
UCLA
UCLA Electronic Theses and Dissertations

Title
Kaczmarz Methods and Structured Matrix Decompositions

Permalink
https://escholarship.org/uc/item/4h67h5f6

Author
Yaniv, Yotam

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4h67h5f6
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Kaczmarz Methods and Structured Matrix Decompositions

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Mathematics

by

Yotam Yaniv

2024

© Copyright by

Yotam Yaniv

2024

ABSTRACT OF THE DISSERTATION

Kaczmarz Methods and Structured Matrix Decompositions

by

Yotam Yaniv

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2024

Professor Andrea Bertozzi, Co-Chair

Professor Deanna M. Hunter, Co-Chair

In this dissertation, we discuss two distinct topics, both of which leverage randomized algo-

rithms in numerical linear algebra. First we study three variants of the Kaczmarz method, a

stochastic iterative method for solving linear systems. We propose a variant of the Kaczmarz

method that uses additional memory to save on computation. We provide theoretical analy-

sis and experimental results of the method, highlighting a gap in the literature. Additionally,

we propose a variant of the Kaczmarz method in the data streaming setting that has an ad-

ditional heavy ball momentum term. We prove a convergence bound for this method and

analyze its merits experimentally given coherent data. Furthermore, we develop a variant of

the Kaczmarz method for solving a latent class regression problem. Next we shift gears and

discuss structured matrix factorizations. The first matrix factorization that we propose is a

stratified non-negative matrix factorization. The aim of this method is to provide unsuper-

vised dimensionality reduction on non-negative data that may be distributed across different

locations. We prove a convergence bound for this method and analyze its performance on

synthetic text, image and tabular data. Finally, we propose a hierarchically semi-separable

matrix factorization method that uses random matrix sketching.

ii

The dissertation of Yotam Yaniv is approved.

Stanley J. Osher

Christopher R. Anderson

Deanna M. Hunter, Committee Co-Chair

Andrea Bertozzi, Committee Co-Chair

University of California, Los Angeles

2024

iii

TABLE OF CONTENTS

1 Introduction . 1

2 Selectable Set Randomized Kaczmarz . 4

2.1 Introduction . 4

2.1.1 Related Work . 6

2.1.2 Contribution . 7

2.1.3 Organization . 8

2.1.4 Notation and Assumption . 8

2.2 Selectable set method . 10

2.2.1 Non-repetitive selectable set . 11

2.2.2 Gramian-Based Selectable Set . 12

2.3 Convergence analysis . 13

2.3.1 Corollaries . 16

2.3.2 Comparison with Relaxed Greedy Randomized Kaczmarz (RGRK)

theory . 20

2.4 Lower bounds on size of Gramian selectable set size 23

2.5 Experiments . 30

2.6 Conclusion . 37

2.6.1 Future directions . 38

3 Online Signal Recovery via Heavy Ball Kaczmarz 40

3.1 Introduction . 40

3.1.1 The Kaczmarz Method . 40

iv

3.1.2 Heavy Ball Momentum . 42

3.2 Proposed Method & Empirical Results . 42

3.3 Theoretical Results . 45

3.4 Proof of Main Result . 46

3.5 Conclusion and Future Directions . 52

4 Multi-Randomized Kaczmarz for Latent Class Regression 53

4.1 Introduction . 54

4.2 Multi-Randomized Kaczmarz Method . 55

4.3 Proofs . 57

4.3.1 Conditional Convergence in Expectation 57

4.3.2 Convergence with full probability . 60

4.4 Experimental Results . 64

4.5 Conclusion and Future Work . 66

5 Stratified Non-negative Matrix Factorization 68

5.1 Introduction . 68

5.2 Proposed Method . 70

5.3 Theoretical Results . 71

5.4 Experimental Results . 75

5.4.1 Synthetic . 75

5.4.2 California Housing . 76

5.4.3 MNIST . 78

5.4.4 20 newsgroups dataset . 79

5.5 Discussion . 82

v

5.6 Conclusion . 83

6 Hierarchically Semi-Separable matrix Construction Algorithm 84

6.1 HSS Format . 85

6.2 Adaptive HSS Algorithm . 87

6.3 Tracing Adaptive HSS Algorithm . 95

6.3.1 Compression of a Leaf Node . 95

6.3.2 Compression of Internal Node . 99

6.3.3 Adaptation . 103

7 Conclusion . 105

References . 107

vi

LIST OF FIGURES

2.1 The non-orthogonality graph constructed from the Gramian G of the above ma-

trix A. This undirected graph is connected because each node is reachable from

every other node along the edges of the graph. The size of the maximal indepen-

dent set of the graph is 2 = |M| because the largest set of nodes that that do not

share an edge among them is 2. If we consider the subgraph formed from nodes 1

and 2 or nodes 1 and 3, these graph have no edges. No larger sets can be created

because if we add any additional nodes to these sets, the induced subgraphs will

contain edges. 25

2.2 Squared error norm versus iteration for RK, NSSRK, GSSRK, and GRK (RGRK

with θ = 1/2) using uniform row probabilities for RK, NSSRK and GSSRK. Re-

sults were averaged over 100 trials. Figure 2.2b is a 3-banded matrix, Figure 2.2a

is a circulant matrix, and Figures 2.2c and 2.2d are two real world matrices,

Cities and N pid all described in detail above. The shading denotes one standard

deviation. 34

2.3 Squared error norm versus iteration for RK, NSSRK, GSSRK, and GRK (RGRK

with θ = 1/2) using row norm probabilities for RK, NSSRK and GSSRK. Results

were averaged over 100 trials. Figure 2.3b is a 3-banded matrix, Figure 2.3a is a

circulant matrix, and Figures 2.3c and 2.3d are two real world matrices, Cities and

N pid all described in detail above. The shading denotes one standard deviation. 35

vii

2.4 Squared error norm versus iteration for GSSRK with uniform row distribution on

varying circulant matrix sizes, corresponding to varying σmin, to confirm that as

σmin increases the convergence rate improves. 100 trials on circulant matrices of

sizes: 50× 50, 100× 100 and 150× 150. Each curve corresponds to the iteration

average over the 100 trials and the shading corresponds to one standard deviation

above and one standard deviation below the mean of norm-squared errors at each

iteration. 36

3.1 Error versus iteration for OHBK(β) applied to U [0, 1] signals of length 50. . . . 44

3.2 ∥x100 − x∗∥ versus β for a range of β ∈ [0, 0.6], for U [0, 1] signals of length 50. . 45

3.3 log ∥x4000 − x∗∥ versus ε for OHBK(β) applied to U [ε, 1] signals of length 50. . . 46

3.4 log ∥x4000 − x∗∥ versus β for OHBK(β) applied to U [0, 1] signals of length n. The

gray verticals show the value of β yielding the minimum error. 47

3.5 Error versus iteration for OHBK(β) applied to the WDBC dataset. 48

4.1 Here we plot the evolution of two iterates in the two-dimensional plane. Our

system is defined by two matrices M1 ∈ R10×2 with entries drawn i.i.d. from

N (0.8, 0.3) and M2 ∈ R10×2 with entries drawn i.i.d. from N (−0.8, 0.3). Each

initial iterate x0
0, x

1
0 ∼ N (0, 1). We let our swap probability r = 0 and sample

rows uniformly at random. 65

4.2 System defined by two matrices M1 ∈ R1000×10,M2 ∈ R1000×10 where the matrices

have entries distributed M1,M2 ∼ N (0, 1). Each initial iterate x0
0, x

1
0 ∼ N (0, 1).

We let our swap probability r = 0, sample rows uniformly at random and plot

the median and interquartile range over the 100 trials. 65

viii

4.3 System defined by matrices M1 ∈ R300×10,M2 ∈ R399×10 submatrices of the Wis-

consin breast cancer data set. Each initial iterate x0
0, x

1
0 ∼ N (0, 1). We let our

swap probability r = 0, sample rows uniformly at random and plot the median

and interquartile range over the 100 trials. 66

5.1 Log of normalized loss versus number of iterations for the synthetic experiment.

The final normalized loss is 9.7e− 4. 76

5.2 Means of each strata feature v(i) over the four strata of the synthetic exper-

iment. The final means are 0.51, 1.47, 2.53, 3.57, respectively. We expect to

approximately recover the true means of 0.5, 1.5, 2.5, 3.5. 77

5.3 Normalized strata features v(i) for the California dataset. This plot was obtained

by taking the resulting v(i)’s and normalizing them so that
∑

j v(i)j = 1 for all

j. The median income and average rooms increase with income, as expected.

Interestingly, median income individuals tend to live in more populous regions

[Ber18]. Trends for the other variables are neutral. 78

5.4 Learned strata features on the MNIST experiment. The left image is a plot of

v(1) and it resembles a one. The right image is a plot of v(2) and it resembles

parts of a three. 79

5.5 Learned topics matrix for the MNIST experiment. Each image is a row of H.

These images capture global features across the residuals A(i)− 1v(i)T . Four of

the five learned global features are 2’s with missing segments which appear to be

captured by the v(i)’s. The remaining feature in H resembles a 3. 80

6.1 (a) Illustration of a symmetric HSS matrix using 3 levels. Diagonal blocks are

partitioned recursively. Gray blocks denote the basis matrices. (b) Tree for the

HSS matrix from (a), using topological ordering. All nodes except the root store

Ui (and Vi for the non-symmetric case). Leaves store Di, non-leaves Bij (and Bji

for the non-symmetric case). 85

ix

6.2 Three level HSS tree for our compression example with the nodes labeled and the

corresponding indices in brackets. 95

6.3 Leaf level of HSS tree with the first node rows in a box. 96

6.4 Compression of the first Hankel block H1 into U1, a basis matrix, and r rows of

the original Hankel block, denoted by the thin horizontal stripe (not necessarily

the first r rows) and indexed by index set J1. 97

6.5 HSS matrix after all four row leaves have been compressed with the low rank

blocks, L1–L4 sections listed . 98

6.6 HSS matrix illustration of how the off diagonal low rank block L1 is computed

and stored. 99

6.7 HSS matrix with the second level of row Hankel blocks highlighted in blue. . . . 100

6.8 Node 5 row Hankel block being prepared for compression. 101

x

LIST OF TABLES

2.1 Acronyms of the methods discussed. 9

2.2 Lower bounds on size of the selectable set for structured Gramian problems. . . 30

5.1 Top three words learned for each newsgroup in the 20 newsgroups dataset. These

are obtained by looking at the largest values in each v(i). We observe that the

forsale newsgroup has the words “following”, “looking” and “manual”, which are

associated with selling or shipping items. Similarly, the baseball newsgroup has

the words “hitting”, “jays”, and “phillies”, which correspond to baseball or major

league baseball teams. 81

6.1 List of helper functions for Algorithm 7 and Algorithm 8. 90

xi

ACKNOWLEDGMENTS

I would first like to thank my Advisors Andrea Bertozzi and Deanna Needell for their

guidance throughout my PhD. I would also like to thank my mentor at Lawrence Berkeley

National Lab Sherry Li.

My academic journey started many years ago with the support of my family, friends and

collaborators. I would like to thank my mother and father for taking me to America and

supporting me throughout my life both financially and emotionally. I would like to thank

my siblings for being amazing brothers, it is weird to think about how we are all almost

adults now. I would like to thank my partner Allison for supporting me even when I was

stressed or frustrated.

I would also like to thank my friends from my primary and secondary education: Jacob

A, Aaron, Stephen, Jacob H, Gil, Josh, Cormac, George, Matt, and Mark for our many years

of fun. I would like to thank my favorite high school teachers Mr. Hanlon and Mr. Murray

for inspiring me to think critically about programming, world history, world religions and

my life.

I would also like to thank my friends from UMD: Nitin, Victor, Charlie, Josephine,

Solomon, Kweku and Jon who taught me many life lessons and helped me gain a new

perspective on a variety of topics ranging from algorithms to cheering for the Washington

Capitals. Additionally, I appreciate the guidance from my undergrad mentors Tom Gold-

stein, and Antoine Mellet without your recommendations and advice I would not have made

it here.

I am thankful to the graduate students in the department many of whom have become

lifelong friends of mine. I would like to thank Adam Lott, Kevin Miller, Jacob Moorman, and

Thomas Tu for their advice and mentorship. I would like to thank my office-mate Dominic

Yang for his advice and our great conversations. I would like to thank Erin George and

Wes Wise for being great roommates. I would like to thank my basic exam study group

xii

consisting of Jason Brown, Grace Li, Cecilia Higgins, Andrew Sack, Jerry Luo and our

wonderful teacher who went above and beyond for us Bon-Soon Lin. I would like to thank

my friends James Chapman and Michael Johnson for all of our long runs, fun adventures,

and beach days. I would not have been able to thrive at UCLA without the support of all

of you. I am grateful that I had the opportunity to experience this with all of you.

Chapter 2 is a version of [YMS22] which is joint work with Jacob Moorman, William

Swartworth, Thomas Tu, Daji Landis and Deanna Needell. Jacob Moorman and I proposed

the initial idea and contributed the convergence analysis. William Swartworth and I con-

tributed corollaries 11-15 about the Gramian selectable set. Daji Landis, Thomas Tu and I

contributed the experimental results. All of which was done under the supervision of Deanna

Needell.

Chapter 3 is a version of [JYN22] which is joint work with Ben Jarman and Deanna

Needell. Ben Jarman proposed the initial project. Ben Jarman and I contributed the

convergence analysis and experiments under the supervision of Deanna Needell.

Chapter 4 is a version of [GYN22] which is joint work with Erin George and Deanna

Needell. Deanna Needell proposed the initial idea. I implemented the method and con-

tributed the experiments and Erin contributed the convergence analysis. Together we wrote

the paper as co-first authors under the supervision of Deanna Needell.

Chapter 5 is a version of [CYN23] which is joint work with James Chapman and Deanna

Needell. James and I proposed the initial idea, contributed the experiments and convergence

analysis under the supervision of Deanna Needell.

Chapter 6 is an adaptation of the background and appendices of a manuscript, [YMG23],

which is joint work with Osman Asif Malik, Pieter Ghysels, and Xiaoye S. Li. Pieter Ghysels

and Xiaoye S. Li proposed the project. Xiaoye S. Li, Pieter Ghysels and I wrote the back-

ground of our matrix compression method. Osman Asif Malik and I compiled the theoretical

results for this work.

I was supported in part by the UCLA Division of Graduate Education (dissertation year

xiii

fellowship). The work in Chapter 2 was supported by NSF DMS 1737770, 2011140, 2108479,

2027277, NSF DGE 1829071. The work in Chapters 3 and 4 was supported by NSF DMS-

2108479 and NSF DMS-2011140. The work in Chapter 6 was conducted thanks to the NSF

MSGI summer internship program and the Exascale Computing Project (17-SC-20-SC).

This research used resources of the National Energy Research Scientific Computing Center

(NERSC), a U.S. Department of Energy Office of Science User Facility located at Lawrence

Berkeley National Laboratory, operated under Contract No. DE-AC02-05CH11231 using

NERSC award ASCR-ERCAP0017690.

xiv

VITA

2017 Undergraduate Research Intern, UCLA Applied Mathematics REU.

2018 Undergraduate Research Intern, UCLA Applied Mathematics REU.

2019 B.S. (Mathematics with high honors) and B.S. (Computer Science with

honors) UMD, College Park.

2019–2024 Fellow and Research Assistant, Mathematics Department UCLA.

2020-2024 Teaching Assistant, Mathematics Department UCLA.

2021 M.A (Mathematics) UCLA.

2022 NSF MSGI Intern / Research Assistant, Lawrence Berkeley National Lab,

Berkeley, California.

2023 NSF MSGI Intern, Lawrence Berkeley National Lab, Berkeley, California.

PUBLICATIONS

Y. Yaniv, O. A. Malik, P. Ghysels, X. S. Li. “Construction of Hierarchically Semi-Separable

matrix Representation using Adaptive Johnson-Lindenstrauss Sketching.” arXiv preprint

arXiv:2302.01977, 2023.

J. Chapman, Y. Yaniv, D. Needell. “Stratified-NMF for Heterogeneous Data.” 57th Asilo-

mar Conference on Signals, Systems and Computers, 2023.

xv

E. George, Y. Yaniv, D. Needell. “Multi-Randomized Kaczmarz for Latent Class Regres-

sion.” 56th Asilomar Conference on Signals, Systems and Computers, 2022.

B. Jarman, Y. Yaniv, D. Needell. “Online Signal Recovery via Heavy Ball Kaczmarz.” 56th

Asilomar Conference on Signals, Systems and Computers, 2022.

Y. Yaniv, J. D. Moorman, W. Swartworth, T. Tu, D. Landis, and D. Needell. “Selectable

Set Randomized Kaczmarz.” Numerical Linear Algebra with Applications (2022): e2458.

D. J. Arnold, D. Fernandez, R. Jia, C. Parkinson, D. Tonne, Y. Yaniv, A. L. Bertozzi, and

S. J. Osher. “Modeling environmental crime in protected areas using the level set method.”

SIAM Journal on Applied Mathematics 79, no. 3 (2019): 802-821.

xvi

CHAPTER 1

Introduction

With the development of large storage devices and abundant data collection methods, from

smartphones to medical devices, there has been a paradigm shift from the limited data

regime to the big data regime. Indeed, the emphasis has transitioned from the extraction

of maximum insight given limited data to extracting pertinent information from massive

amounts of data. The aim of this dissertation is to address some of the problems in the

big data regime by developing scalable linear algebraic algorithms that leverage sampling to

speed up computation. Many of these scalable algorithms are not only essential for direct

application but also serve as fundamental subroutines in modern machine learning models.

Additionally, the analysis of these methods gives theoretical insight and foundation for more

complex methods. Therefore our study of randomized linear algebra routines is essential for

the advancement of modern machine learning and data analysis.

In this dissertation, we discuss two topics in randomized numerical linear algebra: stochas-

tic iterative methods for solving linear systems and structured matrix factorizations. First,

we discuss the Randomized Kaczmarz method, a specific stochastic iterative method for

solving linear systems. The Kaczmarz method has recently grown in popularity due to its

speed and low memory requirement.

In chapter 2, we develop a variant based on Randomized Kaczmarz (RK) called Selectable

Set Randomized Kaczmarz (SSRK). SSRK is a variant of RK that leverages existing infor-

mation about the Kaczmarz iterate to identify an adaptive selectable set and thus yields

an improved convergence guarantee. In this chapter, we propose a general perspective for

selectable set approaches and prove a convergence result for that framework. In addition,

1

we define two specific selectable set sampling strategies that have competitive convergence

guarantees to those of other variants of RK. One selectable set sampling strategy leverages

information about the previous iterate, while the other leverages the orthogonality struc-

ture of the problem via the Gramian matrix. We complement our theoretical results with

numerical experiments that compare our proposed rules with those existing in the literature.

In chapter 3, we consider the problem of recovering a signal x∗ ∈ Rn from a sequence

of linear measurements. This problem arises in areas such as computerized tomography

and wireless communications. In this chapter, we consider an online setting in which mea-

surements are sampled one-by-one from some source distribution. We propose solving this

problem with a variant of the Kaczmarz method with an additional heavy ball momentum

term. Recent work has shown that the Kaczmarz method also enjoys linear convergence

when applied to random measurement models, however convergence may be slowed when

successive measurements are highly coherent. We demonstrate that the addition of heavy

ball momentum may accelerate the convergence of the Kaczmarz method when data is co-

herent, and provide a theoretical analysis of the method culminating in a linear convergence

guarantee for a wide class of source distributions.

In chapter 4, We propose an iterative algorithm based on the randomized Kaczmarz (RK)

method to automatically identify subgroups in data and perform linear regression on these

groups simultaneously. We prove almost sure convergence for this method, as well as linear

convergence in expectation under certain conditions. The result is an interpretable collection

of different weight vectors for the regressor variables that capture the different trends within

data. Furthermore, we experimentally validate our convergence results by demonstrating

the method can successfully identify two trends within simulated data.

Next, we shift gears and discuss structured matrix factorizations. In chapter 5, we

propose a variant of non-negative matrix factorization. Non-negative matrix factorization

(NMF) is an important technique for obtaining low dimensional representations of datasets.

However, classical NMF does not take into account data that is collected at different times or

2

in different locations, which may exhibit heterogeneity. We resolve this problem by solving

a modified NMF objective, Stratified-NMF, that simultaneously learns strata-dependent

statistics and a shared topics matrix. We develop multiplicative update rules for this novel

objective and prove convergence of the objective. Then, we experiment on synthetic data

to demonstrate the efficiency and accuracy of the method. Lastly, we apply our method to

three real world datasets and empirically investigate their learned features.

Finally, in chapter 6 we extend an adaptive partially matrix-free Hierarchically Semi-

Separable (HSS) matrix construction algorithm by Gorman et al. which uses Gaussian

sketching operators to a broader class of Johnson–Lindenstrauss (JL) sketching operators.

This structured matrix factorization allows for more efficient matrix operations and factor-

izations once the matrix is stored in this format. We discuss the details of hierarchically

semi-separable matrix construction and trace our proposed method.

3

CHAPTER 2

Selectable Set Randomized Kaczmarz

This chapter is an adaptation of [YMS22] which is joint work with Jacob Moorman, William

Swartworth, Thomas Tu, Daji Landis and Deanna Needell. Jacob Moorman and I proposed

the initial idea and contributed the convergence analysis. Additionally, I contributed to the

experimental results, writing and revisions of this work.

We propose a new variant to randomized Kaczmarz (RK), a stochastic iterative method

for solving linear systems with a low memory requirement. We use a small amount of

additional memory to store a selectable set allowing us to save on computation when applying

the method, therefore we call our variant selectable set randomized Kaczmarz (SSRK). We

show that at the cost of storing additional data, we are able to save some time in computation.

In the rest of this chapter we explain the proposed method, prove convergence guarantees

and analyze SSRK experimentally. Finally, we highlight an existing gap in Kaczmarz theory

where SSRK has strong theoretical guarantees but experimentally does not perform as well

as other Kaczmarz variants.

2.1 Introduction

The Kaczmarz method [Kar37], also known as the algebraic reconstruction technique in com-

puted tomography [GBH70], has become a popular method for solving large overdetermined

systems of linear equations. The method has abundant applications ranging from digital

signal and image processing to statistics and machine learning. We are primarily interested

in the the regime of extremely large linear systems, where it may be too expensive to load

4

a large number of rows into memory. In this setting, the Kaczmarz method is particularly

useful as it only requires loading a single row into memory at a time. We also consider sparse

systems, which yield additional benefits for the Kaczmarz method; the time required for each

iteration scales linearly with the number of nonzero entries in the selected row [Nat01].

To solve a system of equations Ax = b with A ∈ Rm×n, the Kaczmarz method operates

iteratively, beginning with an initial vector x0 (often x0 = 0). On each iteration k, an

equation Aikx = bik , or equivalently row index ik, is chosen and xk+1 is computed as the

projection of xk onto the set of solutions to that equation. Algebraically, the Kaczmarz

update is given by

xk+1 = xk − Aikx
k − bik

∥Aik∥
2 AT

ik
, (2.1)

where ik is the index of the chosen equation, Aik is the corresponding row of the matrix A,

and ∥·∥ is the Euclidean norm. Algebraically projecting onto the solution of an equation

Aikx = bik is equivalent to sampling a row index ik and applying Equation (2.1). Thus we

refer to sampling then projecting onto equations and sampling then applying Equation (2.1)

to row indices interchangeably.

Like many iterative methods, the Kaczmarz method utilizes and depends on a sampling

strategy to choose the equation for its update at each iteration. Different sampling strategies

exhibit different convergence behavior. The first sampling strategy proven to result in linear

convergence was a randomized strategy where equations are chosen at random with prob-

abilities proportional to the corresponding squared row norms ∥Ai∥2, which we deem the

Randomized Kaczmarz method (RK) [SV09] . Subsequently, many variants of RK have been

proposed and shown to converge linearly [BW18b, NSL16, Du19, GR15, HM21, MTM21].

In this chapter, we aim to develop Kaczmarz methods with linear convergence rates that

mitigate inefficiencies in classical Kaczmarz methods by leveraging meta-information about

the algorithm or problem. For instance, if the equation chosen on iteration k is already

solved (i.e., Aikx
k = bik), then Equation (2.1) reduces to xk+1 = xk and the iteration is

wasted. Therefore, it is desirable avoid sampling equations that are already solved by the

5

current iterate xk. In general, checking whether an equation is solved is as expensive as the

update itself. However, if the system of equations Ax = b has some structure such as a

known Gramian matrix G = AAT , it can be possible to keep track of some equations that

are known to be solved so that they can be avoided. The set of equations that are not known

to be solved is referred to as the selectable set [NSL16]. In this work, we consider variants

of RK that use a selectable set to avoid wasting iterations. Such variants are referred to as

Selectable Set Randomized Kaczmarz methods (SSRK).

2.1.1 Related Work

Several works have considered using more general distributions in RK and have obtained

similar convergence guarantees (see e.g. [GR15, NSW16, NSL16] and references therein).

A different line of work has focused on sampling strategies that depend on the iterate xk

and thus change from iteration to iteration [BW18b, NSL16, Du19, HM21]. Most notable in

the latter is the Max-Distance Kaczmarz method (MDK), also known as Motzkin’s method,

which chooses the equation that maximizes the normalized residual
∣∣Aikx

k − bik
∣∣ / ∥Aik∥ on

each iteration. The term max-distance refers to the fact that MDK chooses the equation

that leads to the largest update, since∣∣Aikx
k − bik

∣∣
∥Aik∥

=
∥∥xk+1 − xk

∥∥ .
MDK yields a provably optimal per-iteration convergence guarantee at the expense of a high

per-iteration computational cost [NSL16].

Several sampling strategies have been proposed that approximate MDK with a cheaper

per-iteration cost. For example, the Sampling Kaczmarz Motzkin method (SKM) chooses

a random subset of rows and selects the maximum-residual row from that subset [DHN17].

