivity in Bayesian models have been adopted specifically
for variational methods in Giordano et al. (2018).

To define local sensitivity, let α be a real-valued hyperparameter vector in a model; in
the context of prior sensitivity, α is a parameter of the prior distribution. Generically, let
pα(x, z) be the joint likelihood and η∗(α) be the optimal variational parameters for the model
with hyperparameter α. η∗ depends on α through optimization,

η∗(α) := argmax
η

L(η, α), (1.12)

where L(η, α) is the ELBO as a function of the variational parameter η and model parameter
α,

L(η, α) = Eqη(z)

[
log pα(x, z)− log qη(z)

]
. (1.13)

Any approximated posterior quantity of interest is a function of the variational param-
eter η. Let G(η), a real-valued function, denote the posterior quantity. For example, the
posterior quantity can often be expressed as an expectation over some function g of the
latent variables, in which case G(η) = Eqη [g(z)]. The local sensitivity of posterior statistic
G at prior parameter α0 is defined as

SGα0
:=

d

dα
G(η∗(α))

∣∣∣∣∣
α=α0

, (1.14)

provided that appropriate derivatives of G and the ELBO exist, and the optimizer η∗(α0)
is strict (for details, see Chapter 3, or assumptions 1-4 in Giordano et al. (2018)). The

CHAPTER 1. INTRODUCTION 9

magnitude of this derivative captures the sensitivity of the posterior quantity G to the
hyperparameter α.

In our work, we go beyond treating Equation 1.14 as a simply a measure of sensitivity
and use the derivative to extrapolate G to different priors by employing a first order approx-
imation. Because we are specifically interested interested in extrapolation, we only linearize
the mapping from α 7→ η∗(α). Define the linearized variational parameter as

ηlin(α) := η∗(α0) +
∂η∗(α)

∂α

∣∣∣
α=α0

(α− α0).

We then approximate

G(η∗(α)) ≈ G(ηlin(α)).

We retain the nonlinearity in the mapping from η 7→ G(η). Only the computationally
expensive operation α 7→ η∗(α), which requires an optimization solve, is linearized.

Computing the linearized variational parameter requires the initial variational parameter
η∗(α0) and the derivative ∂η∗

∂α
at α0. With these two quantities, ηlin(α) can be quickly

evaluated at any α with simple matrix-vector operations. No re-optimization is required.
We briefly outline the computation of the derivative ∂η∗

∂α
. Assuming the appropriate

derivatives exist and that the optimization domain of η in Equation 1.13 is unconstrained,
we have for every α that

∂L(η∗(α), α)

∂η
= 0. (1.15)

Viewing both sides of Equation 1.15 as functions of α and taking derivatives with respect to
α, we obtain (

∂2L(η, α)

∂η∂ηT
∂η∗(α)

∂α
+
∂2L(η, α)

∂α∂ηT

) ∣∣∣∣∣
η=η∗(α)

= 0.

Finally, solving for ∂η∗

∂α
implies that

∂η∗(α)

∂α
= −

[
∂2L(η, α)

∂η∂ηT

]−1
∂2L(η, α)

∂α∂ηT

∣∣∣∣∣
η=η∗(α)

, (1.16)

assuming that the Hessian matrix ∂2L
∂η∂ηT

is nonsingular. The necessary derivatives can be
computed with modern automatic differentiation tools, and Equation 1.16 can thus be used
to compute ∂η∗(α)

∂α
at any α0. In our work, we use Autograd (Maclaurin et al., 2015) and its

more recent iteration, Jax (Bradbury et al., 2018). Both are publicly available automatic
differentiation packages in Python.

Note that the Hessian matrix is square with dimensions equal to that of the variational
parameter η. When the dimension of η is large, calculating the Hessian is time-consuming,

CHAPTER 1. INTRODUCTION 10

and it may even be impossible to store in memory. In our applications, we solve the lin-
ear system in Equation 1.16 using the conjugate gradient algorithm (Nocedal and Wright,
2006), which requires only Hessian-vector-products, so the full Hessian is not instantiated
in memory. When the model has global/local structure (Equation 1.3), we take additional
advantage of sparsity in the Hessian by making use of Schur complements (see Chapter 3). In
any case, the Hessian inversion is a one-time computational cost that is required only at α0;
in our applications, this cost can be an order of magnitude faster than a new optimization
solve. After the one-time Hessian inversion, evaluating ηlin(α) at many choices of α is fast.

Chapter 3 demonstrates these techniques on a Dirichlet process mixture model used to
infer latent population structure from genetic data. One posterior quantity of interest is the
number of latent populations in data set. We evaluate the sensitivity of the approximate
posterior to both the concentration parameter of the Dirichlet process and the functional
form of the stick-breaking distribution.

The infinitesimal jackknife approximates data resampling

Frequentist statistical analysis focuses on accounting for the randomness inherent in the data
collection process. On top of measuring sensitivity to modeling choices as discussed previ-
ously, a frequentist perspective allows us to evaluate how resulting inferences would change
should different data sets be observed. Common techniques to approximate the randomness
in data collection include cross-validation and the bootstrap. These techniques estimate the
true, unknown data generating distribution via the empirical distribution; proxy datasets
are then formed by re-sampling data points from the empirical distribution (the bootstrap)
or deterministically removing data points from the original data set (cross-validation).

In Chapters 4 and 5, we cluster time-course gene expression data with a Bayesian mixture
model. We wish to use cross-validation to select the complexity of the time series model,
while we use bootstrap sampling to assess the stability of the inferred clusters. However, in
our variational inference approach, each bootstrap sample or cross-validation fold requires
re-optimization of the ELBO.

To avoid expensive re-optimization, we adapt the linear approximation from the previous
subsection to data resampling, so that the model (and the corresponding linear approxima-
tion) needs to only be calculated once. Historically, this method is known as the infinitesimal
jackknife (IJ) (Jaeckel, 1972). The old idea is revived here as the derivatives necessary for the
infinitesimal jackknife are straightforward to compute with modern automatic differentiation
tools, without the need for manual derivations.

We present the infinitesimal jackknife in the context of variational inference for the global
/ local model (Equation 1.3) with a mean-field variational distribution (Equation 1.4). Let
η := (λ,φ) be the variational parameters. We augment the ELBO in Equation 1.5 with a
weight vector w = (w1, ..., wn), one for each data point xi:

L(η,w) = Eqη
[

log
p(β)

qλ(β)
+

n∑
i=1

wi log
p(xi, zi|β)

qφi(zi)

]
.

CHAPTER 1. INTRODUCTION 11

The optimal variational parameter is now a function of w,

η∗(w) := argmax
η

L(η,w).

The initial variational posterior is evaluated with weights wi = 1 for all i. Let 1n be
the ones vector of length n. A bootstrap resample can be represented by setting wi to non-
negative integers such that

∑
iwi = n; a leave-k-out cross-validation fold can be represented

by setting wi = 0 for k observations and wi = 1 otherwise. For any weight vector w, we
approximate the optimal variational parameters with

ηIJ(w) = η∗(1n) +
∂η∗(w)

∂w

∣∣∣
w=1n

(w − 1n)

From the discussion in the previous subsection, the derivative ∂η∗

∂w
can be computed us-

ing Equation 1.16 with w in lieu of α.
As discussed before, the derivative computation ∂η∗

∂w
incurs a one-time cost of computing

and inverting a Hessian matrix. However, the cost is extremely favorable in comparison to
repeatedly optimizing the ELBO for each bootstrap sample or cross-validation fold. In our
experiments, the IJ well-approximates a bootstrap analysis of cluster stability (Chapter 4),
and it selected the same complexity parameter as exact cross-validation (Chapter 5).

Inference about discrete random variables

Discrete random variables appear in several applications discussed above. In cataloging
astronomical surveys, the number of light sources present in an image is a discrete latent
variable. In our clustering applications, a discrete latent variable encodes the cluster mem-
berships in a mixture model.

The final chapter of this dissertation (Chapter 6) presents a method for lowering the
variance of stochastic gradients of the ELBO when the latent vector contains a discrete
component. Our method considers objective functions of the form

L(η) = Eqη(z)[fη(z)], (1.17)

where z is a univariate discrete random variable with K ≤ ∞ categories.2 The ELBO is of
this form, with fη(z) = log p(x, z)− log qη(z).

Because z is discrete, the expectation in Equation 1.17 and its derivatives can be written
as a summation of K terms. However, when K is large or infinite, the exact summation is
intractable. To optimize L(η), we seek low-variance stochastic gradients and run stochastic
gradient descent.

2 A multivariate z can be treated as a single discrete variable over the Cartesian product of the sample
spaces. The applications discussed in Chapter 6 also include situations where only some components of z
are discrete and others are continuous.

CHAPTER 1. INTRODUCTION 12

A general purpose stochastic gradient is the REINFORCE estimator (Williams, 1992).
This estimator samples z ∼ qη, and estimates the gradient ∇L(η) with

grf(z) := fη(z)∇ log qη(z) +∇fη(z). (1.18)

While the REINFORCE estimator is unbiased for the true gradient, meaning that ∇L(η) =
Eqη [grf(z)], the variance of this estimator is often too large to be used in practice. Thus,
control variate methodology (Mnih and Gregor, 2014; Gu et al., 2016; Tucker et al., 2017;
Grathwohl et al., 2018) has been proposed to reduce the variance by adding a zero-mean
random variable to Equation 1.18 with a chosen correlation structure.

Chapter 6 presents a method for achieving further variance reduction given any discrete-
distribution stochastic-gradient estimator g (e.g., REINFORCE or REINFORCE with con-
trol variates). Our estimator is constructed by deterministically evaluating g at the categories
on which qη places its largest mass. Let Ck be the categories with the k largest probabilities
under qη. Our modified gradient estimator is

ĝ(v) =
∑
z∈Ck

qη(z)g(z) + (1− qη(Ck))g(v), (1.19)

where v is a sample from qη, conditional on the event that v /∈ Ck.
Note that the first term of this estimator is deterministic and only the second term is

random. The second term is scaled by the probability of not belonging in Ck, which is small
when qη is concentrated on a small number of categories. Multiplying the random term
by a small factor reduces the variance; most of the variance has been “absorbed” by the
deterministic term.

Our method is especially beneficial in scenarios where qη places its mass on only a few
categories out of many. This is the case in our applications, because qη is an approximate
posterior, which typically becomes more concentrated as more data is observed.

We guarantee the variance reduction by showing that our technique is an instance of
Rao-Blackwellization. More precisely, we show that given a budget of N evaluations of g, a
variant of Equation 1.19 reduces the variance of g(z) by at least a factor of 1/N , and hence
Equation 1.19 improves on the variance reduction obtained by averaging N independent
samples of g(z).

13

Chapter 2

Variational inference for deblending
crowded starfields

Astronomical images record the arrival of photons from distant light sources. Astronomical
catalogs are constructed from these images. Catalogs label light sources as stars, galaxies,
or other objects; they also list the physical characteristics of light sources such as flux, color,
and morphology. These catalogs are the starting point for many downstream analyses. For
example, Bayestar used a catalog of stellar fluxes and colors to construct the 3D distribution
of interstellar dust (Green et al., 2019). Catalogs of galaxy morphologies have been used to
validate theoretical models of dark matter and dark energy (Abbott et al., 2018).

A light source, be it a star or a galaxy, produces a peak intensity of brightness in an image.
When light sources are well separated, catalog construction is straightforward: characteristics
of each light source, such as flux, can be estimated by analyzing intensities at the peak and
surrounding pixels. However, in images crowded with many light sources, observed intensities
may result from the combined light of multiple sources. Source separation, or deblending,
is the task of differentiating and characterizing individual light sources from a mixture of
intensities on an image. A key challenge in deblending is inferring whether an observed
intensity is in fact blended, that is, whether it is composed of a single bright source or
multiple dimmer sources.

Deblending is challenging for several reasons. First, it is an unsupervised problem with-
out ground truth labeled data. Second, it is a problem with a sample size of one: there is
only one night sky, which is imaged many times, and the collected survey images capture
overlapping regions of it. Third, for blended fields, the properties of light sources are ambigu-
ous; therefore, providing calibrated uncertainties for catalog construction is as important as
making accurate predictions. Finally, the scale of the data is immense. The upcoming Rubin
Observatory Legacy Survey of Space and Time (LSST), scheduled to begin data collection in
2022, is expected to produce 60 petabytes of astronomical images over its lifetime (LSST).

As more powerful telescopes are developed, and their ability to detect more distant light
sources improves, the density of light sources in the images they capture will only increase.
For instance, Bosch et al. (2018) estimates that 58% of light sources are blended in images

CHAPTER 2. DEBLENDING STARFIELDS 14

captured by the Subaru Telescope’s Hyper Suprime-Cam, and that percentage is expected to
increase for LSST. Therefore, developing a method that reliably characterizes light sources,
even in cases of significant blending, advances any astronomical research in which conclusions
about the physical universe are derived from estimated catalogs.

We focus on cataloging applications where all light sources are well modeled as points
without spatial extent. Point-source-only models are applicable to surveys such as DE-
Cam (Schlafly et al., 2018), which imaged the center of the Milky Way, and WISE (Wright
et al., 2010), whose telescope resolution did not allow for differentiation between stars and
galaxies. In this work, we use the globular cluster M2, a region imaged by the Sloan Digital
Sky Survey (SDSS) that is densely populated with stars, as a test bed for our method.

From software pipelines to probabilistic cataloging
Traditionally, most cataloging has been performed using software pipelines. These pipelines

are algorithms that usually involve the following stages: locating the brightest peaks, esti-
mating fluxes, and subtracting the estimated light source. These stages may be performed
iteratively. Pipelines do not normally produce statistically calibrated error estimates that
propagate the uncertainty that accumulates in each of the steps. Failure to properly accu-
mulate error at each step results in unreliable catalogs for images in which ambiguity exists
in identifying sources and estimating their characteristics. For example, PHOTO (Lupton
et al., 2001), the default cataloging pipeline used by SDSS, failed to produce a catalog on
the globular cluster M2 (Portillo et al., 2017).

In contrast, probabilistic cataloging posits a statistical model consisting of a likelihood for
the observed image given a catalog and a prior distribution over possible catalogs (Portillo
et al., 2017; Brewer et al., 2013; Feder et al., 2020). Instead of deriving a single catalog,
probabilistic cataloging produces a posterior distribution over the set of all possible catalogs.
Uncertainties are quantified by the posterior distribution. For example, in an image with an
ambiguously blended bright peak, some catalogs sampled from the posterior would contain
multiple dim light sources while others would contain one bright source. The relative density
the posterior distribution places on one explanation over another represents the statistical
confidence in that explanation. Moreover, a distribution over the set of all catalogs induces
a distribution on any estimate derived from a catalog. Therefore, calibrated uncertainties
can be propagated to downstream analyses.

Previous work on probabilistic cataloging employed Markov chain Monte Carlo (MCMC)
to sample from the posterior distribution. The MCMC procedure in Portillo et al. (2017) and
Feder et al. (2020) was called PCAT, short for “Probabilistic CATaloging.”1 A difficulty in
any probabilistic cataloging approach is that the number of sources in a catalog is unknown
and random, so the latent variable space is transdimensional. PCAT sampled transdimen-
sional catalogs with reversible jump MCMC (Green, 1995), in which auxiliary variables are
added to encode the “birth” and “death” of light sources in the Markov chain.

1 We use “probabilistic cataloging” to refer to any method that produces a posterior over possible
catalogs, whereas “PCAT” refers specifically to the MCMC procedure in Portillo et al. (2017) and Feder
et al. (2020).

CHAPTER 2. DEBLENDING STARFIELDS 15

The computational cost of MCMC for this model is problematic for large-scale astro-
nomical surveys. Early implementations of PCAT required a day to process a 100 × 100
pixel image of the M2 globular cluster imaged by SDSS (Portillo et al., 2017). More recent
implementations running inexact MCMC brought the runtime down to 30 minutes (Feder
et al., 2020). In any case, a 100× 100 pixel image covers only a 0.66× 0.66 arcminute patch
of the sky. For comparison, in one night, SDSS scans a region on the order of 100 × 1000
arcminutes. Extrapolating the 30-minute runtime, PCAT would take on the order of ten
years to process a nightly SDSS run.

As an alternative to MCMC, Regier et al. (2019) produced an approximate posterior using
variational inference. Variational inference (VI) considers a family of candidate approximate
posteriors and employs numerical optimization to find the distribution in the family closest
in KL divergence to the exact posterior (Jordan et al., 1999; Wainwright and Jordan, 2008;
Blei et al., 2017). With a sufficiently constrained family of distributions, the VI optimization
problem can be solved orders of magnitude faster than MCMC runs.

However, Regier et al. (2019) is limited in that the number of light sources in a given
image is treated as known and fixed – it had to be set using a preprocessing routine. They
avoided the transdimensional latent variable space in order to have a tractable objective for
numerical optimization.

Our contribution
We propose StarNet, an approach to deblending that employs several recent VI innova-

tions (Zhang et al., 2019; Le et al., 2020). Unlike Regier et al. (2019), our VI approach is
able to handle arbitrary probabilistic models, including a transdimensional model with an
unknown number of sources. Section 2.1 introduces the statistical model, which is similar
to the model used in PCAT.

Secondly, again unlike Regier et al. (2019), we employ amortization, which enables Star-
Net to scale inference to large astronomical surveys. In amortized variational inference, a
neural network maps input images to an approximate posterior. Following a one-time cost
to fit the neural network, inference on new images requires just a single forward pass. Rapid
inference is available without the need to re-run MCMC or numerically optimize VI for each
new image. For StarNet, the forward pass on a 100 × 100 pixel image takes 0.2 seconds
(vs. 30 minutes for inference using PCAT). Section 2.2 details the variational distribution
and neural network architecture in StarNet.

Finally, and critically, StarNet is fit using the wake-sleep algorithm (Hinton et al., 1995),
which does not target the same KL divergence traditionally used in variational inference.
Traditionally, variational inference minimizes the “reverse” KL divergence between the ap-
proximate posterior q and the exact posterior p. Reverse KL is defined as the q-weighted
average difference between log q and log p. Wake-sleep instead fits the approximate posterior
using the “forward” KL divergence, which weights the difference between log p and log q by
p. Section 2.3 details the wake-sleep procedure.

In this application, optimizing the forward KL produces more reliable approximate pos-
teriors than optimizing the traditional reverse KL (Section 2.4). In particular, optimizing

CHAPTER 2. DEBLENDING STARFIELDS 16

the forward KL involves sampling complete data—images and their corresponding catalogs—
from their joint likelihood and fitting the network in a supervised fashion. Taking advantage
of complete data allows the network to better avoid shallow local minima where the approx-
imate posterior is far from the exact posterior in terms of KL divergence.

The wake-sleep algorithm has been used in previous research to train deep generative
models (Hinton et al., 1995; Bornschein and Bengio, 2014; Le et al., 2020). However, to
the best of our knowledge, this is the first application of wake-sleep for scientific purposes.
Specifically, we use wake-sleep for inference to find a latent space that is interpretable: it is
the set of all possible astronomical catalogs.

We applied StarNet to the M2 globular cluster as imaged by SDSS. StarNet was more
accurate than both the MCMC-based cataloger PCAT and traditional cataloging approaches
while running 100, 000 times faster than the former (Section 2.5). Code to reproduce our
results is publicly available in a GitHub repository.2

2.1 The generative model

In crowded starfields, such as globular clusters and the Milky Way, the vast majority of
light sources are stars. An astronomical image records the number of photons that reached
a telescope and arrived at each pixel. Typically, photons must pass through one of several
filters, each selecting photons from a specified band of wavelengths, before being recorded.

For a given H×W pixel image with B filter bands, our goal is to infer a catalog of stars.
The catalog specifies the number of stars in an image; for each such star, the catalog records
its location and its flux, or brightness, in each band. The space of latent variables Z is the
collection of all possible catalogs of the form

z := {N, (`i, fi,1, ..., fi,B)Ni=1},

where the number of stars in the catalog is N ∈ N; the location of the ith star is `i ∈ R2;
and the flux of the ith star in the bth band is fi,b ∈ R+.

A Bayesian approach requires specification of a prior over catalog space Z and a likelihood
for the observed images. Our likelihood and prior, detailed below, are similar to previous
approaches (Brewer et al., 2013; Portillo et al., 2017; Feder et al., 2020).

2.1.1 The prior

The prior over Z is a marked spatial Poisson process. To sample the prior, first draw the
number of stars contained in the H ×W image as

N ∼ Poisson(µHW), (2.1)

2 https://github.com/Runjing-Liu120/DeblendingStarfields.

CHAPTER 2. DEBLENDING STARFIELDS 17

where µ is a hyperparameter specifying the average number of sources per pixel. Next, draw
locations

`1, ..., `N |N
iid∼ Uniform([0, H]× [0,W]). (2.2)

The fluxes in the first band are from a power law distribution with slope α:

f1,1, ..., fN,1|N
iid∼ Pareto(fmin, α). (2.3)

Fluxes in other bands are described relative to the first band. Like Feder et al. (2020), we
define the log-ratio of flux relative to the first band as “color.” Colors are drawn from a
Gaussian distribution

c1,b, ..., cN,b|N
iid∼ N (µc, σ

2
c), b = 2, ..., B. (2.4)

Given the flux in the first band fi,1 and color ci,b, the flux in band b is fi,b = fi,1 × 10ci,b/2.5.
Also like Feder et al. (2020), we set the power law slope α = 0.5 and use a standard

Gaussian for the color prior (µc = 0, σ2
c = 1). Section 2.7 evaluates the sensitivity of the

resulting catalog to choices of the prior parameters.

2.1.2 The likelihood

Let xbhw denote the observed number of photoelectrons at pixel (h,w) in band b. For each
band, at every pixel, the expected number of photoelectron arrivals is λbhw(z), a deterministic
function of the catalog z. Motivated by the Poissonian nature of photon arrivals and the
large photon arrival rate in SDSS and LSST images, observations are drawn as

xbhw|z
ind∼ N (λbhw, λ

b
hw), b = 1, ..., B; h = 1, ..., H; w = 1, ...,W, (2.5)

where λbhw = Ib(h,w) +
N∑
i=1

fi,bPb
(
h− `i,1, w − `i,2

)
. (2.6)

Here, Pb is the point spread function (PSF) for band b and Ib is the background intensity.
The PSF is a function Pb : R×R 7→ R+, describing the appearance of a stellar point source
at any 2D position of the image (but ignoring pixelation). Our PSF model is a weighted
average between a Gaussian “core” and a power-law “wing,” as described in Xin et al. (2018).
For each band, the PSF has the form

P(u, v) =
exp(−(u2+v2)

2σ2
1

) + ζ exp(−(u2+v2)

2σ2
2

) + ρ(1 + v2+u2

γσ2
P

)−γ/2

1 + ζ + ρ
. (2.7)

The PSF parameters vary by band. Let the collection of PSF parameters across all bands
be denoted π := (σ

(b)
1 , σ

(b)
2 , σ

(b)
P , γ(b), ζ(b), ρ(b))Bb=1.

CHAPTER 2. DEBLENDING STARFIELDS 18

The background intensity at pixel (h,w) is modeled with an affine function:

Ib(h,w) = βb0 + βb1 × h+ βb2 × w. (2.8)

The background parameters (βb0, β
b
1, β

b
1) are specific to the band.

StarNet estimates these parameters jointly with the approximate posterior (Section 2.3).
Prior work on probabilistic cataloging relied on estimates from the SDSS software pipeline
and found the PSF estimates to be suboptimal in crowded starfields (Feder et al., 2020).

2.2 Variational inference

The central quantity in Bayesian statistics is the posterior distribution p(z|x). However,
in many nontrivial probabilistic models, including our own, the posterior distribution is
intractable to calculate. Calculation of the posterior requires us to compute the marginal
likelihood, p(x), which involves integrating over the latent variable z. In our model, the
latent variable space is high dimensional: it is the set of all catalogs. Approximate methods
such as MCMC and variational inference are therefore required.

Variational inference (Jordan et al., 1999; Wainwright and Jordan, 2008; Blei et al., 2017)
posits a family of distributions Q and seeks the distribution q∗ ∈ Q that is closest to the
exact posterior in KL divergence. Q is chosen such that q∗ will not be too difficult to find
via optimization. We index the distributions in Q using a real-valued vector η, then seek η∗

satisfying

η∗ = argmin
η

KL
[
qη(z|x) ‖ p(z|x)

]
. (2.9)

Minimizing the KL divergence in Equation 2.9 is equivalent to maximizing the evidence
lower bound (ELBO) (Blei et al., 2017):

Lelbo(η) = Eqη(z|x)

[
log p(x, z)− log qη(z|x)

]
. (2.10)

Computing the ELBO does not require computing the marginal distribution p(x), which is
intractable, or the posterior distribution p(z|x), which would be circular.

2.2.1 The variational distribution

Traditionally in variational inference, the posterior approximation qη depends on the data x
only implicitly, in that η∗ is chosen according to Equation 2.9. In this case, qη(z|x) is usually
written qη(z), suppressing the dependence on x. When a new data point xnew arrives, finding
a variational approximation to the posterior p(znew|xnew) requires re-solving Equation 2.9
with x = xnew.

On the other hand, in amortized variational inference (Kingma and Welling, 2013; Rezende
et al., 2014), qη explicitly depends on the data. A flexible, parameterized function maps in-
put x, in this case an observed image, to a real-valued vector characterizing a distribution on

CHAPTER 2. DEBLENDING STARFIELDS 19

Figure 2.1: Tiling a 10× 10 pixel image into 2× 2 tiles.

the latent space Z. Typically, the function is a neural network, in which case the variational
parameters η are the neural network weights. After the neural network is fitted with Equa-
tion 2.9 using a collection of observed x’s, the approximate posterior qη(z

new|xnew) for a new
data point xnew can be evaluated with a single forward pass through the neural network. No
additional run of an optimization routine is needed for a new data point xnew.

The following subsections detail the construction of our variational distribution.

The factorization

To make the objective in Equation 2.9 tractable, the family Q is normally restricted to
probability distributions without conditional dependencies between some latent variables. In
the most extreme case, known as mean-field variational inference, the variational distribution
completely factorizes across all latent variables.

Our factorization has a spatial structure. First, we partition the full H ×W image into
disjoint R×R tiles. R will be chosen such that the probability of having three or more stars
in one tile is small. In this way, the cataloging problem decomposes to inferring only a few
stars at a time (Section 2.2.1).

Let S = H/R and T = W/R and assume without loss of generality that H and W are
multiples of R. For s = 1, ..., S and t = 1, ..., T , the tile x̃st is composed of the pixels,

x̃st = {xhw : Rs ≤ h ≤ R(s+ 1) and Rt ≤ w ≤ R(t+ 1)}. (2.11)

Figure 2.1 gives an example with R = 2.
Let Ñ (s,t) be the number of stars in tile (s, t). Because Ñ (s,t) is random, the cardinality of

the set of locations and fluxes in each tile is also random. To handle the trans-dimensional
parameter space, we consider a triangular array of latent variables on each tile:

˜̀(s,t) = (˜̀(s,t)
N,i : i = 1, ..., N ;N = 1, 2, ...); (2.12)

f̃ (s,t) = (f̃
(s,t)
N,i : i = 1, ..., N ;N = 1, 2, ...), (2.13)

CHAPTER 2. DEBLENDING STARFIELDS 20

Figure 2.2: An example image with four tiles and four stars illustrating the relationship
between the tile latent variables and the full-image catalog. To construct the full-image
catalog, we index into the appropriate row of the triangular array on each tile.

where ˜̀(s,t)
N,i and f̃

(s,t)
N,i are the elements of the triangular array corresponding to location and

fluxes, respectively. Tile locations ˜̀(s,t)
N,i ∈ [0, R] × [0, R] give the location of stars within a

tile. The fluxes f̃
(s,t)
N,i are vectors in RB

+ (one flux for each band).

Call (Ñ (s,t), ˜̀(s,t), f̃ (s,t))S,Ts=1,t=1 the tile latent variables. The distribution on tile latent
variables factorize over image tiles:

q̃η
((
Ñ (s,t), ˜̀(s,t), f̃ (s,t)

)S,T
s=1,t=1

|x
)

=
S∏
s=1

T∏
t=1

q̃η
(
Ñ (s,t), ˜̀(s,t), f̃ (s,t)|x

)
. (2.14)

Succinctly denote tile latent variables as z̃. The ultimate latent variable of interest is
z = {N, (`i, fi,1, ..., fi,B)Ni=1}, the catalog for the full image. There is a natural mapping
from z̃ to z. First, the number of stars in the full catalog is given by the sum of the stars
in each tile, N =

∑
s,t Ñ

(s,t). Then, for every tile (s, t), we index into the Ñ (s,t)-th row of

the triangular array of tile latent variables f̃ (s,t) and ˜̀(s,t). The union of these fluxes and
locations over all tiles form the full catalog (tile locations are shifted by the position of the
tile in the full image to obtain locations in the full image). See Figure 2.2 for a schematic.

If τ is the mapping from z̃ to z, then the variational distribution on catalogs z is

qη(z|x) := q̃η(τ
−1(z)|x), (2.15)

where τ−1(z) is the pre-image of z under τ .

CHAPTER 2. DEBLENDING STARFIELDS 21

Variational distributions on image tiles

We describe the variational distribution on each tile, q̃η
(
Ñ (s,t), ˜̀(s,t), f̃ (s,t)|x

)
. The latent

variables also fully factorize within each tile. Dropping the index (s, t) in this subsection,

Ñ ∼ Categorical(ω; 0, ..., Nmax); (2.16)

˜̀
Ñ,i/R ∼ LogitNormal(µ`Ñ,i , diag(ν`Ñ,i)); (2.17)

f̃ b
Ñ,i
∼ LogNormal(µfb

Ñ,i
, σ2

fb
Ñ,i

), (2.18)

independently for i = 1, ..., Ñ ; Ñ = 1, ..., Nmax. ω is a (Ñmax + 1)-dimensional vector on
the simplex. µ`Ñ,i and ν`Ñ, are two-dimensional vectors – the covariance on locations is

diagonal. Note that in the exact posterior, Ñ has support on the nonnegative integers; in
the variational distribution, we truncate at some large Nmax.

These distributions were taken to match the constraints of the latent variables: fluxes
are positive and right skewed, suggesting a log-normal; locations are between zero and R,
suggesting a scaled logit-normal.

Evaluating the variational distribution

We detail the computation of qη(z|x) for any given catalog z = {N, (`i, fi,1, ..., fi,B)Ni=1}. This
will be required for the wake-sleep optimization procedure (Section 2.3). By Equation 2.15,
it suffices to evaluate q̃η(τ

−1(z)|x).
Here, τ−1(z) is a set of tile latent variables because the mapping from tile latent variables

z̃ to catalogs z is not injective, as we now explain.
Locations in the catalog {`i}Ni=1 determine the number of stars on tile (s, t). The number

of stars Ñ (s,t) is simply the count of the locations that reside within that tile:

Ñ (s,t) =
N∑
i=1

1
{
`i ∈ [Rs,R(s+ 1)]× [Rt,R(t+ 1)]

}
, (2.19)

where 1{·} is the indicator function, equal to one if true and zero if false.
Now, consider ˜̀(s,t) and f̃ (s,t), the triangular array of locations and fluxes on tile (s, t).

For each (s, t), the Ñ (s,t)-th row of the triangular array of fluxes and locations is determined
by the locations and fluxes of stars imaged in tile (s, t); they are determined by the catalog
z. However, the other rows of the triangular arrays are not determined by the catalog z;
they are free to take any value in their domain. Therefore, the mapping τ is not injective.

