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ABSTRACT OF THE DISSERTATION

Kaczmarz Methods and Structured Matrix Decompositions

by
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Doctor of Philosophy in Mathematics
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Professor Andrea Bertozzi, Co-Chair

Professor Deanna M. Hunter, Co-Chair

In this dissertation, we discuss two distinct topics, both of which leverage randomized algo-
rithms in numerical linear algebra. First we study three variants of the Kaczmarz method, a
stochastic iterative method for solving linear systems. We propose a variant of the Kaczmarz
method that uses additional memory to save on computation. We provide theoretical analy-
sis and experimental results of the method, highlighting a gap in the literature. Additionally,
we propose a variant of the Kaczmarz method in the data streaming setting that has an ad-
ditional heavy ball momentum term. We prove a convergence bound for this method and
analyze its merits experimentally given coherent data. Furthermore, we develop a variant of
the Kaczmarz method for solving a latent class regression problem. Next we shift gears and
discuss structured matrix factorizations. The first matrix factorization that we propose is a
stratified non-negative matrix factorization. The aim of this method is to provide unsuper-
vised dimensionality reduction on non-negative data that may be distributed across different
locations. We prove a convergence bound for this method and analyze its performance on
synthetic text, image and tabular data. Finally, we propose a hierarchically semi-separable

matrix factorization method that uses random matrix sketching.

1



The dissertation of Yotam Yaniv is approved.
Stanley J. Osher
Christopher R. Anderson
Deanna M. Hunter, Committee Co-Chair

Andrea Bertozzi, Committee Co-Chair

University of California, Los Angeles

2024

1l



TABLE OF CONTENTS

1 Introduction . . . . . . . . .. ..
2 Selectable Set Randomized Kaczmarz . . . . . . .. ... ... ... ... ..
2.1 Introduction . . . . . . ...
2.1.1 Related Work . . . . . . .. .

2.1.2  Contribution . . . . .. ...

2.1.3 Organization . . . . .. ... ..

2.1.4 Notation and Assumption . . . . . .. ... .. ... ... ... ...

2.2 Selectable set method . . . . . . . ...
2.2.1 Non-repetitive selectable set . . . . . .. .. ... ... ... ... ..

2.2.2  Gramian-Based Selectable Set . . . . . ... ... ...

2.3 Convergence analysis . . . . . . . . ...
2.3.1 Corollaries . . . . . . . .

2.3.2  Comparison with Relaxed Greedy Randomized Kaczmarz (RGRK)

theory . . . . .

2.4 Lower bounds on size of Gramian selectable set size . . . . . . .. ... ...
2.5 Experiments . . . . ... Lo
2.6 Conclusion . . . . . .. .
2.6.1 Future directions . . . . . . . ...
Online Signal Recovery via Heavy Ball Kaczmarz . . . . .. ... .. ...
3.1 Imtroduction . . . . . . . ..
3.1.1 The Kaczmarz Method . . . . . . .. .. ... ... ... ...

v



3.1.2 Heavy Ball Momentum . . . . . . ... ... ... ... ... 42

3.2 Proposed Method & Empirical Results . . . . ... ... ... ... ... ... 42
3.3 Theoretical Results . . . . . .. ... o 45
3.4 Proof of Main Result . . . . .. .. . ... ... 46
3.5 Conclusion and Future Directions . . . . . . .. .. ... ... ... ..... 52
Multi-Randomized Kaczmarz for Latent Class Regression . . . . . . . .. 53
4.1 Introduction . . . . . . . .. 54
4.2 Multi-Randomized Kaczmarz Method . . . . . . . .. . ... ... ... ... 55
4.3 Proofs . . . . e 57

4.3.1 Conditional Convergence in Expectation . . . . . ... ... ... .. 57

4.3.2  Convergence with full probability . . . . .. ... ... ... ... .. 60
4.4 Experimental Results . . . . . . . . ... oo 64
4.5 Conclusion and Future Work . . . . . . . .. ... o000 66
Stratified Non-negative Matrix Factorization . . . . . . ... .. ... ... 68
5.1 Introduction . . . . . . . ... 68
5.2 Proposed Method . . . . . . . . . . ... 70
5.3 Theoretical Results . . . . . . . .. ... o 71
5.4 Experimental Results . . . . . . . . ... oo 75

5.4.1 Synthetic . . . . . ... 75

5.4.2 California Housing . . . . . . .. ... ... L 76

54.3 MNIST . . .. o 78

5.4.4 20 newsgroups dataset . . . . ... ... 79
5.5 Discussion . . . . . ..o 82



5.6 Conclusion . . . . . . . ., 83

6 Hierarchically Semi-Separable matrix Construction Algorithm . . . . . . 84
6.1 HSS Format . . . . . . . . . . . . 85
6.2 Adaptive HSS Algorithm . . . . . . .. .. ... ... 87
6.3 Tracing Adaptive HSS Algorithm . . . . . . . ... ... .. .. ... .... 95

6.3.1 Compression of a Leaf Node . . . . . . . ... ... ... ....... 95
6.3.2 Compression of Internal Node . . . . . . .. . ... ... ... .... 99
6.3.3 Adaptation . . . .. ... 103
7 Conclusion . . . . . . . . .. 105
References . . . . . . . . . . 107

vi



2.1

2.2

2.3

LIST OF FIGURES

The non-orthogonality graph constructed from the Gramian G of the above ma-
trix A. This undirected graph is connected because each node is reachable from
every other node along the edges of the graph. The size of the maximal indepen-
dent set of the graph is 2 = | M| because the largest set of nodes that that do not
share an edge among them is 2. If we consider the subgraph formed from nodes 1
and 2 or nodes 1 and 3, these graph have no edges. No larger sets can be created
because if we add any additional nodes to these sets, the induced subgraphs will

contain edges. . . . . . . L L

Squared error norm versus iteration for RK, NSSRK, GSSRK, and GRK (RGRK
with 6 = 1/2) using uniform row probabilities for RK, NSSRK and GSSRK. Re-
sults were averaged over 100 trials. Figure 2.2b is a 3-banded matrix, Figure 2.2a
is a circulant matrix, and Figures 2.2¢ and 2.2d are two real world matrices,
Cities and N_pid all described in detail above. The shading denotes one standard

deviation. . . . . . .

Squared error norm versus iteration for RK, NSSRK, GSSRK, and GRK (RGRK
with 6§ = 1/2) using row norm probabilities for RK, NSSRK and GSSRK. Results
were averaged over 100 trials. Figure 2.3b is a 3-banded matrix, Figure 2.3a is a

circulant matrix, and Figures 2.3c and 2.3d are two real world matrices, Cities and

N _pid all described in detail above. The shading denotes one standard deviation.

vil

35



24

3.1

3.2

3.3

3.4

3.5

4.1

4.2

Squared error norm versus iteration for GSSRK with uniform row distribution on
varying circulant matrix sizes, corresponding to varying o,,, to confirm that as
Omin increases the convergence rate improves. 100 trials on circulant matrices of
sizes: 50 x 50,100 x 100 and 150 x 150. Each curve corresponds to the iteration
average over the 100 trials and the shading corresponds to one standard deviation
above and one standard deviation below the mean of norm-squared errors at each

wteration. . . . . . . L

Error versus iteration for OHBK(S) applied to U[0, 1] signals of length 50.
| z100 — 2*|| versus S for a range of 8 € [0,0.6], for U[0, 1] signals of length 50.
log || 4000 — *|| versus e for OHBK(/3) applied to Ule, 1] signals of length 50. . .

log ||z4000 — *|| versus 8 for OHBK(/3) applied to U[0, 1] signals of length n. The

gray verticals show the value of g yielding the minimum error. . . . . . . .. ..

Error versus iteration for OHBK(S) applied to the WDBC dataset. . . . . . . .

Here we plot the evolution of two iterates in the two-dimensional plane. Our
system is defined by two matrices M; € R!*? with entries drawn i.i.d. from
N(0.8,0.3) and M, € R'%*? with entries drawn i.i.d. from N'(—0.8,0.3). Each
initial iterate 3, x5 ~ N(0,1). We let our swap probability » = 0 and sample

rows uniformly at random. . . . . . ... ..o

System defined by two matrices M; € R1900x10 pr, ¢ R1000x10 where the matrices
have entries distributed My, My ~ N(0,1). Each initial iterate 23, x5 ~ N(0,1).
We let our swap probability » = 0, sample rows uniformly at random and plot

the median and interquartile range over the 100 trials. . . . . . . .. .. .. ..

viil

44

45

46



4.3

5.1

5.2

5.3

5.4

9.5

6.1

System defined by matrices M; € R3%0*10 A, € R399*10 sybmatrices of the Wis-
consin breast cancer data set. Each initial iterate 23, x5 ~ N(0,1). We let our
swap probability r = 0, sample rows uniformly at random and plot the median

and interquartile range over the 100 trials. . . . . . . . . ... .. ... ...

Log of normalized loss versus number of iterations for the synthetic experiment.

The final normalized loss is 9.7e —4. . . . . . . . . . . . ...

Means of each strata feature v(i) over the four strata of the synthetic exper-
iment. The final means are 0.51, 1.47, 2.53, 3.57, respectively. We expect to

approximately recover the true means of 0.5, 1.5, 2.5, 3.5. . . . . . .. ... ..

Normalized strata features v(i) for the California dataset. This plot was obtained
by taking the resulting v(7)’s and normalizing them so that > i v(i); = 1 for all
j. The median income and average rooms increase with income, as expected.
Interestingly, median income individuals tend to live in more populous regions

[Ber18]. Trends for the other variables are neutral. . . . . ... ... ... ...

Learned strata features on the MNIST experiment. The left image is a plot of
v(1) and it resembles a one. The right image is a plot of v(2) and it resembles

parts of a three. . . . . . . . . L

Learned topics matrix for the MNIST experiment. Fach image is a row of H.
These images capture global features across the residuals A(i) — 1v(i)T. Four of
the five learned global features are 2’s with missing segments which appear to be

captured by the v(i)’s. The remaining feature in H resemblesa 3. . . . . . . . .

(a) Illustration of a symmetric HSS matrix using 3 levels. Diagonal blocks are
partitioned recursively. Gray blocks denote the basis matrices. (b) Tree for the
HSS matrix from (a), using topological ordering. All nodes except the root store
U; (and V; for the non-symmetric case). Leaves store D;, non-leaves B;; (and Bj;

for the non-symmetric case). . . . . . . . ...

1X



6.2

6.3

6.4

6.5

6.6

6.7

6.8

Three level HSS tree for our compression example with the nodes labeled and the

corresponding indices in brackets. . . . . ... ..o
Leaf level of HSS tree with the first node rowsinabox. . . . . . . . . . ... ..

Compression of the first Hankel block H; into Uj, a basis matrix, and r rows of
the original Hankel block, denoted by the thin horizontal stripe (not necessarily

the first r rows) and indexed by index set Ji. . . . . ... ... L.

HSS matrix after all four row leaves have been compressed with the low rank

blocks, L1—L,4 sections listed . . . . . . . . . ... ...

HSS matrix illustration of how the off diagonal low rank block L is computed

and stored. . . ...
HSS matrix with the second level of row Hankel blocks highlighted in blue. . . .

Node 5 row Hankel block being prepared for compression. . . . . . . . ... ..



LIST OF TABLES

2.1 Acronyms of the methods discussed. . . . . .. . ... ... ... .. ... ..

2.2 Lower bounds on size of the selectable set for structured Gramian problems.

5.1 Top three words learned for each newsgroup in the 20 newsgroups dataset. These
are obtained by looking at the largest values in each v(i). We observe that the
forsale newsgroup has the words “following”, “looking” and “manual”, which are
associated with selling or shipping items. Similarly, the baseball newsgroup has

the words “hitting”, “jays”, and “phillies”, which correspond to baseball or major

league baseball teams. . . . . . . ...

6.1 List of helper functions for Algorithm 7 and Algorithm 8. . . . . . .. ... ...

x1



ACKNOWLEDGMENTS

I would first like to thank my Advisors Andrea Bertozzi and Deanna Needell for their
guidance throughout my PhD. I would also like to thank my mentor at Lawrence Berkeley
National Lab Sherry Li.

My academic journey started many years ago with the support of my family, friends and
collaborators. I would like to thank my mother and father for taking me to America and
supporting me throughout my life both financially and emotionally. I would like to thank
my siblings for being amazing brothers, it is weird to think about how we are all almost
adults now. I would like to thank my partner Allison for supporting me even when I was

stressed or frustrated.

I would also like to thank my friends from my primary and secondary education: Jacob
A, Aaron, Stephen, Jacob H, Gil, Josh, Cormac, George, Matt, and Mark for our many years
of fun. I would like to thank my favorite high school teachers Mr. Hanlon and Mr. Murray
for inspiring me to think critically about programming, world history, world religions and

my life.

I would also like to thank my friends from UMD: Nitin, Victor, Charlie, Josephine,
Solomon, Kweku and Jon who taught me many life lessons and helped me gain a new
perspective on a variety of topics ranging from algorithms to cheering for the Washington
Capitals. Additionally, I appreciate the guidance from my undergrad mentors Tom Gold-
stein, and Antoine Mellet without your recommendations and advice I would not have made

it here.

I am thankful to the graduate students in the department many of whom have become
lifelong friends of mine. I would like to thank Adam Lott, Kevin Miller, Jacob Moorman, and
Thomas Tu for their advice and mentorship. I would like to thank my office-mate Dominic
Yang for his advice and our great conversations. I would like to thank Erin George and

Wes Wise for being great roommates. I would like to thank my basic exam study group

xii



consisting of Jason Brown, Grace Li, Cecilia Higgins, Andrew Sack, Jerry Luo and our
wonderful teacher who went above and beyond for us Bon-Soon Lin. I would like to thank
my friends James Chapman and Michael Johnson for all of our long runs, fun adventures,
and beach days. I would not have been able to thrive at UCLA without the support of all

of you. I am grateful that I had the opportunity to experience this with all of you.