This results in much cheaper per-iteration costs than MDK, while still yielding a provably

better convergence guarantee than RK [HM21]. Similarly to MDK, the Relaxed Greedy Ran-

domized Kaczmarz method (RGRK) samples from the equations whose normalized residual∣∣Aikx
k − bik

∣∣ / ∥Aik∥ exceeds some threshold [BW18a, BW18b]. RGRK has a faster con-

6

vergence guarantee than RK but a slower guarantee than MDK and is significantly more

expensive per-iteration than MDK [BW18b, GMM21]. We compare the convergence guar-

antee of RGRK [BW18b] with that of SSRK in Section 2.3.2.

Nutini et al. consider several improvements to RK for sparse systems [NSL16]. In

particular, this work introduces leveraging the orthogonality graph, which is formed from

by considering the Gramian matrix G = AAT as an adjacency matrix for an unweighted

graph. In this graph the nodes are the rows of the matrix. Two nodes are joined by an

edge if they are not orthogonal. The key observation is that a Kaczmarz update for row Ai

only affects residual entries corresponding to adjacent nodes in this graph. This allows for

tracking a so-called selectable set, which is the complement of the set of nodes for which the

corresponding residual entry is known to be 0. Since sampling non-selectable rows yields

no progress, one could hope to speed up RK by restricting the sampling to the selectable

set. We consider the selectable set method in more detail, and specialize to several common

types of sparse orthogonality graphs.

2.1.2 Contribution

In this chapter, we define a general framework for what we call Selectable Set Randomized

Kaczmarz methods (SSRK, Algorithm 1). This is a generalization of the orthogonality graph

method proposed by Nutini et al. [NSL16]. We show that SSRK methods converge linearly

with a speedup over RK related to the size of the selectable set. We define and analyze two

specific SSRK methods, the Non-Repetitive Selectable Set Randomized Kaczmarz method

(NSSRK, Algorithm 2) and the Gramian Selectable Set Randomized Kaczmarz method

(GSSRK, Algorithm 3). These methods use different strategies to identify the selectable

set. We show that NSSRK has a selectable set of size m − 1, while the size of the GSSRK

selectable set is bounded from below by properties of the matrix A. Finally, we note that

the convergence guarantee of NSSRK is the same as that of Relaxed Greedy Randomized

Kaczmarz method (RGRK) [BW18a, BW18b] despite converging much slower than RGRK

7

in practice. This suggests that the convergence guarantee for RGRK is not tight.

2.1.3 Organization

The rest of this chapter is structured as follows. The remainder of this section summarizes

the notation that will be used throughout. In Section 2.2 we define SSRK methods and

define two specific examples, NSSRK and GSSRK. Then, in Section 2.3, we prove a general

convergence guarantee for SSRK methods, presented in Theorem 2, and use it to prove

corollaries for specific methods and sampling strategies. Additionally, we discuss connections

between the convergence analysis of Algorithm 2 and a popular Kaczmarz method proposed

by Bai and Wu [BW18a, BW18b]. Next, in Section 2.4, we examine the improvement of

applying Algorithm 3 to problems with structured systems. Then, we show some empirical

results in Section 2.5 and finally, in Section 2.6, we summarize our work and provide a short

discussion on Kaczmarz sampling strategies.

2.1.4 Notation and Assumption

We consider consistent systems of linear equations Ax = b with A ∈ Rm×n, x ∈ Rn, and

right hand side vector (RHS) b ∈ Rm. We seek the least-norm solution to the system

x⋆ = A†b. Throughout this chapter, m will globally represent the number of rows in the

system and n will represent the number of columns of the matrix A. Bold uppercase letters

represent matrices, bold lowercase letters represent vectors, and standard letters represent

scalars. Ai denotes the ith row of the matrix A, while bi denotes the ith element of the

vector b. We use [m] as shorthand for the set {1, 2, . . . ,m}. The norm ∥·∥ is the Euclidean

vector norm and ∥·∥F is the Fröbenius matrix norm. The smallest nonzero singular value of

A is σmin(A). The index of the equation chosen on iteration k is ik ∈ [m]. The matrix A is

presumed to have no rows of all zeros so that ∥Ai∥ > 0 for all i and the Kaczmarz update

(Equation (2.1)) is well defined for any ik.

The initial iterate is denoted x0 and the iterate at iteration k is denoted xk. Likewise

8

for SSRK methods, the initial selectable set is S0, often chosen as S0 = [m], and subsequent

selectable sets are denoted Sk. We define the complement of a selectable set as SC = [m]\S.

In the analysis of the selectable set, we use the floor ⌊ℓ⌋ to denote the greatest integer less

than or equal to ℓ and the ceiling ⌈ℓ⌉ to denote the smallest integer greater than or equal to

ℓ. For ease of reference, in Table 2.1 we list the acronyms for the methods that we investigate

and analyze in this chapter.

Method acronym Method name Reference(s)

RK Randomized Kaczmarz Strohmer and Vershynin 2009 [SV09]

MDK Max-Distance Kaczmarz Motzkin 1954 [MS54]

SSRK Selectable Set Randomized Kaczmarz Algorithm 1

NSSRK Non-Repetitive Selectable Set Randomized Kaczmarz Algorithm 2

GSSRK Gramian Selectable Set Randomized Kaczmarz Nutini et al. 2016 [NSL16] and Algorithm 3

GRK Greedy Randomized Kaczmarz Bai and Wu 2018 [BW18a]

RGRK Relaxed Greedy Randomized Kaczmarz Bai and Wu 2018 [BW18b]

Table 2.1: Acronyms of the methods discussed.

The scalars p1, p2, . . . , pm represent probabilities associated with each equation of the

system or equivalently each row of A. We often refer to rows of A and equations Aix = bi

interchangeably. We use Diag(v) to denote the square matrix whose diagonal entries take

the values from the vector v and whose remaining entries are all 0. In particular, we utilize

the diagonal matrices of row norms D = Diag(∥A1∥ , ∥A2∥ , . . . , ∥Am∥) and probabilities

P = Diag(p1, p2, . . . , pm).

The Gramian matrix of A is G = AAT where G ∈ Rm×m. It has the property Gij =

⟨Ai,Aj⟩ where ⟨·, ·⟩ is the dot product between vectors. By the symmetry of the dot product,

G is symmetric with Gij = Gji = 0 if and only if rowsAi andAj are orthogonal. Thus, those

entries with a nonzero value indicate that the corresponding rows of A are non-orthogonal.

From the Gramian matrixG, we derive a non-orthogonality graph where each node represents

a row of A and a nonzero entry Gij is interpreted as an edge between nodes i and j. We

9

always assume that our graphs do not contain self edges and allow Gii ̸= 0 from here and

thereafter. Since each node in the non-orthogonality graph represents a row in the matrix

A, the number of nodes in the graph is m. For this graph, we letM denote the maximum

independent set, the largest set in which no pair of nodes share an edge. We denote the

cardinality and complement of a set as |M| andMC = [m]\M, respectively.

2.2 Selectable set method

Since the convergence behavior of the Kaczmarz method is highly dependent on the sampling

strategy used to determine the order of projections, it is important to develop and analyze

various sampling techniques. Here, we focus on the framework in which a selectable set

of equations is identified in each iteration and then an equation is selected from that set,

typically at random. Since the Kaczmarz update only improves the solution when selecting

an equation that is not already solved, we aim to identify the selectable set that is precisely

the set of equations not currently solved.

Definition 1. A selectable set Sk ⊂ [m] for a Kaczmarz method, given a matrix A, vector

b and an iterate xk, is a set of indices that satisfies i ̸∈ Sk =⇒ Aix
k = bi.

Based on this definition, if an equation i is sampled from outside the selectable set, then

Aix
k = bi, implying that if row i were chosen for the Kaczmarz update, then xk+1 = xk.

Thus, sampling exclusively from the selectable set automatically guarantees faster conver-

gence than that of a method that selects in the same random fashion from the entire set of

equations Note that this is related to, but fundamentally different from, random sampling

without replacement. Sampling without replacement indeed guarantees that the same equa-

tion is not selected in consecutive iterations, but an equation solved in iteration k need not

be solved in even the next iteration. See Section 2.6.1 for more discussion.

In the Selectable Set Randomized Kaczmarz method (SSRK), the equation chosen at

each iteration must be sampled from the current selectable set. We assume that a fixed

10

probability distribution on the equations is given. Then, instead of sampling ik according

to the probabilities p1, p2, . . . , pm as in RK, SSRK samples ik conditioned on ik ∈ Sk. This

can be achieved by repeatedly sampling ik according to the probabilities p1, p2, . . . , pm until

the condition ik ∈ Sk is satisfied. This rejection sampling is mathematically equivalent to

sampling from the explicit distribution pi/
∑

j∈Sk
pj for i ∈ Sk and zero for i /∈ Sk at each

iteration. Explicitly updating the sampling distribution at each iteration is advantageous

and yields computational improvement when the selectable set is small and explicitly known.

Conversely, rejection sampling is advantageous if the selectable set contains a majority of

the rows because it bypasses the computational overhead of recomputing the distribution.

Algorithm 1: Selectable Set Randomized Kaczmarz (SSRK)

1 Input Matrix A, RHS b, initial selectable set S0, initial iterate x0 ∈ row(A),

probabilities p1, p2, . . . , pm > 0

2 for k = 0, 1, . . . do

3 Sample row ik according to probabilities p1, p2, . . . , pm with rejection until ik ∈ Sk

4 Update xk+1 = xk − Aik
xk−bik

∥Aik∥
2 AT

ik

5 Update Sk+1 so that i ̸∈ Sk+1 =⇒ Aix
k+1 = bi ▷ See Algorithms 2 and 3 for

examples.

6 end

7 Output Approximate solution xk

2.2.1 Non-repetitive selectable set

A simple construction to update the selectable set S is to begin by including every index

in the first selectable set S0 = [m]. Then, for each subsequent iteration, omit the most

recently chosen index from the selectable set so that Sk+1 = [m]\{ik}. In this construction,

|S0| = m and |Sk| = m− 1 for k > 0. In order to save memory, there is no need to explicitly

construct Sk. It is sufficient to keep track of the previously sampled row which corresponds

11

to SC
k = {ik−1}. Sampling with rejection from this selectable set has a probability (m−1)/m

of succeeding on each attempt, since |Sk| = m−1. The total number of attempts required to

sample ik is thus geometrically distributed with mean m/(m− 1). We refer to this method

as the Non-Repetitive Selectable Set method (NSSRK) Algorithm 2.

Algorithm 2: Non-Repetitive Selectable Set Randomized Kaczmarz (NSSRK)

1 Input Matrix A, RHS b, initial iterate x0 ∈ row(A), probabilities p1, p2, . . . , pm > 0

2 S0 = [m]

3 for k = 0, 1, . . . do

4 Sample row ik according to probabilities p1, p2, . . . , pm with rejection until ik ∈ Sk

5 Update xk+1 = xk − Aik
xk−bik

∥Aik∥
2 AT

ik

6 Set Sk+1 = [m]\{ik}

7 end

8 Output Approximate solution xk

2.2.2 Gramian-Based Selectable Set

A second method to update the selectable set, originally proposed in Nutini et al. is to

leverage the Gramian G = AAT of the matrix A [NSL16, Sep16]. In many structured

problems we have access to both the matrix A and its Gramian G. One example of such

a problem is graph semi-supervised learning [BLS18]. The Gramian, by definition, has the

property that Gij = ⟨Ai,Aj⟩. That is, the ijth entry of the Gramian is the inner product

between the ith and jth rows of A. So Gij = 0 if and only if rows Ai and Aj are orthogonal.

Based on Lemma 1, stated and proven below, we will develop an update to the selectable

set based on the Gramian.

Lemma 1. If an equation Ajx = bj solved by the iterate xk, and if Aik is orthogonal to Aj

(i.e. Gikj = 0), then the equation is also solved by the next iterate xk+1.

12

Proof. Let xk and j satisfy Ajx
k = bj, and suppose Aik is orthogonal to Aj. Multiplying

by Aj on the left of both sides of the Kaczmarz update (Equation (2.1)) results in

Ajx
k+1 = Aj

(
xk − Aikx

k − bik
∥Aik∥

2 AT
ik

)
= Ajx

k −Aj
Aikx

k − bik
∥Aik∥

2 AT
ik

= Ajx
k − Aikx

k − bik
∥Aik∥

2 AjA
T
ik

= Ajx
k − Aikx

k − bik
∥Aik∥

2 ⟨Aik ,Aj⟩.

Using the assumption that Ajx
k = bj,

Ajx
k+1 = bj −

Aikx
k − bik

∥Aik∥
2 ⟨Aik ,Aj⟩.

Finally, by the assumption that Aik is orthogonal to Aj,

Ajx
k+1 = bj −

Aikx
k − bik

∥Aik∥
2 0

= bj.

Recall that any equation Ajx = bj that is not selectable must be solved by the iterate xk.

Thus, from Lemma 1, we know that if j ̸∈ Sk and if ik satisfies Gikj = 0, then the equation

Ajx = bj is still solved by the next iterate, i.e. Ajx
k+1 = bj. This suggests that any

unselectable index j ̸∈ Sk for which Gikj = 0 should remain unselectable on iteration k + 1,

since the corresponding equation is still solved. The Gramian Selectable Set Randomized

Kaczmarz method (GSSRK), Algorithm 3, is based on this observation. In GSSRK, only

those indexes j with Gikj ̸= 0 are reintroduced to the selectable set at each iteration.

2.3 Convergence analysis

Now, we turn to proving convergence results for Algorithm 1. First, we prove a one-step

convergence result for the general selectable set method with a fixed probability distribution.

13

Algorithm 3: Gramian Selectable Set Randomized Kaczmarz (GSSRK) [NSL16]

1 Input Matrix A, RHS b, Gramian G := AAT , initial iterate x0 ∈ row(A),

probabilities p1, p2, . . . , pm > 0

2 S0 = [m]

3 for k = 0, 1, . . . do

4 Sample row ik according to probabilities p1, p2, . . . , pm with rejection until ik ∈ Sk

5 Update xk+1 = xk − Aik
xk−bik

∥Aik∥
2 AT

ik

6 Sk+1 = (Sk ∪ {j : Gikj ̸= 0})\{ik}

7 end

8 Output Approximate solution xk

We analyze a single iteration of the general case with an arbitrary sampling distribution,

and a known selectable set Sk. We then focus on specific probability distributions common

in the literature [SV09], and prove an improvement in the convergence constant which is

inversely proportional to the size of the selectable set. This speedup is roughly what one

should expect. For example if rows are sampled uniformly, then RK wastes an 1 − |Sk|/m

fraction of iterations on updates which make no progress, whereas SSRK avoids this.

Theorem 2. The iterates of Selectable Set Randomized Kaczmarz (Algorithm 1) satisfy

Ek

∥∥xk+1 − x⋆
∥∥2 ≤ (1− σ2

min(P
1
2D−1A)∑

j∈Sk
pj

)∥∥xk − x⋆
∥∥2 ,

where x⋆ is the least-norm solution, P = Diag(p1, p2, . . . , pm), and

D = Diag(∥A1∥ , ∥A2∥ , . . . , ∥Am∥) when
∑

j∈Sk
pj ̸= 0.

Proof. From the update formula Equation (2.1), we derive the usual update for the squared

error ∥∥xk+1 − x⋆
∥∥2 = ∥∥xk − x⋆

∥∥2 − ∣∣Aikx
k − bik

∣∣2
∥Aik∥

2 .

14

Letting Ek denote the expectation conditioned on i0, i1, . . . , ik−1, we take this conditional

expectation on both sides

Ek

[∥∥xk+1 − x⋆
∥∥2] = ∥∥xk − x⋆

∥∥2 − Ek

[∣∣Aikx
k − bik

∣∣2
∥Aik∥

2

]

=
∥∥xk − x⋆

∥∥2 −∑
i∈Sk

pi∑
j∈Sk

pj

∣∣Aix
k − bi

∣∣2
∥Ai∥2

.

Pulling the normalizing constant 1/
∑

j∈Sk
pj out of the summation,

Ek

[∥∥xk+1 − x⋆
∥∥2] = ∥∥xk − x⋆

∥∥2 − 1∑
j∈Sk

pj

∑
i∈Sk

pi

∣∣Aix
k − bi

∣∣2
∥Ai∥2

.

By the definition of the selectable set, we know that i ̸∈ Sk =⇒ Aix
k − bi = 0 so we

can extend our sum over all rows

Ek

[∥∥xk+1 − x⋆
∥∥2] = ∥∥xk − x⋆

∥∥2 − 1∑
j∈Sk

pj

∑
i∈[m]

pi

∣∣Aix
k − bi

∣∣2
∥Ai∥2

.

By definition of x⋆ we can rewrite bi = Aix
⋆

Ek

[∥∥xk+1 − x⋆
∥∥2] = ∥∥xk − x⋆

∥∥2 − 1∑
j∈Sk

pj

∑
i∈[m]

pi

∣∣Aix
k −Aix

⋆
∣∣2

∥Ai∥2

=
∥∥xk − x⋆

∥∥2 − 1∑
j∈Sk

pj

∑
i∈[m]

pi

∣∣Ai(x
k − x⋆)

∣∣2
∥Ai∥2

=
∥∥xk − x⋆

∥∥2 − 1∑
j∈Sk

pj

∑
i∈[m]

∣∣∣∣∣ p
1
2
i

∥Ai∥
Ai(x

k − x⋆)

∣∣∣∣∣
2

.

We now rewrite the summation as a norm of a matrix-vector multiplication using the

previously defined P and D matrices:

15

Ek

[∥∥xk+1 − x⋆
∥∥2] = ∥∥xk − x⋆

∥∥2 − 1∑
j∈Sk

pj

∥∥∥P 1
2D−1A(xk − x⋆)

∥∥∥2 .
Now, we establish the lower bound

∥∥∥P 1
2D−1A(xk − x⋆)

∥∥∥2 ≥ σ2
min(P

1
2D−1A)

∥∥xk − x⋆
∥∥2,

where σmin is the smallest nonzero singular value based on the proof technique in Zouzias and

Freris [ZF13]. By the assumption that A has no zero rows, D is symmetric positive definite

(SPD). Likewise, since the probabilities p1, p2, . . . , pm are positive, P is SPD. Since D and

P are SPD, so are P
1
2 and D−1. Thus, row(P

1
2D−1A) is equal to row(A). The vector x⋆

belongs to row(A) because it is the least-norm solution to Ax = b. Additionally, the iterate

xk belongs to row(A) because the initial iterate x0 belongs to row(A) as does the direction

of the Kaczmarz update at each iteration. Since the iterate xk and the least-norm solution

x⋆ both belong to row(A), so does their difference xk−x⋆. Finally, recalling that row(A) =

row(P
1
2D−1A), we see that xk − x⋆ ∈ row(P

1
2D−1A) and thus

∥∥∥P 1
2D−1A(xk − x⋆)

∥∥∥2 ≥
σ2
min(P

1
2D−1A)

∥∥xk − x⋆
∥∥2. Applying this lower bound, we arrive at the desired result

Ek

[∥∥xk+1 − x⋆
∥∥2] = ∥∥xk − x⋆

∥∥2 − 1∑
j∈Sk

pj

∥∥∥P 1
2D−1A(xk − x⋆)

∥∥∥2
≤
∥∥xk − x⋆

∥∥2 − 1∑
j∈Sk

pj
σ2
min(P

1
2D−1A)

∥∥xk − x⋆
∥∥2

=

(
1− σ2

min(P
1
2D−1A)∑

j∈Sk
pj

)∥∥xk − x⋆
∥∥2 .

2.3.1 Corollaries

We now take a closer at how Theorem 2 applies to Algorithms 1 to 3 for two specific common

choices of the probabilities p1, p2, . . . , pm. In particular, we analyze uniform probabilities pi =

1/m in Corollary 3 and squared row norm probabilities pi = ∥Ai∥2 / ∥A∥2F in Corollary 5. For

either choice of probabilities, the convergence guarantees vary depending on the selectable

set Sk at each iteration.

16

Corollary 3. When using uniform probabilities pi = 1/m, the iterates of Algorithm 1 satisfy

Ek

∥∥xk+1 − x⋆
∥∥2 ≤ (1− σ2

min(D
−1A)

|Sk|

)∥∥xk − x⋆
∥∥2 ,

where D = Diag(∥A1∥ , ∥A2∥ , . . . , ∥Am∥).

Proof. Apply Theorem 2 with pi =
1
m
.

Corollary 3 shows that Algorithm 1 with uniform probabilities pi = 1/m achieves a con-

vergence guarantee that depends on the number of selectable rows |Sk|. The fewer the number

of selectable rows, the faster the convergence guarantee. If nearly all rows are selectable at

every iteration, Corollary 3 recovers the known convergence guarantee (1− σ2
min(D

−1A)/m)

for RK with uniform probabilities [NSL16]. In Algorithm 2, all but one row are selectable

at each iteration, so the convergence guarantee is trivially slightly faster than that of RK as

shown in Corollary 4.

Corollary 4. When using uniform probabilities pi =
1
m
, the iterates of Algorithm 2 satisfy

E0

∥∥x1 − x⋆
∥∥2 ≤ (1− σ2

min(D
−1A)

m

)∥∥x0 − x⋆
∥∥2

and Ek

∥∥xk+1 − x⋆
∥∥2 ≤ (1− σ2

min(D
−1A)

m− 1

)∥∥xk − x⋆
∥∥2 for k ≥ 1,

where D = Diag(∥A1∥ , ∥A2∥ , . . . , ∥Am∥).

Proof. Substitute |S0| = m and |Sk| = m− 1 for k ≥ 1 in Corollary 3.

As discussed, using uniform probabilities results in a simple relationship between the

number of selectable rows and the convergence guarantee at each iteration. In contrast, using

squared row norm probabilities pi = ∥Ai∥2 / ∥A∥2F results in a slightly more complicated

relationship between the selectable set Sk and the convergence guarantee. This relationship

is shown in Corollary 5.

17

Corollary 5. When using probabilities proportional to the squared row norms

pi = ∥Ai∥2 / ∥A∥2F , the iterates of Algorithm 1 satisfy

Ek

∥∥xk+1 − x⋆
∥∥2 ≤ (1− σ2

min(A)∑
j∈Sk
∥Aj∥2

)∥∥xk − x⋆
∥∥2 .

Proof. When pi = ∥Ai∥2 / ∥A∥2F , we have

P
1
2D−1 = Diag

(
∥A1∥
∥A∥F

,
∥A2∥
∥A∥F

, . . . ,
∥Am∥
∥A∥F

)
Diag

(
1

∥A1∥
,

1

∥A2∥
, . . . ,

1

∥Am∥

)
=

1

∥A∥F
I.

Substituting this into Theorem 2 along with the probabilities pi = ∥Ai∥2 / ∥A∥2F , we find

Ek

∥∥xk+1 − x⋆
∥∥2 ≤

1−
σ2
min(

1
∥A∥F

A)∑
j∈Sk

∥Aj∥2

∥A∥2F

∥∥xk − x⋆
∥∥2

=

1−
1

∥A∥2F
σ2
min(A)

1
∥A∥2F

∑
j∈Sk
∥Aj∥2

∥∥xk − x⋆
∥∥2

=

(
1− σ2

min(A)∑
j∈Sk
∥Aj∥2

)∥∥xk − x⋆
∥∥2 .

Corollary 5 shows that Algorithm 1 with squared row norm probabilities

pi = ∥Ai∥2 / ∥A∥2F achieves a convergence guarantee that depends on the quantity∑
j∈Sk
∥Aj∥2. This quantity is the squared Fröbenius norm of the row-submatrix of A

composed of those rows that are selectable. When all of the rows of A have roughly the

same norm, Corollary 5 suggests that Algorithm 1 converges faster when fewer rows are

selectable. When the rows have very different norms, the relationship between the selectable

set and the convergence guarantee is not so simple.

When nearly all rows are selectable at every iteration, Corollary 5 recovers the known

convergence guarantee
(
1− σ2

min(A)/ ∥A∥2F
)
for RK with squared row norm probabilities

pi = ∥Ai∥2 / ∥A∥2F [SV09]. In Algorithm 2, all but one row are selectable at each iteration,

so the convergence guarantee is similar to that of RK as shown in Corollary 6.

18

Corollary 6. When using probabilities proportional to the squared row norms

pi = ∥Ai∥2 / ∥A∥2F , the iterates of Algorithm 2 satisfy

E0

∥∥x1 − x⋆
∥∥2 ≤ (1− σ2

min(A)

∥A∥2F

)∥∥x0 − x⋆
∥∥2

and Ek

∥∥xk+1 − x⋆
∥∥2 ≤ (1− σ2

min(A)

∥A∥2F −
∥∥Aik−1

∥∥2
)∥∥xk − x⋆

∥∥2 for k ≥ 1.

Proof. For iteration k = 0, substitute S0 = [m] in Corollary 5. For iterations k ≥ 1,

substituting Sk = [m]\{ik−1} in Corollary 5 shows the desired result

Ek

∥∥xk+1 − x⋆
∥∥2 ≤ (1− σ2

min(A)∑
j∈[m]\{ik−1} ∥Aj∥2

)∥∥xk − x⋆
∥∥2

=

(
1− σ2

min(A)∑
j∈[m] ∥Aj∥2 −

∥∥Aik−1

∥∥2
)∥∥xk − x⋆

∥∥2
=

(
1− σ2

min(A)

∥A∥2F −
∥∥Aik−1

∥∥2
)∥∥xk − x⋆

∥∥2 .

From Corollary 6, we see that NSSRK (Algorithm 2) is expected to converge faster on

iterations when some row with large norm is not selectable. This is essentially an artifact

of the sampling scheme. Rows with large norms are chosen disproportionately often; when

such a row is not selectable, the sampling is more uniform, and convergence improves.

Next we compare the convergence analysis of NSSRK with convergence guarantee from

the popular Kaczmarz method proposed in Bai and Wu [BW18b]. While the NSSRK method

is relatively simple and does not yield large improvement over non-selectable set methods,

the convergence guarantee corresponds to the same convergence guarantee as in [BW18b].

This leads us to believe that there may be a theory gap in Kaczmarz convergence analysis.