Thus, evaluating the probability of τ−1(z) under q̃η requires marginalizing over the rows
of the triangular arrays `(s,t) and f̃ (s,t) that are not determined by z. However, because q̃η
fully factorizes, the terms where n 6= Ñ (s,t) do not enter the product after marginalization.

CHAPTER 2. DEBLENDING STARFIELDS 22

On each tile (s, t),

q̃η
(
Ñ (s,t), ˜̀(s,t), f̃ (s,t)|x

)
= q̃η(Ñ

(s,t)|x)
Nmax∏
n=1

n∏
i=1

q̃η
(
˜̀(s,t)
n,i |x

)
q̃η
(
f̃

(s,t)
n,i |x

)
(2.20)

= q̃η(Ñ
(s,t)|x)

Ñ(s,t)∏
i=1

q̃η
(
˜̀(s,t)

Ñ(s,t),i
|x
)
q̃η
(
f̃

(s,t)

Ñ(s,t),i
|x
)
. (2.21)

In words, given a catalog z, first convert z to tile latent variables; then on each tile, it
suffices to evaluate q̃η only at the rows of triangular arrays determined by the number of
stars falling in each tile.

The last technical detail is computing a given row of a triangular array. Because catalogs
are sets, each star in the tile must be matched with corresponding variational parameters.
Let (˜̀

i, f̃i)
n
i=1 generically denote the tile latent variables in the n-th row of a triangular

array, on some tile. We find the permutation of the tile latent variables that maximize
its log-probability under q. Recalling the variational distribution in Equations 2.16, 2.17
and 2.18, we permute the stars by finding

argmax
π

{ n∏
i=1

LogitNormal(˜̀
π(i);µ`i , ν`i)× LogNormal(f̃π(i);µfi , σ

2
fi

)
}

(2.22)

where the argmax is taken over all permutations on {1, ..., n}. This is feasible because on
each tile Nmax = 3, so we only need to search through 3! = 6 possibilities.

Neural network architecture

In each tile, the distributional parameters in Equations 2.16, 2.17 and 2.18, are the output of
a neural network. The input to the neural network is an R×R tile, padded with surrounding
pixels. Padding enables the neural network to produce better predictions inside the tile. For
example, a bright source in the vicinity of but outside the tile will affect the pixel values
inside the tile. Padding the tiles allows the neural network access to this information. The
appropriate amount of padding will depend on the PSF width in the analyzed image. To
catalog the crowded starfield M2 (Section 2.5), we set R = 2 and padded the tile with a
three-pixel-wide boundary. Thus, while the distribution on tile latent variables factorize over
tiles, the neural network is able to use information from neighboring tiles in producing the
distributional parameters.

In amortized inference, the variational parameters η to be optimized are neural network
weights. The architecture consists of several convolutional layers followed by several fully
connected layers (Figure 2.3). This architecture has been successful on image classification
challenges such as ImageNet (Russakovsky et al., 2015). The optimization of the architecture
for this specific application is left for future work.

Note that the output dimension of the neural network is quadratic in Nmax: the outputs
are parameters for a triangular array consisting of 1

2
(N2

max +Nmax) sources. Factorizing the

CHAPTER 2. DEBLENDING STARFIELDS 23

Figure 2.3: The neural network architecture. For cataloging M2, the input is an 8×8 padded
tile, and the network returns distributional parameters for latent variables contained in the
center 2× 2 tile.

variational distribution spatially keeps the output dimension manageable. While the full
image may contain many stars (on the region of M2 we consider, the number of stars is on
the order of thousands), we set Nmax = 3 on each 2×2 tile. Thus, the network is responsible
for inferring only a few stars at once—a much easier task than inferring all ∼ 1000 stars
simultaneously.

We emphasize that while the variational distribution factorizes over 2 × 2 tiles, our
method does not break the inference problem for the full image into isolated subproblems.
The evaluation of the likelihood, e.g., when computing the ELBO in Equation 2.10, is always
on the full image. Light from a star within a 2× 2 tile spills over into neighboring tiles, so
the likelihood should not and does not decouple across image tiles.

2.3 The wake-sleep algorithm

Procedures such as black-box variational inference (BBVI) (Ranganath et al., 2013) and
automatic-differentiation variational inference (ADVI) (Kucukelbir et al., 2017) optimize
the ELBO without the need for deriving analytic expressions for the expectation over qη.
These approaches all employ stochastic gradient descent (SGD); they sample latent variables
from qη and produce an unbiased estimate for the gradient of the ELBO by taking advantage
of modern automatic differentiation tools. ADVI is closely related to the reparameterization
trick (Kingma and Welling, 2013; Rezende et al., 2014), which is often used to fit variational
autoencoders and applies when the latent variables are continuous.

In our model, the number of stars N is discrete. As an alternative, the REINFORCE
estimator (Williams, 1992) produces an unbiased stochastic gradient for both continuous
and discrete latent variables. However, REINFORCE gradients without additional modifi-
cation often suffer from high variance in practice, resulting in slow convergence of stochastic
optimization. We find this to be true in our empirical study. (Section 2.4).

The key difficulty in constructing stochastic gradients of the ELBO is that the integrating
distribution depends on the optimization parameter η. The wake-sleep algorithm, originally

CHAPTER 2. DEBLENDING STARFIELDS 24

proposed by Hinton et al. (1995), replaces the ELBO objective with

Lsleep(η) := −Ex∼p(x)

[
KL(p(z|x)‖qη(z|x))

]
, (2.23)

known as the sleep objective. Section 2.3.1 details a simple gradient estimator for Equa-
tion 2.23 that does not require reparameterization or REINFORCE.

There are two key differences between the sleep objective (Equation 2.23) and the ELBO
(Equation 2.10). First, recall that maximizing the ELBO is equivalent to minimizing KL(q‖p);
in the sleep objective, the KL arguments are transposed. Second, the outer expectation over
p(x) also gives different meaning to the sleep objective. The ELBO objective seeks η to
minimize the KL between qη(z|x) and p(z|x) for fixed, observed data x, in this case the
H ×W image. In contrast, the sleep objective seeks to minimize the KL on average over
all possible data x, as weighted by p(x). The target is no longer an approximate posterior
for the observed data, but rather an approximate posterior that is “good on average” over
possible data under the model p(x).

Therefore, it is imperative that the model p(x) approximates the true underlying data-
generating mechanism well. Thus, the wake-sleep algorithm also incorporates a “wake phase”
to estimate model parameters. In our application, these model parameters include PSF
parameters π and background parameters β. Define φ := (π, β), and denote the dependence
of the generative model on φ using subscripts, pφ.

To estimate model parameters, one would ideally optimize the marginal log-likelihood
log pφ(x). However, since log pφ(x) is intractable, the wake-phase optimizes for φ using the
ELBO (Equation 2.10) as a surrogate for the intractable log-likelihood. The ELBO is a lower
bound of log pφ(x); it is equal to log pφ(x) when qη(z|x) = pφ(z|x).

The wake-sleep algorithm alternates between the two objectives:

Sleep phase: ηt = argmax
η
−Ex∼pφ(x)

[
KL(pφt−1(z|x)‖qη(z|x))

]
; (2.24)

Wake phase: φt = argmax
φ

Eqηt (z|x)

[
log pφ(x, z)− log qηt(z|x)

]
, (2.25)

for iterations t = 1, ..., T .
Stochastic gradients of the expectation in the wake-phase are simple to compute. Because

the integrating distribution does not depend on the optimization parameter φ in the wake
phase, unbiased stochastic gradients are simply computed as

∇φ log pφ(x, z) for z ∼ qη. (2.26)

Section 2.3.1 shows that a similarly simple gradient estimator exists for the sleep objective.
The wake-sleep algorithm is closely related to variational EM (Jordan et al., 1999; Neal

and Hinton, 2000; Beal and Ghahramani, 2002), which alternates between an expectation
step (E-step) and a maximization step (M-step). Variational EM can be viewed as block
coordinate ascent on the ELBO objective, with the E-step optimizing variational parameters

CHAPTER 2. DEBLENDING STARFIELDS 25

η and the M-step optimizing the model parameters φ. The wake phase of the wake-sleep
algorithm is equivalent to the M-step of variational EM. As discussed above, the optimization
of the ELBO with respect to η is not conducive to using simple stochastic gradient estimators.
Thus, the sleep phase replaces the ELBO objective of the E-step with the expected KL
in Equation 2.23.

2.3.1 Decomposing the sleep objective

In this subsection, we decompose the sleep objective in Equation 2.23 for closer study. We
take φ as fixed in this section and drop the explicit dependence of p on φ.

First, observe that optimizing the sleep objective does not require computing the in-
tractable term p(x):

argmax
η

Lsleep(η) = argmin
η

Ex∼p(x)

[
KL(p(z|x)‖qη(z|x)

]
(2.27)

= argmin
η

Ep(x)

[
Ep(z|x)

(
log p(z|x)− log qη(z|x)

)]
(2.28)

= argmin
η

Ep(x,z)
[
− log qη(z|x)

]
. (2.29)

Crucially, the integrating distribution, p(x, z), does not depend on the optimization param-
eter η. Thus, unbiased stochastic gradients can be obtained simply as

g = −∇η log qη(z|x) for (x, z) ∼ p(x, z). (2.30)

In other words, at each iteration of SGD, the sleep phase simulates complete data (x, z)
from the generative model and evaluates the loss − log qη(z|x). Here, “complete data” refers
to the image along with its catalog. This loss encourages the neural network to map an
image x to a distribution qη(·|x) that places large mass on the image’s catalog z.

We decompose the loss − log qη(z|x) further. Recall that qη fully factorizes over tile la-
tent variables, and thus − log qη(z|x) is a summation over all tile latent variables. To evaluate

− log qη(z|x) for some (x, z) ∼ p, first convert z to its tile parameterization (Ñ (s,t), ˜̀(s,t), f̃ (s,t))
(S,T)
s=1,t=1,

as detailed in Section 2.2.1. On each tile (s, t), the variational distribution on the number of
stars Ñ (s,t) is categorical with probability vector ω(s,t) ∈ ∆Nmax (recall Section 2.2.1). The
loss function for the number of stars becomes

− log qη(Ñ
(s,t)|x) = −

Ñmax∑
n=0

1{Ñ (s,t) = n} logω(s,t)
n . (2.31)

The vector ω(s,t) is the output of the neural network, and Equation 2.31 is the usual cross-
entropy loss for a multi-class classification problem.

Next, recall that location coordinates are logit-normal and fluxes are log-normal in the
variational distribution. Let y generically denote either the logit-location or log-flux for a

CHAPTER 2. DEBLENDING STARFIELDS 26

star in the sampled catalog z; let (µ̂, σ̂2) be the Gaussian mean and variance returned by
the neural network. Then the loss for these latent variables is,

− log qη(y|x) =
1

2σ̂2
(y − µ̂)2 +

1

2
log(2πσ̂2). (2.32)

The first term encourages network predictions µ̂ to be close to the sampled latent vari-
able y, while σ̂2 encodes the uncertainty of the network: the second term encourages small
uncertainties, but is balanced by the scaling of the error (y − µ̂)2 in the first term.

The losses in Equations 2.31 and 2.32 show that the sleep objective results in a super-
vised learning problem on complete data sampled from our generative model: the objective
function for the number of stars is the usual cross-entropy loss for classification, while the
objective function for log-fluxes and logit-locations are L2 losses in the mean parameters.

2.4 Empirical comparison of ELBO and sleep

objectives

A simple example demonstrates that there exist shallow local optima in the ELBO where the
fitted approximate posterior is far in KL divergence from the exact posterior. These local
optima result in unreliable catalogs. The sleep objective, by taking advantage of complete
data, appears to better avoid these local optima. For this example, the data were simulated
with known PSF and background, and the wake phase is not needed. The simulated 20× 20
single-band image xtest is shown in Figure 2.4(d).

We compare three approaches to deblending. The first two approaches directly optimize
the test ELBO,

Lelbo(η;xtest) = Eqη(z|xtest)

[
log p(xtest, z)− log qη(z|xtest)

]
, (2.33)

while the third approach optimizes the sleep objective (Equation 2.23). In each case, qη is
the inference network from Section 2.2.1; the input to the network is a 10× 10 tile with no
padding.

Note that the sleep objective does not depend on xtest. Optimizing the sleep objective
only requires sampling catalogs from the prior and simulating images conditional on each
catalog. The prior on the number of stars was set to Poisson with mean µ = 4.

Figure 2.4 (top row) charts the test ELBO (Equation 2.33) as the optimization proceeds
in our three approaches. The first approach optimizes the ELBO with SGD and the RE-
INFORCE gradient estimator. This optimization did not converge, likely due to the high
variance of the REINFORCE estimator (Figure 2.4a). For a lower variance gradient estima-
tor, the second approach employed the reparameterized gradient. To employ this gradient
estimator, we analytically integrated the ELBO with respect to the number of stars N to
remove the discrete random variable. Using reparameterized gradients instead of REIN-
FORCE gradients enabled the optimization to converge to stationary points (Figure 2.4b).

CHAPTER 2. DEBLENDING STARFIELDS 27

However, for two randomly initialized restarts, the optimization found local optima where
the negative ELBO is higher than other restarts.

In contrast, optimizing the sleep objective consistently converged to a similar ELBO
across all restarts and appeared to avoid shallow local optima (Figure 2.4c). Recall that
sleep phase optimization does not directly optimize the test ELBO. However, the test ELBO
increases nonetheless, because the variational posterior better approximates the exact pos-
terior as the optimization proceeds.

Shallow local optima in the ELBO result in unreliable catalogs. The bottom row of
Figure 2.4 displays the estimated locations, defined as the mode of the fitted variational
distribution. Figure 2.4(e) shows these locations after converging to a shallow local optimum.
Here, the upper left tile was correctly estimated to have two stars, though both estimated
stars were placed at the same location. For correct detections, one of the locations should
be placed on the second star. However, in order to move one of the estimated locations
to the second star, the optimization path must traverse a region where the log-likelihood
is lower than the current configuration (Figure 2.5). The displayed configuration is a local
optimum where the gradient with respect to its locations is approximately zero. In contrast,
the sleep-phase variational distribution consistently placed its mode around the four true
stars. The sleep objective is quadratic in the logit-location estimate µ` (Equation 2.32), and
the gradient does not vanish in the sleep objective. An example of correct detection after
sleep-phase optimization is shown in Figure 2.4(f).

Figure 2.4: (Top row) The ELBO as the optimization progresses for six random restarts.
(Bottom row) In red, modal locations from ELBO-optimized and sleep-optimized variational
posteriors, for one of the six restarts. In blue, the true locations.

CHAPTER 2. DEBLENDING STARFIELDS 28

Figure 2.5: An illustration of local optima in the ELBO objective. To move an estimated
location to a correct location, the optimization path must traverse a region where the negative
ELBO is larger than the current configuration. In contrast, the sleep objective is quadratic
in the estimated location, and the gradient does not vanish.

2.5 Results on the M2 globular cluster

We validated StarNet using an SDSS image of the Messier 2 (M2) globular cluster, a crowded
starfield found in field 136 of camera column 2 in run 2583. M2 was also imaged in the ACS
Globular Cluster Survey (Sarajedini et al., 2007) using the Hubble Space telescope (HST),
which has greater resolution than the Sloan telescope. The resolution of the HST wide-field
channel is 0.05 arcseconds per pixel versus 0.4 arcseconds per pixel in SDSS (ESAHubble;
SDSS). The catalog from this Hubble survey (henceforth the “HST catalog”) serves as ground
truth for validating our results.

We focus on the 100×100 pixel subimage of M2 that Portillo et al. (2017) and Feder et al.
(2020) analyzed with PCAT. This subimage is located approximately two arcseconds from
the heavily saturated core of the cluster; even in this subimage, the HST catalog contains
over 1000 stars with F606W-band magnitudes less than 22. We include two bands in our
model, the SDSS r-band and i-band. The SDSS r-band and the Hubble F606W band are
centered at roughly the same wavelength, but the wavelength range of the Hubble F606W
band is slightly broader.

2.5.1 Runtime

We factorized our variational distribution into 2 × 2 pixel tiles. The neural network inputs
were 8× 8 pixel padded tiles: 2× 2 tiles along with three surrounding pixels of padding (see
Figure 2.3). The SDSS estimates for the PSF and background were used in the first sleep
phase. This phase ran for 200 epochs; at each epoch, 200 images were sampled from the
generative model. Optimization was done with Adam (Kingma and Ba, 2014). On a single
NVIDIA GeForce RTX 2080 Ti GPU, the initial sleep phase took 15.2 minutes.

Two additional wake-sleep cycles followed the first sleep phase, after which the model
parameters and inferred catalog appeared stable. The subsequent sleep phases were shorter

CHAPTER 2. DEBLENDING STARFIELDS 29

(10 epochs with 200 images each), and the wake phase employed SGD, with the gradient
estimator in Equation 2.26. In total, the two further wake-sleep cycles took three minutes.

After fitting the model and variational posterior, calculating the approximate posterior
(that is, producing the distributional parameters of the variational approximation) for the
100× 100 pixel image of M2 took 30 milliseconds. By comparison, the reported runtime of
PCAT, which uses MCMC, is 30 minutes on the same 100 × 100 pixel image (Feder et al.,
2020). After the initial fit, StarNet provided nearly a 105-fold speed increase.

The speed at inference time (which excludes training time) gives StarNet the scaling
characteristics necessary for processing large astronomical surveys. A single SDSS image is
1489× 2048 pixels. Based on the reported 30-minute runtime of PCAT for a 100× 100 pixel
subimage, we project that the runtime to process the full image would be 30 min×14×20 =
8400 minutes, or almost six days. The SDSS survey consists of nearly one million images.
Scaling PCAT to the entire SDSS survey would be infeasible. The upcoming LSST survey
will be 300 times larger than SDSS.

In contrast, if we assume the PSF and background are homogeneous across the full
SDSS image (which is also assumed in PCAT), we can fit StarNet using wake-sleep on a
small 100 × 100 pixel subimage (while simultaneously obtaining estimates of the PSF and
background), a one time computational cost of 18.2 minutes. Producing a catalog with the
full 1489× 2048 pixel image requires 30 msec× 14× 20 = 8.4 seconds. In practice, inference
can be made even faster by batching the image tiles to run in parallel on a GPU.

2.5.2 Inference

The cataloging accuracy of StarNet is compared with PCAT and DAOPHOT (Stetson, 1987).
DAOPHOT is an algorithmic routine for detecting stars in crowded starfields which does not
use a generative model. This software convolves the observed image with a Gaussian kernel
and scans for peaks above a given threshold. The DAOPHOT catalog of M2 was reported
in An et al. (2008).

To evaluate the three methods, the HST catalog was used as ground truth. We filtered
the HST catalog to stars with magnitudes smaller than 22.5 in the Hubble F606W band,
because stars with lower apparent brightness cannot be detected in SDSS images.

Estimated catalogs are evaluated on three metrics: the true positive rate (TPR), the
positive predicted value (PPV), and the F1 score. The TPR is the proportion of stars in
the HST catalog matched with a star in the estimated catalog; the PPV is the proportion
of stars in the estimated catalog matched with a star in the HST catalog. The F1 score
summarizes the two metrics as the harmonic mean of the PPV and the TPR.

Like Portillo et al. (2017) and Feder et al. (2020), a “match” between an estimated star
and an HST star is defined as follows: (1) the estimated location and the HST location are
within 0.5 SDSS pixels, and (2) the estimated SDSS r-band flux and the HST F606W band
flux are within half a magnitude.

In probabilistic cataloging (PCAT and StarNet), the posterior defines a distribution
over catalogs. For StarNet, the TPR, PPV, and F1 score were computed for the catalog

CHAPTER 2. DEBLENDING STARFIELDS 30

Figure 2.6: Estimated catalogs on four 10×10 subimages from M2. Blue dots are stars from
the HST catalog used as ground truth. Starnet-WS, PCAT, and DAOPHOT estimated stars
are shown as red, cyan, and orange crosses, respectively.

corresponding to the mode of the variational distribution (henceforth, the StarNet catalog).
For PCAT, 300 catalogs were sampled using MCMC; the metrics were computed for each
sampled catalog and averaged.

Fitting StarNet using wake-sleep (StarNet-WS) resulted in a catalog that outperforms
DAOPHOT and PCAT in F1 score (Table 2.1). Figure 2.6 shows the StarNet-WS catalog
alongside PCAT, DAOPHOT, and HST catalogs. Fitting StarNet without the wake phase
and using only the default SDSS background and PSF (StarNet-S) produced a catalog with a
TPR similar to that of StarNet-WS but with a smaller PPV. PCAT estimated the most stars
of all methods; it therefore had a large TPR but a small PPV. On the other hand, DAOPHOT
estimated less than half the number of stars when compared to the other methods. It
therefore had a large PPV but a small TPR. The StarNet-WS catalog had about the same
PPV as DAOPHOT while having nearly the same TPR as PCAT.

Table 2.1 also prints the number of stars inferred by each method. For probabilistic
methods (StarNet and PCAT), we display the mean number of stars under the approximate
posterior, along with the 5-th and 95-th quantiles. There are 1114 stars in the HST catalog.
Neither PCAT nor StarNet captured the true number of stars in their 90% credible interval,
though StarNet-WS came the closest. The StarNet credible intervals were three times wider
than the PCAT intervals. The small PCAT credible intervals may be indicative of an MCMC
sampler that failed to mix well.

The improvement of StarNet-WS over PCAT in PPV was most pronounced for dim stars
(Figure 2.7). The TPR for StarNet-WS was uniformly better than DAOPHOT across almost
all magnitudes. Of all methods, StarNet-WS best approximated the HST flux distribution
(Figure 2.8).

The difference between the flux distributions (Figure 2.8) produced by StarNet-WS and
PCAT is partly due to the fact that StarNet-WS estimates the background with maximum

CHAPTER 2. DEBLENDING STARFIELDS 31

Table 2.1: Performance metrics on M2. For probabilistic methods (StarNet and PCAT)
the “#stars” column refers to the mean number of stars under the (approximate) posterior,
while the right-most column displays the 5-th and 95-th percentiles under the posterior.

Method TPR PPV F1 score #stars (q-5%, q-95%)

DAOPHOT 0.20 0.63 0.30 295 –
PCAT 0.56 0.40 0.47 1672 (1664, 1680)
Sleep-only 0.51 0.47 0.49 1292 (1260, 1324)
Wake-sleep 0.51 0.60 0.55 1014 (987, 1041)

Figure 2.7: True positive rate (left) and positive predicted value (right) of various cataloging
procedures on M2, plotted against r-band magnitude. Smaller magnitudes correspond to
brighter stars.

likelihood, while the background in PCAT is fixed. As discussed below, the SDSS estimate
of the background (which PCAT uses) is too dim, and PCAT compensates for the model
mis-match by estimating more dim stars. The StarNet-WS estimate increases the intensity
of the background, and hence does not over-estimate dim stars.

To examine the uncertainty calibration of StarNet-WS, we evaluated the approximate
posterior conditional on the true number of stars in the HST catalog. Then, each star in the
StarNet-WS catalog was matched with exactly one Hubble star by finding the permutation
of Hubble stars that had the largest log-likelihood under our variational distribution qη. For
each star, we computed the z-score (y − µ̂)/σ̂, where y is the HST log-flux or logit-location;
µ̂ and σ̂ are the mean and the standard deviation, respectively, of the Gaussian variational
distribution for the log-flux or logit-location. The empirical z-score distributions are close
to a standard Gaussian with some discrepancy in the tails and some evidence of skewness,
suggesting the uncertainties are not too mis-estimated (Figure 2.9).

Finally, we evaluate the quality of the wake-phase estimates for the PSF and background.

CHAPTER 2. DEBLENDING STARFIELDS 32

Figure 2.8: Flux distributions for the r-band observations of M2. The flux distribution of
the HST catalog in grey. Estimated distributions by DAOPHOT, PCAT, and StarNet-WS
catalogs overlaid. For PCAT, the flux distribution is from a single catalog sample.

Figure 2.9: The empirical distribution of z-scores for logit-locations (left) and log-fluxes
(right) under the StarNet-WS variational posterior.

Let zh denote the HST catalog, and given some model parameters φ, let

LHubble(φ) := − log pφ(x(r)|zh) (2.34)

be the negative log-likelihood of the SDSS r-band image conditional on the HST catalog
(recall that the Hubble absorption range most closely resembles the SDSS r-band). The log-
likelihood of model parameters estimated by the wake phase is about two times larger than
the log-likelihood of parameters estimated by SDSS (Table 2.2). The largest improvement
in log-likelihood came from the wake-estimated background, which was brighter than the
SDSS background, suggesting that the SDSS background was too dim for this starfield.

Section 2.7 presents the results of StarNet, PCAT, and DAOPHOT on a neighboring
100 × 100 pixel subimage of M2. The results remain qualitatively similar in that StarNet
has the best F1 score of all methods. Importantly, StarNet was applied to the new region
without further wake-sleep optimization; StarNet produced a catalog on this new region in
≈ 30 milliseconds. On the other hand, PCAT required a new 30 minute run of MCMC.

CHAPTER 2. DEBLENDING STARFIELDS 33

Table 2.2: The negative log-likelihood Equation 2.34 for various model estimates. PHOTO
provides estimates of background and PSF for every SDSS data release. We compare PHOTO
estimates with StarNet estimates obtained after two cycles of wake-sleep.

Model estimate
background PHOTO PHOTO StarNet StarNet

PSF PHOTO StarNet PHOTO StarNet
Neg.Loglik 8.671e+05 8.665e+05 3.651e+05 3.395e+05

2.6 Conclusion

StarNet employs variational inference and outperforms both an MCMC-based probabilistic
cataloger and a non-model-based approach in terms of accuracy and runtime. Under the
framework of probabilistic modeling, StarNet produces catalogs in which uncertainties are
captured by a posterior over the set of all catalogs. Importantly, unlike MCMC, StarNet
also has the capacity to scale probabilistic cataloging to process large astronomical surveys.

The quality of StarNet detections is the result of optimizing the forward KL, a different
objective than the one traditionally used in variational inference. Optimizing the forward
KL allows the variational posterior to be fit on large amounts of complete data – the image
along with its latent catalog – generated from the statistical model. While labeled data from
simulators has been used in other astronomy applications to train deep neural networks (see
for example Lanusse et al. (2017) and Huang et al. (2020)), StarNet is the first training
procedure to employ simulated data in a statistical framework: the neural network specifies
an approximate Bayesian posterior.

This variational approach, unlike previous MCMC approaches, enables StarNet to es-
timate model parameters such as the PSF and sky background. While the current work
focuses on PSF models, our methodology can be extended to more general sources such as
galaxies. Unsurprisingly, the current performance of StarNet is sub-optimal for cataloging
regions of the sky that contain both stars and galaxies, due to model misfit (Section 2.7).

One promising direction is to use a deep generative model for galaxies (Regier et al.,
2015; Reiman and Göhre, 2019; Lanusse et al., 2020; Arcelin et al., 2021). Here, a neural
network encodes a conditional likelihood of galaxy images given a low-dimensional galaxy
representation. Using a neural network to encode a likelihood extends the flexibility of galaxy
models beyond the simple models used here.

The statistical framework in this research lays the foundation for building flexible models
to incorporate the cataloging of all celestial objects. Future astronomical surveys will only
expand in terms of the volume of data they are able to amass. As telescopes peer deeper
into space, fields will reveal more sources and images will become more crowded. The
uncertainties in crowded fields necessitate a probabilistic approach. Our method holds the
promise of providing a scalable inference tool that can meet the challenges of future surveys.

CHAPTER 2. DEBLENDING STARFIELDS 34

Table 2.3: Performance metrics on the M2 test subregion. StarNet-init is the network fit on
the original M2 subregion (the same network as StarNet-WS in the main text). StarNet-refit
ran two further wake-sleep cycles on the M2 test subregion.

Method TPR PPV F1 score #stars (q-5%, q-95%)

DAOPHOT 0.13 0.53 0.21 338 –
PCAT 0.44 0.37 0.41 1793 (1799, 1805)
StarNet-init 0.47 0.47 0.47 1466 (1431, 1499)
StarNet-refit 0.47 0.50 0.48 1396 (1362, 1432)

2.7 Supplemental results

2.7.1 Results on a test M2 image

We evaluate StarNet on another subregion of M2. The initial 100 × 100 subregion of M2
considered in our main paper was located at pixel coordinates (630, 310) in SDSS run 2583,
field 136, camera column 6. After fitting StarNet on this initial region x0, we evaluate StarNet
on a neighboring region xtest. See Figure 2.10 for locations of the considered subregions.

The subregion xtest has approximately 25% more stars than x0 (1413 Hubble detections in
xtest versus 1114 detections in x0). Due the increased density, all methods suffered an ≈ 10
percentage point decrease in F1 score on xtest compared to the F1 score on x0 (compare
Table 2.1 and 2.3).

In Table 2.3 and Figure 2.11, “StarNet-init” refers to the wake-sleep trained network on
x0. Using StarNet-init and its fitted background and PSF as an initialization, we ran two
further cycles of wake-sleep on xtest (StarNet-refit). StarNet-refit improved the PPV over
Starnet-init by two percentage points. The TPR appeared to be nearly identical across all
magnitudes (Figure 2.11).

These results suggest that StarNet-init extrapolates well to neighboring regions, and re-
running wake-sleep is not necessary. Evaluating StarNet-init on xtest took 30 milliseconds.
On the other hand, re-running PCAT takes another 30 minutes. Even if StarNet did require
refitting, the subsequent wake-sleep cycles takes only an additional three minutes. The
amortization enables StarNet inference to have much better scaling characteristics than
PCAT.

2.7.2 Sensitivity to prior parameters

We examine the sensitivity of StarNet to prior parameters µ and α on the image M2. Recall
µ is the prior mean number of stars per pixel Equation 2.1; α is the power law slope on the
r-band fluxes Equation 2.3. In the results of Section 2.5, µ = 0.15 and α = 0.5.

The model appears reasonably robust. As expected, as µ increases the TPR increases
while the PPV decreases – the prior encourages more detections (Figure 2.12).

CHAPTER 2. DEBLENDING STARFIELDS 35

Figure 2.10: The SDSS field containing M2. In red, the subregion x0 considered in the main
text. The subregion xtest in blue.

As α increases, StarNet estimates more dim sources: the prior distribution on fluxes
places more mass near fmin (Figure 2.13).

While the TPR increases across α values, the PPV suffers at α = 0.75 (Figure 2.14).
At α = 0.75, we see that the TPR improves at dimmer sources at the expense of brighter
sources, suggesting that the brigher sources become over-split. The stronger prior on dimmer
stars also manifests in the flux distribution of the resulting StarNet catalog (Figure 2.15).

2.7.3 Results on Stripe-82

Most regions of the sky are much less densely populated than M2. We test StarNet on run 94,
camcol 1, field 12 of SDSS, an image with light source density more typical of SDSS images.
After 10 minutes of sleep training, StarNet produced a catalog on the full 1489×2048 image
in ≈ 2 seconds. For comparison, the projected runtime of PCAT on an image of this size is
6 days.

Since this region of the sky is more sparse, we tile the image into 50× 50 tiles; Nmax on
tiles is three. Because this region of the sky also contains galaxies, only the sleep phase was
employed to fit StarNet; the wake phase would optimize the PSF to explain both stars and
galaxies.

