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HIGHLIGHTED ARTICLE
GENETICS | INVESTIGATION

Efficient Multiple-Trait Association and Estimation
of Genetic Correlation Using the Matrix-Variate

Linear Mixed Model
Nicholas A. Furlotte* and Eleazar Eskin†,1

*Department of Computer Science and †Department of Computer Science, Department of Human Genetics, University of
California, Los Angeles, California 90095

ABSTRACT Multiple-trait association mapping, in which multiple traits are used simultaneously in the identification of genetic variants
affecting those traits, has recently attracted interest. One class of approaches for this problem builds on classical variance component
methodology, utilizing a multitrait version of a linear mixed model. These approaches both increase power and provide insights into the
genetic architecture of multiple traits. In particular, it is possible to estimate the genetic correlation, which is a measure of the portion of the
total correlation between traits that is due to additive genetic effects. Unfortunately, the practical utility of these methods is limited since
they are computationally intractable for large sample sizes. In this article, we introduce a reformulation of the multiple-trait association
mapping approach by defining the matrix-variate linear mixed model. Our approach reduces the computational time necessary to perform
maximum-likelihood inference in a multiple-trait model by utilizing a data transformation. By utilizing a well-studied human cohort, we
show that our approach provides more than a 10-fold speedup, making multiple-trait association feasible in a large population cohort on
the genome-wide scale. We take advantage of the efficiency of our approach to analyze gene expression data. By decomposing gene
coexpression into a genetic and environmental component, we show that our method provides fundamental insights into the nature of
coexpressed genes. An implementation of this method is available at http://genetics.cs.ucla.edu/mvLMM.

KEYWORDS association studies; multivariate analysis; genetic correlation

CLASSICALLY, genome-wide association studies have
been carried out using single traits. However, it is well

known that genes often affect multiple traits, a phenomenon
known as pleiotropy, and more recently it has been shown
that performing association mapping with multiple traits
simultaneously may increase statistical power (Korol et al.
2001; Ferreira and Purcell 2009; Liu et al. 2009; Avery et al.
2011; Korte et al. 2012). Analysis of multiple traits increases
power because intuitively, multiple-trait measurements increase
sample size relative to a single-trait measurement. However,
utilizing the additional data is not straightforward as measure-
ments from the same individual are not independent. This issue

is analogous to that of association analysis in cohorts of related
individuals, where trait measurements between related individ-
uals are not independent. Variance component methods model
this correlation structure by assuming that the covariance due
to genetics between related individuals is proportional to their
kinship coefficient (Kang et al. 2008). This constant of propor-
tionality normalized by the total trait variance is related to
narrow-sense heritability of the trait (the variance accounted
for by additive genetic effects) (Yang et al. 2010).

When the same genetic variants affect multiple traits,
trait values for an individual will tend to be correlated.
Similarly, shared environmental effects also introduce some
level of correlation between traits. A fundamental problem
in understanding the relationship between the traits is
determining the proportion of the total correlation due to
genetics and the proportion due to environment. Classical
approaches originating from animal breeding and agricul-
tural research solve this problem by modeling the statistical
relationship between traits, using a linear mixed model
(LMM) (Falconer 1981; Mrode and Thompson 2005). These
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approaches decompose the between-trait correlation into
both a genetic component and an environmental component
and then use the LMM framework to obtain estimates for
these quantities. The LMMs used in these classical approaches
can be adapted for use in genome-wide association studies
(GWAS) by utilizing them to test the association between
genetic variants and multiple traits. Multiple-trait variance
component methods closely follow the approach utilizing kin-
ship values to model the covariance between different traits
among different individuals, such that the genetic covariance
between two individuals’ traits is proportional to their kinship
coefficient (Henderson and Quaas 1976). In this case, the con-
stant of proportionality is a function of the two trait heritabilities
as well as the genetic correlation. These types of models are
widely utilized in the plant breeding (Malosetti et al. 2008; Kelly
et al. 2009; Verbyla and Cullis 2012) and animal breeding com-
munities (Ducrocq and Besbes 1993). Similarly, multiple-trait
models represent the covariance between traits within an in-
dividual as a function of both genetics and shared environment.

To utilize LMMs for association analysis, an iterative pro-
cedure must be employed to identify the maximum-likelihood
estimates of the parameters of the statistical model used for
association. The use of LMMs for single traits has been limited
by the computational complexity of traditional maximum-
likelihood procedures: Oðn3 � tÞ; where n is the number of indi-
viduals in the study and t is the number of iterations necessary
for the maximum-likelihood algorithm to converge. However,
recently developed estimation algorithms have made LMMs
computationally efficient and feasible for large population
cohorts (Kang et al. 2008, 2010; Lippert et al. 2011; Zhou
and Stephens 2012), reducing the computational complexity
of from Oðn3 � tÞ to Oðn3 þ n � tÞ; enabling genome-wide asso-
ciation mapping for single traits using LMMs. Unfortunately, the
previous approaches (Kang et al. 2008, 2010; Lippert et al.
2011; Zhou and Stephens 2012) cannot be directly applied
to multiple-trait LMMs, meaning that the same computational
inefficiencies that limited the widespread use of LMMs for
single-trait GWAS now hinder the scale at which researchers
can performmultiple-trait GWAS. More specifically, with p traits
measured over n individuals the covariance matrix relating the
p traits measured over the n individuals will be of size np3np
and the running time for classical multivariate LMMs is
Oðn3p3 � tÞ: In other words, even when p is small (e.g.,
p ¼ 2), the running time scales as the cube of the number
of individuals in the sample, meaning that the use of multiple-
trait LMMs is not feasible for large sample sizes.