19

2.3.2 Comparison with Relaxed Greedy Randomized Kaczmarz (RGRK) the-

ory

The Relaxed Greedy Randomized Kaczmarz method (RGRK)[BW18b] is similar to MDK in

that both methods use sampling strategies that are biased toward rows with larger normalized

residuals
∣∣Aix

k − bi

∣∣ / ∥Ai∥. In particular, RGRK considers only rows that satisfy∣∣Aix
k − bi

∣∣2
∥Ai∥2

≥ θmax
j∈[m]

(∣∣Ajx
k − bj

∣∣2
∥Aj∥2

)
+ (1− θ)

∥∥Axk − b
∥∥2

∥A∥2F
for some θ ∈ [0, 1] (2.2)

and samples the row Aik with probability proportional to the squared residual
∣∣Aix

k − bi

∣∣2
from among such rows. RGRK satisfies the convergence result[BW18b]

Ek

∥∥xk+1 − x⋆
∥∥2 ≤ (1−(θ∥A∥2F

γ
+ (1− θ)

)
σ2
min(A)

∥A∥2F

)∥∥xk − x⋆
∥∥2 for k ≥ 1,

(2.3)

where

γ = max
i∈[m]

m∑
j=1,j ̸=i

∥Aj∥2 = ∥A∥2F − min
i∈[m]
∥Ai∥2 . (2.4)

This convergence result is optimized by the parameter θ = 1 for which RGRK is equivalent

to MDK. With θ = 1, Equation (2.3) simplifies to

Ek

∥∥xk+1 − x⋆
∥∥2 ≤ (1− σ2

min(A)

γ

)∥∥xk − x⋆
∥∥2 for k ≥ 1. (2.5)

Coincidentally, NSSRK satisfies Equation (2.5) for squared row norm probabilities.

Corollary 7. When using probabilities proportional to the squared row norms

pi = ∥Ai∥2 / ∥A∥2F , the iterates of NSSRK (Algorithm 2) satisfy Equation (2.5).

Proof. By Corollary 6, we have the desired result

Ek

∥∥xk+1 − x⋆
∥∥2 ≤ (1− σ2

min(A)

∥A∥2F −
∥∥Aik−1

∥∥2
)∥∥xk − x⋆

∥∥2
≤

(
1− σ2

min(A)

∥A∥2F −mini∈[m] ∥Ai∥2

)∥∥xk − x⋆
∥∥2

=

(
1− σ2

min(A)

γ

)∥∥xk − x⋆
∥∥2 .

20

Since NSSRK satisfies Equation (2.5) while RGRK only satisfies Equation (2.3), one

might incorrectly assume that NSSRK will outperform RGRK. However, as we observe in

Section 2.5, this is not the case. RGRK significantly outperforms NSSRK and GSSRK, ne-

glecting CPU time. This discrepancy between convergence results and observed performance

suggests that Equation (2.3) is not the tightest possible convergence result for RGRK. In-

deed, RGRK was recently shown to satisfy the tighter convergence result [GMM21] based

on the constant σ2
∞(A), defined as

σ2
∞(A) = min

x∈row(A)\{x⋆}
∃j s.t. Aj(x−x⋆)=0

(
max

i

|Ai(x− x⋆)|2

∥Ai∥2 ∥x− x⋆∥2

)
, (2.6)

where x⋆ ∈ row(A). The improved convergence result is as follows:

Ek

∥∥xk+1 − x⋆
∥∥2 ≤ (1− θσ2

∞(A)− (1− θ)
σ2
min(A)

∥A∥2F

)∥∥xk − x⋆
∥∥2 for k > 1.

This convergence result is optimized by the parameter θ = 1, see Lemma 8, leading to the

improved convergence bound of

Ek

∥∥xk+1 − x⋆
∥∥2 ≤ (1− σ2

∞(A)
) ∥∥xk − x⋆

∥∥2 for k > 1.

The improvement of this new bound is explained by the relationship between σ2
∞(A) and

σ2
min(A), which is matrix dependent and discussed in more detail in other works [NSL16,

GMM21]. The following lemma, Lemma 8, attempts to explain this relationship (second ≤)

and the fact that θ = 1 is the optimal parameter (first ≤).

Lemma 8. Let A be a matrix then

σ2
min(A)

∥A∥2F
≤ σ2

min(A)

γ
≤ σ2

∞(A). (2.7)

Where σ2
min(A) is the smallest nonzero singular value, σ2

∞(A) is defined by Equation (2.6)

and γ is defined by Equation (2.4).

21

Proof. By definition γ = ∥A∥2F −mini∈[m] ∥Ai∥2 ≤ ∥A∥2F so

σ2
min(A)

∥A∥2F
≤ σ2

min(A)

γ
.

Since σ2
min(A) is the smallest nonzero singular value and x⋆ ∈ row(A) we have the following:

σ2
min(A) = min

x∈row(A)\{x⋆}

∑
i

|Ai(x− x⋆)|2

∥x− x⋆∥2
.

Multiplying and dividing by pi =
∥Ai∥2

∥A∥2F
then rearranging terms yields

σ2
min(A) = min

x∈row(A)\{x⋆}

∑
i

∥Ai∥2

∥A∥2F

∥A∥2F
∥Ai∥2

|Ai(x− x⋆)|2

∥x− x⋆∥2

= ∥A∥2F min
x∈row(A)\{x⋆}

∑
i

pi
|Ai(x− x⋆)|2

∥Ai∥2 ∥x− x⋆∥2
.

Imposing the constraint that x ∈ row(A)\{x⋆} and ∃j s.t. Aj(x−x⋆) = 0 then noting that

|Aj(x− x⋆)|2 = 0 results in

σ2
min(A) = ∥A∥2F min

x∈row(A)\{x⋆}

∑
i

pi
|Ai(x− x⋆)|2

∥Ai∥2 ∥x− x⋆∥2

≤ ∥A∥2F min
x∈row(A)\{x⋆}

∃j s.t. Aj(x−x⋆)=0

∑
i

pi
|Ai(x− x⋆)|2

∥Ai∥2 ∥x− x⋆∥2

= ∥A∥2F min
x∈row(A)\{x⋆}

∃j s.t. Aj(x−x⋆)=0

∑
i ̸=j

pi
|Ai(x− x⋆)|2

∥Ai∥2 ∥x− x⋆∥2
.

Taking a max over the rows i for the fraction of the summation

σ2
min(A) ≤ ∥A∥2F min

x∈row(A)\{x⋆}
∃j s.t. Aj(x−x⋆)=0

∑
i ̸=j

pi
|Ai(x− x⋆)|2

∥Ai∥2 ∥x− x⋆∥2

≤ ∥A∥2F min
x∈row(A)\{x⋆}

∃j s.t. Aj(x−x⋆)=0

max
ℓ

|Aℓ(x− x⋆)|2

∥Aℓ∥2 ∥x− x⋆∥2
∑
i ̸=j

pi.

Bounding
∑

i ̸=j pi from above by 1−mini pi, simplifying and applying the definition of σ2
∞(A)

22

σ2
min(A) ≤ ∥A∥2F min

x∈row(A)\{x⋆}
∃j s.t. Aj(x−x⋆)=0

max
ℓ

|Aℓ(x− x⋆)|2

∥Aℓ∥2 ∥x− x⋆∥2
∑
i ̸=j

pi

≤ ∥A∥2F min
x∈row(A)\{x⋆}

∃j s.t. Aj(x−x⋆)=0

max
ℓ

|Aℓ(x− x⋆)|2

∥Aℓ∥2 ∥x− x⋆∥2
(1−min

i
pi)

= ∥A∥2F σ2
∞(A)(1−min

i
pi)

Finally, distributing the ∥A∥2F and substituting the definition of pi and γ

σ2
min(A) ≤ ∥A∥2F σ2

∞(A)(1−min
i

pi)

= σ2
∞(A)(∥A∥2F −min

i
∥Ai∥2)

= σ2
∞(A)γ.

Thus,
σ2
min(A)

γ
≤ σ2

∞(A) as desired.

The improvement of this new bound is explained by the difference between
σ2
min(A)

γ
and

σ2
∞(A), which we quantify by the above Lemma 8. It is matrix dependent and described in

more detail in Gower et al. [GMM21] and Nutini et al. [NSL16]

2.4 Lower bounds on size of Gramian selectable set size

Investigating the size of the selectable set is essential for understanding the convergence of the

GSSRK method, Algorithm 3 [NSL16, Sep16]. In Section 2.3, we proved that the convergence

of the GSSRK method is dependent on the size of the selectable set, the smaller the selectable

set the better the convergence guarantee is. In this section, we prove a lower bound on the

size of the Gramian selectable set after O(m) iterations where m is the number of rows in

the matrix. For many structured problems the lower bound on the size of the selectable

set is cm where c ∈ (0, 1). This means that the convergence guarantee only improves by a

constant factor in comparison to Kaczmarz methods that do not use a selectable set.

23

In particular, here we prove a general method for calculating a lower bound on the

Gramian based selectable set. Then we apply this lower bound to some structured problems.

Our lower bound can also be used as a heuristic to assess in which cases applying the GSSRK

method could lead to a large speedup. When the Gramian is sparse, meaning that there

is a lot of orthogonality between rows of the matrix, the GSSRK method will likely yield

improved convergence rates.

To develop our lower bound on the selectable set, we consider the Gramian of the matrix,

G = AAT as an adjacency matrix and examine the graph formed from this matrix, the non-

orthogonality graph. This graph contains m nodes, each node representing a row of the

original matrix A, node i represents row Ai. There is an edge between nodes i and j if

Gij = ⟨Ai,Aj⟩ ̸= 0, meaning that rows i and j of A are not orthogonal. So the graph

encodes the orthogonality structure of the original matrix A. Two rows are orthogonal if

and only if they do not share an edge in the graph. Next we will use the non-orthogonality

graph and a graph theoretic approach to develop a lower bound on the selectable set for

Algorithm 3.

24

42

3

1

Figure 2.1: The non-orthogonality graph constructed from the Gramian G of the above

matrix A. This undirected graph is connected because each node is reachable from every

other node along the edges of the graph. The size of the maximal independent set of the

graph is 2 = |M| because the largest set of nodes that that do not share an edge among

them is 2. If we consider the subgraph formed from nodes 1 and 2 or nodes 1 and 3, these

graph have no edges. No larger sets can be created because if we add any additional nodes

to these sets, the induced subgraphs will contain edges.

Theorem 9. Given a system of equations A,b and an initial iterate x0 such that Ax0 ̸=

b. Then the selectable set Sk from Algorithm 3 satisfies m − |M| ≤ |Sk| ≤ m − 1 after

O(m) iterations for all k. Where |M| is the size of the maximal independent set formed by

considering the Gramian matrix G = AAT as an adjacency matrix of a connected graph.

Proof. Consider the graph constructed from the Gramian of our matrix. Since this graph is

connected and we have an unsolved equation, after O(m) iterations each equation will become

unsolved at least once and therefore be selectable. We now consider the maximum size of the

set of unselectable rows after O(m) iterations. The only rows that are unselectable are rows

that have been selected by GSSRK, meaning that all neighbors of this node must be selectable

by the sampling process. Therefore if Sc
k is the set of unselectable rows. If r1, r2 ∈ Sc

k, then

25

r1 and r2 cannot share an edge. Otherwise, the row more recently selected in the method,

without loss of generality r1 is necessarily unselectable then r2 would necessarily become

selectable because it is a neighbor of r1. Thus, each row in Sc
k must not be a neighbor of any

other row in Sc
k. So the maximum size of Sc

k is at most the size of the maximum independent

set of the graph,M. Thus the size of the selectable set is at least: m− |M|.

For k ≥ 1, Sk does not include row ik−1 by the definition of the Kaczmarz update, at least

one row is always solved, so |Sk| ≤ m− 1.

An algebraic interpretation of |M| is that this number corresponds to the size of the

largest set of rows of A such that all elements in this set are pairwise-orthogonal. Equiv-

alently, this is the number of rows in the largest submatrix of the rows of A that can be

constructed Q ∈ R|M|×n, such that QQT = D where D is a diagonal matrix. Since at most

A has |M| pairwise orthogonal rows, by Lemma 1 all of the equations Aix = bi where Ai is

a row of Q can be simultaneously solved by a Kaczmarz method.

Next, we prove that the proposed lower bound of the the selectable set in Theorem 9 is

tight and describe a row sampling scheme to achieve this lower bound.

Proposition 10. There exists a sampling strategy for a Gramian based Selectable Set Kacz-

marz method that achieves the lower bound of m − |M| from Theorem 9 on the size of the

Gramian based selectable set.

Proof. To achieve this lower bound on the selectable set, we construct a sequence of rows

to be selected, sampled. After the method selects each row in this sequence once, the size

of the selectable set is exactly m − |M|. Let M denote the maximum independent set of

Gramian graph G. Then the sampling strategy in which we select each row from M in

succession results in each of the rows ofM being not selectable. Since none of the rows in

M are neighbors in the graph, meaning that all rows inM are pairwise orthogonal, selecting

any row inM does not impact the selectable or unselectable status of any other row inM.

Thus, if we select each row inM once, there will be exactly |M| unselectable rows, meaning

26

that size of the selectable set will be exactly m− |M|.

If the maximum independent set formed from the Gramian is large, then the size of the

selectable set will be small for Algorithm 3. Thus, based on our convergence analysis for

selectable set methods, Theorem 2, we will have a convergence guarantee improvement over

Kaczmarz methods that do not use a selectable set. We examine and provide examples of

this convergence improvement experimentally in Section 2.5.

Next, we investigate how we can apply Theorem 9 to basic structured non-orthogonality

graphs and examine the size of their selectable sets. We select the following graphs as they

correspond to non-orthogonality graphs constructed from very sparse systems, and many

serve as simple but motivating examples for such structures that arise in practice. We

anticipate that by examining these specific structured graphs we may be able to understand

when applying GSSRK to a system will yield significant convergence improvement.

First, we consider the path graph. This is a graph in which the adjacency matrix (the

Gramian) has nonzero entries exclusively along the diagonal, the super diagonal and sub-

diagonal, representative of sparse matrices from networks applications.

Corollary 11 (Path Gramian). For the case of a path graph Gramian with m vertices, the

size of the selectable set is lower bounded by
⌊
m
2

⌋
.

Proof. Taking every other vertex in the path, we obtain a maximum independent set of size⌈
m
2

⌉
. We then apply Theorem 9 to obtain the bound |Sk| ≥ m−

⌈
m
2

⌉
=
⌊
m
2

⌋
.

Next we consider a star graph whose adjacency matrix contains nonzeros on the diagonal,

along a single row ℓ, and the column ℓ. This is representative of a matrix that is mostly sparse

but may contain some nonsparse rows. An example of this structure arises in collaborative

filtering where data may represent user prescribed ratings. Most users will have few ratings

representing sparse rows, but some super-users will have many ratings, representing the

nonsparse rows of the matrix.

27

Corollary 12 (Star Gramian). For the case of a star graph Gramian with m vertices, the

size of the selectable set is lower bounded by 1.

Proof. The m − 1 leaves form a maximum independent set of size m − 1. We then apply

Theorem 9 to obtain the bound |Sk| ≥ m− (m− 1) = 1.

We note that the high degree node of the star represents a nonsparse row which may

cause minimal convergence improvement when applying selectable set methods. Next we

consider a cycle graph in which the adjacency matrix has nonzeros along the diagonal, super

diagonal, sub-diagonal, top right corner and the bottom left corner. This represents a sparse

matrix similar to Corollary 11 with slightly less sparsity.

Corollary 13 (Cycle Gramian). For the case of a cycle graph Gramian with m vertices, the

size of the selectable set is lower bounded by
⌈
m
2

⌉
.

Proof. Taking every other vertex in the cycle except the last one if m is odd, we obtain

a maximum independent set of size
⌊
m
2

⌋
. We then apply Theorem 9 to obtain the bound

|Sk| ≥ m−
⌊
m
2

⌋
=
⌈
m
2

⌉
.

Next we consider a banded graph in which the adjacency matrix contains nonzeros along

the diagonal, ℓ super diagonals and ℓ sub-diagonals. This adjacency matrix occurs commonly

in semi-supervised graph learning tasks in which only data for the k nearest neighbors of a

node is kept.

Corollary 14 (Banded Gramian). For the case of a banded matrix Gramian with m vertices,

bandwidth ℓ (upper and lower bandwidth ℓ), the size of the selectable set is lower bounded by⌊
ℓm
ℓ+1

⌋
.

Proof. The maximal independent set can be constructed by taking the first node, node 1,

which is adjacent to ℓ other nodes. Then taking node 1 + ℓ + 1 to avoid the ℓ neighbors of

the first node. This node has at most 2ℓ neighbors but shares ℓ of them with the first node.

28

So now we can take node 1 + 2ℓ + 2. Repeating this process we deduce that we can select

one node from every ℓ+ 1 nodes. Resulting in a maximal independent set of size
⌈

m
ℓ+1

⌉
. We

then apply Theorem 9 to obtain the bound |Sk| ≥ m−
⌈

m
ℓ+1

⌉
=
⌊
mℓ+m
ℓ+1
− m

ℓ+1

⌋
=
⌊

ℓm
ℓ+1

⌋
.

Note that a path graph is an example of a banded matrix with bandwidth one. Finally,

we consider a symmetric ℓ regular graph. The adjacency matrix for this graph has ℓ nonzero

entries on each row and corresponding column, excluding the diagonal entries thus ℓ < m.

Since this adjacency matrix corresponds to an undirected graph, it is symmetric. This

adjacency matrix pattern is likely to occur when applying a generalized k-nearest neighbors

algorithm to graph data.

Corollary 15 (ℓ-regular Gramian). For the case of an ℓ-regular graph with m vertices and

degree ℓ < m, the size of the selectable set is lower bounded by max(
⌈
m
2

⌉
, ℓ).

Proof. The size of the maximum independent set of an ℓ-regular graph [Ros64] is upper

bounded by

min(
⌊
m
2

⌋
,m− ℓ). Thus, we can apply Theorem 9 to obtain the bound |Sk| ≥ max(

⌈
m
2

⌉
, ℓ).

Theorem 9 gives us a lower bound on the size of the selectable set in many cases, see

Table 2.2. However, to apply this theorem directly, we need an upper bound on the size

of the maximum independent set. For some classes of graphs, while a lower bound may be

achievable, the upper bound is the trivial bound of m− 1.

29

Gramian graph
Maximum independent

set size

Lower bound on

size of selectable set |S|

path graph
⌈
m
2

⌉ ⌊
m
2

⌋
star graph m-1 1

cycle graph
⌊
m
2

⌋ ⌈
m
2

⌉
banded matrix graph, bandwidth ℓ

⌈
m
ℓ+1

⌉ ⌊
ℓm
ℓ+1

⌋
ℓ-regular graph min(

⌊
m
2

⌋
,m− ℓ) max(

⌈
m
2

⌉
, ℓ)

Table 2.2: Lower bounds on size of the selectable set for structured Gramian problems.

2.5 Experiments

We evaluate RK, NSSRK, GSSRK, and GRK on a series of synthetic and real world matrices

from the SuiteSparse matrix library (implementation of methods used available here: https:

//github.com/jdmoorman/kaczmarz-algorithms/). For each matrix, we plot the squared

error norm versus iteration number for 20000 iterations. Results were averaged over 100

trials. Each line corresponds to the average error at the iteration over the 100 trials and the

shading corresponds to one standard deviation above the mean and one standard deviation

below the mean at each iteration. The vectors x⋆ and b for all of the experiments are

constructed by taking a standard random normal vector v (of mean 0 and standard deviation

1 entries), computing x⋆ = ATv
∥ATv∥ , then applying A such that b = Ax⋆.

The two synthetic matrices that we consider are the circulant matrix and the 3-banded

matrix. The circulant matrix is a 100 × 100 matrix with σmin = 0.690, see Figure 2.2a and

Figure 2.3a. The matrix has non-zeros on the diagonal, sub-diagonal and top right corner.

The non-zero entries of each row are the row number i divided by
√
2 so each row has

non-zero entries i√
2
. The Gramian of the circulant matrix corresponds to the cycle graph

Gramian described in Corollary 13. The 3-banded matrix is a 100×100 matrix with standard

30

https://github.com/jdmoorman/kaczmarz-algorithms/
https://github.com/jdmoorman/kaczmarz-algorithms/

random normal entries along the diagonal and the three rows above and below the diagonal

producing a matrix with bandwidth 3 and σmin = 0.0180, see Figure 2.2b and Figure 2.3b.

The Gramian of this matrix corresponds to a banded matrix graph with bandwidth 6, in

Corollary 14.

The two real world matrices we consider are Cities and the transpose of the N pid from

the SuiteSparse matrix library [DH11]. The Cities matrix is a dense matrix of size 55 × 46

with σmin = 0.271, see Figure 2.2c and Figure 2.3c. The transpose of the N pid matrix is

a sparse matrix of size 3923 × 3625 with 8054 nonzero entries that has σmin = 0.0690, see

Figure 2.2d and Figure 2.3d.

The four algorithms that we consider are RK, NSSRK, GSSRK, and GRK, each of which

has differing computational complexity. RK has a computational complexity of O(n) per

iteration, where n is the number of columns in the matrix. Similarly, NSSRK also has

a computational complexity of O(n), requiring O(1) to update the selectable set. Unlike

NSSRK, GSSRK has the added overhead of updating the selectable set at each iteration

requiring O(n+m) at each iteration, O(n) to compute the Kaczmarz update, Equation (2.1),

and O(m), where m is the number of rows, to look at a row of the Gramian matrix and

update the selectable set. Additionally, if it is necessary to pre-compute the Gramian with

standard matrix multiplication, this requires O(nm2). Finally, the most computationally

costly method per iteration is GRK, which requires O(nm) at each iteration as a full residual

computation, Axk−b, is required to construct the sampling set and distribution. Of course,

these are all generic bounds, and different implementations may lead to improvements, such

as parallelization, fast multiplies, and other specific uses of the system’s structure.

In all four of the matrices pictured, as well as all the other matrices, we evaluated our

methods on, we saw little to no difference between the performance of RK and NSSRK. GRK

also outperformed RK, NSSRK, and GSSRK on every matrix. However, we did observe some

differences in the performance of GSSRK relative to the other methods. In some examples,

we see that GSSRK performs the same as RK and NSSRK, while in others, it performs

31

slightly better.

In Figure 2.2b and Figure 2.2a, our two synthetic matrices, we see that one of them

(Figure 2.2b) displays very little difference in performance between GSSRK and RK, while

the other (Figure 2.2a) has a much larger gap in performance between the two. This is due

to the difference in size of their respective selectable sets. In the circulant matrix, each row

is only non-orthogonal to two others, while each row in the banded matrix is non-orthogonal

to six others. With a sparser non-orthogonality graph, we expect to see smaller selectable

sets, which leads to improved performance.

We observe that in Figure 2.2c there is no performance gap between GSSRK and RK on

the Cities matrix. Because the Cities matrix has no rows that are mutually orthogonal, the

selectable set for this matrix includes every row, except for the one that was just picked,

and thus the GSSRK method is equivalent to NSSRK. In Figure 2.2d, we see that GSSRK

outperforms RK. Computing the Gramian of the N pid matrix, we see that it is much sparser,

with fewer than 0.1% of the entries being nonzero. Thus, the selectable set is much smaller,

leading to improved performance, consistent with our theoretical results. We note that RK,

NSSRK and GSSRK all require a sampling distribution that is commonly either the uniform

or the row norm distribution [SV09] while GRK requires a choice of θ that was set to 0.5

as in [BW18a]. The results from both uniform and row norm distributions are shown and

both display similar comparisons, where GRK performs best but is most costly, followed by

GSSRK, then NSSRK, then RK.

Next, we validate our theoretical results experimentally by varying σmin and examining

the convergence rates of GSSRK with uniform probabilities, Algorithm 3. Since the SSRK

convergence result, Theorem 2, depends on σmin, the smallest nonzero singular value, we

construct three matrices with varying σmin and observe their convergence rates. We construct

circulant matrices of sizes 50×50, 100×100 and 150×150 with ones along the diagonal, sub-

diagonal and top right corner and corresponding σmin = 0.126, σmin = 0.063 and σmin = 0.042.

The results shown in Figure 2.4 support our theoretical guarantees. The results of the

32

experiment on the circulant matrices were averaged over 100 trials for each matrix. The

shading corresponds to one standard deviation above the mean and one standard deviation

below the mean.

In conclusion, our experiments support our theoretical bounds and we observe that

NSSRK and RK perform nearly identically. Since NSSRK has a minimal impact on the

row sampling in comparison to RK methods, we do not expect improvement over RK specif-

ically whenm is large. Additionally we observe that GSSRK outperformed RK in some cases.

These cases include matrices with many orthogonal rows which is likely to occur when solving

sparse systems. Even though we have improved convergence guarantees for both GSSRK

and NSSRK over RK, we observe that the empirical performance of the algorithms may

not reflect this. Finally, we note that GRK always outperforms GSSRK and NSSRK even

though both methods have identical or improved theoretical guarantees over GRK when

considering a σmin(A) bound. This supports the belief that there is a gap in the theoretical

understanding of GRK and perhaps other Adaptive Kaczmarz methods [GMM21].

33

0 1000 2000 3000 4000 5000 6000
Iteration k

10 6

10 5

10 4

10 3

10 2

10 1

100

Sq
ua

re
d

E
rr

or
 N

or
m

 ||
xk

x
||2

RK
NSSRK
GSSRK
GRK

(a) Circulant Matrix Uniform Distribution

σmin = 0.690

0 2500 5000 7500 10000 12500 15000 17500 20000
Iteration k

10 5

10 4

10 3

10 2

10 1

100

Sq
ua

re
d

E
rr

or
 N

or
m

 ||
xk

x
||2

RK
NSSRK
GSSRK
GRK

(b) Banded Matrix Uniform Distribution

σmin = 0.0180

0 2500 5000 7500 10000 12500 15000 17500 20000
Iteration k

10 6

10 5

10 4

10 3

10 2

10 1

100

Sq
ua

re
d

E
rr

or
 N

or
m

 ||
xk

x
||2

RK
NSSRK
GSSRK
GRK

(c) Cities Matrix Uniform

Distribution σmin = 0.271

0 2500 5000 7500 10000 12500 15000 17500 20000
Iteration k

10 5

10 4

10 3

10 2

10 1

100
Sq

ua
re

d
E

rr
or

 N
or

m
 ||

xk
x

||2

RK
NSSRK
GSSRK
GRK

(d) N Pid Matrix Uniform

Distribution σmin = 0.0690

Figure 2.2: Squared error norm versus iteration for RK, NSSRK, GSSRK, and GRK (RGRK

with θ = 1/2) using uniform row probabilities for RK, NSSRK and GSSRK. Results were

averaged over 100 trials. Figure 2.2b is a 3-banded matrix, Figure 2.2a is a circulant matrix,

and Figures 2.2c and 2.2d are two real world matrices, Cities and N pid all described in

detail above. The shading denotes one standard deviation.