Chapter 2 is a version of [YMS22] which is joint work with Jacob Moorman, William
Swartworth, Thomas Tu, Daji Landis and Deanna Needell. Jacob Moorman and I proposed
the initial idea and contributed the convergence analysis. William Swartworth and I con-
tributed corollaries 11-15 about the Gramian selectable set. Daji Landis, Thomas Tu and I

contributed the experimental results. All of which was done under the supervision of Deanna

Needell.

Chapter 3 is a version of [JYN22] which is joint work with Ben Jarman and Deanna
Needell. Ben Jarman proposed the initial project. Ben Jarman and I contributed the

convergence analysis and experiments under the supervision of Deanna Needell.

Chapter 4 is a version of [GYN22] which is joint work with Erin George and Deanna
Needell. Deanna Needell proposed the initial idea. I implemented the method and con-
tributed the experiments and Erin contributed the convergence analysis. Together we wrote

the paper as co-first authors under the supervision of Deanna Needell.

Chapter 5 is a version of [CYN23] which is joint work with James Chapman and Deanna
Needell. James and I proposed the initial idea, contributed the experiments and convergence

analysis under the supervision of Deanna Needell.

Chapter 6 is an adaptation of the background and appendices of a manuscript, [YMG23],
which is joint work with Osman Asif Malik, Pieter Ghysels, and Xiaoye S. Li. Pieter Ghysels
and Xiaoye S. Li proposed the project. Xiaoye S. Li, Pieter Ghysels and I wrote the back-
ground of our matrix compression method. Osman Asif Malik and I compiled the theoretical

results for this work.

I was supported in part by the UCLA Division of Graduate Education (dissertation year

xiil



fellowship). The work in Chapter 2 was supported by NSF DMS 1737770, 2011140, 2108479,
2027277, NSF DGE 1829071. The work in Chapters 3 and 4 was supported by NSF DMS-
2108479 and NSF DMS-2011140. The work in Chapter 6 was conducted thanks to the NSF
MSGI summer internship program and the Exascale Computing Project (17-SC-20-SC).
This research used resources of the National Energy Research Scientific Computing Center
(NERSC), a U.S. Department of Energy Office of Science User Facility located at Lawrence
Berkeley National Laboratory, operated under Contract No. DE-AC02-05CH11231 using
NERSC award ASCR-ERCAP0017690.

Xiv



2017

2018

2019

2019-2024

2020-2024

2021

2022

2023

VITA

Undergraduate Research Intern, UCLA Applied Mathematics REU.

Undergraduate Research Intern, UCLA Applied Mathematics REU.

B.S. (Mathematics with high honors) and B.S. (Computer Science with
honors) UMD, College Park.

Fellow and Research Assistant, Mathematics Department UCLA.

Teaching Assistant, Mathematics Department UCLA.

M.A (Mathematics) UCLA.

NSF MSGI Intern / Research Assistant, Lawrence Berkeley National Lab,

Berkeley, California.

NSF MSGI Intern, Lawrence Berkeley National Lab, Berkeley, California.

PUBLICATIONS

Y. Yaniv, O. A. Malik, P. Ghysels, X. S. Li. “Construction of Hierarchically Semi-Separable

matrix Representation using Adaptive Johnson-Lindenstrauss Sketching.” arXiv preprint

arXww:2302.01977, 2023.

J. Chapman, Y. Yaniv, D. Needell. “Stratified-NMF for Heterogeneous Data.” &7th Asilo-

mar Conference on Signals, Systems and Computers, 2023.

XV



E. George, Y. Yaniv, D. Needell. “Multi-Randomized Kaczmarz for Latent Class Regres-

sion.” 56th Asilomar Conference on Signals, Systems and Computers, 2022.

B. Jarman, Y. Yaniv, D. Needell. “Online Signal Recovery via Heavy Ball Kaczmarz.” 56th

Asilomar Conference on Signals, Systems and Computers, 2022.

Y. Yaniv, J. D. Moorman, W. Swartworth, T. Tu, D. Landis, and D. Needell. “Selectable
Set Randomized Kaczmarz.” Numerical Linear Algebra with Applications (2022): e2458.

D. J. Arnold, D. Fernandez, R. Jia, C. Parkinson, D. Tonne, Y. Yaniv, A. L. Bertozzi, and

S. J. Osher. “Modeling environmental crime in protected areas using the level set method.”

SIAM Journal on Applied Mathematics 79, no. 3 (2019): 802-821.

Xvi



CHAPTER 1

Introduction

With the development of large storage devices and abundant data collection methods, from
smartphones to medical devices, there has been a paradigm shift from the limited data
regime to the big data regime. Indeed, the emphasis has transitioned from the extraction
of maximum insight given limited data to extracting pertinent information from massive
amounts of data. The aim of this dissertation is to address some of the problems in the
big data regime by developing scalable linear algebraic algorithms that leverage sampling to
speed up computation. Many of these scalable algorithms are not only essential for direct
application but also serve as fundamental subroutines in modern machine learning models.
Additionally, the analysis of these methods gives theoretical insight and foundation for more
complex methods. Therefore our study of randomized linear algebra routines is essential for

the advancement of modern machine learning and data analysis.

In this dissertation, we discuss two topics in randomized numerical linear algebra: stochas-
tic iterative methods for solving linear systems and structured matrix factorizations. First,
we discuss the Randomized Kaczmarz method, a specific stochastic iterative method for
solving linear systems. The Kaczmarz method has recently grown in popularity due to its

speed and low memory requirement.

In chapter 2, we develop a variant based on Randomized Kaczmarz (RK) called Selectable
Set Randomized Kaczmarz (SSRK). SSRK is a variant of RK that leverages existing infor-
mation about the Kaczmarz iterate to identify an adaptive selectable set and thus yields
an improved convergence guarantee. In this chapter, we propose a general perspective for

selectable set approaches and prove a convergence result for that framework. In addition,



we define two specific selectable set sampling strategies that have competitive convergence
guarantees to those of other variants of RK. One selectable set sampling strategy leverages
information about the previous iterate, while the other leverages the orthogonality struc-
ture of the problem via the Gramian matrix. We complement our theoretical results with

numerical experiments that compare our proposed rules with those existing in the literature.

In chapter 3, we consider the problem of recovering a signal x* € R"™ from a sequence
of linear measurements. This problem arises in areas such as computerized tomography
and wireless communications. In this chapter, we consider an online setting in which mea-
surements are sampled one-by-one from some source distribution. We propose solving this
problem with a variant of the Kaczmarz method with an additional heavy ball momentum
term. Recent work has shown that the Kaczmarz method also enjoys linear convergence
when applied to random measurement models, however convergence may be slowed when
successive measurements are highly coherent. We demonstrate that the addition of heavy
ball momentum may accelerate the convergence of the Kaczmarz method when data is co-
herent, and provide a theoretical analysis of the method culminating in a linear convergence

guarantee for a wide class of source distributions.

In chapter 4, We propose an iterative algorithm based on the randomized Kaczmarz (RK)
method to automatically identify subgroups in data and perform linear regression on these
groups simultaneously. We prove almost sure convergence for this method, as well as linear
convergence in expectation under certain conditions. The result is an interpretable collection
of different weight vectors for the regressor variables that capture the different trends within
data. Furthermore, we experimentally validate our convergence results by demonstrating

the method can successfully identify two trends within simulated data.

Next, we shift gears and discuss structured matrix factorizations. In chapter 5, we
propose a variant of non-negative matrix factorization. Non-negative matrix factorization
(NMF) is an important technique for obtaining low dimensional representations of datasets.

However, classical NMF does not take into account data that is collected at different times or



in different locations, which may exhibit heterogeneity. We resolve this problem by solving
a modified NMF objective, Stratified-NMF, that simultaneously learns strata-dependent
statistics and a shared topics matrix. We develop multiplicative update rules for this novel
objective and prove convergence of the objective. Then, we experiment on synthetic data
to demonstrate the efficiency and accuracy of the method. Lastly, we apply our method to

three real world datasets and empirically investigate their learned features.

Finally, in chapter 6 we extend an adaptive partially matrix-free Hierarchically Semi-
Separable (HSS) matrix construction algorithm by Gorman et al. which uses Gaussian
sketching operators to a broader class of Johnson-Lindenstrauss (JL) sketching operators.
This structured matrix factorization allows for more efficient matrix operations and factor-
izations once the matrix is stored in this format. We discuss the details of hierarchically

semi-separable matrix construction and trace our proposed method.



CHAPTER 2

Selectable Set Randomized Kaczmarz

This chapter is an adaptation of [YMS22] which is joint work with Jacob Moorman, William
Swartworth, Thomas Tu, Daji Landis and Deanna Needell. Jacob Moorman and I proposed
the initial idea and contributed the convergence analysis. Additionally, I contributed to the

experimental results, writing and revisions of this work.

We propose a new variant to randomized Kaczmarz (RK), a stochastic iterative method
for solving linear systems with a low memory requirement. We use a small amount of
additional memory to store a selectable set allowing us to save on computation when applying
the method, therefore we call our variant selectable set randomized Kaczmarz (SSRK). We
show that at the cost of storing additional data, we are able to save some time in computation.
In the rest of this chapter we explain the proposed method, prove convergence guarantees
and analyze SSRK experimentally. Finally, we highlight an existing gap in Kaczmarz theory
where SSRK has strong theoretical guarantees but experimentally does not perform as well

as other Kaczmarz variants.

2.1 Introduction

The Kaczmarz method [Kar37], also known as the algebraic reconstruction technique in com-
puted tomography [GBH70], has become a popular method for solving large overdetermined
systems of linear equations. The method has abundant applications ranging from digital
signal and image processing to statistics and machine learning. We are primarily interested

in the the regime of extremely large linear systems, where it may be too expensive to load



a large number of rows into memory. In this setting, the Kaczmarz method is particularly
useful as it only requires loading a single row into memory at a time. We also consider sparse
systems, which yield additional benefits for the Kaczmarz method; the time required for each

iteration scales linearly with the number of nonzero entries in the selected row [Nat01].

To solve a system of equations Ax = b with A € R™*", the Kaczmarz method operates

iteratively, beginning with an initial vector x° (often x° = 0). On each iteration k, an

1

equation A;, x = b;,, or equivalently row index i, is chosen and x**1 is computed as the

projection of x* onto the set of solutions to that equation. Algebraically, the Kaczmarz

update is given by
k Aikxk _ blk T
2 ik
AT

where 7y, is the index of the chosen equation, A;, is the corresponding row of the matrix A,

Xk+1 = x

(2.1)

and ||-|| is the Euclidean norm. Algebraically projecting onto the solution of an equation
A, x = b;, is equivalent to sampling a row index i, and applying Equation (2.1). Thus we
refer to sampling then projecting onto equations and sampling then applying Equation (2.1)

to row indices interchangeably.

Like many iterative methods, the Kaczmarz method utilizes and depends on a sampling
strategy to choose the equation for its update at each iteration. Different sampling strategies
exhibit different convergence behavior. The first sampling strategy proven to result in linear
convergence was a randomized strategy where equations are chosen at random with prob-
abilities proportional to the corresponding squared row norms HAi”27 which we deem the
Randomized Kaczmarz method (RK) [SV09] . Subsequently, many variants of RK have been
proposed and shown to converge linearly [BW18b, NSL16, Dul9, GR15, HM21, MTM21].

In this chapter, we aim to develop Kaczmarz methods with linear convergence rates that
mitigate inefficiencies in classical Kaczmarz methods by leveraging meta-information about
the algorithm or problem. For instance, if the equation chosen on iteration k is already
solved (i.e., A; x* = b;), then Equation (2.1) reduces to x**! = x* and the iteration is

wasted. Therefore, it is desirable avoid sampling equations that are already solved by the



current iterate x*. In general, checking whether an equation is solved is as expensive as the
update itself. However, if the system of equations Ax = b has some structure such as a
known Gramian matrix G = AAT, it can be possible to keep track of some equations that
are known to be solved so that they can be avoided. The set of equations that are not known
to be solved is referred to as the selectable set [NSL16]. In this work, we consider variants
of RK that use a selectable set to avoid wasting iterations. Such variants are referred to as

Selectable Set Randomized Kaczmarz methods (SSRK).

2.1.1 Related Work

Several works have considered using more general distributions in RK and have obtained
similar convergence guarantees (see e.g. [GR15, NSW16, NSL16] and references therein).
A different line of work has focused on sampling strategies that depend on the iterate x*
and thus change from iteration to iteration [BW18b, NSL16, Dul9, HM21]. Most notable in
the latter is the Max-Distance Kaczmarz method (MDK), also known as Motzkin’s method,
which chooses the equation that maximizes the normalized residual |A; x* —b;, | / | A;, || on
each iteration. The term max-distance refers to the fact that MDK chooses the equation

that leads to the largest update, since
Al

—_ ka+1 o XkH ]

MDK yields a provably optimal per-iteration convergence guarantee at the expense of a high

per-iteration computational cost [NSL16].

Several sampling strategies have been proposed that approximate MDK with a cheaper
per-iteration cost. For example, the Sampling Kaczmarz Motzkin method (SKM) chooses
a random subset of rows and selects the maximum-residual row from that subset [DHN17].
This results in much cheaper per-iteration costs than MDK|, while still yielding a provably
better convergence guarantee than RK [HM21]. Similarly to MDK, the Relaxed Greedy Ran-
domized Kaczmarz method (RGRK) samples from the equations whose normalized residual

A x" —b;, | /|As, | exceeds some threshold [BW18a, BW18b]. RGRK has a faster con-

6



vergence guarantee than RK but a slower guarantee than MDK and is significantly more
expensive per-iteration than MDK [BW18b, GMM21]. We compare the convergence guar-
antee of RGRK [BW18b] with that of SSRK in Section 2.3.2.