A widely utilized approximation to using the np3 np co-
variance matrix is to assume that the genetic and environmen-
tal effects are independent, which allows the decomposition of
the np3 np matrix into the Kronecker product of an n3 n
matrix and a p3 p matrix. This type of approach is widely
utilized in the plant breeding literature (Malosetti et al.
2008; Kelly et al. 2009; Verbyla and Cullis 2012). In our work
we reformulate this decomposition, using the matrix-variate
normal distribution (Gupta and Nagar 2000). Using this for-
mulation, we show how a simple data transformation leads to

a model equivalent to the abovementioned model while allow-
ing maximum-likelihood inference to be performed in compu-
tational time essentially linear in the size of the data set, given
a one-time cost of Oðn3Þ and Oðn2Þ: In a simple case, let us
assume that p,, n (e.g., 2 vs. 10; 000) and that we have only
a global mean for each trait; this leads to a total computational
complexity of Oðn3 þ n2 pþ ð p3ðnþ 1ÞÞ � tÞ: The iterative
part of the algorithm is then essentially linear in the size of
the data set. We call our method the matrix-variate linear
mixed model (mvLMM). Our approach differs from previous
approaches in the plant and animal breeding communities in
that our inference approach is more closely related to the
EMMA algorithm (Kang et al. 2008) while previous inference
methods are more closely related to the average information
restricted maximum-likelihood (REML) algorithm as imple-
mented in ASReml (Gilmour et al. 1995). The reason why
algorithms such as EMMA (Kang et al. 2008), EMMAX (Kang
et al. 2010), FaST-LMM (Lippert et al. 2011), and GEMMA
(Zhou and Stephens 2012) and related methods have become
popular in human GWAS is that they take advantage of the
specific formulation of the variance components to allow for
efficient estimation compared to methods such as ASReml that
can be applied to a more general set of models.

We demonstrate the efficacy of our method by analyzing
correlated traits in the Northern Finland Birth Cohort
(Sabatti et al. 2008). Comparing it to a standard approach
(Lee et al. 2012), we show that our method results in a.10-
fold time reduction for a pair of correlated traits, taking the
analysis time from �35 min to �2.5 min for the cubic oper-
ations plus another 12 sec for the iterative part of the algo-
rithm. In addition, the cubic operation can be saved so that
it does not have to be recalculated when analyzing other
traits in the same cohort. Finally, we demonstrate how this
method can be used to analyze gene expression data. Using
a well-studied yeast data set (Smith and Kruglyak 2008), we
show how estimation of the genetic and environmental com-
ponents of correlation between pairs of genes allows us to
understand the relative contribution of genetics and envi-
ronment to coexpression.

Methods

Modeling multiple traits with the matrix-variate
linear mixed model

Given a set of p traits for n individuals, a standard statistical
model for the ith trait vector, denoted by yi; is given by the
following LMM, the model relating phenotypes to geno-
types, which is

yi ¼ Xbi þ gi þ ei;

where Xbi represents the mean term for the ith trait such
that X is an n3 q matrix encoding q covariates including the
SNP being tested, gi represents the population structure or
genetic background component, and ei represents the effect
due to environment and error. We use yij to represent the
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value of the ith trait for the jth individual. We have assumed
that the covariates determining the mean will be shared
among traits, but this is not a requirement. The variance
of yi is given by the following, assuming that covðgi; eiÞ ¼ 0;

varðyiÞ ¼ varðgiÞ þ varðeiÞ ¼ s2
gðiÞK þ s2

eðiÞI;

where s2
gðiÞ represents the genetic variance component for

trait i, K represents the n3 n kinship matrix calculated using
a set of m known variants, and s2

eðiÞ represents the environ-
mental and error variance. We note this model asumes i.i.d.
environmental errors for a given trait, which is maybe un-
realistic for some applications (Bello et al. 2012). We use Kjk

to represent the entry of the kinship matrix corresponding to
the relation between the jth and kth individuals. From these
models (Henderson and Quaas 1976; Mrode and Thompson
2005), it follows that the covariance between measurements
for individuals j and k for trait i is given by

covð yij; yikÞ ¼ s2
gðiÞKjk: (1)

We now consider models with multiple traits. By letting rim
represent the correlation between traits i and m due to ge-
netic effect and letting lim represent the correlation due to
an individual’s environment, the covariance between the
trait measurements i and m for individual j is

covð yij; ymjÞ ¼ covðgij; gmjÞ þ covðeij; emjÞ
¼ rims gðiÞsgðmÞ þ lims eðiÞse ðmÞ:

(2)

Assuming that environmental effects are independent be-
tween individuals, let the covariance between traits i and m
for individuals j and k be

covð yij; ymkÞ ¼ K jkrims gðiÞs gðmÞ: (3)

In fact, these models are standard models utilized in the
animal and plant breeding communities.

A straightforward approach to represent this model is to
stack all of the traits for each trait into one long vector of
length np and then represent their covariances in a np3 np
matrix populated using Equations 1–3. However, this matrix
will have n2p2 elements and fitting this model to estimate
the parameters for even a small number of phenotypes is
computationally intractable.

Matrix-variate normal distribution

We note that the np3 np covariance matrix above has a sig-
nificant amount of structure as evident in Equations 1–3. In
fact, this matrix can be represented by the sum of two ma-
trices, each of which is a Kronecker product of an n 3 n and
p 3 p matrix. This decomposition is widely utilized in the
plant breeding literature (Malosetti et al. 2008; Kelly et al.
2009; Verbyla and Cullis 2012). In our work, the main con-
tribution is that we provide an efficient method for perform-
ing inference in these models efficiently by modeling the full
set of trait measurements, using a matrix-variate normal

distribution. The matrix-variate normal distribution is a gen-
eralization of the multivariate normal distribution to matri-
ces (Gupta and Nagar 2000). The matrix-variate normal
distribution is a very natural way to represent these types of
factored models. Unlike in a multivariate normal model where
the data are concatenated into a single vector of length np, in
a matrix-variate model, the data ðYÞ are an n3 p matrix
where each column is a trait. Instead of representing a co-
variance structure using a single np3 np matrix, the matrix
variate normal distribution represents the covariance using
two matrices: a p3 p matrix A that represents the covari-
ance between columns of the data and an n3 n matrix B
that represents the covariance between rows of the data. In
a matrix-variate normal distribution, the mean ðMÞ is now an
n3 p matrix. We denote a matrix-variate normal model, us-
ing the notation Nn3 pðM;A;BÞ:

