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Abstract

Functioning bulk-type all-solid-state batteries in a practical form factor

with composite positive electrodes, using Al-substituted Li7La3Zr2O12 (LLZO)

as  the  solid  electrolyte,  have  been  demonstrated  for  the  first  time.  The

devices  incorporate  bilayers  composed  of  dense  LLZO  membranes  and

porous  LLZO  scaffolds  infiltrated  with  LiNi0.6Mn0.2Co0.2O2 and  other

components  as  positive  electrodes,  combined  with  lithium  anodes.  The

porous  scaffolds  are  prepared  using  an  easily  scaled  freeze-tape-casting

method.  The  unidirectional  pores  of  the  scaffold  facilitate  infiltration  of

cathode components and shorten lithium ion diffusion path-lengths, while the

addition  of  a  soft  ionically  conductive  solid  to  the  scaffold  ensures  good

contact among the components.

Keywords: Solid state battery, solid electrolyte, freeze tape casting, tape

casting, LLZO garnet
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All-solid-state batteries (ASSBs) potentially offer higher energy density,

longer cycle life, and better inherent safety than state-of-the-art lithium ion

batteries  (LIBs).1 However,  successful  fabrication  of  ASSBs  with  ceramic

electrolytes has primarily been restricted to small-scale thin film devices due

to processing difficulties and interfacial challenges.2 Here, we address these

issues by combining tape-casting and freeze tape casting (FTC) methods to

construct  porous/dense  and  porous/dense/porous  bi-/tri-layer  Li7La3Zr2O12

(LLZO) frameworks  in which the porous layers are composed of vertically

aligned  LLZO  walls  functioning  as  directional  ion  conduction  pathways.

ASSBs are constructed by infiltrating active material and other components

into the porous layers and adhering Li metal to the dense side of the bilayer

framework.  We  also  reduced  the  cathode/LLZO  interfacial  impedance  by

introducing a plastic-crystal solid electrolyte into the porous layers. No liquid

electrolytes were added to these devices to make them function.

LLZO was selected due to its high ionic conductivity (0.1-1.3 mS cm-1),

wide electrochemical stability window (~6V), chemical stability to Li, and dry

air  stability.3 FTC,  a  combination  of  freeze-casting  and  tape-casting,  is  a

scalable method for making thin porous films, with good control over total

pore  volume,  pore  size  and  morphology.4 In  addition,  tape  thicknesses

ranging  from  several  millimeters  to  <100  m  can  be  fabricated,  while

retaining pore alignment throughout the thickness. A key feature of the FTC

prepared  LLZO  scaffolds  is  the  low  tortuosity  (approaching  unity)  pore

channels along the thickness direction, which aids infiltration and shortens Li
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diffusion path lengths.5 Furthermore, structurally resilient FTC-LLZO scaffolds

can be readily prepared at very high porosities in the green state, exceeding

90%, compared to methods using traditional pore-forming fugitives. The FTC

process is also environmentally friendly as ice crystals function as the pore-

former, not polymers, which generate CO2 during burnout. Another crucial

factor  aiding  device  design  is  the  incorporation  of  a  plastic-crystal  solid

electrolyte into the pores, which acts as a mediator to connect the cathode

material  and  the  LLZO,  thus  avoiding  the  need  for  co-sintering  and

associated deleterious reactions that may occur at high temperature. This

also  reduces  interfacial  impedance  and  permits  stable  operation  of  the

ASSBs.