Nutini et al. consider several improvements to RK for sparse systems [NSL16]. In
particular, this work introduces leveraging the orthogonality graph, which is formed from
by considering the Gramian matrix G = AAT as an adjacency matrix for an unweighted
graph. In this graph the nodes are the rows of the matrix. Two nodes are joined by an
edge if they are not orthogonal. The key observation is that a Kaczmarz update for row A;
only affects residual entries corresponding to adjacent nodes in this graph. This allows for
tracking a so-called selectable set, which is the complement of the set of nodes for which the
corresponding residual entry is known to be 0. Since sampling non-selectable rows yields
no progress, one could hope to speed up RK by restricting the sampling to the selectable
set. We consider the selectable set method in more detail, and specialize to several common

types of sparse orthogonality graphs.

2.1.2 Contribution

In this chapter, we define a general framework for what we call Selectable Set Randomized
Kaczmarz methods (SSRK, Algorithm 1). This is a generalization of the orthogonality graph
method proposed by Nutini et al. [NSL16]. We show that SSRK methods converge linearly
with a speedup over RK related to the size of the selectable set. We define and analyze two
specific SSRK methods, the Non-Repetitive Selectable Set Randomized Kaczmarz method
(NSSRK, Algorithm 2) and the Gramian Selectable Set Randomized Kaczmarz method
(GSSRK, Algorithm 3). These methods use different strategies to identify the selectable
set. We show that NSSRK has a selectable set of size m — 1, while the size of the GSSRK
selectable set is bounded from below by properties of the matrix A. Finally, we note that
the convergence guarantee of NSSRK is the same as that of Relaxed Greedy Randomized
Kaczmarz method (RGRK) [BW18a, BW18b| despite converging much slower than RGRK



in practice. This suggests that the convergence guarantee for RGRK is not tight.

2.1.3 Organization

The rest of this chapter is structured as follows. The remainder of this section summarizes
the notation that will be used throughout. In Section 2.2 we define SSRK methods and
define two specific examples, NSSRK and GSSRK. Then, in Section 2.3, we prove a general
convergence guarantee for SSRK methods, presented in Theorem 2, and use it to prove
corollaries for specific methods and sampling strategies. Additionally, we discuss connections
between the convergence analysis of Algorithm 2 and a popular Kaczmarz method proposed
by Bai and Wu [BW18a, BW18b]. Next, in Section 2.4, we examine the improvement of
applying Algorithm 3 to problems with structured systems. Then, we show some empirical
results in Section 2.5 and finally, in Section 2.6, we summarize our work and provide a short

discussion on Kaczmarz sampling strategies.

2.1.4 Notation and Assumption

We consider consistent systems of linear equations Ax = b with A € R™*" x € R", and
right hand side vector (RHS) b € R™. We seek the least-norm solution to the system
x* = A'b. Throughout this chapter, m will globally represent the number of rows in the
system and n will represent the number of columns of the matrix A. Bold uppercase letters
represent matrices, bold lowercase letters represent vectors, and standard letters represent
scalars. A, denotes the i'" row of the matrix A, while b, denotes the i*" element of the
vector b. We use [m] as shorthand for the set {1,2,...,m}. The norm ||| is the Euclidean
vector norm and ||-|| is the Frobenius matrix norm. The smallest nonzero singular value of
A is opin(A). The index of the equation chosen on iteration k is iy € [m]. The matrix A is
presumed to have no rows of all zeros so that ||A;|| > 0 for all ¢ and the Kaczmarz update
(Equation (2.1)) is well defined for any iy.

0 k

The initial iterate is denoted x° and the iterate at iteration k is denoted x*. Likewise



for SSRK methods, the initial selectable set is Sy, often chosen as Sy = [m], and subsequent
selectable sets are denoted Sy,. We define the complement of a selectable set as S = [m]\S.
In the analysis of the selectable set, we use the floor [¢| to denote the greatest integer less
than or equal to ¢ and the ceiling [£] to denote the smallest integer greater than or equal to
. For ease of reference, in Table 2.1 we list the acronyms for the methods that we investigate

and analyze in this chapter.

Method acronym Method name Reference(s)

RK Randomized Kaczmarz Strohmer and Vershynin 2009 [SV09)

MDK Max-Distance Kaczmarz Motzkin 1954 [MS54]

SSRK Selectable Set Randomized Kaczmarz Algorithm 1

NSSRK Non-Repetitive Selectable Set Randomized Kaczmarz —Algorithm 2

GSSRK Gramian Selectable Set Randomized Kaczmarz Nutini et al. 2016 [NSL16] and Algorithm 3
GRK Greedy Randomized Kaczmarz Bai and Wu 2018 [BW18a]

RGRK Relaxed Greedy Randomized Kaczmarz Bai and Wu 2018 [BW18b)]

Table 2.1: Acronyms of the methods discussed.

The scalars pq,po, ..., p, represent probabilities associated with each equation of the
system or equivalently each row of A. We often refer to rows of A and equations A;x = b;
interchangeably. We use Diag(v) to denote the square matrix whose diagonal entries take
the values from the vector v and whose remaining entries are all 0. In particular, we utilize
the diagonal matrices of row norms D = Diag(||A4||, [[Az2]l,...,|Awn]) and probabilities
P = Diag(p1,p2,-- -, Pm)-

The Gramian matrix of A is G = AAT where G € R™ ™. It has the property G;; =
(A, Aj) where (-, -) is the dot product between vectors. By the symmetry of the dot product,
G is symmetric with G;; = G;; = 0 if and only if rows A; and A are orthogonal. Thus, those
entries with a nonzero value indicate that the corresponding rows of A are non-orthogonal.
From the Gramian matrix G, we derive a non-orthogonality graph where each node represents

a row of A and a nonzero entry G;; is interpreted as an edge between nodes 7 and j. We



always assume that our graphs do not contain self edges and allow G;; # 0 from here and
thereafter. Since each node in the non-orthogonality graph represents a row in the matrix
A the number of nodes in the graph is m. For this graph, we let M denote the maximum
independent set, the largest set in which no pair of nodes share an edge. We denote the

cardinality and complement of a set as |[M| and MY = [m]\ M, respectively.

2.2 Selectable set method

Since the convergence behavior of the Kaczmarz method is highly dependent on the sampling
strategy used to determine the order of projections, it is important to develop and analyze
various sampling techniques. Here, we focus on the framework in which a selectable set
of equations is identified in each iteration and then an equation is selected from that set,
typically at random. Since the Kaczmarz update only improves the solution when selecting
an equation that is not already solved, we aim to identify the selectable set that is precisely

the set of equations not currently solved.

Definition 1. A selectable set S, C [m| for a Kaczmarz method, given a matriz A, vector

b and an iterate x*, is a set of indices that satisfies i € S, = A;x* =b;.

Based on this definition, if an equation 7 is sampled from outside the selectable set, then

+1 — yk

A,;x* = b;, implying that if row 7 were chosen for the Kaczmarz update, then x*
Thus, sampling exclusively from the selectable set automatically guarantees faster conver-
gence than that of a method that selects in the same random fashion from the entire set of
equations Note that this is related to, but fundamentally different from, random sampling
without replacement. Sampling without replacement indeed guarantees that the same equa-

tion is not selected in consecutive iterations, but an equation solved in iteration k need not

be solved in even the next iteration. See Section 2.6.1 for more discussion.

In the Selectable Set Randomized Kaczmarz method (SSRK), the equation chosen at

each iteration must be sampled from the current selectable set. We assume that a fixed
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probability distribution on the equations is given. Then, instead of sampling i; according
to the probabilities p1, ps, ..., pm as in RK, SSRK samples 7; conditioned on i, € Sg. This
can be achieved by repeatedly sampling i, according to the probabilities py, ps, . .., pm until
the condition i, € Sy is satisfied. This rejection sampling is mathematically equivalent to
sampling from the explicit distribution p;/ > jes, i for i € ) and zero for i ¢ Sk at each
iteration. Explicitly updating the sampling distribution at each iteration is advantageous
and yields computational improvement when the selectable set is small and explicitly known.
Conversely, rejection sampling is advantageous if the selectable set contains a majority of

the rows because it bypasses the computational overhead of recomputing the distribution.

Algorithm 1: Selectable Set Randomized Kaczmarz (SSRK)

1 Input Matrix A, RHS b, initial selectable set Sy, initial iterate x° € row(A),
probabilities py, po, ..., pm >0
2 for k=0,1,... do

3 Sample row 75 according to probabilities pq, po, . .., p,, with rejection until i, € S
ok p
4 Update xF! = x*F — %Ai
&3>

5 Update Sj4; so that i € Sy = A;xFTl =b; > See Algorithms 2 and 3 for

examples.

6 end

Output Approximate solution x*

~

2.2.1 Non-repetitive selectable set

A simple construction to update the selectable set S is to begin by including every index
in the first selectable set So = [m|. Then, for each subsequent iteration, omit the most
recently chosen index from the selectable set so that Sg1 = [m]\{ix}. In this construction,
|So| = m and |Sg| = m —1 for k£ > 0. In order to save memory, there is no need to explicitly

construct Si. It is sufficient to keep track of the previously sampled row which corresponds
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to S¢ = {ix_1}. Sampling with rejection from this selectable set has a probability (m—1)/m
of succeeding on each attempt, since |Sx| = m — 1. The total number of attempts required to
sample iy is thus geometrically distributed with mean m/(m — 1). We refer to this method

as the Non-Repetitive Selectable Set method (NSSRK) Algorithm 2.

Algorithm 2: Non-Repetitive Selectable Set Randomized Kaczmarz (NSSRK)

1 Input Matrix A, RHS b, initial iterate x° € row(A), probabilities pi, pa, ..., pm > 0
2 Sy = [m]
3 for k=0,1,... do

4 Sample row i, according to probabilities pq, po, ..., p,, with rejection until i, € S
- xF_b;
5 Update xF! = x¥ — A‘”ﬂA ik Al
ik

6 Set S1 = [m]\{ir}

7 end

k

03]

Output Approximate solution x

2.2.2 Gramian-Based Selectable Set

A second method to update the selectable set, originally proposed in Nutini et al. is to
leverage the Gramian G = AAT of the matrix A [NSL16, Sepl6]. In many structured
problems we have access to both the matrix A and its Gramian G. One example of such
a problem is graph semi-supervised learning [BLS18]. The Gramian, by definition, has the
property that G;; = (A;, A;). That is, the i entry of the Gramian is the inner product
between the i and j™ rows of A. So G;; = 0 if and only if rows A; and A; are orthogonal.
Based on Lemma 1, stated and proven below, we will develop an update to the selectable

set based on the Gramian.

Lemma 1. If an equation A;x = b; solved by the iterate x*, and if A;, is orthogonal to A,

(i.e. G;j =0), then the equation is also solved by the next iterate x*1.

12



Proof. Let x* and j satisfy A;x* = b;, and suppose A;, is orthogonal to A;. Multiplying
by A; on the left of both sides of the Kaczmarz update (Equation (2.1)) results in

A = A (Xk _ At — by AT)

) i
Al '
At — b,
= At - A AT
A,
A ok —b;
= Ajxt — et AGAL
[ A '
A; 2k — b,
=AxF - TRAL AL,
J ||A_Zk H2 < k ]>
Using the assumption that ijk = bj,
A b —b;
k+1 7 )
AxiT = b — W<Aik7Aj>'
i
Finally, by the assumption that A;, is orthogonal to A,
A, xF — b
AijH =b; — kx—Qk
[

-

[]

Recall that any equation A ;x = b; that is not selectable must be solved by the iterate x".
Thus, from Lemma 1, we know that if j ¢ Sy and if ¢, satisfies G;,; = 0, then the equation
Aj;x = b; is still solved by the next iterate, i.e. A;x**' = b;. This suggests that any
unselectable index j € S, for which G, ; = 0 should remain unselectable on iteration & + 1,
since the corresponding equation is still solved. The Gramian Selectable Set Randomized
Kaczmarz method (GSSRK), Algorithm 3, is based on this observation. In GSSRK, only

those indexes j with G;, ; # 0 are reintroduced to the selectable set at each iteration.

2.3 Convergence analysis

Now, we turn to proving convergence results for Algorithm 1. First, we prove a one-step

convergence result for the general selectable set method with a fixed probability distribution.
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Algorithm 3: Gramian Selectable Set Randomized Kaczmarz (GSSRK) [NSL16]

1 Input Matrix A, RHS b, Gramian G := AAT | initial iterate x° € row(A),

probabilities p1, pa, ..., pm > 0

3 for k=0,1,... do

4 Sample row 75 according to probabilities p1, po, ..., p, with rejection until i, € S

A xk—b'
5 Update xF! = x*F — ”ﬂ—;’“Ag;

6 | Skt = (SkU{j: Gy #0p)\{ix}

7 end

k

@

Output Approximate solution x

We analyze a single iteration of the general case with an arbitrary sampling distribution,
and a known selectable set Si. We then focus on specific probability distributions common
in the literature [SV09], and prove an improvement in the convergence constant which is
inversely proportional to the size of the selectable set. This speedup is roughly what one
should expect. For example if rows are sampled uniformly, then RK wastes an 1 — |Sk|/m

fraction of iterations on updates which make no progress, whereas SSRK avoids this.

Theorem 2. The iterates of Selectable Set Randomized Kaczmarz (Algorithm 1) satisfy

2 1n-1
E, ”Xk+1 _ X*HQ < (1 _ Tpuin(P2D A)) ka _ X*H2>

where X* is the least-norm solution, P = Diag(p1, p2, ..., Pm), and
D = Diag([|[Ad], [[Azll, ..., [[Anl]) when 3 ;cs, pj # 0.