Using the matrix-variate normal distribution, our model
can be represented as

Y ¼ Zþ R;

where Y is the n3 p matrix of traits; Z follows a matrix-
variate normal distribution with mean Xb ¼ X½b1 . . .bp�
and covariance matricesC and K; where C is a p3 p matrix
representing the correlation between traits due to genetics;
and K is the kinship matrix. R follows a matrix-variate normal
distribution with mean zero and covariance matricesF and In;
where F is a p3 p matrix representing the covariance be-
tween traits due to environment and error. The ith diagonal
component of C is given by s2

gðiÞ and the i; jth component by
rijsgðiÞsgðjÞ, and similarly Fij ¼ lijseðiÞseðjÞ: The distribution
for Y is then summarized as follows, where Nn3 pðM;A;BÞ
denotes the matrix-variate normal distribution with mean ma-
trix M and columns and row covariance matrices A and B :

Y � Nn3 pðXb;C;KÞ þ Nn3 pð0;F; InÞ: (4)

Efficient maximum-likelihood computation

Likelihood evaluation for the matrix-variate distribution given
by Equation 4 is accomplished by evaluating the equivalent
multivariate normal distribution. By using the vecð  Þ operator,
which creates a vector from a matrix input by concatenating
the columns of the matrix, we are able to represent the dis-
tribution given in Equation 4 in the following way, where 5

represents the Kronecker product of two matrices:

vecðYÞ � NnpðvecðXbÞ;C5K þF5InÞ:

The likelihood computation for this model takes time on the
order of ðnpÞ3: This computational time becomes prohibitive
when maximizing the likelihood function while considering
a large cohort with multiple traits. Previous work has shown
how similar multivariate models with Kronecker product ma-
trices can be utilized efficiently when residual errors are in-
dependent (Stegle et al. 2011). However, it is not known how
these models may be used efficiently when residual errors are
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correlated, which is the case for our model. To remedy this
problem, we introduce a transformation that results in a re-
duced computational time.

Let the eigendecomposition of K ¼ HKSKH9
k: This decom-

position is calculated with a computational complexity of
Oðn3Þ: Let L be a p3 p matrix that diagonalizes both C

and F; such that LCL9 ¼ I and LFL9 ¼ D; a diagonal ma-
trix. This bidiagonalization can be accomplished in Oðp3Þ
(details are in the Diagonalizing two matrices section below).
We then define the matrix M ¼ ðL5H9

kÞ: The transformed
data vector YT is defined as YT ¼ M  vecðYÞ: This trans-
formed vector has the following distribution:

YT � NðM  vecðXbÞ; I5Sk þ D5IÞ:

The log likelihood of YT is then given as follows:

LðYT jXb;C;K;FÞ

¼ 2
np
2
lnð2pÞ2 1

2
lnjI5Sk þ D5Ij

2
1
2
ðM  vecðYT2XbÞÞ9ðI5Sk þ D5IÞ21

3 ðM  vecðYT 2XbÞÞ þ logðjMjÞ:

To calculate the likelihood given C and F; we first obtain
the transformation matrix M; which is accomplished in
Oðn3 þ p3Þ: Next, we compute the transformed data vector
YT in Oðn2pþ p2nÞ: Given YT ; we obtain an estimate of b,
denoted by b̂; which we show may be accomplished in
Oðnp3q2 þ p3q3 þ np2qÞ; and given this we calculate the re-
sidual vector YT 2M  vecðXb̂Þ in Oðnp2qþ npÞ: Finally, the
likelihood is computed in OðnpÞ: Part of the reason that our
approach is efficient is that much of the computations can be
reused for many analyses. For example, the matrix M that is
computed in Oðn3 þ p3Þ requires diagonalizing the K matrix,
which requires Oðn3Þ time and needs to be performed only
once for the complete analysis of the data set. Similarly, the
transformed data vector YT can be computed in Oðn2pþ p2nÞ;
does not depend on which variant is actually being tested, and
can be computed only once for each set of traits that is being
considered. Thus the likelihood computation for each variant is
dominated by Oðnp3q2Þ; utilizing the quantities that were com-
puted once. In addition, in many scenarios we can assume that
the effect sizes are small as in human studies. Under this as-
sumption, we can fit the variance parameters just once, assum-
ing that b ¼ 0; and then use this estimate to test each variant.
In this case, computing the maximum likelihood reduces to
OðnpÞ: This transformation is similar to the approaches in the
plant breeding literature to speed up computations, using two
eigendecompositions (Piepho et al. 2012).

This assumption is the same assumption that differentiates
EMMAX (Kang et al. 2010) from EMMA (Kang et al. 2008).
While this assumption is appropriate for human studies where
most identified genetic variants have very small effects, this
assumption may not be appropriate for plant and animal mod-
els where there are often several loci with very strong effects.

An approach to handle this case while avoiding refitting the
variance parameters for each variant is to first identify the
variants with strong effects, using the above assumption, and
then refit the variance parameters after including these strongly
associated variants as fixed effects in the model.

