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Abstract Efficient and safe production of hydraulically fractured reservoirs9

benefits from the prediction of their geometrical attributes. Geophysical meth-10

ods have the potential to provide data that is sensitive to fracture geometries,11

alleviating the typically sparse nature of in situ reservoir observations. More-12

over, surface-based methods can be logistically and economically attractive13

since they avoid operational interference with the injection-well infrastruc-14

ture. This contribution investigates the potential of the surface-based time-15

domain electromagnetic (EM) method. EM methods can play an important16

role owing to their sensitivity to injection-induced fluid property changes. Two17

other advantageous factors are the EM signal-enhancing effect of vertical steel-18

cased wells and the fact that injected proppants can be enhanced to produce19

a stronger electrical conductivity contrast with the reservoir’s connate fluid.20

Nevertheless, an optimal fracture characterization will no doubt require the21

integration of EM and reservoir injection and production data. We hence carry22

out our investigations within a hydrogeophysical parameter estimation frame-23

work where EM data and injection flow-rates are combined in a fully coupled24

way. Given the interdisciplinary nature of coupled hydrogeophysical inverse25

modeling, we dedicate one section to laying out key aspects in a didactic man-26

ner.27
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1 Introduction31

With the onset of high production from land-based unconventional hydro-32

carbon reservoirs, the characterization of hydraulically fractured zones has33

become an important factor for production optimization. Efficient production34

requires prediction of the extent, orientation, and active surface area of frac-35

tures or fracture networks that are created and/or activated. Remotely sensing36

geophysical methods promise to provide a relatively inexpensive set of tools37

for deriving fracture attributes [16,29], given their generally larger spatial cov-38

erage compared to well data. Two classes of geophysical methods, seismic and39

electromagnetic, are sensitive to the hydromechanical property changes ac-40

companying fracture evolution as well as hydraulic state changes in existing41

fractures.42

Using active (artificially sourced) seismic methods, one can utilize the43

fracture-induced occurrence of anisotropy in P-wave attenuation [12] and the44

scattering of seismic waves [18]. Passive seismic methods sense microearthquake45

(MEQ) activity when injected fluids create new fractures or reactivate existing46

ones, thus providing reservoir feedback in terms of the evolution of fracture47

permeability [35].48

MEQ surveys have become critical input to simulations involving discrete49

fracture models (DFM). Coupled geomechanical modeling [51] and flow simu-50

lation in MEQ-derived DFMs are used to predict stimulated reservoir volume51

(SRV). SRV estimates are critical for optimal well placement; however, they52

can be uncertain due to the following reasons. First, MEQ event locations53

strongly depend on the (seismic) velocity model used. Moreover, SRV esti-54

mates can change dramatically when velocity models are updated. Even when55

MEQ event locations are accurate, by themselves MEQ events cannot tell if56

an injected proppant has reached the MEQ locations or if fractures associated57

with MEQ events are connected to the well bore. Additionally, a proppant58

reaching existing fractures does not guarantee measureable MEQ events. Prop-59

pants are solid materials designed to prevent the closing of induced fractures60

[34].61

Electromagnetic (EM) methods have proven their potential for remote frac-62

ture characterization [2,32]. Further, they can alleviate some of the aforemen-63

tioned shortcomings, while being an economic alternative to seismic methods,64

mainly due to their strong sensitivity to property changes caused by fluid sub-65

stitution [25,38,49]. Additives to proppants can further enhance the sensitiv-66

ity by boosting an injectate’s electrical properties, thus magnifying reservoir67

changes [24].68

EM geophysical systems can roughly be divided between borehole tools69

and non-borehole tools. Borehole source and receiver tools operate inside wells70

and are thus limited in terms of power and source-receiver separations. This71

translates into limited depth of investigation away from the borehole. Surface72

EM systems make use of the same physics as borehole tools. However, they73

enable both higher source moments and larger source-receiver separations,74

thus allowing for larger depths of investigation [43]. For example, numerical75
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sensitivity studies have indicated that conventional surface EM exploration76

systems can detect fractures at a depth of 3 km [28].77

Generally, all EM methods suffer from a loss of spatial resolution with78

increasing depth of investigation. Compared to seismic systems, the resolu-79

tion loss with distance occurs at a higher rate, because the energy loss due to80

propagation is much higher. For surface EM source configurations, the spatial81

resolution loss with depth can be mitigated by exploiting the metallic electrical82

conductivity of vertical steel-cased boreholes. By placing the current-injecting83

source electrodes in the vicinity of steel-cased boreholes, the highly conductive84

casing can act as a vertical antenna with an extended source dipole moment,85

thus providing an enhanced electrical connection to the reservoir. This can86

amplify EM responses due to subtle reservoir property changes and hence87

make them measurable at the surface. Three-dimensional (3D) numerical ver-88

ifications of this concept have focused on hydraulic fracture monitoring [28,89

15].90

The present work is a proof-of-concept for the characterization of deep91

fracture zones by using joint inverse modeling of EM and hydrological data.92

We consider a scenario modeled after an undisclosed field case, where the93

injection point is located at a depth of 2145 m below ground surface. The94

case involves the time-domain EM (TEM) method [36] used in a configuration95

where both transmitter and receivers are at the surface. In comparison to96

in situ measurements, the surface setup can be economically advantageous97

by avoiding a potential interference with injection well infrastructure during98

operation.99

Fusing hydrological with geophysical methods is a rapidly evolving disci-100

pline, e.g. [44,46,47]; within, hydrogeophysical fracture characterization is cur-101