This image is contained in Stripe 82, a region of the sky repeatedly imaged by SDSS.
Averaging images from different runs boosts the signal to noise ratio, resulting in a “co-

CHAPTER 2. DEBLENDING STARFIELDS 36

Figure 2.11: True positive rate (left) and positive predicted value (right) of various methods
on the M2 test subregion. StarNet-init is the network fit on the original M2 subregion (the
same network as StarNet-WS in the main text). StarNet-refit ran two further wake-sleep
cycles on the M2 test subregion.

added” image. We compare the performance of StarNet and PHOTO on the non co-added
image. The PHOTO catalog of the co-added image was used as ground truth.

The TPR of StarNet is comparable with the TPR of the PHOTO catalog on the original
(non co-added) image (Figure 2.16). StarNet accrues false detections, namely galaxies, and
thus we cannot compare the PPV. On some tiles, missed detections occur when a large galaxy
within a tile causes all Nmax detections to be placed around the galaxy – the remaining stars
in the image go undetected. Incorporating a galaxy model would boost our performance.

CHAPTER 2. DEBLENDING STARFIELDS 37

mu TPR PPV

0.10 0.46 0.66
0.15 0.51 0.60
0.20 0.51 0.49

Figure 2.12: Sensitivity of performance metrics to Poisson mean parameter on number of
stars (µ in Equation 2.1).

Figure 2.13: The prior density of r-band magnitude for various power law slopes α.

CHAPTER 2. DEBLENDING STARFIELDS 38

alpha TPR PPV

0.25 0.46 0.60
0.50 0.51 0.60
0.75 0.52 0.54

Figure 2.14: Sensitivity of performance metrics to flux prior parameter α.

Figure 2.15: Sensitivity of estimated flux distribution to flux prior parameter α.

CHAPTER 2. DEBLENDING STARFIELDS 39

Figure 2.16: (Left) Detections on a sparse field. In this example, StarNet correctly identifies
the star (blue). Without a galaxy model, StarNet also classifies galaxies (green) as one or
multiple stars. (Right) The true positive rate of StarNet and PHOTO as a function of true
magnitude.

40

Chapter 3

Local sensitivity in Bayesian
nonparametrics

Two central questions in many probabilistic clustering problems is how many distinct clus-
ters are present in a particular dataset, and which observations cluster together. Bayesian
nonparametrics (BNP) addresses this question by placing a generative process on cluster
assignment, making the number of distinct clusters present amenable to Bayesian inference.
However, like all Bayesian approaches, BNP requires the specification of a prior, and this
prior may favor a greater or fewer number of distinct clusters. In practice, it is important
to establish that the prior is not too informative, particularly when—as is often the case in
BNP—the particular form of the prior is chosen for mathematical convenience rather than
because of a considered subjective belief.

We derive local sensitivity measures for assessing the impact of the prior on posterior
inferences drawn using a variational Bayes (VB) approximation. In VB, the approximate
posterior is characterized by a real-valued vector which is the solution to a numerical op-
timization problem. The optimization objective is defined as the Kullback-Leibler (KL)
divergence between the approximating variational posterior and the true posterior. Thus,
the variational posterior depends on prior parameters through the KL optimization. Local
sensitivity measures approximate this dependence, which may be nonlinear, with a local
Taylor series approximation (Gustafson, 1996; Giordano et al., 2018).

Using a stick-breaking representation of a Dirichlet process (Sethuraman, 1994), we con-
sider perturbations both to the scalar concentration parameter and to the functional form of
the stick-breaking distribution. To evaluate sensitivity to functional perturbations, we follow
Gustafson (1996) and embed the stick-breaking density in the Lp vector space of integrable
functions and parameterize a path between the original prior and the perturbed prior.

We apply our methods to several real-world datasets, estimating the sensitivity of key
posterior quantities to the BNP prior specification. Notably, we go beyond previous work
on local Bayesian sensitivity (e.g. Basu et al. (1996)) which treated sensitivity as a measure
of robustness per se. Rather, in the design and evaluation of our local sensitivity measures
we pay special attention to our ability to accurately extrapolate posterior inferences to

CHAPTER 3. SENSITIVITY IN BNP 41

different priors. We show the accuracy of our local approximation both for parametric
and nonparametric perturbations by comparing against the much more expensive process
of refitting the variational posterior. The speed of the local approximation allows rapid
exploration of a wide range of possible perturbations.

Even with the speed of our approximation, testing sensitivity for all possible prior per-
turbations is impossible. However, we also show that the local sensitivity takes the form of
an inner product, in an appropriate Hilbert space, between an influence function and a prior
perturbation; we demonstrate how to use the influence function to guide our search for prior
perturbations that result in high sensitivity. In particular, we can use the influence function
to find maximally influential alternative priors.

Section 3.1 details the stick-breaking construction of Dirichlet process priors. Section 3.2
outlines our truncated variational approximation. Section 3.3 and Section 3.4 presents our
local approximation for parametric and functional perturbations, respectively. Section 3.5
discusses how computing the sensitivity is done in practice.

In our results (Section 3.6), we first demonstrate our local sensitivity methodology on
a toy example, a Gaussian mixture model of Fisher’s iris data set. Then, we apply local
sensitivity to real data analysis problems, which include a regression model of time-course
gene expression data, and a topic model for studying population structure in a genetic
database. We find that posterior quantities can be sensitive or non-sensitive, depending on
both the application and the quantity of interest. In most cases, the local approximation well-
approximates the results found under refitting. We empirically observe that computing the
local sensitivity can be an magnitude faster than refitting. We also discuss some limitations
of local sensitivity and present scenarios where it fails to be a good approximation to refitting
in Section 3.7. Section 3.8 concludes.

3.1 Stick-breaking Dirichlet processes

A discrete Bayesian nonparametric (BNP) generative model draws data points xn from
one of an infinite number of components indexed by k = 1, 2, . . .∞. Each component is
characterized by a vector βk ∈ Ωβ ⊆ RDβ , with P(xn|βk) denoting the distribution of data
arising from component k. We model the βk as arising IID from a known prior, or base
distribution, denoted Pbase(βk), and write β = (β1, β2, . . .).

Assignment of data point n to a mixture component is represented by an (infinite dimen-
sional) vector zn = (zn1, zn2, . . .) whose elements znk = 1 for exactly one k and 0 otherwise.
With zn defined in this way, we can write

P(xn|zn, β) =
∞∏
k=1

P(xn|βk)znk .

The prior probabilities of assignments zn are generated according to the following “stick-
breaking” process. Fix a density Pstick(·), with respect to the Lebesgue measure, over stick-

breaking proportions νk ∈ (0, 1) and draw νk
iid∼ Pstick(νk) for k = 1, 2, . . .∞. Given these

CHAPTER 3. SENSITIVITY IN BNP 42

stick lengths, construct probabilities using the following formula:

πk := νk
∏
k′<k

(1− νk′), (3.1)

where the empty product is taken to be equal to 1. By construction,
∑∞

k=1 πk = 1. Given
the probability vector π := (π1, π2, . . .), the zn are drawn according to

P(zn|π) =
∞∏
k=1

πznkk .

Since π is a deterministic function of the stick-breaking proportions ν := (ν1, ν2, . . .), we can
also write P(zn|ν) with no ambiguity.

The stick-breaking distribution Pstick can be thought of as inducing a a distribution on the
vector of probabilities π. Different stick-breaking distributions will different favor assignment
probabilities, each with different implied degrees of concentration. A particularly common
choice for Pstick(νk) is the Beta(νk|1, α) distribution,

Beta(νk|1, α) =
Γ(1 + α)(1− νk)α−1

Γ(α)
.

When Pstick is Beta(νk|1, α), the resulting distribution on π is known as the GEM distribution,
and we write π ∼ GEM(α).

The GEM distribution is closely related to the Dirichlet process (DP). Define a measure
on Ωβ as

M =
∞∑
k=1

πkδβk ,

which places atoms at points βk with weight πk. When π ∼ GEM(α) and βk
iid∼ Pbase(βk),

M is a random measure is distributed according to Dirichlet process with concentration
parameter α and base measure Pbase (Ferguson, 1973; Sethuraman, 1994).

We keep the generic notation Pstick for stick-breaking distributions because in our sen-
sitivity analysis, we will consider stick-breaking distributions that are outside the family of
Beta distributions.

In the generative process we have just outlined, the joint distribution of the observed
data and latent variables in a basic BNP mixture model is

logP(x, β, z, ν) =
N∑
n=1

∞∑
k=1

znk (logP(xn|βk) + log πk)

+
∞∑
k=1

(logPstick(νk) + logPbase(βk)) . (3.2)

CHAPTER 3. SENSITIVITY IN BNP 43

Example 1 (Gaussian mixture model). The observations are vectors xn ∈ Rd, and we model
each component with a multivariate Gaussian. In this model, βk = (µk,Λk), where µk ∈ Rd,
Λk is a d× d positive definite information matrix, and

P(xn|βk) = N
(
xn|µk,Λ−1

k

)
logP(xn|βk) = − 1

2
(xn − µk)TΛk(xn − µk) +

1

2
log |Λk|+ C.

(C does not depend on βk)

We let Pbase(βk) be the conjugate prior, which in this case is normal-Wishart:

Pbase(βk) = NW (βk|τ0, n0, p0, V0)

logPbase(βk) = −τ0

2
(µk − µ0)TΛk(µk − µ0)

+
n0 − p0 − 1

2
log |Λk| −

1

2
Tr(V0Λk) + C,

where (τ0, n0, p0, V0) are fixed prior parameters.
4

We start with a Gaussian mixture model (GMM) because it conforms cleanly to the
generative process culminating in Equation 3.2. In Section 3.6, we fit a GMM to Fisher’s
iris data set (Anderson, 1936; Fisher, 1936) and cluster irises into latent species based on
morphological measurements. The next two examples, which we will apply to real data sets,
require more careful modeling considerations, and we adjust the factorization in Equation 3.2
to suit our purposes.

Example 2 (Regression mixture model). We cluster time-course gene expression data. An
observation xn ∈ RM is a vector of expression levels at M time points. Let A be an M ×
d regressor matrix. In our case, we will use cubic B-splines to smooth the time-course
observations, so the ij-th entry of A will be the j-th B-spline basis vector evaluated at the
i-th time point (Section 3.6.2).

Each component is characterized by a vector of regression coefficients µk and a variance
τ−1
k , so in this model, βk = (µk, τk). The distribution of the data arising from component k

is

P(xn|βk, bn) = N
(
xn|Aµk + bn, τ

−1
k IM×M

)
,

where bn is a gene-specific additive offset and I is the identity matrix. We include the additive
offset because we are interested in clustering gene expressions based on their patterns over
time, not their absolute level.

The joint distribution can be written in the same form as Equation 3.2, except that the
conditional data likelihood now depends on bn as well as βk, and we include an additional
prior term for bn. 4

CHAPTER 3. SENSITIVITY IN BNP 44

Our last example is a Bayesian topic model applied to genetic data. Genotypes at genetic
markers take the place of words in a document; in lieu of inferring “topics,” we infer latent
populations.

Example 3 (A topic model for population structure). We consider genetic data where the
data set consists of N individuals genotyped at L loci. For diploid organisms, there are two
observations at each loci, one at each chromosome. Let xnli ∈ {1, . . . , Jl} be the observed
genotype for individual n at locus l and chromosome i; Jl is the number of possible genotypes
at locus l. For example, if the measurements are single nucleotides (A, T, C or G) then Jl = 4
for all l.

A latent population is characterized by the collection βk = (βk1, . . . , βkL) where βkl ∈
∆Jl−1 are the latent frequencies for the Jl possible genotypes at locus l. Let znli be the
assignment of observation xnli to a latent population. Notice that for a given individual n,
different loci, or even different chromosomes at a given locus, may have different population
assignments. The distribution of xnli ∈ {1, . . . , Jl} arising from population k is

P(xnli|βk) = Categorical (xnli|βkl) .

Unlike the previous models, we now have a stick-breaking process for each individual.
Draw sticks

νnk
iid∼ Pstick(νnk) ∀n = 1, . . . , N ; k = 1, 2, . . .∞.

The prior assignment probability vector πn = (πn1, πn2, . . .), now unique to each individual,
is formed by the same stick-breaking construction as before,

πnk = νnk
∏
k′<k

(1− νnk′).

The population assignment znli is drawn from the usual multinomial distribution

p(znli|πn) =
∞∏
k=1

πznliknk .

In this genetics application, we call πn the admixture of individual n.
The joint log-likelihood decomposes as

logP(x, β, z, ν) =
N∑
n=1

L∑
l=1

2∑
i=1

∞∑
k=1

znlik (logP(xnli|βk) + log πnk)

+
N∑
n=1

∞∑
k=1

logPstick(νnk) +
∞∑
k=1

logPbase(βk).

This model is identical to STRUCTURE, a model proposed in Pritchard et al. (2000);
Raj et al. (2014), except that we replace the Dirichlet prior in STRUCTURE with an infinite
stick-breaking process. The result is a model similar to a hierarchical Dirichlet process for
topic modeling, (Teh et al., 2006), but without the top-level Dirichlet process. 4

CHAPTER 3. SENSITIVITY IN BNP 45

3.2 Variational approximation for Dirichlet processes

Let ζ denote the full vector of latent variables. In the GMM and topic model (Examples 1
and 3), ζ := (β, z, ν); in the regression example (Example 2), ζ includes the additive shifts,
ζ := (β, z, ν, b). In each model, the exact posterior distribution P(ζ|x) is intractable. Vari-
ational Bayes (VB) is an approach that seeks an approximate posterior through solving a
numerical optimization problem (Jordan et al., 1999; Wainwright and Jordan, 2008; Blei
et al., 2017).

VB specifies a family of approximating distributions Q(ζ|η) parameterized by a finite-
dimensional vector η ∈ Ωη ⊆ RDη and solves for Q(ζ|η̂) that is closest to the posterior P(ζ|x)
in Kullback-Leibler (KL) divergence:

η̂ := argmin
η∈Ωη

KL (Q(ζ|η)||P(ζ|x)) where (3.3)

KL (Q(ζ|η)||P(ζ|x)) = E
Q(ζ|η)

[logQ(ζ|η)− logP(x, ζ)] + logP(x).

As we discuss below, we will choose Q(ζ|η) so that we can easily evaluate (or approximate)
the above expectation with respect to Q(ζ|η) as a closed-form function of η. Notice that the
intractable logP(x) term does not depend on η, and so can be neglected in the optimization.

In practice, forming an approximating posterior for BNP can be challenging since the
latent variables ν and β are (countably) infinite dimensional. We would like to keep dimen-
sion of the variational parameter η finite in order for the optimization in Equation 3.3 to be
tractable. In the present paper, we will follow Blei and Jordan (2006) and use a truncated
stick-breaking representation in the variational distribution. We choose a truncation param-
eter Kmax large but finite, and we set Q(νk = 1|η) = 1 for all k > Kmax. This implies that
under Q, πk = 0 with probability one for all k > Kmax (Equation 3.1). Correspondingly, we
also set Q(znk = 0|η) = 1 for k > Kmax.

For the generic BNP mixture model in Equation 3.2, we propose a mean-field variational
approximating family of the following form:

Q(ζ|η) =

(
Kmax−1∏
k=1

Q(νk|η)

)(
Kmax∏
k=1

Q(βk|η)

)(
N∏
n=1

Q(zn|η)

)
. (3.4)

Because πk = 0 for all k > Kmax, we can ignore the latent variables βk for k > Kmax in
defining our variational approximation.

Notice that only our variational approximation is truncated—the model (Equation 3.2)
itself is not finite. We set Kmax large enough in our variational approximation to ensure
that a large proportion of the components are unoccupied with high probability under Q, in
which case the truncation approximates the fully nonparametric model with Kmax =∞.

The variational approximation for the topic model (Example 3) is similarly mean-field:
the distribution on stick-breaking proportions ν factorizes over both individuals n and com-
ponents k, while the assignments z factorize over individuals n, loci l, and chromosomes

CHAPTER 3. SENSITIVITY IN BNP 46

i. For the regression model (Example 2), all terms in the variational approximation fully-
factorize except for the cluster assignments z and additive shifts b. While we assume (z, b) to
be independent from all other latent variables under Q, we will allow conditional dependence
between z and b (Section 3.9.1).

Conditional conjugacy

For z and β in all models we consider, we will take advantage of conditional conjugacy to
choose distributions Q(zn|η) and Q(βk|η), unless otherwise stated. This means that we will
take Q(zn|η) to be multinomial, matching P(zn|x, β, ν), and we will take Q(βk|η) to match
the distribution of P(βk|x, z, ν).

Example 4 (VB approximation for βk in a GMM). To evaluate the expectation in Equa-
tion 3.3, we need to compute the expected joint log-likelihood

E
Q(βk|η)

[logP(xn, βk)] .

In Example 1, βk = (µk,Λk), and the likelihoods are Gaussian, P(xn|βk) = N
(
xn|µk,Λ−1

k

)
.

The prior Pbase(βk) a normal-Wishart. Using the log densities displayed in Example 1, ob-
serve that βk enters the expected joint log-likelihood only through the expected moments

E
Q(βk|η)

[Λk] , E
Q(βk|η)

[log |Λk|] , E
Q(βk|η)

[Λkµk] , E
Q(βk|η)

[µkΛkµk] .

The conditionally conjugate variational distribution on βk is normal-Wishart, which we
denote as Q(βk|η) = NW (βk|η). With this choice of Q(βk|η), all the preceding expected
moments can be provided as closed-form functions of η. 4

Under the mean-field factorization (Equation 3.4), the vector η will partition into parame-
ters governing ν, β, and z. Let the parameters governing a particular latent variable or latent
vector be denoted with a subscript: for example, Q(β|η) = Q(β|ηβ), Q(zn|η) = Q(z|ηzn),
and so on. With conditionally conjugate distributions and our mean-field assumption, the
parameters ηzn can be optimally set as a function of parameters ηβ and ην . The next example
details this point.

Example 5 (VB approximation for zn in a GMM). The conditionally conjugate variational
distribution for zn is multinomial. Our variational approximation is truncated at Kmax so
znk = 0 for all k > Kmax; the multinomial distribution under Q has Kmax discrete categories.

We parameterize the the multinomial distribution using its natural parameterization in
exponential family form. That is, we let ηzn = (ρn1, ρn2, ..., ρn(Kmax−1)) be an unconstrained
vector in RKmax−1; in this parameterization, the multinomial expectations are

pnk := E
Q(zn|ηz)

[znk] =
exp(ρnk)

1 +
∑Kmax−1

k′=1 exp(ρnk)

CHAPTER 3. SENSITIVITY IN BNP 47

We use the exponential family parameterization because we will require the optimal varia-
tional parameters η̂ to be interior to Ωη in our sensitivity analysis (Section 3.3). In the mean

parameterization,
∑Kmax

k=1 pnk = 1, so the optimal mean parameters p̂n cannot be interior to
∆Kmax−1. On the other hand, ηzn as defined is unconstrained in RKmax−1.

Moreover, with the distributions Q(β|ηβ) and Q(ν|ην) fixed, the parameter vector ηzn
that minimizes Equation 3.3 has a closed form. Fixing Q(β|ηβ) and Q(ν|ην), the optimal
η̂zn must satisfy

Q(zn|η̂zn) ∝ exp (ρ̃nk)

where ρ̃nk := E
Q(β,ν|η)

[logP(xn|βk) + log πk] .

See Bishop (2006) and Blei et al. (2017) for details. To satisfy this optimality condition, we
set the optimal η̂zn to be

η̂zn =

(
log

ρ̃n1

ρ̃nKmax

, log
ρ̃n2

ρ̃nKmax

, . . . , log
ρ̃n(Kmax−1)

ρ̃nKmax

)
.

Thus, as long as the expectation ρ̃nk has a closed-form as a function of (ηβ, ην), the optimal
η̂zn can be also be set in closed-form as a function of (ηβ, ην). 4

For fixed (ηβ, ην), the option of setting ηz at its optimum extends beyond the GMM
example and will play a key role in computing our local sensitivity measures in practice
(Section 3.5). In greater generality, each of our example models has latent variables that
factorize in a global/local structure. In the GMM example discussed above, we call the
variables (β, ν) “global” because they are shared across all data points; the z is “local”
because each zn is unique to a single data point. In the regression model (Example 2),
the global variables are again (β, ν), but the local variables comprise of both the cluster
assignments z and additive shifts b. In these two models, notice that the dimension of global
variables scale with Kmax, while the dimension of local variables scale with the number of
observations N .

In the topic model (Example 3), we still call (β, ν) the global latent variables, even
though they scale with the number of individuals N ; they do not, however, scale with both
the number of individuals and the number of loci like z does. In the topic model, we call z
the local latent variables.

Let γ = (β, ν) be the global latent variables and let ηγ = (ηβ, ην) be their variational
parameters. Let η` be the local variational parameters. In Example 1 and Example 3,
η` = ηz, while in Example 2, η` = (ηz, ηb).

In each model we consider, for ηγ fixed, the optimal η` that minimizes the KL can be
set in closed form as a function of ηγ. The multinomial parameters for ηzn in the regression
and topic models can be set in the same way as described in Example 5. For more details
concerning the optimal shift parameters ηb in the regression model, see Section 3.9.1.

CHAPTER 3. SENSITIVITY IN BNP 48

Evaluating stick expectations

To evaluate the KL in Equation 3.3, we also need the expectations over stick-breaking
proportions,

E
Q(νk|η)

[log νk] , E
Q(νk|η)

[log(1− νk)] , and E
Q(νk|η)

[logPstick(νk)] . (3.5)

(The discussion in this subsection applies to the topic model as well, with stick-breaking
proportions indexed by nk). The first two expectations appear in the KL when decomposing
the mixture weights E [log π] into its component stick-breaking proportions (Equation 3.1).

If the prior Pstick(νk) were Beta-distributed like in the GEM construction, then the condi-
tionally conjugate distribution for Q(νk|η) would also be Beta. In this case, all the displayed
expectations in Equation 3.5 can be computed analytically as a function of the Beta param-
eters in the variational approximation.

However, we will be considering stick-breaking distributions Pstick(νk) that are outside
the family of Beta distributions. To accommodate a generic prior Pstick(νk), we approximate
the expectations in Equation 3.5 numerically. Each expectation is a univariate integral. A
particularly easy approximation method is Gauss-Hermite (GH) quadrature, which we now
describe.

To take advantage of GH quadrature, we first logit transform the stick-breaking propor-
tion νk so that the transformed variable

ν̃k := log

(
νk

1− νk

)
is not constrained to be between (0, 1) and can take values in all of R. Let s be the sigmoid
function, which provides the inverse transformation,

νk = s(ν̃k) :=
exp(ν̃k)

1 + exp(ν̃k)
.

We choose Q(ν̃k|η) to be normally distributed with location parameter ηµk and scale
parameter ησk . This then induces a logit-normal distribution on our original variable of
interest, νk. To compute expectations of a smooth function f(νk) (such as f(νk) = Pstick(νk)),
the law of the unconscious statistician states that,

E
Q(νk|η)

[f(νk)] = E
Q(ν̃k|η)

[f ◦ s (ν̃k)] .

By choosing Q(ν̃k|η) to be Gaussian, the right-hand side is a Gaussian integral, which we
approximate using GH quadrature with NGH knots, located at ξg, weighted by ωg:

E
Q(ν̃k|η)

[f ◦ s (ν̃k)] ≈
NGH∑
g=1

ωgf ◦ s (ησk ξg + ηµk)

=: Ê
Q(νk|η)

[f(νk)] . (3.6)

CHAPTER 3. SENSITIVITY IN BNP 49

Using GH quadrature to approximate the expectation is similar to the “reparameterization
trick,” only using GH points rather than standard normal draws. Conveniently, the approx-
imation Ê

Q(νk|η)
[f(νk)] is a deterministic, differentiable function of ηµk and ησk , and so also of

η. This will be useful in our sensitivity computations in the next section.

3.2.1 Posterior quantities

In a VB approach, all posterior quantities of interest can be expressed as functions of the
variational parameter η. We will use g(η) to denote such quantities. Often, g(η) takes the
form of an expectation over Q,

g(η) = E
q(ζ|η)

[f(ζ)]

for some function f(η).
In the next few examples, we define some posterior quantities that we will consider in

Section 3.6. We will evaluate the sensitivity of these quantities to the prior specification
Pstick.

Example 6 (The in-sample number of clusters). One might ask, how many clusters are
present in the data set? For example, in the iris data set, answering this question has the
interpretation of counting the number of iris species present. To estimate the number of
clusters in the context of a BNP model, define the random variable

Gτ :=
Kmax∑
k=1

I

((
N∑
n=1

znk

)
> τ

)
,

where I (·) is the indicator function. Gτ counts the number of clusters with at least τ
observations in a set of assignments z. The expected number of clusters under the variational
posterior is

gcl,τ (η) := E
Q(z|η)

[Gτ] .

When τ = 0, gcl,0 can be written as a function with respect to the assignment probabilities

gcl,0(η) =
Kmax∑
k=1

(
1−

N∏
n=1

(
1− E

Q(znk|η)
[znk]

))
.

4

Example 7 (The predictive number of clusters). In the Bayesian approach, we can formulate
the posterior predictive question, how many clusters would be present if a new data set were
collected? In the iris example, this can interpreted as predicting the number of species one

CHAPTER 3. SENSITIVITY IN BNP 50

might see if a fresh sample of iris flowers were collected. Under the BNP model, the expected
number of predictive clusters is defined as

gp.cl,τ (η) := E
Q(π|η)

[
E

P(z|π)
[Gτ]

]
.

Notice that the inner expectation conditions on π and the randomness is over z sampled
from the generative model z ∼ P(z|π). We can write out the inner expectation:

gp.cl,τ (η) = E
Q(π|η)

Kmax∑
k=1

1−
bτc∑
i=0

(
N

i

)
(1− πk)N

 ,
where we use the convention that

(
N
0

)
= 1. 4

Example 8 (Co-clustering). Finally, in a clustering problem, we are often interested in
understanding which observations group with each other. One way to visualize the clusters
is to construct the co-clustering matrix,

gcc(η) := E
Q(z|η)

[
zzT
]
,

where we view z as a N × Kmax matrix of cluster assignments. Unlike the quantities in
Examples 6 and 7, gcc is a matrix quantity, not a scalar quantity.

4

For some posterior quantities, the expectation over Q will not be a simple closed-form
function of η. For example, computing gcl,τ with a threshold τ > 0 requires forming all(
N
τ

)
combination of τ -length products E [zn1k] × . . . × E [znτk] for each k. In such cases,

we resorted to Monte-Carlo approximations of the expectation. Specifically, we used the
“reparameterization trick” to sample from the variational distribution. In the case of gcl,τ ,
we constructed an η-dependent transformation f(·, η) that satisfies

u
iid∼ Uniform(0, 1)NKmax =⇒ f(u, η)

d
= z ∼ Q(·|η).

To form a Monte Carlo estimate of gcl,τ , we sampled u1, . . . , um uniformly, and then averaged
the expression inside the expectation evaluated at points f(u1, η), . . . , f(um, η). The uniform
draws u1, . . . , um can be fixed beforehand. This is important for two reasons. First, we will
be evaluating the same g at different parameter vectors η; conditional on the fixed m uniform
draws, g will be a deterministic function of η, and we can compare how g changes without
stochasticity. Secondly, in the construction of our “influence function” (Section 3.4), it will
be useful to evaluate the gradient of g with respect to η; conditional on the random draws, g
(or more precisely, our Monte Carlo approximation of g), will be differentiable with respect
to η.

CHAPTER 3. SENSITIVITY IN BNP 51

3.3 Local sensitivity

We now turn to the optimization problem Equation 3.3 where the priors Pstick(νk) which
enter the term logP(ζ) depend on a real-valued parameter, t ∈ Ωt ⊆ R, writing Pstick(νk|t).
Starting now, we will state general results in terms of a generic parameter θ, specializing to
the BNP problem in examples and in the experiments below.

Definition 1. Let µ denote a sigma finite measure, and let P(θ|t) denote a class of prob-
ability densities relative µ. Let P(θ|t) be defined for t in an open set Bt ⊆ R containing 0.
Assume that the variational densities Q(θ|η) are also defined relative to µ.

Let Q̃ and P̃ refer to potentially unnormalized (but normalizable) versions of the respec-
tively corresponding Q and P , so that,

Q(θ|η) :=
Q̃(θ|η)∫
Q̃(θ′|η)µ(dθ′)

and P(θ|t) :=
P̃(θ|t)∫
P̃(θ′|t)µ(dθ′)

.

�

The prior depends on t; in turn, the posterior P(θ|x, t) depends on t; in turn, the KL
divergance depends on t; in turn, the optimal variational parameters depend on t. Define
the shorthand notation

KL (η, t) := KL (Q(θ|η)||P(x|ζ, t)) and η̂(t) := argmin
ζ∈Ωη

KL (η, t) , (3.7)

where we write η̂(t) to emphasize the dependence of the optimum on t. In Definition 1, we
take t = 0 at the “original” problem, Equation 3.3, without loss of generality. We will thus
continue to use η̂ with no argument to refer to η̂(0).

Example 9. When drawing from the classical GEM(α) distribution, we take µ to be the
Lebesgue measure on [0, 1] and model

Pstick(νk|α) = Beta (νk|1, α)⇒
logPstick(νk|α) = (α− 1) log(1− νk) + C. (C does not depend on νk)

Fix some “original” α0. In this case, we represent deviations from the choice α0 by identifying
t with α− α0:

logPstick(νk|t) = (t+ α0 − 1) log(1− νk) + C.

The prior on the full ν vector is given by

logPstick(ν|t) =
Kmax−1∑
k=1

(t+ α0 − 1) log(1− νk) + C.

4

CHAPTER 3. SENSITIVITY IN BNP 52

Assuming for the moment that t 7→ η̂(t) is continuously differentiable (we will consider
its differentiability in detail below), and that we have already computed the solution η̂ to the
“original” problem Equation 3.3 with t = 0, then we can form a Taylor series approximation
to η̂(t). Specifically, we define

η̂lin(t) := η̂ +
dη̂(t)

dt

∣∣∣∣
t=0

t. (3.8)

Evaluating η̂(t) requires solving a new optimization problem, but, given dη̂(t)/dt|0, eval-
uating η̂lin(t) involves only multiplication and addition. When |t| is small, by continuous
differentiability of η̂(t), we might hope that η̂(t) ≈ η̂lin(t), and so we can use η̂lin(t) to
quickly approximate a time-consuming optimization problem.

Futhermore, or functions of interest g(η) which are themselves differentiable, we can use
the chain rule to compute

dg(η̂(t))

dt

∣∣∣∣
t=0

∂g(η)

∂ηT

∣∣∣∣
η̂

dη̂(t)

dt

∣∣∣∣
t=0

(3.9)

glin(t) := g(η̂) +
dg(η̂(t))

dt

∣∣∣∣
t=0

t. (3.10)

For non-differentiable functions of η, we can still form the approximation

gη.lin(t) := g(η̂lin(t)).

The advantage of glin(t) relative to gη.lin(t) is that for the former we can compute influence
functions and worst-case perturbations, as we discuss below. Converse, gη.lin(t) may be
expected to provide a better approximation in some cases since it retains non-linearities in
the map η 7→ g(η), linearizing only the computationally intensive map t 7→ η̂(t).

When, then, is η̂(t) continuously differentiable? We will now state some sufficient con-
ditions under which we can apply the implicit function theorem (e.g., Krantz and Parks
(2012)) to prove the continuous differentiability of η̂(t).

The first key assumption, Assumption 1, states sufficient conditions for which we can
apply the dominated convergence theorem to variational expectations of some generic func-
tion ψ(θ, t), allowing us to translate continuity of the variational and model densitites into
continuity of the variational objective. The details can be found in Lemmas 3 and 4 of
Section 3.9.1. In case Assumption 1 seems forbidding, observe that, in lieu of Assumption 1
we might equivalently have said that we can exchange limits and variational expectations
whenever needed. Assumption 1 is simply a precise catalogue of what is needed.

