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Abstract

The covariance matrix plays a fundamental role in many modern exploratory and inferential 

statistical procedures, including dimensionality reduction, hypothesis testing, and regression. 

In low-dimensional regimes, where the number of observations far exceeds the number of 

variables, the optimality of the sample covariance matrix as an estimator of this parameter is 

well-established. High-dimensional regimes do not admit such a convenience. Thus, a variety 

of estimators have been derived to overcome the shortcomings of the canonical estimator in 

such settings. Yet, selecting an optimal estimator from among the plethora available remains an 

open challenge. Using the framework of cross-validated loss-based estimation, we develop the 

theoretical underpinnings of just such an estimator selection procedure. We propose a general class 

of loss functions for covariance matrix estimation and establish accompanying finite-sample risk 

bounds and conditions for the asymptotic optimality of the cross-validation selector. In numerical 

experiments, we demonstrate the optimality of our proposed selector in moderate sample sizes and 
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across diverse data-generating processes. The practical benefits of our procedure are highlighted in 

a dimension reduction application to single-cell transcriptome sequencing data.
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covariance matrix estimation; cross-validation; dimension reduction; high-dimensional statistics; 
loss-based estimation

1 Introduction

The covariance matrix underlies numerous exploratory and inferential statistical procedures 

central to analyses regularly performed in diverse fields. For instance, in computational 

biology, this statistical parameter serves as a key ingredient in many popular dimensionality 

reduction, clustering, and classification methods which are regularly relied upon in 

quality control assessments, exploratory data analysis, and, recently, the discovery and 

characterization of novel types of cells. Other important areas in which the covariance 

matrix is critical include financial economics, climate modeling and weather forecasting, 

imaging data processing and analysis, probabilistic graphical modeling, and text corpora 

compression and retrieval. Even more fundamentally, the covariance matrix plays a key role 

in assessing the strengths of linear relationships within multivariate data, in generating 

simultaneous confidence bands and regions, and in the construction and evaluation of 

hypothesis tests. Accurate estimation of this parameter is therefore essential.

When the number of observations in a data set far exceeds the number of features, 

the estimator of choice for the covariance matrix is the sample covariance matrix: it 

is an efficient estimator under minimal regularity assumptions on the data-generating 

distribution (Anderson, 2003; Smith, 2005). In high-dimensional regimes, however, this 

simple estimator has undesirable properties. When the number of features outstrips the 

number of observations, the sample covariance matrix is singular. Even when the number 

of observations slightly exceeds the number of features, the sample covariance matrix is 

numerically unstable on account of an overly large condition number (Golub and Van 

Loan, 1996). Its eigenvalues are also generally over-dispersed when compared to those of 

the population covariance matrix (Johnstone, 2001; Ledoit and Wolf, 2004): the leading 

eigenvalues are positively biased, while the trailing eigenvalues are negatively biased 

(Marčenko and Pastur, 1967).

High-dimensional data have become increasingly widespread in myriad scientific domains, 

with many examples arising from challenges posed by cutting-edge biological sequencing 

technologies. Accordingly, researchers have turned to developing novel covariance matrix 

estimators to remediate the deficiencies of the sample covariance matrix. Under certain 

sparsity assumptions, Bickel and Levina (2008b,a); Rothman et al. (2009); Lam and Fan 

(2009); Cai et al. (2010), and Cai and Liu (2011), among others, demonstrated that the 

true covariance matrix can be estimated consistently under specific losses by applying 

element-wise thresholding or tapering functions to the sample covariance matrix. Another 

thread of the literature, which includes notable contributions by Stock and Watson (2002); 

Bai (2003); Fan et al. (2008, 2013, 2016, 2019), and Onatski (2012), has championed 
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methods employing factor models in covariance matrix estimation. Other popular proposals 

include the families of estimators inspired by the empirical Bayes framework (Robbins, 

1964; Efron, 2012), formulated by Schäfer and Strimmer (2005) and Ledoit and Wolf (2004, 

2012, 2015, 2018). We briefly review several of these estimator families in Section 4 of the 

Online Supplement.