Figure 1 shows the process for making free-standing dense LLZO films,

used as the separators/electrolytes in symmetrical cell cycling. Powders were

first ball-milled to reduce and homogenize the particle size and excess Li2CO3

was  added  to  compensate  for  lithium  loss  during  the  high  temperature

sintering  process.  The  amount  of  excess  needed  is  dependent  upon  the

desired  sample  thickness.6,7 The  phase  purity  and  microstructure  of  the

sintered films are sensitive to temperature (Figure S1). Nearly transparent,

phase-pure, and pinhole-free LLZO films approximately 95% dense and 25-

44  µm thick  could  be  fabricated  successfully  once  the  process  was

optimized.
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Figure 1.  (a) SEM image of as-received LLZO powder. (b) SEM fracture surface image of

tape-cast  green tape.  (c)  SEM fracture  surface  images  and  optical  image of  LLZO films

sintered in optimal sintering profile. (d) XRD patterns of the as-received powder and the

sintered film.

Figure  2  shows  the  electrochemical  properties  of  Li/LLZO/Li  cells  and

microstructural features. Au was sputter coated on both sides of the LLZO

films to reduce the interfacial resistance. Li metal was melt bonded to the Au

coated LLZO resulting in intimate contact (Figure 2c). The molten Li wets and

spreads on Au as the Li-Au alloying reaction has a large negative Gibbs free

energy release.8

In Figure 2a, three resistive components are observed in the Nyquist plot

of the Li/LLZO/Li cell. The high frequency semicircle corresponds to the LLZO

resistance, giving a conductivity of 0.5 mS cm-1. The depressed semi-circle at

the lower frequency range is a combination of Li-Au alloying and Li-Au/LLZO

interfacial impedances.9 The total cell impedance is only 35 Ω cm2, with an
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interfacial impedance of 12  Ω cm2, comparable to other reported literature

values of interface engineered LLZO.10,11

Figure  2b  shows  direct  current  (DC)  cycling  of  the  modified  LLZO

membrane, stepping the current in increments of 20 µA cm-2 starting from 20

µA cm-2. Voltage instability is observed at a critical current density of 0.2 mA

cm-2. Cells could be cycled stably at current densities of 50 and 100 µA cm-2

(Figure  2d).  It  is  well  known  that  the  voltage  instabilities  are  due  to  Li

deposition dendrite/filament propagation in grain boundaries or within the

bulk of LLZO. The current density at which this occurs heavily depends on

the  processing  history  and  surface  treatment/microstructure  of  sintered

LLZO.12,13 

In contrast, symmetrical cells of untreated LLZO exhibited extremely high

cell impedance (> 50 kΩ cm2) along with instantaneous shorting upon DC

cycling at 50 µA cm-2 (Figure S2).  This  is  fairly  typical  of  cells  containing

untreated LLZO samples unless pressure is applied (which could not be done

here due to the fragility of the thin ceramic samples).14,15
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Figure 2.  (a) Nyquist plot of Au interface engineered Li/LLZO/Li cell. (b) DC cycling of Au

interface engineered Li/LLZO/Li cell with a step current of 20 µA cm-2 starting from 20 µA cm-

2. (c) SEM fracture surface image showing superior interfacial bonding of Li and LLZO. (d) DC

cycling  of  Au  interface  engineered Li/LLZO/Li  cell  at  selected current  densities.  (e)  SEM

surface image of typical sintered LLZO thin films.
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Figure 3a-c shows typical cross-sectional fracture surface images of LLZO

samples  freeze-tape-cast  using  different  conditions.  The  green  tape  cast

from the 7.5 vol.% LLZO slurry (Figure 3a) shows wider spacing between

LLZO columns compared to the one cast from 10 vol.% LLZO (Figures 3b-c).

The lower ceramic loading leads to improved LLZO dispersion and results in

fewer ice nucleation sites per unit area, favoring more aligned growth of the

ice  crystals.  Interactions  with  water  at  higher  loadings  foster  local

agglomeration,  which can prevent formation of  the desired structures.  By

adjusting the doctor blade gap, green tapes ranging in thickness from 150-

400 µm were obtained.
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Figure 3. Fracture surface SEM micrographs of green tapes freeze tape cast from slurries

containing (a) 7.5 vol.% LLZO / 400 µm, (b) 10 vol.% LLZO / 220 µm, and (c) 10 vol.% LLZO /

150 µm. Fracture surface micrographs of (d) sintered porous/dense (140/36 µm) bilayer, (e)

porous/dense/porous (130/37/130 µm) trilayer, and (f) porous/dense/porous trilayer with a

14 µm dense layer. (g) Surface SEM micrograph of the porous layer. (h) 3D reconstruction of

micro-CT scan of the trilayer. Subvolume size is 400 (width) × 280 (height) × 530 (depth)

µm3. Inset shows an optical image of a typical trilayer. 