Assumption 1. Assume that the map η 7→ log Q̃(θ|η) is twice continuously differentiable.
Let ψ(θ, t) be a scalar-valued µ-measurable function of θ and t. Assume that the map t 7→
ψ(θ, t) is continuously differentiable.

CHAPTER 3. SENSITIVITY IN BNP 53

Define the following shorthand notation:

∇η log Q̃ (θ|η) :=
∂ log Q̃(θ|η)

∂η

∣∣∣∣∣
η

∇2
η log Q̃ (θ|η) :=

∂2 log Q̃(θ|η)

∂η∂ηT

∣∣∣∣∣
η

∇tψ (θ, t) :=
∂ψ(θ, t)

∂t

∣∣∣∣
t

.

For a given t0 and η0, assume there exists some neighborhood of t0, Bt, some neighborhood
of η0, Bη, and a µ-integrable Mψ(θ) with

∫
Mψ(θ)µ(dθ) <∞ such that the following bounds

hold for all η, t ∈ Bη × Bt:

1. Q̃(θ|η)ψ(θ, t) ≤Mψ(θ).

2. Q̃(θ|η)
∥∥∥∇η log Q̃ (θ|η)

∥∥∥
2
ψ(θ, t) ≤Mψ(θ).

3. Q̃(θ|η)
∥∥∥∇2

η log Q̃ (θ|η)
∥∥∥

2
ψ(θ, t) ≤Mψ(θ).

4. Q̃(θ|η)
∥∥∥∇η log Q̃ (θ|η)

∥∥∥
2
∇tψ (θ, t) ≤Mψ(θ).

5. Q̃(θ|η)
∥∥∥∇η log Q̃ (θ|η)

∥∥∥2

2
ψ(θ, t) ≤Mψ(θ).

Lemma 1. Under Assumption 1, we can exchange the order of integration and differentiation
in

∂ E
Q(θ|η)

[ψ(θ, t)]

∂η

∣∣∣∣∣∣
η̂,t=0

,

∂2 E
Q(θ|η)

[ψ(θ, t)]

∂η∂η

∣∣∣∣∣∣
η̂,t=0

, and

∂2 E
Q(θ|η)

[ψ(θ, t)]

∂η∂t

∣∣∣∣∣∣
η̂,t=0

.

(See also Lemmas 3 and 4 of Section 3.9.1 for a more detailed statement.)

Next, in Assumption 2, we first require some regularity conditions on the KL divergence
and its optimum.

Assumption 2. Let the following conditions on the variational approximation hold.

1. The map η 7→ KL (η, 0) is twice continuously differentiable at η̂.

2. The optimal η̂ is interior to Ωη.

3. The Hessian matrix ∂2KL(η,0)
∂η∂ηT

∣∣∣
η̂

is positive definite.

CHAPTER 3. SENSITIVITY IN BNP 54

4. The unnormalized variational densities Q̃(θ|η) satisfy Assumption 1 with ψ(θ, t) ≡ 1
(no θ dependence).

Observe that Assumption 1, applied with logP(x|θ), is one way to prove Assumption 2
(Item 1). Since our primary focus is on the prior logP(θ|t), we prefer to simply state
Assumption 2 (Item 1) directly and reserve our detailed attention for the prior logP(θ|t).

Finally, in Assumption 3 we draw the needed connection between the class of prior
perturbations and the variational approximation.

Assumption 3. Under Definition 1, assume that the variational densities Q(θ|η) satisfy
Assumption 1 with both ψ(θ, t) ≡ 1 (no θ dependence) and with and ψ(θ, t) = logP(θ|t) −
logP(θ|t = 0).

Theorem 1. Under the conditions of Definition 1, let Assumption 2 hold at η0 = η̂. Further,
let Assumption 1 hold with

ψ(θ, t) = logP(θ|t)− logP(θ|t = 0)

at t0 = 0. Define1

∇η log Q̃ (θ|η̂) := ∇η log Q̃ (θ|η̂)− E
Q(θ|η̂)

[
∇η log Q̃ (θ|η̂)

]
,

Ĵ := E
Q(θ|η̂)

[
∇η log Q̃ (θ|η̂)

∂ logP(θ|t)
∂t

∣∣∣∣
t=0

]
and

Ĥ :=
∂2KL (η, 0)

∂η∂ηT

∣∣∣∣
η̂

.

Then the map t 7→ η̂(t) is continuously differentiable at t = 0 with derivative

dη̂(t)

dt

∣∣∣∣
0

= − Ĥ−1Ĵ (3.11)

(For a proof, see Section 3.9.1.)

We conclude this section by showing that Theorem 1 applies to the setting of BNP
stick-breaking.

Lemma 2. In the setting of Assumption 1, let θ ∈ R, let µ be the Lebesgue measure, and let
Q(θ|η) = N (θ|η) be a normal distribution parameterized by its natural exponential family
parameters.

1Note that if Q̃(θ|η) is already normalized (Q̃ = Q), then E
Q(θ|η)

[
∇η log Q̃ (θ|η)

]
= 0 for all η and

∇η log Q̃ (θ|η̂) = ∇η log Q̃ (θ|η̂). Since it can sometimes be more convenient to work with unnormalized
distributions, we keep the notation general.

CHAPTER 3. SENSITIVITY IN BNP 55

Let σ(η) denote the standard deviation of the normal distribution. Fix η0 such that
σ(η0) > 0, and let Bη be an open set containing η0 such a that σmax := supη∈Bη σ(η) <∞.

If there exists a neighborhood Bt of t0 such that |ψ(θ, t)| and |∇tψ (θ, t)| are uniformly
bounded by some multiple of exp(− |θ|) for all t ∈ Bt, then Q and ψ satisfy Assumption 1.

Proof. By properties of the exponential family,

∇η log Q̃ (θ, η) = (θ, θ2)T and ∇2
η log Q̃ (θ, η) = 02×2 ⇒∥∥∥∇η log Q̃ (θ, η)

∥∥∥2

2
= θ2 + θ4 and

∥∥∥∇2
η log Q̃ (θ, η)

∥∥∥
2

= 0.

Let Bη denote the closure of Bη, and let

η∗ := argmax
η∈Bη

E
Q(θ|η)

[exp(|θ|)] .

By standard properties of the normal and the boundedness of σ(η), the right hand side of
the preceding display is finite. Then∫

Q(θ|η)ψ(θ, t)µ(dθ) ≤
(

sup
θ

sup
t∈Bt
|ψ(θ, t)| exp(− |θ|)

)∫
Q(θ|η) exp(θ)µ(dθ)

≤ C E
Q(θ|η∗)

[exp(|θ|)] . (C does not depend on η, t)

Therefore, for Assumption 1 (Item 1), we can take M(θ) ∝ Q(θ|η∗) exp(|θ|). The other
terms follow similarly, since each multiplier of Q(θ|η) is dominated by exp(− |θ|). The final
M(θ) simply takes the largest of the five constants.

Example 10. To analyze Example 9, we take θ in Lemma 2 be the unconstrained stick-
breaking proportion ν̃k, which recall from Section 3.2 was normally distributed under Q. Let
µ be the Lebesgue measure on R.

In Example 9, the parameterization of the stick-breaking distribution was given by

logPstick(νk|t)− logPstick(νk|t = 0) = t log(1− νk).

Expressing the perturbation in terms of ν̃k,

logPstick(ν̃k|t)− logPstick(ν̃k|t = 0) = t log

(
1− exp(ν̃k)

1 + exp(ν̃k)

)
= − t log (1 + exp(ν̃k)) .

So, by Lemma 2, Assumption 3 is satisfied with the VB approximation given in Section 3.2
and the parametric perturbation given in Example 9. 4

Corollary 1. For the variational approximation of Section 3.2 and perturbation given in
Example 9, α 7→ η̂(α) is continuously differentiable.

CHAPTER 3. SENSITIVITY IN BNP 56

Proof. We have already shown in Example 10 that Assumption 3 is satisfied. Given that the
variational approximations to P(z|x, β, ν) and P(β|x, ν, z) are conjugate exponential family
approximations, η 7→ KL (η, 0) is continuous. It remains only to numerically find η̂ and
verify Assumption 2 (Item 3), i.e. that the Hessian is positive definite at the optimum.

We conclude this section with a brief remark about computing the expectation Ĵ in our
BNP sensitivity analysis. We are interested in sensitivity to the stick-breaking distribution,
so only the prior terms on stick-breaking proportions ν = (ν1, ..., νKmax−1) depends on t. Be-
cause the elements of ν fully factorize under both the prior and the variational distributions,
Ĵ decomposes as

Ĵ =
Kmax−1∑
k=1

E
Q(νk|η)

[
∇η log Q̃ (νk|η̂)

logPstick(νk|t)
∂t

∣∣∣∣
t=0

]

=
Kmax−1∑
k=1

∇η E
Q(νk|η)

[
logPstick(νk|t)

∂t

∣∣∣∣
t=0

]∣∣∣∣
η=η̂(0)

, (3.12)

where we assumed that Q(θ|η) is normalized, so ∇η log Q̃ (θ|η̂) = ∇η log Q̃ (θ|η̂), and that
the assumptions of Theorem 1 hold, so we can freely exchange derivatives with expectations.

We approximate the expectation using GH quadrature (Equation 3.6), with f(νk) =
logPstick(νk|t)

∂t

∣∣∣
t=0

. In all the functional forms for t 7→ Pstick(νk|t) considered below, f(νk) can

be provided in either closed-form or computed with automatic differentiation. The resulting
GH approximation is a deterministic function of η, and thus the gradient in Equation 3.12
can be computed with another application of automatic differentiation. Note that Ĵ is sparse
in Equation 3.12: it is zero for all entries of η other than those that parameterize the sticks.

3.4 Function-valued prior perturbations

In Corollary 1 of Section 3.3, we showed that we can form a Taylor series approximation
to the dependence of a variational optimum on the parameter α in a Beta prior. However,
there is typically no a priori reason to believe that the stick breaking prior lies within the
parametric Beta family.

Let us fix a base prior density P0(θ) (e.g. a Beta distribution) at which we have computed
a VB approximation, and suppose we wish to ask what the variational optimum would have
been had we used some alternative prior density, P1(θ). Let us write η̂(P0) and η̂(P1) for
these two approximations, respectively. To approximately answer this question using the
local sensitivity approach of Section 3.3, we must somehow define a continuous path from
P0(θ) to P1(θ) parameterized, say, by t ∈ [0, 1].

To construct this path, we consider multplicatve perturbations of the form

P(θ|t) ∝ P0(θ) exp(tφ(θ)) with φ(θ) = logP1(θ)− logP0(θ) (3.13)

CHAPTER 3. SENSITIVITY IN BNP 57

Then t 7→ P(θ|t) parameterizes a path from P0 to P1 for t ∈ [0, 1].
When Theorem 1 can be applied, it turns out that the derivative takes the form of an

integral against φ. The integrand is known as the “influence function,” and characterizes the
sensitivity of a function of interest to nonparametric prior perturbations for all φ to which
Theorem 1 can be applied.

Corollary 2. Let Assumption 2 hold at η0 = η̂. Fix a multiplicative perturbation φ and let
g(η) : Ωη 7→ R denote a continuously differentiable real-valued function of interest. Define
the influence function

Ψp(θ) := − dg(η)

dηT

∣∣∣∣
η̂

Ĥ−1∇η log Q̃ (θ|η̂) Q(θ|η̂). (3.14)

Let Assumption 1 be satisfied at t0 = 0 with ψ(θ, t) = logP(θ|t) as given in Equation 3.13.
Then the map t 7→ g(η̂(t)) is continuously differentiable at t = 0 with derivative

dg(η̂(tφ))

dt

∣∣∣∣
0

=

∫
Ψ(θ)φ(θ)µ(dθ). (3.15)

Proof. This follows immediately from Theorem 1, noting that

logP(θ|t)− logP0(θ) = tφ(θ) + C,

where C is independent of t; thus,

∂ logP(θ|t)
∂t

∣∣∣∣
t=0

= φ(θ).

Substituting into Equation 3.11 gives the desired form.

Corollary 2 suggests an intriguing result if it is taken to hold for all φ in some ball of
radius δ around the null perturbation φ(θ) := 0. Consider for example, the L∞ ball of size
δ,

B∞(δ) := {φ : ‖φ‖∞ ≤ δ},
where ‖φ‖ := sup

θ
|φ(θ)|.

Then observe that, by Hölder’s inequality (Dudley, 2018, Theorem 5.1.2 and subsequent
disscussion),

sup
φ∈B∞(δ)

dg(η̂(tφ))

dt

∣∣∣∣
0

= sup
φ∈B∞(δ)

∫
Ψ(θ)φ(θ)λ(dθ)

= δ

∫
|Ψ(θ)|λ(dθ)

CHAPTER 3. SENSITIVITY IN BNP 58

with equality at the “worst-case” perturbation

φ∗(θ) = δ × sign(Ψ(θ)).

For the most negative “worst-case”, simply apply the preceding result to −g. These
“worst-case” perturbations are the variational Bayes analogues of the corresponding “worst-
case” for exact Bayesian posteriors in Gustafson (1996).

The use of the L∞ ball is motivated by the fact that the finiteness of φ in L∞-norm implies
that the perturbed prior Equation 3.13 is normalizable (Gustafson, 1996). More fundamen-
tally, Giordano (2019), Chapter 7.2 argues that among all possible nonlinear perturbations
considered by Gustafson (1996), the mapping from the space of perturbations φ to VB pa-
rameters η̂ is Fréchet differentiable only when considering multiplicative perturbations and
the L∞ norm. Fréchet differentiability is important because in Section 3.6, we will use the
influence function to search for potentially influential perturbations, and Fréchet differentia-
bility ensures that for all φ ∈ B∞(δ), the local approximation is uniformly good. This is a
minimal requirement that allows us to safely search the space of functional perturbations.

3.5 Computing the sensitivity

Before computing any sensitivity measures, we first need to find η̂(0) by optimizing the KL
objective (Equation 3.3). In the optimization, as well as the Hessian inversion discussed be-
low, we take advantage of the global/local structure in our models (Section 3.2). Recall that
we partitioned the variational parameter vector η into global variational parameters ηγ and
local variational parameters η`. The global variational parameters govern the distribution
on latent variables shared across multiple data points, such as stick-breaking proportions ν
and component variables β; the local variational parameters govern the collection of latent
variables unique to each data point, such as the cluster assignments z.

In Section 3.2, we noted that the optimal local variational parameters η̂` can be written
as a closed-form function of the global variational parameters ηγ. Let η̂`(ηγ; t) denote this
mapping; that is,

η̂`(ηγ; t) := argmin
η`

KL ((ηγ, η`), t) .

With this minimizer available in closed-form, we can define

KLglob(ηγ, t) := KL
(

(ηγ, η̂`(ηγ; t)), t
)
, (3.16)

which returns the KL as a function of only global parameters by implicitly setting local
parameters at their optimum.

Rather than optimizing the KL over all variational parameters, both global and local, we
optimize KLglob, which is a function of global parameters only. Minimizing KLglob(ηγ) keeps
the dimension of the optimization parameter independent of the number of data points.

CHAPTER 3. SENSITIVITY IN BNP 59

After the optimization terminates at an optimal η̂γ, the optimal local parameters η̂` can be
set in closed form to produce the entire vector of optimal variational parameters η̂ = (η̂γ, η̂`).
The construction of KLglob will play a role in computing our sensitivity measures in practice,
as we detail below.

The Hessian

Typically, it is the computation and inversion of the Hessian matrix that is the most com-
putationally intensive part of Equation 3.11, especially when the dimension of η, is large.
The dimension of ηγ scales with Kmax, while the dimension of η` scales with Kmax×N . (the
scaling of the topic model is slightly different; but the point remains that the dimension of
η` grows faster than the dimension of ηγ). Depending on the size of η, instantiating the full
Hessian in memory may be impossible.

We again take advantage of the fact that the latent variables factorize into a set of
global and local latent variables. For generic latent variables a and b, let Hab denote
∂2KL (η, t) /∂ηaη

T
b

∣∣
η̂(0),t=0

, the Hessian with respect to the variational parameters govern-

ing a and b. We decompose the Hessian matrix Ĥ into four blocks:

Ĥ =
∂2KL (η, t)

∂η∂ηT

∣∣∣∣
η̂(0),t=0

=

(
Hγγ Hγ`

H`γ H``

)
.

Next, let Ĵγ be the components of Ĵ corresponding to the variational parameters ηγ—

that is, Ĵγ is given by replacing the operator ∇η with ∇ηγ in Equation 3.12. The analogous

quantity for the local parameters, Ĵ`, is zero, since no local variables enter the expectation
in Equation 3.12. We can thus write

Ĵ =

(
Ĵγ
0

)
.

In this notation,

dη̂(t)

dt

∣∣∣∣
t=0

= −
(
Hγγ Hγ`

H`γ H``

)−1(
Ĵγ
0

)
,

and an application of the Schur complement gives

dη̂(t)

dt

∣∣∣∣
t=0

= −
(

Iγγ
H−1
`` H`γ

)(
Hγγ −Hγ`H

−1
`` H`γ

)−1
Ĵγ,

where Iγγ is the identity matrix with the same dimension as ηγ.
Specifically, observe that the sensitivity of the global parameters is given by

dη̂γ(t)

dt

∣∣∣∣
t=0

= −Ĥ−1
γ Ĵγ where Ĥγ :=

(
Hγγ −Hγ`H

−1
`` H`γ

)
. (3.17)

CHAPTER 3. SENSITIVITY IN BNP 60

Each term of Ĥγ can be easily computed using automatic differentiation. In fact, the H``

is block-diagonal and has a closed form inverse.
Alternatively, using the optimality of η̂z(ηγ; t) and applying the chain rule, one can check

that

Ĥγ =
∂2

∂ηγ∂ηTγ
KLglob(η̂γ, 0) (3.18)

Equation 3.18 is how we calculate Ĥγ in practice: we implement KLglob, which returns
the KL as a function of only global parameters by implicitly setting local parameters at
their optimum; we then use automatic differentiation to compute the Hessian of KLglob with
respect to the global parameters ηγ.

Crucially, the size of Ĥγ scales with (Kmax)2, while the full Hessian scales with both
(Kmax)2 and the squared number of data points N2 (in the topic model, the Hessian scale
as (NKmax)2 and (NKmaxL)2)). Hence, Ĥγ is more memory efficient to store and faster to
invert than the full Hessian of all the variational parameters.

Now that we can compute the sensitivity of the global parameters in Equation 3.17, we
produce its linear approximation:

η̂lin
γ (t) := η̂γ +

dη̂γ(t)

dt

∣∣∣∣
t=0

t. (3.19)

Finally, given a posterior quantity g, we again take advantage of the fact that the optimal
local parameters can be found in closed form given global parameters. In the same way that
KLglob implicitly sets the local parameters at their optimum and is a function of only global
parameters and the prior parameter t, we can construct an analogous mapping for g,

(t, ηγ) 7→ g
((
ηγ, η̂z(ηγ, t))

)
. (3.20)

This mapping can be used for any posterior quantity. Therefore, linearizing the global
parameters using Equations 3.17 and 3.19 is sufficient; we do not need to invert the full
Hessian and linearize the entire set of variational parameters, global and local. As a short-
hand, we will use g(η̂lin

γ (t)) to denote the posterior computed under our linearized global
parameters at prior parameter t using the mapping Equation 3.20.

3.6 Results

We evaluate the prior sensitivity in BNP models applied to three distinct data analysis
examples. We first fit a Gaussian mixture model (Example 1) to the canonical iris data set.
Secondly, we cluster time-course gene expression data using our regression model (Example 2)
and study the resulting co-clustering matrix. Finally, we fit our topic model (Example 3)
on a data set of sampled genotypes in an endangered thrush species; from our model fit,

CHAPTER 3. SENSITIVITY IN BNP 61

we estimate the number of latent populations in this bird species and reconstruct ancestral
migration patterns.

In each of our models, we consider both the effects of varying the parameter α in the
Beta (νk|1, α) stick distribution, as well as the effects of changing the functional form the
Beta prior itself. For a given prior perturbation, we validate the performace of the linear
approximation against the more expensive process of re-fitting the model.

In each data example, the initial variational parameters were fit to a model with Beta-
distributed sticks at some chosen parameter α = α0. We optimized the initial variational
parameters with the BFGS algorithm run with a loose convergence tolerance followed by
trust-region Newton conjugate gradient (trust-ncg) to find a high-quality optimum. Unless
otherwise noted, all subsequent refits after a prior pertrubation were found using trust-ncg
with the variational parameters at α = α0 as an initialization.

In our results below, we use the approximation defined by Equations 3.17 and 3.19,
where only the global variational parameters are linearized; the local parameters are set
implicitly as part of the computation of the posterior statistic g. We solved the linear
system in Equation 3.17 using the conjugate gradient algorithm, which requires only Hessian-
vector products; this avoids instatiating the full Hessian matrix in memory. If memory were
not limited, we could have computed the full Hessian and either factorized it (e.g. with
a Cholesky decomposition) or found its inverse directly. Then, the Hessian inverse (or its
Cholesky decomposition) can be re-used for different perturbations (since different choices
of prior perturbation require solving different Ĵ). By using conjugate gradient, we need to
re-solve the linear system (Equation 3.17) for each choice of prior perturbation. On our
data sets, the conjugate gradient algorithm was at least an order of magnitude faster than
refitting, and did not pose a meaningful bottleneck to exploring different perturbations.

The conjugate gradient algorithm along with the optimizers BFGS and trust-ncg are
implemented in SciPy (Virtanen et al., 2020). All derivatives were computed using the
Python automatic differentiation libarary Jax (Bradbury et al., 2018).

3.6.1 Gaussian mixture modeling on iris data

We demonstrate the local sensitivity computations on a Gaussian mixture model (GMM) of
Fisher’s iris data set. The data set is a sample of 150 iris flowers with four measurements
taken per flower: sepal length, sepal width, petal length, and petal width. The GMM was
detailed in Example 1; here, the data dimension d = 4. In the variational approximation,
we set the truncation parameter Kmax = 15. Figure 3.1 shows the inferred clusters at α = 6.
The data set contains three iris species, and the BNP model correspondingly identifies three
dominant clusters.

Parametric sensitivity

We evaluate the sensitivity of the posterior number of clusters to the prior parameter α. The
expected in-sample number of clusters gcl,τ and the expected predictive number of clusters

CHAPTER 3. SENSITIVITY IN BNP 62

Figure 3.1: The iris data in principal component space and GMM fit at α = 6. Colors denote
inferred memberships and ellipses represent estimated covariances.

gp.cl,τ were defined in Examples 6 and 7, respectively; we do not use thresholding in computing
the number of clusters (i.e. we set τ = 0), so we simply write gcl and gp.cl for the in-sample
and predictive quantities, respectively. We formed the linear approximation at the initial
α0 = 6 fit. Without further optimization, we use the linear approximation (Equations 3.17
and 3.19) to quickly evaluate η̂lin

γ (α) for all α = 1, . . . , 16, and produce posterior quantities
g(η̂lin

γ (α)).
The in-sample quantity appears less sensitive to changes in the α parameter than the

predictive quantity (Figure 3.2). As α varies from α = 1, . . . , 16, the quantity gcl(η̂
lin
γ (α))

varies only from 3.0 to 3.4 (recall that the true number of iris species is three). On the other
hand, over the same range of α, the predictive quantity gp.cl(η̂

lin
γ (α)) varies from 3.6 to 8.1.

Subsequent refits at α 6= α0 confirm the sensitivity conclusions of our linearized vari-
ational parameters. Over the range α = 1, . . . , 16, the values g(η̂lin

γ (α)) closely mimic the
values g(η̂(α)) found by refitting the variational parameters at each α (Figure 3.2). Impor-
tantly, the linear approximation is an order of magnitude faster than refitting. Forming the
linear approximation at α = α0, required 0.02 seconds. After forming the linear approxima-
tion, computing η̂lin

γ (α) for all α = 1, . . . , 16 took another 0.02 seconds. On the other hand,
to refit η̂(α) for the same range of α’s took a total of 9 seconds, with a median refit time of
0.6 seconds.

Functional perturbations and the influence function

We demonstrate the ability of the influence function to provide guidance on the anticipated
effect of potential perturbations on the expected number of in-sample clusters. Recall from

CHAPTER 3. SENSITIVITY IN BNP 63

Figure 3.2: The expected number of clusters as α varies in the the GMM fit of the iris data.
On the left is in-sample quantity gcl. On the right is the the predictive quantity gp.cl. We
formed the linear approximation at α = 6. In red, the expected number of clusters computed
under the linearly approximated variational parameters (red). In blue, the expected number
of clusters obtained by refitting the model at each α.

Equation 3.15 that the local sensitivity can be represented as an inner product between the
influence function Ψ and a multiplicative perturbation φ; the inner product takes the form,

dg(η̂(tφ))

dt

∣∣∣∣
0

=

∫
Ψp(ν̃k)φ(ν̃k)µ(dν̃k), (3.21)

where we expressed both the influence function and the perturbation in logit-stick space,
ν̃k := log(νk)− log(1− νk).

In order to illustrate this inner product, we consider functional perturbations φµ which are
Gaussian bumps, with each perturbation centered at a different µ on the real line (Figure 3.3
left column). The perturbed priors are p(ν̃k|t) = p0(ν̃k) exp(tφµ(ν̃k)). The middle column
of Figure 3.3 displays the initial density p0(νk) = Beta (νk|1, α0) along with the perturbed
densities p(νk|t = 1) for different choices of µ, in the original (0, 1) constrained space.

Each perturbation φµ with a different choice of µ produces distinct changes in the ex-
pected number of in-sample clusters gcl. The right column of Figure 3.3 plots the differences
∆gcl(η(t)) := gcl(η(t))− gcl(η̂(0)) for t ∈ [0, 1]. Depending on the perturbation, ∆gcl can be
positive, negative, or nearly zero. In each case, the approximation ∆gcl(η̂

lin
γ (t)) is able to

mirror the qualitative behavior of ∆gcl(η̂(t)) observed by refitting.
While each perturbation produces distinct changes in gcl, it is unclear how to anticipate

the effect of a perturbation by comparing the original and perturbed densities alone. On
the other hand, the sign and magnitude of the change in gcl after prior perturbation are

CHAPTER 3. SENSITIVITY IN BNP 64

well-explained by its influence function, plotted in purple in the left column of Figure 3.3,
and the representation of local sensitivity as an inner product (Equation 3.21). When φµ is
centered at a location where the influence function is negative, the effect of the perturbation
on gcl is negative (Figure 3.3 top row); conversely, when φµ is centered at a location where
the influence function is positive, its effect on gcl is positive (bottom row); finally, when φµ
is centered at a location where the influence transitions from negative to positive, its effect
on gcl is roughly zero (middle row). In the last case, φµ placed approximately equal weight
on the negative and positive portions of the prior-weighted influence function, resulting
in an approximately zero inner-product. In the other data applications below, the influence
function will guide our choice of functional perturbation and explain why some perturbations
result in greater sensitivity than others.

Finally, we consider the worst-case multiplicative perturbation with unit L∞ norm. Recall
that the worst-case perturbation with unit L∞ norm is a step-function taking on values ±1
corresponding to the sign of the influence function (Figure 3.4 left). The middle column
of Figure 3.4 shows the prior density perturbed by the worst-case perturbation; the right
column shows the effect on gcl. This worst-case perturbation has a much larger effect on gcl

compared to the other unit L∞ norm perturbations in Figure 3.3. However, even with the
worst-case perturbation, the change in gcl is still small. We conclude that on the iris data
set, gcl appears to be a quantity insensitive to the prior under a Gaussian mixture model.

Computing the linearized variational parameters η̂lin
γ (t) at t = 1, including the necessary

Hessian solve, for a given functional perturbation required 0.02 seconds. A refit at t = 1
requires about one second. While a second for a refit is not exceedingly large, the order-of-
magnitude difference in timing between the linear approximation and refit will continue to
hold for larger data analysis problems below. In general, the speed of the linear approxi-
mation allows us to quickly explore many different potential functional perturbations when
refitting for each perturbation becomes prohibitive.

3.6.2 Regression mixture modeling

We consider the problem of clustering time-course gene expression data. While thousands of
genes might be simultaneously measured in a given genomics experiment, many genes may
exhibit similar expression patterns. Clustering gene expressions is one way to reduce the
dimensionality of a complex data set and to facilitate scientific interpretations of intricate
biological processes. Often, such dimensionality reduction is used for exploratory analysis
and is a first step before further downstream investigation. It is important, therefore, to
ascertain the stability of the discovered clusters.

We study a publicly available data set of mice gene expression (Shoemaker et al., 2015).
Mice were infected with influenza virus, and expression levels of a set of genes were assessed
at 14 time points after infection. Three measurements were taken at each time point (called
biological replicates), for a total of M = 42 measurements per gene.

Our analysis focuses on mice treated with the “A/California/04/2009” strain. We nor-
malize the data as described in Shoemaker et al. (2015) and then apply the differential

CHAPTER 3. SENSITIVITY IN BNP 65

Figure 3.3: Sensitivity of the expected number of in-sample clusters in the iris data set to
three multiplicative perturbations with unit L∞-norm. (Left) the multiplicative perturbation
φ in grey. The influence function Ψ in purple, scaled to also have unit L∞-norm. (Middle)
the original prior density P0 and the perturbed prior density Pt = P0 × exp(tφ) at t = 1.
(Right) the effect of the perturbation on the change in expected number of in-sample clusters
as t→ 1.

analysis tool EDGE (Storey et al., 2005) to rank the genes from most to least significantly
differentially expressed. We fit the regression model described in Example 2 and run our
analysis below on the top N = 1000 genes.

Figure 3.5 shows an example time-course for a single gene. Notice that the time points
are unevenly spaced, with more frequent observations at the beginning. Following Luan and
Li (2003) we apply cubic B-splines to smooth the time course expression data. Specifically,

CHAPTER 3. SENSITIVITY IN BNP 66

Figure 3.4: Sensitivity of the expected number of in-sample clusters in the iris data set to
the worst-case multiplicative perturbation with unit L∞-norm.

we model the first 11 time points using cubic B-splines with 7 degrees of freedom. For
the last three time points, T = 72, 120, 168 hours, we use indicator functions. That is, if
Ã is the design matrix where each column is a B-spline basis vector evaluated at the M
measurement times, we append to Ã three additional columns: in these columns, entries are
1 if T = 72, 120, or 168, receptively, and 0 otherwise. The resulting matrix is the full design
matrix A. We use indicators for the last three time points for numerical stability; without
the indicator columns, the matrix ÃT Ã is nearly singular because the later time points are
more spread out.

We fitted the initial approximate posterior at α0 = 6. Figure 3.6 shows the inferred
smoothers AEQ[βk] for selected clusters. Figure 3.7 displays the inferred co-clustering matrix
gcc(η), whose (i, j)-th entry is the posterior probability that gene i belongs to the same cluster
as gene j (Example 8).

Below, we evaluate the sensitivity of the inferred co-clustering matrix to both parametric
and functional perturbations to the stick distribution.