Despite the flexibility afforded by the apparent wealth of candidate estimators, this variety 

poses many practical issues. Namely, identifying the most appropriate estimator from among 

a collection of candidates is itself a significant challenge. A partial answer to this problem 

has come in the form of data-adaptive approaches designed to select the optimal estimator 

within a particular class (for example, Bickel and Levina, 2008b,a; Cai and Liu, 2011; Fan et 

al., 2013; Fang et al., 2016; Bartz, 2016). Such approaches, however, are inherently limited 

by their focus on relatively narrow families of covariance matrix estimators. The successful 

application of such estimator selection frameworks requires, as a preliminary step, that 

the practitioner make a successful choice among estimator families, injecting a degree of 

subjectivity in their deployment. The broader question of selecting an optimal estimator 

from among a diverse library of candidates has remained unaddressed. We offer a general 

loss-based framework building upon the seminal work of van der Laan and Dudoit (2003); 

Dudoit and van der Laan (2005); van der Vaart et al. (2006) for asymptotically optimal 

covariance matrix estimator selection based upon cross-validation.

In the cross-validated loss-based estimation framework, the parameter of interest is defined 

as the risk minimizer, with respect to the data-generating distribution, based on a loss 

function chosen to reflect the problem at hand. Candidate estimators may be generated in 

a variety of manners, including as empirical risk minimizers with respect to an empirical 

distribution over parameter subspaces corresponding to models for the data-generating 

distribution. One would ideally select as optimal estimator that which minimizes the “true” 

risk with respect to the data-generating distribution. However, as this distribution is typically 

unknown, one turns to cross-validation for risk estimation. van der Laan and Dudoit (2003); 

Dudoit and van der Laan (2005); van der Vaart et al. (2006) have shown that, under 

general conditions on the data-generating distribution and loss function, the cross-validated 

estimator selector is asymptotically optimal in the sense that it performs asymptotically 

as well in terms of risk as an optimal oracle selector based on the true, unknown data-

generating distribution. These results extend prior work summarized by (Györfi et al., 2002, 

Ch. 7–8).

Focusing specifically on the covariance matrix as the parameter of interest, we address 

the choice of loss function and candidate estimators, and derive new, high-dimensional 

asymptotic optimality results for multivariate cross-validated estimator selection procedures. 

Requiring generally nonrestrictive assumptions about the structure of the true covariance 

matrix, the proposed framework accommodates arbitrary families of covariance matrix 

estimators. The method therefore enables the objective selection of an optimal estimator 

while fully taking advantage of the plethora of available estimators. As such, it generalizes 

existing, but more limited, data-adaptive estimator selection frameworks where the library of 

candidate estimators is narrowed based on available subject matter knowledge, or, as is more 

commonly the case, for convenience’s sake.
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2 Problem Formulation and Background

Consider a data set Xn × J = X1, …, Xn:Xi ∈ ℝJ , comprising n independent and identically 

distributed (i.i.d.) random vectors, where n ≈ J or n < J. Let Xi ~ P0 ∈ ℳ, where P0 

denotes the true data-generating distribution and ℳ the statistical model, that is, a collection 

of possible data-generating distributions P for Xi. We assume a nonparametric statistical 

model ℳ for P0, minimizing assumptions on the form of P0. We denote by Pn the empirical 

distribution of the n random vectors forming X n × J. Letting E Xi = 0 without loss of 

generality and defining ψ0 ≔ Var[Xi], we take as our goal the estimation of the covariance 

matrix ψ0. This is accomplished by identifying the “optimal” estimator of ψ0 from among a 

collection of candidates, where, as detailed below, optimality is defined in terms of risk.