Proof. From the update formula Equation (2.1), we derive the usual update for the squared

error 9
k
| A, x5 — by, |

i

2
[ A

2 2
e = x| = [ = x|
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Letting E; denote the expectation conditioned on ig,%,...,%_1, we take this conditional

expectation on both sides

A, xF—b, |
E [Xk+1—x* 2}: k% 2—E [‘ ix i, ]
L R e e e

A — b
— [|xF — x*||* = Pi } ‘ o
| H Z;k YiesPi 1Al

Pulling the normalizing constant 1/, ¢ p; out of the summation,

2 k * AX B '2
B [ =] = ot - - SR

JESK p] ieS

By the definition of the selectable set, we know that i € S, = A;x* —b; = 0 so we

can extend our sum over all rows

. . 1 AZXk—bZ 2
B e -] = -l - 2L

JE€Sk P; 1€[m]

By definition of x* we can rewrite b; = A;x*

A4><:”“—A~x*|2
E [xkﬂ—x* 2}: xF — x* pZ’ ‘ ‘
[l =] = o - Zjeskpj Tt
2
_ Xk x* pz X —X )’
[ I - Ejesk o ze[zm] 1A,
1 2
a2 1 pi ko *
— |IxF — _ A (xF —
e =l = s 2 A e )

We now rewrite the summation as a norm of a matrix-vector multiplication using the

previously defined P and D matrices:
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1 2

e o e S S
MAS

P%DflA(xk — x¥)

2
Now, we establish the lower bound HP%DflA(xk —x%)|| > o2, (P2D'A) ka — X*HQ,

where o, is the smallest nonzero singular value based on the proof technique in Zouzias and
Freris [ZF13]. By the assumption that A has no zero rows, D is symmetric positive definite
(SPD). Likewise, since the probabilities py, po,. .., pm are positive, P is SPD. Since D and
P are SPD, so are Pz and D%, Thus, row(P2D~'A) is equal to row(A). The vector x*
belongs to row(A) because it is the least-norm solution to Ax = b. Additionally, the iterate
x" belongs to row(A) because the initial iterate x° belongs to row(A) as does the direction
of the Kaczmarz update at each iteration. Since the iterate x* and the least-norm solution

k

x* both belong to row(A), so does their difference x* — x*. Finally, recalling that row(A) =

row(PzD™A), we see that x* — x* € row(P2D*A) and thus HP%D_lA(X’“ — x*) i >
o2 (P2D7'A) ka - X*H2. Applying this lower bound, we arrive at the desired result
1 1 2
IE[ k+1_*2}: ko oox||2 PiDA(xF — x*
R e LAY
1 1 2
<t —x*|* - 02 (P:D'A) [|xF — x*
[ f SPTRC )| I
O-Iznin(P%DilA) k *||2
=11- x'—=x| .
(1 B o
]

2.3.1 Corollaries

We now take a closer at how Theorem 2 applies to Algorithms 1 to 3 for two specific common
choices of the probabilities py, po, . . ., pm. In particular, we analyze uniform probabilities p; =
1/m in Corollary 3 and squared row norm probabilities p; = ||A;||* / ||A |3 in Corollary 5. For
either choice of probabilities, the convergence guarantees vary depending on the selectable

set S at each iteration.
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Corollary 3. When using uniform probabilities p; = 1/m, the iterates of Algorithm 1 satisfy
2. (D7A) 2
E Xk+1 o X* 2 < (1 o Umln( ) Xk o X* ’
e s (1 DA e

where D = Diag(Aill, |4z ] - . [ Awl).
Proof. Apply Theorem 2 with p; = % O

Corollary 3 shows that Algorithm 1 with uniform probabilities p; = 1/m achieves a con-
vergence guarantee that depends on the number of selectable rows |Si|. The fewer the number
of selectable rows, the faster the convergence guarantee. If nearly all rows are selectable at
(D™'A)/m)
for RK with uniform probabilities [NSL16]. In Algorithm 2, all but one row are selectable

every iteration, Corollary 3 recovers the known convergence guarantee (1 — o2

min
at each iteration, so the convergence guarantee is trivially slightly faster than that of RK as
shown in Corollary 4.

Corollary 4. When using uniform probabilities p; = %, the iterates of Algorithm 2 satisfy

2 —1
By [x! — x| < (1 B M) 1% — x|

m

2 (DA
and Ekuxkﬂ—x*”z < (1—M> HXk_X*HQ for E>1,
m—1
where D = Diag([|Av[], | A2l - [[Am])-
Proof. Substitute |Sy| = m and |Sg| = m — 1 for £ > 1 in Corollary 3. O

As discussed, using uniform probabilities results in a simple relationship between the
number of selectable rows and the convergence guarantee at each iteration. In contrast, using
squared row norm probabilities p; = HA1H2 / HAH% results in a slightly more complicated
relationship between the selectable set S and the convergence guarantee. This relationship

is shown in Corollary 5.
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Corollary 5. When using probabilities proportional to the squared row norms

pi = |A4]]* / |A|l%, the iterates of Algorithm 1 satisfy

2 A
E, ka+1 _X*HZ < (1 _ Onin (A) 2) ka _X*HQ'
2 jes, 1Al
Proof. When p; = || A;||” / || A]|%, we have
1 , Ay A [Am[ . 1 1 1 1
P:zD 1:D1ag<“ iy ., 22 Diag [ ——, = L.
[Al[p" |AllE A [AL]]" || Azl [ Am]| Al

Substituting this into Theorem 2

E, ||Xk+1 . X*H2

along with the probabilities p; = ||A;||* /|| A |7, we find

Jr2nin< ! A) 2
< HA”F k *
< - \X -Xx
Z' ||AjH2
JESK A%
1 2
TAJZ Omin (A) -
=|1- [x* — x|

2
||AIH% ZjeSk ||A] ||
0.2

. min(A) HXk_X*HQ'
Zjesk ||A]H2

Corollary 5 shows that Algorithm 1 with squared row norm probabilities

pi = ||As]|” / ||A )% achieves a convergence guarantee that depends on the quantity

>jes, |A,||>. This quantity is the squared Frobenius norm of the row-submatrix of A

composed of those rows that are

selectable. When all of the rows of A have roughly the

same norm, Corollary 5 suggests that Algorithm 1 converges faster when fewer rows are

selectable. When the rows have very different norms, the relationship between the selectable

set and the convergence guarantee is not so simple.

When nearly all rows are selectable at every iteration, Corollary 5 recovers the known

1 — o2

min

convergence guarantee (

(A)/ ||A||2F) for RK with squared row norm probabilities

pi = ||A1?/I|A|3 [SV09]. In Algorithm 2, all but one row are selectable at each iteration,

so the convergence guarantee is similar to that of RK as shown in Corollary 6.
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Corollary 6. When using probabilities proportional to the squared row norms

pi = |A4]]* / |Al%, the iterates of Algorithm 2 satisfy

2
wa—xw2s(1—ﬂ@ﬁﬁ)ww—fw

1A%
2. A) 9
and Ey, |[xF! — x* 2 < (1 - Trnin ) xF — x* for k>1.

Proof. For iteration k = 0, substitute S¢ = [m] in Corollary 5. For iterations k& > 1,

substituting S = [m]\{ix—1} in Corollary 5 shows the desired result

R (e e | )
2 jetm\(in-1} 1A
_ (11— Omin (A) ) ¥ — X*H2
2
Zje[m} ||AjH2 - HAik—lH
. Ormin(A) ) ka_x*‘f'
N

]

From Corollary 6, we see that NSSRK (Algorithm 2) is expected to converge faster on
iterations when some row with large norm is not selectable. This is essentially an artifact
of the sampling scheme. Rows with large norms are chosen disproportionately often; when
such a row is not selectable, the sampling is more uniform, and convergence improves.

Next we compare the convergence analysis of NSSRK with convergence guarantee from
the popular Kaczmarz method proposed in Bai and Wu [BW18b]. While the NSSRK method
is relatively simple and does not yield large improvement over non-selectable set methods,
the convergence guarantee corresponds to the same convergence guarantee as in [BW18b].

This leads us to believe that there may be a theory gap in Kaczmarz convergence analysis.
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2.3.2 Comparison with Relaxed Greedy Randomized Kaczmarz (RGRK) the-

ory

The Relaxed Greedy Randomized Kaczmarz method (RGRK)[BW18b] is similar to MDK in
that both methods use sampling strategies that are biased toward rows with larger normalized
residuals |A;x" — b,-| /|| A;]|. In particular, RGRK considers only rows that satisfy

<k p]? F_ bl
‘AlTA Hb‘ —eﬁﬁﬁi%(‘AJwa\f]' >+<1_9)M e e
J

and samples the row A;_ with probability proportional to the squared residual ‘Aixk — bi‘Q

from among such rows. RGRK satisfies the convergence result[BW18b)]

E, [ —x|P < (1- (ol ”F+(1—9> min ) x|t for k>,
et < (1 (o2 )]

(2.3)
where
7 = max 1A ]* = [|A 7 — min || Ag]*. (2.4)
i€[m)] = 1€[m]
J=Lj#

This convergence result is optimized by the parameter 6 = 1 for which RGRK is equivalent

to MDK. With 6 = 1, Equation (2.3) simplifies to
2 A
Ek ||Xk+1 o X*HQ S (1 o Urnln( )

f)/

Coincidentally, NSSRK satisfies Equation (2.5) for squared row norm probabilities.

) [x* — x*||2 for k> 1 (2.5)

Corollary 7. When using probabilities proportional to the squared row norms

= [|A;|1* /| A%, the iterates of NSSRK (Algorithm 2) satisfy Equation (2.5).

Proof. By Corollary 6, we have the desired result

2 (A
E, ||Xk+1 _ X*HQ < <1 _ | 2(7mm( ) 2) ka _ X*HZ

[Allr = [ As_ ]

2
< (1 _ Tinin(A) ) ka . X*“?
1A% — miniegm || A

2
_ (1 B o’mir,ly(A)> ka _X*H2'
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]

Since NSSRK satisfies Equation (2.5) while RGRK only satisfies Equation (2.3), one
might incorrectly assume that NSSRK will outperform RGRK. However, as we observe in
Section 2.5, this is not the case. RGRK significantly outperforms NSSRK and GSSRK, ne-
glecting CPU time. This discrepancy between convergence results and observed performance
suggests that Equation (2.3) is not the tightest possible convergence result for RGRK. In-
deed, RGRK was recently shown to satisfy the tighter convergence result [GMM21] based
on the constant o2 (A), defined as

Ai(x —x*)?
o2 (A) = min max | (2X <)l 5 | (2.6)
xerow(A)\{x*} i ||Az|| ||X _ X*H
Jj s.t. Aj(x—x*)=0

where x* € row(A). The improved convergence result is as follows:

2
E, [+ — x| < (1—9020(A) - “‘”%) I =P for k> L
F

This convergence result is optimized by the parameter § = 1, see Lemma 8, leading to the

improved convergence bound of

By [[x** — x*H2 < (1-02(A) X" - X*”2 for kE>1.

o0

The improvement of this new bound is explained by the relationship between o2 (A) and

o2, (A), which is matrix dependent and discussed in more detail in other works [NSL16,
GMM21]. The following lemma, Lemma 8, attempts to explain this relationship (second <)

and the fact that § = 1 is the optimal parameter (first <).

Lemma 8. Let A be a matriz then

D) _ oha(A) _

min < min S Uoo(A) (27)
[N "
Where o2, (A) is the smallest nonzero singular value, o (A) is defined by Equation (2.6)

and 7y is defined by Equation (2.4).
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Proof. By definition v = || A — Min;e ) A * < |A])% so

min min

2 —
Az g

Oin(A) _ 02in(A)

A) is the smallest nonzero singular value and x* € row(A) we have the following:

2 Ai(x —x)*
mln( ) xErow(A)\{x*} Z

_ lad?
IAlZ

Since o2 (

\X X*H

Multiplying and dividing by p; then rearranging terms yields

A [JA]E |Ai(x = x*)[?
ol (A) = . Z 2 I; N2
xerow(A)\ ') [A7 [[A]™ flx = x|

Ai(x — x|
=||A]? min i A

x€row X* H '

Imposing the constraint that x € row(A)\ {x*} and 3j s.t. A;(x—x*) = 0 then noting that

|A;(x — x*)|> = 0 results in

o2m(A) = A3 min Zp- Ai(x —x*)|?
min errow(A)\{x*} i ' HA1H2 HX

— x|

Ai(x—x)[*

< A3 min Di A

1AllF xerow(A)\{x*} Z 1A ||x — x|
35 s.t. Aj(x—x*)=0

Ai(x—x)|°
= |A|7 bi [A:
[AllF AN (') 2 1A% |]x —

XETOW X*“Q.
Jj st Aj(x—x*)=0 #J

Taking a max over the rows ¢ for the fraction of the summation

oAV <AL min 3 p A xOL
min F xerow(A)\{x*} ZHAZ-H2HX—X*||2
3j s.t. Aj(x—x*)=0 i#]

Ay(x —x*
< [|A|]2 min max | E i
< llalk xerow(A)\{x*} ¢ HAgH l|x — X*H 7 b
3j s.t. Aj(x—x*)=0 v

Bounding ) . ; pi from above by 1—min; p;, simplifying and applying the definition of o2 (A)
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A
PunlA) < A max HOOL

XETOW x* ¢ *
., < A(()\{ )} | Ay H |x — x H pwy
Ay(x —x)
<IAE  min o max Z2ETON g
weowiA\oc) AP [x—x P
Jj s.t. Aj(x—x*)=0

= || A7 0% (A)(1 — minp,)
Finally, distributing the HAH% and substituting the definition of p; and

Omin(A) < A7 0% (A)(1 — minp;)

min

= 0% (A)(|| A7 — min [|A;]*)

Thus, U‘?ﬂig(A) < 02 (A) as desired. O

a2, (A)

The improvement of this new bound is explained by the difference between i and

02 (A), which we quantify by the above Lemma 8. It is matrix dependent and described in

o0

more detail in Gower et al. [GMM21] and Nutini et al. [NSL16]

2.4 Lower bounds on size of Gramian selectable set size

Investigating the size of the selectable set is essential for understanding the convergence of the
GSSRK method, Algorithm 3 [NSL16, Sep16]. In Section 2.3, we proved that the convergence
of the GSSRK method is dependent on the size of the selectable set, the smaller the selectable
set the better the convergence guarantee is. In this section, we prove a lower bound on the
size of the Gramian selectable set after O(m) iterations where m is the number of rows in
the matrix. For many structured problems the lower bound on the size of the selectable
set is cm where ¢ € (0,1). This means that the convergence guarantee only improves by a

constant factor in comparison to Kaczmarz methods that do not use a selectable set.
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In particular, here we prove a general method for calculating a lower bound on the
Gramian based selectable set. Then we apply this lower bound to some structured problems.
Our lower bound can also be used as a heuristic to assess in which cases applying the GSSRK
method could lead to a large speedup. When the Gramian is sparse, meaning that there
is a lot of orthogonality between rows of the matrix, the GSSRK method will likely yield

improved convergence rates.