Parametric sensitivity

We first evaluate the sensitivity of the co-clustering matrix gcc to the choice of α in the
Beta (νk|1, α) stick-breaking distribution. Let g0

cc := gcc(η̂(α0)) be the co-clustering matrix
inferred at α0, and let ∆gcc(η) := gcc(η) − g0

cc. We formed the linear approximation at α0

and computed ∆gcc(η̂
lin
γ (α)), the the change in co-clustering under the linearized variational

parameters, at α = 1 and α = 11. For either α, the change in co-clustering matrix is minus-
cule (Figure 3.8): the largest entry of either matrix ∆gcc(η̂

lin
γ (1)) or ∆gcc(η̂

lin
γ (11)) is of order

10−2. Refitting the approximate posterior at α = 1 and α = 11 and computing ∆gcc(η̂(α))

CHAPTER 3. SENSITIVITY IN BNP 67

Figure 3.5: (Left) An example gene and its expression measured at 14 unique time points
with three biological replicates at each time point. (Right) The cubic B-spline basis with
7 degrees of freedom, along with three indicator functions for the last three time points,
T = 72, 120, 168.

confirms the insensitivity predicted by the linearized variational global parameters. Beyond
capturing insensitivity, the linearized parameters were also able to approximate the sign and
size of the changes in the individual entries of the coclustering matrix (these changes albeit
small).

Functional sensitivity

Insensitivity to α does not necessarily rule out insensitivity to other prior perturbations,
however. As demonstrated in Section 3.6.1, the influence function can provide guidance
on which functional perturbations may result in greater sensitivity for a chosen posterior
quantity. However, the co-clustering matrix as a posterior quantity is N2-dimensional and
thus does not lend itself to an easily interpretable influence function. We therefore summarize
the co-clustering matrix into a scalar quantity: we use the sum of the eigenvalues of the
symmetrically normalized graph Laplacian. This quantity has close connection with the
number of distinct components in a graph (von Luxburg, 2007). Let this posterior quantity
be denoted gev, given by

gev(η) = Tr
(
I −D(η)−1/2gcc(η)D(η)−1/2

)
,

where D(η)−1/2 is the diagonal matrix with entries di =
∑N

j=1[gcc(η)]ij. (And recall that the
trace of a matrix is equivalent to the sum of its eigenvalues).

Because gev(η) is a scalar quantity, we can plot its influence function. We choose a func-
tional perturbation φev that has a large, positive inner-product with the influence function.
In this case, we construct φev using two Gaussian bumps aligned with the two largest modes

CHAPTER 3. SENSITIVITY IN BNP 68

Figure 3.6: Inferred clusters in the mice gene expression dataset. Shown are the twelve most
occupied clusters. In blue, the inferred cluster centroid. In grey, gene expressions averaged
over replicates and shifted by their inferred intercepts.

Figure 3.7: The inferred co-clustering matrix of gene expressions at α0 = 6.

CHAPTER 3. SENSITIVITY IN BNP 69

Figure 3.8: Differences in the co-clustering matrix at α = 1 (top row) and α = 11 (bottom
row), relative to the co-clustering matrix at α0 = 6. We compare differences obtained with
the linearly approximated variational parameters against changes observed after refiting.
(Left) a scatter plot of differences under the linear approximation against differences after
refitting, where each point represents an entry of the co-coclustering matrix. (Middle) the
difference in co-clustering matrix observed after refitting. (Right) the difference observed
under the linearly approximated variational parameters. For visualization, values in the
heatmaps are clipped at ±10−3.

of the prior-weighted influence function (Figure 3.9 top left). We anticipate φev to have a
large effect on gev. With gev a proxy for our actual posterior quantity of interest, the full
co-clustering matrix, we then expect that the co-clustering matrix will also experience large
changes.

Our intuition is confirmed in Figure 3.9. After perturbing by φev, the largest changes
in the co-clustering matrix are of now of order 10−1, compared with changes on the order

CHAPTER 3. SENSITIVITY IN BNP 70

of 10−2 after the α perturbations. The linearized variational parameters are again able to
capture the qualitative changes in the co-clustering matrix after refitting at the perturbed
prior.

Figure 3.9: Effect on the co-clustering matrix after a multiplicative functional perturbation.
The perturbation φ (top left, in grey) is a difference of two Gaussian bumps scaled to have
L∞ norm equal to two. φ is chosen such that the Gaussian bumps roughly align with the
two largest modes of the influence function (top left, purple; the influence function is scaled
to also have L∞ norm equal to two). The effect of this perturbation on the prior density
in the top right. The bottom row shows the effect of this perturbation on the coclustering
matrix. For visualization, the differences in the heatmap are clipped at ±10−1.

The influence function is able to explain why the co-clustering matrix is insensitive to α.
The functional perturbation that corresponds to a change in α is

φα(νk) := log Beta (νk|1, α)− log Beta (νk|1, α0) .

CHAPTER 3. SENSITIVITY IN BNP 71

The function φα(νk) is large when the influence function is small and vice-versa (Figure 3.10),
resulting in a small inner-product between the influence function and φα. Thus, the linear
approximation will predict small changes, and the refitted results confirms the predictions.

Figure 3.10: The multiplicative perturbations φα(·) that corresponds to decreasing (left) or
increasing (right) the α parameter by five.

However, even with the selected functional perturbation, the size of the differences in the
co-clustering matrix remains modest. It is unlikely that any conclusions derived from the
co-clustering matrix would have changed after the functional perturbation. The co-clustering
matrix appears insensitive to perturbations in the stick-breaking distribution.

Finally, the computational cost of linearizing the variational parameters is favorable com-
pared with refitting (Table 3.1). Forming the linear approximation, which requires a Hessian
inversion, took 3-4 seconds; subsequent evaluations of η̂lin

γ take milliseconds. Conversely,
refitting the model after a prior perturbation can take up to 20 seconds.

3.6.3 Genetic admixture modeling with STRUCTURE

Our final data analysis example is an application of population genetics. Given a database
of individuals and their genotypes at selected genetic loci, population geneticists seek to
identify the presence of latent populations, infer the population of origin for specific loci,
and estimate the degree to which populations are admixed in each individual.

We consider a publicly available dataset from Galbusera et al. (2000) that contains geno-
types from 155 samples of an endangered bird species, the Taita thrush. Individuals were
collected from four regions in southeast Kenya (Chawia, Mbololo, Ngangao, Yale), and each
individual was genotyped at seven micro-satellite loci. The four regions were once part of a
cohesive cloud forest that has since been fragmented by human development. For this endan-
gered bird species, understanding the degree to which populations have grown genetically

CHAPTER 3. SENSITIVITY IN BNP 72

Table 3.1: Compute time of results on the mice data set.

time (seconds)
Initial fit 30

Hessian solve for α sensitivity 3.9
Linear approx. η̂lin

γ (α) for α = 1 0.0013
Linear approx. η̂lin

γ (α) for α = 11 0.0012
Refit η̂(α) for α = 1 14

Refit η̂(α) for α = 11 13
The influence function 4.3

Hessian solve for φ perturbation 3.3
Linear approx. η̂lin(t) at t = 1 0.00099

Refit η̂(t) at t = 1 22

distinct is important for conservation efforts: well-separated populations with little genetic
diversity are particularly at risk of extinction.

We employ the topic model from Example 3. Figure 3.11 shows the inferred individual
admixtures the initial fit with stick-breaking distribution is Pstick(νnk) = Beta (νnk|1, α0),
α0 = 6. In this fit, there appears to be three dominant latent populations, which we arbi-
trarily label as populations 1, 2, and 3 (see Figure 3.11). The inferred populations generally
correspond with the geographic regions: individuals from the Mbololo region have popula-
tion 1 as their dominant admixture proportion; individuals from the Ngangao are dominantly
population 2; individuals from the Chawia are admixed with populations 1, 2, and 3. The
four individuals from Yale appear similar to individuals from the Ngangao; this is not sur-
prising given that the Yale region is geographically located in proximity to the Ngangao
region.

The resulting inference from our BNP model is qualitatively similar to the results re-
ported in Pritchard et al. (2000), who employed a related model called STRUCTURE.
STRUCTURE uses a Dirichlet prior for the individual admixtures with some fixed num-
ber of populations K and does inference with MCMC. To select K, Pritchard et al. (2000)
ran STRUCTURE with K = 1, ..., 5, and selected the K that maximized a proxy for the
posterior quantity p(K|x), under the assumption of a uniformly distributed prior on K.
Their algorithm selected K = 3. At α0 = 3, our BNP model agrees with Pritchard et al.
(2000) in that we also uncover three dominant latent populations, with each having a loose
correspondence with the Chawia, Ngangao, and Mbololo geographical regions.

Sensitivity: number of populations

We start by evaluating the sensitivity of the inferred number of populations to the α param-
eter in the Beta (νnk|1, α) stick distribution. The expected number of in-sample clusters was
defined in Example 6, except in this model, the summation is over the indices for individual
n, locus l and chromosome i. (We also often use “population” instead of “cluster”, in this

CHAPTER 3. SENSITIVITY IN BNP 73

Figure 3.11: The inferred individual admixtures at α0 = 3. Each vertical strip is an individual
and each color a latent population. Lengths of colored segments represent the inferred
admixture proportions. Individuals are ordered by the geographic region from which they
were sampled (Mbololo, Ngangao, Yale, and Chawia). In the text, we refer to the green,
orange, and purple latent populations as population 1, 2, and 3, respectively.

application). We will allow the option of setting τ > 0 in order to count only the populations
that comprise a non-negligible fraction of the data set.

The expected number of latent populations is sensitive to α (Figure 3.12). Without any
thresholding (τ = 0), the expected number of populations quickly increases as α increases;
in fact, it nearly saturates at Kmax = 20 when α = 7. This sensitivity is likely due to the
fact that the non-thresholded quantity is highly dependent on the behavior of small, nearly
unoccupied populations; even though the probability of a single locus belonging to these rare
populations is small, the probability that none of the N ×L× 2 observed genotypes belong
to these rare populations is non-negligible.

This motivates the use of thresholding in reporting the number of populations. We
consider two thresholds, τ = 20 and τ = 40, corresponding to approximately 2% and 4%
of the total number of loci in the data set, respectively. The thresholded estimates for the
number of populations is still moderately sensitive to the value of α. When refitting the
variational approximation at α = 1, . . . , 7, the thresholded quantities vary between two and
four latent populations.

CHAPTER 3. SENSITIVITY IN BNP 74

The linearized variational parameters η̂lin
γ (t) imperfectly captures the results observed by

refitting. We formed the linear approximation at α0 = 3 and computed gcl,τ (η̂
lin
γ (α)) for

α = 1, . . . , 7. For this range of α, the linearized parameters and the refitted parameters
almost perfectly agree on values of gcl,τ with τ = 0. However, when τ = 20 and τ = 40,
the linearized parameters underestimated the true sensitivity of gcl,τ found by refitting. In
particular, the linearized parameters failed to produce the reduction to two latent populations
at α = 1 observed in the refits.

Figure 3.12: The expected number of (thresholded) populations in the thrush data as α
varies. We computed the linear approximation at α0 = 3, and we compare the results under
the linearly approximated variational parameters with the results observed after refitting.
Thresholds at τ = 20 and τ = 40 corresponding to approximately 2% and 4% of the total
number of loci in the data set, respectively.

We provide some more intuition concerning the thresholded estimate for the number of
populations. The posterior quantity gcl,τ is closely related to the expected number of loci
belonging to each population, defined as

gloci(η; k) = E
Q(z|η)

[
N∑
n=1

L∑
l=1

2∑
i=1

znlik

]
.

Figure 3.13 plots gloci for the first six populations as α varies. The expected number of
loci at the initial fit, gloci(η̂(α0); k), is at least 100 for populations k = 1, 2, and 3 and less
than 12 for the remaining populations. A sample of memberships z ∼ Q(z|η̂(α0)) will almost
always have at least τ loci allocated to populations 1, 2, and 3, while the allocations to each
remaining population will almost always be below τ , for either τ = 20 or τ = 40. Thus, at
α = α0 there then are clearly 3 populations by our definition of gcl,τ , for either τ .

CHAPTER 3. SENSITIVITY IN BNP 75

At α = 7, the expected number of loci belonging to population 4 increases to 20.7, a
new population emerges above the threshold at τ = 20. Both the linearized and the refitted
variational parameters agree on this shift in allocation to population 4. On the other hand,
under the refitted variational parameters at α = 1, the expected number of loci belonging
to population 3 decreases to 6.7, below the thresholds τ = 20 and τ = 40. Thus, the
expected number of latent populations with allocations above either threshold decreases to
two. The linearized parameters under-estimated this decrease in allocation to population 3,
and therefore continued to estimate three latent populations even at α = 1.

Figure 3.13: The expected number of loci per population as α varies.

Sensitivity: individual admixtures

Examining the inferred admixtures in Figure 3.11 provides clues into the historical migration
patterns of the genotyped individuals. For example, while individuals collected from the
Mbololo region are inferred to be admixed primarily with population 1, several individuals
from this region have abnormally large admixture proportions of population 2. Conversely,
while individuals collected from the Ngangao region are admixed primarily with population
2, a few of these individuals have abnormally large admixture proportions of population 1.
This suggests that some migration has occurred between the Mbololo and Ngangao regions.

CHAPTER 3. SENSITIVITY IN BNP 76

We evaluate the sensitivity of this conclusion to possible prior perturbations. Consider
the posterior statistic

gadmix(η;N , k) = E
Q(π|η)

[
1

|N |
∑
n∈N

πnk

]
,

the average admixture proportion of population k in a set of individuals N .
We present results on three variations of gadmix: N = {26, ..., 31} and k = 2, correspond-

ing to the six individuals from the Mbololo region with outlying proportions of population
2; N = {125, ..., 128} and k = 1, corresponding to the four individuals from the Ngangao
region with outlying proportions of population 1; N = {139, ..., 155} and k = 3, correspond-
ing to all individuals from the Chawia region. The first two posterior quantities relate to
the inferred mixing between Mbololo and Ngangao. In the last case, we are studying the
sensitivity of having a third latent population present, a population which primarily appears
in Chawia individuals.

We construct the worst-case negative perturbation for each variant of gadmix. We consider
the negative direction because we are interested in testing the robustness of these patterns’
existence. For each worst-case perturbation, we examine the effect on its respective posterior
quantity as t → 1 in the multiplicatively perturbed prior P(νnk|t) = P0(νnk) exp(tφwc(νnk))
(Figure 3.14). Under the linearized variational parameters η̂lin

γ (t), the admixture proportion
of population 2 in the outlying Mbololo individuals is nearly halved at t = 1. The same quan-
tity computed after refitting the model confirms the sensitivity predicted by the linearized
variational parameters On the other hand, the presence of population 1 in the outlying
Ngangao individuals appears to be insensitive even after this worst-case perturbation. The
linearized and the refitted variational parameters again agree on this conclusion. Finally,
the presence of population 3 in the Chawia individuals is anticipated to be sensitive by the
linearized parameters, as this admixture proportion steadily decreases as t → 1. However,
under the refits, this admixture proportion does not decrease steadily but rather levels off
after t = 0.5.

Our sensitivity analysis suggests that the inferred migration from Mbololo to Ngangao
based on the outlying Ngangao admixtures appears robust to our stick-breaking prior. On
the other had, the the outlying Mbololo admixtures appears to be more sensitive to the
stick-breaking prior, and conclusions about migration from Ngangao to Mbololo may be
dependent on prior choices.

Finally, the computational cost of linearizing the variational parameters is again favorable
compared with the cost of refitting (Table 3.2). The linear approximation allows us to
quickly explore all the functional perturbations presented here, and many more: computing
the linearized variational parameters (including the Hessian inversion) η̂lin

γ takes about half
a second for a given perturbation. On the other hand, refitting the model after a prior
perturbation can take more than ten seconds. While exploring all the possible functional
perturbations is impossible, the linear approximation allows rapid exploration of the space of
perturbations. Notice also that computing the influence function only takes half a second. As

CHAPTER 3. SENSITIVITY IN BNP 77

Figure 3.14: Sensitivity of inferred admixtures for several outlying individuals. For indi-
viduals A, we examine the sensitivity of the admixture proportion of population 2. For
individuals B, we examine the population 1 admixture For the individuals C, we examine
the population 3 admixture. (Left column) The worst-case negative perturbation with unit
L∞-norm in grey, plotted against the influence function in purple (scaled to also have L∞
norm equal to 1). (Middle column) The effect of the perturbation on the prior density.
(Right column) Effects on the inferred admixture.

CHAPTER 3. SENSITIVITY IN BNP 78

Table 3.2: Compute time of results on the thrush dataset. Timing results on perturbation φ
are reported for the worst-case perturbation “A” in Figure 3.14. Timing on other considered
φ are similar.

time (seconds)
Initial fit 7

Hessian solve for α sensitivity 0.32
Linear approx. η̂lin

γ (α) for α = 1, ..., 10 0.0059
Refits η̂(α) for α = 1, ..., 10 34

The influence function 0.59
Hessian solve for φ 0.38

Linear approx. η̂lin
γ (ε)|ε=1 for φ 0.00085

Refit η̂(ε)|ε=1 for φ 13

we have demonstrated, the influence function provides an informative guide for uncovering
which perturbations might result in greater sensitivity than others. These perturbations
can be more explored either by either linearizing in the direction of the perturbation, or by
refitting.

3.7 Limitations of local sensitivity

In this final subsection, we discuss some examples where the linearized variational parameters
η̂lin(t) are a poor substitute for the refitted variational parameters η̂(t) (in this subsection,
the only posterior quantities considered are functions of global parameters, so we will not
make a distinction between η̂lin and η̂lin

γ here). Naturally, the linearized parameters η̂lin(t) will
be a poor substitute for η̂(t) when the mapping t 7→ η̂(t) is highly nonlinear. The examples
discussed below use the STRUCTURE model and dataset presented in Section 3.6.3, and
we examine results after the worst-case perturbation “A” in Figure 3.14.

Recall from Figure 3.14 that the linearized parameters agreed with the refitted parameters
in predicting the diminished admixture proportion of population 2 in the outlying Mbololo
individuals (individuals “A”) at the perturbed prior P1 = P0 exp(φwc). However, while the
linearized parameters were able to capture the change in overall admixture proportion, it
does not perform uniformly well over all individual admixtures (Figure 3.15). For example,
the admixture proportion of population 2 in individual n = 25 dramatically increased after
refitting with the perturbed prior P1; the linearized parameters failed to reproduce this
change.

Figure 3.16 examines individual n = 25 more closely. The bottom row plots this in-
dividual’s admixture proportions as t varies from 0 to 1 in the perturbed prior P(ν|t) =
P0(νk) exp(tφwc(νk)). The linearized parameters poorly captured the change in admixture
proportions observed after refitting, particularly for populations 1 and 2, for values of t close
to 1. Even though we retain non-linearities in the mapping from variational parameters

CHAPTER 3. SENSITIVITY IN BNP 79

Figure 3.15: Inferred admixtures after the worst-case perturbation to individuals “A” (see
Figure 3.14 for perturbation).

to the posterior statistic, for this perturbation, the mapping from prior parameter t to the
relevant variational parameters is highly non-linear. This latter mapping is what we lin-
earize and what causes our approximation to fail in this case. Specifically, the variational
location parameter on the first stick-breaking proportion is concave as a function of t — the
location parameter increases for small t, then decreases as t→ 1. However, η̂lin(t) linearizes
the relationship between the location parameter and t. Therefore, the corresponding admix-
ture mixture proportion of population 1 is over-estimated under the linearized variational
parameters. Furthermore, because our linearized variational parameters over-estimated the
length of the first stick, and the second admixture proportion is a product of the remaining
stick times the second stick-breaking proportion, the linearized variational parameters then
under-estimates the admixture proportion of population 2.

Figure 3.17 shows a similar situation for individual n = 74. The linearized variational
parameters grossly over-estimated the length of the first stick, resulting in the later admix-
ture proportions being under-estimated. The third admixture proportion was particularly
poorly approximated under the linearized variational parameters. Given the recursive nature
of the relationship between admixtures and stick-breaking proportions, errors at early sticks
affect later admixture proportions. Fully linearizing the mapping t 7→ g(η̂(t)) to form the
approximation glin(t) (Equation 3.9) avoids this problem. In this example, glin(t) outper-
forms g(η̂lin(t)), with g being the admixture proportion of population 3. In all the previous
examples (including the example in Figure 3.16), computing g(η̂lin(t)), and thus retaining
the non-linearities in the mapping from η 7→ g(η), does no worse, and is usually better, than
the fully linearized version, glin(t)—as can be seen by drawing tangent lines of the refitted
curve at α = α0 or t = 0 for Figures 3.2, 3.12, 3.13 and 3.16. It is likely that g(η̂lin(t))
outperforms glin(t) for most posterior quantities, though as we see in Figure 3.17, this is not
guaranteed to always be true.

CHAPTER 3. SENSITIVITY IN BNP 80

Figure 3.16: An individual (n = 26) for which the linearly approximated variational pa-
rameters poorly captured the change in admixture observed after refitting as t → 1. (Top
row) the change in location parameter of the normally distributed logit-sticks, for the first
three sticks. The response here is a variational parameter, so the approximation (red) is
necessarily linear with respect to t. (Bottom row) the change in the inferred admixtures for
populations 1, 2, and 3.

3.8 Conclusion

The concept of local sensitivity in Bayesian nonparametric models is not novel (see, for
example, Basu et al. (1996)). Historically however, the derivatives required for local sen-
sitivity required analytic derivations, which are tedious to produce or perhaps unavailable
altogether. With the availability of modern automatic differentiation tools, such difficulties
are rendered obsolete. All that is necessary for computing derivatives is the implementation
in computer code the KL objective as a function of variational parameters and the hyper-
parameter. Tools such as JAX (Bradbury et al., 2018) handles the derivative evaluations
with either a backward or forward pass through the computation graph. We showed that
computing these derivatives and linearizing the variational parameters can be an order of
magnitude faster than refitting the KL objective at a perturbed prior.

CHAPTER 3. SENSITIVITY IN BNP 81

Figure 3.17: An example where linearizing the posterior quantity itself outperforms lineariz-
ing the variational parameters only. Shown are logit-stick location parameters (top row) and
inferred admixtures (bottom row) for individual n = 74 and populations k = 1, 2 and 3.
Dashed red is the approximation glin(t) formed by linearizing the inferred admixture EQ[πnk]
with respect to prior parameter t. On the admixture proportion of population 3, glin(t)
outperforms g(η̂lin(t)) (solid red).

Computing the influence function is also just as fast as forming the linear approximation.
Evaluating sensitivity to all possible perturbations is impossible, but we demonstrated how
the influence function can guide our search for functional perturbations that result in high
sensitivity. The high-influence perturbations can then be explored more closely either by our
linear approximation or by refitting.

Finally, we remark that the framework of Theorem 1 for producing local sensitivity
measures extend well-beyond inference in variational Bayes. The same conceptual set-up can
be applied to study the sensitivity of M-estimators, which are vectored-valued estimators ŷ
characterized as a minimizer of some objective function. The optimal variational parameters
η̂, which are minimizers of the KL objective, are just one such example. The next two
chapters further explore this generality, and apply similar local approximations to data
perturbations, resulting in the infinitesimal jackknife and the linear bootstrap.

CHAPTER 3. SENSITIVITY IN BNP 82

3.9 Supplemental details

3.9.1 continuity lemmas

A standard consequence of the dominated convergence theorem is the ability to exchange
integration and differentiation. Since we will use this result frequently, we state it here in
our own notation as Theorem 2.

Theorem 2. (Billingsley, 1986, Theorem 16.8) Let µ be sigma-finite measure on Ωθ, and
let St ⊆ R. Let f : Ωθ × St 7→ R.

If there exists a function M(θ) with
∫
M(θ)µ(dθ) < ∞ such that |f(θ, t)| ≤ M(θ), µ-

almost surely, for all t ∈ St, then the map t 7→
∫
f(θ, t)µ(dθ) is continuous.

Further, suppose that the derivative ∂f(θ,t)
∂t

∣∣∣
t

exist µ-almost surely for t ∈ St. If there

exists an M ′(θ) such that
∫
M ′(θ)µ(dθ) < ∞ and

∣∣∣ ∂f(θ,t)
∂t

∣∣∣
t

∣∣∣ ≤ M ′(θ), µ-almost surely and

for all t ∈ St, then

∂
∫
f(θ, t)µ(dθ)

∂t

∣∣∣∣
t

=

∫
∂f(θ, t)

∂t

∣∣∣∣
t

µ(dθ).

Lemma 3. Let Assumption 1 hold for some ψ(θ, t) as well as for ψ(θ, t) = 1. Define

∇η log Q̃ (θ|η) := ∇η log Q̃ (θ|η)− E
Q(θ|η)

[
∇η log Q̃ (θ|η)

]
∇2
η log Q̃ (θ|η) := ∇2

η log Q̃ (θ|η)− E
Q(θ|η)

[
∇2
η log Q̃ (θ|η)

]
.

CHAPTER 3. SENSITIVITY IN BNP 83

Then the following equalties hold:

∂ E
Q(θ|η)

[ψ(θ, t)]

∂η

∣∣∣∣∣∣
η

= E
Q(θ|η)

[
∇η log Q̃ (θ|η)

(
ψ(θ, t)− E

Q(θ|η)
[ψ(θ, t)]

)]
(3.22)

∂2 E
Q(θ|η)

[ψ(θ, t)]

∂η∂t

∣∣∣∣∣∣
η,t

=

E
Q(θ|η)

[
∇η log Q̃ (θ|η)

(
∇tψ (θ, t)− E

Q(θ|η)
[∇tψ (θ, t))]

)]
(3.23)

∂2 E
Q(θ|η)

[ψ(θ, t)]

∂η∂ηT

∣∣∣∣∣∣
η

=

E
Q(θ|η)

[
∇η log Q̃ (θ|η) ∇η log Q̃ (θ|η) T

(
ψ(θ, t)− E

Q(θ|η)
[ψ(θ, t)]

)]
+

E
Q(θ|η)

[
∇2
η log Q̃ (θ|η)

(
ψ(θ, t)− E

Q(θ|η)
[ψ(θ, t)]

)]
. (3.24)

Proof. The proof follows by repeatedly using Theorem 2 to interchange the order of integra-
tion and differentiation as in (Giordano et al., 2018, Theorem 1). For example,

∂
∫
Q(θ|ν)ψ(θ|t)µ(dθ)

∂η

∣∣∣∣
η

=∫
∂Q(θ|ν)ψ(θ|t)

∂η

∣∣∣∣
η

µ(dθ) = (Assumption 1 (Item 1) and Theorem 2)∫
∇η log Q̃ (θ, η)ψ(θ|t)Q(θ, η)µ(dθ) =

E
Q(θ,η)

[
∇η log Q̃ (θ, η)ψ(θ|t)

]
.

Applying analogous reasoning to the denominator of

E
Q(θ|η)

[ψ(θ, t)] =

∫
ψ(θ, t)Q(θ|η)µ(dθ)∫
Q(θ|η)µ(dθ)

and applying the chain rule gives Equation 3.22.
For Equation 3.23, by anaologously applying Assumption 1 (Item 1) and the DCT gives

∂ E
Q(θ|η)

[ψ(θ|η)]

∂t

∣∣∣∣∣∣
t

= E
Q(θ|η)

[∇tψ (θ|η)] .

CHAPTER 3. SENSITIVITY IN BNP 84

Applying Assumption 1 (Item 2) and Theorem 2 gives

∂ E
Q(θ|η)

[
∇η log Q̃ (θ|η)ψ(θ|η)

]
∂t

∣∣∣∣∣∣∣
t

= E
Q(θ|η)

[
∇η log Q̃ (θ|η)∇tψ (θ|η)

]
,

where we have used the fact that the absolute value of any component of the vector∇η log Q̃ (θ|η)ψ(θ|η)

is bounded above by a constant times
∥∥∥∇η log Q̃ (θ|η)ψ(θ|η)

∥∥∥
2
. From the preceding two dis-

plays, Equation 3.23 follows.
Finally, for Equation 3.24, we need to differentiate Equation 3.22. In addition to quanti-

ties already considered above, Equation 3.22 involves terms of the following form, to which
we can apply Theorem 2 using the corresponding assumptions:

E
Qθ|η

[
∇η log Q̃ (θ|η)

]
Assumption 1 (Item 2)

E
Qθ|η

[
∇η log Q̃ (θ|η)ψ(θ, t)

]
. Assumption 1 (Item 2)

Equation 3.24 then follows by differentiating as above and collecting terms.

Lemma 4. (See Proof 3.9.1 on this page.) Let Assumption 1 hold for some ψ as well as
with ψ(θ, t) = 1. Then

η, t 7→
∂ E
Q(θ|η)

[ψ(θ, t)]

∂η

∣∣∣∣∣∣
η,t

,

η, t 7→
∂2 E
Q(θ|η)

[ψ(θ, t)]

∂η∂t

∣∣∣∣∣∣
η,t

, and

η, t 7→
∂2 E
Q(θ|η)

[ψ(θ, t)]

∂η∂ηT

∣∣∣∣∣∣
η

are continuous on Bη × Bt.

Proof of Lemma 4. By Lemma 3, the mixed partial η, t 7→
∂2 E
Q(θ|η)

[ψ(θ,t)]

∂η∂t

∣∣∣∣
η,t

is a continuous

combination of terms of the form

E
Q(θ|η)

[
∇η log Q̃ (θ|η)∇tψ (θ, t)

]
Assumption 1 (Item 4)

E
Q(θ|η)

[
∇η log Q̃ (θ|η)

]
Assumption 1 (Item 2)

E
Q(θ|η)

[∇tψ (θ, t)] . Assumption 1 (Item 2)

CHAPTER 3. SENSITIVITY IN BNP 85

By the corresponding assumptions, Theorem 2 applies to each of these terms, and by As-
sumption 1, each of the expressions in the preceding display are continuous. For example,∥∥∥∥ E

Q(θ|η)

[
∇η log Q̃ (θ|η)∇tψ (θ, t)

]
− E
Q(θ|η′)

[
∇η log Q̃ (θ|η′)∇tψ (θ, t′)

]∥∥∥∥
2

=∥∥∥∥∫ (Q(θ|η)∇η log Q̃ (θ|η)∇tψ (θ, t)−Q(θ|η′)∇η log Q̃ (θ|η′)∇tψ (θ, t′)
)
µ(dθ)

∥∥∥∥
2

≤∫ ∥∥∥Q(θ|η)∇η log Q̃ (θ|η)∇tψ (θ, t)−Q(θ|η′)∇η log Q̃ (θ|η′)∇tψ (θ, t′)
∥∥∥

2
µ(dθ) ≤∫ ∥∥∥(Q(θ|η)−Q(θ|η′))∇η log Q̃ (θ|η)∇tψ (θ, t)

∥∥∥
2
µ(dθ)+∫ ∥∥∥Q(θ|η′)

(
∇η log Q̃ (θ|η)−∇η log Q̃ (θ|η′)

)
∇tψ (θ, t)

∥∥∥
2
µ(dθ)+∫ ∥∥∥Q(θ|η′)∇η log Q̃ (θ|η′) (∇tψ (θ, t)−∇tψ (θ, t′))

∥∥∥
2
µ(dθ).

By Assumption 1 (Item 4) we can apply Theorem 2 to each term in the final line of the
preceding display, giving

lim
η′→η

lim
t′→t

∥∥∥∥ E
Q(θ|η)

[
∇η log Q̃ (θ|η)∇tψ (θ, t)

]
− E
Q(θ|η′)

[
∇η log Q̃ (θ|η′)∇tψ (θ, t′)

]∥∥∥∥
2

≤∫
lim
η′→η

lim
t′→t

∥∥∥(Q(θ|η)−Q(θ|η′))∇η log Q̃ (θ|η)∇tψ (θ, t)
∥∥∥

2
µ(dθ)+∫

lim
η′→η

lim
t′→t

∥∥∥Q(θ|η′)
(
∇η log Q̃ (θ|η)−∇η log Q̃ (θ|η′)

)
∇tψ (θ, t)

∥∥∥
2
µ(dθ)+∫

lim
η′→η

lim
t′→t

∥∥∥Q(θ|η′)∇η log Q̃ (θ|η′) (∇tψ (θ, t)−∇tψ (θ, t′))
∥∥∥

2
µ(dθ) = 0,

the final equality following from the continuity assumptions of Assumption 1.