For any distribution P ∈ ℳ, define its covariance matrix as ψ = Ψ (P), where Ψ is 

a mapping from the model ℳ to the set of J × J symmetric, positive semi-definite 

matrices. Furthermore, candidate estimators of the covariance matrix are defined as 

ψk ≔ Ψk Pn  for k = 1, …, K in terms of mappings Ψk from the empirical distribution Pn 

to Ψ ≔ ψ ∈ ℝJ × J ∣ ψ = ψ⊤ . While this notation suggests that the number of candidate 

estimators K is fixed, and we treat it as such throughout, this framework may be extended 

such that K grows as a function of n and J. It also follows that {ψ = Ψ (P) : P ∈ ℳ} ⊂ Ψ; 

that is, the set of all covariance matrices corresponding to the data-generating distributions P 
belonging to the model ℳ is a subset of Ψ.

In order to assess the optimality of estimators in the set Ψ, we introduce a generic loss 

function L(X; ψ, η) characterizing a cost applicable to any ψ ∈ Ψ and X ~ P ∈ ℳ, and 

where η is a (possibly empty) nuisance parameter. Specific examples of loss functions for 

the covariance estimation setting are proposed in Section 3.1. Define H as the mapping from 

the model ℳ to the nuisance parameter space H ≔ {η = H (P): P ∈ ℳ} and let η ≔ H Pn

denote a generic nuisance parameter estimator, where H is a mapping from Pn to H. Given 

any η ∈ H, the risk under P ∈ ℳ for any ψ ∈ Ψ is defined as the expected value of L(X; ψ, 

η) with respect to P:

Θ(ψ, η, P) ≔ ∫ L(x; ψ, η)dP(x)
= EP[L(X; ψ, η)] .

Under the additional constraint on the loss function that a risk minimizer exists under the 

true data-generating distribution P0, the minimizer is given by the parameter of interest

ψ0 ≔ argmin
ψ ∈ Ψ

Θ ψ, η0, P0 , (1)

where η0 ≔ H (P0). The risk minimizer need not be unique. The optimal risk under P0 is

θ0 ≔ min
ψ ∈ ΨΘ ψ, η0, P0 ,

which is to say that a risk minimizer ψ0 attains risk θ0.
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For any given estimator ψk of ψ0, its conditional risk given Pn with respect to the true 

data-generating distribution P0 is

θn k, η0 ≔ EP0 L X; Ψk Pn , η0 ∣ Pn
= Θ ψk, η0, P0

Defining the risk difference of the kth estimator a θn k, η0 − θ0, the index of the estimator that 

achieves the minimal risk difference is

kn ≔ argmin
k ∈ 1, …, K

θn k, η0 − θ0 .

The subscript n emphasizes that the risk and optimal estimator index are conditional on the 

empirical distribution Pn. They are therefore random variables.

Given the high-dimensional nature of the data, it is generally most convenient to study the 

performance of estimators of ψ0 using Kolmogorov asymptotics, that is, in the setting in 

which both n → ∞ and J → ∞ such that J / n → m < ∞. Historically, estimators have been 

derived within this high-dimensional asymptotic regime to improve upon the finite sample 

results of estimators brought about by traditional asymptotic arguments. After all, the sample 

covariance matrix retains its asymptotic optimality properties when J is fixed, even though it 

is known to perform poorly in high-dimensional settings.

Naturally, it would be desirable for an estimator selection procedure to select the estimator 

indexed by kn; however, this quantity depends on the true, unknown data-generating 

distribution P0. As a substitute for the candidates’ true conditional risks, we employ instead 

the cross-validated estimators of these same conditional risks.

Cross-validation (CV) consists of randomly, and possibly repeatedly, partitioning a data 

set into a training set and a validation set. The observations in the training set are fed 

to the candidate estimators and the observations in the validation set are used to evaluate 

the performance of these estimators (Breiman and Spector, 1992; Friedman et al., 2001). 

A range of CV schemes have been proposed and investigated, both theoretically and 

computationally; Dudoit and van der Laan (2005) provide a thorough review of popular 

CV schemes and their properties. Among the variety, V-fold stands out as an approach 

that has gained traction on account of its relative computational feasibility and good 

performance. Any CV scheme can be expressed in terms of a binary random vector Bn, 

which assigns observations into either the training or validation set. Observation i is said to 

lie in the training set when Bn (i) = 0 and in the validation set otherwise. The training set 

therefore contains ∑i 1 − Bn(i) = n 1 − pn  observations and the validation set ∑iBn(i) = npn

observations, where pn is the fixed validation set proportion corresponding to the chosen CV 

procedure. The empirical distributions of the training and validation sets are denoted by Pn, Bn
0

and Pn, Bn
1 , respectively, for any given realization of Bn. Bn, we emphasize, is independent of 

Pn.