To develop our lower bound on the selectable set, we consider the Gramian of the matrix,
G = AAT as an adjacency matrix and examine the graph formed from this matrix, the non-
orthogonality graph. This graph contains m nodes, each node representing a row of the
original matrix A, node ¢ represents row A;. There is an edge between nodes ¢ and j if
Gij = (Ai,A;) # 0, meaning that rows ¢ and j of A are not orthogonal. So the graph
encodes the orthogonality structure of the original matrix A. Two rows are orthogonal if
and only if they do not share an edge in the graph. Next we will use the non-orthogonality
graph and a graph theoretic approach to develop a lower bound on the selectable set for

Algorithm 3.
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Figure 2.1: The non-orthogonality graph constructed from the Gramian G of the above
matrix A. This undirected graph is connected because each node is reachable from every
other node along the edges of the graph. The size of the maximal independent set of the
graph is 2 = | M| because the largest set of nodes that that do not share an edge among
them is 2. If we consider the subgraph formed from nodes 1 and 2 or nodes 1 and 3, these
graph have no edges. No larger sets can be created because if we add any additional nodes

to these sets, the induced subgraphs will contain edges.

Theorem 9. Given a system of equations A, b and an initial iterate x° such that Ax" #
b. Then the selectable set Sy from Algorithm 3 satisfies m — |M| < |Sx| < m — 1 after
O(m) iterations for all k. Where | M| is the size of the maximal independent set formed by

considering the Gramian matriz G = AAT as an adjacency matriz of a connected graph.

Proof. Consider the graph constructed from the Gramian of our matrix. Since this graph is
connected and we have an unsolved equation, after O(m) iterations each equation will become
unsolved at least once and therefore be selectable. We now consider the maximum size of the
set of unselectable rows after O(m) iterations. The only rows that are unselectable are rows
that have been selected by GSSRK, meaning that all neighbors of this node must be selectable

by the sampling process. Therefore if Sj is the set of unselectable rows. If r1,ry € Sf, then
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r1 and ry cannot share an edge. Otherwise, the row more recently selected in the method,
without loss of generality 7; is necessarily unselectable then ro would necessarily become
selectable because it is a neighbor of ;. Thus, each row in S must not be a neighbor of any
other row in §f. So the maximum size of S}, is at most the size of the maximum independent
set of the graph, M. Thus the size of the selectable set is at least: m — |M].

For k > 1, 8; does not include row i;,_; by the definition of the Kaczmarz update, at least

one row is always solved, so |Si| < m — 1. O

An algebraic interpretation of |M]| is that this number corresponds to the size of the
largest set of rows of A such that all elements in this set are pairwise-orthogonal. Equiv-
alently, this is the number of rows in the largest submatrix of the rows of A that can be
constructed Q € RM*” such that QQ” = D where D is a diagonal matrix. Since at most
A has | M| pairwise orthogonal rows, by Lemma 1 all of the equations A;x = b; where A, is

a row of Q can be simultaneously solved by a Kaczmarz method.

Next, we prove that the proposed lower bound of the the selectable set in Theorem 9 is

tight and describe a row sampling scheme to achieve this lower bound.

Proposition 10. There exists a sampling strategy for a Gramian based Selectable Set Kacz-
marz method that achieves the lower bound of m — | M| from Theorem 9 on the size of the

Gramian based selectable set.

Proof. To achieve this lower bound on the selectable set, we construct a sequence of rows
to be selected, sampled. After the method selects each row in this sequence once, the size
of the selectable set is exactly m — |[M|. Let M denote the maximum independent set of
Gramian graph G. Then the sampling strategy in which we select each row from M in
succession results in each of the rows of M being not selectable. Since none of the rows in
M are neighbors in the graph, meaning that all rows in M are pairwise orthogonal, selecting
any row in M does not impact the selectable or unselectable status of any other row in M.

Thus, if we select each row in M once, there will be exactly | M| unselectable rows, meaning
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that size of the selectable set will be exactly m — |M|. O

If the maximum independent set formed from the Gramian is large, then the size of the
selectable set will be small for Algorithm 3. Thus, based on our convergence analysis for
selectable set methods, Theorem 2, we will have a convergence guarantee improvement over
Kaczmarz methods that do not use a selectable set. We examine and provide examples of

this convergence improvement experimentally in Section 2.5.

Next, we investigate how we can apply Theorem 9 to basic structured non-orthogonality
graphs and examine the size of their selectable sets. We select the following graphs as they
correspond to non-orthogonality graphs constructed from very sparse systems, and many
serve as simple but motivating examples for such structures that arise in practice. We
anticipate that by examining these specific structured graphs we may be able to understand

when applying GSSRK to a system will yield significant convergence improvement.

First, we consider the path graph. This is a graph in which the adjacency matrix (the
Gramian) has nonzero entries exclusively along the diagonal, the super diagonal and sub-

diagonal, representative of sparse matrices from networks applications.

Corollary 11 (Path Gramian). For the case of a path graph Gramian with m vertices, the

size of the selectable set is lower bounded by L%J

Proof. Taking every other vertex in the path, we obtain a maximum independent set of size

| Z]. O

(%W We then apply Theorem 9 to obtain the bound |Sy| > m — (mw =5

2

Next we consider a star graph whose adjacency matrix contains nonzeros on the diagonal,
along a single row ¢, and the column /. This is representative of a matrix that is mostly sparse
but may contain some nonsparse rows. An example of this structure arises in collaborative
filtering where data may represent user prescribed ratings. Most users will have few ratings
representing sparse rows, but some super-users will have many ratings, representing the

nonsparse rows of the matrix.
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Corollary 12 (Star Gramian). For the case of a star graph Gramian with m vertices, the

size of the selectable set is lower bounded by 1.

Proof. The m — 1 leaves form a maximum independent set of size m — 1. We then apply

Theorem 9 to obtain the bound |Sg| > m — (m — 1) = 1. O

We note that the high degree node of the star represents a nonsparse row which may
cause minimal convergence improvement when applying selectable set methods. Next we
consider a cycle graph in which the adjacency matrix has nonzeros along the diagonal, super
diagonal, sub-diagonal, top right corner and the bottom left corner. This represents a sparse

matrix similar to Corollary 11 with slightly less sparsity.

Corollary 13 (Cycle Gramian). For the case of a cycle graph Gramian with m vertices, the

size of the selectable set is lower bounded by (%w

Proof. Taking every other vertex in the cycle except the last one if m is odd, we obtain

a maximum independent set of size Lmj We then apply Theorem 9 to obtain the bound

Sil = m — 2] = [=]. -

2

Next we consider a banded graph in which the adjacency matrix contains nonzeros along
the diagonal, ¢ super diagonals and ¢ sub-diagonals. This adjacency matrix occurs commonly
in semi-supervised graph learning tasks in which only data for the k nearest neighbors of a

node is kept.

Corollary 14 (Banded Gramian). For the case of a banded matriz Gramian with m vertices,

bandwidth ¢ (upper and lower bandwidth £), the size of the selectable set is lower bounded by
Im

[l

Proof. The maximal independent set can be constructed by taking the first node, node 1,

which is adjacent to ¢ other nodes. Then taking node 1+ ¢ 4 1 to avoid the ¢ neighbors of
the first node. This node has at most 2¢ neighbors but shares ¢ of them with the first node.
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So now we can take node 1 4 2¢ + 2. Repeating this process we deduce that we can select

one node from every ¢+ 1 nodes. Resulting in a maximal independent set of size D%J . We

then apply Theorem 9 to obtain the bound |Sg| > m — h%w = mejﬁ - E%J = u‘;ﬂlj O

Note that a path graph is an example of a banded matrix with bandwidth one. Finally,
we consider a symmetric £ regular graph. The adjacency matrix for this graph has ¢ nonzero
entries on each row and corresponding column, excluding the diagonal entries thus ¢ < m.
Since this adjacency matrix corresponds to an undirected graph, it is symmetric. This
adjacency matrix pattern is likely to occur when applying a generalized k-nearest neighbors

algorithm to graph data.

Corollary 15 (¢-regular Gramian). For the case of an (-reqular graph with m vertices and

degree £ < m, the size of the selectable set is lower bounded by max( (%W ).

Proof. The size of the maximum independent set of an f-regular graph [Ros64] is upper

bounded by

min(| 2| ,m — ). Thus, we can apply Theorem 9 to obtain the bound |S;| > max([%], ().
O

Theorem 9 gives us a lower bound on the size of the selectable set in many cases, see
Table 2.2. However, to apply this theorem directly, we need an upper bound on the size
of the maximum independent set. For some classes of graphs, while a lower bound may be

achievable, the upper bound is the trivial bound of m — 1.
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) Maximum independent Lower bound on
Gramian graph

set size size of selectable set |S|
path graph 5] 5]
star graph m-1 1
cycle graph 5] Ed
banded matrix graph, bandwidth ¢ h%w Lé—mlj
t-regular graph min(|2 | ,m — 0) max([2],0)

Table 2.2: Lower bounds on size of the selectable set for structured Gramian problems.

2.5 Experiments

We evaluate RK, NSSRK, GSSRK, and GRK on a series of synthetic and real world matrices
from the SuiteSparse matrix library (implementation of methods used available here: https:
//github.com/jdmoorman/kaczmarz-algorithms/). For each matrix, we plot the squared
error norm versus iteration number for 20000 iterations. Results were averaged over 100
trials. Each line corresponds to the average error at the iteration over the 100 trials and the
shading corresponds to one standard deviation above the mean and one standard deviation
below the mean at each iteration. The vectors x* and b for all of the experiments are
constructed by taking a standard random normal vector v (of mean 0 and standard deviation

1 entries), computing x* = ﬁ, then applying A such that b = Ax*.

The two synthetic matrices that we consider are the circulant matrix and the 3-banded
matrix. The circulant matrix is a 100 x 100 matrix with o, = 0.690, see Figure 2.2a and
Figure 2.3a. The matrix has non-zeros on the diagonal, sub-diagonal and top right corner.
The non-zero entries of each row are the row number ¢ divided by V2 so each row has
non-zero entries \/Li The Gramian of the circulant matrix corresponds to the cycle graph

Gramian described in Corollary 13. The 3-banded matrix is a 100 x 100 matrix with standard
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random normal entries along the diagonal and the three rows above and below the diagonal
producing a matrix with bandwidth 3 and o,;,, = 0.0180, see Figure 2.2b and Figure 2.3b.
The Gramian of this matrix corresponds to a banded matrix graph with bandwidth 6, in

Corollary 14.

The two real world matrices we consider are Cities and the transpose of the N_pid from
the SuiteSparse matrix library [DH11]. The Cities matrix is a dense matrix of size 55 x 46
with oni, = 0.271, see Figure 2.2¢ and Figure 2.3c. The transpose of the N_pid matrix is
a sparse matrix of size 3923 x 3625 with 8054 nonzero entries that has o.;, = 0.0690, see

Figure 2.2d and Figure 2.3d.

The four algorithms that we consider are RK, NSSRK, GSSRK, and GRK, each of which
has differing computational complexity. RK has a computational complexity of O(n) per
iteration, where n is the number of columns in the matrix. Similarly, NSSRK also has
a computational complexity of O(n), requiring O(1) to update the selectable set. Unlike
NSSRK, GSSRK has the added overhead of updating the selectable set at each iteration
requiring O(n+m) at each iteration, O(n) to compute the Kaczmarz update, Equation (2.1),
and O(m), where m is the number of rows, to look at a row of the Gramian matrix and
update the selectable set. Additionally, if it is necessary to pre-compute the Gramian with
standard matrix multiplication, this requires O(nm?). Finally, the most computationally
costly method per iteration is GRK, which requires O(nm) at each iteration as a full residual
computation, Ax, — b, is required to construct the sampling set and distribution. Of course,
these are all generic bounds, and different implementations may lead to improvements, such

as parallelization, fast multiplies, and other specific uses of the system’s structure.

In all four of the matrices pictured, as well as all the other matrices, we evaluated our
methods on, we saw little to no difference between the performance of RK and NSSRK. GRK
also outperformed RK, NSSRK, and GSSRK on every matrix. However, we did observe some
differences in the performance of GSSRK relative to the other methods. In some examples,

we see that GSSRK performs the same as RK and NSSRK, while in others, it performs
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slightly better.