Similarly,
∂2 E
Q(θ|η)

[ψ(θ,t)]

∂η∂ηT

∣∣∣∣
η

involves terms of the form

E
Q(θ|η)

[
∇η log Q̃ (θ|η)∇η log Q̃ (θ|η)T ψ(θ, t)

]
Assumption 1 (Item 5)

E
Q(θ|η)

[
∇η log Q̃ (θ|η)∇η log Q̃ (θ|η)T

]
Assumption 1 (Item 5)

E
Q(θ|η)

[
∇2
η log Q̃ (θ|η)ψ(θ, t)

]
Assumption 1 (Item 3)

E
Q(θ|η)

[
∇2
η log Q̃ (θ|η)

]
, Assumption 1 (Item 3)

to which we can apply Theorem 2 by the corresponding assumption. Reasoning analogously
to the other term, the conclusion follows.

CHAPTER 3. SENSITIVITY IN BNP 86

Proof. Proof of Theorem 1. For the duration of the proof, define

ρ(η, t) := E
Q(θ|η)

[logP(θ|t)− logP(θ|0)] and

ρη(η, t) :=
∂ρ(η, t)

∂η

∣∣∣∣
η

.

Expanding logP(θ|t) in Equation 3.3, we see that

KL (η, t) = KL (η, 0) + ρ(η, t). (3.25)

By Lemma 3, η 7→ ρ(η, t) is continuous, and by Lemma 4 η 7→ ρ(η, t) is continuously
differentiable, for all η, t ∈ B. So ∂KL (η, t) /∂η is continuous for all η, t ∈ B and, by the
first-order condition of Equation 3.7, η̂(t) satisfies

∂KL (η, t)

∂η

∣∣∣∣
η̂(t),t

=
∂KL (η, 0)

∂η

∣∣∣∣
η̂(t)

+ ρη(η̂(t), t) = 0 (3.26)

for all t ∈ Bt.
We wish to apply the implicit function theorem to Equation 3.26, for which we must

show that ∂KL (η, t) /∂η is continuously differentiable in both η and t. By Assumption 2
(Item 1), ∂KL (η, 0) /∂η is continuously differentiable, so we need only consider ρη(θ, t).

By Lemma 4 and Assumption 3, we have that both ∂ρη(η, t)/∂η and ∂ρη(η, t)/∂t are
continuous in both η and t. Since both its partial derivatives are continuously differentiable,
the joint map η, t 7→ ρη(η, t) is also continuously differentiable (e.g., Fleming (2012, Theorem
3.2)). Consequently, ∂KL (η, t) /∂η is continuously differentiable in both η and t.

Together with Assumption 2 (Item 3), which gives that ∂2KL (η, t) /∂η∂ηT is invertible at
η̂, the result then follows from the implicit function theorem Krantz and Parks (2012, The-
orem 3.3.1). For convenience, Table 3.9.1 shows the correspondence between their notation
and ours.

Krantz & Parks notation Our notation
Φ(x) KL (η, t)
Q 1
M Dη

U B
W Bt

x1, . . . , xQ t
xQ+1, . . . , xN η

f1(xa), . . . , fM(xa) η̂(t)

The form of the derivative is given by combining Equation 3.25 with Equation 3.23 of
Lemma 3, since

∂2KL (η, t)

∂η∂t

∣∣∣∣
η̂,0

= E
Q(θ|η̂)

[
∇η log Q̃ (θ|η̂)

∂ logP(θ|t)
∂t

∣∣∣∣
t=0

]
.

CHAPTER 3. SENSITIVITY IN BNP 87

3.9.2 Variational approximation for the regression mixture
model

We detail the variational approximation for the local latent variables in the regression mixture
model (Example 2). All latent variables fully factorize, except for the cluster assignments z
and the addtive shifts b. Under Q, their distribution factorizes as

Q(z, b|η) =
N∏
n=1

Q(zn|η)
Kmax∏
k=1

Q(bn|znk = 1, η).

As discussed in Section 3.2, the optimal distribution Q(zn|η) is multinomial whose pa-
rameters can be set in closed form as a function of the global variational parameters only.
We allow the distribution of βn to depend on znk so that the its optimal distribution can
also be set in closed form as a function of global parameters as well.

The optimal distribution q(bn|znk = 1, η) is Gaussian,

q(bn|znk = 1, η) = N
(
bn|µ̂bnk , σ̂2

bnk

)
.

Let

ρ
(1)
nk = E

Q(βk|η)

[
M∑
m=1

τk(xnm − Amµk)

]
+ τ0µ0

ρ
(2)
nk = M E

Q(βk|η)
[τk] + τ0,

where µ0 and τ0 are the prior mean and information on bn, respectively.
The optimal parameters for the Gaussian distribution on bn is given by

µ̂bnk = ρ
(1)
nk /ρ

(2)
nk

σ̂2
bnk

= 1/ρ
(2)
nk .

88

Chapter 4

Measuring cluster stability using the
linear bootstrap

Clustering is the canonical unsupervised learning problem, in which we aim to find an as-
signment of data points to groups, or clusters, that represent meaningful latent structure in a
data set. Bayesian nonparametric (BNP) models form a particularly popular set of Bayesian
models for clustering due to their flexibility and coherent assessment of uncertainty. As
with any Bayesian model of moderate complexity, typically the Bayesian posterior cannot
be computed exactly for BNP clustering problems, and an approximation must be employed.
Mean-field variational Bayes (MFVB) forms a posterior approximation by solving an opti-
mization problem and is widely used due to its speed (Blei and Jordan, 2006).

An exact BNP posterior might, at least in theory, vary dramatically when presented with
different data. Certainly we expect small, rare clusters—which are ubiquitous in BNP—to
vary substantially based on the observed data. When reporting the summaries of the clus-
tering for the purposes of scientific inquiry, it behooves us to understand how stable, or
alternatively how sensitive, this report is relative to the data (Yu, 2013).

If one were to use the bootstrap to assess stability in this analysis pipeline, it would
require a new run of MFVB for each simulated data set. This time cost is often prohibitively
expensive, especially for exploratory data analyses. We instead propose to provide a fast,
automatic approximation to a full bootstrap analysis based on the infinitesimal jackknife
(Jaeckel, 1972; Efron, 1982), which can be seen as a linear approximation to the global sta-
bility measure provided by the full bootstrap. This locality can buy drastic time savings,
with the infinitesimal jackknife sometimes running orders of magnitude faster than the boot-
strap. We here demonstrate how to apply this idea to a data analysis pipeline consisting
of an MFVB approximation to a BNP clustering posterior. We show that the necessary
calculations can be done nearly automatically, without tedious derivations by a practitioner,
using modern automatic differentiation software (Maclaurin et al., 2015). This automation
suggests a generality to our methods beyond BNP clustering.

In the remainder of this chapter, we describe the BNP model and MFVB inference in
more detail in Section 4.2 and Section 4.3. We review summaries for assessing the output of

CHAPTER 4. THE LINEAR BOOTSTRAP 89

our clustering, across which we can in turn assess stability, in Section 4.4. We describe our
new stability assessment procedure in Section 4.5. And we demonstrate our ability to quickly
and accurately quantify stability in Section 4.6 on an application to clustering time-course
gene expression data (Shoemaker et al., 2015; Luan and Li, 2003).

4.1 Data

Unsupervised procedures often estimate which data points are clustered together, a quantity
of primary importance in many analyses. It can be used to reduce the dimensionality, or
to facilitate the interpretation of complex data sets. For example, a genomics experiment
assesses cell activity genome-wide, but many genes behave the same way. Clustering genes
allows dimensionality reduction that can facilitate interpretation. Finding robust and stable
clusters is thus crucial for appropriate downstream analysis.

We focus on the specific task of clustering time course gene-expression data. The differ-
ences and evolution over time of gene expression yield important insight on gene regulation
of the cell-cycle, or on how cells react to toxins, drugs or viruses. We use a publicly available
data set of mice gene expression (Shoemaker et al., 2015). Mice were infected with different
influenza viruses, and gene expression was assessed at 14 time points after infection. We fo-
cus on the influenza virus “A/California/04/2009”, a mildly pathogenic virus from the 2009
pandemic season. We normalize the data as described in Shoemaker et al. (2015). We then
apply the differential analysis tool EDGE between the influenza infected mice and control
mice (Storey et al., 2005). EDGE yields for each gene a p-value assessing how differently the
genes behave between the two conditions. We then rank the genes from most significantly
differentially expressed, to least significantly expressed and perform all downstream analysis
on the top 1000 genes.

The observed data consists of expression levels ygt for genes g = 1, ..., ng and time points
t = 1, ..., nt (see Figure 4.1 for a single-gene time course data). The observations are un-
evenly spaced, with more frequent observations at the beginning. Each gene also has three
measurements at each time point, called biological replicates.

4.2 Model

As described by Luan and Li (2003), we model the time series as a gene-specific constant
additive offset plus a B-spline basis of degree 3 and 7 degrees of freedom. We denote the
basis matrix by X.

By modeling gene expression as a smooth function, via a B-spline basis, we naturally
model the time aspect of the data, as well as provide an easy framework for including
biological replicates in the clustering. The reader may observe that the sparse observations
at later times leads to apparent non-smoothness in the fitted time series at late times, though
the B-splines enforce smoothness in actual calendar time as desired.

CHAPTER 4. THE LINEAR BOOTSTRAP 90

Figure 4.1: Mice gene expression observations over time (left) and B-spline basis of degree 3
and 7 degrees of freedom (right).

Let yg be the vector of observations (yg1, ..., ygT)> for gene g, bg denote its additive offset,
and βg be its B-spline coeffcients. Denote the variance of the errors as σ2 and let IT be the
nt × nt identity matrix. We model the observations as

yg|X, βg, bg, σ2 iid∼ N
(
Xβg + bg, ITσ

2
)

(4.1)

Priors on the offsets and error variance are,

bg
iid∼ N (0, 10) for n = 1, ...ng (4.2)

σ2 ∼ Inv.Gamma (0.10, 0.10) . (4.3)

We model each gene’s B-spline coefficients, βg, using a a stick-breaking representation of
a Bayesian nonparametric (BNP) Dirichlet process mixture model (Ferguson, 1973; Sethu-
raman, 1994). First, we draw sticks and coefficients,

νk
iid∼ Beta (1, α) (4.4)

βk
iid∼ N (0.38, 10) , (4.5)

for k = 1, ...,∞. We set α = 2. Then for each gene, we draw its cluster membership:

zg|ν
iid∼ Multinomial (π (ν)) , n = 1, ..., ng, (4.6)

where πk (ν) := νk

k−1∏
j=1

(1− νj) (4.7)

Finally, the B-spline coefficient for gene g is given by

βg|zg =
∞∑
k=1

βkzgk. (4.8)

CHAPTER 4. THE LINEAR BOOTSTRAP 91

4.3 Variational inference

For brevity, use the single vector θ to represent all the unknown parameters ν, βk, zgk, σ
2, and

bg, for all k and g = 1, ..., ng. We are interested in the posterior p (θ|Y), which is intractable.
To approximate p (θ|Y), we form a variational approximation to p (θ|Y), denoted q∗ (θ) and
parameterized by a real-valued parameter η, using a truncated representation of the BNP
prior with K = 30 components, which was large enough that more than half of the clusters
were essentially unoccupied (Blei and Jordan, 2006). The variational distribution is chosen
as a local minimum of the KL divergence from the true posterior:

q∗ (θ) := q (θ|η∗) where η∗ := argmin KL (q (θ|η) ||p (θ|Y)) . (4.9)

The variational approximation is

q (θ|η) = δ (β) δ (τ)
K∏
k=1

{
q (νk)

∏
g

q (zgk) q (bg|zgk = 1)

}
,

where δ (·) denotes a point mass at a parameterized location (Neal and Hinton, 2000) 1,
q (νk) is a beta distribution, q (zgk) is a multinomial distribution, q (bg|zgk = 1) is a normal
distribution, and η denotes the vector of parameters for all these distributions.

Ideally, we would like a global minimum of Equation 4.9, but due to the non-convexity of
the problem, we can only guarantee finding a local minimum. Importantly for the assessment
of co-clustering, knowledge of η∗ allows us to approximate the posterior probability ζgk (η∗) :=
Eq∗ [zgk], the posterior probability of gene g belonging to cluster k . We write ζ without
subscripts to refer to the ng ×K matrix with entries ζgk.

4.3.1 Optimization

Note that by parameterizing q (bg, zg) =
∏K

k=1 q (bg|zgk = 1) q (zg), the updates for q (bg, zg)
have a closed form given q (β, τ, ν). Denote the parameters for q (bg, zg) as ηlocal and the
parameters for q (β, τ, ν) as ηglobal, and write

η̂local (ηglobal) := argmin
ηlocal

KL (ηglobal, ηlocal) .

We can write the optimization problem in Equation 4.9 as a function of ηglobal only:

ηglobal = argmin
ηglobal

KL (ηglobal, η̂local (ηglobal)) . (4.10)

1Technically, a true point mass does not have a well-defined KL divergence with respect to the Lebesgue
measure on β and τ . But δ (β; ηβ) can be thought of as a density with constant entropy, and where Eδ [β] ≈ ηβ .
Such a distribution can be approximated arbitrarily closely with a multivariate normal distribution with
vanishing variance, for example.

CHAPTER 4. THE LINEAR BOOTSTRAP 92

This is valuable because the size of ηlocal grows with the number of genes, but the size of
ηglobal does not.

To solve Equation 4.10, we use a combination of Newton and quasi-Newton methods. We
first choose an initialization by fitting individual B-splines to each gene expression, and use
K-means to cluster the coefficients; the centroids were used to initialize the variational means
for βK . From this initialization, we ran BFGS for 300 iterations; at the point where BFGS
terminated, we computed the Hessian of the KL objective, Equation 4.10. This Hessian
was used as a preconditioner for the final Newton trust region steps, which was iterated to
convergence. Hessians were computed using autograd (Maclaurin et al., 2015), while BFGS
and the newton trust-region routines were done with the BFGS and trust-ncg methods of
scipy-optimize (Virtanen et al., 2020), respectively.

4.3.2 Auxillary variables

Finally, we introduce some additional notation related to data sensitivity that will be useful to
describe the bootstrap and the infinitesimal jackknife in Section 4.5. To assess data sensitiv-

ity, we augment our model with scalar per-gene weights, wg ≥ 0, where W =
(
w1, ..., wng

)>
,

where we define the weighted likelihood and corresponding optimal variational parameter:

log p (Y |θ,W) =

ng∑
g=1

wg log p (yg·|θ)

⇒ η∗ (W) := argmin KL (q (θ; η) ||p (θ|Y,W)) . (4.11)

Defining W1 := (1, ..., 1)> we recover the original variational posterior η∗ = η∗ (W1). By
setting W to other integer-valued vectors, we can produce the effect of removing or repeating
datapoints, since p (Y |θ) is exchangeable in yg. In particular, by drawing nb bootstrap
weights Wb ∼ Multinomial

(
nb, n

−1
b

)
, for b = 1, ..., nb, the bootstrap distribution of a function

φ (ζ (η∗)) can be approximated with the draws φ (ζ (η∗ (W))). In the remainder of the paper,
in a slight abuse of notation, we will write φ (W) in place of φ (ζ (η∗ (W))) below when the
meaning is clear from the context.

4.4 Clutering stability measures

To quantify the stability of a clustering procedure, we must first define measures of similarity
between different clustering outputs. In particular, we consider the similarity between the
clustering ζ = ζ (W1), which is clustering at the optimum η∗(W1), and ζ̃ := ζ (Wb) at
bootstrap weights Wb. We adapt two standard clustering similarity measures, the Fowlkes-
Mallows index (Fowlkes and Mallows, 1983) and the normalized mutual information (Vinh
et al., 2010). Below, we detail these two measures and how we adapt them to our setting of
posterior inference.

CHAPTER 4. THE LINEAR BOOTSTRAP 93

First, we take a closer look at the Fowlkes-Mallows index. Ignoring for the moment
the variational distribution, consider a general clustering algorithm that outputs binary
indicators zgk for gene g belonging to cluster k. Suppose two different runs of the algorithm
(e.g. runs with two different initializations) give two different outputs zgk and z̃gk. Let

Cg1g2 :=
∑K

k=1 zg1kzg2k be the indicator that genes g1 and g2 are clustered together under the
first clustering; and C̃g1g2 denotes the same quantity under the second clustering. Then the
Fowlkes-Mallows similarity index is defined as

FM(C, C̃) =

∑
g1g2

Cg1g2C̃g1g2√
(
∑

g1g2
C2
g1g2

) · (
∑

g1g2
C̃2
g1g2

)
. (4.12)

The numerator in Equation 4.12 then counts the number of gene pairs that were co-
clustered by both two clustering results, and the denominator normalizes the index to be
between 0 and 1; hence, values closer to 1 suggest a more similar clustering.

We modify this definition slightly for our case since we have more than just binary indi-
cators: we have posterior probabilities for zgk approximated by the variational distribution.
This then gives the probability of co-clustering under the variational distribution, Eq∗ [Cg1g2].
Having two different clustering results now corresponds to having two different variational
distributions q∗ and q̃∗ for z. To measure clustering similarity here, we simply replace Cg1g2
and C̃g1g2 in Equation 4.12 with Eq∗ [Cg1g2] and Eq̃∗ [Cg1g2] , their expectations under two
different variational distributions. The Folkes-Mallows score for clustering similarity relative
to the initial clustering ζ is

φFM

(
ζ̃
)

=

∑
g1g2

(
ζ>g1ζg2

) (
ζ̃>g1 ζ̃g2

)
√∑

g1g2

(
ζ>g1ζg2

)
2 ·
(
ζ̃>g1 ζ̃g2

)
2

(4.13)

Now, we turn to the normalized mutual information score. Again, let q∗ and q̃∗ be two
different variational distributions, with Eq∗ [zgk] := ζgk and Eq̃∗ [zgk] := ζ̃gkl. Suppose we
consider the distribution on labels induced by drawing a random gene g, and then drawing
the labels k1|g ∼ q (zg) and k2|zg ∼ q̃ (zg). Then define P (k1) = 1

ng

∑
g ζgk, the probability

of cluster k1 under the first variational distribution, and P̃ (k2) = 1
ng

∑
g ζ̃gk, the probability

of cluster k2 under the second variational distribution; also let P (k1,k2) = 1
ng

∑
g ζgk1 ζ̃gk2 ,

the joint cluster probabilities. Then the normalized mutual information score for clustering
similarity is given by

φMI(ζ̃) =

∑
k1k2

P (k1,k2) log(P (k1,k2)

P (k1)P̃ (k2)
)√

(
∑

k P (k) logP (k)) · (
∑

k P̃ (k) log P̃ (k))
(4.14)

CHAPTER 4. THE LINEAR BOOTSTRAP 94

The numerator is the mutual information between the two clustering outputs defined by
the variational distributions q and q̃, with a larger mutual information representing more
similar clusterings; the denominator then normalizes such that the score is between 0 and 1.

Both measures yield scores ranging between 0 and 1, where the higher the scores, the more
similar the clusterings are. Note that while we focus on these two measures, the procedure
described below can be applied to any similarity measure φ (ζ).

4.5 The linear bootstrap

We now derive a local approximation to the bootstrap using the weight notation from Sec-
tion 4.3. Noting that Equation 4.11 is well-defined even for non-integer values of W , and
observing that KL (q (θ; η) ||p (θ|Y,W)) is smooth in both η and W , it follows that η∗ (W)
is smooth in W in a neighborhood of W1. Using the results from Giordano et al. (2018,
Appendix D), and adopting the shorthand notation KL (η,W) := KL (q (θ; η) ||p (θ|Y,W)),
we can then calculate a “weight sensitivity matrix” S as

S :=
dη∗ (W)

dW

∣∣∣∣
W=W1

=−
(
∂2KL (η,W)

∂η∂η>

)−1
∂2KL (η,W)

∂η∂W

∣∣∣∣∣
W=W1

. (4.15)

Although Equation 4.15 would be tedious to calculate by hand, it can be calculated exactly
using automatic differentiation in just a few lines of code.

Using S, and a single-term Taylor expansion, we can approximate η∗ (W) and, in turn,
a clustering metric φ (W):

η∗ (W) ≈ η∗Lin (W) := η∗ + S (W −W1) (4.16)

φ (W) = φ (ζ (η∗ (W))) ≈ φLin (W) := φ (ζ (η∗Lin (W))) . (4.17)

Note that the quantities ζ, which are probabilities and must lie between 0 and 1, can be
expected to be extremely non-linear functions of η∗, but they can be calculated quickly for
any given η∗. We take advantage of this fact to make a linear approximation only on η∗

rather than calculating
dpgk
dW

directly.
This is nearly equivalent to the “infinitesimal jackknife” of Jaeckel (1972) (see also Efron

(1982), Chapter 6), where η∗ is thought of as a statistic depending on the data yg. The only
difference is that we linearize η∗ rather than the full statistic φ. In order to avoid confusion
with the jackknife estimator of variance, we will refer to φLin (Wb) as the “linear bootstrap.”
Note that the right-hand side of Equation 4.16 involves only a matrix multiplication once S
has been calculated, but evaluating η∗ (W) exactly for W 6= W1 typically involves re-solving
the optimization problem in Equation 4.11. So although φLin (Wb) is only an approximation,
it can generally be calculated much more quickly than φ (W) (as is shown in Table 4.1
below).

CHAPTER 4. THE LINEAR BOOTSTRAP 95

η∗ (200 inits) η∗Cold (10 inits) η∗Warm (1 init) η∗Lin (given S) S

Time (s): 16088 931 53 0.0003 12

Table 4.1: Median times to compute each bootstrap sample (or related quantities)

Figure 4.2: Cluster quality

4.6 Results

We optimized Equation 4.11 in Python using the trust-ncg method of scipy-optimize

(Virtanen et al., 2020) using an initialization based on K-means. We calculated the necessary
derivatives for the optimization and for Equation 4.15 using the automatic differentiation
library autograd (Maclaurin et al., 2015).

We first found a high-quality optimum for the original dataset (that is, at W = W1)
by choosing lowest KL divergence achieved amongst 200 random restarts. We take this
optimum to be η∗, the value at which we calculate the sensitivity S in Equation 4.15. Then,
for nb = 200 different bootstrap weights Wb, we calculate three different estimates of η∗ (Wb):
“warm starts”, η∗Warm (Wb), which optimize η∗ (Wb) starting at η∗; “cold starts”, η∗Cold (Wb)
which optimize η∗ (Wb) taking the best of ten new random K-means initializations, and the
linear bootstrap estimates, which are η∗Lin (Wb) of Equation 4.16. For each of these three
estimates of η∗ (Wb), we compare the bootstrap distribution of the two stability measures
detailed in Section 4.4. The median times to calculate each of these measures are given in
Table 4.1.

Figure 4.2 shows the distribution of φMI (Wb) and φFM (Wb). Although the bootstrap
based on is η∗Lin (Wb) biased slightly upwards relative to both of the actual bootstraps, it is
a good approximation to the warm start bootstrap.

Finally, we look at the bootstrap standard deviation of the elements of the matrix ζ (Wb).
Figure 4.3 shows the relationship between the co-clustering standard deviation as measured
by η∗Warm (Wb) on the x-axis and η∗Lin (Wb) or η∗Cold (Wb) on the y-axes. Each point in the
graph corresponds to a single value of Wb, so each graph contains B = 200 points. Because
the vast majority pairs have very small standard deviation in both measures of the graph, we
condition on at least one standard deviation being larger than 0.03. For both the cold start

CHAPTER 4. THE LINEAR BOOTSTRAP 96

Figure 4.3: Standard deviations of elements of the co-clustering matrix for a randomly
selected subset of genes. Pairs with standard deviations < 0.03 on both axes are not shown.

and the linear bootstrap, most of the mass lies on the diagonal, indicating a good qualitative
correspondence with the warm start, though there is more frequent extreme deviation in the
linear bootstrap.

4.6.1 Local optima

Many unsupervised clustering problems exhibit multiple local optima in the objective func-
tion, even for permutation-invariant quantities like co-clustering measures, and the problem
described in the present work is no exception. Measures of uncertainty which are based
on local information (like the infinitesimal jackknife) cannot be expected to capture the
frequentist variability due to different initializations leading to substantively different local
optima. The fact that the cold starts have lower-quality co-clustering than the warm starts
in Figure 4.2 indicates that there exist different local optima relatively far from η∗. In this
section, we briefly discuss two additional observations concerning local optima.

One might first ask whether the local optima found by the cold start are much worse than
those found by the warm start. The distribution of KL divergences across the bootstrap
samples is shown in Figure 4.4. Each point in Figure 4.4 corresponds to two different
estimates at the same weights Wb, so there are B = 200 points in each graph. The linear
response KL divergence, which is not evaluated at an actual optimum, is larger than the
corresponding optimal value, as expected. Note that the cold start KL divergence is not
actually noticeably worse than the warm start KL divergence, suggesting that there may
be meaningful frequentist variability due to local optima that is not captured by either
η∗Warm (Wb) nor η∗Lin (Wb).

Finally, we note that the results in Figures 4.2 and 4.3 depend in part on the fact that
we are re-starting the optimization in our bootstrap samples at a high-quality optimum, η∗,
chosen as the best out of 200 random restarts. If, instead, we set η∗ to be the best optimum
found after only 10 random restarts, the results are not quite as good, as seen in Figure 4.5.
This is probably due both to the base set of cluster assignments, ζ in Equation 4.13, is not

CHAPTER 4. THE LINEAR BOOTSTRAP 97

Figure 4.4: Distribution of KL divergence relative to the warm start

Figure 4.5: Results with an initial optimum based on only 10 random restarts rather than
200

as high-quality an optimum, and to the fact that optima near η∗, being of lower quality, is
chosen less often during the bootstrap procedure.

4.7 Conclusion

In this work, we studied the stability of time-course gene expression clustering, using a BNP
model and MFVB inference. We compared the bootstrap, a traditional but computationally
intensive approach to assess stability with a fast, approximate stability assessment procedure,

CHAPTER 4. THE LINEAR BOOTSTRAP 98

the linear bootstrap. Instead of re-sampling the data and refitting the model a large number
of times, the linear bootstrap leverages auto-differentiation tools to obtain a first order
approximation of the re-sampling scheme. We show that the linear bootstrap is a fast and
reasonably accurate alternative to the full bootstrap.

99

Chapter 5

Cross-validation with a Swiss army
infinitesimal jackknife

This chapter is a continuation of the previous two chapters, where we used automatic dif-
ferentiation to evaluate the robustness of the variational posterior. We again work with the
mice gene expression data set from Chapter 4. The aim in this chapter is to run cross-
validation (CV) in order to select the degrees of freedom for a spline smoother in modeling
the time-series of gene expressions.

Cross-validation is a technique that requires repeatedly refitting the model on subsets
of the data and evaluating the predictions on the corresponding held out sets. In this
subsampling set up, the entries of the weight vector in Equation 4.16 are binary: it is one if
the data point appears in the subset, and zero otherwise.

Repeatedly refitting the model can be expensive. In this chapter, we show that the linear
approximation can be a viable replacement for exact CV—specifically, the approximation
selects the same degrees of freedom as exact CV. Moreover, the linear approximation runs
up to an order of magnitude faster than exact CV.

This linear approximation an instance of the infinitesimal jackknife (IJ), a precursor
to cross-validation and the bootstrap (Jaeckel, 1972; Efron, 1982). In combination with
modern automatic differentiation software, the IJ has found relevance in a wide-range of
modern machine learning problems. We dub this method the “Swiss Army infinitesimal
jackknife”: like the Swiss army knife, the IJ provides several possible functionalities from a
single tool. Code and instructions to reproduce our results can be found in the git repository
https://github.com/rgiordan/AISTATS2019SwissArmyIJ.

5.1 Genomics experiment: modeling

We take a slightly different approach to modeling the mice gene expression data (Shoemaker
et al., 2015) than in the previous chapter. Our analysis runs in two stages—first, we regress
the genes on the spline basis, and then we cluster a transformed version of the regression fits.

CHAPTER 5. INFINITESIMAL JACKKNIFE 100

Figure 5.1: B-spline bases with various degrees of freedom. Time is measured in hours.

By modeling in two stages, we both speed up the clustering and allow for the use of flexible
transforms of the fits. We are interested in choosing the smoothing parameter using CV on
the time points. Both the time points and the smoothing parameter enter the regression
objective directly, but they affect the clustering objective only through the optimal regression
parameters. Because the optimization proceeds in two stages, the fit is not the optimum of
any single objective function. However, it can still be represented as an M-estimator as we
detail below.

5.1.1 First stage: regression

We model the time course using cubic B-splines (Figure 5.1). Let α be the degrees of freedom
of the B-splines, and this is the parameter we seek to choose using cross-validation.

For a given degrees of freedom, the B-spline basis is given by an nt×nx matrix X, where
the each column of X is a B-spline basis vector evaluated at the nt timepoints. Note that
nx increases with increasing degrees of freedom.

We only use B-splines to smooth the first 11 timepoints (Figure 5.1). For the last three
timepoints, t = 72, 120, 168, we use indicator functions on each timepoint as three extra
basis vectors. In other words, we append to the regressor matrix three columns, where each
column is 1 if t = 72, 120, or 168, respectively, and 0 otherwise. We do this to avoid numerical
issues in the matrix XTX. Because the later timepoints are more spread out, the B-spline
basis are close to zero at the later timepoints, leading to matrices close to being singular.

With the regressor X defined for some B-spline of with degrees of freedom α, for each gene
g we model P

(
yg|βg, σ2

g

)
= N

(
yg|Xβg, σ2

g

)
. In the second stage, we will cluster βg taking

CHAPTER 5. INFINITESIMAL JACKKNIFE 101

into account its uncertainty on each gene. To do this, we wish to estimate the posterior
mean E[βg|yg] and covariance Cov(βg|yg) with flat priors for both βg and σ2

g .
For each gene, we estimate the posterior with a mean field variational Bayes (MFVB)

approximation q
(
σ2
g , βg; η̂g

)
to the posterior P

(
βg, σ

2
g |yg

)
.

In particular, we take q
(
σ2
g , βg; η̂g

)
= q∗

(
σ2
g

)
q∗ (βg), where q∗

(
σ2
g

)
is a dirac delta func-

tion, and we optimize over its a location parameter; q∗ (βg) is a Gaussian density and we
optimize over its mean and covariance.

The optimal variational approximation has a closed form that is formally identical to
the standard frequentist mean and covariance estimate for linear regression. Explicitly, the
optimal variational distribution is,

q∗(βg) = N
(
βg

∣∣∣ (XTX)−1XTyg, τ̂g(X
TX)−1

)
q∗(σ2

g) = δ{σ2
g = τ̂g},

where

τ̂g =
1

nt − nx
‖yg −X(XTX)−1XTyg‖2

2.