rently at an even more infant state due to the involved complexities. Geophys-102

ical data types that have been employed for this purpose are crosshole seismic103

traveltimes [11], seismic scattered wavefield data [30], and ground-penetrating104

radar [6,17,41]. This work advances hydrogeophysical fracture characterization105

by exploring the TEM method. While the TEM method has proven its moni-106

toring potential for fracture applications [28,50], to the best of our knowledge,107

it has not yet been part of inverse-modeling for fracture identification.108

We also incorporate recent findings about the steel-casing effect [45] into109

the 3D TEM-data simulation module. Our overarching coupled hydrogeophys-110

ical inversion scheme estimates hydraulic permeability and geometry parame-111

ters of a stimulated fracture zone in a 3D parametric manner, where a steel-112

casing approximation is part of an electrical conductivity background model.113

Injection flow-rate data and TEM data are inverted separately and jointly in114

order to demonstrate the improved geometrical resolution.115

Given the interdisciplinary nature of this type of hydrogeophysical joint116

inversion application, we dedicate Section 2.4 to exposing essential aspects in117

an explanatory way.118
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2 Methodology: Hydrogeophysical inversion for estimating fracture119

parameters120

Enhanced production from hydraulically fractured reservoirs requires the ap-121

praisal of bulk geometrical and hydraulic fracture properties in order to obtain122

SRV estimates. However, most realistic scenarios involve geometrically fine123

and complex fracture networks with spatial scales below the minimum resolv-124

able scales that result from the spatial resolution loss of remotely-sensing EM125

methods. We thus represent stimulated fractures and associated networks of126

secondary, small fractures as a continuum with a hydraulic permeability that127

is distinct from the background. The main stimulated fracture and associated128

secondary fracture network are thereby conceptualized as a single continuum129

that occupies a geometrically discrete zone. For example, Fig. 1 illustrates the130

parametric representation of a 3D ellipsoidal fracture continuum, described by131

the following parameters:132

1. Background hydraulic permeability (kb)133

2. Fracture continuum hydraulic permeability (kf )134

3. Spatial fracture continuum extension in x (Dx)135

4. Spatial fracture continuum extension in y (Dy)136

5. Spatial fracture continuum extension in z (Dz)137

6. Azimuth angle138

The ellipsoid’s center coincides with the fluid injection point used for both139

hydraulic fracturing and post-fracturing characterization. The injection point140

is connected to the surface through a vertical steel casing of length 2145 m.141

To provide enough of an EM signal difference with respect to the pre-142

injection state, a large enough electrical conductivity contrast needs to exist143

between the injection zone and the rest of the formation. Recent research144

has focused on contrast agents, i.e. additive substances that increase the elec-145

trical properties of injected fluids with respect to the connate fluids of the146

surrounding formation, e.g. [37]. We simulate the injection of such a conduc-147

tively enhanced fluid taking place over a 70-minutes period, where the flow148

rate is measured at the injection point. A total of 50 samples are distributed149

over the injection period, representing our hydrological data set that is to be150

complemented by a geophysical (TEM) data set.151

2.1 Simplifying assumptions152

Our proof-of-concept involves both geometrical and conceptual simplifications.153

First, the fracture zone represented by a continuum has an ellipsoidal shape154

approximating a vertical, sheet-like structure. One of its horizontal extensions,155

here chosen to be Dy, is set as known and relatively small compared to the156

other axes. Table 1 (column “True value”) lists the 6 actual values of the157

forward-modeling input parameters.158
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Fig. 1 Illustration of the representation of a fracture network by an ellipsoidal region in a
Cartesian coordinate system. The ellipsoid mimics a fracture continuum described by size
parameters (Dx, Dy , Dz) and one rotational degree of freedom given by an azimuth angle.
The parameterization does not consider a vertical inclination. The center point is fixed in
the inversion and coincides with the injection point.

Table 1 Parameter bounds, actual values, initial guesses, and estimates. Permeability val-
ues k are given in milliDarcy (mD, 1mD ≈ 10−15 m2) and the SI unit m2 where a logarithmic
transform is used in the inversion. The model parameter Y-extent (Dy) is kept fixed during
the inversion. Stimulated reservoir volumes (SRV) are calculated from the size parameters
Dx,Dy ,Dz for an ellipsoidal shape.

Lower Upper True Starting Estimated: Estimated:
Parameter type

bound bound value guess Flow-rate inversion Joint inversion
Permeability k (mD) 0.1 10,000 1 10 4 0.964
of rock matrix log10(k) (m2) -16 -11 -15 -14 -14.398 -15.016
Permeability k (mD) 10 107 1,000 30,200 991 992
of frac. cont. log10(k) (m2) -14 -8 -12 -10.523 -12.004 -12.003
X-extent Dx (m) 50 700 250 400 119.69 254.37
Y-extent Dy (m) - - 20 - - -
Z-extent Dz (m) 50 700 90 150 113.76 89.86
Azimuth (deg) N/A N/A 0 20 172.27 0.27
Estimated SRV (106m3) 0.0262 5.1313 0.2356 0.6283 0.1426 0.2394
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The geometrical simplification is based on research that the evolution of159

single, wide, and sheet-like fractures can be favored by oriented well perfora-160

tions [1]. Such casing perforations would be required to be aligned in the di-161