In Figure 2.2b and Figure 2.2a, our two synthetic matrices, we see that one of them
(Figure 2.2b) displays very little difference in performance between GSSRK and RK, while
the other (Figure 2.2a) has a much larger gap in performance between the two. This is due
to the difference in size of their respective selectable sets. In the circulant matrix, each row
is only non-orthogonal to two others, while each row in the banded matrix is non-orthogonal
to six others. With a sparser non-orthogonality graph, we expect to see smaller selectable

sets, which leads to improved performance.

We observe that in Figure 2.2¢ there is no performance gap between GSSRK and RK on
the Cities matrix. Because the Cities matrix has no rows that are mutually orthogonal, the
selectable set for this matrix includes every row, except for the one that was just picked,
and thus the GSSRK method is equivalent to NSSRK. In Figure 2.2d, we see that GSSRK
outperforms RK. Computing the Gramian of the N_pid matrix, we see that it is much sparser,
with fewer than 0.1% of the entries being nonzero. Thus, the selectable set is much smaller,
leading to improved performance, consistent with our theoretical results. We note that RK,
NSSRK and GSSRK all require a sampling distribution that is commonly either the uniform
or the row norm distribution [SV09] while GRK requires a choice of § that was set to 0.5
as in [BW18a]. The results from both uniform and row norm distributions are shown and

both display similar comparisons, where GRK performs best but is most costly, followed by

GSSRK, then NSSRK, then RK.

Next, we validate our theoretical results experimentally by varying o.,;, and examining
the convergence rates of GSSRK with uniform probabilities, Algorithm 3. Since the SSRK
convergence result, Theorem 2, depends on oy;,, the smallest nonzero singular value, we
construct three matrices with varying o,;, and observe their convergence rates. We construct
circulant matrices of sizes 50 x 50, 100 x 100 and 150 x 150 with ones along the diagonal, sub-
diagonal and top right corner and corresponding o,;, = 0.126, o, = 0.063 and oy, = 0.042.

The results shown in Figure 2.4 support our theoretical guarantees. The results of the
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experiment on the circulant matrices were averaged over 100 trials for each matrix. The
shading corresponds to one standard deviation above the mean and one standard deviation

below the mean.

In conclusion, our experiments support our theoretical bounds and we observe that
NSSRK and RK perform nearly identically. Since NSSRK has a minimal impact on the
row sampling in comparison to RK methods, we do not expect improvement over RK specif-
ically when m is large. Additionally we observe that GSSRK outperformed RK in some cases.
These cases include matrices with many orthogonal rows which is likely to occur when solving
sparse systems. Even though we have improved convergence guarantees for both GSSRK
and NSSRK over RK, we observe that the empirical performance of the algorithms may
not reflect this. Finally, we note that GRK always outperforms GSSRK and NSSRK even
though both methods have identical or improved theoretical guarantees over GRK when
considering a o, (A) bound. This supports the belief that there is a gap in the theoretical
understanding of GRK and perhaps other Adaptive Kaczmarz methods [GMM21].
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Figure 2.2: Squared error norm versus iteration for RK, NSSRK, GSSRK, and GRK (RGRK
with 6 = 1/2) using uniform row probabilities for RK, NSSRK and GSSRK. Results were
averaged over 100 trials. Figure 2.2b is a 3-banded matrix, Figure 2.2a is a circulant matrix,
and Figures 2.2¢ and 2.2d are two real world matrices, Cities and N_pid all described in

detail above. The shading denotes one standard deviation.
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Figure 2.3: Squared error norm versus iteration for RK, NSSRK, GSSRK, and GRK (RGRK
with § = 1/2) using row norm probabilities for RK, NSSRK and GSSRK. Results were
averaged over 100 trials. Figure 2.3b is a 3-banded matrix, Figure 2.3a is a circulant matrix,
and Figures 2.3¢ and 2.3d are two real world matrices, Cities and N_pid all described in

detail above. The shading denotes one standard deviation.
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Figure 2.4: Squared error norm versus iteration for GSSRK with uniform row distribution on
varying circulant matrix sizes, corresponding to varying o, to confirm that as o,,;, increases
the convergence rate improves. 100 trials on circulant matrices of sizes: 50 x 50,100 x 100
and 150 x 150. Each curve corresponds to the iteration average over the 100 trials and the
shading corresponds to one standard deviation above and one standard deviation below the

mean of norm-squared errors at each iteration.
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2.6 Conclusion

In this chapter, we studied various selectable set approaches for the Kaczmarz method. These
aimed to accelerate the standard approach of uniform random row sampling by attempting
to move the iterates larger distances in each iteration, thereby reaching the desired solution
in fewer steps. We proposed and analyzed a general selectable set randomized Kaczmarz
method (Algorithm 1) in which rows are sampled from a selectable set S. The selectable
set, §, is updated at each iteration of the method and satisfies the condition that given a
row of the matrix j, j € S = A;x* = b;. We proved a general convergence result for this
method, Theorem 9, in which we proved that there is an improvement inversely proportional

to the size of the selectable set over Kaczmarz methods that sample from all rows.

After we defined the general selectable set framework we examined several strategies
such as the simple non-repetitive strategy (Algorithm 2) and the Gramian based strategy
(Algorithm 3). Although the non-repetitive strategy was quite simple and perhaps naive, it
led to interesting theoretical results that are comparable to those in state of the art methods
such as the methods proposed in [BW18a, BW18b], see Section 2.3.2. This led us to believe
that there is a theory gap in existing Kaczmarz literature and that a tighter analysis could

be possible for some Kaczmarz methods.

The Gramian based strategy leveraged the orthogonality structure of the matrix which
is encoded in the Gramian, G = AAT. There are many structured problems in which both
the matrix A and the Gramian G are known such as graph-based semi-supervised learning
[BLS18]. Leveraging the Gramian to update the selectable set yielded tighter convergence
bounds than using the non-repetitive strategy, but with the added overhead of updating the
selectable set using the Gramian. Bounds on GSSRK were originally proposed by Nutini et al.
[INSL16]; we generalized their results by constructing a bound in terms of the singular values
of the original matrix, instead of singular values of submatrices, which may be less natural to
compute in applications. We discussed the lower bound on the size of the selectable set for

the Gramian update when dealing with structured problems, and noted that the size of the
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selectable set is usually on the order of number of rows O(m). This relatively large size meant
that there is a constant improvement of the convergence guarantee over corresponding non-
selectable set methods. Finally, we provided some numerical experiments on both synthetic
and real-world matrices from the SuiteSparse package [DH11] that demonstrated the benefits

of using selectable sets and showcase how the variations compare.

2.6.1 Future directions

We addressed the problem of projecting onto a row of an equation that has already been
solved through sampling from a selectable set S of unsolved equations. In our methods, we
consider the p; values as a fixed distribution that we renormalize based on the selectable
set. Based on our one step convergence result, Theorem 2, one could try to optimize the
probabilities p; themselves each iteration instead of drawing from this fixed distribution. This
would require additional computational cost but may have the benefit of faster convergence

rates.

A different simple yet surprisingly effective modification of the probability distribution at
each iteration is sampling without replacement [PJM21, RR12|. In these methods a row can
only be sampled again after all of the other rows of the matrix have been sampled. This con-
trasts the standard method of sampling with replacement in which there is a fixed probability
for a row to be selected at each iteration throughout the duration of the algorithm. One
possible explanation for why sampling without replacement shows empirical improvement
over sampling with replacement could stem from the problem that selectable set methods
aim to solve. During some iterations of a Kaczmarz method, there is no improvement to
the iterate because the method is projecting onto an already solved equation yielding no
change to the iterate. However, empirically and theoretically, the selectable set method does
not account for the improvement seen when sampling without replacement. This suggests
that there is more going on in the interaction between projections than simply being (near)

orthogonal or sharing a solution space.
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The Recht-Ré conjecture [RR12] gave a theoretical explanation of why sampling without
replacement outperforms sampling with replacement. Recent works [LL20, IKW16] have
proved that the Recht-Ré conjecture does hold for smaller dimensions, giving a theoretical
explanation of why sampling without replacement outperforms sampling with replacement.
However, recently Lai et al. [LL20] were able to prove that for dimensions five or larger
this conjecture is false. Thus the theory gap of proving why sampling without replacement
outperforms sampling with replacement in Kaczmarz methods is currently an open problem,

that while seemingly related to selectable sets, is still not explained.
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CHAPTER 3

Online Signal Recovery via Heavy Ball Kaczmarz

This chapter is an adaptation of [JYN22]| which is joint work with Ben Jarman and Professor
Needell. Ben Jarman initially proposed the idea. Ben Jarman and I contributed the theory,

experiments and writing under the supervision of Professor Needell.

We propose a new variant of the Kaczmarz method to online signal recovery setting. Our
proposed method, leverages an additional heavy ball momentum term. This term allows for
faster convergence when the source distribution which we sample from is highly coherent,
inner product between different linear measurements is large. We prove its convergence and

experimentally analyze its performance on both synthetic and real world datasets.

3.1 Introduction

3.1.1 The Kaczmarz Method

Recovering a signal * € R"™ from a collection of linear measurements is an important problem
in computerized tomography [Nat01], sensor networks [SHS01], compressive sensing [EK12,
FR13], machine learning subroutines [Bot10], and beyond. When the collection of linear
measurements is finite, say of size m, and accessible at any time, the problem is equivalent
to solving a system of linear equations Ax = b with A € R™*" and b € R™, which has been
well-studied. A popular method for solving this classical problem is the Kaczmarz method
[Kar37]: beginning with an initial iterate x¢, at each iteration a row of the system is sampled

and the previous iterate is projected onto the hyperplane defined by the solution space given
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T

by that row. More precisely, if the row a; x = b; is sampled at iteration k, the update has

the form
<Gi7$k—1> — b
2
il

The original method proposed cycling through rows in order, such that « = £ mod m. In

T = Tk—1 — i

[HM93] it was observed empirically that randomized row selection accelerates convergence,
and in the landmark work [SV09] it was proven that selecting rows at random with probability

proportional to their Euclidean norm yields linear convergence in expectation.

In this work, we consider an online model in which at each discrete time t = 1,2, ...
a linear measurement (i, y,) € R™ X R is received. We assume that each measurement is
noiseless, i.e. {(p,x*) = y; for all ¢, and that measurements are streamed through memory
and are not stored. Note that the linear system setting described above is a special case of
this model, but we now allow for measurements to be sampled from a more general source.
The Kaczmarz method is well-suited to this setting as it requires access to only a single
measurement at each iteration. See, for example, [CP12], where measurement data is viewed
as being sampled i.i.d. from some distribution D on R"™. We assume the noiseless, i.i.d.
setting throughout this chapter. A Kaczmarz update in this setting has the following form,
when initialized with some arbitrary xo: at discrete times ¢t = 1,2,..., a measurement
(o1, y:) € R™ X R is received, where ¢, ~ D, and a Kaczmarz iteration is computed

3 Pt-
[=n

Tt =T —

In [CP12] it was shown that under certain conditions on D, the method enjoys linear con-
vergence in expectation. Further related works have placed online Kaczmarz in the context
of learning theory [LZ15], and have analyzed sparse online variants [LZ18, LWS14]. Ran-
dom vector models have also appeared in analyses of Kaczmarz methods for phase retrieval

[TV18] and for sparsely corrupted data [HNR22].
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3.1.2 Heavy Ball Momentum

Heavy ball momentum is a popular addition to gradient descent methods, in which an
additional step is taken in the direction of the previous iteration’s movement. Proposed
initially in [Pol64], it has proven very popular in machine learning [SMD13, KSH17, GLZ19],
with a guarantee of linear convergence for stochastic gradient methods with heavy ball
momentum proven in [LR20] (improving on earlier sublinear guarantees in [YLL16, GPS18]).
A gradient descent method itself [NSW16], the Kaczmarz method may be modified with

heavy ball momentum to give updates of the following form:

P, Lt) — Y
%@t + Bz — x4-1),
¢

where § > 0 is a momentum parameter. In [LR20] it was shown that when applied to a

Ti41 = Ty —

linear system (i.e., when each ¢, is sampled from the rows of a matrix A), the Kaczmarz
method with heavy ball momentum converges linearly in expectation. Experimental results
indicate accelerated convergence compared to the standard Kaczmarz method on a range of

datasets, while the momentum term does not affect the order of the computational cost.

In this work, we propose an online variant of the Kaczmarz method with heavy ball
momentum. We prove that our method converges linearly in expectation for a wide range
of distributions D, and offer particular examples. This theory is supported by numerical
experiments on both synthetic and real-world data, which in particular demonstrate the

benefits of adding momentum when measurements are highly coherent.

3.2 Proposed Method & Empirical Results

We propose an online variant of the Kaczmarz method, modified to include a heavy ball
momentum term S € (0,1), which we call OHBK(fS) (see Algorithm 4). We note that
our method is a generalization of the momentum Kaczmarz method for systems of linear
equations introduced in [LR20]. The method requires only a single measurement to be held

in storage at a time, while leveraging information about previous measurements through the
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momentum term.

Algorithm 4: Online Heavy Ball Kaczmarz 5, OHBK(/)

1 Input initial iterate zo, measurements {(p;, y;)}2;, momentum parameter 3
2 1 = Xo

3 fort=1,2,... do

4 Update x4 = x4 — %@t + B(ry — 24-1)

5 end

We test our method on synthetic and real-world data. For each data source, we compare
our method OHBK(p) for a variety of 5 to an online Kaczmarz method without momentum,

which we denote by OK (equivalently, OHBK(0)).