34

0 1000 2000 3000 4000 5000 6000
Iteration k

10 6

10 5

10 4

10 3

10 2

10 1

100

Sq
ua

re
d

E
rr

or
 N

or
m

 ||
xk

x
||2

RK
NSSRK
GSSRK
GRK

(a) Circulant Matrix Row Norm Distribution

σmin = 0.690

0 2500 5000 7500 10000 12500 15000 17500 20000
Iteration k

10 5

10 4

10 3

10 2

10 1

100

Sq
ua

re
d

E
rr

or
 N

or
m

 ||
xk

x
||2

RK
NSSRK
GSSRK
GRK

(b) Banded Matrix Row Norm Distribution

σmin = 0.0180

0 2500 5000 7500 10000 12500 15000 17500 20000
Iteration k

10 6

10 5

10 4

10 3

10 2

10 1

100

Sq
ua

re
d

E
rr

or
 N

or
m

 ||
xk

x
||2

RK
NSSRK
GSSRK
GRK

(c) Cities Matrix Row Norm Distribution

σmin = 0.271

0 2500 5000 7500 10000 12500 15000 17500 20000
Iteration k

10 5

10 4

10 3

10 2

10 1

100
Sq

ua
re

d
E

rr
or

 N
or

m
 ||

xk
x

||2

RK
NSSRK
GSSRK
GRK

(d) N PID Matrix Row Norm Distribution

σmin = 0.0690

Figure 2.3: Squared error norm versus iteration for RK, NSSRK, GSSRK, and GRK (RGRK

with θ = 1/2) using row norm probabilities for RK, NSSRK and GSSRK. Results were

averaged over 100 trials. Figure 2.3b is a 3-banded matrix, Figure 2.3a is a circulant matrix,

and Figures 2.3c and 2.3d are two real world matrices, Cities and N pid all described in

detail above. The shading denotes one standard deviation.

35

0 2500 5000 7500 10000 12500 15000 17500 20000
Iteration k

10 7

10 5

10 3

10 1

Sq
ua

re
d

E
rr

or
 N

or
m

 ||
xk

x
||2

50 rows, min = 0.126
100 rows, min = 0.063
150 rows, min = 0.042

Figure 2.4: Squared error norm versus iteration for GSSRK with uniform row distribution on

varying circulant matrix sizes, corresponding to varying σmin, to confirm that as σmin increases

the convergence rate improves. 100 trials on circulant matrices of sizes: 50 × 50, 100 × 100

and 150× 150. Each curve corresponds to the iteration average over the 100 trials and the

shading corresponds to one standard deviation above and one standard deviation below the

mean of norm-squared errors at each iteration.

36

2.6 Conclusion

In this chapter, we studied various selectable set approaches for the Kaczmarz method. These

aimed to accelerate the standard approach of uniform random row sampling by attempting

to move the iterates larger distances in each iteration, thereby reaching the desired solution

in fewer steps. We proposed and analyzed a general selectable set randomized Kaczmarz

method (Algorithm 1) in which rows are sampled from a selectable set S. The selectable

set, S, is updated at each iteration of the method and satisfies the condition that given a

row of the matrix j, j ̸∈ S =⇒ Ajx
k = bj. We proved a general convergence result for this

method, Theorem 9, in which we proved that there is an improvement inversely proportional

to the size of the selectable set over Kaczmarz methods that sample from all rows.

After we defined the general selectable set framework we examined several strategies

such as the simple non-repetitive strategy (Algorithm 2) and the Gramian based strategy

(Algorithm 3). Although the non-repetitive strategy was quite simple and perhaps naive, it

led to interesting theoretical results that are comparable to those in state of the art methods

such as the methods proposed in [BW18a, BW18b], see Section 2.3.2. This led us to believe

that there is a theory gap in existing Kaczmarz literature and that a tighter analysis could

be possible for some Kaczmarz methods.

The Gramian based strategy leveraged the orthogonality structure of the matrix which

is encoded in the Gramian, G = AAT . There are many structured problems in which both

the matrix A and the Gramian G are known such as graph-based semi-supervised learning

[BLS18]. Leveraging the Gramian to update the selectable set yielded tighter convergence

bounds than using the non-repetitive strategy, but with the added overhead of updating the

selectable set using the Gramian. Bounds on GSSRK were originally proposed by Nutini et al.

[NSL16]; we generalized their results by constructing a bound in terms of the singular values

of the original matrix, instead of singular values of submatrices, which may be less natural to

compute in applications. We discussed the lower bound on the size of the selectable set for

the Gramian update when dealing with structured problems, and noted that the size of the

37

selectable set is usually on the order of number of rows O(m). This relatively large size meant

that there is a constant improvement of the convergence guarantee over corresponding non-

selectable set methods. Finally, we provided some numerical experiments on both synthetic

and real-world matrices from the SuiteSparse package [DH11] that demonstrated the benefits

of using selectable sets and showcase how the variations compare.

2.6.1 Future directions

We addressed the problem of projecting onto a row of an equation that has already been

solved through sampling from a selectable set S of unsolved equations. In our methods, we

consider the pi values as a fixed distribution that we renormalize based on the selectable

set. Based on our one step convergence result, Theorem 2, one could try to optimize the

probabilities pi themselves each iteration instead of drawing from this fixed distribution. This

would require additional computational cost but may have the benefit of faster convergence

rates.

A different simple yet surprisingly effective modification of the probability distribution at

each iteration is sampling without replacement [PJM21, RR12]. In these methods a row can

only be sampled again after all of the other rows of the matrix have been sampled. This con-

trasts the standard method of sampling with replacement in which there is a fixed probability

for a row to be selected at each iteration throughout the duration of the algorithm. One

possible explanation for why sampling without replacement shows empirical improvement

over sampling with replacement could stem from the problem that selectable set methods

aim to solve. During some iterations of a Kaczmarz method, there is no improvement to

the iterate because the method is projecting onto an already solved equation yielding no

change to the iterate. However, empirically and theoretically, the selectable set method does

not account for the improvement seen when sampling without replacement. This suggests

that there is more going on in the interaction between projections than simply being (near)

orthogonal or sharing a solution space.

38

The Recht-Ré conjecture [RR12] gave a theoretical explanation of why sampling without

replacement outperforms sampling with replacement. Recent works [LL20, IKW16] have

proved that the Recht-Ré conjecture does hold for smaller dimensions, giving a theoretical

explanation of why sampling without replacement outperforms sampling with replacement.

However, recently Lai et al. [LL20] were able to prove that for dimensions five or larger

this conjecture is false. Thus the theory gap of proving why sampling without replacement

outperforms sampling with replacement in Kaczmarz methods is currently an open problem,

that while seemingly related to selectable sets, is still not explained.

39

CHAPTER 3

Online Signal Recovery via Heavy Ball Kaczmarz

This chapter is an adaptation of [JYN22] which is joint work with Ben Jarman and Professor

Needell. Ben Jarman initially proposed the idea. Ben Jarman and I contributed the theory,

experiments and writing under the supervision of Professor Needell.

We propose a new variant of the Kaczmarz method to online signal recovery setting. Our

proposed method, leverages an additional heavy ball momentum term. This term allows for

faster convergence when the source distribution which we sample from is highly coherent,

inner product between different linear measurements is large. We prove its convergence and

experimentally analyze its performance on both synthetic and real world datasets.

3.1 Introduction

3.1.1 The Kaczmarz Method

Recovering a signal x∗ ∈ Rn from a collection of linear measurements is an important problem

in computerized tomography [Nat01], sensor networks [SHS01], compressive sensing [EK12,

FR13], machine learning subroutines [Bot10], and beyond. When the collection of linear

measurements is finite, say of size m, and accessible at any time, the problem is equivalent

to solving a system of linear equations Ax = b with A ∈ Rm×n and b ∈ Rm, which has been

well-studied. A popular method for solving this classical problem is the Kaczmarz method

[Kar37]: beginning with an initial iterate x0, at each iteration a row of the system is sampled

and the previous iterate is projected onto the hyperplane defined by the solution space given

40

by that row. More precisely, if the row a⊤i x = bi is sampled at iteration k, the update has

the form

xk = xk−1 −
⟨ai, xk−1⟩ − bi

∥ai∥2
ai.

The original method proposed cycling through rows in order, such that i = k mod m. In

[HM93] it was observed empirically that randomized row selection accelerates convergence,

and in the landmark work [SV09] it was proven that selecting rows at random with probability

proportional to their Euclidean norm yields linear convergence in expectation.

In this work, we consider an online model in which at each discrete time t = 1, 2, . . .

a linear measurement (φt, yt) ∈ Rn × R is received. We assume that each measurement is

noiseless, i.e. ⟨φt, x
∗⟩ = yt for all t, and that measurements are streamed through memory

and are not stored. Note that the linear system setting described above is a special case of

this model, but we now allow for measurements to be sampled from a more general source.

The Kaczmarz method is well-suited to this setting as it requires access to only a single

measurement at each iteration. See, for example, [CP12], where measurement data is viewed

as being sampled i.i.d. from some distribution D on Rn. We assume the noiseless, i.i.d.

setting throughout this chapter. A Kaczmarz update in this setting has the following form,

when initialized with some arbitrary x0: at discrete times t = 1, 2, . . . , a measurement

(φt, yt) ∈ Rn × R is received, where φt ∼ D, and a Kaczmarz iteration is computed

xt = xt−1 −
⟨φt, xt−1⟩ − yt

∥φt∥2
φt.

In [CP12] it was shown that under certain conditions on D, the method enjoys linear con-

vergence in expectation. Further related works have placed online Kaczmarz in the context

of learning theory [LZ15], and have analyzed sparse online variants [LZ18, LWS14]. Ran-

dom vector models have also appeared in analyses of Kaczmarz methods for phase retrieval

[TV18] and for sparsely corrupted data [HNR22].

41

3.1.2 Heavy Ball Momentum

Heavy ball momentum is a popular addition to gradient descent methods, in which an

additional step is taken in the direction of the previous iteration’s movement. Proposed

initially in [Pol64], it has proven very popular in machine learning [SMD13, KSH17, GLZ19],

with a guarantee of linear convergence for stochastic gradient methods with heavy ball

momentum proven in [LR20] (improving on earlier sublinear guarantees in [YLL16, GPS18]).

A gradient descent method itself [NSW16], the Kaczmarz method may be modified with

heavy ball momentum to give updates of the following form:

xt+1 = xt −
⟨φt, xt⟩ − yt

∥φt∥2
φt + β(xt − xt−1),

where β ≥ 0 is a momentum parameter. In [LR20] it was shown that when applied to a

linear system (i.e., when each φt is sampled from the rows of a matrix A), the Kaczmarz

method with heavy ball momentum converges linearly in expectation. Experimental results

indicate accelerated convergence compared to the standard Kaczmarz method on a range of

datasets, while the momentum term does not affect the order of the computational cost.

In this work, we propose an online variant of the Kaczmarz method with heavy ball

momentum. We prove that our method converges linearly in expectation for a wide range

of distributions D, and offer particular examples. This theory is supported by numerical

experiments on both synthetic and real-world data, which in particular demonstrate the

benefits of adding momentum when measurements are highly coherent.

3.2 Proposed Method & Empirical Results

We propose an online variant of the Kaczmarz method, modified to include a heavy ball

momentum term β ∈ (0, 1), which we call OHBK(β) (see Algorithm 4). We note that

our method is a generalization of the momentum Kaczmarz method for systems of linear

equations introduced in [LR20]. The method requires only a single measurement to be held

in storage at a time, while leveraging information about previous measurements through the

42

momentum term.

Algorithm 4: Online Heavy Ball Kaczmarz β, OHBK(β)

1 Input initial iterate x0, measurements {(φt, yt)}∞t=1, momentum parameter β

2 x1 = x0

3 for t = 1, 2, . . . do

4 Update xt+1 = xt − ⟨φt,xt⟩−yt
∥φt∥2

φt + β(xt − xt−1)

5 end

We test our method on synthetic and real-world data. For each data source, we compare

our method OHBK(β) for a variety of β to an online Kaczmarz method without momentum,

which we denote by OK (equivalently, OHBK(0)).

We first experiment on synthetic data. We sample x∗ ∈ R50 with standard Gaussian

entries, and take {φt}∞t=1 to be vectors of length 50 with U [0, 1] entries. We note that this

process produces particularly coherent data, that is, the vectors {φt}∞t=1 have small pairwise

inner products. Each yt is then computed as yt = ⟨φt, x
∗⟩ to ensure measurements are

noiseless. In Figure 3.2 we perform a parameter search over 100 trials for β and plot the

median error after 100 iterations versus β with shading for the 25th through 75th percentiles.

Introducing some amount of momentum provides an acceleration, however, taking β to be too

large places too much weight on previous information and is less effective. In Figure 3.1 we

show convergence down to machine epsilon of OHBK(β) versus online randomized Kaczmarz

(i.e. OHBK(0)) for a selection of β (averaging over 10 trials), and the acceleration provided

by momentum is clear.

In Figure 3.3, we investigate the effect of momentum on highly coherent systems further.

We perform 4000 iterations of OHBK(β) on U [ε, 1] signals of length 50, for ε ∈ [0, 1], for a

range of momentum parameters β (again averaged over 10 trials). We see that momentum

provides a significant speedup in convergence even for highly coherent systems (i.e. for large

ϵ). However, as ϵ→ 1, recovering the signal becomes intractable.

43

We compare the effect of the signal length n on the optimal momentum parameter β in

Figure 3.4. We perform parameter searches for signals of length n ∈ {50, 100, 500, 1000} and

mark the optimal values of β. The optimal choice of β does not appear to vary significantly

with n.

In Figure 3.5 we use a system generated from the Wisconsin Diagnostic Breast Cancer

(WDBC) dataset, where each measurement is computed from a digitized image of a fine nee-

dle aspirate of a breast mass and describes characteristics of the cell nuclei present [WSM95].

We stream through each measurement of the 699-row, 10-feature dataset once to replicate

the online model, and again see that the addition of momentum provides a noteworthy

acceleration to convergence.

0 2000 4000 6000 8000 10000
Iteration k

35

30

25

20

15

10

5

0

Lo
g

E
rr

or
 N

or
m

 lo
g(

|x
k

x
|)

OK
OHBK(0.15)
OHBK(0.3)
OHBK(0.45)
OHBK(0.6)

Figure 3.1: Error versus iteration for OHBK(β) applied to U [0, 1] signals of length 50.

44

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Beta

4.2

4.4

4.6

4.8

5.0

5.2

5.4

5.6

E
rr

or
 a

t 1
00

 it
er

at
io

ns

Error at 100 iterations

Figure 3.2: ∥x100 − x∗∥ versus β for a range of β ∈ [0, 0.6], for U [0, 1] signals of length 50.

3.3 Theoretical Results

Throughout our theory, we assume that {φt}∞t=1 is a sequence of independent samples from

some distribution D. We provide a general linear convergence (in expectation) result with

a rate depending on the matrix W := ED

[
φφ⊤

∥φ∥2

]
, in particular on its smallest and largest

singular values σmin(W) and σmax(W).

Theorem 16 (Convergence in Expectation of OHBRK). Suppose that measurement vectors

{φt}∞t=1 are sampled independently from D, and W = ED

[
φφ⊤

∥φ∥2

]
. Then if β is small enough

such that

4β + 4β2 − (1 + β)σmin(W) + βσmax(W) < 0,

the iterates produced by OHBK(β) satisfy the following guarantee: for some δ > 0, q ∈ (0, 1),

we have

E[∥xt − x∗∥2] ≤ qt(1 + δ) ∥x0 − x∗∥2 .

45

0.0 0.2 0.4 0.6 0.8 1.0
Epsilon

20

10

0

10

20

Lo
g

Er
ro

r N
or

m
 lo

g(
||x

40
00

x
||)

= 0
= 0.15
= 0.3
= 0.45
= 0.6
= 0.75

Figure 3.3: log ∥x4000 − x∗∥ versus ε for OHBK(β) applied to U [ε, 1] signals of length 50.

More interpretable conditions on β may be obtained for particular classes of distribution

D. In particular, if φ/ ∥φ∥ is distributed uniformly on the unit sphere (which is the case if

D itself is the uniform distribution on the unit sphere, or if D is the standard n-dimensional

Gaussian), then W = 1
n
I and we require

β + β2 <
1

4n

to guarantee linear convergence in expectation.

3.4 Proof of Main Result

In this section we prove Theorem 16 by following the steps of ([LR20], Theorem 1), making

modifications for the online case and simplifications to some of the constants for our special

case. First we present a lemma from [LR20] which we will use in our convergence proof.

Lemma 17 ([LR20], Lemma 9). Let {Ft}t≥0 be a sequence of non-negative real numbers

46

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Momentum parameter

20

15

10

5

0

Lo
g

Er
ro

r N
or

m
 lo

g(
||x

40
00

x
||)

n = 50
n = 100
n = 500
n = 1000

Figure 3.4: log ∥x4000 − x∗∥ versus β for OHBK(β) applied to U [0, 1] signals of length n. The

gray verticals show the value of β yielding the minimum error.

with F0 = F1 that satisfies the relation Ft+1 ≤ a1Ft + a2Ft−1 for all t ≥ 1, with a2 > 0 and

a1 + a2 < 1. Then the following inequality hold for all t ≥ 1

Ft+1 ≤ qt(1 + δ)F0,

where q =
a1+
√

a21+4a2

2
< 1, δ = q − a1 and q ≤ a1 + a2.

A proof of this lemma can be found in [LR20].

We begin our convergence analysis by writing the squared L2 error at the (t+1)th iteration

and substituting the OHBK(β) update into it,

∥xt+1 − x∗∥2 =
∥∥∥∥xt −

⟨φt, xt⟩ − yt

∥φt∥2
φt + β(xt − xt−1)− x∗

∥∥∥∥2 .

47

0 100 200 300 400 500 600
Iteration k

1

0

1

2

3

4

5

Lo
g

E
rr

or
 N

or
m

 lo
g(

|x
k

x
|)

OK
OHBK(0.15)
OHBK(0.3)
OHBK(0.45)
OHBK(0.6)

Figure 3.5: Error versus iteration for OHBK(β) applied to the WDBC dataset.

Next, we group our equation into three terms:

∥xt+1 − x∗∥2 =
∥∥∥∥xt − x∗ − ⟨φt, xt⟩ − yt

∥φt∥2
φt

∥∥∥∥2
+β2 ∥xt − xt−1∥2

+2β⟨xt − x∗ − ⟨φt, xt⟩ − yt

∥φt∥2
φt, xt − xt−1⟩

(3.1)

We bound the first term of Equation (3.1) by following a standard Kaczmarz convergence

argument and the fact that yt = ⟨φt, x
∗⟩. We have that∥∥∥∥xt − x∗ − ⟨φt, xt⟩ − yt

∥φt∥2
φt

∥∥∥∥2
= ∥xt − x∗∥2 +

∥∥∥∥⟨φt, xt⟩ − yt

∥φt∥2
φt

∥∥∥∥2−
2

〈
⟨φt, xt⟩ − yt

∥φt∥2
φt, xt − x∗

〉

48

= ∥xt − x∗∥2 + (⟨φt, xt⟩ − yt)
2

∥φt∥2
− 2

(⟨φt, xt⟩ − yt)
2

∥φt∥2

= ∥xt − x∗∥2 − (⟨φt, xt⟩ − yt)
2

∥φt∥2
.

We bound the second term of Equation (3.1) by first adding and subtracting x∗

β2 ∥xt − xt−1∥2 = β2 ∥(xt − x∗) + (x∗ − xt−1)∥2 .

Then by applying the fact that ∥a+ b∥2 ≤ 2 ∥a∥2 + 2 ∥b∥2 we have that

β2 ∥(xt − x∗) + (x∗ − xt−1)∥2

≤ 2β2 ∥xt − x∗∥2 + 2β2 ∥xt−1 − x∗∥ .

Thus we have that

β2 ∥xt − xt−1∥2 ≤ 2β2 ∥xt − x∗∥2 + 2β2 ∥xt−1 − x∗∥ .

Finally we bound the third term of Equation (3.1) as

2β

〈
xt − x∗ − ⟨φt, xt⟩ − yt

∥φt∥2
φt, xt − xt−1

〉
=

2β⟨xt − x∗, xt − xt−1⟩+

2β

〈
⟨φt, xt⟩ − yt

∥φt∥2
φt, xt−1 − xt

〉

= 2β ∥xt − x∗∥2 + 2β⟨xt − x∗, x∗ − xt−1⟩+

2β

〈
⟨φt, xt⟩ − yt

∥φt∥2
φt, xt−1 − xt

〉
= β ∥xt − x∗∥2 + β ∥xt − xt−1∥2 − β ∥xt−1 − x∗∥2+

2β

〈
⟨φt, xt⟩ − yt

∥φt∥2
φt, xt−1 − xt

〉
≤ β ∥xt − x∗∥2 + β ∥xt − xt−1∥2 − β ∥xt−1 − x∗∥2−

β⟨⟨φt, xt⟩ − yt

∥φt∥2
φt, xt − x∗⟩+

β⟨⟨φt, xt−1⟩ − yt

∥φt∥2
φt, xt−1 − x∗⟩.

49

Combining the three bounds, we have

∥xt+1 − x∗∥2 ≤ ∥xt − x∗∥2 − (⟨φt, xt⟩ − yt)
2

∥φt∥2

+2β2 ∥xt − x∗∥2 + 2β2 ∥xt−1 − x∗∥2

+β ∥xt − x∗∥2 + β ∥xt − xt−1∥2 − β ∥xt−1 − x∗∥2−

β⟨⟨φt, xt⟩ − yt

∥φt∥2
φt, xt − x∗⟩+

β⟨⟨φt, xt−1⟩ − yt

∥φt∥2
φt, xt−1 − x∗⟩.

Simplifying and grouping like terms we have

∥xt+1 − x∗∥2 ≤ (1 + 2β2 + β) ∥xt − x∗∥2+

(2β2 − β) ∥xt−1 − x∗∥2−
(⟨φt, xt⟩ − yt)

2

∥φt∥2
+ β ∥xt − xt−1∥2−

β⟨⟨φt, xt⟩ − yt

∥φt∥2
φt, xt − x∗⟩+

β⟨⟨φt, xt−1⟩ − yt

∥φt∥2
φt, xt−1 − x∗⟩.

Applying the simplification for the second term of Equation (3.1) and simplifying the

inner products, we have

∥xt+1 − x∗∥2 ≤ (1 + 2β2 + 3β) ∥xt − x∗∥2+

(2β2 + β) ∥xt−1 − x∗∥2−

(β + 1)
⟨φt, xt − x∗⟩2

∥φt∥2
+

β
⟨φt, xt−1 − x∗⟩2

∥φt∥2
.

Taking an expectation over our signal of our simplified equation

50

E[∥xt+1 − x∗∥2] ≤ (1 + 2β2 + 3β) ∥xt − x∗∥2+

(2β2 + β) ∥xt−1 − x∗∥2−

(β + 1)E[
(⟨φt, xt − x∗⟩)2

∥φt∥2
]+

βE[
(⟨φt, xt−1 − x∗⟩)2

∥φt∥2
]

= (1 + 2β2 + 3β) ∥xt − x∗∥2+

(2β2 + β) ∥xt−1 − x∗∥2−

(1 + β)(xt − x∗)TE
[
φtφ

T
t

∥φt∥2

]
(xt − x∗)+

β(xt−1 − x∗)TE
[
φtφ

T
t

∥φt∥2

]
(xt−1 − x∗).

Let W := E
[
φtφT

t

∥φt∥2

]
. We can then bound the above in terms of the largest and smallest

singular values of W :

E[∥xt+1 − x∗∥2] ≤ (1 + 2β2 + 3β) ∥xt − x∗∥2+

(2β2 + β) ∥xt−1 − x∗∥2−

(1 + β)σmin(W) ∥xt − x∗∥2+

βσmax(W) ∥xt−1 − x∗∥2

= (1 + 2β2 + 3β − (1 + β)σmin(W)) ∥xt − x∗∥2+

(2β2 + β + βσmax(W)) ∥xt−1 − x∗∥2 .

Finally, we apply Lemma 17, wherein the two coefficients are given by a1 = 1+2β2+3β−

(1 + β)σmin(W) and a2 = 2β2 + β + βσmax(W). Since we assumed that a1 + a2 = 1 + 4β2 +

4β + (1 + β)σmin(W) + βσmax(W) < 1 and since β > 0 then a2 = 2β2 + β + βσmax(W) > 0

thus the assumptions for Lemma 17 hold, so we have that

E[∥xt − x∗∥2] ≤ qt(1 + δ) ∥x0 − x∗∥2

51

where q =
a1+
√

a21+4a1

2
, δ = q − a1 and a1 + a2 ≤ q < 1. Since q ∈ (0, 1) we have shown

that the norm squared error of the iterates produced by OHBK(β) converges linearly in

expectation.

3.5 Conclusion and Future Directions

In this work we discuss using a Kaczmarz method variant with momentum to solve an online

signal recovery problem. We leverage a heavy ball momentum term, a classical acceleration

method, to improve the convergence rate. We prove a theoretical convergence rate for

OHBK(β), and verify this convergence empirically on both synthetic and real-world data.

We demonstrate empirically that for coherent measurements, the addition of momentum

indeed accelerates convergence, and provided some initial exploration into the dependence

of the convergence rate on the signal length n and momentum strength β.