Restricted Maximum-Likelihood Computation

The REML and the maximum-likelihood (ML) solutions should
be similar when the model contains no covariates or only a bias
term. However, when this is not the case, parameter estimates
obtained in REML analysis may deviate significantly from
those of ML. We obtain the REML version of the mvLMM by
extending the ML solution (Welham and Thompson 1997).
By denoting the log-likelihood obtained by ML as LML and
similarly for REML, we define the following log-likelihood
function. For a standard multivariate normal vector y with
distribution NðTa;QÞ;, where T is n3 q; the REML is
LLREML ¼ LLML þ ð1=2Þ½qlnð2pÞ þ lnðjT9TjÞ2 lnðjT9Q21TjÞ�
(Kang et al. 2008). Given this standard result, we define the
REML log-likelihood for the mvLMM in the following:

LLREML ¼ LLML

þ 1
2

h
qlnð2pÞ þ ln

�����L95ðH9
kXÞ9

��
L5H9

kX
�����

2 ln
�����L95�

H9
kX

�
9
�
ðI5Sk þ D5IÞ21

3
�
L5H9

kX
�����i:

The computational cost of the operations required to define
LLREML does not change the order of the computational
complexity.

Estimating genetic correlation

To evaluate the likelihood function in Equation 5, we obtain
estimates for the parameters C and F: We estimate these
parameters under the null model, where SNPs are not in-
cluded as covariates. This assumption has been used pre-
viously and is valid for cases when the effect due to each
SNP is small (Kang et al. 2010; Lippert et al. 2011). First, for
each trait i, we fit the basic LMM from Equation 1, to identify
the optimal values of the variance parameters s2

gðiÞ and s2
eðiÞ:

Holding these parameters constant, we perform a two-
dimensional global grid search to identify the optimal genetic
and environmental correlation parameters. With caching, the
likelihood calculation takes time on the order of Oðp3 þ np3Þ:
This time will be multiplied by a constant k2 when searching
over a grid of size k for each correlation parameter. That is, if
we evaluate the likelihood for each genetic and environmental
correlation combination for a grid size of k, then we need to
evaluate the likelihood k2 times.

To expand this approach to more than two traits, we
propose a straightforward pairwise approach to identify the
maximum-likelihood parameters. Instead of performing a full
grid search over the correlation parameters, we identify the
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ML estimates of the parameters in each pair of traits. This
procedure will be much faster than a full grid search over all
pairs of traits and we discuss in Supporting Information, File
S1, Figure S1, Figure S2, and Table S1 why this procedure is
also more robust.

Calculating sampling variance for parameter estimates

We calculate the sampling variance of the variance param-
eters and the correlation parameters, using standard multi-
variate theory. Generally, the sampling variance of a ML
parameter is given by the inverse of Fisher’s information (or
average information) matrix evaluated at the ML parame-
ters (Searle et al. 1992). Using the search technique we de-
scribe, we identify the ML parameters for a given set of traits
and then use these parameters to estimate the sampling
variance, using Fisher’s information matrix.

Association analysis

To identify genetic variations that have an effect on our
traits of interest, we employ a hypothesis-testing framework.
We first estimate the effect that a particular SNP x has on
each of the traits, using the mvLMM model, and then we
jointly test m hypotheses, each testing the effect of the SNP
on a given trait. Our null hypothesis for this test is that the
SNP has no effect on any of our traits and the alternative
hypothesis is that it has an effect on one or more of the traits.

To obtain estimates for the SNP effect sizes, we include
one SNP in the model at a time and estimate b from Equa-
tion 5. First, we obtain the maximum-likelihood parameters
for C and F under the null model in which the SNP has no
effect, as described in the previous section. Then, given
these two parameters, we compute an estimate of the co-
efficient matrix b̂; using the following result.

In the previous section, we defined a transformation
M ¼ ðL5H9

kÞ and used it to define a transformed data
vector YT : The mean of the transformed data is given
by M  vecðXbÞ ¼ ðL5H9 kÞvecðXbÞ; which can be reduced
as follows: �

L5H9
k

�
vecðXbÞ

¼ vec
�
H9
kXbL9

�
¼ vec

�
X�bL9

�
¼ ðL5X�ÞvecðbÞ:

Here we have let X� ¼ H9
kX: By denoting vecðbÞ as bT ; we

obtain an estimate b̂; using the following result, where
unvecð  Þ represents the reversal of the vecð  Þ operation
and we have let P ¼ ðI5Sk þ D5IÞ; the transformed data
covariance matrix:

b̂T ¼ ��
L95X�9

�
P21ðL5X�Þ�21�

L95X�9
�
P21M  vecðYÞ

b̂ ¼ unvec
�
b̂T

�
:

Since P is a diagonal matrix, b̂T can be computed in
Oðnp3q2 þ p3q3 þ np2qÞ given the one-time cost of Oðn2qÞ
for computing X�:

The statistic for testing the proposed hypothesis is
obtained by defining a transformation matrix R so that
Rb̂T ¼ ½b̂1;x;  b̂2x; . . . ;  b̂px�9; where b̂ix is the coefficient es-
timate for the effect of SNP x on trait i. Therefore, given this
matrix, we define the F-statistic for testing association in
Equation 5, which under the null follows an F-distribution
with p numerator degrees of freedom and np2 pq denomi-
nator degrees of freedom, where bs2 ¼ cvarðP21=2YTÞ andcvarð. . .Þ represents the sample variance. Details of this test
can be found in McCulloch and Neuhaus (1999):

f ¼
�
Rb̂T

�
9

	
R
h�
L95X�9

�
P21ðL5X�Þ

i21
R9


21

3
�
Rb̂T

�
� 1

pbs2:

Diagonalizing two matrices

We are given two positive semidefinite matrices F and C

and we wish to identify a matrix L that diagonalizes both of
these matrices. This is accomplished in the following way.
First, we obtain the eigendecomposition of C ¼ HCSCH9

C

and then define a matrix R ¼ S21=2
C H9

C; so that R9R ¼ C21:

Next, we obtain an eigendecomposition RFR9 ¼ QDQ9 and
then define a matrix L ¼ Q9R: With this we see that
LCL9 ¼ I and that LFL9 ¼ D: The entire procedure has com-
plexity Oðp3Þ:
Genotype and phenotype data

We apply our method to the Northern Finland Birth Cohort
data (Sabatti et al. 2008), which were used in Kang et al.
(2010) and Korte et al. (2012). This data set consisted of
5326 individuals that had been filtered to reduce the pres-
ence of family structure. The data set contains 331,450 au-
tosomal SNPs after application of the exclusion criteria of
Hardy–Weinberg equilibrium ðp, 104Þ; genotyping com-
pleteness ð, 95%Þ; and minor allele frequency ð, 1%Þ: Miss-
ing genotypes are replaced with the minor allele frequency.
Missing phenotypes are replaced with the phenotypic mean.