We first experiment on synthetic data. We sample z* € R with standard Gaussian
entries, and take {¢;}72, to be vectors of length 50 with U[0, 1] entries. We note that this
process produces particularly coherent data, that is, the vectors {¢;};2; have small pairwise
inner products. Each y; is then computed as y; = (¢, %) to ensure measurements are
noiseless. In Figure 3.2 we perform a parameter search over 100 trials for 5 and plot the
median error after 100 iterations versus  with shading for the 25th through 75th percentiles.
Introducing some amount of momentum provides an acceleration, however, taking (5 to be too
large places too much weight on previous information and is less effective. In Figure 3.1 we
show convergence down to machine epsilon of OHBK() versus online randomized Kaczmarz
(i.e. OHBK(0)) for a selection of § (averaging over 10 trials), and the acceleration provided

by momentum is clear.

In Figure 3.3, we investigate the effect of momentum on highly coherent systems further.
We perform 4000 iterations of OHBK(S) on Ule, 1] signals of length 50, for ¢ € [0, 1], for a
range of momentum parameters 3 (again averaged over 10 trials). We see that momentum
provides a significant speedup in convergence even for highly coherent systems (i.e. for large

€). However, as € — 1, recovering the signal becomes intractable.
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We compare the effect of the signal length n on the optimal momentum parameter 3 in
Figure 3.4. We perform parameter searches for signals of length n € {50,100, 500, 1000} and
mark the optimal values of 5. The optimal choice of § does not appear to vary significantly

with n.

In Figure 3.5 we use a system generated from the Wisconsin Diagnostic Breast Cancer
(WDBC) dataset, where each measurement is computed from a digitized image of a fine nee-
dle aspirate of a breast mass and describes characteristics of the cell nuclei present [WSM95].
We stream through each measurement of the 699-row, 10-feature dataset once to replicate
the online model, and again see that the addition of momentum provides a noteworthy

acceleration to convergence.

—4— OK
0 -®- OHBK(0.15)
.-%- OHBK(0.3)
- 4 —&- OHBK(0.45)
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*X .
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°
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&
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Figure 3.1: Error versus iteration for OHBK(f) applied to U|[0, 1] signals of length 50.
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Figure 3.2: ||x190 — 2*|| versus g for a range of g € [0,0.6], for U|0, 1] signals of length 50.

3.3 Theoretical Results

Throughout our theory, we assume that {¢;}?2; is a sequence of independent samples from
some distribution D. We provide a general linear convergence (in expectation) result with
a rate depending on the matrix W := Ep [%], in particular on its smallest and largest

singular values o, (W) and oppax (W).

Theorem 16 (Convergence in Expectation of OHBRK). Suppose that measurement vectors
w12, are sampled independently from D, and W = Ep % . Then if B is small enough
=1 llll
such that

48 +4B8% — (1 + B)omin(W) + Bomax(W) < 0,

the iterates produced by OHBK(3) satisfy the following guarantee: for some d > 0, q € (0, 1),
we have

Elle; — 2" °] < ¢'(1+6) |z — 27"
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Figure 3.3: log ||z4000 — z*|| versus e for OHBK(3) applied to Ule, 1] signals of length 50.

More interpretable conditions on 8 may be obtained for particular classes of distribution
D. In particular, if ¢/ ||¢|| is distributed uniformly on the unit sphere (which is the case if
D itself is the uniform distribution on the unit sphere, or if D is the standard n-dimensional

Gaussian), then W = 1 and we require
1
B+ <~
4n

to guarantee linear convergence in expectation.

3.4 Proof of Main Result

In this section we prove Theorem 16 by following the steps of ([LR20], Theorem 1), making
modifications for the online case and simplifications to some of the constants for our special

case. First we present a lemma from [LR20] which we will use in our convergence proof.

Lemma 17 ([LR20], Lemma 9). Let {Fi}i>0 be a sequence of non-negative real numbers
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Figure 3.4: log ||z4000 — *|| versus § for OHBK(3) applied to U[0, 1] signals of length n. The

gray verticals show the value of 8 yielding the minimum error.

with Fy = Fy that satisfies the relation Fyy1 < aFy + asFy 1 for all t > 1, with ay > 0 and

ay + as < 1. Then the following inequality hold for all t > 1

Ft—l—l S qt(l + 5)F07

a1++/af+4az

where ¢ = —5—— < 1,0 =q—a; and q < a; + as.

A proof of this lemma can be found in [LR20].

We begin our convergence analysis by writing the squared L2 error at the (¢+1)'" iteration

and substituting the OHBK() update into it,

<90t7xt> —Y ?

|21 — 27| = ||z — G Lo+ By — mp1) — 7
t
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Figure 3.5: Error versus iteration for OHBK(f) applied to the WDBC dataset.

Next, we group our equation into three terms:

* <90t,33t>—yt ?

|Tes1 — x*HZ =Tt =T — 35 ¥t
[
+62 ||z — 21 (3.1)
y Lg) —
+26(xy — z* — M@t, Ty — Ty_q)

2
||90t||

We bound the first term of Equation (3.1) by following a standard Kaczmarz convergence

argument and the fact that y, = (@4, 2*). We have that

T, —z* — (e, 20) — yt%

il
B a2 ena) =y |
= |lve — 2" + || || —

||
(o1, 1) — Yy .
2< I
t
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((pt, 71) — yt)Q ((pt, 7) — yt)Q

= |l —*|* + 7 2 2
[ =
_ “It . x*HQ _ (<90t’xt> B yt)2
- 2
[

We bound the second term of Equation (3.1) by first adding and subtracting z*
B |l = o |* = B2 ([ (e = 27) + (&% — )|
Then by applying the fact that ||a + b||* < 2|al|* + 2 ||b||> we have that
B2 (e — %) + (2" = 2|
< 26° ||z — 2" + 26° [l — 2|
Thus we have that

B2 |z — woa|® < 267 [l — 2| + 28° [|rpy — 27

Finally we bound the third term of Equation (3.1) as
20 <$t — "= —<%7xt> 2_ % Pt Tt — $t1> =

26(xy — x*, 1 — wq)+

20 <w¢t, Tt—1 — l‘t>

2
el

=20 ||z — ac*||2 +20(xy — a2 — 1)+

2p <w%; Tt—1 — $t>

2
e
= Bllee = 2" |I” + Bllze — zeeal* = Bl — ¥ +

2p <w@ta Tt—1 — ll?t>

2
el
*112 2 %112
< Bllwe —2*|" + Bllee — zeall” = B llve — 277 —
<g0,$>—y *
5<W%>$t—x )+
t
s Li— - *
pleui) =g,y

2
el
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Combining the three bounds, we have

. * ((%ﬁt) - ?/t)2
2o — 2*||° < oy — 27|* — 5
el

+28% ||z — 2¥||> + 28% ||l zi—y — 2*|?

+6 Nl — 2" |” + Bllze — wea ]| = B v — 27|~

{pr,20) —y )
5<W%axt — %)+
t
<907'T—1>_y *
5<W%,$t1 - >
t

Simplifying and grouping like terms we have

lzesr — 2" < (14262 + B) e —a*|* +

(26> = B) [y — 2*||* -
({pr, 7t) — Y1)

2
+ 5 th - wtlez -

2
[
(pr, 21) —y )
5<W%7$t — ")+
t
(pr, To1) — y )
5(%%;%—1 - >
t

Applying the simplification for the second term of Equation (3.1) and simplifying the

inner products, we have

e — 2*|* < (14267 + 38) [l — a||* +
(267 + B) [ty — a*||* —

(5 + 1) <(pt7$t —2l'*>2+
[l

<(;0t7 Ti—1 — 517*>2

2
el

p

Taking an expectation over our signal of our simplified equation
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El|zesr —a*|") < (14267 +38) ||z — 2" +

(26° + B) [lwe—1 — " —
({pr, 2 — 7))
e I”
ﬂE[(«Otvmt—l ; z >) ]

[

= (14 28%+3B) |z — =" ||* +
(28% + B) ||zt — 27> —

1+ 8z, — 2°)E [m] (00 — 2+

T
Blx,_1 —2)'E “ﬁ;ﬁz} (ry_q1 —a").

(B+DE] ]+

Let W .= E [ﬁ’;ﬁﬂ We can then bound the above in terms of the largest and smallest

singular values of W

Elllzen — 2*|°] < (1 +28% +38) [l — 2*|* +
(26° + B) [lwe—1 — ||* —
(14 B)omin(W) 2 — 2™ ||* +
B0max(W) ||z — 2"
= (1428 438 — (14 B)own(W)) 2. — 2*|* +
(26° + B + Bomax(W)) w1 — 27>
Finally, we apply Lemma 17, wherein the two coefficients are given by a; = 1+23? 435 —
(1 4+ B)omin(W) and ay = 2% + B + Bomax(W). Since we assumed that a; + ay = 1 + 432 +
48 + (14 B)0min(W) 4+ Bomax(W) < 1 and since 8 > 0 then ay = 2% + 8 + Bomax(W) > 0
thus the assumptions for Lemma 17 hold, so we have that
Ell|lz; — 2*|*] < ¢'(1+ 6) [|lzo — 2" ||”
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a1+4/a?+4ar
2

that the norm squared error of the iterates produced by OHBK(fS) converges linearly in

where ¢ = ,0=q—aj and a; +ay < g < 1. Since ¢ € (0,1) we have shown

expectation.

3.5 Conclusion and Future Directions

In this work we discuss using a Kaczmarz method variant with momentum to solve an online
signal recovery problem. We leverage a heavy ball momentum term, a classical acceleration
method, to improve the convergence rate. We prove a theoretical convergence rate for
OHBK(), and verify this convergence empirically on both synthetic and real-world data.
We demonstrate empirically that for coherent measurements, the addition of momentum
indeed accelerates convergence, and provided some initial exploration into the dependence

of the convergence rate on the signal length n and momentum strength f.

It is notable that in our convergence analysis, we did not recover a theoretically optimal
value for 8. Doing so, and comparing this value to empirically best values, would be an
interesting future direction. Furthermore, we would like to obtain theoretical parameter
relationships: for example, how the optimal momentum strength depends on the signal
length and coherency of the measurements. It may in fact be optimal to adaptively adjust
the momentum parameter across iterations based on the current iterate and properties of
incoming measurements. Additionally, we would like to leverage other accelerated gradient
methods such as ADAM [KB14]. Finally, we would like to consider solving the online signal
recovery problem in the case where each measurement is no longer exact, but instead contains

some amount of noise [Neel0]. This could be achieved, for example, using relaxation.
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CHAPTER 4

Multi-Randomized Kaczmarz for Latent Class

Regression

This chapter is a version of [GYN22] which is joint work with Erin George and Deanna
Needell. Erin and I are joint first authors of this work. The aim of this work is to solve a
latent class linear regression problem which we pose as solving multiple linear systems at the
same time. We assume that the systems have been scrambled together and we do not know

how many and which rows belong to which system.

The goal of posing this setting and proposing a Kaczmarz method based solution was
to model a scenario in which multiple underlying groups exist within our data and each
group may require a different regressor, solution vector. If we solve the joint system for a
single solution, this solution is sub-optimal for some of the groups whereas if we assume
multiple solutions, they yield a better results for each group. An example application of
this could be dosage rates for medicine depending age. If we regress on all of the data, we
may have sub-optimal doses for everyone but if we divide the data into older populations
and younger populations we may see that older people require larger doses due to building
up a resistance throughout their lives while younger people require smaller doses for more

effective treatments.

Since Kaczmarz allows us to iteratively solve linear systems one row at a time we are
able to develop an algorithm to solve the latent class regression problem. We sample a single
row, decide which solution that row belongs by explicitly biasing to the closer solution then

project onto it.
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In the remainder of this chapter we propose our novel Kaczmarz based method for solving
the latent class linear regression problem. We prove its convergence under mild assumptions

and experimentally demonstrate its performance on both synthetic and real world datasets.

4.1 Introduction

Often, one needs to perform regression tasks on extremely large-scale data. Methods such as
the randomized Kaczmarz method (RK) [Kar37, SV09] have gained recent attention for their
ability to solve such systems with needing to only access a single row at a time rather than
the full system in memory. However, in many settings, two or more population subgroups
may be present in the data requiring multiple regressors. Often times, computing a single
regressor will result in a minority group having far worse predictive power than the majority.
Additionally, the minority group is not known a priori requiring that we both discover and
regress on these subgroups on the fly. Here, we present a variant of RK that addresses this

problem via multiple regressors.

Formally, given multiple consistent systems of equations M Q- b, i€ {0,1,...,n}

we consider the combined matrices

el 0]
MO pH)
M pu— b pu—
M™) pn)
with the goal of recovering x&o), :c,(ﬁl), ey 2{" where the rows of these matrices may be shuffled.

Next we define the class of a set of rows and right hand side entries.
Definition 2 (Class). Given a regressor 2 g set of rows resulting in matriz MY and right

hand sides bY) are in class i if M@z = p0).

We assume that the class of each row is not known beforehand. This task corresponds

with uncovering multiple systems and their solutions. In the statistics literature, this problem
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can be framed as latent class linear regression where each class represents an overdetermined
system of equations [WD94, MV04]. Classically, this problem can be solved by using an
expectation-maximization (EM) algorithm to iteratively fit the regressor coefficients and
then classify the rows [Mo096, KYB19]. The EM algorithm has been extensively studied in
a statistics framework with convergence properties discussed in [Wu83] and [DLR77]. More
recently the EM framework has been used to learn class data representations in unsupervised

machine learning using neural networks [GVS17].

We take a randomized numerical linear algebra approach to this problem by modifying
the classical randomized Kaczmarz algorithm to this setting. This approach allows us to

process very large data sets while only accessing single rows of our data set at a time.