Using this general definition, the cross-validated estimator of a candidate Ψk′s risk is
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θ pn, n k, H Pn, Bn
0 : = EBn Θ Ψk Pn, Bn

0 , H Pn, Bn
0 , Pn, Bn

1

= EBn
1

npn
∑

i = 1

n
I Bn(i) = 1 L Xi; Ψk Pn, Bn

0 , H Pn, Bn
0

for a nuisance parameter estimator mapping H. Here, EBn[ ⋅ ] denotes the expectation with 

respect to Bn. The corresponding cross-validated selector is

kpn, n ≔ argmin
k ∈ 1, …, K

θ pn, n k, H Pn, Bn
0 .

As a benchmark, the unknown cross-validated conditional risk of the kth estimator is

θpn, n k, η0 ≔ EBn Θ Ψk Pn, Bn
0 , η0, P0 .

The cross-validated oracle selector is then

kpn, n ≔ argmin
k ∈ 1, …, K

θpn, n k, η0 .

As before, the pn and n subscripts highlight the dependence of these objects on the 

CV procedure and the empirical distribution Pn, respectively, thus making them random 

variables.

Ideally, the cross-validated estimator selection procedure should identify a kpn, n that is 

asymptotically (in n, J, and possibly K) equivalent in terms of risk to the oracle kpn, n, under 

a set of nonrestrictive assumptions based on the choice of loss function, target parameter 

space, estimator ranges, and, if applicable, nuisance parameter space, in the sense that

θpn, n k pn, n, η0 − θ0

θpn, n kpn, n, η0 − θ0

P 1 as n, J ∞ . (2)

That is, the estimator selected via CV is equivalent in terms of risk to the CV scheme ‘s 

oracle estimator chosen from among all candidates.

When Equation (2) holds, a further step may be taken by relating the performance of the 

cross-validated selector to that of the full-dataset oracle selector, kn:

θn k pn, n, η0 − θ0

θn kn, η0 − θ0

P 1 as n, J ∞ . (3)

When the cross-validated selection procedure’s full-dataset conditional risk difference 

converges in probability to that of the full-dataset oracle’s, the chosen estimator is 

asymptotically optimal. In other words, the data-adaptively selected estimator performs 
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asymptotically as well, with respect to the chosen loss, as the candidate that would be picked 

from the collection of estimators if the true data-generating distribution were known.

3 Loss Functions and Estimator Selection

3.1 Proposed Loss Function

The choice of loss function should reflect the goals of the estimation task. While loss 

functions based on the sample covariance matrix and either the Frobenius or the spectral 

norms are often employed in the covariance matrix estimation literature, Dudoit and van der 

Laan (2005)’s estimator selection framework is more amenable to loss functions that operate 

over random vectors. Accordingly, we propose the observation-level Frobenius loss:

L X; ψ, η0 ≔ XX⊤ − ψ F, η0

2

= ∑
j = 1

J
∑
l = 1

J
η0

(jl) X(j)X(l) − ψ(jl) 2,
(4)

where X(j) is the jth element of a random vector X ~ P ∈ ℳ, ψ(jl) is the entry in the jth row 

and lth column of an arbitrary covariance matrix ψ ∈ Ψ, and η0 is a J × J matrix acting 

as a scaling factor, that is, a potential nuisance parameter. For an estimator η of η0, the 

cross-validated risk estimator of the kth candidate estimator Ψk under the observation-level 

Frobenius loss is

θ pn, n k, H Pn, Bn
0 = EBn

1
npn

∑
i = 1

n
I Bn(i) = 1 XiXi

⊤ − Ψk Pn, Bn
0

F, H Pn, Bn
0

2 .