It is notable that in our convergence analysis, we did not recover a theoretically optimal

value for β. Doing so, and comparing this value to empirically best values, would be an

interesting future direction. Furthermore, we would like to obtain theoretical parameter

relationships: for example, how the optimal momentum strength depends on the signal

length and coherency of the measurements. It may in fact be optimal to adaptively adjust

the momentum parameter across iterations based on the current iterate and properties of

incoming measurements. Additionally, we would like to leverage other accelerated gradient

methods such as ADAM [KB14]. Finally, we would like to consider solving the online signal

recovery problem in the case where each measurement is no longer exact, but instead contains

some amount of noise [Nee10]. This could be achieved, for example, using relaxation.

52

CHAPTER 4

Multi-Randomized Kaczmarz for Latent Class

Regression

This chapter is a version of [GYN22] which is joint work with Erin George and Deanna

Needell. Erin and I are joint first authors of this work. The aim of this work is to solve a

latent class linear regression problem which we pose as solving multiple linear systems at the

same time. We assume that the systems have been scrambled together and we do not know

how many and which rows belong to which system.

The goal of posing this setting and proposing a Kaczmarz method based solution was

to model a scenario in which multiple underlying groups exist within our data and each

group may require a different regressor, solution vector. If we solve the joint system for a

single solution, this solution is sub-optimal for some of the groups whereas if we assume

multiple solutions, they yield a better results for each group. An example application of

this could be dosage rates for medicine depending age. If we regress on all of the data, we

may have sub-optimal doses for everyone but if we divide the data into older populations

and younger populations we may see that older people require larger doses due to building

up a resistance throughout their lives while younger people require smaller doses for more

effective treatments.

Since Kaczmarz allows us to iteratively solve linear systems one row at a time we are

able to develop an algorithm to solve the latent class regression problem. We sample a single

row, decide which solution that row belongs by explicitly biasing to the closer solution then

project onto it.

53

In the remainder of this chapter we propose our novel Kaczmarz based method for solving

the latent class linear regression problem. We prove its convergence under mild assumptions

and experimentally demonstrate its performance on both synthetic and real world datasets.

4.1 Introduction

Often, one needs to perform regression tasks on extremely large-scale data. Methods such as

the randomized Kaczmarz method (RK) [Kar37, SV09] have gained recent attention for their

ability to solve such systems with needing to only access a single row at a time rather than

the full system in memory. However, in many settings, two or more population subgroups

may be present in the data requiring multiple regressors. Often times, computing a single

regressor will result in a minority group having far worse predictive power than the majority.

Additionally, the minority group is not known a priori requiring that we both discover and

regress on these subgroups on the fly. Here, we present a variant of RK that addresses this

problem via multiple regressors.

Formally, given multiple consistent systems of equations M (i)x
(i)
∗ = b(i), i ∈ {0, 1, . . . , n}

we consider the combined matrices

M =


M (0)

M (1)

...

M (n)

 b =


b(0)

b(1)

...

b(n)


with the goal of recovering x

(0)
∗ , x

(1)
∗ , . . . , x

(n)
∗ where the rows of these matrices may be shuffled.

Next we define the class of a set of rows and right hand side entries.

Definition 2 (Class). Given a regressor x
(i)
∗ a set of rows resulting in matrix M (j) and right

hand sides b(j) are in class i if M (j)x
(i)
∗ = b(j).

We assume that the class of each row is not known beforehand. This task corresponds

with uncovering multiple systems and their solutions. In the statistics literature, this problem

54

can be framed as latent class linear regression where each class represents an overdetermined

system of equations [WD94, MV04]. Classically, this problem can be solved by using an

expectation-maximization (EM) algorithm to iteratively fit the regressor coefficients and

then classify the rows [Moo96, KYB19]. The EM algorithm has been extensively studied in

a statistics framework with convergence properties discussed in [Wu83] and [DLR77]. More

recently the EM framework has been used to learn class data representations in unsupervised

machine learning using neural networks [GVS17].

We take a randomized numerical linear algebra approach to this problem by modifying

the classical randomized Kaczmarz algorithm to this setting. This approach allows us to

process very large data sets while only accessing single rows of our data set at a time.

4.2 Multi-Randomized Kaczmarz Method

We propose a novel iterative method motivated by the randomized Kaczmarz (RK) algorithm

for simultaneously solving all n+1 systems, Algorithm 5. This approach is motivated by the

assumption that the closer an iterate is to a hyperplane defined by a row of the combined

system, the more likely that row belongs to the class of that iterate. Since Kaczmarz methods

converge monotonically this is a reasonable assumption.

At each iteration, the multi-randomized Kaczmarz (MRK) method selects a hyperplane as

in the standard RK algorithm. Then the Kaczmarz update for all iterates is computed. The

update with the smallest magnitude is selected, denoted sk, with the respective magnitude

denoted as csk . Given a swap probability r we then update iterate tk chosen to be sk with

probability 1− r and tk chosen from all iterates uniformly at random with total probability

r. The selected iterate tk is updated by the magnitude csk in the direction the tk-th iterate

would have been updated given the standard Kaczmarz update.

We state two convergence results for this method, which we will prove in the following

section. The first theorem, Theorem 18, proves a linear convergence result for the MRK

55

Algorithm 5: Multi-Randomized Kaczmarz (MRK) Algorithm

1 Input: System M , right hand side b, number of iterations N , initial iterates x
(0)
0 ,

x
(1)
0 , . . . , x

(n)
0 , swap probability r, sampling distribution D.

2 for k = 0, 1, . . . , N − 1 do

3 Sample row ik ∼ D

4 ci,k =
Mik

x
(i)
k −bik

||Mik
||2 , i = 0, 1, . . . , n

5 sk = argmini∈{0,1,...,n}(|ci,k|)

6 tk =


sk with probability 1− r

t with probability r
n+1

for all t ∈ {0, . . . , n}

7 ▷ The total probability that tk = sk is 1− r + r
n+1

.

8 x
(tk)
k+1 = x

(tk)
k − |csk | sgn(ctk)MT

ik

9 x
(j)
k+1 = x

(j)
k , j ̸= tk

10 end

algorithm in expectation under certain conditions. The second theorem, Theorem 19, is

an almost sure convergence result for the MRK algorithm. Other almost sure convergence

results have been shown for Kaczmarz type algorithms [CP12] under the assumption that

measurements (rows of the matrix) are drawn from independent but not necessarily identical

distributions.

To prove these theorems, we will make a uniqueness assumption on the problem.

Assumption 1. The solution to the set of systems is unique up to relabeling. That is,

suppose there are xi, i ∈ {0, 1, . . . , n} so that for each row in the combined system (indexed

by k) there is ik where

Mkxik = bk.

Then there is a permutation σ on {0, 1, . . . , n} so that x
(i)
∗ = xσ(i) for all i.

In particular, this means all systems in the problem are full rank, even if rows which

56

consistently belong to two or more classes are removed.

Theorem 18 (Conditional expected MRK Convergence). Define

ek =
n∑

i=0

∥∥∥x(i)
k − x(i)

∗

∥∥∥2 .
Let r ≥ 0 be sufficiently small. Choose c ∈ (C0, 1) and δ > 0. There exists ε > 0 so that if

ek < ε then

E(ek+b|Aδ) ≤ cbek

where Aδ is an event that happens with probability at least 1 − δ. The constant C0 < 1

depends on M , b, n, and r.

This theorem shows the convergence will be linear in expected squared error after a certain

point. Limiting the initial squared error before convergence allows us to identify which

solution each iterate is converging towards. The failure probability reflects the possibility

that the iterates may still converge towards a different labeling of the solutions and iterates.

In the case where the initial squared error is too large or the failure probability is triggered,

we will still see convergence, as shown in the next theorem.

Theorem 19 (Almost sure MRK Convergence). There is r′ ∈ (0, 1) so that if r ∈ (0, r′),

each iterate of the algorithm converges almost surely to a different solution of the subsystems.

The convergence rate given by the proof of this theorem is slow. In practice, we find the

convergence rate quickly achieves the linear rate given in the previous theorem.

4.3 Proofs

4.3.1 Conditional Convergence in Expectation

Proof of Theorem 18. At the k-th iteration, we select a row from a system. Suppose we

select a row ℓk from system i. There are three possibilities for how we update.

57

(a) We update x
(i)
k fully, setting∥∥∥x(i)

k+1 − x(i)
∗

∥∥∥2 = C
(i)
k

∥∥∥x(i)
k − x(i)

∗

∥∥∥2
for some random variable C

(i)
k taking value in the range [0, 1]. The expectation of C

(i)
k

is just the Kaczmarz constant for the subset of rows which we are allowed to make a

full and correct update with.

(b) We update x
(i)
k partially. We bound the error here as∥∥∥x(i)

k+1 − x(i)
∗

∥∥∥ ≤ ∥∥∥x(i)
k − x(i)

∗

∥∥∥ .
(c) We update x

(j)
k for some j ̸= i. Regardless of how this happens, we always update by

a magnitude bounded above in norm by the correct update:∣∣∣Mℓkx
(i)
k − bℓk

∣∣∣
∥Mℓk∥

≤
∥∥∥x(i)

k − x(i)
∗

∥∥∥ .
Therefore the new error satisfies∥∥∥x(j)

k+1 − x(j)
∗

∥∥∥ ≤ ∥∥∥x(j)
k − x(j)

∗

∥∥∥+ ∥∥∥x(i)
k − x(i)

∗

∥∥∥
and by Cauchy-Schwarz and Young’s inequality∥∥∥x(j)

k+1 − x(j)
∗

∥∥∥2 ≤ 2
∥∥∥x(j)

k − x(j)
∗

∥∥∥2 + 2
∥∥∥x(i)

k − x(i)
∗

∥∥∥2 .
There are two ways for us to land in case (c). Either we trigger our swap probability and

select iterate j, or we do not trigger our swap probability but we selected iterate j anyway.

The second happens only when∣∣∣Mℓkx
(j)
k − bℓk

∣∣∣
∥Mℓk∥

≤

∣∣∣Mℓkx
(i)
k − bℓk

∣∣∣
∥Mℓk∥

We can bound the left side below by

|Mℓk(x
(i)
∗ − x

(j)
∗)|

∥Mℓk∥
−
∥∥∥x(j)

k − x(j)
∗

∥∥∥
58

and the right hand side above by ∥∥∥x(i)
k − x(i)

∗

∥∥∥ .
So this can only happen when

|Mℓk(x
(i)
∗ − x

(j)
∗)|

∥Mℓk∥
≤
∥∥∥x(i)

k − x(i)
∗

∥∥∥+ ∥∥∥x(j)
k − x(j)

∗

∥∥∥
≤

n∑
a=0

∥∥∥x(a)
k − x(a)

∗

∥∥∥
≤
√

(n+ 1) · ek.

We only need to consider the case when Mℓk(x
(i)
∗ − x

(j)
∗) ̸= 0, as otherwise we could consider

this row ℓk as coming from the j-th system anyway. Therefore, the probability of this

happening goes to 0 as ek goes to 0. Suppose ε is small enough so that whenever ek < ε the

probability this mistake happens for any pair is less than q.

We will also assume that ε is small enough so that, assuming we do not trigger our swap

probability, there is a full rank set of rows for each system so that whenever ek < ε all these

rows will make a correct update and that cannot be added to another system consistently.

This is a consequence of Assumption 1. Then, for each system, the condition number for

the set of rows that can make a correct update is bounded above, and the RK constant is

bounded above by some value strictly less than 1. Let c < 1 bound above the RK constant

for each system.

Now, whenever ek < ε, we can bound
∥∥∥x(0)

k+1 − x
(0)
∗

∥∥∥2
...∥∥∥x(n)

k+1 − x
(n)
∗

∥∥∥2
 ≤ A


∥∥∥x(0)

k − x
(0)
∗

∥∥∥2
...∥∥∥x(n)

k − x
(n)
∗

∥∥∥2


where ≤ is interpreted component-wise and

Aii = 1 +
mj

m
(c− 1)(1− q − nr

n+1
) +

m−mj

m
(q + r

n+1
)

Aij = 2
mj

m
(q + r

n+1
) if i ̸= j.

59

Here mj is the number of rows in the j-th system and m =
∑

j mj.

By induction, 
∥∥∥x(0)

k+b − x
(0)
∗

∥∥∥2
...∥∥∥x(n)

k+b − x
(n)
∗

∥∥∥2
 ≤ Ab


∥∥∥x(0)

k − x
(0)
∗

∥∥∥2
...∥∥∥x(n)

k − x
(n)
∗

∥∥∥2


for all b ∈ N provided that ek+a < ε for all a ∈ {0, . . . , b − 1}. We wish to show the ℓ1

operator norm of A is less than 1. This happens when

mj

m
(c− 1)

(
1− q − nr

n+ 1

)
+

(
q +

r

n+ 1

)(
m−mj

m
+ 2n

mj

m

)
is negative. This occurs when q + nr

n+1
is small enough. So then, for r sufficiently small, we

can choose ε to make ∥A∥ℓ1→ℓ1 = d < 1.

Suppose ek < δ < ε. By our previous bound, ek+b < dbδ, conditioned on the intermediate

values ek+a < ε. By Markov’s inequality, the probability that ek+a ≥ ε is at most 1
ε
daδ.

The total probability of this happening is at most δ
ε

d
1−d

. Therefore our total error remains

bounded above by ε with probability at least 1− δ
ε

d
1−d

, and in this case we have convergence

in expectation.

4.3.2 Convergence with full probability

An outline of the proof for Theorem 19:

1. We use Theorem 18 to define “convergence basins”: regions where, if the iterates

fall into, there is some positive probability that they never escape and converge in

expectation.

2. We show
∥∥∥x(i)

k − x
(i)
∗

∥∥∥ is bounded by some constant independent of i and k.

60

3. We show we can bound the probability of falling into a basin eventually below by some

positive number.

We will begin by proving the following lemma, which will be used in the second part of

the outline above.

Lemma 20. Let R be a sequence of rows from the problem. The sequence of Kaczmarz

updates corresponding to R defines an affine transformation v 7→ TRv + vR. There are

constants cr ∈ (0, 1), Br ∈ R+ for r ∈ {1, . . . , d} so that ∥vR∥ ≤ Bdim spanR and ∥TR∥R ≤

cdim spanR, where ∥·∥R is the ℓ2 operator norm when the operator is restricted to spanR.

Proof of Lemma 20. We proceed by induction on r. The Kaczmarz update for the ℓ-th row

is

Kℓ : v 7→
(
I − 1

∥Mℓ∥2
MT

ℓ Mℓ

)
v +

bℓ

∥Mℓ∥2
MT

ℓ

If r = 1, then TR is the zero operator restricted to spanR. We can take c1 = 0 and

B1 = maxℓ
|bℓ|

∥Mℓ∥
.

Now, assume the lemma is true for all r < r′. Let R = (Mℓ1 , . . . ,Mℓk) be a sequence of

rows where dim spanR = r′. We can group

Kℓk ◦ · · · ◦Kℓ1 =(Kℓk ◦ · · · ◦KℓaN
)

◦ (KℓaN−1 ◦ · · · ◦KℓaN−1
)

...

◦ (Kℓa2−1 ◦ · · · ◦Kℓa1
)

◦ (Kℓa1−1 ◦ · · · ◦Kℓa0
)

so that a0 = 1 and ai for i ∈ {0, . . . , N} is a strictly increasing sequence where the following

61

are true:

dim span{Mℓai−1
, . . . ,Mℓai−1} = r′ ∀i ∈ {1, . . . , N}

dim span{Mℓai−1
, . . . ,Mℓai−2} = r′ − 1 ∀i ∈ {1, . . . , N}

dim span{Mℓan , . . . ,Mℓk} < r′.

Consider a grouping (Kℓai−1 ◦ · · · ◦ Kℓai−1
), the linear part of the transformation is A =(

I − 1

∥Mℓai
∥2M

T
ℓai
Mℓai

)
composed with an operator T that sends

S = span{Mℓai−1
, . . . ,Mℓai−2} to itself and has operator norm less than cr′−1 on this space.

Consider a unit vector v ∈ spanR. We can decompose v = v1 + v2 with v1 ∈ S and

v2 ∈ S⊥ ∩ spanR. This allows us to bound

∥ATv∥ ≤ ∥Tv∥ ≤
√

c2r′−1 ∥v1∥
2 + ∥v2∥2

using that the operator norm of A is at most 1 and that T is the identity on S⊥. Another

bound is

∥ATv∥ ≤ ∥ATv1∥+ ∥Av2∥ ≤ ∥v1∥+

(
1−
|Mℓai

v2|∥∥Mℓai

∥∥
)

obtained with the triangle inequality and again T being the identity on S⊥.

These bounds combine to give a bound for the ℓ2 operator norm of AT on spanR that

depends only on S and ℓai . There are finitely many possible choices for S and ℓai , so there

is some bound c′ < 1 on the operator norm of AT independent of what S and ℓai are. Next

we turn to the affine part. By the induction hypothesis, this is a vector with norm at most

B′ = Br′−1 +maxℓ
|bℓ|

∥Mℓ∥
.

Next we turn to the last grouping, which is not of this form. We will not analyze the

linear part, and note the affine part v′ is bounded above in norm by B′′ = maxr<r′ Br.

Since all linear operators here have operator norm at most 1, a final bound for the

operator norm of TR restricted to spanR is c′, which we can take to be cr′ . We bound

∥vR∥ ≤ B′′ +

[
ℓ∑

i=1

ci−1
r′ B′

]
≤ B′′ +

1

1− cr′
B′.

So we can let Br′ be this bound.

62

Proof of Theorem 19. We first bound the norm of the iterates above by some constant D.

Consider the evolution of a single iterate x
(i)
k after finitely many steps. At the last update

for x
(i)
k , we perform a Kaczmarz update with respect to some system, and move the iterate

towards, but not past, the update. There is a line segment of possible choices for the next

update once we have selected the row. The potential next iterate with largest norm is one of

the end points of the line segment, corresponding to either doing a full update or no update

at all. So we can either remove this last update or replace it with a full update to yield a

final iterate with norm at least as large. We repeat with each update in reverse order, noting

the image of a line segment after a series of affine transformations is still a line segment,

choosing the one that will yield the largest norm at the end. Hence, to bound the norm

of the iterates, we only need to consider sequences where we only ever make full Kaczmarz

updates.

Using Lemma 20, we see that if the initial norm of the iterates are bounded above by A,

after a sequence of rows R the norm is at most cdim spanRA + Bdim spanR, which is bounded

above by D = A+maxr∈{1,...,d}Br.

As given by Theorem 18, let ε be such that if ek ≤ ε, we converge with some positive

probability t.

Let C be the set of all possible iterates such that ε
n+1
≤
∥∥∥x(i)

k − x
(i)
∗

∥∥∥2 ≤ D2 for all

i ∈ {0, . . . , n} with D given above. This set is compact. If our iterates do not lie in C, then

already ek < ε, so we only need to look at what happens if our iterates lie in C.

Define

g(x(0), . . . , x(n)) = max
ℓ∈{1,...,m}

min
i∈{0,...,n}

|Mℓx
(i) − bℓ|
∥Mℓ∥

.

This function is the norm of the largest possible iterates in our algorithm if the iterates

currently take the values x(0), . . . , x(n). This is a continuous function on Rd(n+1), so it achieves

a minimum c on C. This minimum c is positive, as by our assumption g cannot be zero

anywhere on C.

Now, for all value of iterates, we have probability at least 1
m

of choosing a row where we

63

will make an update with norm at least c. The probability of updating the correct system

with a chosen row is at least r
n+1

. The squared error of the corresponding iterate decreases

by at least the norm squared of the update, which is at least c2, because the resulting triangle

between the previous iterate, next iterate, and solution is obtuse. We can keep doing this as

long as our iterates remain in C. Therefore, if we make no more than

A = (n+ 1)

⌈
N − ε

n+1

c2

⌉
of these updates, we have ek < ε. The probability of this happening is(

r

m(n+ 1)

)B

,

where m is the number of rows of M . This is a fixed positive value independent of the

iterate.

4.4 Experimental Results

We test the MRK method on synthetic and real world data to verify the merits of the method.

First we construct a problem in two-dimensional space and visualize how our iterates move

in space in Figure 4.1. From Figure 4.1 we see how the iterates converge to solutions, moving

closer with each projection. The problem is defined by two 10×2 systems where M1 ∈ R10×2

with entries drawn i.i.d. from N (0.8, 0.3) and M2 ∈ R10×2 with entries drawn i.i.d. from

N (−0.8, 0.3).

Next, in Figure 4.2 we use the MRK method on a large synthetic data set. We plot the

log norm squared error per iteration of the two iterates for the two class system. The system

is defined by two matrices M1 ∈ R1000×10,M2 ∈ R1000×10 where the matrices have entries

drawn i.i.d. from N (0, 1). Each initial iterate x0
0, x

1
0 ∼ N (0, 1) with zero swap probability.

We plot the median and shade the interquartile range in Figure 4.2. We observe that both

iterates converge to machine precision and the method succeeds at solving both systems

simultaneously.

64

1.5 1.0 0.5 0.0 0.5 1.0
x0

1.0

0.8

0.6

0.4

0.2

0.0

0.2

x 1

soln_1
soln_2
soln_1 true
soln_2 true

Figure 4.1: Here we plot the evolution of two iterates in the two-dimensional plane. Our

system is defined by two matrices M1 ∈ R10×2 with entries drawn i.i.d. from N (0.8, 0.3) and

M2 ∈ R10×2 with entries drawn i.i.d. fromN (−0.8, 0.3). Each initial iterate x0
0, x

1
0 ∼ N (0, 1).

We let our swap probability r = 0 and sample rows uniformly at random.

0 250 500 750 1000 1250 1500 1750 2000
Iteration k

35

30

25

20

15

10

5

0

Lo
g

E
rr

or
 N

or
m

 lo
g(

||x
k

x
||)

error_1
error_2

Figure 4.2: System defined by two matrices M1 ∈ R1000×10,M2 ∈ R1000×10 where the matrices

have entries distributed M1,M2 ∼ N (0, 1). Each initial iterate x0
0, x

1
0 ∼ N (0, 1). We let

our swap probability r = 0, sample rows uniformly at random and plot the median and

interquartile range over the 100 trials.

65

0 2000 4000 6000 8000 10000
Iteration k

20

15

10

5

0

Lo
g

E
rr

or
 N

or
m

 lo
g(

||x
k

x
||)

error_1
error_2

Figure 4.3: System defined by matrices M1 ∈ R300×10,M2 ∈ R399×10 submatrices of the

Wisconsin breast cancer data set. Each initial iterate x0
0, x

1
0 ∼ N (0, 1). We let our swap

probability r = 0, sample rows uniformly at random and plot the median and interquartile

range over the 100 trials.

Finally, in Figure 4.3 we define a two problem system for the MRK method using real

world data [WSM95]. We construct two systems defined by matrices M1 ∈ R300×10,M2 ∈

R399×10 submatrices of the Wisconsin breast cancer data set. We start two initial iterates

with standard normal entries and let our swap probability be zero. We observe that in

Figure 4.3 both iterates converge to their respective solutions. We plot the median and

interquartile range for the iterates’ log error norm per iteration over 100 trials and observe

that the method is able to solve this two system problem.

4.5 Conclusion and Future Work

In this chapter we introduce the novel multi-randomized Kaczmarz algorithm, Algorithm 5,

to solve the consistent latent class regression problem. We prove linear convergence for the

algorithm in expectation with high probability under some constraints in Theorem 18 and

almost surely in Theorem 19. Additionally, we observe promising results when applying the

algorithm to test data sets. We plan on extending this work to inconsistent and noisy systems

by leveraging the extended Kaczmarz method [ZF13], which converges to the least squares

66

solution [Nee10]. Additionally, we would like to explore using Kaczmarz variants such as

max distance [NSL16], sampling Kaczmarz-Motzkin [DHN17] and selectable set [YMS22]

methods in this setting. Finally, we are interested in adaptively marking and assigning

which rows belong to which system in real time based on the iterate projection values.

67

CHAPTER 5

Stratified Non-negative Matrix Factorization

This chapter is an adaptation of [CYN23] which is joint work with James Chapman and

Professor Needell. James and I are joint first authors on this work. We proposed this idea,

implemented the method, proved its convergence and contributed the experimental results

under the guidance of Professor Needell.

We aim to factor a set of non-negative matrices each of which contain samples by vari-

ables. This factorization is an unsupervised learning method meant to capture the underlying

structure within the data. The factorization that we propose is comprised of a local vector

for each matrix and a product of two low rank matrices, a local weight matrix and a global

dictionary matrix.

In the remainder of this chapter, we first propose an objective function corresponding to

a factorization and a multiplicative update algorithm to construct this factorization. Then

we prove convergence of the objective function under the multiplicative update rules and

experimentally test the performance of the factorization on synthetic, tabular, image and

text datasets highlighting the merits of the method.

5.1 Introduction

Non-negative matrix factorization (NMF) is a classical unsupervised machine learning

method used in dimensionality reduction and topic modeling [KCP15, WZ12, SBP06]. NMF

best addresses data which could be grouped into topics. For example, one could break down

a collection of books by topics and then further break down the topics by words associated

68

to them [GST07, Wal06]. In a more general setting, we refer to books, topics, and words as

samples, features, and variables, respectively. This is modeled by

argmin
W,H

||A−WH||2F , W ≥ 0, H ≥ 0

where || · ||F denotes the Frobenius norm, A is the data matrix of samples by variables, H is

the topics matrix which associates topics to variables, and W is a matrix which associates

samples with topics. These names come from the fact that each sample is approximated by a

linear combination of the rows in H with coefficients from the rows of W . The foundational

work by Seung and Lee showed that the standard NMF objective can be optimized efficiently

with a multiplicative update [SL01, LS99]. Additionally, W and H are chosen to be low

rank so that the method learns to compress the data into features. The low rank, efficient

multiplicative updates allow this method to scale to large datasets. Additionally, NMF is

sought after for its sparse and interpretable feature learning [Gil14].

A potential drawback of the standard NMF model is that it does not directly account for

stratified data, e.g. data drawn from multiple sources [ASM18]. Data collection methods,

along with geographic or time differences, can introduce heterogeneity into the dataset. One

common solution is to stratify data in order to obtain accurate results for subgroups of the

data [HHM53, NOG20, RFC12]. In this chapter, we augment the NMF objective to account

for stratified data.