FTC and tape-cast  green tapes were stacked together  and sintered to

form  porous/dense  bilayer  and  porous/dense/porous  trilayer  LLZO

architectures  (Figures  3d-h).  Sintering  profiles  were  optimized  to  achieve

phase  purity  (cubic-LLZO)  and  high  densities.  Typical  dense  layer

thicknesses were 25-35 µm and could be reduced down to 14 µm because

the thick porous LLZO layers serve as mechanical supports for the otherwise

fragile thin dense films. FTC green tapes made with 10 vol.% LLZO slurry

were  used  which  resulted  in  70  %  porosity  once  sintered.  Trilayers  are

particularly  advantageous here  because the symmetry  allows for  uniform

shrinkage during densification. An optical image of a typical trilayer and a 3D

reconstruction  of  a  micro-computed  tomography  (CT)  scan  are  shown  in

Figure 3h and the supporting video. From these, the unidirectional nature of

the pores  and the absence of  closed pores  are evident.  Fracture surface

images show what might appear to be pore blockages but are due to LLZO

rods extending from one wall to another. As can be seen in the top surface

image (Figure 3g), the pores are not blocked. Electrode components can be
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readily infiltrated through the pore openings on the surfaces of the porous

layer (Figure 3g). Critical current densities as high as 10 mA cm -2 (based on

geometric  area)  have  recently  been  demonstrated  in  symmetrical  cells

based on LLZO trilayer structures in which lithium is infiltrated into porous

layers with a random pore structure on each side.16 Increasing the electrode/

electrolyte  contact  area  enhances  the  effective  current  density  greatly

compared to devices with planar interfaces.

For  this  work,  ASSBs  were  constructed  using  a  porous/dense  bilayer

framework. A slurry containing processed (ball-milled and heat-treated) NMC-

622,  carbon black,  and PVdF binder was infiltrated into the porous layer,

followed by solvent removal (Figure 4a). Typical NMC-622 loadings were 4-5

mg  cm-2 with  the  potential  to  reach  35-40  mg  cm-2 (80-90%  of  pore

occupancy) on further optimization of the infiltration process. Note that these

values are for the porous layer used in this study (130 µm thick, 70% porous)

and can change with varying porosities and thicknesses of the porous layer.

Fracture surface micrographs show that the cathode slurry penetrated into

the  porous  LLZO  layer  (Figures  4b-c).  LiTFSI(4  mol.%)/LiBOB(1

mol.%)/succinonitrile (SCN) was then melt-infiltrated into the structure. The

plastic-crystal  electrolyte  solidifies  on  cooling  to  room  temperature  and

serves as an ionically conducting bridge between the NMC-622 and the LLZO

framework as shown in Figure S3. The waxy and soft nature of the plastic-

crystal also helps to maintain contact among the components as the cell is

cycled.17,18 In  a  similar  manner,  polymer–Li  salt  complexes  (PEO -  based)
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have been reported to electrochemically connect the cathode with sintered

oxide  solid  electrolytes  but  with  limitations  on  cathode  selection  (e.g.