Ledoit and Wolf (2004), Bickel and Levina (2008a), and Rothman et al. (2009), among 

others, have employed analogous (scaled) Frobenius losses to prove various optimality 

results, defining η0
(jl) = 1/J, ∀j, l. This particular choice of scaling factor is such that whatever 

the value of J, IJ × J F, η0 = 1. With such a scaling factor, the loss function may be viewed as 

a relative loss whose yardstick is the J × J identity matrix. A similarly reasonable option for 

when the true covariance matrix is assumed to be dense is η0
(jl) = 1/J2. This weighting scheme 

effectively computes the average squared error across every entry of the covariance matrix; 

however, when the scaling factor is constant, it only impacts the interpretation of the loss. 

Constant scaling factors have no impact on our asymptotic analysis. Since it need not be 

estimated, it is not a nuisance parameter in the conventional sense.

When the scaling factor of Equation (4) is constant, the risk minimizers are identical for the 

cross-validated observation-level Frobenius risk and the common cross-validated Frobenius 

risk (used by, for example, Bickel and Levina, 2008a; Rothman et al., 2009; Fan et al., 2013; 

Fang et al., 2016).

Proposition 1. Define the cross-validated Frobenius risk for an estimator Ψk as

Rn Ψk, η0 : = EBn Sn Pn, Bn
1 − Ψk Pn, Bn

0
F, η0

2 , (5)

Boileau et al. Page 7

J Comput Graph Stat. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where Sn Pn, Bn
1  is the sample covariance matrix computed over the validation set Pn, Bn

1 , and 

η0 is some constant scaling matrix. Then Rn Ψk, η0 − θ pn, n k, η0  is constant with respect to 

Ψk Pn, Bn
0  such that

kpn, n = argmin
k ∈ 1, …, K

θ pn, n k, η0

= argmin
k ∈ 1, …, K

Rn Ψk, η0 .

Note that the traditional Frobenius loss corresponds to the sum of the squared eigenvalues 

of the difference between the sample covariance matrix and the estimate. Proposition 1 

therefore implies the existence of a similar relationship for our observation-level Frobenius 

loss. It may therefore serve as a surrogate for a loss based on the spectral norm.

We are not restricted to a constant scaling factor matrix. One might consider weighting the 

covariance matrix’s off-diagonal elements’ errors by their corresponding diagonal entries, 

especially useful when the random variables are of different scales. Such a scaling factor 

might offer a more equitable evaluation across all entries of the parameter:

Lweighted  X; ψ, η0 : = ∑
j = 1

J
∑

l = 1

J 1
ψ0

(jj)ψ0
(ll) X(j)X(l) − ψ(jl) 2 .

Here, η0 = diag(ψ0) is a genuine nuisance parameter which can be estimated via the 

diagonal entries of the sample covariance matrix.

Finally, the covariance matrix ψ0 is the risk minimizer of the observation-level Frobenius 

loss if the integral with respect to X and the partial differential operators with respect to ψ 
are interchangeable.

Proposition 2. Let the integral with respect to X and the partial differential operators with 
respect to ψ be interchangeable, and let η be some fixed J × J matrix. Then

ψ0 = argmin
ψ ∈ Ψ

Θ ψ, η, P0

for Θ (·) defined under the observation-level Frobenius loss.

The proof is provided in the Online Supplement. Our proposed loss therefore satisfies the 

condition of Equation (1). The main results of the paper, however, relate only to the constant 

scaling factor case. In a minor abuse of notation, we set η0 = 1, and suppress dependence 

of the loss function on the scaling factor wherever possible throughout the remainder of the 

text.

3.2 Optimality of the Cross-validated Estimator Selector

Having defined a suitable loss function, we turn to a discussion of the theoretical properties 

of the cross-validated estimator selection procedure. Specifically, we present, in Theorem 

Boileau et al. Page 8

J Comput Graph Stat. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1, sufficient conditions under which the method is asymptotically equivalent in terms of 

risk to the commensurate CV oracle selector (as per Equation (2)). This theorem extends 

the general framework of Dudoit and van der Laan (2005) for use in high-dimensional 

multivariate estimator selection. Adapting their existing theory to this setting requires a 

judicious choice of loss function, new assumptions, and updated proofs reflecting the use of 

high-dimensional asymptotics. Corollary 1 then builds on Theorem 1 and details conditions 

under which the procedure produces asymptotically optimal selections in the sense of 

Equation (3). All proofs are provided in Section 1 of the Online Supplement.