The advantage of the MVFB construction is that η̂g for g = 1, ..., ng satisfies set of ng
independent M-estimation objectives, allowing us to apply our infinitesimal jackknife results.
Specifically, defining θreg :=

(
η1, ..., ηng

)
, we wish to minimize

Freg (θreg, α) =

ng∑
g=1

KL
(
q
(
σ2
g , βg; ηg

)
||P
(
βg, σ

2
g |yg

))
= −

ng∑
g=1

Eq
[
logP

(
βg, σ

2
g |yg

)]
+ Eq

[
log q

(
βg, σ

2
g |ηg

)]
:=

ng∑
g=1

Freg,g (ηg, α) .

Our M-estimator for this first stage is

∂Freg (θreg, α)

∂θreg
= 0.

5.1.2 Second stage: fit a mixture model

We transform the regression coefficients βg before clustering. We are interested in the pattern
of gene expression, not the absolute level, so we wish to cluster ŷg− ¯̂yg, where ¯̂yg is the average
over time points. Noting that the nt × nt matrix Covq

(
ŷg − ¯̂yg

)
is rank-deficient because

CHAPTER 5. INFINITESIMAL JACKKNIFE 102

we have subtracted the mean, the final step is to rotate ŷg − ¯̂yg into a basis where the zero
eigenvector is a principle axis and then drop that component.

Call these transformed regression coefficients γg and observe that Covq (γg) has a closed
form and is full-rank. It is these γgs that we will cluster in the second stage.

We briefly note that the re-centering operation could have been equivalently achieved by
making constant one of the regressors. We chose this implementation because it also allows
the user to cluster more complex, non-linear transformations of the regression coefficients,
though we leave this extension for future work.

If T is the matrix that effects the transformation, then

Eq[γg] = TEq[βg]
Covq(γq) = TCovq(βg)T

T .

The transformed parameters are also regression parameters, just in a different space.
We now define a clustering problem for the γg. Let nk be the number of clusters, and

µ1, ..., µnk be the cluster centers. Also let zgkbe the binary indicator for the gth gene belonging
to cluster k. We then define the following generative model

P (π) = Dirichlet (ω)

P (µk) = N (µk|0,Σ0) for k = 1, ..., nk

P (zgk = 1|πk) = πk for k = 1, ..., nk; n = 1, ..., ng

P (γg|zgk = 1, µk, ηg) = N (γg|µk,Covq (γg) + εInt−1) for k = 1, ..., nk; n = 1, ..., ng.

where ε is a small regularization parameter, which helped our optimization produce more
stable results.

We will estimate the clustering using the maximum a posteriori (MAP) estimator of
θclust := (µ, π). This defines an optimization objective that we seek to minimize:

Fclust (θclust, θreg) = −
ng∑
g=1

Eq∗z

{
logP (γg|ηg, µ, π, zg)− logP (zg|π)

}
− logP (µ)− logP (π)

which, for every value of θreg, we expect to satisfy

∂Fclust (θclust, θreg)

∂θclust
= 0.

Note that θclust involves only the ”global” parameters µ and π. We did take a variational
distribution for the zgks, represented by independent Bernoulli distribution, but the optimal
q∗z can be written as a function of µ and π. Hence, our optimization objective only involves
these global parameters.

In our experiment, the number of clusters nk was chosen to be 10. We set ω to be the
ones vector of length nk. The prior info for the cluster centers Σ0 is 1e-5×I. ε was set to be
0.1.

CHAPTER 5. INFINITESIMAL JACKKNIFE 103

Figure 5.2: Observations from six genes in blue. In red, fits from the first stage regression;
light red lines are samples from the approximate posterior. In green, the cluster centroid to
which that each gene belongs.

We implemented the model in scipy (Virtanen et al., 2020) and computed all deriva-
tives with autograd (Maclaurin et al., 2015). In the results below, the match between
exact cross-validation and the IJ was considerably improved by using a high-quality second-
order optimization method. In particular, for these experiments, we employed the Newton
conjugate-gradient trust region method (Nocedal and Wright, 2006, Chapter 7.1) as im-
plemented by the method trust-ncg in scipy.optimize, preconditioned by the Cholesky
decomposition of an inverse Hessian calculated at an initial approximate optimum. The
Hessian used for the preconditioner was with respect to the clustering parameters only and
so could be calculated quickly, in contrast to the H1 matrix used for the IJ, which includes
the regression parameters as well (see below). We found that first-order or quasi-Newton
methods (such as BFGS) often got stuck or terminated at points with fairly large gradients.
At such points our method does not apply in theory nor, we found, very well in practice.

Figure 5.2 show our model fits. Each gene’s regression line has an inferred cluster mem-
bership given by Eq∗z [zg], and an expected posterior centroid given by

∑
k Eq∗z [zgk]µk. This

expected posterior centroid can be un-transformed to give a prediction for the observation
(green line in figure 5.2). It is the difference between this prediction line — which is a
function of the clustering — and the actual data that we consider to be the ”error” of the
model.

CHAPTER 5. INFINITESIMAL JACKKNIFE 104

5.1.3 Calculating H1 for the IJ

We seek to choose the degrees of freedom α for the B-splines using cross-validation. We leave
out one or more timepoints, and fit using only the remaining timepoints. We then estimate
the test error by predicting the value of the genes at the held out timepoints.

To do this, we define time weights wt by observing that, for each g, the term Eq
[
logP

(
βg, σ

2
g |yg

)]
decomposes into a sum over time points:

Freg,g (ηg, α, w) := −
nt∑
t=1

wt

(
−1

2
σ−2
g

(
yg,t − (Xβg)t

)2 − 1

2
log σ2

g

)
+ Eq

[
log q

(
βg, σ

2
g |ηg

)]
.

We naturally define Freg (θreg, α, w) :=
∑ng

g=1 Freg,g (ηg, α, w) .
By defining θ = (θclust, θreg), we then have an M-estimator

G (θ, w, α) :=

(
∂Freg(θreg ,w,α)

∂θreg
∂Fclust(θclust,θreg)

∂θclust

)
= 0.

The corresponding “Hessian” can be computed in blocks:

H1 =

(
∇2
θreg

Freg 0

∇θreg∇θclustFclust ∇2
θclust

Fclust

)
.

(Note that what we call the ”Hessian” for this two-step procedure is not really a Hessian, as
it is not symmetric. More precisely, it is the Jacobian of G).

Calculating H1 is the most time-consuming part of the infinitesimal jackknife, since the
H1 matrix is quite large (though sparse). However, once H1 is computed, calculating each
θIJ(w) is extremely fast.

5.2 Genomics experiment: results

Figure 5.3 shows that the IJ is a reasonably good approximation to the test set error.1 In
particular, both the IJ and exact CV capture the increase in test error for df = 8, which is
not present in the training error. Thus we see that, like exact CV, the IJ is able to prevent
overfitting. Though the IJ underestimates exact CV, we note that it differs from exact CV
by no more than exact CV itself differs from the true quantity of iterest, the test error.

The timing results for the genomics experiment are shown in Figure 5.4. For this par-
ticular problem with approximately 39, 000 parameters (the precise number depends on the
degrees of freedom), finding the initial optimum takes about 42 seconds. The cost of finding
the initial optimum is shared by exact CV and the IJ, and, as shown in Figure 5.4, is a small
proportion of both.

1In fact, in this case, the IJ is a better predictor of test set error than exact CV. However, the authors
have no reason at present to believe that the IJ is a better predictor of test error than exact CV in general.

CHAPTER 5. INFINITESIMAL JACKKNIFE 105

Figure 5.3: Comparison of held-out accuracies. Here k refers to the number of data points
left out.

The principle time cost of the IJ is the computation of H1. Computing and inverting a
dense matrix of size 39, 000 would be computationally prohibitive. But, for the regression
objective, H1 is extremely sparse and block diagonal, so computing H1 in this case took only
around 360 seconds. Inverting H1 took negligible time. Once we have H−1

1 , obtaining the
subsequent IJ approximations is nearly instantaneous.

The cost of refitting the model for exact CV varies by degrees of freedom (increasing
degrees of freedom increases the number of parameters) and the number of left-out points
(an increasing number of left-out datapoints increases the number of refits). As can be seen
in Figure 5.4, for low degrees of freedom and few left-out points, the cost of re-optimizing is
approximately the same as the cost of computing H1. However, as the degrees of freedom
and number of left-out points grow, the cost of exact CV increases to as much as an order
of magnitude more than that of the IJ.

CHAPTER 5. INFINITESIMAL JACKKNIFE 106

Figure 5.4: Comparison of compute time.

5.3 Conclusion

In this chapter, we demonstrated the performace of the Swiss army infinitesimal jackknife on
a time series dataset of gene expressions, where we wish to use cross-validation to select the
degrees of freedom for a spline smoother. The IJ provides a reasonably accurate approxima-
tion to exact CV, in that it selected the same degrees of freedom as exact CV. Importantly,
the IJ runs up to an order of magnitude faster. Modern automatic differentiation renders
many past practical difficulties with the IJ obsolete, and we recommend consideration of the
Swiss Army infinitesimal jackknife for modern machine learning problems.

107

Chapter 6

Rao-Blackwellized stochastic
gradients for discrete distributions

Models with discrete latent variables appear in several applications from previous chapters.
In cataloging astronomical surveys, the number of light sources present in an image was a
discrete latent variable. In clustering gene expressions, a discrete latent variable encoded
the cluster memberships in a mixture model.

This chapter considers the problem of minimizing objectives with the form

L(η) := Ez∼qη(z) [fη(z)] =
K∑
k=1

qη(k)fη(k), (6.1)

where z is a discrete random variable over K ≤ ∞ categories, with distribution qη(z)
parameterized by a real vector η and differentiable in η. In general, we allow the real-
valued integrand fη to also depend differentiably on η. The ELBO is of this form, with
fη(z) = log p(x, z)− log qη(z).

If K is finite and small enough, we can compute the exact gradient as

∇ηEqη(z)[fη(z)] =
K∑
k=1

{
[∇ηqη(k)] fη(k) + qη(k)∇ηfη(k)

}
. (6.2)

On the other hand, K may be infinite, or large relative to the cost of evaluating qη ·fη. In
either of these cases, which are the focus of this chapter, the exact gradient is computationally
intractable. Thus, in order to optimize L(η), we seek low-variance stochastic approximations
of the gradient.

The “reparametrization trick” (Spall, 2003; Kingma and Welling, 2013; Rezende et al.,
2014) provides efficient stochastic gradients when qη is a continuous distribution, but it does
not apply when z is discrete. Two well-known possibilities in the discrete case are continuous
relaxation (Maddison et al., 2017; Jang et al., 2017) and REINFORCE (Williams, 1992), also
known as the score function estimator. The former replaces the discrete random variable

CHAPTER 6. DISCRETE DISTRIBUTIONS 108

with a continuous relaxation so that the reparametrization trick can be applied. However,
it results in biased gradient estimates. The latter is impractical for most purposes due to its
high variance.

Control variate methodology provides a general framework for variance reduction. Spe-
cific examples include RELAX (Grathwohl et al., 2018), REBAR (Tucker et al., 2017),
NVIL (Mnih and Gregor, 2014), and MuProp (Gu et al., 2016). These methods provide a
mechanism for reducing the variance of REINFORCE, but unfortunately they do not reduce
the variance enough for many applications.

In the current paper, we show how to achieve further variance reduction via a meta-
procedure that can be applied to any discrete-distribution stochastic-gradient procedure
(e.g., REINFORCE or REINFORCE with control variate). Our framework reduces variance
without changing the bias. In particular, an unbiased stochastic gradient remains unbiased
after application of our approach. Further, our approach is “anytime” in the sense that
it can reduce stochastic-gradient variances given any computational budget—the larger the
budget, the greater the variance reduction. Hence it is well suited to our chosen setting,
where K is infinite or very large, and/or qη · fη is expensive to evaluate.

Our method is particularly apt in the setting where the probability mass qη(z) is con-
centrated on only a few categories. For example, in extreme classification, only a few labels
out of many are plausible. In reinforcement learning, only a few actions in the possible
action space are advantageous. Neither control-variate methods nor continuous-relaxation
techniques take advantage of this “sparsity,” and we show that the variance reduction of our
method in this setting can be dramatic.

We show that our variance-reduction meta-procedure is an instance of a general statistical
method called Rao-Blackwellization (Casella and Robert, 1996). Rao-Blackwellization has
been used in previous work to reduce the variance of stochastic gradients (Ranganath et al.,
2013; Titsias and Lázaro-Gredilla, 2015), but in a setting orthogonal to ours, one with
multivariate discrete random variables. Our focus here is on a univariate discrete random
variable with many categories. Our method can be applied in conjunction with the former
work to extend to the case of multivariate discrete random variables, each with a large
number of categories. This extension is not discussed in the present work, and we leave it
as an avenue of future exploration.

This chapter is organized as follows. We present our variance-reduction procedure in
Section 6.1 and make the connection to Rao-Blackwellization in Section 6.2, demonstrat-
ing that our technique necessarily reduces stochastic-gradient variances. In Section 6.3 we
discuss related work. In Section 6.4, we exhibit the benefits of our procedure on synthetic
data, a semi-supervised classification problem, and a pixel attention task. We conclude in
Section 6.5.

CHAPTER 6. DISCRETE DISTRIBUTIONS 109

6.1 Method

We consider the situation where the number of categories K is infinite, or very large in
the sense that computing the exact gradient in Equation 6.2 is intractable. One possible
stochastic estimator for the gradient is the REINFORCE estimator,

fη(z)∇η log qη(z) +∇ηfη(z) z ∼ qη(z), (6.3)

which one can check is unbiased for the true gradient in Equation 6.2.
In practice, the REINFORCE estimator often has variance too large to be useful. Control

variates have been proposed to decrease the variance of the REINFORCE estimator. The
key observation is that the score function ∇η log qη(z) has zero expectation under qη(z), so

[fη(z)− C]∇η log qη(z) +∇ηfη(z) z ∼ qη(z) (6.4)

is still unbiased for the true gradient. Several proposals have been put forth for choosing C
to reduce the variance (Mnih and Gregor, 2014; Gu et al., 2016; Tucker et al., 2017).

In this paper, we present a meta-procedure that can be applied to any stochastic es-
timator for the gradient of a discrete expectation obtained by sampling from qη(z). Let
g(z) be any such estimator which is unbiased1, i.e., satisfies Eqη(z)[g(z)] = ∇ηEqη(z)[fη(z)].
An example is the REINFORCE estimator. We decompose the expectation Eqη(z)[g(z)] into
two components: one containing the high-probability atoms of qη, and one containing the
remaining atoms. We compute the exact contribution of the high-probability component to
the expectation, and we use a stochastic estimator for the other component. The idea comes
from observing that in many applications, qη(z) only puts significant mass on a few cate-
gories. If g(z) is reasonably well behaved over z, then qη(z)g(z) is large when qη(z) attains
its largest values and smaller elsewhere. By computing the high-probability component of
the expectation exactly, we obtain a value already close to correct. A stochastic estimator
is then added to correct, on average, for what error remains.

Formally, let Ck be the set of z such that qη(z) assumes one of its k largest values. Ties
may be broken arbitrarily. Let C̄k denote the complement of Ck. Then

∇ηEqη(z)[fη(z)] = Eqη(z)[g(z)] (6.5)

= Eqη(z)[g(z)I{z ∈ Ck}+ g(z)I{z ∈ C̄k}] (6.6)

=
∑
z∈Ck

qη(z)g(z) + Eqη(z)[g(z)I{z ∈ C̄k}]. (6.7)

It remains to approximate the expectation in the second term. We use an importance-
sampling approximation based on a single draw from an importance distribution. We choose
a simple importance distribution: the distribution of qη conditional on the event C̄k. We
denote this importance distribution by qη|C̄k . By construction, the importance weighting

1Our technique applies to biased estimators as well. For concreteness, we focus on the unbiased case.

CHAPTER 6. DISCRETE DISTRIBUTIONS 110

function is identically equal to qη(C̄k), regardless of which z ∼ qη|C̄k we draw. (Note that
the indicator inside the second term of Equation 6.7 always equals one, because we are only
sampling from z ∈ C̄k.)

Our estimator assumes that, given k, the set Ck can be identified at little cost. This
certainly holds in the case of inference: using variational Bayes, q(z) is a variational approx-
imate posterior chosen from a set we designate.

In summary, we estimate the gradient as

ĝ(v) =
∑
z∈Ck

qη(z)g(z) + qη(C̄k)g(v) where v ∼ qη|C̄k (6.8)

which also satisfies Ev[ĝ(v)] = ∇ηEqη(z)[fη(z)].
We see that the first term of this estimator is deterministic and the second term is

random, but scaled by qη(C̄k), which is small when qη is concentrated on a small number
of atoms. Therefore, we intuitively expect this estimator to have smaller variance than the
original estimator, g(z).

In the next section, we confirm this intuition by interpreting the construction of the
estimator ĝ(v) as Rao-Blackwellization (which always reduces variance). Hence, we call ĝ(v)
the Rao-Blackwellized gradient estimator.

6.2 Theory

We begin by describing how a suitable representation of the original discrete variable z ∼
qη(z) allows us to interpret our estimator as an instance of Rao-Blackwellization. Let qη|Ck
denote the distribution of qη conditional on the event Ck. Consider the three independent
random variables

u ∼ qη|Ck , (6.9)

v ∼ qη|C̄k , (6.10)

and b ∼ Bernoulli
(
qη(C̄k)

)
. (6.11)

The triplet (u, v, b) provides a distributionally equivalent representation of z:

T (u, v, b)
d
= z, (6.12)

where

T (u, v, b) := u1−bvb. (6.13)

The estimator in Equation 6.8 can then be written as

ĝ(v) = E [g(T (u, v, b))|v] , (6.14)

CHAPTER 6. DISCRETE DISTRIBUTIONS 111

where g(z) is the original unbiased gradient estimator. To see this, break the right-hand side
of Equation 6.14 into two terms according to the value of b, then simplify. Equation 6.14
demonstrates directly that our estimator is an instance of Rao-Blackwellization. As such, it
has the same expectation as the original estimator g(z), a fact about Rao-Blackwellization
that follows immediately from iterated expectation. In particular, if g(z) is unbiased as we
have assumed, so too is our estimator.

An application of the conditional variance decomposition gives

Var [g(z)] =Var [ĝ(v)] + E {Var [g(T (u, v, b))|v]} , (6.15)

showing that ĝ has lower variance than g, by at least as much as the last term in Equa-
tion 6.15. This too is a standard result about Rao-Blackwellization.

Proposition 1 further quantifies this variance reduction, showing the variance of ĝ(v)
must be less then the variance of g(v) by the multiplicative factor qη(C̄k).

Proposition 1. Let g(z) be an unbiased gradient estimator as in Equation 6.5 and ĝ(v)
denote the Rao-Blackwellized estimator defined in Equation 6.8. Then

Var[ĝ(v)] ≤ qη(C̄k)Var[g(z)]. (6.16)

Proof. We apply the conditional variance decomposition. Let ε = qη(C̄k) and recall the
Bernoulli random variable b defined in Equation 6.11. First,

Var[g(z)] = E[Var[g(z)|b]] + Var[E[g(z)|b]] (6.17)

≥ E[Var[g(z)|b]] (6.18)

= εVar[g(z)|z ∈ C̄k] + (1− ε)Var[g(z)|z ∈ Ck]
≥ εVar[g(z)|z ∈ C̄k].

But Var[ĝ(v)] = ε2Var[g(z)|z ∈ C̄k], which in combination with the above yields the result.

The multiplicative factor of variance reduction guaranteed by Rao-Blackwellization can
be significant if the probability mass of qη(z) is concentrated on just a few categories. But
while Rao-Blackwellization reduces the variance of g(z), this comes at the cost of evaluating
g(z) a total k + 1 times (cf. Equation 6.8). An initial stochastic gradient g(z) such as
REINFORCE will only require a single evaluation of g.

There is an alternative approach to reducing the variance of an initial estimator g(z) via
multiple evaluations of g(z): minibatching, i.e., simple Monte-Carlo averaging over indepen-
dent draws of z. Thus, the question arises: given a budget of N < K evaluations of g(z), is
it better to Rao-Blackwellize or minibatch? Computationally, our method is parallelizable in
the same way that minibatching is parallelizable. The next proposition shows constructively
that there is a choice of k ≤ N for which Rao-Blackwellization reduces variance at least as
much as minibatching.

CHAPTER 6. DISCRETE DISTRIBUTIONS 112

Proposition 2. Suppose we have a budget of N evaluations of g. Consider the estimators

ĝN,k(v) :=
∑
u∈Ck

qη(u)g(u) +
qη(C̄k)
N − k

N−k∑
j=1

g(vj), (6.19)

v1, ..., vN−k
iid∼ qη|C̄k

and

gN(z) :=
1

N

N∑
j=1

g(zj), z1, ..., zN
iid∼ qη. (6.20)

If we choose

k̂ = argmin
k∈{0,...,N}

qη(C̄k)
N − k

(6.21)

then Var[ĝN,k̂(v)] ≤ Var[gN(z)].

Proof. Let V1 = Var[g1(z)]. Then Var[gN(z)] = (1/N)V1, while Proposition 1 shows that

Var[ĝN,k(v)] ≤ qη(C̄k)

N−k V1. Since qη(C̄k)

N−k = 1
N

when k = 0, the result follows.

Together, Propositions 1 and 2 imply the following:

� Rao-Blackwellization leads to a significant variance reduction if the mass of qη(z) is
concentrated.

� Even when restricting minibatched versions of the initial and Rao-Blackwellized esti-
mators to an equal number of evaluations of g, Rao-Blackwellization yields equal or
lower variance, for a computable choice of k.

6.3 Related Work

Methods to reduce the variance of stochastic gradients for discrete distributions generally
fall into two broad categories: continuous relaxation methods and control variate methods.

In the first category, the Concrete distribution (Maddison et al., 2017) approximates the
discrete random variable with a reparametrizable continuous random variable so that the
standard reparametrization trick can be applied. While this continuous relaxation reduces
the variance of the stochastic gradient, the resulting estimators are biased. Thus the Gumbel-
softmax procedure (Jang et al., 2017) introduced an annealing step into the optimization
whereby the continuous relaxation converges towards the discrete random variable as the
optimization path moves forward.

In the second category, control variate methods include black-box variational inference
(BBVI) (Ranganath et al., 2013), NVIL (Mnih and Gregor, 2014), DARN (Gregor et al.,

CHAPTER 6. DISCRETE DISTRIBUTIONS 113

2014), and MuProp (Gu et al., 2016). BBVI uses multiple samples at each step to estimate
the ‘optimal’ control variate. NVIL introduces an observation dependent control variate
learned by a separate neural network. DARN uses a Taylor expansion of fη(z) to compute a
control variate, but this results in a biased estimator; MuProp proposes an estimate of this
bias and corrects it.

Finally, RELAX (Grathwohl et al., 2018) and REBAR (Tucker et al., 2017) are a com-
bination of the two broad methods and use a continuous relaxation to construct a control
variate.

Section 6.4 compares both continuous relaxation and control variate methods to our
Rao-Blackwellization.

A Rao-Blackwellization procedure for gradient estimation was also applied in BBVI and
“local expectation gradients” (Titsias and Lázaro-Gredilla, 2015), but for a different purpose.
In their setting, the expectation is decomposed over a multivariate (discrete or continuous)
random variable using iterated expectation. BBVI approximates each conditional expecta-
tion by sampling (with a control variate), while local expectation gradients compute each
conditional expectation analytically. This Rao-Blackwellization is orthogonal to our ap-
proach: while they consider multiple discrete random variables, our approach focuses on a
univariate discrete with many categories.

The process of summing out a few terms and sampling the remainder for gradient estima-
tion has appeared in the context of reinforcement learning (Titsias, 2014; Liang et al., 2018),
though to our knowledge we are the first to make the connection with Rao-Blackwellization.
In MAPO (Liang et al., 2018), a procedure to create a memory buffer of trajectories for
policy optimization, the terms with high rewards (or small loss) are kept and summed. In
contrast, we choose to sum terms with high probability. In our setting, it is the loss fη(z),
not the probability, qη(z), that is expensive to evaluate for all categories z.

Finally, the problem of having a large number of categories also manifests in language
models, and methods such as noise contrastive estimation (Gutmann and Hyvärinen, 2012)
and hierarchical softmax (Morin and Bengio, 2005) have been introduced. However, these
methods are applied when the normalizing constant for qη(z) is intractable. In our work, we
restrict ourselves to scenarios where qη(z) is normalized.

6.4 Experiments

In our experiments, we will consider applying the Rao-Blackwellization procedure to either
the REINFORCE estimator,

g(z) = fη(z)∇η log qη(z) +∇ηfη(z), z ∼ qη(z), (6.22)

or REINFORCE with a control variate C,

g(z) = [fη(z)− C]∇η log qη(z) +∇ηfη(z), z ∼ qη(z). (6.23)

CHAPTER 6. DISCRETE DISTRIBUTIONS 114

Figure 6.1: The loss function at each iteration in the Bernoulli experiments. Each line is an
average over 20 trials from the same initialization. Zero categories summed is the original
estimator, while eight categories summed returns the exact gradient.

A simple choice of control variate that works well in practice is to take C = fη(z
′) for an

independent draw z′ ∼ qη. We abbreviate this estimator as REINFORCE+.
Note that in both REINFORCE and REINFORCE+, g(z) is unbiased for the true gra-

dient. (In the second case, g(z) is unbiased conditional on z′, and hence unconditionally
unbiased as well.)

6.4.1 Bernoulli latent variables

We fix a vector p = [0.6, 0.51, 0.48]> and seek to minimize the loss function

E
b1,b2,b3

iid∼Bern(σ(η))

{ 3∑
i=1

(bi − pi)2
}

(6.24)

over η ∈ R, where σ(η) is the sigmoid function. Here, the discrete random vector b =
[b1, b2, b3]> is supported over K = 23 = 8 categories. The optimal value of σ(η) is 1,
approached as η →∞.

Figure 6.1 shows the performance of Rao-Blackwellizing REINFORCE and REINFORCE+.
We initialized η at η = −4, so the sampling distribution has large mass at b = (0, 0, 0). The
optimal distribution on the other hand should put all mass at b = (1, 1, 1). In other words, we
initialized the optimization procedure such that the mass is concentrated on the wrong point.
The Rao-Blackwellized gradient is therefore initially slightly slower than the original gradi-
ent, since we are analytically summing the wrong category. However, Rao-Blackwellization
improves the performance of both gradient estimators at the end of the path.

Figure 6.2 shows the variances of the gradient estimates at η = 0 and η = −4, as
a function of k, the categories analytically summed. As expected, the variance decreases
as more categories are analytically summed. At η = 0, the corresponding qη distribution is
uniform, i.e., maximally anti-concentrated, so the variance reduction of Rao-Blackwellization

CHAPTER 6. DISCRETE DISTRIBUTIONS 115

Figure 6.2: The distribution of gradient estimates from REINFORCE+ in the Bernoulli
experiments. We examine the gradients at η = 0 and η = −4, as a function of k, the number
of categories summed. Summing out categories reduces variance. The reduction is large at
η = −4 where the variational distribution is concentrated on just one category. (Note there
is still some random noise when we sum out all 8 categories here, because of the random
control variate.)

is not large. However, the gains are quite substantial at η = −4, where qη is concentrated
around the point b = (0, 0, 0). In this case, analytically summing out one category removes
nearly all the variance.

6.4.2 Gaussian mixture model

For our next experiment, we draw N = 200 observations (yn) from a d-dimensional Gaussian
mixture model with K = 10 components, taking d = 2. The generative model is,

zn
iid∼ Categorical(π1:K), n = 1, . . . , N, (6.25)

µk
iid∼ N (0, σ2

0Id×d), k = 1, . . . , K, (6.26)

yn|zn, µ
iid∼ N (µzn , σ

2
yId×d), n = 1, . . . , N. (6.27)

Here each µk is a Gaussian centroid and each zn is a cluster membership indicator.
As exact inference of the posterior p(µ, z|y) is intractable, we approximate it variation-

ally (Blei et al., 2017) with the mean-field family

q(µ,z) =
K∏
k=1

q(µk)
N∏
n=1

q(zn). (6.28)

Here

q(µk) = δ{µk = µ̂k}, (6.29)

q(zn) = Categorical (π̂n) , (6.30)

CHAPTER 6. DISCRETE DISTRIBUTIONS 116

where δ{· = µ̂k} is the Dirac-delta function.
We then seek to minimize KL(q(µ, z)‖p(µ, z|y)) over the variational parameters µ̂ and π̂.

This is equivalent to maximizing the ELBO

N∑
n=1

Eq(zn;πn)

[
log

p(yn|µ̂, zn)p(zn)

q(zn)

]
+

K∑
k=1

log p(µ̂k). (6.31)

Note that the expectation over zn is a summation over K = 10 categories. Figure 6.3
compares the performance of unbiased stochastic gradients produced from REINFORCE+ to
the Rao-Blackwellization of REINFORCE+ for optimization of the ELBO in Equation 6.31.

Unlike the Bernoulli example, we are also optimizing parameters inside the expecta-
tion; specifically, in this case we are jointly optimizing the variational mean parameters µ̂k
alongside the π̂n. We expect that more quickly learning the latent categories zn aids the
optimization process, since the mean parameters depend on the cluster memberships.

We initialized the optimization withK-means. Figure 6.3 shows that Rao-Blackwellization
improves the convergence rate, with faster convergence when more categories are summed.
With summing just three categories, we nearly recover the same ELBO trajectory of the
exact gradient, which sums all ten categories. We chose K = 10 as an example so we can
compare against the exact gradient; with larger K, computing the exact gradient will become
intractable and stochastic methods such as ours will be required.

We also examine here the computational trade-off. Our Rao-Blackwellized estimator with
k categories summed requires k+1 evaluations of the original REINFORCE+ estimator. For
a fairer comparison, we also consider the benefits of variance reduction obtained from simple
Monte-Carlo sampling, where k + 1 samples of the REINFORCE+ estimator are averaged
at each iteration. In this experiment, Rao-Blackwellization yields better performance than
Monte-Carlo averaging. This is because for most observations, memberships are fairly unam-
biguous and so q(z) is concentrated. This is the regime where our theory suggests significant
variance reduction using Rao-Blackwellization.

6.4.3 An example with countably infinite K

We give an example to demonstrate our method when there is a countably infinite number
of categories. Consider the N-mixture model,

N ∼ Poisson(λ) (6.32)

yi ∼ Binomial(N, p) for i = 1, ..., n, (6.33)

a model used in ecological modeling of species counts (Royle, 2004).
In our experiment, we take p and λ to be known parameters. We want to infer N given

data y1, ..., yn. Since the support of N in the exact posterior is the integers greater than
or equal to ymax := maxn {yn}, we use a negative binomial distribution shifted by ymax

CHAPTER 6. DISCRETE DISTRIBUTIONS 117

Figure 6.3: Results for Gaussian mixture model experiment. (Left) Simulated data. (Right)
Solid lines display the negative ELBO per iteration using REINFORCE+, for k categories
summed. Zero categories summed is the original REINFORCE+ estimator, while 10 cate-
gories summed returns the analytic gradient. Dashed lines show performance when n ∈ {2, 4}
draws of the REINFORCE+ estimator are averaged at each iteration to reduce variance.
Each line is an average over 20 trials from the same initialization.

to approximate the posterior. Let r̂ and p̂ be the number of failures and the probability of
success, respectively, for a negative binomial. We optimize the ELBO,

L(r̂, p̂) = Eq(N ;r̂,p̂)[log p(y|N)p(N)− log q(N ; r̂, p̂)] (6.34)

This expectation is taken over N and is given by an infinite sum. The exact expectation is
intractable. However, we have a closed form variational distribution, and for any r̂ and p̂,
it is easy to find the integers N where q(N ; r̂, p̂) places most of its mass. We therefore can
apply our Rao-Blackwellization procedure to compute stochastic gradients of the ELBO.