We consider the setting where multiple groups, or strata, share a common topics dictio-

nary with positive, strata dependent shifts. In this work, strata will be given in the problem,

but can be obtained via meta-data or other common, external information. For example,

articles written in various regions or across time periods differ in dialect or semantic progres-

sion. Although NMF may attribute the words “pop” and “soda” to the topic “beverage”, it

will be unable to explain the regional differences in the use of this word. Using Stratified-

NMF, we can learn the strata dependent shifts and obtain a topic dictionary which measures

the underlying commonalities between strata.

In this work, we develop a novel extension of NMF called Stratified-NMF, which is

69

able to account for heterogeneous data. We also derive multiplicative updates and show

that the Stratified-NMF objective is non-increasing under our multiplicative update rules.

Next we analyze our method on four datasets, spanning synthetic data, image data, census

data, and natural language text. We experimentally validate the convergence properties

of the method and empirically demonstrate the interpretability of Stratified-NMF. Code

for our experiments is also publicly available and can be found at https://github.com/

chapman20j/Stratified-NMF.

5.2 Proposed Method

We consider the case where the dataset has s strata, each with a data matrix A(i) ∈ Rmi×n

(R denotes non-negative real numbers). The data is stored row-wise so that A(i)jk denotes

the k’th attribute of data point j in stratum i. Each data point is assumed to be sampled

from a distribution

Di = D + zi

where D is a shared, non-negative distribution and zi ∈ Rn is a strata dependent shift. To

account for this, we want to perform NMF on the matrix

A(i)−


− zTi −

− zTi −
...

− zTi −

 = A(i)− 1zTi (5.1)

but over all the strata, where 1i ∈ Rmi is the all ones vector. This leads to the following

Stratified-NMF objective.

argmin
v(i),W (i),H

s∑
i=1

||A(i)− 1v(i)T −W (i)H||2F , (5.2)

v(i) ≥ 0, W (i) ≥ 0, H ≥ 0, ∀1 ≤ i ≤ s (5.3)

Note that the low rank update to each stratum keeps the number of additional parameters

in the NMF objective relatively low. This property is appealing since it prevents overfitting

70

https://github.com/chapman20j/Stratified-NMF
https://github.com/chapman20j/Stratified-NMF

to each stratum.

This formulation allows the model to naturally learn a global representation, H, of the

data and local representations, v(i), of each stratum. This relieves the model of inductive

biases which may be introduced by other stratification techniques. One might consider more

simple approaches like centering the means of the different strata or unit normalization

of individual data points. The mean centering approach fails because the objective is non-

linear and won’t behave well under arbitrary additive shifts. Similarly, the unit normalization

approach may flatten out data at different scales.

Algorithm 6: Stratified-NMF Multiplicative Update Algorithm

1 Input: Data A(i) ∈ Rmi×n for 1 ≤ i ≤ s, number of iterations N , number of v

updates per iteration M .

2 Construct initial v(i) ∈ Rn,W (i) ∈ Rmi×r, H ∈ Rr×n for 1 ≤ i ≤ s

3 for k = 0, 1, . . . , N − 1 do

4 for j = 0, 1, . . . ,M − 1 do

5 v(i)← v(i) A(i)T 1
v(i)mi+HTW (i)T 1

∀i

6 end

7 W (i)← W (i) A(i)HT

(W (i)H+1v(i)T)HT ∀i

8 H ← H
∑

i W (i)TA(i)∑
i W (i)T (W (i)H+1v(i)T)

9 end

5.3 Theoretical Results

Due to the similar structure of the Stratified-NMF objective and the standard NMF ob-

jective, we are able to develop multiplicative update rules described in Algorithm 6. Note

that these multiplicative update rules satisfy the constraints in Equation 5.3 throughout

the optimization procedure. Additionally, we state and prove Theorem 23 showing that the

multiplicative updates satisfy similar convergence properties to those of the standard NMF

71

objective [SL01, DLR77].

Definition 3. (From [SL01]) G(h, h′) is an auxiliary function for F (h) if the conditions

G(h, h′) ≥ F (h), ∀h′ and G(h, h) = F (h).

Lemma 21. (From [SL01]) If G is an auxiliary function, then F is nonincreasing under

the update

ht+1 = argmin
h

G(h, ht).

Theorem 22. (From [SL01]) The Euclidean distance ||A−WH||F is nonincreasing under

the update rules

Hij ← Hij
(W TA)ij

(W TWH)ij
Wij ← Wij

(AHT)ij
(WHHT)ij

(5.4)

Theorem 23 (Convergence of Multiplicative Update Rules). The Stratified-NMF objective

defined in Equation 5.2 is non-increasing under the update rules defined in Lines 5, 7, and

8 of Algorithm 6.

Proof. We reformulate the Stratified-NMF objective into a large block formulation resulting

in a standard NMF objective with s additional columns in W and s additional rows in H:∥∥∥Â− Ŵ Ĥ
∥∥∥2
F

(5.5)

with

Ŵ =


11 01 . . . 01 W (1)

02 12 . . . 02 W (2)
...

... . . .
...

...

0s 0s . . . 1s W (s)

 ∈ R(
∑s

i=1 mi)×(r+s), (5.6)

where 0i ∈ Rmi denotes the zero vector and 1i ∈ Rmi denotes the all-ones vector, and

72

Â =


A(1)

A(2)
...

A(s)

 ∈ R(
∑s

i=1 mi)×n, Ĥ =



v(1)T

v(2)T

...

v(s)T

H


∈ R(r+s)×n. (5.7)

Note that the block matrix Ĥ contains parameters, all of which are optimized. Lee and Seung

show the non-increasing property of the NMF objective for the W and H multiplicative

updates separately [SL01]. Therefore to show convergence on the v and H, it is enough

to show that we obtain the same update formulas from performing NMF on the block

formulation. In particular, the standard NMF update says

Ĥ ← Ĥ
Ŵ T Â

Ŵ T Ŵ Ĥ
.

Applying this update rule gives

v(i)T = Ĥi

← v(i)T
(0, ..., 0,1T (i), 0, ..., 0)Â

(0, ..., 0,1T (i), 0, ..., 0)Ŵ Ĥ

= v(i)T
1T (i)A(i)

(0, · · · , 0,1T (i)1(i), 0, · · · , 0,1T (i)W (i))Ĥ

= v(i)T
1T (i)A(i)

miv(i)T + 1T (i)W (i)H
.

Taking transposes on both sides recovers the Stratified-NMF update rule. Let [H] denote

the rows corresponding to H in Ĥ. Then

H ← H
Ŵ T

[H]Â

Ŵ T
[H]Ŵ Ĥ

= H
(W (1)T , · · · ,W (s)T)Â

(W (1)T , · · · ,W (s)T)Ŵ Ĥ

= H

∑
i W (i)TA(i)

(W (1)T1(1), · · · ,W (s)T1(s),
∑

i W (i)TW (i))Ĥ

= H

∑
i W (i)TA(i)∑

i W (i)T1(i)v(i)T +W (i)TW (i)H
.

73

By Theorem 22, the Stratified-NMF objective is non-increasing under the multiplicative

updates defined in Equation 5 and Equation 8.

Now we look at the multiplicative update for W . Following the proof technique in [SL01],

consider the function

Fσ,r(w) =
1

2

∑
c

(
ac − vc −

∑
j

wj(σ)Hj,c

)2

,

where wj = Wrj(σ), ac = A(σ)rc, vc = v(c). We define K to be the diagonal matrix with

entries

Kaa =
(wHHT + vTHT)a

wa

=
(wHHT)a

wa

+
(vTHT)a

wa

= K1
aa +K2

aa.

We also define

Gσ,r(w,w
t) = Fσ,r(w

t) + (w − wt)∇Fσ,r(w
t) +

1

2
(w − wt)K(wt)(w − wt)

and expand Fσ,r to obtain

Fσ,r(w) = Fσ,r(w
t) + (w − wt)∇Fσ,r(w

t) +
1

2
(w − wt)HHT (w − wt).

To show that Gσ,r is an auxiliary function of Fσ,r, it suffices to show that

K −HHT

is positive semi-definite. We see that

K1 +K2 −HHT ⪰ K1 −HHT ⪰ 0,

where the first inequality comes from the fact that K2 is non-negative and diagonal. The

second inequality was shown in the proof of Lemma 2 from [SL01] as K1 is the same as K

in their proof. Summing over the strata and rows, we obtain

Gσ,r ≥ Fσ,r, ∀σ, r =⇒ G =
∑
σ,r

Gs,r ≥
∑
σ,r

Fσ,r = F,

where F is the Stratified-NMF objective and minimizing G recovers the multiplicative update

for W defined in Equation 7. In other words, G is an auxiliary function for F . By Lemma 21,

the Stratified-NMF objective is non-increasing under the multiplicative update rule defined

in Equation 7.

74

5.4 Experimental Results

Next we experimentally analyze the performance of Stratified-NMF on synthetic, hous-

ing, image and text datasets. We show the merits of Stratified-NMF as a tool for inter-

pretable unsupervised learning in these unsupervised learning applications. In all experi-

ments H, W (i) ∀i are initialized as random uniform in [0, 1/
√
r] entries, independently and

identically distributed (iid) for all parameters. The v(i) ∀i are initialized as random uniform

[0, 1] iid entries for all parameters. The number of updates for v at each iteration (denoted

M in Algorithm 6) is set to 2 for all experiments. We add 10−9 to all the entries in the

denominator of each update to avoid division by zero. In this work, loss denotes the square

root of the Stratified-NMF objective and normalized loss refers to the following quantity:√∑s
i=1 ||A(i)− 1v(i)T −W (i)H||2F∑s

i=1 ||A(i)||2F
.

5.4.1 Synthetic

We test the Stratified-NMF objective on a synthetic dataset containing 4 strata, A(1), A(2),

A(3), A(4). Each matrix, A(i) ∈ R100×100 is constructed by multiplying a 100 × 5 matrix

with a 5 × 100 matrix each of which have entries that are drawn uniformly from [0, 1]. We

then add a synthetic strata feature of 1vTtrue(i) where vtrue(i) has entries drawn uniformly

from [i− 1, i]. We run stratified-NMF for 10000 iterations and analyze the results.

Figure 5.1 shows the log-log plot of the normalized stratified NMF objective versus it-

erations. Observe that the multiplicative update detailed in Algorithm 6 converges on the

synthetic dataset in under 2000 iterations and obtains a final normalized loss of 9.7e − 4.

Additionally, in Figure 5.2, we measure the success of recovering the learned strata features

by plotting the mean value of each v(i) per iteration. Since vTtrue(i) has entries drawn uni-

formly from [i− 1, i] we expect the v(i)’s to converge to i− 0.5, which corresponds to 0.5 for

v(1), 1.5 for v(2), 2.5 for v(3), and 3.5 for v(4). Figure 5.2 shows that the means converge to

0.51, 1.47, 2.53, 3.57, respectively. These means are very close to the expected means, which

75

highlights the utility of the v(i)’s in recovering information about the individual strata.

Figure 5.1: Log of normalized loss versus number of iterations for the synthetic experiment.

The final normalized loss is 9.7e− 4.

5.4.2 California Housing

We use Stratified-NMF to analyze the California housing dataset originally compiled in 1997

available on scikit-learn [PB97, PVG11]. This dataset was curated from the 1990 US census

data and contains average income, housing average age, average rooms, average bedrooms,

population, average occupation, latitude, and longitude fields. We stratify the data by

splitting it into low, medium and high income groups and drop the latitude and longitude

fields due to the positivity constraint. The stratified dataset has 815 samples for the low

income stratum all of which make less than 15k dollar household income per year, 1492

samples for the medium income stratum all of which make between 45k − 50k household

income per year, and 308 samples for the high income stratum which make more than 100k

per year. Although the sizes of the stratum are imbalanced, Stratified-NMF is able to capture

meaningful local features. We run Stratified-NMF on the three strata for 100 iterations with

76

Figure 5.2: Means of each strata feature v(i) over the four strata of the synthetic experiment.

The final means are 0.51, 1.47, 2.53, 3.57, respectively. We expect to approximately recover

the true means of 0.5, 1.5, 2.5, 3.5.

a rank of 5. We then analyze the interpretability of the learned strata features, v(i), in

Figure 5.3.

Figure 5.3 shows the normalized strata features v(i) for the California dataset. This plot

was obtained by taking the resulting v(i)’s and normalizing them so that
∑

j v(i)j = 1 for

all j. This depicts the relative differences between strata on the same plot. The median

income variable shows an obvious trend that low, medium, and high income is preserved.

Interestingly, house age and average bedrooms are relatively constant across strata, while

the average rooms seems to increase with wealth. Lastly, the population is highest for the

medium income stratum. An analysis by the Brookings Institute reported a similar trend

found in survey data from 2017 [Ber18]. Note that average occupancy was removed from the

plot because it was near zero across all strata and the normalization causes one stratum to

visually dominate this variable.

77

Figure 5.3: Normalized strata features v(i) for the California dataset. This plot was obtained

by taking the resulting v(i)’s and normalizing them so that
∑

j v(i)j = 1 for all j. The median

income and average rooms increase with income, as expected. Interestingly, median income

individuals tend to live in more populous regions [Ber18]. Trends for the other variables are

neutral.

5.4.3 MNIST

We also test our method on MNIST, a dataset of handwritten digits sourced from the Torchvi-

sion library [LCB10, MR10]. We stratify the data into two strata S1, S2. The S1 stratum

consists of 100 images of 1’s and 100 images of 2’s, while the S2 stratum consists of 100

images of 2’s and 100 images of 3’s. Note that the samples in S1 and S2 are disjoint. We

expect H to capture the 2’s as global features since they are in both strata while we expect

the v’s to capture the 1’s and 3’s which are unique to their respective strata. Stratified-NMF

is run on the dataset for 100 iterations with a rank of 5. The learned strata features, v(i),

are displayed in Figure 5.4 and the global features, H, are displayed in Figure 5.5.

In Figure 5.4 we observe that v(1) captures the 1, which is unique to S1, and v(2) captures

78

the 3, which is unique to S2. Many of the shared features shown in Figure 5.5 resemble 2’s,

which is the common data to both stratum. This suggests that the strata features learn

information specific to each stratum while the global dictionary H learns features common

to the whole dataset. The remaining feature in H resembles a 3. We suspect that this is

due to the 2 and 3 not having enough commonality, which means that H must store features

corresponding to 3’s in order to fit the data. Note also that rows of H are features of the

residuals A(i) − 1v(i)T . This can be seen in Figure 5.5 as many of the features resemble

numbers with missing lines or faint regions. The missing parts correspond to the parts

extracted from 1v(i)T .

Figure 5.4: Learned strata features on the MNIST experiment. The left image is a plot of

v(1) and it resembles a one. The right image is a plot of v(2) and it resembles parts of a

three.

5.4.4 20 newsgroups dataset

Finally, we test our method on the 20 newsgroups dataset sourced from scikit-learn [PVG11,

Ren08]. This dataset is composed of 20 categories of news articles encompassing a variety of

topics including hockey, cryptography, space, and medicine. Each category contains between

799 and 999 articles from each news group. We preprocess the data by removing all stop

words, headers, footers and quotes and subsequently compute a global text frequency inverse

document frequency matrix. This yields a length 51840 sparse non-negative feature vector

for each article. We stratify the data according to the news group and run Stratified-NMF

79

Figure 5.5: Learned topics matrix for the MNIST experiment. Each image is a row of H.

These images capture global features across the residuals A(i) − 1v(i)T . Four of the five

learned global features are 2’s with missing segments which appear to be captured by the

v(i)’s. The remaining feature in H resembles a 3.

for 100 iterations with a rank of 20.

Figure 5.1 displays the top three, highest weighted, words captured by the strata features

for each category. We observe that for each of the twenty stratum, the top words captured

by the strata features correspond exactly to their topic. This highlights the interpretabil-

ity of the local features. For example, the top three words in the autos newsgroup are

“driving”, “v6”, and “transmission”, all of which may be used when discussing automobiles.

Additionally, the top words in the hockey newsgroup are “Toronto”, “sabres”, and “coach”,

all of which are associated with professional hockey teams. Finally, the top words in the

medicine newsgroup are “kidney”, “symptoms”, and “doctors”, all of which are associated

with medicine. Upon looking at the top thirty words (contained in the Github), we were

manually able to discern which category the words corresponded to. Finally, we observed

that the local strata features were sparse with approximately 20% nonzero, highlighting

sparsity preservation properties of Stratified-NMF.

80

Newsgroup 1 2 3

atheism cheers exist bobbe

graphics convert points vesa

misc computer norton tried truetype

pc hardware work set com

mac hardware clock upgrade hardware

windows x hp colormap r5

forsale following looking manual

autos driving v6 transmission

motorcycles tony cop wheel

baseball hitting jays phillies

hockey toronto sabres coach

cryptography random public voice

electronics detector supply chip

medicine kidney symptoms doctors

space new long astronomy

christian churches read body

politics guns jim shot clinton

politics mideast west civilians countries

politics misc national laws house

religion misc life cult context

Table 5.1: Top three words learned for each newsgroup in the 20 newsgroups dataset. These

are obtained by looking at the largest values in each v(i). We observe that the forsale

newsgroup has the words “following”, “looking” and “manual”, which are associated with

selling or shipping items. Similarly, the baseball newsgroup has the words “hitting”, “jays”,

and “phillies”, which correspond to baseball or major league baseball teams.

81

5.5 Discussion

NMF is a popular unsupervised learning method with many extensions and variations

[Gil14]. A very natural question is if one can apply these stratification techniques to

existing NMF formulations. We would like to explore extending our method to other

NMF variants such as sparsity constrained NMF [KP08, KKL23], semi-supervised NMF

[WGW15, HKL20, VHR21], online NMF [GTL12], and tensor NMF [KKL23, Zaf09]. Aug-

menting these methods to include stratification could provide more insight into subgroups

within the data. There is also additional work to be done on the theoretical side. Work by

Lin further analyzes the convergence properties of NMF and proves convergence under slight

modifications to the original NMF multiplicative update [Lin07]. Similar results should hold

for Stratified-NMF, but this is outside of the scope of this chapter. We believe that the

following present promising and important future work:

• Variable number of learnable parameters for each stratum

• More extensive testing on real world datasets

• Initialization of Stratified-NMF Matrices [WCD04]

• Automatic hyper-parameter tuning [LSM21]

Stratification of unsupervised algorithms may yield more interpretable results on smaller

subgroups of data, while preserving global trends in the data.

An additional direction that we would like to explore is federated methods in the context

of stratification. We note that the Stratified-NMF algorithm can be adapted to the central-

ized federated setting. In this setting we have a single centralized server and s sites, each of

which have their own data matrix. First the central server constructs H and sends it to the

sites. Then each site constructs and updates v(i) and W (i) based on their own data. The

sites then set W (i)TA(i), and W (i)T (W (i)H + 1v(i)T) to central server allowing the central

82

server to update H. We note that in this method, the data matrices A(i) are never exposed

to other sites or the central server.

5.6 Conclusion

In this chapter we propose Stratified-NMF to extend NMF to capture heterogeneous data.

We first propose the Stratified-NMF objective function and derive multiplicative update

rules. Then, we prove that the Stratified-NMF objective is non-increasing with respect to

the derived, multiplicative updates. Finally, we explore the application of our method to

unsupervised learning tasks spanning different modalities including synthetic data, census

data, image data, and natural language text data. Stratified-NMF is able to simultaneously

capture local and global strata information in the dataset. We highlight the interpretability

of the local and the global features learned by the method.

83

CHAPTER 6

Hierarchically Semi-Separable matrix Construction

Algorithm

This chapter is an adaptation of Section 2.1 and Appendix C in [YMG23] which explains

a hierarchically semi-separable (HSS) matrix construction algorithm. In this framework we

are given a dense matrix and we construct a compressed version of this matrix in a nested

hierarchical format. After constructing the HSS representation of a matrix, down stream

tasks can be done more efficiently. For example, given an n× n matrix with an HSS rank of

k, the rank of the off diagonal matrix blocks, we can apply a matrix-vector multiplication in

O(nk) via the HSS format while this same operation would require O(n2) operations in the

standard dense format [Mar11]. Usually, we assume that k is much smaller than n yielding a

large speedup of downstream tasks, while incurring an up front construction cost of O(nk2).

Additional downstream tasks that can be implemented more efficiently with access to the HSS

format include Quadratic complexity explicit Cholesky factorization of symmetric positive

definite (SPD) matrices, Linear complexity explicit ULV factorization of SPD matrices, and

efficient computation of system solution when given a right hand side [XCG10]. The HSS

construction algorithm that we propose leverages matrix sketching, probing the column space

and row space of the matrix by multiplying it with random test vectors which are drawn

from various distributions. The goal of this chapter is to explain and trace our proposed

HSS construction algorithm in detail which is a generalization of the algorithm proposed in

[GCG19]. We extend the algorithm in [GCG19] which uses Gaussian sketching to a broader

class of random matrices called Johnson-Lindenstrauss sketching matrices.

84

6.1 HSS Format

A6,5

A5,6

A1,2

A2,1

A4,3

A3,4

D1

D2

D3

D4

I1

I2

I3

I4

I5

I6

I7

(a)

7

5

1 2

6

3 4

B1,2 B3,4

B5,6

U1, D1 U2, D2 U3, D3 U4, D4

U5 U6

(b)

Figure 6.1: (a) Illustration of a symmetric HSS matrix using 3 levels. Diagonal blocks are

partitioned recursively. Gray blocks denote the basis matrices. (b) Tree for the HSS matrix

from (a), using topological ordering. All nodes except the root store Ui (and Vi for the

non-symmetric case). Leaves store Di, non-leaves Bij (and Bji for the non-symmetric case).

Consider a square matrix A ∈ Cn×n and index set IA = {1, . . . , n}. The HSS matrix

representation is a hierarchical block 2× 2 partitioning of the matrix, where all off-diagonal

blocks are compressed, or approximated, using a low-rank product, see Figure 6.1a. The hi-

erarchical structure is succinctly described by a binary tree T , called cluster tree, as depicted

in Figure 6.1b. The recursive partitioning stops at the leaf level, which corresponds to the

smallest block size of the partition. The leaves do not need to be of uniform size, because

for certain input matrices a non-uniform partition may be preferable for better compression.

Each node τ ∈ T is associated with a contiguous subset Iτ ⊂ Iroot(T). We use #Iτ to

denote the cardinality of Iτ . For two children ν1 and ν2 of τ , it holds that Iν1 ∪ Iν2 = Iτ and

Iν1 ∩ Iν2 = ∅. It follows that ∪τ∈leaves(T)Iτ = Iroot(T) = IA. The same tree T is used for the

rows and the columns of A. Commonly, the tree nodes are numbered in a postorder, and most

of the HSS algorithms, such as construction, matrix-vector multiplication, factorization and

solve etc., can be described as traversing the cluster tree following this postorder. However,

in the parallel implementation and throughout this chapter, we traverse the cluster tree

following a bottom-up topological order, i.e., from the leaf level to the root, level by level,

85

displayed in Figure 6.1b.

Each leaf node τ of T corresponds to a diagonal blocks of A, denoted as Dτ , and is stored

as a dense matrix : Dτ = A(Iτ , Iτ). At each node τ , the off-diagonal block A(Iτ , IA \ Iτ)

is called a row Hankel block, and the off-diagonal block A(IA \ Iτ , Iτ) is a column Hankel

block. The compression algorithm sweeps through the tree bottom-up. At each tree node,

it computes the column basis for the row Hankel block and row basis for the column Hankel

block. Note that all the blocks within a row (column) Hankel block share the same column

(row) basis. The HSS algorithm reduces complexity further: each internal node recycles the

bases computed at the two children nodes, thus, the basis at each internal node has the nested

structure (see Equation Equation (6.2)), called nested basis property, which we describe now.

For a node τ with two children ν1 and ν2, the off-diagonal block Aν1,ν2 = A(Iν1 , Iν2) is factored

(approximately) as

Aν1,ν2 ≈ Ubig
ν1

Bν1,ν2

(
V big
ν2

)∗
, (6.1)

where Ubig
ν1

has dimensions #Iν1×rrν1 , Bν1,ν2 is a submatrix of Aν1,ν2 with dimensions #Iν1 ×

#Iν2 and V big
ν2

has dimensions #Iν2 × rcν2(superscripts r and c are used to denote that

Ubig/V big are column/row bases for the row/column Hankel blocks of A). The HSS-rank r

is defined as the maximum of rrτ and rcτ over all off-diagonal blocks, where typically r ≪ N .

Bν1,ν2 and Bν2,ν1 are stored at the parent node. For a node τ with children ν1 and ν2, U
big
τ

and V big
τ are represented hierarchically as

Ubig
τ =

Ubig
ν1

0

0 Ubig
ν2

Uτ and V big
τ =

V big
ν1

0

0 V big
ν2

Vτ . (6.2)

Note that for a leaf node Ubig
τ = Uτ and V big

τ = Vτ . Hence, every node τ , except the root,

keeps matrices Uτ and Vτ . The top two levels of the example shown in Figure 6.1a can be

written out explicitly as

86

A =


D1 U1B1,2V

∗
2

U1 0

0 U2

U5B5,6V
∗
6

V ∗
3 0

0 V ∗
4


U2B2,1V

∗
1 D2U3 0

0 U4

U6B6,5V
∗
5

V ∗
1 0

0 V ∗
2

 D3 U3B3,4V
∗
4

U4B4,3V
∗
3 D4

 . (6.3)

Only at the leaf nodes, where Ubig
τ ≡ Uτ , is the Ubig

τ stored explicitly. A similar relation

holds for the Vτ basis matrices. For symmetric matrices, Ui ≡ Vi and Bij ≡ Bji.

HSS matrix construction based on randomized sampling techniques has attracted a lot

of attention in recent years. Compared to standard HSS construction techniques [XCG10,

WLX13] which assume that an explicit matrix is given as input, randomized techniques allow

the design of matrix-free construction algorithms. A fully matrix-free construction algorithm

relies solely on the availability of a matrix-vector product routine [LM22].

A partially matrix-free algorithm relies on a matrix-vector product routine and addition-

ally requires access to some entries of the matrix [Mar11, GCG19]. For certain applications,

for example Toeplitz systems, where fast (e.g., linear time) matrix-vector products exist,

a randomized algorithm typically has linear or log-linear complexity instead of quadratic

complexity with the standard construction algorithms.