rection that the formation is most likely to fracture when applying hydraulic162

pressure. On the other hand, it has been argued that despite the usage of163

oriented perforations, other factors such as formation heterogeneity and/or164

formation dip can still lead to less predictable and geometrically more compli-165

cated fractures, e.g., [22]. While our model includes no background formation166

heterogeneity, we still allow for some additional complexity by means of a ro-167

tational degree of freedom. As shown in Fig. 1, this is given by the azimuth168

angle with respect to the z -axis which coincides with the vertical borehole.169

The second geometrical simplification ignores the presence of horizontal170

well sections, that is, the fracture zone is assumed to be at the bottom of the171

vertical well. Furthermore, the assumption of a homogeneous and isotropic172

background holds for both the hydraulic and geophysical properties. The back-173

ground permeability is constant at 1 mD (milliDarcy), or 10−15 m2, and the174

electrical conductivity is constant at σ=10−2 S/m, which is equivalent to a175

resistivity of ̺=100 Ωm. Note that this article uses both conductivity and its176

inverse, resistivity.177

Our conceptual model simplification involves the exclusion of porosity pa-178

rameters in the inverse modeling, thus assuming a fixed storativity of the179

fracture and non-fractured aquifer. The evolution of the flow rate over time de-180

pends on the hydraulic diffusivity, which is the ratio of hydraulic conductivity181

and storativity. While these two quantities cannot be identified independently182

from single-hole data, their ratio can. Hence, we opt to adjust only perme-183

ability, while storativity is fixed. The late-time flow evolution also depends on184

the properties of the non-fractured aquifer. However, since the non-fractured185

portion has a much lower hydraulic diffusivity compared to the fracture, its186

parameters cannot be identified during the high-flow-rate portion of the test,187

because leak-off into the matrix is very minor compared to the total flow rate.188

Leak-off could potentially be estimated from the long tail of the flow rate data,189

however this is not the objective of our analysis.190

The electromagnetic properties of our model involve two simplifications.191

The first ignores directionally dependent electrical conductivity, i.e. anisotropy.192

Owing to the heterogeneity of fractured pore space, as illustrated by the up-193

per Fig. 1, preferential fluid flow can cause preferential current flow and thus194

an anisotropy effect. Thin alternating sequences of resistive and conductive195

sediments, can, for example, cause the same kind of anisotropy [42,31]. Our196

approxmiation by a thin ellipsoid may account for this to some degree. A more197

flexible way involves an appropriate bulk anisotropy coefficient [3], represent-198

ing another inversion parameter, which we omit here for our goal of a simple199

proof-of-concept. A separate coefficient can be introduced to handle anisotropy200

of the formation away from the fracture.201

Note that effects due to electrical anisotropy are distinct from the casing202

effect. The latter causes vertical current-channeling and horizontal current203
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leak-off due to the casing’s metallic conductivity. Our simulations approximate204

these effects as will be detailed below.205

Finally, we assume the absence of polarizable and ferromagnetic materials206

by assigning the permittivity and magnetic permeability of vacuum to both207

the fracture zone and the surrounding media. Induced polarization effects can208

play a role in fracture imaging, for example when rocks exhibit dispersivity [8],209

and, especially, when injected proppants are engineered to exhibit capacitive210

behaviour [7,4].211

2.2 Hydrogeophysical inverse-modeling framework212

Inverse modeling enables us to explore and compare the informational content213

of the two data types considered here. These are total fluid flow rates measured214

at the injection point and time-domain electric fields excited and recorded215

at the surface. The merging of these two different data types in an inverse-216

modeling scheme involves a multiphysics forward modeling scheme, where the217

primary forward modeling operator simulates all processes related to the flow218

of injected fluid. It is given by the flow and transport simulator TOUGH2219

[39], which has modeling capabilities for multiphase, multicomponent, and220

non-isothermal flows in fractured-porous media.221

To account for the simulation of the TEM data acquisition at predefined222

calibration times during the fluid injection process, a secondary forward mod-223

eling operator is coupled to the flow and transport simulator. We call it sec-224

ondary, because the physical processes that are related to the TEM survey225

simulation are controlled by the (primary) physical system describing the fluid226

injection. In other words, the flow state within the reservoir at a given (flow)227

time t after injection begin controls the evolution of electrical properties, the228

latter being the forward modeling input to the TEM simulator.229

Our inversion driver is based on iTOUGH2, an inverse-modeling imple-230

mentation for TOUGH2 which contains additional tools for parameter sen-231

sitivity and uncertainty analysis [20]. For parameter estimation of TOUGH2232

input (forward modeling) parameters, iTOUGH2 offers, among others, the233

Levenberg-Marquardt (L-M) modification of the Gauss-Newton algorithm which234

we use here. We use a modified version of iTOUGH2, called MPiTOUGH2 [14].235

MPiTOUGH2 couples the TOUGH2 flow simulation to a variety of modular-236

ized seismic and electromagnetic geophysical simulators, where the employed237

TEM module is based on a parallel finite-difference implementation [48,13].238

MPiTOUGH2 uses the Message Passing Interface (MPI) for parallel calcula-239

tion of sensitivities needed for the L-M optimization as well as for the parallel240

solution of all partial differential equation systems resulting from the coupled241

forward-modeling operators.242

The L-M optimization involves minimizing the quadratic approximation of243

the regularized objective function244

Θ =
(

zobs
− z(m))T C−1

zz (zobs
− z(m)

)