In our experiment, we take the true N = 10 and p = 0.2. We drew 1000 data points from
Equation 6.33. We set our Poisson prior with λ = 10.

We found that the REINFORCE estimator was too high variance to be useful in this
example, so we start with REINFORCE+. Figure 6.4 compares the REINFORCE+ estimator
with its Rao-Blackwellization, using either k = 1 or k = 3 categories summed.

We find that our Rao-Blackwellization improves the convergence rate of the ELBO. This
is because our variational distribution eventually concentrates around the true N (Figure 6.4,
right), and only a few categories have significant mass.

6.4.4 Generative semi-supervised classification

Semi-supervised models

The goal of a semi-supervised classification task is to predict labels y from x, but where the
training set consists of both labeled data (x, y) ∼ DL and unlabeled data x ∼ DU . The
approach proposed by Kingma et al. (2014) uses a variational autoencoder (VAE) whose

CHAPTER 6. DISCRETE DISTRIBUTIONS 118

Figure 6.4: (Left) Negative ELBO per iteration in the N-mixture experiment. We compare
the REINFORCE+ estimator with its Rao-Blackwellization, using either k = 1 or k =
3 categories summed. Vertical lines denote standard errors over 10 trials from the same
initialization. (Right) Negative binomial variational distribution q at convergence.

latent space is joint over a Gaussian variable z and the discrete label y. The training
objective is to learn a classifier qφ(y|x), an inference model qφ(z|x, y), and a generative
model pθ(x|y, z). On labeled data, the variational lower bound is

log pθ(x, y) ≥ LL(x, y) (6.35)

:= Eqφ(z|x,y)[log pθ(x|y, z) + log pθ(z)+

log pθ(y)− log qφ(z|x, y)] (6.36)

On unlabeled data, the unknown label y is treated as a latent variable and integrated out,

log pθ(x) ≥ LU(x) (6.37)

:= Eqφ(z|x,y)qφ(y|x)[log pθ(x|y, z)+
log pθ(z) + log pθ(y)−
log qφ(z|x, y)− log qφ(y|x)] (6.38)

= Eqφ(y|x)[LL(x, y)− log qφ(y|x)] (6.39)

The full objective to be maximized is

J = Ex∼DU [LU(x)] + E(x,y)∼DL [LL(x, y)] + αE(x,y)∼DL [log qφ(y|x)] (6.40)

where the third term is added for the classifier qφ(y|x) to also train on labeled data. α is a
hyperparameter which we set to 1.0 in our experiments.

We take z to be a continuous random variable with a standard Gaussian prior. Hence,
gradients can flow through z using the reparametrization trick. However, y is a discrete
label. The original approach proposed by Kingma et al. (2014) computed the expectation

CHAPTER 6. DISCRETE DISTRIBUTIONS 119

Figure 6.5: Results on the semisupervised MNIST task. Plotted is test set negative ELBO
evaluated at the MAP label. Paths are averages over 10 runs from the same initialization.
Vertical lines are standard errors. Our method (red) is comparable with summing out all
ten categories (black).

in Equation 6.39 by exactly summing over the ten categories. However, most images are
unambiguous in their classification, so qφ(y|x) is often concentrated on just one category.
We will show that applying our Rao-Blackwellization procedure with one category summed
gives results comparable to computing the the full sum, more quickly.

Experimental Results

We work with the MNIST dataset (Lecun et al., 1998). We used 50 000 MNIST digits in the
training set, 10 000 digits in the validation set, and 10 000 digits in the test set. Among the
50 000 MNIST digits in the training set, 5 000 were randomly selected to be labeled, and the
remaining 45 000 were unlabeled.

To optimize, we Rao-Blackwellized the REINFORCE estimator. We compared against
REINFORCE without Rao-Blackwellization; the exact gradient with all 10 categories summed;
REINFORCE+; Gumbel-softmax (Jang et al., 2017); NVIL (Mnih and Rezende, 2016); and
RELAX (Grathwohl et al., 2018).

For all methods, we used performance on the validation set to choose step-sizes and other
parameters. See Section 6.6 for details concerning parameters and model architecture.

Figure 6.5 shows the negative ELBO, −LL(x, y), on the test set evaluated at the MAP
label as a function of epoch. In this experiment, our Rao-Blackwellization with one category
summed (RB-REINFORCE) achieves the same convergence rate as the original approach
where all ten categories are analytically summed. Moreover, our method achieves comparable
test accuracy, at 97%. Finally, our method requires about 18 seconds per epoch, compared
to 31 seconds per epoch when using the full sum (Table 6.1).

In comparing with other approaches, we clearly improve upon the convergence rate of
REINFORCE. We slightly improve on RELAX. On this example, REINFORCE+, NVIL,

CHAPTER 6. DISCRETE DISTRIBUTIONS 120

Table 6.1: Accuracies and timing results on semi-supervised MNIST classification. Standard
errors of test accuracies are over 10 runs of each method. Standard deviations of timing are
over the 100 epochs of 10 runs. Training was run on a p3.2xlarge instance on Amazon Web
Services.

Method test acc. (SE) secs/epoch (SD)
RB-REINFORCE 0.965 (0.001) 17.5 (1.8)
Exact sum 0.966 (0.001) 31.4 (3.2)
REINFORCE 0.940 (0.002) 15.7 (1.6)
REINFORCE+ 0.953 (0.001) 17.2 (1.7)
RELAX 0.966 (0.001) 29.8 (3.0)
NVIL 0.956 (0.002) 17.5 (1.8)
Gumbel-softmax 0.954 (0.001) 16.4 (1.7)

Figure 6.6: The conditional generation of MNIST digits. Each row displays five draws from
the learned generative model z ∼ N (0, I), x ∼ pθ(x|y, z), for a different digit y in each row.

and Gumbel-softmax also give results comparable to ours.
Figure 6.6 displays the conditional generation of MNIST digits obtained after 100 epochs

of running our Rao-Blackwellized gradient method.

6.4.5 Moving MNIST

In this section, we use a hard-attention mechanism (Mnih et al., 2014; Gregor et al., 2015)
to model non-centered MNIST digits. We choose this problem because, as will be seen, the
exact stochastic gradient is intractable due to the large number of categories. However, only
a few of the categories will have significant probabilities.

Like the original VAE work (Kingma and Welling, 2013), we learn an inference model
qφ(z|x) and generative model pθ(x|z), where z is a low-dimensional, continuous representation
of the MNIST digit x. Unlike the previous section, we are no longer using the class label.
However, we now work with a non-centered MNIST digit, and in order to train the inference
and generative models, we must also infer the pixel at which the MNIST digit is centered.

More precisely, our generative model is as follows. For each image, we sample a two-vector

CHAPTER 6. DISCRETE DISTRIBUTIONS 121

representing the pixel at which to center the original 28× 28 MNIST image:

` ∼ Categorical(H ×W). (6.41)

Here H and W are respectively the height and width, in pixels, of the larger image frame
on which the MNIST digit will be placed. We take H = W = 68 in our experiments.

Next, we generate the non-centered MNIST digit as

z ∼ N (0, Id), (6.42)

xh,w|`, z
ind∼ Bernoulli(µ(z)[h− `0, w − `1]), . (6.43)

for h ∈ {0, ..., H − 1} and w ∈ {0, ...,W − 1}. Here µ is a neural network that maps z ∈ Rd

to a grid of mean parameters µ(z) ∈ R28×28. In Equation 6.43, we take µ(z)[a, b] = 0 if
(a, b) /∈ [0, 28]2.

In this way, x ∈ RH×W is a random sample of an image containing a single non-centered
MNIST digit on a blank background (Figure 6.7).

Hence, we need to learn not only the generative model for an MNIST digit, but also
the pixel at which the digit is centered. Our two latent variables are zn and `n. We find a
variational approximation to the posterior using an approximating family of the form

`n|xn ∼ Categorical(ζ(xn)), (6.44)

zn|xn, `n ∼ N (hµ(xn, `n), hΣ(xn, `n)), (6.45)

where ζ, hµ, and hΣ are neural networks. Section 6.6 details the architecture for the neural
networks.

REINFORCE was too high variance to be practical here, so we started with REINFORCE+

and its Rao-Blackwellization. Here, we chose to sum the top five categories. We again com-
pare with NVIL, Gumbel-softmax, and RELAX. For all the methods, we use a validation
set to tune step-sizes and other parameters.

Figure 6.8 shows the negative ELBO on the test set evaluated at the MAP pixel location
as a function of epoch. RELAX converged to a similar ELBO as our method, but did so at
a slower rate. While NVIL also converged quickly, it converged to a worse negative ELBO
than our method.

Gumbel-softmax did not appear to converge to a reasonable ELBO. We believe that
the bias of this procedure was too high in this application. In particular, because we are
constrained to sampling discrete values for the pixel attention, we must use the straight-
through version of Gumbel-softmax (Bengio et al., 2013; Jang et al., 2017), which suffers
from even higher bias.

Our method is more computationally expensive per epoch than the others (Table 6.2).
However, the gains in convergence are still substantive: for example, it takes about 44 seconds
for our method to reach a negative ELBO of 500, while it takes RELAX about 110 seconds.

Figure 6.9 displays (1) the original non-centered MNIST digit; (2) the reconstruction
of the MNIST digits after passing through our attention mechanism and VAE; and (3) the

CHAPTER 6. DISCRETE DISTRIBUTIONS 122

Figure 6.7: Examples of non-centered MNIST digits

Figure 6.8: Results on the moving MNIST task. Plotted is test set negative ELBO evaluated
at the MAP pixel location. Paths are averages over 10 runs from the same initialization.
Vertical lines are standard errors. Our Rao-Blackwellization (red) with summing out the top
five categories exhibits the fastest convergence and reaches a smaller negative ELBO than
NVIL and REINFORCE+.

Table 6.2: Timing results on the moving MNIST task. Standard deviations of timing are
over the 50 epochs of 10 runs. Training was run on a p3.2xlarge instance on Amazon Web
Services.

Method secs/epoch (SD)
RB-REINFORCE+ 15.4 (2.3)
REINFORCE+ 8.9 (1.3)
RELAX 11.1 (1.6)
NVIL 9.5 (1.4)
Gumbel-softmax 8.7 (1.2)

learned pixel locations. Our method performs best because it is the only one that takes
advantage of the fact that only a few digit positions have high probabilities. Summing these
positions analytically removes much of the variance.

CHAPTER 6. DISCRETE DISTRIBUTIONS 123

Figure 6.9: (Left column) The original MNIST digit. (Center column) The reconstructed
MNIST digit. (Right column) The learned probability distribution over the grid of pixels.
Brighter spots indicate higher probabilities.

6.5 Conclusion

Efficient stochastic approximation of the gradient ∇ηEqη(z)[fη(z)], where z is discrete, is a
basic problem that arises in many probabilistic modelling tasks. We have presented a general
method to reduce the variance of stochastic estimates of this gradient, without changing the
bias. Our method is grounded in the classical technique of Rao-Blackwellization. Experi-
ments on synthetic data and two large-scale MNIST modeling problems show the practical
benefits of our variance-reduced estimators.

We have focused on the particular setting where z is a univariate discrete random variable,
which is relevant for many applications. In other situations, multiple discrete variables will
naturally appear in the expectations being optimized. Treating these as a single discrete
variable over the Cartesian product of the sample spaces may make such problems amenable
to our Rao-Blackwellization approach.

In addition, many multivariate discrete distributions arising in modeling applications
will be structured (e.g., the discrete-space latent Markov chain of an HMM). Local expec-
tation gradients (Titsias and Lázaro-Gredilla, 2015) reduce high-dimensional expectations
over these multivariate discrete distributions to iterated univariate expectations through
appropriate conditioning on variable sets. Our technique can then be applied for variance
reduction in computing the univariate expectations. This is an avenue of future research.

CHAPTER 6. DISCRETE DISTRIBUTIONS 124

6.6 Experiment technical details

Implementations of all methods in this chapter as well as code to reproduce our results can be
found in the git repository https://github.com/Runjing-Liu120/RaoBlackwellizedSGD.

6.6.1 Generative semi-supervised classification

In this experiment, our classifier qφ(y|x) consists of three fully connected hidden layers, each
with 256 nodes and ReLU activations. The inference and generative models, qφ(z|x, y) and
pθ(x|z, y), both have one hidden layer with 128 nodes and ReLU activations, similar to the
MLPs used in Kingma et al. (2014). The latent variable z is five dimensional and qφ(z|x) is
multivariate Gaussian with diagonal covariance.

For all methods, we used performance on a validation set to choose between the possible
step-sizes, {5e-5, 1e-4, 5e-4, 1e-3, 5e-3}. For Gumbel-softmax, we also chose the annealing
rate among {1e-5, 5e-5, 1e-4, 5e-4}. For RELAX, the relaxation temperature was chosen
adaptively using gradients, while the scaling parameter was set at 1.0.

The step-size for REINFORCE was chosen to be 1e-4 and the step-size for RELAX was
chosen to be 5e-4. The step-size for the remaining methods were chosen to be 1e-3. The
annealing rate for Gumbel-softmax was chosen to be 5e-4.

Optimization was done with Adam (Kingma and Ba, 2014), with parameters β1 = 0.9,
β2 = 0.999. An initialization for qφ(z|x, y) and pθ(x|z, y) was obtained by first optimizing
LL(x, y) on the labeled data only. We also initialized qφ(y|x) on the labeled data using
cross-entropy loss. The results in the paper show the optimization of the semi-supervised
ELBO starting from this initialization.

6.6.2 Moving MNIST

For the decoder p(x|l, z) we use one fully connected hidden layer with 256 nodes and tanh
activations, similar to the architecture described in (Kingma and Welling, 2013). Our z is 5
dimensional.

The attention mechanism q(l|x) contains four convolutional layers, each with 7 output
channels and ReLU activations; the final layer is a fully connected layer with a softmax.
The encoder network q(z|x) has one fully connected hidden layer with 256 nodes and tanh
activations, mirroring the decoder network.

We again used performance on the validation set to choose between the possible step-sizes
and model parameters as described in the section above. The learning rate and annealing rate
for Gumbel-sofmax was chosen to be 5e-5 and 5e-4, respectively. For RELAX, the learning
rate was 5e-4. The step-sizes for the remaining procedures were chosen to be 1e-3. We again
use Adam Kingma and Ba (2014) for optimization, and we set β1 = 0.9, β2 = 0.999.

125

Bibliography

Timothy M.C. Abbott, Filipe B. Abdalla, Alex Alarcon, et al. Dark energy survey year
1 results: Cosmological constraints from galaxy clustering and weak lensing. Physical
Review D, 98(4), 2018.

Deokkeun An, Jennifer A. Johnson, James L. Clem, et al. Galactic globular and open clusters
in the Sloan Digital Sky Survey. I. crowded-field photometry and cluster fiducial sequences
in ugriz. The Astrophysical Journal Supplement Series, 179(2):326–354, 2008.

Edgar Anderson. The species problem in iris. Annals of the Missouri Botanical Garden, 23
(3):457–509, 1936.

Bastien Arcelin, Cyrille Doux, Eric Aubourg, Cécile Roucelle, and LSST Dark Energy Science
Collaboration. Deblending galaxies with variational autoencoders: a joint multiband,
multi-instrument approach. Monthly Notices of the Royal Astronomical Society, 500(1):
531–547, 2021.

Sanjib Basu, Sreenivasa R. Jammalamadaka, and Wei Liu. Local posterior robustness with
parametric priors: Maximum and average sensitivity. In Maximum Entropy and Bayesian
Methods, pages 97–106. Springer, 1996.

Matthew Beal and Zoubin Ghahramani. The variational Bayesian EM algorithm for incom-
plete data: with application to scoring graphical model structures. Bayesian Statistics,
2002.

Yoshua Bengio, Nicholas Leonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation, 2013. https://arxiv.org/abs/
1308.3432.

Michael J. Betancourt and Mark Girolami. Hamiltonian Monte Carlo for hierarchical models,
2013. https://arxiv.org/abs/1312.0906.

Patrick Billingsley. Probability and Measure. John Wiley and Sons, second edition, 1986.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

BIBLIOGRAPHY 126

David M Blei and Michael I. Jordan. Variational inference for Dirichlet process mixtures.
Bayesian Analysis, 1(1):121–143, 2006.

David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. Variational inference: A review for
statisticians. Journal of the American Statistical Association, 112(518):859–877, 2017.

Jörg Bornschein and Yoshua Bengio. Reweighted wake-sleep, 2014. https://arxiv.org/

abs/1406.2751.

James Bosch, Robert Armstrong, Steven Bickerton, et al. The hyper suprime-cam software
pipeline. Publications of the Astronomical Society of Japan, 70(SP1):1–39, 2018.

James Bradbury, Roy Frostig, Peter Hawkins, et al. JAX: composable transformations of
Python+NumPy programs, 2018. URL http://github.com/google/jax.

Brendon J. Brewer, Daniel Foreman-Mackey, and David W. Hogg. Probabilistic catalogs for
crowded stellar fields. The Astronomical Journal, 146(1):7–15, 2013.

George Casella and Christian P. Robert. Rao-Blackwellisation of sampling schemes.
Biometrika, 83(1):81–94, 1996.

Richard M. Dudley. Real analysis and probability. CRC Press, 2018.

Bradley Efron. The Jackknife, the Bootstrap, and Other Resampling Plans, volume 38.
Society for Industrial and Applied Mathematics, 1982.

ESAHubble. Hubble’s instruments: ACS – advanced camera for surveys. https://

esahubble.org/about/general/instruments/acs/, 2021. [Accessed: 2021-02-21].

Richard M Feder, Stephen K. N. Portillo, Tansu Daylan, and Douglas Finkbeiner. Multiband
probabilistic cataloging: a joint fitting approach to point-source detection and deblending.
The Astronomical Journal, 159(4):163–188, 2020.

Thomas S. Ferguson. A Bayesian analysis of some nonparametric problems. The Annals of
Statistics, pages 209–230, 1973.

Ronald Fisher. The use of multiple measurements in taxonomic problems. Annals of eugenics,
7(2):179–188, 1936.

Wendell Fleming. Functions of several variables. Springer Science & Business Media, 2012.

G. David Forney. The Viterbi algorithm. Proceedings of the IEEE, 61(3):268–278, 1973.

E. B. Fowlkes and C. L. Mallows. A method for comparing two hierarchical clusterings.
Journal of the American Statistical Association, 78(383):553–569, 1983.

BIBLIOGRAPHY 127

Peter Galbusera, Lens Lens, Tine Schenck, Edward Waiyaki, and Erik Matthysen. Genetic
variability and gene flow in the globally, critically-endangered taita thrush. Conservation
Genetics, 1:45–55, 2000.

Andrew Gelman and Donald B. Rubin. Inference from iterative simulation using multiple
sequences. Statistical Science, 7(4):457–472, 11 1992.

Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, and Donald B.
Rubin. Bayesian Data Analysis, Third Edition. Chapman & Hall/CRC Texts in Statistical
Science. Taylor & Francis, 2013.

Ryan Giordano. On the Local Sensitivity of M-Estimation: Bayesian and Frequentist Appli-
cations. PhD thesis, University of California, Berkeley, 2019.

Ryan Giordano, Tamara Broderick, and Michael I. Jordan. Covariances, robustness and
variational Bayes. Journal of Machine Learning Research, 19(51), 2018.

Will Grathwohl, Dami Choi, Yuhuai Wu, Geoff Roeder, and David Duvenaud. Backprop-
agation through the void: Optimizing control variates for black-box gradient estimation.
In International Conference on Learning Representations, 2018.

Gregory M. Green, Edward Schlafly, Catherine Zucker, Joshua S. Speagle, and Douglas
Finkbeiner. A 3D dust map based on Gaia, Pan-STARRS 1, and 2MASS. The Astrophys-
ical Journal, 887(1):93–120, 2019.

Peter J. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian
model determination. Biometrika, 82:711–732, 1995.

Karol Gregor, Andriy Mnih, and Daan Wierstra. Deep autoregressive networks. In Interna-
tional Conference on Machine Learning, 2014.

Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Rezende, and Daan Wierstra. DRAW: a
recurrent neural network for image generation. In International Conference on Machine
Learning, 2015.

Shixiang Gu, Sergey Levine, Ilya Sutskever, and Andriy Mnih. MuProp: Unbiased back-
propagation for stochastic neural networks. In International Conference on Learning Rep-
resentations, 2016.

Paul Gustafson. Local sensitivity of posterior expectations. Annals of Statistics, 24(1):
174–195, 1996.

Paul Gustafson. Local Robustness in Bayesian Analysis, pages 71–88. Springer New York,
New York, NY, 2000.

BIBLIOGRAPHY 128

Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation
principle for unnormalized statistical models. In International Conference on Artificial
Intelligence and Statistics, 2012.

Yashar D. Hezaveh, Laurence Perreault Levasseur, and Philip J. Marshall. Fast automated
analysis of strong gravitational lenses with convolutional neural networks. Nature, 548
(7669):555–557, 2017.

Geoffrey E. Hinton, Peter Dayan, Brendan J. Frey, and Radford M. Neal. The wake-sleep
algorithm for unsupervised neural networks. Science, 268(5214):1158–1161, 1995.

Matthew Hoffman, Francis Bach, and David Blei. Online learning for latent Dirichlet alloca-
tion. In Advances in Neural Information Processing Systems, volume 23, pages 856–864.
Curran Associates, Inc., 2010.

Matthew D. Hoffman and Andrew Gelman. The no-u-turn sampler: Adaptively setting
path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15(1):
1593–1623, 2014.

Matthew D. Hoffman, David M. Blei, Chong Wang, and John Paisley. Stochastic variational
inference. Journal of Machine Learning Research, 14(4):1303–1347, 2013.

Xiaosheng Huang, Manuel Domingo, Andrew Pilon, et al. Finding strong gravitational lenses
in the DESI DECam Legacy survey. The Astrophysical Journal, 894(1):78–106, 2020.

Louis A. Jaeckel. The infinitesimal jackknife, memorandum. Technical report, MM 72-1215-
11, Bell Lab. Murray Hill, NJ, 1972.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with Gumbel-
softmax. In International Conference on Learning Representations, 2017.

Michael I. Jordan, Zoubin Ghahramani, Tommi I. Jaakkola, and Lawrence K. Saul. An
introduction to variational methods for graphical models. Machine Learning, 37:183–233,
1999.

Rudalf E. Kalman. A New Approach to Linear Filtering and Prediction Problems. Journal
of Basic Engineering, 82(1):35–45, 1960.

Diederik P. Kingma and Jimmy Ba. Adam: a method for stochastic optimization, 2014.
https://arxiv.org/abs/1412.6980.

Diederik P. Kingma and Max Welling. Auto-encoding variational Bayes, 2013. https:

//arxiv.org/abs/1312.6114.

Diederik P. Kingma, Danilo Jimenez Rezende, Shakir Mohamed, and Max Welling. Semi-
supervised learning with deep generative models, 2014. https://arxiv.org/abs/1406.

5298.

BIBLIOGRAPHY 129

Steven G. Krantz and Harold R. Parks. The implicit function theorem: History, theory, and
applications. Springer Science & Business Media, 2012.

Alp Kucukelbir, Dustin Tran, Rajesh Ranganath, Andrew Gelman, and David M. Blei.
Automatic differentiation variational inference. Journal of Machine Learning Research, 18
(14):1–45, 2017.

Franccois Lanusse, Rachel Mandelbaum, Siamak Ravanbakhsh, Chun-Liang Li, Peter Free-
man, and Barnabas Poczos. Deep generative models for galaxy image simulations, 2020.
https://arxiv.org/abs/2008.03833.

Franccois Lanusse, Quanbin Ma, Nan Li, et al. CMU DeepLens: deep learning for automatic
image-based galaxy–galaxy strong lens finding. Monthly Notices of the Royal Astronomical
Society, 473(3):3895–3906, 2017.

Tuan Anh Le, Adam R. Kosiorek, N. Siddharth, Yee Whye Teh, and Frank Wood. Revisiting
reweighted wake-sleep for models with stochastic control flow. In Uncertainty in Artificial
Intelligence, pages 1039–1049, 2020.

Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Chen Liang, Mohammad Norouzi, Jonathan Berant, Quoc Le, and Ni Lao. Memory aug-
mented policy optimization for program synthesis with generalization. In Neural Infor-
mation Processing Systems, 2018.

LSST. About LSST. https://www.lsst.org/about/dm, 2020. [Accessed: 2020-12-01].

Yihui Luan and Hongzhe Li. Clustering of time-course gene expression data using a mixed-
effects model with B-splines. Bioinformatics, 19(4):474–482, 2003.

Robert Lupton, James E. Gunn, Zeljko Ivezic, Gillian R. Knapp, Stephen Kent, and
Naoki Yasuda. The SDSS imaging pipelines, 2001. https://arxiv.org/abs/astro-ph/

0101420.

Dougal Maclaurin, David Duvenaud, and Ryan P. Adams. Autograd: Effortless gradients in
NumPy. In International Conference on Machine Learning (ICML) AutoML Workshop,
2015.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A con-
tinuous relaxation of discrete random variables. In International Conference on Learning
Representations, 2017.

Andriy Mnih and Karol Gregor. Neural variational inference and learning in belief networks.
In International Conference on Machine Learning, 2014.

BIBLIOGRAPHY 130

Andriy Mnih and Danilo Jimenez Rezende. Variational inference for Monte Carlo objectives.
In International Conference on Machine Learning, 2016.

Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. Recurrent models of visual attention.
In Advances in Neural Information Processing Systems, 2014.

Frederic Morin and Yoshua Bengio. Hierarchical probabilistic neural network language
model. In International Conference on Artificial Intelligence and Statistics, 2005.

Radford Neal and Geoffrey Hinton. A view of the EM algorithm that justifies incremental,
sparse, and other variants. Learning in graphical models, 89:355–368, 2000.

Radford M. Neal. MCMC using Hamiltonian dynamics, 2012.

Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, New York, NY,
USA, second edition, 2006.

Stephen K. N. Portillo, Benjamin C. G. Lee, Tansu Daylan, and Douglas P. Finkbeiner.
Improved point-source detection in crowded fields using probabilistic cataloging. The
Astronomical Journal, 154(4):132–156, 2017.

Jonathan K. Pritchard, Matthew Stephens, and Peter Donnelly. Inference of population
structure using multilocus genotype data. Genetics, 155(2):945–959, 2000.

Anil Raj, Matthew Stephens, and Jonathan K. Pritchard. fastSTRUCTURE: Variational
inference of population structure in large SNP data sets. Genetics, 197(2):573–589, 2014.

Rajesh Ranganath, Sean Gerrish, and David M. Blei. Black box variational inference, 2013.
https://arxiv.org/abs/1401.0118.

Jeffrey Regier, Jon D. McAuliffe, and Prabhat. A deep generative model for astronomical
images of galaxies. In NIPS Workshop on Advances in Approximate Bayesian Inference,
2015.

Jeffrey Regier, Andrew C. Miller, David Schlegel, Ryan P. Adams, Jon D. McAuliffe, and
Prabhat. Approximate inference for constructing astronomical catalogs from images. The
Annals of Applied Statistics, 13(3):1884–1926, 2019.

David M. Reiman and Brett E. Göhre. Deblending galaxy superpositions with branched
generative adversarial networks. Monthly Notices of the Royal Astronomical Society, 485
(2):2617–2627, 2019.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation
and approximate inference in deep generative models, 2014. https://arxiv.org/abs/

1401.4082.

BIBLIOGRAPHY 131

Andrew J. Royle. N-mixture models for estimating population size from spatially replicated
counts. Biometrics, 60(1):108–115, 2004.

Olga Russakovsky, Jia Deng, Hao Su, et al. ImageNet large scale visual recognition challenge.
International Journal of Computer Vision, 115(3):211–252, 2015.

Ata Sarajedini, Luigi R. Bedin, Brian Chaboyer, et al. The ACS survey of galactic globular
clusters. The Astronomical Journal, 133(4):1658–1672, 2007.

Edward F. Schlafly, Gregory M. Green, Dustin Lang, et al. The DECam plane survey:
Optical photometry of two billion objects in the southern galactic plane. The Astrophysical
Journal Supplement Series, 234(2):39–58, 2018.

SDSS. Scope. https://www.sdss.org/dr16/scope/, 2020. [Accessed: 2020-12-23].

Jayaram Sethuraman. A constructive definition of Dirichlet priors. Statistica sinica, pages
639–650, 1994.

Jason E. Shoemaker, Satoshi Fukuyama, Amie J. Eisfeld, et al. An ultrasensitive mechanism
regulates influenza virus-induced inflammation. PLoS Pathogens, 11(6):1–25, 2015.

Robert H. Shumway and David S. Stoffer. State space models, chapter 6. Springer Texts in
Statistics. Springer International Publishing, 2017.

James C. Spall. Introduction to Stochastic Search and Optimization. John Wiley & Sons,
Inc., New York, NY, USA, 1st edition, 2003.

Peter B. Stetson. DAOPHOT: A computer program for crowded-field stellar photometry.
Astronomical Society of the Pacific, 99:191–222, 1987.

John D. Storey, Wenzhong Xiao, Jeffrey T. Leek, Ronald G. Tompkins, and Ronald W.
Davis. Significance analysis of time course microarray experiments. Proceedings of the
National Academy of Sciences of the United States of America, 102(36):12837–42, 2005.

Yee Whye Teh, Michael I Jordan, Matthew J Beal, and David M Blei. Hierarchical Dirichlet
processes. Journal of the American Statistical Association, 101(476):1566–1581, 2006.

Michalis K. Titsias. Combine Monte Carlo with exhaustive search: Effective variational
inference and policy gradient reinforcement learning. In NIPS Workshop: Advances in
Approximate Inference, 2014.

Michalis K. Titsias and Miguel Lázaro-Gredilla. Local expectation gradients for black box
variational inference. In Neural Information Processing Systems, 2015.

George Tucker, Andriy Mnih, Chris J. Maddison, John Lawson, and Jascha Sohl-Dickstein.
REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models. In
Neural Information Processing Systems, 2017.

BIBLIOGRAPHY 132

Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information theoretic measures for
clusterings comparison: Variants, properties, normalization and correction for chance.
Journal of Machine Learning Research, 11:2837–2854, 2010.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, et al. SciPy 1.0: Fundamental algorithms
for scientific computing in Python. Nature Methods, 17:261–272, 2020.

Ulrike von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17:395–416,
2007.

Martin J. Wainwright and Michael I. Jordan. Graphical models, exponential families, and
variational inference. Foundations and Trends in Machine Learning, 1(1–2):1–305, 2008.

Chong Wang, John Paisley, and David Blei. Online variational inference for the hierarchical
Dirichlet process. In Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, volume 15, pages 752–760. JMLR Workshop and Conference
Proceedings, 2011.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist rein-
forcement learning. Machine Learning, 8(3–4):229–256, 1992.

Edward L. Wright, Peter R. M. Eisenhardt, Amy K. Mainzer, et al. The wide-field in-
frared survey explorer (WISE): Mission description and initial on-orbit performance. The
Astronomical Journal, 140(6):1868–1881, 2010.

Bo Xin, Zeljko Ivezic̀, Robert H. Lupton, et al. A study of the point-spread function in SDSS
images. The Astronomical Journal, 156(5):222–232, 2018.

Bin Yu. Stability. Bernoulli, 19(4):1484–1500, 2013.

Cheng Zhang, Judith Bütepage, Hedvig Kjellström, and Stephan Mandt. Advances in vari-
ational inference. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41
(8):2008–2026, 2019.