We describe and improve upon a partially matrix-free algorithm and its adaptive ver-

sion, which is presented in Algorithm 7 and Algorithm 8. Note that the description of

Algorithm 7 is for a symmetric matrix, which is easier to understand. Our implementation

in STRUMPACK [str] is for nonsymmetric matrices.

6.2 Adaptive HSS Algorithm

We describe the adaptive HSS algorithm originally proposed in [GCG19] which is partially

matrix-free and leverages sketching which is generalized in Algorithm 7 and Algorithm 8. One

of the benefits of this algorithm is that the matrix A does not need to be explicitly formed,

only a matrix-vector computation routine and access to O(nr) entries of A is required.

87

Instead of compressing the Hankel block itself at each node, we compress a sketch of the

Hankel block from which we can recover the compressed version of the off diagonal block.

Then, as we traverse up the tree we combine local sketches from both of the children Hankel

blocks, and subtract off the already compressed low rank blocks to recover a local sketch for

the parent Hankel block that is written in the basis of the children blocks. Finally, this local

sketch can be compressed, leveraging the nested basis property. This procedure is described

in equations (2.5)-(2.9) of [GCG19] and in detail in Section 6.3.

We leverage an interpolative decomposition to compress the off diagonal Hankel blocks.

Given a matrix A with dimensions m×m with rank r ≪ m. We can write an interpolative

decomposition of A as A = UA(J, :)+O(ε). Where U has dimensions m×r and J is an index

set of r rows. This interpolative decomposition can be computed using a rank revealing QR

factorization, detailed in equation (2.4) of [GCG19].

Remark 1. In practice, the interpolative decomposition is computed using a rank revealing

QR factorization as A = A(:, J)V which computes a column basis. To compute a row ba-

sis, we compute the interpolative decomposition of A∗ = A∗(:, J)V and apply the conjugate

transpose so A = V ∗A(J, :), then we can rename V ∗ = U so A = UA(J, :) resulting in a row

basis.

We can represent a low rank matrix or Hankel block in our case as a basis matrix U and

a sampling of the rows. Once we compute an interpolative decomposition for both Hankel

row block and Hankel column block that intersect a low rank off diagonal HSS block we

can combine the bases and the selected row and column samplings to create a low rank

approximation. By leveraging the interpolative decomposition to do our local compression

we recover an approximate basis for the Hankel block and a sampling of the most important

r rows of our sketch. The r rows of the sketch correspond to r rows of the original matrix

A, allowing us to only use our sketch to compress the Hankel blocks as long as the sketch of

the Hankel block is representative of the original Hankel block.

In most practical problems, the HSS rank, rank of the low dimensional off diagonal blocks,

88

is not known a priori , hence, the size of the sketching operator needs to be chosen adaptively.

Previously, Gorman et al. [GCG19] developed a blocked incrementing strategy which fully

reuses the already-computed basis set in two ways: (1) at each HSS tree node τ , if the initial

samples are not sufficient, we increase a block of samples ∆d, and augment τ ’s orthogonal

basis by this amount; (2) This augmented basis will cause basis sets of the ancestor nodes

to have sizes at least as large as that of τ , while the basis sets of the descendant nodes

are not affected. Algorithm 7 and Algorithm 8 illustrates the high level HSS compression

procedure with adaptation built in. The algorithm traverses the cluster tree in a topological

order bottom-up. Initially each node τ is assigned the UNTOUCHED state. At the time

when a node τ is to be compressed, all its descendant nodes are already COMPRESSED,

and all its ancestral nodes are UNTOUCHED. Line 7 of Algorithm 8 tests to see whether the

sketch for τ is sufficiently representative. If so, τ is compressed and its state is changed to

COMPRESSED. If not, in lines 15-17 of the else-branch, we extend the sketching operator

by ∆d columns, change τ ’s state to PARTIALLY COMPRESSED, and traverse the tree

again with the following actions: (1) for the nodes below τ , we only subtract the newly

added sketch from the diagonal blocks (lines 12 and 14 of Algorithm 7); (2) for the current

PARTIALLY COMPRESSED node τ , we augment the already-computed basis set with the

new ∆d columns from the sketch (lines 9-10 of Algorithm 8); (3) for τ ’s ancestral nodes,

compression proceeds with the entire sketch (line 3 of Algorithm 8).

In the original adaptive compression algorithm from [GCG19] the global sketch of the

matrix A was computed using a Gaussian sketching operator. This sketching operator is

dense so it requires O(n2) time to compute an additional column when trying to expand the

sketch. Algorithm 7 and Algorithm 8 are an extension of the algorithm to any Johnson–

Lindenstrauss sketching operator. One such sketching operator is the sparse JL sketching

operators, which can be applied faster. In [YMG23] we state and prove the theory that

generalizes our stated algorithm. Additionally, we use sparse sketching operators as a case

study, highlighting a 1.5-2.5 times speedup over the original Gaussian sketching operators

with similar performance. Our code is available through the STRUMPACK C++ library

89

cols(A) number of columns in matrix A

JL-Operator(d, n) a d×N matrix drawn from a JL Distribution

isleaf(τ) true if τ is a leaf node, false otherwise

children(τ) a list with the children of node τ , always zero or two

isroot(τ) true if τ is a root node, false otherwise

{Q,Ω} ← QR(S) S = QΩ where Q is orthogonal, Ω is upper triangular

level(τ) level of node τ , starting from 0 at the root

{Y, J} ← ID(S, εr, εa) interpolative decomposition: S ≈ S(:, J)Y

Table 6.1: List of helper functions for Algorithm 7 and Algorithm 8.

[str]. This broader class of sketching operators allows practitioners to use random matrices

tailored to specific applications with similar time complexity guarantees. Next, we formally

define and discuss the random matrices that we consider.

We begin by stating the classical Johnson–Lindenstrauss lemma [JL84]. The particular

version below is from [DG03].

Lemma 24 (Johnson–Lindenstrauss (JL) Lemma [JL84]). Given ε ∈ (0, 1) and an integer

m, let d be a positive integer such that d ≥ 4(ε2/2−ε3/3)−1 logm. For any set P of m points

in Rn there exists f : Rn → Rd such that for all u, v ∈ P

(1− ε)∥u− v∥2 ≤ ∥f(u)− f(v)∥2 ≤ (1 + ε)∥u− v∥2. (6.4)

Lemma 24 does not say anything about how to construct f and what form it might take.

In practice, f is usually chosen to be a linear map in the form of a matrix which is drawn

randomly from an appropriate distribution. The following definition captures this idea.

Definition 4 (JL Sketching Operator). Suppose D is a distribution over matrices of size

d × n. We say that a matrix R ∼ D is a (n, d, δ, ε)-JL sketching operator if for any vector

90

x ∈ Rn it satisfies

Pr
R∼D

[∣∣∥Rx∥2 − ∥x∥2
∣∣ > ε∥x∥2

]
< δ.

The condition in Definition 4 considers length preservation of a single vector. A standard

union bound argument can be used to show that a JL matrix with probability 1− δ satisfies

(6.4) for all u, v ∈ P where P contains m points, provided that d is chosen to be sufficiently

large; see Remark 2.2 of [BKW21] for a discussion about this.

Remark 2. For low rank matrices A with dimension m×n, a highly accurate approximation

can be computed with d≪ n allowing us to compute our sketch S = ART using only matrix-

vector products by iterating over the d columns of RT .

Next, we introduce three popular JL sketching operator distributions. All three satisfy

the condition in Definition 4 provided that d is large enough.

Gaussian Sketching Operator: a Gaussian sketching operator R of size d×n has en-

tries which are drawn independently from a normal distribution with mean zero and variance

1/d. We indicate that R is drawn from such a distribution by writing R ∼ Gaussian(n, d).

Gaussian sketching operators are JL sketching operators if the dimension d is sufficiently

large [DG03]. Key advantages of Gaussian sketching operators are ease of construction and

that they lend themselves to simple and clean theoretical analysis [MT20, Remark 8.2]. The

main downside of the Gaussian sketching operator is that it is relatively slow to apply since

it has no particular structure and is dense. The sketching operators described below address

this issue by using fast structured or sparse operators, respectively.

Subsampled Randomized Hadamard Transform: a subsampled randomized

Hadamard transform (SRHT) of size d×n takes the form R = PHD. The matrix D ∈ Rn×n

is diagonal with the diagonal entries drawn independently from the Rademacher distribution,

i.e., each entry is +1 with probability 1/2 and−1 with probability 1/2. The matrixH ∈ Rn×n

is the normalized Hadamard matrix, a deterministic unitary matrix which can be applied

to a vector in O(n log(n)) time instead of O(n2). The normalized Hadamard matrix can be

91

defined recursively via H0 = [1] and H2n = [Hn, Hn;Hn,−Hn]. Finally, P ∈ Rd×n is a sparse

random sampling matrix whose rows are chosen independently and uniformly at random

from the set {
√

n/d · eTj }nj=1 where ej ∈ Rn is the jth canonical basis vector. We indicate

that R is drawn in this fashion by writing R ∼ SRHT(n, d). An early version of the SRHT

appeared in [AC06] where each entry of P was independently chosen to be either zero or

nonzero, with the nonzero entries drawn from an appropriately scaled normal distribution.

Sparse Johnson–Lindenstrauss Transform (SJLT): The sparse Johnson-

Lindenstrauss transform (SJLT) was first introduced in [KN14] with subsequent further

analysis in [NN13, CJN18]. An SJLT matrix R of size d × n has a fixed number α ∈

[d] of nonzero entries per column. The nonzero entries are drawn independently from a

scaled Rademacher distribution, taking values in {1/
√
α,−1/

√
α} uniformly at random.

The paper [KN14] proposes two different methods for randomly drawing the position of the

nonzero entries in R. The first method draws the α nonzero positions for each column of R

uniformly at random from [d]. The second method divides the length-d columns of R into

d/α chunks, and for each chunk a single entry is selected uniformly at random to be nonzero.

This method requires d/α to be an integer. For both methods, sampling is done for each

column independently of the nonzero positions in the other columns. The two approaches

to constructing an SJLT are referred to as the graph construction and block construction,

respectively. Throughout the paper, we will denote an SJLT drawn using either construction

by R ∼ SJLT(n, d, α). We implement both approaches in our software and allow the user to

select which one to use.

In the next section we trace the HSS algorithm that we describe in Algorithm 7 and

Algorithm 8. We hope that by tracing through the algorithm, we are able to simplify many

of the complexities. We show where and how the adaptive steps occur. Additional theoretical

and experimental details can be found in [YMG23].

92

Algorithm 7: Adaptive HSS compression of A ∈ Cn×n using cluster tree T with

tolerances εrel and εabs, see Table 6.1 for helper function details.

1 function H = HSSCompressAdaptive(A, T , d0, ∆d)

2 d← d0, n← cols(A), R← JL-Operator(d+∆d, n), S ← ART

3 foreach τ ∈ T do τ.state← UNTOUCHED

4 while root(T).state ̸= COMPRESSED and d < dmax do

5 foreach τ ∈ T in topological order do

6 if τ.state = UNTOUCHED then

7 if isleaf(τ) then Dτ ← A(Iτ , Iτ)

8 else ν1, ν2 ← children(τ) Bτ ← A(Ĩν1 , Ĩν2)

9 ι← 1 : d+∆d

10 else ι← d+ 1 : d+∆d

11 if isroot(τ) then τ.state← COMPRESSED break

12 if isleaf(τ) then Sτ (: , ι)← S(Iτ , ι)−Dτ RT (Iτ , ι)

13 else

14 Sτ (: , ι)←

Sν1(Jν1 , ι)−Bτ Rν2(: , ι)

Sν2(Jν2 , ι)−B∗
τ Rν1(: , ι)


15 if τ.state ̸= COMPRESSED then

16 CompressAdaptiveNode (τ) // Algorithm 8

17 if isleaf(τ) then

18 Rτ (: , ι)← U∗
τ RT (Iτ , ι); Ĩτ ← Iτ (Jτ)

19 else

20 Rτ (: , ι)← U∗
τ

Rν1(: , ι)

Rν2(: , ι)

; Ĩτ ←
[
Iν1 Iν2

]
(Jτ)

21 end

22 end

23 return T

93

Algorithm 8:Adaptive HSS compression of cluster tree element τ ∈ T see Table 6.1

for helper function details.

1 function τ = CompressAdaptiveNode(τ)

2 if τ.state = UNTOUCHED then

3 {Qτ ,Ωτ} ← QR(Sτ (: , 1 : d))

4 S̃ ← Sτ (: , d+ 1 : d+∆d) // last ∆d columns

5 Ŝ ← (I −QτQ
∗
τ)S̃

6 ετabs ← εabs/level(τ); ετrel ← εrel/level(τ)

7 if ∥Ŝ∥F < ετabs or ∥Ŝ∥F < ετrel∥S̃∥F then

8 goto line 12

9 {Q̂, Ω̂} ← QR(Ŝ)

10 Qτ ←
[
Qτ Q̂

]
11 if min(diag(|Ω̂|))< ετabs or min(diag(|Ω̂|))< ετrel|(Ωτ)11| then

12 {U∗
τ , Jτ} ← ID(S∗

τ , ε
τ
rel, ε

τ
abs)

13 τ.state← COMPRESSED

14 else

15 R̄← JL-Operator(∆d, n) // extending sketch

16 d← d+∆d; S ←
[
S AR̄T

]
; RT ←

[
RT R̄T

]
17 τ.state← PARTIALLY COMPRESSED

18 break // update all τs required

94

6.3 Tracing Adaptive HSS Algorithm

Here we describe the steps to compress a symmetric HSS matrix A with dimensions 4k× 4k

and HSS rank r ≪ k represented by a three level HSS tree shown in Figure 6.2 using

Algorithm 7 and Algorithm 8. Assume that RT has dimensions 4k× l1. Initially, we compute

S = ART which has dimensions 4k × l1.

We begin at the leaf level of the HSS tree where we can compress nodes one through four

in parallel. We will compress the first node, corresponding to the first Hankel row block,

whose rows we have highlighted in Figure 6.3. By symmetry this also corresponds to the

columns of the first Hankel column block.

1
[1:k]

2
[k+1:2k]

5
[1:2k]

3
[2k+1:3k]

4
[3k+1:4k]

6
[2k+1:4k]

7
[1:4k]

Figure 6.2: Three level HSS tree for our compression example with the nodes labeled and

the corresponding indices in brackets.

6.3.1 Compression of a Leaf Node

First, we store the dense diagonal matrix D1 in our leaf node 1 this is line 7 of Algorithm 7.

Next, since we do not have the matrix A but instead just the sketch S = ART we must

figure out what the local sketch of the Hankel row block H1 = A(1 : k, 1 : 4k \ 1 : k) = A(1 :

k, k + 1 : 4k) is (the first k rows excluding the dense diagonal). We compute a sketch of our

Hankel row block S1
loc = [0, H1]R

T by writing [0, H1]R
T = ([D1, H1] − [D1, 0])R

T = (A(1 :

k, :)− [D1, 0])R
T = S(1 : k, :)−D1R

T (1 : k, :) which is line 12 of Algorithm 7.

95

D1

D2

D4

D3

Figure 6.3: Leaf level of HSS tree with the first node rows in a box.

Next, to compress our approximation of H1 which is Sloc
1 with dimensions k × l1 lines

2-11 of Algorithm 8 verify that Sloc
1 is a good enough approximation of H1. For now, we will

assume that it is and skip these lines. Later we will see how if the sketch is not accurate

enough, we extend the sketching operator RT (lines 15-18 of Algorithm 8) by appending

columns to it which will require a small modification to the local sketches. We compute an

interpolative decomposition of Sloc
1 on line 12 of Algorithm 8 such that Sloc

1 ≈ U1S
loc
1 (J1, :)

where U1 has dimensions k × r and J1 is a subset of r distinct indices in [1 : k]. Then

we set the state of node one to compressed (line 13). The interpolative decomposition

cleverly gives us a low rank factorization for all of H1 where U1 could be thought of as a

basis for the Hankel block and J1 is an index set of rows which define the block. Since

Sloc
1 = [0, H1]R

T ≈ U1S
loc
1 (J1, :) = U1[0, H1](J1, :)R

T and RT is full column rank with high

probability we have that [0, H1] ≈ U1[0, H1](J1, :). So we have found a low rank factorization

for the Hankel row block which we display in Figure 6.4.

We can now repeat this process for the rest of the leaf nodes which would result in

matrices U2, U3, U4 (dimensions k × r) and index sets J2, J3, J4 (of size r) being computed

96

0 H1

0 H1U1

Figure 6.4: Compression of the first Hankel block H1 into U1, a basis matrix, and r rows of

the original Hankel block, denoted by the thin horizontal stripe (not necessarily the first r

rows) and indexed by index set J1.

and stored. For the non-symmetric case we would also compress all of the leaf nodes for the

column Hankel blocks as well. We display the result in Figure 6.5 where we additionally

denote the low rank blocks L1–L4 which we would like to have compressed.

Remark 3. The Hankel block does not need to be a contiguous nonzero block, for example

H2 = [A(k + 1 : 2k, 1 : k), 0, A(k + 1 : 2k, 2k + 1 : 4k)] because D2 is subtracted to compute

H2.

Next, We show that we have already computed a low rank factorization for L1–L4 based

on the interpolative decompositions of both the row and column of the two Hankel blocks that

intersect at the low rank block. We detail how to compress L1 in Figure 6.6. Since we have a

row basis for H1 we can just take the indices of the rows that intersect with L1. So we have

the factorization L1 ≈ U1A(J1, k + 1 : 2k). Similarly, we have basis for the column Hankel

block HT
2 which intersected with L1 because we assumed that our matrix A was symmetric.

So the column factorization for L1 is the conjugate transpose of the row factorization for

L2 which we have already computed, thus L1 ≈ A(1 : k, J2)U
∗
2 we can rename U∗

2 as V2 for

clarity in the non-symmetric case where the second column Hankel block does not correspond

to the conjugate transpose of the second row Hankel block. Combining the row and column

97

D1

D2

D4

D3

U1

U2

U3

U4

L1

L2

L3

L4

Figure 6.5: HSS matrix after all four row leaves have been compressed with the low rank

blocks, L1–L4 sections listed .

factorizations, we have the low rank factorization L1 ≈ U1A(J1, J2)U
∗
2 = U1A(J1, J2)V2.

Notice that we currently do not have A(J1, J2), the small r × r matrix of entries of A. This

will be queried and stored in the parent node in the next level of the algorithm (line 8 in

Algorithm 7). For completeness we can factorize L2 ≈ U2A(J2, J1)U
∗
1 , L3 ≈ U3A(J3, J4)U

∗
4

and L4 ≈ U4A(J4, J3)U
∗
3 .

The final step that occurs at each leaf node is to compute Rloc
i which corresponds to the

sketching operator RT in the local column basis for the low rank block we have compressed.

This will allow us to re-use the computation from our leaf nodes and subtract off the already

compressed low rank blocks when trying to compress the parent nodes. Additionally, this

allows us to leverage the nested basis property. So for the first leaf node, we compute and

store Rloc
1 = U∗

1R
T (1 : k, :).

We have completed our compression for the first node, we store five variables: 1. D1,

2. U1, 3. J1 which is the dense diagonal block and what we use to represent the Hankel row

block for rows [1 : k] and part of the low rank factorization for L1 and we store 4. Sloc
1 , 5. Rloc

1

98

D1

D2

D4

D3

A1L1U1

V2

Figure 6.6: HSS matrix illustration of how the off diagonal low rank block L1 is computed

and stored.

which we use to represent the sketch for the Hankel row block and the sketching operator

for the Hankel row block in the column basis of L1 which we use for the computation of the

parent node.

6.3.2 Compression of Internal Node

We move on to compressing the second level of the HSS tree whose Hankel row blocks are

shown in Figure 6.7. Before we describe the compression of H5, we explain the nested basis

property which all internal (non-leaf, non-root) nodes in the HSS tree use. This property

explains the hierarchical in HSS matrices.

The nested basis property states that for a non-leaf Hankel block, H5 with children nodes

H1, H2 we can write a row (or column) basis Ubig
5 of dimension 2k × r as a product of the

bases of Ubig
1 , Ubig

2 (dimensions k × r) of H1, H2 respectively and a small matrix U5 of

dimension 2r × r:

99

D1

D2

H5

L1

L2

H6

Figure 6.7: HSS matrix with the second level of row Hankel blocks highlighted in blue.

Ubig
5 =

 U1 0

0 U2

U5.

Remark 4. For leaf node i, Ui = U big
i .

The intuition behind this property is that by constructing a basis Ubig
1 for the first k rows

and Ubig
2 for the next k rows, when we want to construct a basis Ubig

5 for the 2k rows we should

be able to use the basis information from our earlier constructions. When constructing HSS

matrices we assume that this property holds.

Now that we have the nested basis property we can explain how this reduces the com-

putation for the compression for node 5 (and any internal node) in Algorithm 7. We would

like to have a sketch of H5 depicted in Figure 6.7 and compute U5, of dimension 2r × r . If

we consider the matrix

 Sloc
1

Sloc
2

 then we have an approximation for the block depicted in

the top of Figure 6.8 because when we computed Sloc
1 and Sloc

2 we subtracted the diagonal

blocks D1 and D2 respectively.

100

0

0

L1

L2

0

0

0

0

U1

U2

L5

Figure 6.8: Node 5 row Hankel block being prepared for compression.

We show how we use the nested basis property and information from the children nodes

to compute a local sketch of H5. We can subtract our compression of the low dimension

blocks L1, L2 which we computed in the children nodes.

S5 =

 0 0 H5(1 : k, :)

0 0 H5(k + 1 : 2k, :)

RT

=

A(1 : 2k, :)−

 D1 L1 0

L2 D2 0

RT

= A(1 : 2k, :)RT −

 D1 L1

L2 D2

 RT (1 : k, :)

RT (k + 1 : 2k, :)


=

 Sloc
1

Sloc
2

−
 0 L1

L2 0

 RT (1 : k, :)

RT (k + 1 : 2k, :)


≈

 Ubig
1 0

0 Ubig
2

 Sloc
1 (J1, :)

Sloc
2 (J2, :)

−
 Ubig

1 A(J1, J2)V
big
2 RT (k + 1 : 2k, :)

Ubig
2 A(J2, J1)V

big
1 RT (1 : k, :)

 .

101

Then,  Ubig
1 0

0 Ubig
2

 Sloc
1 (J1, :)

Sloc
2 (J2, :)

−
 Ubig

1 A(J1, J2)V
big
2 RT (k + 1 : 2k, :)

Ubig
2 A(J2, J1)V

big
1 RT (1 : k, :)


=

 Ubig
1 0

0 Ubig
2

 Sloc
1 (J1, :)

Sloc
2 (J2, :)

−
 A(J1, J2)R

loc
2

A(J2, J1)R
loc
1

 (6.5)

:=

 Ubig
1 0

0 Ubig
2

Sloc
5 .

Since HSS matrices satisfy the nested basis property to compute a row basis for node 5 we

use Sloc
5 which has dimensions 2r × l1 and contains the nested basis prefactor seen in the

second to last row of the above computation which generalizes to any internal HSS tree

node. Sloc
5 corresponds to a sketch of the two dark blue horizontal strips in the bottom of

Figure 6.8 and only requires information already computed in the children nodes.

We go through the steps of compressing H5 using Algorithm 7 and Algorithm 8. First,

since node 5 is the parent node of nodes 1 and 2, it stores the small sub-blocks of A used to

compute L1 and L2 which in this case is A(J1, J2) and A(J2, J1), by symmetry only storing

the r× r matrix A(J1, J2) is required, line 8 of Algorithm 7. Then on line 14 of Algorithm 7

a local sketch Sloc
5 as in Equation (6.5) is computed using the sub-blocks of A that we just

stored and the information in the children nodes. We then check if the local sketch, Sloc
5 ,

is sufficient to approximate H5 and adaptively increase the size of the sketching operator

in Algorithm 8 lines 2-10 and lines 15-16. We discuss how this adaptation is done in the

following section. Assuming that Sloc
5 is sufficiently accurate, on line 12 of Algorithm 8 we

compute our basis U5 and row indices J5 in the nested basis defined by U1 and U2. Finally,

on line 20 of Algorithm 7 we compute a local sketching operator, Rloc
5 , in the basis of U5

which we will use to subtract the block which we have compressed in higher levels of the

tree. So we have computed and stored: 1. A(J1, J2), 2. S
loc
5 , 3. U5, 4. J5, and 5. Rloc

5 which

are the five components that define an internal node.

We can similarly compress H6 which would now give us all the information to compress

102

L5 and L6 by symmetry then move up to the root node.

Remark 5. When compressing the root node we do not do any compression but instead store

the two r× r blocks of A (A(J5, J6) and A(J6, J5) here) that are required to compute the low

rank factorization for the two largest low rank off diagonal blocks (L5 and L6 here).

6.3.3 Adaptation

At each non-root node of the HSS tree we verify that the sketch of our current node, Sloc
i , is

sufficiently accurate before we compress it. If Sloc
i is sufficiently accurate, which is checked

by the computation and stopping criteria on lines 2-10 of Algorithm 8 then we can compress

node i, otherwise we increase the size of our global sketching operator and global sketch on

lines 15 and 16 (from l1 to l1 +∆d in our example). We then mark the state of the current

node, i, as partially compressed and restart our compression loop for all of the nodes.

For the compressed nodes we will update their local sketches and sketching operators to

have l1+∆d instead of just l1 columns. This operation is computed in Algorithm 7 as follows.

First on line 9 we set the columns we will be modifying as the final ∆d that we added to

the global sketch and sketching operator in Algorithm 8, line 16. Then on lines 12-14 we

update the local sketch information, finally on lines 18-21 the local sketching operators are

updated.

For the one partially compressed node we will update the sketching operator as for

the compressed nodes but we will also check the stopping criteria on lines 7 and 11 in

Algorithm 8. If either is met then node i can now be compressed and the algorithm can

continue. Otherwise, lines 15-17 will trigger again (in Algorithm 8), expanding the global

sketch and sketching operator then marking node j as partially compressed again. Finally, for

uncompressed nodes we do not need to update anything, we will use the updated sketching

operator and sketches.