, (1)
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where245

zobs =

(

zobs
h

zobs
g

)

is a vector of size N = NH + NG, combining NH hydrological (flow-rate) and246

NG geophysical (TEM) data given by their individual stacks zobs
h and zobs

g ,247

respectively. Further, Czz is the a priori covariance matrix which is a diagonal248

N × N matrix containing the observation errors, m is the vector of M model249

parameters, and z(m) is the composite vector of forward-modeling responses.250

Eq. 1 can be augmented by an additional regularization term. However, our251

parametric inversion for predefined shape parameters of a 3D fracture con-252

tinuum already represents a strongly regularized case. Thus, Eq. 1 uses no253

additional regularization term.254

2.3 Hydrogeophysical inversion of flow and geophysical data255

The fact that Eq. 1 involves a stacked data vector, zobs, combining hydrologi-256

cal and geophysical observations, renders the minimization a hydrogeophysical257

inverse problem. The hydrological literature discusses many hydrogeophysical258

inverse applications. For example, Hinnell et al. (2010) provide a detailed dis-259

cussion and comparison between the coupled inversion scheme and its coun-260

terpart, the uncoupled scheme. Many references therein point to applications261

of both schemes.262

Expressed in a simplified way, the uncoupled scheme involves (usually two)263

separate (or sequential) inversions, each one minimizing a system of the type of264

Eq. 1. The first one is essentially a conventional geophysical inversion, with the265

vector of geophysical observations zobs
g as data input. Converting its output,266

typically a spatial map of geophysical properties at a given (flow) time t,267

to some form of hydrological proxy data z̃obs
h at that time t precedes the268

subsequent inversion, now for hydrological (fluid-flow-controlling) properties.269

In this latter inversion, the data input would thus be the stacked vector270

zobs =

(

zobs
h

z̃obs
h

)

of actual hydrological data (zobs
h ) and the added proxy-data component (z̃obs

h ).271

The uncoupled workflow could be applied to our parametric type of inverse272

problem. To be most effective, this would require a parametric implementa-273

tion of the TEM data inversion. An alternative would involve inverting the274

TEM data for electrical conductivity on a dense pixel-based parameter grid.275

However, given the generally ill-posed nature of over-parameterized inversions,276

the fracture’s electrical conductivity image would likely be prone to inversion277

artifacts. Artifacts would manifest in erroneous entries of z̃obs
h , thus adversely278

affecting the subsequent hydrological inversion.279

While the discussion about the advantages of coupled versus uncoupled280

inversion schemes is ongoing, e.g. [9], we do not pursue this question any fur-281

ther here and choose a coupled approach. Our choice is based on the fact that282
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the parametric type of inversion estimates structural parameters together with283

permeability parameters, thus somewhat making the intermediate geophysical284

inversion step (if using an uncoupled scheme) redundant.285

Generally, both uncoupled and coupled schemes integrate hydrological and286

geophysical data types in order to carry out the estimation of hydrological287

properties that control the dynamic nature of the fluid-injection process. This288

is different to conventional geophysical joint inverse problems that, for ex-289

ample, combine seismic and electrical data seeking to delineate geophysical290

property contrasts of static targets, e.g. [21]. We therefore want to dedicate291

the next section to explain in a more pedagogic manner how flow and TEM292

data are joined within our coupled inversion framework.293

2.4 Coupled inversion illustrated294

Hydrogeophysical inversion schemes essentially have the goal of estimating295

those forward-modeling input parameters that control fluid flow. Geophysical296

observations can aid the estimation because they are indirectly sensitive to297

either spatial or temporal changes in hydrological material properties and/or298

flow states. This sensitivity stems from the fact that most geophysical ma-299

terial properties, such as electrical resistivity or seismic velocity, can be cast300

into hydrological proxy variables. Hence, they can be regarded as functional301

combinations of multiple hydrological quantities, often combining both mate-302

rial properties (e.g., porosity, density) and state variables (e.g. solute/tracer303

concentration, water/gas saturation). For example, the bulk rock electrical304

resistivity ̺ is often calculated as a function305

̺ = ̺(Φ, S, ̺f ), (2)

combining the quantities porosity Φ, fluid saturation S, and fluid electrical306

resistivity ̺f , where in our case the latter depends on solute (brine) concen-307

tration, C, that is, ̺f=̺f (C). Note that all these input quantities to ̺ are308

pertinent to the primary physical system describing our fluid injection sce-309

nario.310

Fig. 2 illustrates how Eq. 2 connects the physical (hydro) system, describing311

fluid injection and flow, to a physical system for modeling the TEM data312

acquisition. For this illustrative example, we simulate the injection of brine into313

a shallow freshwater aquifer taking place over 5 days. A constant horizontal314

pressure gradient drives the spread of the injected fluid (from left to right).315

Hydraulic permeability is the governing hydrological material property that316

defines preferential flow paths and thus the brine’s spatial spread over time.317

The bottom panel in Fig. 2 depicts the underlying actual permeability model,318

also indicating a major preferential flow path along the model bottom.319

In this example, the hydrological data component consists of daily brine320

concentration samples zh1, · · · , zh5 measured at a monitoring well bottom. Sur-321

face TEM data acquired at t=3 days after injection start provides the geophys-322

ical data. For the latter, the hydrological state C(t = 3days) defines the bulk323
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Fig. 2 Graphical illustration of the coupled hydrogeophysical inversion workflow. For mere
illustration purposes, instead of a fracture case, the modeled scenario depicts a 2D model
of a near-surface tracer injection. The underlying permeability model defines the spatial
tracer plume evolution over the 5-day injection period and represents the model space of
estimated parameters. The vector of observations zobs combines NH=5 hydrological data
zh1, · · · , zh5, measured daily at an observation well, with NG geophysical surface TEM fields
zg1, · · · , zgNG