We use a well-studied yeast data set (Smith and Kruglyak
2008) consisting of 109 yeast strains each with 5793 gene
expression measurements. Bivariate association mapping is
performed on all 2956 available SNPs. Gene expression values
were normalized and subjected to quality control by Smith and
Kruglyak (2008) and we utilized the same data as they.

Results

Association and genetic correlation in the Northern
Finland Birth Cohort

Association: We apply our method to the Northern Finland
Birth Cohort, a founder cohort consisting of 5043 individuals,
each of which has multiple-trait measurements for four different
metabolic traits. We analyze a total of six pairs of traits or all
combinations of four traits: HDL and LDL cholesterol, C-reactive
protein (CRP), and triglycerides (TG). Association between each
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SNP and each pair of traits is evaluated by assuming that under
the null hypothesis the SNP does not affect either trait.

We compare our results to the analysis of Korte et al.
(2012), which analyzed the same data using a classically
based multiple-trait LMM, which they refer to as the multi-
trait mixed-model (MTMM) method. Our results are highly
concordant (r ¼0.96–0.99), indicating that our method is
consistent with classical approaches. For example, Figure 1
compares the QQ plots of the mvLMM and MTMM for the
joint analysis of TG and LDL.

Over 99% of associations identified in marginal analysis
are also identified when respective pairs of traits are
mapped (significance threshold of 1.5e-7). However, the
joint mapping uncovers more significant associations; 19
new associations are identified across all trait pairs. For ex-
ample, in the analysis of TG with CRP, we identify a SNP
(rs2000571) with a P-value of 8.58e-7 and with the MTMM
a P-value of 1.7e-6. This SNP was not significant in the
marginal analysis of TG (1.7e-5) or CRP (0.03), but belongs
to a region on chromosome 11 that has been shown to
harbor variants contributing to triglycerides (Braun et al.
2012). Many of the identified associated SNPs were more
significant in the mvLMM compared to the MTMM, which
we suspect is because the mvLMM finds the actual parame-
ters that maximize the likelihood. We also apply our method
to analyze all four traits simultaneously and the results are
shown in Table 2. For all variants, at least one of the pair of
trait P-values is more significant than the all-trait P-value.
Thus it appears that in this scenario, it is best to follow
a single-trait analysis with the all-pairs analysis. This raises
the more general issue of how one should apply a method
such as this and we provide some guidance in the Discussion.

Genetic correlations: In multiple-trait models, the total trait
correlation is partitioned into a genetic and an environmen-
tal component. The genetic component of the correlation
(the genetic correlation) represents the part of the total trait
covariance that is attributed to genetics normalized by the
genetic variances. This quantity provides insight into the genetic
architecture of the relationships between traits. We estimate the
genetic correlations for each pair of traits analyzed in the
Finland Birth Cohort and compare these estimates with those
obtained using a standard implementation of a bivariate LMM
as implemented in genome-wide complex trait analysis (GCTA)
(Lee et al. 2012). Table 1 compares estimates of genetic corre-
lation obtained with GCTA and the mvLMM. When we com-
pare our results to those of GCTA, we find that the two
methods yield similar results, with genetic correlation estimates
falling,1 standard deviation from one another. In addition, the
running time for the classical approach was�35 min, while the
running time for the mvLMM was on average �12 sec, given
a one-time cost of 2.5 min shared across pairs of traits.

Bivariate analysis in yeast data

Gene coexpression, defined as the correlation between expres-
sion levels of a pair of genes estimated in a set of individuals, is
a fundamental quantity that has been utilized for a variety of
applications (Stuart et al. 2003; Subramanian et al. 2005;
Ghanzalpour et al. 2006; Lee et al. 2006). There are two prev-
alent views about the meaning of significant coexpression. The
first is that coexpression stems from similar environmental
conditions such as disease status (Heller et al. 1997). The
second comes from the systems genetics literature where it is
thought that coexpressed genes have a similar genetic regula-
tory program and that specific genetic variants drive modules
of coexpressed genes (Ghanzalpour et al. 2006; Lee et al.
2006). However, correlation estimates from gene expression
levels measure the combined effect of both the genetic and
the environmental components. Our methodology allows us
for the first time to decompose the coexpression into a genetic
and environmental component.

We utilize the major gain in efficiency of our approach to
perform an analysis that is not feasible with current methods.
Using a well-studied yeast data set (Smith and Kruglyak 2008)
consisting of 109 yeast strains each with 5793 gene expression
measurements, we perform a bivariate analysis, estimating
genetic correlations for all 5793 chose 2 gene expression pairs.

Figure 1 QQ Plot comparing MTMM and mvLMM P-values obtained
when performing analysis with LDL and TG.

Table 1 Genetic correlation estimates in the Finland Birth Cohort

Trait pair
Phenotypic
correlation

mvLMM genetic
correlation

GCTA genetic
correlation

HDL/CRP 20.19 0.28 6 0.19 0.26 6 0.22
HDL /LDL 20.13 20.16 6 0.11 20.18 6 0.11
HDL /TG 20.37 20.37 6 0.17 20.32 6 0.16
LDL /CRP 0.09 0.03 6 0.17 20.02 6 0.17
TG/CRP 0.21 20.62 6 0.26 20.75 6 0.41
TG/LDL 0.32 0.33 6 0.16 0.29 6 0.14

We compare the maximum-likelihood estimates obtained with the mvLMM with
those obtained with GCTA and find that the results are very similar.
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Within this data set several regions of the genome have been
implicated to harbor genetic variation that affects many gene
expression levels.