4.2 Multi-Randomized Kaczmarz Method

We propose a novel iterative method motivated by the randomized Kaczmarz (RK) algorithm
for simultaneously solving all n+1 systems, Algorithm 5. This approach is motivated by the
assumption that the closer an iterate is to a hyperplane defined by a row of the combined
system, the more likely that row belongs to the class of that iterate. Since Kaczmarz methods

converge monotonically this is a reasonable assumption.

At each iteration, the multi-randomized Kaczmarz (MRK) method selects a hyperplane as
in the standard RK algorithm. Then the Kaczmarz update for all iterates is computed. The
update with the smallest magnitude is selected, denoted s;, with the respective magnitude
denoted as c;,. Given a swap probability r we then update iterate ¢; chosen to be s; with
probability 1 — 7 and %, chosen from all iterates uniformly at random with total probability
r. The selected iterate ¢; is updated by the magnitude c;, in the direction the ¢-th iterate

would have been updated given the standard Kaczmarz update.

We state two convergence results for this method, which we will prove in the following

section. The first theorem, Theorem 18, proves a linear convergence result for the MRK
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Algorithm 5: Multi-Randomized Kaczmarz (MRK) Algorithm

1 Input: System M, right hand side b, number of iterations /N, initial iterates m(()o),

x(()l), e ,:E(()"), swap probability r, sampling distribution D.

2 for k=0,1,...,N—1do

3 Sample row i ~ D
(i)
Mikmk _bik .
4 Cik = LT ,0=0,1,....n
'k
5 Sk = argmmie{o,l,...,n}(‘Ci,kD

s~ with probability 1 — r

6 tk =
t  with probability -t for all £ € {0,...,n}
7 > The total probability that ¢y = sj is 1 —r + 5.
t
s | o =™ — ey sgn(e, ) ME

()

o | al=al it

10 end

algorithm in expectation under certain conditions. The second theorem, Theorem 19, is
an almost sure convergence result for the MRK algorithm. Other almost sure convergence
results have been shown for Kaczmarz type algorithms [CP12] under the assumption that
measurements (rows of the matrix) are drawn from independent but not necessarily identical

distributions.

To prove these theorems, we will make a uniqueness assumption on the problem.
Assumption 1. The solution to the set of systems is unique up to relabeling. That is,
suppose there are x;, i € {0,1,...,n} so that for each row in the combined system (indexed

by k) there is i where

Then there is a permutation o on {0,1,...,n} so that ¥ = Lo for all i.

In particular, this means all systems in the problem are full rank, even if rows which
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consistently belong to two or more classes are removed.

Theorem 18 (Conditional expected MRK Convergence). Define

o= [af — 2
=0

Let r > 0 be sufficiently small. Choose ¢ € (Cy,1) and § > 0. There exists € > 0 so that if

2

er < € then

E(exss]As) < ey

where As 1s an event that happens with probability at least 1 — . The constant Cy < 1

depends on M, b, n, and r.

This theorem shows the convergence will be linear in expected squared error after a certain
point. Limiting the initial squared error before convergence allows us to identify which
solution each iterate is converging towards. The failure probability reflects the possibility
that the iterates may still converge towards a different labeling of the solutions and iterates.
In the case where the initial squared error is too large or the failure probability is triggered,

we will still see convergence, as shown in the next theorem.

Theorem 19 (Almost sure MRK Convergence). There is ' € (0,1) so that if r € (0,77),

each iterate of the algorithm converges almost surely to a different solution of the subsystems.
The convergence rate given by the proof of this theorem is slow. In practice, we find the

convergence rate quickly achieves the linear rate given in the previous theorem.

4.3 Proofs

4.3.1 Conditional Convergence in Expectation

Proof of Theorem 18. At the k-th iteration, we select a row from a system. Suppose we

select a row /£ from system i. There are three possibilities for how we update.

o7



(a) We update q:,(:) fully, setting

’L

i 112
Hmkﬂ — Ty zy) - )

= C/Sf) ‘ k

for some random variable C,gi) taking value in the range [0, 1]. The expectation of C,gi)
is just the Kaczmarz constant for the subset of rows which we are allowed to make a

full and correct update with.
(b) We update m,(:) partially. We bound the error here as

_ 0

*

kaﬂ _I

¢) We update 29 for some j # 1. Regardless of how this happens, we always update by
k

a magnitude bounded above in norm by the correct update:

‘Mgkilil(f) — bgk

A K
Therefore the new error satisfies
|28 = 29| < |22 20
and by Cauchy-Schwarz and Young’s inequality
kaﬂ x*j S 2 de) - 9U*j) 2 xi(j) - ng) i

There are two ways for us to land in case (c¢). Either we trigger our swap probability and
select iterate j, or we do not trigger our swap probability but we selected iterate j anyway.
The second happens only when
Mgk.%](gj) — bgk ‘Mgkdil(;) — bg
<
[ M, | [ M, |

k

We can bound the left side below by

| My, () — 2]
1My, ]

_ sz(f) — )
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and the right hand side above by

So this can only happen when

7D _ )

| My, (2 H
||Mek|| -

3
a=0

<V(n+1)- e

We only need to consider the case when M, (z @

—2Y ) # 0, as otherwise we could consider
this row /¢ as coming from the j-th system anyway. Therefore, the probability of this
happening goes to 0 as e; goes to 0. Suppose ¢ is small enough so that whenever e; < ¢ the

probability this mistake happens for any pair is less than ¢.

We will also assume that ¢ is small enough so that, assuming we do not trigger our swap
probability, there is a full rank set of rows for each system so that whenever ¢, < ¢ all these
rows will make a correct update and that cannot be added to another system consistently.
This is a consequence of Assumption 1. Then, for each system, the condition number for
the set of rows that can make a correct update is bounded above, and the RK constant is
bounded above by some value strictly less than 1. Let ¢ < 1 bound above the RK constant

for each system.

Now, whenever e, < €, we can bound

2

pen-st (-
<A
2

pe-st) ot

where < is interpreted component-wise and

. mj m—mj
Aii—l‘{'m(c_l)( P A E—

AijZZE]( n:.l) ifi#7.

o)+

(q + nil)
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Here m; is the number of rows in the j-th system and m = Zj m;.

By induction,

0

bis-sty (s
<A’

AR

for all b € N provided that ey, < € for all a € {0,...,0 —1}. We wish to show the ¢,

operator norm of A is less than 1. This happens when

nr
n+1

is negative. This occurs when ¢ + is small enough. So then, for r sufficiently small, we

can choose € to make ||Al[, ,, =d < 1.

Suppose e, < 6 < . By our previous bound, e;,; < d°J, conditioned on the intermediate
values ey, < €. By Markov’s inequality, the probability that ex,, > £ is at most %d“é.

The total probability of this happening is at most fdd' Therefore our total error remains

J
€
_d_

bounded above by € with probability at least 1 — and in this case we have convergence

ld’

in expectation.

4.3.2 Convergence with full probability

An outline of the proof for Theorem 19:

1. We use Theorem 18 to define “convergence basins”: regions where, if the iterates
fall into, there is some positive probability that they never escape and converge in

expectation.

2. We show Hx,(;) — xg)

‘ is bounded by some constant independent of ¢ and k.
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3. We show we can bound the probability of falling into a basin eventually below by some

positive number.

We will begin by proving the following lemma, which will be used in the second part of

the outline above.

Lemma 20. Let R be a sequence of rows from the problem. The sequence of Kaczmarz
updates corresponding to R defines an affine transformation v — Tgrv + vg. There are
constants ¢, € (0,1), B, € Ry forr € {1,...,d} so that ||vg|| < Baimspanr and [Tl <

Cdimspan ks Where ||-||  is the (% operator norm when the operator is restricted to span R.

Proof of Lemma 20. We proceed by induction on r. The Kaczmarz update for the ¢-th row
is

1 be
Kp:ves (I——MéTMg)ij—M@T
I” [zals

| M, ,

If » = 1, then Tj is the zero operator restricted to span R. We can take ¢; = 0 and

|be]
M|

B; = max,

Now, assume the lemma is true for all » < +’. Let R = (M,,,..., M, ) be a sequence of

rows where dimspan R = r’. We can group

Ky 00Ky =(Ky 00Ky, )
o(Ky, o0k )
o (KgaQ_l 0---0 Kgal)
o(Ky, 00Ky )
so that agp = 1 and a; for i € {0,..., N} is a strictly increasing sequence where the following
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are true:

dimspan{M,, ..., M, ,} =1 Vie{l,...,N}

dimspan{M,, ..., M, ,}=1r"—1 Vie{l,...,N}

177

dimspan{M,, ,..., M, } <7’

Consider a grouping (K@ai,l 0---0 Keaifl)’ the linear part of the transformation is A =

I ——L - MP M, ) composed with an operator T that sends
2

S = span{M,, _

s MZGFQ} to itself and has operator norm less than ¢,»_; on this space.

Consider a unit vector v € spanR. We can decompose v = v; + v with v; € S and

vy € St Nispan R. This allows us to bound

[AT ]| < |[T]] < \/C?/fl lon* + el

using that the operator norm of A is at most 1 and that 7T is the identity on S*. Another

bound is
| My, vs]

[ATv|| < [[AT0|[ + [[Ave|| < Jloall + {1 = 7
|1Me.,

obtained with the triangle inequality and again 7' being the identity on S+.

These bounds combine to give a bound for the ¢? operator norm of AT on span R that
depends only on § and /,,. There are finitely many possible choices for & and ¢,,, so there
is some bound ¢ < 1 on the operator norm of AT independent of what & and /,, are. Next

we turn to the affine part. By the induction hypothesis, this is a vector with norm at most

r_ [be]
B’ = B,y_1 + maxy RAk

Next we turn to the last grouping, which is not of this form. We will not analyze the

linear part, and note the affine part v’ is bounded above in norm by B” = max, ., B,.

Since all linear operators here have operator norm at most 1, a final bound for the

operator norm of T restricted to span R is ¢/, which we can take to be ¢,». We bound
¢

Z c'B

i=1

So we can let B, be this bound. O

B

lvr| < B" + <B"+

J— cr,
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Proof of Theorem 19. We first bound the norm of the iterates above by some constant D.

Consider the evolution of a single iterate xS) after finitely many steps. At the last update
for xg), we perform a Kaczmarz update with respect to some system, and move the iterate
towards, but not past, the update. There is a line segment of possible choices for the next
update once we have selected the row. The potential next iterate with largest norm is one of
the end points of the line segment, corresponding to either doing a full update or no update
at all. So we can either remove this last update or replace it with a full update to yield a
final iterate with norm at least as large. We repeat with each update in reverse order, noting
the image of a line segment after a series of affine transformations is still a line segment,
choosing the one that will yield the largest norm at the end. Hence, to bound the norm

of the iterates, we only need to consider sequences where we only ever make full Kaczmarz

updates.

Using Lemma 20, we see that if the initial norm of the iterates are bounded above by A,
after a sequence of rows R the norm is at most Cgimspan RA + Bdimspan r, Which is bounded

above by D = A +max,¢q1,..ay Br.

As given by Theorem 18, let € be such that if ¢, < e, we converge with some positive

probability t.

. 112
Let C' be the set of all possible iterates such that HLH < ‘xg) — mff) < D? for all
i € {0,...,n} with D given above. This set is compact. If our iterates do not lie in C', then

already e < €, so we only need to look at what happens if our iterates lie in C'.

Define

@) — by
O )y _ L 1M = b
gz, ..., 2")= max min ——————.
( P R N YA

This function is the norm of the largest possible iterates in our algorithm if the iterates
currently take the values (9, ..., 2(™. This is a continuous function on R*"*+1 5o it achieves
a minimum ¢ on C'. This minimum c is positive, as by our assumption g cannot be zero

anywhere on C.

Now, for all value of iterates, we have probability at least % of choosing a row where we
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will make an update with norm at least ¢. The probability of updating the correct system

r
n+1"

with a chosen row is at least The squared error of the corresponding iterate decreases
by at least the norm squared of the update, which is at least ¢?, because the resulting triangle
between the previous iterate, next iterate, and solution is obtuse. We can keep doing this as

long as our iterates remain in C'. Therefore, if we make no more than

c2

Am o [Y ]

of these updates, we have e, < . The probability of this happening is

(o)

where m is the number of rows of M. This is a fixed positive value independent of the

iterate. []

4.4 Experimental Results

We test the MRK method on synthetic and real world data to verify the merits of the method.
First we construct a problem in two-dimensional space and visualize how our iterates move
in space in Figure 4.1. From Figure 4.1 we see how the iterates converge to solutions, moving
closer with each projection. The problem is defined by two 10 x 2 systems where M; € R19%2
with entries drawn i.i.d. from N(0.8,0.3) and M, € R'%*? with entries drawn i.i.d. from

N(—0.8,0.3).

Next, in Figure 4.2 we use the MRK method on a large synthetic data set. We plot the
log norm squared error per iteration of the two iterates for the two class system. The system
is defined by two matrices M; € R0 pf, ¢ RI000X10 where the matrices have entries
drawn i.i.d. from N(0,1). Each initial iterate 23, x} ~ N(0,1) with zero swap probability.
We plot the median and shade the interquartile range in Figure 4.2. We observe that both
iterates converge to machine precision and the method succeeds at solving both systems

simultaneously.

64



0.2

0.0 soln 2
L] soln_1 true

X  soln_2 true
-0.2

-0.4

X1

-0.6

-0.8

Xo

Figure 4.1: Here we plot the evolution of two iterates in the two-dimensional plane. Our
system is defined by two matrices M; € R'%*? with entries drawn i.i.d. from N(0.8,0.3) and
M, € R'*2 with entries drawn 1.i.d. from N'(—0.8,0.3). Each initial iterate z{, zj ~ N(0, 1).

We let our swap probability » = 0 and sample rows uniformly at random.
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Figure 4.2: Syste