, the latter measured once at t=3 days. Input to this hydrogeophysical inversion

workflow example comprises the stacked data vector zobs and an initial (permeability) model
guess.

electrical conductivity at t=3 days according to Eq. 2, thereby providing the324

model input to the TEM simulator. For simplicity, this case assumes the liq-325

uid saturation to be constant at S=1. Eq. 2 is often called a petrophysical326

transform, as it transforms hydrological variables to rock properties, which in327

our context are electrical properties.328

Given the bulk rock electrical resistivity ̺ and a predefined transmitter-329

receiver configuration as input, the TEM simulation produces a vector of NG330

electric field samples, zg(m), as output. Typical TEM systems sample the331

transient decay of the electric field after source shutoff, where transient time332

window lengths of a few milliseconds up to a few seconds are common for333

surface applications. Assuming Nr receiver stations (Nr=18 in this example)334

and Nt electric field transient time samples per station (typically tens to a few335

hundred), the total number of TEM samples augmenting the combined data336

vector zobs amounts to NG = Nr×Nt. The example also illustrates a common-337

ality in hydrogeophysical applications with surface-based geophysical surveys.338



3D hydrogeophysical joint inversion for fracture continuum characterization 11

Geophysical surface observations tend to be spatially dense, however, due to339

survey logistics, temporally sparse. The opposite often holds for hydrological340

well observations.341

The main characteristic of a coupled hydrogeophysical inversion, as op-342

posed to the aforementioned uncoupled scheme, is that the joint data vector343

zobs undergoes one inversion sweep. Hence, there are only geophysical forward-344

modeling calls instead of the intermediate geophysical inversion. The coupled345

scheme illustrated through Fig. 2 inverts directly for the flow-process-defining346

parameters, which form some spatial distribution of permeability. If carried out347

in an iterative manner, every model-updating step would involve the forward-348

modeling of the 5-day fluid injection period coupled to the TEM simulation349

at t=3 days.350

The following demonstration of the estimation of fracture-defining param-351

eters will use this type of fully coupled workflow.352

3 Coupled inversion scheme for fracture characterization353

Two sets of inversions are carried out. The first set uses only hydrological (flow-354

rate) data, and the second set inverts both flow-rate and TEM data jointly355

using the coupled inversion workflow illustrated above. In the following, we first356

describe the hydrological and geophysical models and their data components357

separately before presenting the inversion results.358

3.1 Hydrological model and data359

The flow and transport simulator embedded within the coupled parameter360

estimation framework employs the TOUGH2 module EOS7 [39]. EOS7 treats361

gas (consisting of air and water vapor) and aqueous phase mixtures (consisting362

of water, brine, and dissolved air). We use this module in isothermal mode363

under conditions of full liquid saturation, i.e. no gas is present in the model.364

For the proper representation of the ellipsoidal fracture zone illustrated in365

Fig. 1, we employ a 3D Cartesian TOUGH2 finite-volume mesh with a total366

of 78 × 78 × 29=176,436 elements. Its node spacing is 1 m in the vicinity of367

the centered injection well with a gradual increase outwards. The flow model368

covers a volume of 413m×413m×285m. Fig. 3 shows the extent of the region369

where the electrical conductivity increases with respect to the background due370

to brine intrusion after the full injection period (70 min). Fig. 3b also delineates371

the volume of the flow model domain embedded into the geophysical model.372

For a view of the actual TOUGH2 flow modeling domain and its spatial mesh373

sampling, we refer to Fig. 4, where the actual model dimensions are shown by374

the red contours.375

The brine spreads preferentially along the fracture zone. The permeability376

within that fracture continuum tampers off towards the edge of the ellipsoid,377
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Fig. 3 TEM survey configuration and electrical conductivity anomaly due to brine injection
into an existing fracture at a depth of z=2145 m. The upper figure shows a horizontal view
of the TEM source and receiver surface setup, where the fracture anomaly is projected onto
the surface.

representing reduced density and connectivity of the secondary fracture net-378

work away from the main hydrofracture. A spherical function is used to gradu-379

ally reduce the permeability from the high values in the center of the ellipsoid380

to the low value of the background formation at the edge of the fracture zone.381

The injection rate declines with time as expected for any constant-pressure in-382

jection test in a composite system. Once the pressure perturbation reaches the383

edge of the fracture zone, the flow rates reach the transient behavior consistent384

with that of an unfractured, low-permeability formation, effectively stopping385

the further advancement of the brine plume. The flow rate data thus depend386

on the size of the fracture zone. However, it is obvious that the flow rates are387

not sensitive to the azimuth with which the fracture zone is embedded in the388

background formation. Additional, complementary data are therefore needed389
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to identify both the hydrological properties of the stimulated fracture zone as390

well as its geometry.391

The synthetic hydrological data set (zobs
h ) considered here consists of flow392

rates in kg/s measured at the injection point. Injection takes place under a con-393

stant overpressure of 22.1 MPa (3205 psi) at the injection point. Logarithmic394

sampling of 50 data points starts at 1 s and ends at 4200 s (70 min). Syn-395

thetic, normally distributed noise with zero mean and a two percent standard396

deviation is added to the flow data.397

3.2 TEM model and surface data configuration398

Fig. 3a illustrates the geophysical survey configuration located at the surface399