LiFePO4) and operating temperature ( 60°C) because of the poor oxidative

stability and conductivity of the PEO.19,20

The constructed devices showed total room temperature impedances of

~350  Ω cm2
 (Figure 4d), the lowest ever reported for liquid-free ASSBs in

practical  form factors using LLZO as the electrolyte.  Considering that the

impedances of the dense LLZO layer and Li/LLZO interfaces are low (Figure

2a), the main contributor is the composite cathode, which is about 120-130

µm thick. Bilayer cells with no SCN based solid electrolyte infiltration showed

total  impedances  of  ~180k  Ω  cm2,  demonstrating  the  crucial  role  of  the

mediator solid electrolyte.

The solid-state-cells were cycled between 2.5-4.4 V at 0.1C (1C=175 mAh

g-1) rate (Figure 4e), and showed discharge capacities of 125-135 mAh g-1.

This is comparable to the capacity that is obtained upon cycling processed

NMC-622 with liquid electrolyte (Figure S4). Although the structure of the

bulk  NMC-622  appears  unchanged  after  ball  milling  and  heat-treatment,

some degradation, particularly at particle surfaces is known to occur, which

accounts for the somewhat lower than expected capacity.21

Rapid capacity fade within several cycles or much lower than expected

capacities are typically reported for ASSBs in which the cathode material and

oxide  solid  electrolyte  are  heat-treated  to  ensure  intimate  contact.22–25

Absence  of  conductive  additive,  formation  of  electrochemically  inactive
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interfaces or micro-cracking due to volume changes during cycling are the

likely causes.22,24 Our preliminary cycling results are in striking contrast, in

spite of the use of a thick cathode, 4-6 times thicker than usual. 

Figure 4. (a) Optical image of cathode infiltrated LLZO bilayer. Cathode infiltrated porous

layer  surface  (left)  and  dense layer  surface  (right)  are  shown.  (b)  SEM fracture  surface

image of cathode infiltrated bilayer. Images were taken prior to SCN electrolyte infiltration.

(c)  Same cell  at  higher  magnification  showing cathode infiltrate.  (d)  Nyquist  plot  of  the

constructed ASSB. (e) Initial charge/discharge profiles of the ASSB.

To the best of our knowledge, this is the first report of successful room

temperature  cycling  of  a  bulk  type  ASSB  using  a  LLZO  separator  and

composite  electrode in  a practical  form factor.26 Reference 26 contains  a

comprehensive table listing reports of batteries utilizing garnet electrolytes

as of the current year. Almost all studies reporting solid-state-batteries use

thick LLZO pellets (3-5 mm) and apply/attach active materials to complete a

cell.  While  those studies  are useful  for  answering fundamental  questions,

they are not  in  a practical  form factor.  The use of  thick pellets  and thin
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cathode layers greatly compromises energy density. The LLZO should be in a

thin film form, the thinner the better, to minimize weight and volume as well

as impedance. Examples of LLZO thin films or bilayer/trilayer architectures

involving a  thin LLZO layer have been reported previously.  However,  the

constructed  cells  all  use  liquid  electrolytes  to  address  the  cathode/LLZO

interfacial contact issue and hence should be considered as hybrid cells, not

true solid-state cells.16,27–29 

The superior electrochemical performance of the ASSB constructed here

can be ascribed to several factors, including the use of a thin, dense LLZO

separator layer, seamless Li/LLZO contact, a low tortuosity pore structure,

and intimate NMC-622/SCN/LLZO contact. In addition to the aforementioned

advantages of this approach, the concept of combining a rigid scaffold with a

soft,  yet solid,  conductor is  quite general,  and can be expanded to other

types of solid electrolytes, including those that conduct, e.g., sodium.

Our calculations (Supporting Information and Figure S5) show that ASSBs

based on this concept can exceed the energy densities and specific energies

of state-of-the-art LIBs by 1.8-2.6 times and 1.2-1.8 times, respectively, if

thick electrodes with high porosities are used, the dense LLZO layer is 20 m

thick, and the lithium metal excess is limited to 20%.30 Our future work will

focus on optimizing components  to maximize energy density and specific

energy, including further tuning of the FTC process. 
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