Using a set of hotspot locations derived from Smith and
Kruglyak (2008), we define a set of 13,508 hotspot gene pairs
by extracting all pairs of genes that lie in each known hotspot.
We then compare the phenotypic correlation to the total pro-
portion of covariation accounted for by genetics for each of these
pairs. Assuming that hotspot pairs are under the same genetic
regulation, we expect that the phenotypic correlation for any
given pair should reflect this by having a high value. However,
this might not be the case if the environmental correlation be-
tween the pair contributes in such a way to lower the overall
phenotypic correlation. Therefore, an estimation of the total
phenotypic covariation attributed to genetics may better reflect
the fact that the two genes are under the same genetic program.

In Figure 2A, we plot the histogram of the absolute value
of the total phenotypic correlation for all gene pairs and for

hotspot gene pairs. We see that the distribution of pheno-
typic correlations for hotspot pairs is shifted toward higher
correlations with respect to all pairs, giving an indication of cor-
egulation. However, most of the pairs have correlation ,0.5.
Figure 2B shows the same plot generated using the total pro-
portion of the phenotypic covariation attributed to genetics.
In Figure 2B, we observe that the estimated genetic correla-
tion for hotspot pairs is dramatically skewed toward 1. In fact,
most of the pairs have a genetic covariance .0.7. This result
suggests that the estimated genetic correlations on average
give a stronger indication of coregulation compared to the
phenotypic correlation.

Discussion

In this article, we introduced amethod for performingmultitrait
genome-wide association analysis and for the estimation of the
genetic correlation. Our method is based on classical theory, but

Table 2 Joint analysis of all traits compared to all pairwise combinations

rs ID All HDL_CRP HDL_LDL HDL_TG LDL_CRP TG_CRP TG_LDL

rs3764261 3.115800e-01 2.610400e-31 6.167100e-31 7.179700e-33 3.857500e-01 2.301000e-01 2.475900e-01
rs1532624 5.934000e-01 7.134300e-24 1.286400e-23 1.477200e-24 4.096300e-01 1.467800e-01 1.844000e-01
rs2794520 2.936500e-13 4.404900e-22 3.241900e-01 2.812900e-01 2.030400e-22 5.021100e-23 8.300500e-01
rs7499892 3.460300e-02 3.303200e-16 1.553200e-16 1.935800e-20 6.642000e-01 3.166200e-01 6.211500e-01
rs2592887 3.707500e-10 6.883400e-17 9.482500e-02 1.104900e-01 5.918400e-17 8.024200e-17 7.710100e-01
rs646776 5.625600e-02 6.116800e-02 2.055800e-14 2.914200e-01 2.389500e-15 2.819600e-01 1.587700e-15
rs1532085 9.795800e-01 2.046400e-11 2.626800e-11 2.063700e-15 8.229500e-01 2.304300e-01 2.445000e-01
rs1811472 6.488000e-10 1.028000e-14 1.075200e-01 1.334100e-01 7.085600e-15 8.336700e-15 7.862900e-01
rs12093699 3.487700e-08 2.803100e-14 8.704700e-01 9.775600e-01 1.324500e-13 5.136100e-14 8.555500e-01
rs2650000 2.150800e-06 3.117800e-11 4.840500e-01 5.395800e-01 1.412700e-11 1.175100e-11 7.312200e-01
rs6728178 1.348000e-02 3.726700e-06 3.718900e-11 8.567700e-09 1.192200e-07 1.192900e-06 5.170100e-10
rs6754295 1.244400e-02 4.028300e-06 3.838300e-11 1.715000e-08 9.608700e-08 2.323300e-06 8.179200e-10
rs693 5.549800e-02 3.253100e-02 4.795900e-11 3.963400e-03 1.410000e-10 1.015900e-02 1.324700e-10
rs7953249 6.533200e-06 2.201500e-10 4.063400e-01 4.969100e-01 1.016400e-10 8.025500e-11 7.893600e-01
rs1169300 1.736100e-05 9.062700e-10 5.325500e-01 7.450100e-01 3.118100e-10 1.515200e-10 6.399000e-01
rs2464196 1.619700e-05 9.053200e-10 6.220200e-01 7.569200e-01 4.075100e-10 1.744700e-10 7.528400e-01
rs673548 4.967500e-02 4.309800e-06 2.014500e-10 3.655500e-09 1.150800e-06 5.222900e-07 1.055400e-09
rs415799 2.000800e-01 2.320400e-07 1.493100e-07 2.216300e-10 7.457500e-01 2.088500e-01 3.640400e-01
rs676210 5.072700e-02 5.251900e-06 2.883700e-10 5.535600e-09 1.364200e-06 7.256100e-07 1.583900e-09
rs174546 1.379500e-01 1.590200e-01 8.556400e-07 9.688800e-03 1.623200e-05 1.427300e-02 4.819700e-10
rs102275 1.678600e-01 1.112900e-01 5.655100e-07 9.205100e-03 1.723700e-05 1.722200e-02 7.111600e-10
rs1260326 4.928500e-01 1.036300e-01 2.940800e-01 7.494900e-10 8.537200e-02 1.110700e-09 1.140400e-09
rs261336 6.096900e-01 1.066600e-04 1.045000e-03 9.195300e-10 7.777300e-02 2.454000e-04 5.129400e-04
rs174537 1.410500e-01 1.549200e-01 1.474200e-06 1.113400e-02 3.039100e-05 1.637500e-02 1.306000e-09
rs1535 1.565800e-01 1.949600e-01 1.776900e-06 1.539500e-02 2.517300e-05 2.155300e-02 1.698300e-09
rs174556 6.854800e-02 3.880900e-01 1.614800e-06 5.138000e-02 5.632100e-06 5.600000e-02 1.846800e-09
rs10096633 7.343600e-01 1.076800e-05 1.327200e-05 2.542900e-09 6.869700e-01 7.121200e-08 2.132500e-08
rs735396 4.019400e-04 3.576200e-08 4.346600e-01 4.457100e-01 1.036900e-08 2.650500e-09 4.197800e-01
rs3923037 1.198500e-03 2.762800e-03 3.162700e-08 1.440400e-06 9.422300e-07 6.535200e-06 4.137700e-09
rs2126259 1.323700e-02 4.359000e-09 9.557500e-08 1.423400e-04 5.889200e-06 2.068100e-04 6.961300e-04
rs9989419 9.182800e-01 1.922700e-08 1.983700e-08 4.919800e-09 9.527800e-01 8.393700e-01 8.597400e-01
rs780094 6.157600e-01 2.610900e-01 6.568900e-01 7.159300e-09 2.491000e-01 2.042200e-08 1.189700e-08
rs11668477 4.263400e-01 4.826000e-02 8.350000e-09 1.810800e-02 2.422300e-08 4.300100e-02 3.161500e-08
rs11265260 7.116800e-06 4.158100e-08 2.523900e-02 2.956100e-02 1.047600e-08 9.316100e-09 3.308700e-01
rs1800961 6.390900e-01 1.094000e-08 1.636900e-07 1.074400e-07 1.981400e-01 1.465700e-03 1.085900e-02
rs754524 4.032900e-02 1.337000e-01 1.529600e-08 1.141300e-01 3.017000e-08 3.648500e-01 2.833300e-08
rs2075650 7.106400e-03 3.324200e-04 5.500700e-04 3.998700e-04 2.922700e-07 2.092800e-08 1.028800e-05
rs255049 8.151200e-01 2.079900e-07 2.294600e-08 1.371900e-07 3.933200e-01 4.514200e-01 8.102700e-02
rs166358 5.721200e-01 7.791800e-07 8.254800e-07 3.621500e-08 4.471400e-02 5.396600e-01 1.480400e-02