(z=0 m) and centered over the fluid injection point (at z=2145 m). Electric400

fields are measured over an array of Nr=121 receiver locations, where only401

the Ex field component (parallel to x-axis) is considered. The Ex fields are402

sourced by two sequentially activated horizontal electric dipole transmitters403

of length 50 m that are galvanically coupled to the ground. Sequential source404

activation assumes no residual fields due to the first source before the second405

one is activated.406

Measurement of the transient field decay at each receiver starts when the407

DC source current is shut off. The transient time window covers the time408

interval (in milliseconds) [10.0,215.4], where Nt=27 logarithmically spaced Ex409

fields are sampled per transient. The whole TEM data acquisition is carried410

out twice, first at the (flow) time t1=35 min, then at t2=70 min (after injection411

start). Given these two survey repetitions with two sources each, we have a412

total of NG = 2 × 2 × Nr × Nt=13,068 TEM-data points, which form our413

geophysical data vector zobs
g . As for the hydrological data, the TEM-data is414

also contaminated by synthetic, normally distributed noise with zero mean415

and a two percent standard deviation.416

Fig. 3b also contrasts the vertical steel casing (gray column) against the417

background of ̺=100 Ωm. Simulating actual casing dimensions, which is on418

the order of inches, would require a very small and thus computationally ex-419

pensive finite-difference grid node distance. While this is feasible for stan-420

dalone forward-modeling applications [15], it can be prohibitive for inverse421

modeling with many repeated forward-modeling instances. We thus employ a422

material averaging scheme that approximates the metallic electrical conduc-423

tivity (106 S/m) into the finite-difference grid with only moderate refinement424

of the region around the casing [45]. The finite-difference grid has a mini-425

mum horizontal node distance of 5 m (upper Fig. 3), leading to a conductive426

pseudo-casing grid column with σ=1.25 × 104 S/m.427

3.3 Petrophysical linkage between the hydrological and geophysical models428

Coupling the TEM forward simulator to the flow and transport simulator429

involves a petrophysical linkage of the form of Eq. 2, as was also illustrated by430
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Fig. 2. Specifically, we use Archie’s [5] law for full liquid saturation,431

̺ = Φ1.67̺f (C), (3)

where the quantity Φ1.67 is also known as the rock’s formation factor. The432

porosity changes from Φ=0.107 within the fracture zone to Φ=0.033 within433

the background formation.434

The fluid electrical conductivity σf (C) = 1
̺f (C) is assumed to vary linearly435

with the concentration of an injected NaCl solution according to436

σf = Cσinj + (1 − C)σfor. (4)

For this relationship, C=[0,1] becomes the injected (brine) fluid fraction which437

is assigned an electrical conductivity of σinj=35 S/m. This high fluid conduc-438

tivity results from adopting our model’s (constant) ambient reservoir tem-439

perature of T=63.5o C together with a NaCl concentration of 150,000 ppm440

[40]. Eq. 4 further involves a background formation electrical conductivity of441

σfor=3 S/m. This value resembles seawater properties, which is common in442

deep reservoirs.443

To estimate the maximum electrical conductivity contrast resulting from444

Eqs. 3 and 4 in the vicinity of the injection point, we insert Φ=0.107, C=1,445

thus σf = σinj , yielding the background bulk rock electrical conductivity446

σ=0.84 S/m (̺=1.19 Ωm). Outside of the fracture zone, we have Φ=0.033,447

a minimum of C=0, thus σf = σfor=3 S/m, which leads to σ=0.01 S/m448

(̺=100 Ωm).449

4 Inversion results in comparison450

We compare the results of two trial synthetic-data inversion realizations. The451

first one uses the flow-rate data as input, the second one uses the joint data set452

as input, combining flow-rate and TEM data. The inputs and outputs of the453

two trial inversion realizations are summarized quantitatively and qualitatively454

in Table 1 and Fig. 4, respectively. Both inversions employ identical sets of455

lower and upper parameter bounds and starting model guesses. Permeability456

parameters k use the SI unit m2, where both actuals and their logarithms457

(log-base 10) are given.458

Table 1 shows that the flow-rate data inversion overestimates the back-459

ground permeability, which leads to an underestimated SRV. One expects a460

strong influence of the fracture zone’s permeability on the flow rate measured461

at the injection point. Hence, both inversions properly estimate this param-462

eter at the correct value of 10−12 m2. All fracture parameters are correctly463

recovered by the joint inversion. Figs. 4 and 5 delineate the recovered (blue)464

fracture dimensions and orientation in comparison to the actual (red) geome-465

try.466
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Fig. 4 Flow-rate data and joint (flow-rate and TEM data) inversion results in 3D view. The
actual geometry of the fracture continuum is depicted by the red body. Mesh lines indicate
the spatial discretization of the 3D TOUGH2 flow modeling domain.
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Fig. 5 Flow-rate data and joint (flow-rate and TEM data) inversion results. Shown are
cross sections of the true (red) and estimated (blue) fracture bodies for the planes x-y (top),
x-z (middle) and y-z (bottom). Mesh lines indicate the spatial discretization of the 3D
TOUGH2 flow modeling domain.
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4.1 Parameter sensitivities and uncertainties467

To assess a measure of significance for the shown inversion results, we cal-468

culate uncertainties for each estimated parameter. Parameter uncertainties469

correspond to variances, which are the diagonal elements of the covariance470

matrix Cpp [10,19]:471

Cpp =
(

JT C−1
zz J

)

−1
, (5)

where J is the parameter sensitivity matrix (Jacobian) consisting of local sen-472

sitivity coefficients473

Sij =
∂zi

∂pj

, i = 1, · · · , N ; j = 1, · · · , 5.