This concludes our tracing of Algorithm 7 and Algorithm 8. Our main contribution was

the extension of the HSS algorithm described in [GCG19] which leverages Gaussian sketching

103

operators to a boarder class of Johnson–Lindenstrauss sketches. We hope that by taking a

step-by-step approach others will be able to understand the algorithm and extend it or use

it in their work. We refer the reader to [YMG23] if they are interested in the theory and

experimental results for the generalized HSS construction algorithm.

104

CHAPTER 7

Conclusion

In this dissertation, we developed novel methods in randomized numerical linear algebra for

solving problems at scale. In the first part of this dissertation we discussed variants of the

Kaczmarz method which are used to solve large, out of core, systems of equations. After-

words, in the second part of this dissertation we discussed structured matrix factorizations

for both distributed data and structured data.

First we proposed a new variant of the randomized Kaczmarz method to solve large linear

systems of equations called selectable set randomized Kaczmarz. This method requires addi-

tional space overhead while saving time on computation. We showed that a general selectable

set framework can be applied to many Kaczmarz variants. We then proved convergence of

the selectable set method highlighting the theoretical improvements over the method which

does not leverage a selectable set. Then we experimentally verified this improved perfor-

mance highlighting that this improvement can be large if the Gramian of the matrix is know

apriori. Finally, we highlighted a theory gap in which our method theoretically performs as

well as other methods but experimentally this was not always the case.

Next, we developed and analyzed a novel method for solving the online signal recovery

problem. This method, online heavy ball Kaczmarz, leveraged both the Kaczmarz method

and heavy ball momentum. We proved a linear convergence bound for this method and then

experimentally verified its improved performance over the non-heavy ball counterpart on

coherent data. We highlighted that in medical and compressed sensing applications the data

is often highly coherent emphasizing that this method yields improvements in applications.

105

Afterwords, we posed a latent class regression problem which we solved via a Kacz-

marz method. In this setting there are multiple subgroups that require different treatments

(solutions) that are not know apriori. We assume that these subgroups have similar data

distributions that are distinct from each other. We are able to simulate this latent class

regression problem by scrambling rows of multiple linear systems together. We proposed

a Kaczmarz based solution to this latent class problem in which we start with an initial

guess for each subgroup and then iteratively sample a single row of our joint matrix. We

then only update the solution which lies closest to the row hyperplane. We call this method

Multi-Randomized Kaczmarz. After we proposed this solution we proved its convergence

and experimentally analyzed its performance on both synthetic and real world data.

Next, we discussed two matrix factorization methods that leverage structure within our

matrices. First we proposed stratified non-negative matrix factorization. This is an unsuper-

vised learning method in which we explicitly take into account if data is collected at different

times, stored at different locations or contains heterogeneity. This method first separates

a matrix into multiple strata and then simultaneously learns strata level statistics and a

low rank global representation of the data. This method is also adaptable to the federated

setting. After we proposed our objective function, we defined a new method for solving this

objective via multiplicative updates. Then, we proved that the stratified NMF objective

function is non-increasing under our proposed multiplicative update rules. Finally, we tested

our method on synthetic, text, image and tabular data all of which provide interpretable

results and highlighted the merits of the method.

Finally, we extended an existing hierarchically semi-separable matrix factorization method

which leveraged matrix sketching. The original algorithm used Gaussian sketching matrices

and our extension was to use a broader class of Johnson–Lindenstrauss sketching matrices.

We were able to show that this broader class of random sketching matrices yield similar con-

struction properties. The benefit of this generalization is the ability to use random sketching

matrices which are faster to apply or are tailored specifically to the application.

106

REFERENCES

[AC06] N. Ailon and B. Chazelle. “Approximate Nearest Neighbors and the Fast
Johnson-Lindenstrauss Transform.” In Proceedings of the thirty-eighth annual
ACM symposium on Theory of Computing (STOC), pp. 557–563, Portsmouth,
Virginia, May 2006.

[ASM18] Ehab A AlBadawy, Ashirbani Saha, and Maciej A Mazurowski. “Deep learn-
ing for segmentation of brain tumors: Impact of cross-institutional training and
testing.” Medical physics, 45(3):1150–1158, 2018.

[Ber18] Alan Berube. “Where does the American middle class live.” Brookings Institute
Report, 2018.

[BKW21] Stefan Bamberger, Felix Krahmer, and Rachel Ward. “Johnson-Lindenstrauss
Embeddings with Kronecker Structure.” arXiv preprint arXiv:2106.13349, 2021.

[BLS18] Andrea L Bertozzi, Xiyang Luo, Andrew M Stuart, and Konstantinos C Zy-
galakis. “Uncertainty quantification in graph-based classification of high dimen-
sional data.” SIAM/ASA Journal on Uncertainty Quantification, 6(2):568–595,
2018.

[Bot10] Léon Bottou. “Large-scale machine learning with stochastic gradient descent.”
In COMPSTAT, 2010.

[BW18a] Zhong-Zhi Bai and Wen-Ting Wu. “On greedy randomized Kaczmarz method
for solving large sparse linear systems.” SIAM Journal on Scientific Computing,
40(1):A592–A606, 2018.

[BW18b] Zhong-Zhi Bai and Wen-Ting Wu. “On relaxed greedy randomized Kaczmarz
methods for solving large sparse linear systems.” Applied Mathematics Letters,
83:21–26, 2018.

[CJN18] Michael B Cohen, TS Jayram, and Jelani Nelson. “Simple Analyses of the Sparse
Johnson-Lindenstrauss Transform.” In 1st Symposium on Simplicity in Algo-
rithms (SOSA 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[CP12] Xuemei Chen and Alexander Powell. “Almost sure convergence of the Kacz-
marz algorithm with random measurements.” Journal of Fourier Analysis and
Applications, 18, 12 2012.

[CYN23] James Chapman, Yotam Yaniv, and Deanna Needell. “Stratified-NMF for Het-
erogeneous Data.” In 2023 57th Asilomar Conference on Signals, Systems, and
Computers, pp. 614–618. IEEE, 2023.

107

[DG03] Sanjoy Dasgupta and Anupam Gupta. “An Elementary Proof of a Theorem of
Johnson and Lindenstrauss.” Random Structures & Algorithms, 22(1):60–65,
2003.

[DH11] Timothy A Davis and Yifan Hu. “The University of Florida sparse matrix collec-
tion.” ACM Transactions on Mathematical Software (TOMS), 38(1):1–25, 2011.

[DHN17] Jesus A De Loera, Jamie Haddock, and Deanna Needell. “A sampling Kaczmarz–
Motzkin algorithm for linear feasibility.” SIAM Journal on Scientific Computing,
39(5):S66–S87, 2017.

[DLR77] Arthur P Dempster, Nan M Laird, and Donald B Rubin. “Maximum likelihood
from incomplete data via the EM algorithm.” Journal of the Royal Statistical
Society: Series B (Methodological), 39(1):1–22, 1977.

[Du19] Kui Du. “Tight upper bounds for the convergence of the randomized extended
Kaczmarz and Gauss–Seidel algorithms.” Numerical Linear Algebra with Appli-
cations, 26:e2233, 2019.

[EK12] Y.C. Eldar and G. Kutyniok. Compressed sensing: theory and applications. Cam-
bridge University Press, 2012.

[FR13] Simon Foucart and Holger Rauhut. A mathematical introduction to compressive
sensing. Birkhäuser Basel, 2013.

[GBH70] Richard Gordon, Robert Bender, and Gabor T Herman. “Algebraic reconstruc-
tion techniques (ART) for three-dimensional electron microscopy and X-ray pho-
tography.” Journal of Theoretical Biology, 29(3):471–481, 1970.

[GCG19] Christopher Gorman, Gustavo Chávez, Pieter Ghysels, Théo Mary, François-
Henry Rouet, and Xiaoye Sherry Li. “Robust and Accurate Stopping Criteria
for Adaptive Randomized Sampling in Matrix-Free Hierarchically Semiseparable
Construction.” SIAM Journal on Scientific Computing, 41(5):S61–S85, 2019.

[Gil14] Nicolas Gillis. “The why and how of nonnegative matrix factorization.” Regu-
larization, optimization, kernels, and support vector machines, 12(257):257–291,
2014.

[GLZ19] Igor Gitman, Hunter Lang, Pengchuan Zhang, and Lin Xiao. “Understanding
the role of momentum in stochastic gradient methods.” Advances in Neural
Information Processing Systems, 32, 2019.

[GMM21] Robert M Gower, Denali Molitor, Jacob Moorman, and Deanna Needell. “On
adaptive sketch-and-project for solving linear systems.” SIAM Journal on Matrix
Analysis and Applications, 42(2):954–989, 2021.

108

[GPS18] Sébastien Gadat, Fabien Panloup, and Sofiane Saadane. “Stochastic heavy ball.”
Electronic Journal of Statistics, 12(1):461–529, 2018.

[GR15] Robert M Gower and Peter Richtárik. “Randomized iterative methods for linear
systems.” SIAM Journal on Matrix Analysis and Applications, 36(4):1660–1690,
2015.

[GST07] Thomas L Griffiths, Mark Steyvers, and Joshua B Tenenbaum. “Topics in se-
mantic representation.” Psychological review, 114(2):211, 2007.

[GTL12] Naiyang Guan, Dacheng Tao, Zhigang Luo, and Bo Yuan. “Online nonnegative
matrix factorization with robust stochastic approximation.” IEEE Transactions
on Neural Networks and Learning Systems, 23(7):1087–1099, 2012.

[GVS17] Klaus Greff, Sjoerd Van Steenkiste, and Jürgen Schmidhuber. “Neural expec-
tation maximization.” Advances in Neural Information Processing Systems, 30,
2017.

[GYN22] Erin George, Yotam Yaniv, and Deanna Needell. “Multi-Randomized Kaczmarz
for Latent Class Regression.” In 2022 56th Asilomar Conference on Signals,
Systems, and Computers, pp. 1367–1371. IEEE, 2022.

[HHM53] Morris H Hansen, William N Hurwitz, and William G Madow. Sample survey
methods and theory. Vol. I. Methods and applications. John Wiley, 1953.

[HKL20] Jamie Haddock, Lara Kassab, Sixian Li, Alona Kryshchenko, Rachel Grotheer,
Elena Sizikova, Chuntian Wang, Thomas Merkh, RWMA Madushani, Miju Ahn,
et al. “Semi-supervised nmf models for topic modeling in learning tasks.” arXiv
preprint arXiv:2010.07956, 2020.

[HM93] G.T. Herman and L.B. Meyer. “Algebraic reconstruction techniques can be made
computationally efficient (positron emission tomography application).” IEEE
Transactioreconstructionns on Medical Imaging, 12(3):600–609, 1993.

[HM21] Jamie Haddock and Anna Ma. “Greed works: an improved analysis of sampling
Kaczmarz–Motzkin.” SIAM Journal on Mathematics of Data Science, 3(1):342–
368, 2021.

[HNR22] J. Haddock, D. Needell, E. Rebrova, and W. Swartworth. “Quantile-based it-
erative methods for corrupted systems of linear equations.” SIAM Journal on
Matrix Analysis and Applications, 2022.

[IKW16] Arie Israel, Felix Krahmer, and Rachel Ward. “An arithmetic–geometric mean
inequality for products of three matrices.” Linear Algebra and its Applications,
488:1–12, 2016.

109

[JL84] William B Johnson and Joram Lindenstrauss. “Extensions of Lipschitz Mappings
into a Hilbert Space.” Contemporary mathematics, 26:28, 1984.

[JYN22] Benjamin Jarman, Yotam Yaniv, and Deanna Needell. “Online Signal Recov-
ery via Heavy Ball Kaczmarz.” In 2022 56th Asilomar Conference on Signals,
Systems, and Computers, pp. 276–280. IEEE, 2022.

[Kar37] S Karczmarz. “Angenäherte Auflösung von Systemen linearer Gleichungen.”
Bull. Internat. Acad. Polon.Sci. Lettres A, pp. 355–357, 1937.

[KB14] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimiza-
tion.” International Conference on Learning Representations, 2014.

[KCP15] Da Kuang, Jaegul Choo, and Haesun Park. “Nonnegative matrix factorization
for interactive topic modeling and document clustering.” Partitional clustering
algorithms, pp. 215–243, 2015.

[KKL23] Lara Kassab, Alona Kryshchenko, Hanbaek Lyu, Denali Molitor, Deanna Needell,
Elizaveta Rebrova, and Jiahong Yuan. “Sparseness-constrained Nonnegative Ten-
sor Factorization for Detecting Topics at Different Time Scales.” arXiv preprint
arXiv:2010.01600, 2023.

[KN14] D.M. Kane and J. Nelson. “Sparser Johnson-Lindenstrauss Transforms.” Journal
of the ACM, 61(1), 2014.

[KP08] Jingu Kim and Haesun Park. “Sparse nonnegative matrix factorization for clus-
tering.” Technical report, Georgia Institute of Technology, 2008.

[KSH17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet classifica-
tion with deep convolutional neural networks.” Commun. ACM, 60(6):84–90,
2017.

[KYB19] Jason M Klusowski, Dana Yang, and WD Brinda. “Estimating the coefficients of
a mixture of two linear regressions by expectation maximization.” IEEE Trans-
actions on Information Theory, 65(6):3515–3524, 2019.

[LCB10] Yann LeCun, Corinna Cortes, and CJ Burges. “MNIST handwritten digit
database.” ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist,
2, 2010.

[Lin07] Chih-Jen Lin. “On the convergence of multiplicative update algorithms for
nonnegative matrix factorization.” IEEE Transactions on Neural Networks,
18(6):1589–1596, 2007.

[LL20] Zehua Lai and Lek-Heng Lim. “Recht-Re noncommutative arithmetic-geometric
mean conjecture is false.” In Proceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp.
5608–5617. PMLR, 13–18 Jul 2020.

110

[LM22] James Levitt and Per-Gunnar Martinsson. “Linear-Complexity Black-Box
Randomized Compression of Hierarchically Block Separable Matrices.” arXiv
preprint arXiv:2205.02990, 2022.

[LR20] Nicolas Loizou and Peter Richtárik. “Momentum and stochastic momentum
for stochastic gradient, newton, proximal point and subspace descent methods.”
Computational Optimization and Applications, 77(3):653–710, 2020.

[LS99] Daniel D Lee and H Sebastian Seung. “Learning the parts of objects by non-
negative matrix factorization.” Nature, 401(6755):788–791, 1999.

[LSM21] Yang Liu, Wissam M Sid-Lakhdar, Osni Marques, Xinran Zhu, Chang Meng,
James W Demmel, and Xiaoye S Li. “Gptune: Multitask learning for autotuning
exascale applications.” In Proceedings of the 26th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, pp. 234–246, 2021.

[LWS14] Dirk A. Lorenz, Stephan Wenger, Frank Schöpfer, and Marcus A. Magnor. “A
sparse Kaczmarz solver and a linearized Bregman method for online compressed
sensing.” 2014 IEEE International Conference on Image Processing (ICIP), pp.
1347–1351, 2014.

[LZ15] Junhong Lin and Ding-Xuan Zhou. “Learning theory of randomized Kaczmarz
algorithm.” J. Mach. Learn. Res., 16(1):3341–3365, 2015.

[LZ18] Yunwen Lei and Ding-Xuan Zhou. “Learning theory of randomized sparse Kacz-
marz Method.” SIAM Journal on Imaging Sciences, 11(1):547–574, 2018.

[Mar11] Per-Gunnar Martinsson. “A Fast Randomized Algorithm for Computing a Hier-
archically Semiseparable Representation of a Matrix.” SIAM Journal on Matrix
Analysis and Applications, 32(4):1251–1274, 2011.

[Moo96] Todd K Moon. “The expectation-maximization algorithm.” IEEE Signal pro-
cessing magazine, 13(6):47–60, 1996.

[MR10] Sébastien Marcel and Yann Rodriguez. “Torchvision the machine-vision package
of torch.” In Proceedings of the 18th ACM international conference on Multime-
dia, pp. 1485–1488, 2010.

[MS54] Theodore Samuel Motzkin and Isaac Jacob Schoenberg. “The relaxation method
for linear inequalities.” Canadian Journal of Mathematics, 6:393–404, 1954.

[MT20] Per-Gunnar Martinsson and Joel A. Tropp. “Randomized Numerical Linear Al-
gebra: Foundations and Algorithms.” Acta Numerica, 29:403–572, 2020.

[MTM21] Jacob D Moorman, Thomas K Tu, Denali Molitor, and Deanna Needell. “Ran-
domized Kaczmarz with averaging.” BIT Numerical Mathematics, 61(1):337–
359, 2021.

111

[MV04] Jay Magidson and Jeroen K Vermunt. “Latent class models.” The Sage handbook
of quantitative methodology for the social sciences, pp. 175–198, 2004.

[Nat01] Frank Natterer. The mathematics of computerized tomography. SIAM, 2001.

[Nee10] Deanna Needell. “Randomized Kaczmarz solver for noisy linear systems.” BIT
Numerical Mathematics, 50(2):395–403, 2010.

[NN13] Jelani Nelson and Huy L Nguyên. “OSNAP: Faster Numerical Linear Algebra
Algorithms via Sparser Subspace Embeddings.” In 2013 ieee 54th annual sym-
posium on foundations of computer science, pp. 117–126. IEEE, 2013.

[NOG20] Alfredo Nazabal, Pablo M Olmos, Zoubin Ghahramani, and Isabel Valera.
“Handling incomplete heterogeneous data using vaes.” Pattern Recognition,
107:107501, 2020.

[NSL16] Julie Nutini, Behrooz Sepehry, Issam Laradji, Mark Schmidt, Hoyt Koepke, and
Alim Virani. “Convergence rates for greedy Kaczmarz algorithms, and faster
randomized Kaczmarz rules using the orthogonality graph.” In Proceedings of the
Thirty-Second Conference on Uncertainty in Artificial Intelligence, p. 547–556.
AUAI Press, 2016.

[NSW16] Deanna Needell, Nathan Srebro, and Rachel Ward. “Stochastic gradient descent,
weighted sampling, and the randomized Kaczmarz algorithm.” Mathematical
Programming, 155(1-2):549–573, 2016.

[PB97] R Kelley Pace and Ronald Barry. “Sparse spatial autoregressions.” Statistics &
Probability Letters, 33(3):291–297, 1997.

[PJM21] Vivak Patel, Mohammad Jahangoshahi, and Daniel A Maldonado. “An implicit
representation and iterative solution of randomly sketched linear systems.” SIAM
Journal on Matrix Analysis and Applications, 42(2):800–831, 2021.

[Pol64] Boris T Polyak. “Some methods of speeding up the convergence of iteration
methods.” Ussr computational mathematics and mathematical physics, 4(5):1–
17, 1964.

[PVG11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. “Scikit-learn: Ma-
chine Learning in Python.” Journal of Machine Learning Research, 12:2825–
2830, 2011.

[Ren08] Jason Rennie. “20 Newsgroups Text Dataset.”, 2008.

112

[RFC12] Richard G Roetzheim, Karen M Freund, Don K Corle, David M Murray, Freder-
ick R Snyder, Andrea C Kronman, Pascal Jean-Pierre, Peter C Raich, Alan EC
Holden, Julie S Darnell, et al. “Analysis of combined data from heterogeneous
study designs: an applied example from the patient navigation research program.”
Clinical Trials, 9(2):176–187, 2012.

[Ros64] M Rosenfeld. “Independent sets in regular graphs.” Israel Journal of Mathemat-
ics, 2(4):262–272, 1964.

[RR12] Benjamin Recht and Christopher Re. “Toward a noncommutative arithmetic-
geometric mean inequality: conjectures, case-studies, and consequences.” In
Proceedings of the 25th Annual Conference on Learning Theory, volume 23 of
Proceedings of Machine Learning Research, pp. 11.1–11.24. PMLR, 25–27 Jun
2012.

[SBP06] Farial Shahnaz, Michael W Berry, V Paul Pauca, and Robert J Plemmons. “Doc-
ument clustering using nonnegative matrix factorization.” Information Process-
ing & Management, 42(2):373–386, 2006.

[Sep16] Behrooz Sepehry. “Finding a maximum weight sequence with dependency con-
straints.”. Master’s thesis, University of British Columbia, Vancouver, BC,
Canada, 2016.

[SHS01] Andreas Savvides, Chih-Chieh Han, and Mani B Strivastava. “Dynamic fine-
grained localization in ad-hoc networks of sensors.” In Proceedings of the 7th
annual international conference on mobile computing and networking, pp. 166–
179, 2001.

[SL01] H Sebastian Seung and Daniel D Lee. “Algorithms for non-negative matrix factor-
ization.” Advances in neural information processing systems, 13:556–562, 2001.

[SMD13] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. “On the
importance of initialization and momentum in deep learning.” In International
conference on machine learning, pp. 1139–1147. PMLR, 2013.

[str] “STRUMPACK: STRUctured Matrix PACKage.” http://portal.nersc.gov/

project/sparse/strumpack/.

[SV09] Thomas Strohmer and Roman Vershynin. “A randomized Kaczmarz algorithm
with exponential convergence.” Journal of Fourier Analysis and Applications,
15(2):262–278, 2009.

[TV18] Yan Shuo Tan and Roman Vershynin. “Phase retrieval via randomized Kaczmarz:
theoretical guarantees.” Information and Inference: A Journal of the IMA, 8:97–
123, 2018.

113

http://portal.nersc.gov/project/sparse/strumpack/
http://portal.nersc.gov/project/sparse/strumpack/

[VHR21] Joshua Vendrow, Jamie Haddock, Elizaveta Rebrova, and Deanna Needell. “On
a guided nonnegative matrix factorization.” In ICASSP 2021-2021 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
3265–32369. IEEE, 2021.

[Wal06] Hanna M Wallach. “Topic modeling: beyond bag-of-words.” In Proceedings of
the 23rd international conference on Machine learning, pp. 977–984, 2006.

[WCD04] Stefan Wild, James Curry, and Anne Dougherty. “Improving non-negative
matrix factorizations through structured initialization.” Pattern recognition,
37(11):2217–2232, 2004.

[WD94] Michel Wedel and Wayne S DeSarbo. “A review of recent developments in latent
class regression models.” Advanced methods of marketing research, pp. 352–388,
1994.

[WGW15] Di Wang, Xinbo Gao, and Xiumei Wang. “Semi-supervised nonnegative ma-
trix factorization via constraint propagation.” IEEE transactions on cybernetics,
46(1):233–244, 2015.

[WLX13] Shen Wang, Xiaoye S Li, Jianlin Xia, Yingchong Situ, and Maarten V De Hoop.
“Efficient Scalable Algorithms for Solving Dense Linear Systems with Hierar-
chically Semiseparable Structures.” SIAM Journal on Scientific Computing,
35(6):C519–C544, 2013.

[WSM95] W Wolberg, W Street, and O Mangasarian. “Breast cancer Wisconsin (diagnos-
tic) UCI machine learning repository.” Irvine, CA, USA, 1995.

[Wu83] CF Jeff Wu. “On the convergence properties of the EM algorithm.” The Annals
of statistics, pp. 95–103, 1983.

[WZ12] Yu-Xiong Wang and Yu-Jin Zhang. “Nonnegative matrix factorization: A com-
prehensive review.” IEEE Transactions on knowledge and data engineering,
25(6):1336–1353, 2012.

[XCG10] Jianlin Xia, Shivkumar Chandrasekaran, Ming Gu, and Xiaoye S Li. “Fast Al-
gorithms for Hierarchically Semiseparable Matrices.” Numerical Linear Algebra
with Applications, 17(6):953–976, 2010.

[YLL16] Tianbao Yang, Qihang Lin, and Zhe Li. “Unified convergence analysis of stochas-
tic momentum methods for convex and non-convex optimization.” arXiv preprint
arXiv:1604.03257, 2016.

[YMG23] Yotam Yaniv, Osman Asif Malik, Pieter Ghysels, and Xiaoye S Li. “Construction
of Hierarchically Semi-Separable matrix Representation using Adaptive Johnson-
Lindenstrauss Sketching.” arXiv preprint arXiv:2302.01977, 2023.

114

[YMS22] Yotam Yaniv, Jacob D Moorman, William Swartworth, Thomas Tu, Daji Landis,
and Deanna Needell. “Selectable set randomized Kaczmarz.” Numerical Linear
Algebra with Applications, p. e2458, 2022.

[Zaf09] Stefanos Zafeiriou. Algorithms for Nonnegative Tensor Factorization, pp. 105–
124. Springer London, London, 2009.

[ZF13] Anastasios Zouzias and Nikolaos M Freris. “Randomized extended Kaczmarz
for solving least squares.” SIAM Journal on Matrix Analysis and Applications,
34(2):773–793, 2013.

115

	Introduction
	Selectable Set Randomized Kaczmarz
	Introduction
	Related Work
	Contribution
	Organization
	Notation and Assumption

	Selectable set method
	Non-repetitive selectable set
	Gramian-Based Selectable Set

	Convergence analysis
	Corollaries
	Comparison with Relaxed Greedy Randomized Kaczmarz (RGRK) theory

	Lower bounds on size of Gramian selectable set size
	Experiments
	Conclusion
	Future directions

	Online Signal Recovery via Heavy Ball Kaczmarz
	Introduction
	The Kaczmarz Method
	Heavy Ball Momentum

	Proposed Method & Empirical Results
	Theoretical Results
	Proof of Main Result
	Conclusion and Future Directions

	Multi-Randomized Kaczmarz for Latent Class Regression
	Introduction
	Multi-Randomized Kaczmarz Method
	Proofs
	Conditional Convergence in Expectation
	Convergence with full probability

	Experimental Results
	Conclusion and Future Work

	Stratified Non-negative Matrix Factorization
	Introduction
	Proposed Method
	Theoretical Results
	Experimental Results
	Synthetic
	California Housing
	MNIST
	20 newsgroups dataset

	Discussion
	Conclusion

	Hierarchically Semi-Separable matrix Construction Algorithm
	HSS Format
	Adaptive HSS Algorithm
	Tracing Adaptive HSS Algorithm
	Compression of a Leaf Node
	Compression of Internal Node
	Adaptation

	Conclusion
	References