We compare the P-values of the analysis of all four traits to the six possible pairwise trait analyses. In all cases, the pairwise analyses are more significant. ID, identification number.
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introduces a computational advance that makes it much faster,
reducing running time .10-fold when compared with the clas-
sic approach. We have shown that our method achieves similar
results to those of the classical approach. In addition, we have
shown that the ability to quickly estimate genetic correlation
may be of great benefit to researchers, leading to fundamental
insights into the architecture of complex traits.

The ability to quickly optimize multiple-trait linear mixed
models will have a large impact on the ability to dissect
complex traits. For example, multiple-expression quantita-
tive trait loci (multi-eQTL) may be discovered by mapping
multiple traits to genetic variants across the genome. The
ability to perform this type of research is infeasible with
current methodologies. In addition, we have shown that the
genetic correlation between gene expression measurements

may be a better indicator of coregulation. It stands to reason
that these genetic correlations may be used in coexpression
analysis and lead to the discovery of gene modules that are
truly coregulated and not in part due to environmental
correlations.

We note that in our model, the genetic background
component is assumed to have a covariance structure, defined
by the matrix K, which is computed using all of the marker
genotypes. This model inherently assumes that the effect size
of each genetic variant is drawn from a normal distribution
with equal variance. This may be inaccurate for several rea-
sons. First, not all of the markers are causal variants and even
among the variants that are causal, their effect sizes may vary
widely. Second, many of the causal variants themselves may
not be genotyped in the study and the markers are merely

Figure 2 Comparison of the phenotypic correlation
with the total proportion of the correlation accounted
for by genetics for all gene pairs and for gene pairs from
regulatory hotspots. We compare the phenotypic corre-
lation with the total proportion of correlation accounted
for by genetics to assess the ability of the genetic correla-
tion to differentiate gene pairs that are coregulated. Utiliz-
ing a set of known hotspots, we derive a set of hotspot
gene pairs, where a hotspot pair is defined as a gene pair
in which both genes lie in a given hotspot. We find that
the genetic correlation differentiates these coregulated
pairs better than the overall trait correlation.
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proxies for these causal variants. This difference between the
estimated covariance structure from the markers and the true
covariance structure has been shown to lead to inaccurate
heritability estimates (de Los Campos et al. 2013) and may
lead to inaccuracies in estimates of genetic correlations. A more
appropriate term from the quantities we estimate maybe “ge-
nomic heritabilities” and “genomic correlations.”

Our method presents an approach for jointly performing
association analysis for multiple traits. However, the ques-
tion remains of what is the best way to analyze a data set
with multiple traits. Unfortunately, there is no clear answer.
If a variant affects only a single trait, then an individual
trait-by-trait analysis is the most powerful to identify such
a trait because analyzing more than one trait increases the
degrees of freedom of the statistical test. On the other hand,
if a variant affects multiple traits, then analyzing all traits
together will be more powerful. From a practical perspec-
tive, we advocate first analyzing each trait independently
and then applying this method to groups of traits where
there are suspected shared genetic components and in-
creasing the number of traits analyzed until the P-values be-
come less significant. Our estimates of genetic correlation can
guide identification of potential groups of traits. Any such
sequential strategy complicates issues of controlling type I
errors. Exactly how to control type I errors in this context is
an important avenue of future work.
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Figure S1   Comparison of variance estimates between mvLMM and GCTA.  We simulated 1,000 pairs of phenotypes under 
the multiple phenotype model assumed by mvLMM and GCTA with the genetic variance for phenotype 1 and 2 set to 0.50.  
The figure shows that the parameter estimates from both methods are highly concordant.  However, we note that GCTA has 
the potential to predict very large genetic variance such as 1e16.  We have filtered these cases to produce the plots. 
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Figure S2   Distribution of residuals for the genetic and environmental correlations. We simulate 1000 data sets each with 
three correlated phenotypes, with a genetic and environmental correlation of 0.25.  We employ both a pairwise approach and a 
full grid search approach to estimate the correlations and plot the distribution of the absolute value of the residuals here.     
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Table S1   Comparison of genetic and environmental variance components estimated using mvLMM and GCTA.  The variance 
estimates are highly concordant between the two methods across pairs of traits from the Northern Finland Birth Cohort. 
 