For a given datum zi, the sensitivity coefficient Sij essentially quantifies its474

change due to a perturbation of an input (model) parameter pj . In Eq. 5, Czz475

is the N × N observation covariance matrix. In our case, Czz is a diagonal476

matrix, where each diagonal element Cii is the variance σ2
zi

calculated from the477

standard deviation σzi
assigned to the observation zi. There exists an inverse478

proportionality between estimation uncertainty and the absolute size of the479

sensitivity coefficients Sij [19].480

Table 2 lists the uncertainties of the estimated parameters, which can be481

calculated from Eq. 5. The full covariance matrices without and with the in-482

clusion of TEM data are shown in Tables 3 and 4, respectively. In these tables,483

the diagonal holds the variances, and the upper triangular matrix shows the484

covariances, which are easier to interpret if normalized [19]; the corresponding485

correlation coefficients are shown in the lower triangular matrix.486

The comparison between the diagonal elements of the two matrices (sum-487

marized as estimation uncertainties in Table 2) clearly demonstrates the value488

of jointly inverting complementary data sets. While flow-rate data by them-489

selves accurately identify the permeabilities, they do not contain sufficient490

independent information to determine the geometrical parameters (azimuth491

and extent) of the stimulated fracture zone. The high estimation uncertainties492

are a result of strong correlations among some of the geometrical parame-493

ters. For example, a correlation coefficient close to -1 indicates that a similar494

flow-rate response would result from increasing the fracture X-extent while495

decreasing the Z-extent. The very high uncertainty of the azimuth is mainly496

a result of the lack of sensitivity in the flow-rate data with respect to fracture497

orientation.498

By adding TEM data, the information content of the joint data set is499

greatly increased, as would also be revealed by composite sensitivity measures500

[19]. Moreover, correlations among the parameters are reduced, in principle501

reducing the negative impact of an uncertain parameter on the estimation of502

another parameter. These comparisons indicate that the remote-sensing TEM503

data has the capacity to complement and enhance the information content of504

the flow-rate measurements without any in-situ interference with the hydraulic505

fracturing process.506
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Table 2 Parameter estimation uncertainties. Permeability uncertainties correspond to their
log-base-10 transforms used in the inversion. Note that the uncertainties correspond to the
square root of the diagonal elements of their covariance matrix (Tables 3 and 4).

Parameter type Flow-rate inversion Flow-rate and TEM inversion
Permeability rock matrix, log10(k) (m2) 2.1E-01 1.1E-01
Permeability fracture continuum, log10(k) (m2) 1.5E-03 9.5E-04
X-extent fracture continuum (m) 7.4E+01 8.2E+00
Z-extent fracture continuum (m) 7.4E+01 8.4E-01
Azimuth angle fracture continuum (deg) 2.1E+02 2.4E+00

Table 3 Flow-rate inversion: Covariance matrix (lower and diagonal) and correlation matrix
(upper) of estimated parameters.

Rock matrix k Fracture k X-extent Z-extent Azimuth
Rock matrix k 0.440E-01 0.594E+00 -0.879E+00 0.854E+00 0.323E+00

Fracture k 0.190E-03 0.233E-05 -0.385E+00 0.353E+00 -0.036E+00
X-extent -0.136E+02 -0.435E-01 0.547E+04 -0.999E+00 -0.714E+00
Z-extent 0.132E+02 0.397E-01 -0.544E+04 0.543E+04 0.741E+00
Azimuth 0.145E+02 -0.117E-01 -0.113E+05 0.117E+05 0.461E+05

Table 4 Flow-rate and TEM joint inversion: Covariance matrix (lower and diagonal) and
correlation matrix (upper) of estimated parameters.

Rock matrix k Fracture k X-extent Z-extent Azimuth
Rock matrix k 0.011E+00 -0.506E+00 -0.652E+00 0.509E+00 -0.795E+00

Fracture k -0.515E-04 0.914E-06 0.433E+00 -0.412E+00 0.285E+00
X-extent -0.571E+00 0.341E-02 0.679E+02 -0.983E+00 0.085E+00
Z-extent 0.456E-01 -0.332E-03 -0.682E+01 0.710E+00 0.086E+00
Azimuth -0.205E+00 0.662E-03 0.169E+01 0.176E+00 0.589E+01

Table 5 Initial and final RMS values calculated for both inversions. RMS values involve 50
flow-rate samples and 13,068 TEM-data points.

Flow-rate data fit TEM-data fit
Initial RMS Final RMS Initial RMS Final RMS

Flow-rate inversion 779.05 1.59 - -
Joint inversion 779.05 1.09 382.00 1.51

4.2 Data fits exemplified507

Finally, a visual inspection of the achieved data fits lets us assess the per-508

formance of the two inversions in a qualitative manner. Fig. 6 compares the509

flow-rate data inversion result, showing observed (synthetic) data against those510

calculated from the initial (gray) and estimated final (blue) model parameters511

(parameter values are listed in Table 1). The high initial guess for the per-512

meability of the fracture continuum accounts for an overestimated flow rate513

by an order of magnitude. Nevertheless, an exact match is achieved after 12514

inversion iterations. Corresponding RMS values for the shown fits are given515

in Table 5. The goodness of fit, despite a grossly underestimated SRV, also is516

an indicator for the the flow rate’s low degree of sensitivity with respect to517

resolving the fracture zone’s geometrical attributes.518
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Fig. 6 Observed (synthetic) flow-rate data and data predictions calculated from initial
(gray) and final (blue, after 12 inversion iterations) model guesses. Inversion results are
shown for (a) hydrological (flow-rate data only) and (b) joint inversions.