Phenotype 
Pair  

Genetic 
Variance 
(trait 1/ trait 
2)  

Environment 
Variance (trait1 / 
trait 2)  

Genetic 
Variance 
(trait 1/ trait 
2)  

Environment 
Variance (trait 1 / 
trait 2)  

HDL-CRP  0.037 / 0.272  0.08 / 2.03  0.038 / 0.276  0.084 / 2.038  

HDL-LDL  0.037 / 0.261  0.08 / 0.441  
0.0384 / 
0.283  

0.084 / 0.458  

HDL-TG  0.037 / 0.032  0.08 / 0.17  0.038 / 0.030  0.084 / 0.182  

LDL-CRP  0.261 / 0.272  0.441 / 2.03  0.282 / 0.272  0.459 / 2.033  

TG-CRP  0.032 / 0.272  0.17 / 2.03  0.030 / 0.275  0.182 / 2.03  

TG-LDL  0.032 / 0.261  0.17 / 0.441  0.030 / 0.276  0.182 / 0.464  

 



SUPPLEMENTARY MATERIALS

mvLMM and Bayesian Linear Regression The standard LMM used in GWAS has been shown to

be equivalent to a Bayesian linear regression in which a number of SNPs m are assumed to each have an

effect on the trait, such that each effect is sampled IID from a normal distribution (Hayes et al. 2009;

Listgarten et al. 2012). By integrating out these effects, one may arrive at a standard LMM using the

realized relationship matrix (RRM) as the kinship matrix (Goddard et al. 2009; Yang et al. 2010). Here

we briefly summarize this result and show how it extends to multiple trait LMMs.

Let us assume that a set of m SNPs each contribute to the background phenotypic variation for trait k.

Let W be a n ×m matrix allocating SNP effects to individuals, such that E[Wij ] = 0 and var(Wij) = 1

and assume that the phenotypic effect attributed to SNP j for trait k is bjk, so that individual i will have a

total effect due to SNP j of Wijbjk. We treat the SNP effect as random and assume that each bjk is sampled

IID from distribution N(0, 1
mσ

2
g(k)). Let gk = Wbk, where bk = [b1k b2k . . . bmk]′. Therefore, the variance

of gk is given by equation (1). Thus, LMM-based population structure correction may be viewed as a basic

linear model, while treating the SNP effects as random effects.

var(gk) = WW′

m σ2
g(k)

= Kσ2
g(k)

This framework may be extended to multiple traits by assuming that the correlation between SNP effect

vectors has the following form, where cor(gki, gji) = ρij .

bi

bj

 ∼ N

(
0,

1

m

 σ2
g(i)I ρijσg(i)σg(j)I

ρijσg(i)σg(j)I σ2
g(j)I

)

To obtain the joint distribution of gi and gj , we apply the following linear transformation.

gi

gj

 =

Wbi

Wbj

 =

W 0

0 W

bi

bj

 ∼

N

(
0,

1

m

 σ2
g(i)WW′ ρijσg(i)σg(j)WW′

ρijσg(i)σg(j)WW′ σ2
g(j)WW′

)

= N

(
0,

 σ2
g(i)K ρijσg(i)σg(j)K

ρijσg(i)σg(j)K σ2
g(j)K

)

This result is consistent with the proposed model in the previous section.

1

Wendy
Typewritten Text
File S1

Wendy
Typewritten Text



The same basic logic is easily applied to derive the cov(ei, ej). By substituting W for I as well as the

appropriate variance and correlation parameters we arrive at the equivalent result for the correlation between

residuals, given in the equation below.

ei
ej

 ∼ N

(
0,

 σ2
e(i)I λijσe(i)σe(j)I

λijσe(i)σe(j)I σ2
e(j)I

)

We note that a similar analysis may be applied when the two sets of causal SNPs are different for each

trait. In this case, the between trait genetic covariance will be proportional to the WcW
′
c, where Wc

represents the n× t SNP incidence matrix for causal SNPs that are common between the two traits. If this

matrix deviates significantly from the full kinship matrix K, then it is possible that the estimated genetic

correlation may be biased.

Robustness of Estimation Procedure One concern with our approach for identifying the variance

parameters is that the ML parameters we identify in the marginal model for a given trait might not be the

same as the variance estimates we identify using a traditional method. In the Figure S1, we show through

simulation that this is not a great concern. In particular, we compare variance estimates between mvLMM

and GCTA for a set of 1000 simulated trait pairs. This figure shows that the variance estimates are highly

correlated. We also note that for a small number of trait pairs (∼ 50) GCTA estimates extremely large

variances for at least 1 trait (eg. 1e16). This is likely due to some numerical issue with their method

and to be fair we disregard these cases. In addition to this, in about 1/10th of the cases, GCTA did not

converge in 1000 iterations or resulted in an error. In addition to this, we show in Table S1 that the genetic

and environmental variance estimates for the Finland Cohort and also highly concordant between the two

methods.

Another concern is that our pairwise fitting of the genetic and environmental correlations may lead to

different estimates than if we fit the full model. In Figure S2, we show through simulation that this procedure

(Pairwise) results in lower residual error in the genetic and environmental correlation for three traits when

compared with a the full grid search approach (Full Grid).
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