Fig. 7 exemplifies one transient calculated from the joint (flow-rate and519

TEM-data) inversion result for a selected transmitter-receiver pair shown in520

blue in the TEM survey subplot. This transient exhibits a typical feature521

of TEM data, that is, the sign reversal of the electric field shortly before522

0.1 s (measured after transmitter shutoff). Data points in the vicinity of such523

reversals usually need to be down-weighted in order to avoid their excessive524

influence on the minimization of Eq. 1. The joint inversion achieves a perfect525

match of the transient, which is also quantified by Table 5. It compares the526

initial and final RMS calculated for all 13,068 TEM-data points.527
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Fig. 7 Observed (synthetic) TEM (electric) field predictions calculated from initial (gray)
and final (blue, after 14 inversion iterations) model guesses. The exemplified transient is
calculated from the transmitter-receiver pair highlighted in blue in the station subplot. The
TEM survey setup is also shown by Fig. 3. Absolute electric fields are plotted, showing the
sign reversal around 0.1 s as a minimum.

5 Conclusions528

This proof-of-concept has demonstrated the potential value of geophysical EM529

data for the characterization of hydraulically fractured reservoirs. Hydrogeo-530

physical parameter estimation applications, whether they involve uncoupled531

or coupled approaches, have shown to benefit from the typically large spatial532

coverage and thus geometrical information of geophysical methods, e.g. [44].533

Our article has the primary purpose of providing a proof-of-concept, ex-534

tending already proven fracture-monitoring capabilities of the TEM method535

[28] towards imaging of fracture geometries. Along the way, we also laid out536

the inversion concepts of our coupled hydrogeophysical framework in some537

explanatory manner, because multi-physics imaging problems over fractures538

present a new and interdisciplinary challenge to the community.539

The surface-based TEM method is suitable for large penetration depths;540

hence, it can complement hydraulic in-situ measurements of flow rates and541

may also provide an addendum to seismic data. With sufficient reservoir a542

priori data, the sensitivity to fluid property changes may also make TEM an543

economically attractive alternative to in-situ measurements as it allows for544

operational independence away from the injection well.545

Under the condition that injected proppants with electrically contrasting546

properties fill the fracture periphery, EM data can provide a valid alternative547

to MEQ surveys in terms of providing geometrical information and SRV esti-548

mates. Theoretically, the TEM method has shown to yield data sensitivities549

that are needed for reliable estimates of SRV and fracture orientation. Never-550

theless, for deep reservoirs, it is certainly beneficial to amplify the TEM source551
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signal at the target depth by placing the surface transmitter in the vicinity of552

steel-cased wells, thus using the vertical current-channeling due to the metallic553

casing.554

While our studies only consider a petrophysical link to the bulk rock ionic555

electrical conductivity, the sensitivity of EM methods can be increased by en-556

hancing other than conductive (like capacitive or ferromagnetic) EM properties557

of injected fluids [7]. However, the upside of being sensitive to, for example,558

capacitive properties comes along with the necessity of properly simulating559

their footprint within numerical multi-physics modeling frameworks. Utilizing560

the induced-polarization effect, tracers with capacitive constituents may help561

a more precise pathway mapping of injected fluids in fracture zones. Both the562

presence of such tracers or a polarizable host rock would necessitate petro-563

physical links with complex, that is, having real and imaginary components,564

conductivity and complex permittivity properties.565

With heterogeneity of rocks across field scales, the proper parameterization566

of petrophysical mapping functions that reflect all EM property dependencies567

may require ample laboratory data on drilled cores [33]. This may also become568

important in the presence of electrical formation anisotropy. Here, we only con-569

sidered an isotropic model, because formation anisotropy, while important if570

field data contains its footprint, may only have a second-order impact on the571

detection sensitivities deduced here. The latter is an expectation requiring an572

upholding follow-up study. In the case of insufficient rock samples, one can al-573

ternatively include petrophysical parameters in the inversion process, e.g. [47].574

In any case, the presence of formation anisotropy, as well as polarizable media,575

are most likely to require preceding standalone EM-data inversions in order576

to establish adequate background models for unbiased field-data inversions.577

The diffusive nature of the TEM method and its resolution loss with depth578

somewhat forgives the approximation of complex fracture networks by a con-579

tinuum, further justifying the use of a 3D parametric inversion approach. This580

assumes that the main objective does not go beyond the estimation of bulk581

quantities such as SRV or major fracture extent and orientation. Neverthe-582

less, even with the aim of only a first-order geometrical identification, a next583

reasonable step towards fitness for real-world applications would involve ac-584

counting for porosity, i.e. storativity, in addition to (hydraulic) permeability.585

Another step along these lines is the modeling of horizontal casings, prevalent586

at hydraulic-fracturing sites. For this purpose, numerical EM modeling meth-587

ods using OcTree meshes [23] have shown better local refinement abilities than588

finite-difference methods.589
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