Theorem 1. Let X1, …, Xn be a random sample of n i.i.d. random vectors of dimension J, 

such that Xi ~ P0 ∈ ℳ, i = 1, …, n. Assume, without loss of generality, that E Xi = 0, and 

define ψ0 ≔ Var[Xi]. Denote the set of K candidate estimators by Ψk( ⋅ ):k = 1, …, K . Next, 

define the observation-level Frobenius loss function as L(X; ψ) ≔ X⊤X − ψ F, 1
2

. Finally, 

designate pn as the proportion of observations in any given cross-validated validation set. 
Consider the following assumptions:

Assumption 1. For any P ∈ ℳ and X P, maxj = 1, …, J X(j) < M1 < ∞ almost surely (a.s.).

Assumption 2. Define Ψ ≔ ψ ∈ ℝJ × J ψ = ψ⊤, ψ(jl) < M2 < ∞, ∀j, l = 1, …, J , and assume 

that Ψk Pn , ψ0 ∈ Ψ.

Finite-Sample Result.—Let M(J) ≔ 4 M1 + M2
2J2 and 

c(δ, M(J)) ≔ 2(1 + δ)2M(J)(1/3 + 1/δ). Then, for any δ > 0,

0 ≤ EP0 θpn, n k pn, n − θ0 ≤ (1 + 2δ)EP0 θpn, n kpn, n − θ0 + 2c(δ, M(J))1 + log(K)
npn

. (6)

High-Dimensional Asymptotic Result.—The finite-sample result in Equation (6) has 
the following asymptotic implications: If c(δ, M(J))(1 + log(K))/ npnEP0 θpn, n kpn, n − θ0 0
and J / n → m < ∞ as n, J → ∞, then

EP0 θpn, n k pn, n − θ0

EP0 θpn, n kpn, n − θ0
1. (7)

Further, if c(δ, M(J))(1 + log(K))/ npn θpn, n kpn, n − θ0
P 0 as n, J → ∞, then

θpn, n k pn, n − θ0

θpn, n kpn, n − θ0

P 1. (8)

The proof relies on special properties of the random variable Zk ≔ L X; Ψk Pn − L X; ψ0

and on an application of Bernstein’s inequality (Bennett, 1962). Together, they are used 

to show that 2c(δ, M(J))(1 + log(K))/ npn  is a finite-sample bound for comparing the 

performance of the cross-validated selector, k pn, n, against that of the oracle selector over the 
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training sets, k pn, n,. Once this bound is established, the high-dimensional asymptotic results 

follow immediately.

Only a few sufficient conditions are required to provide finite-sample bounds on the 

expected risk difference of the estimator selected via our CV procedure. First, that each 

element of the random vector X be bounded, and, second, that the entries of all covariance 

matrices in the parameter space and the set of possible estimates be bounded. Together, 

these assumptions allow for the definition of M(J), the object permitting the extension of 

the loss-based estimation framework to the high-dimensional covariance matrix estimation 

problem.

The first assumption is technical in nature — it makes the proofs tractable. While it may 

appear stringent, and, for instance, is not satisfied by Gaussian distributions, we believe 

it to be generally applicable. We stress that parametric data-generating distributions, like 

those exhibiting Gaussianity, rarely reflect reality, that is, they are merely mathematical 

conveniences1. Most random variables, or transformations thereof, arising in scientific 

practice are bounded by limitations of the physical, electronic, or biological measurement 

process; thus, our method remains widely applicable. For example, in microarray and next-

generation sequencing experiments, the raw data are images on a 16-bit scale, constraining 

them to [0, 216). Similarly, the measurement of immunologic markers, of substantial interest 

in vaccine efficacy trials of HIV-1, COVID-19, and other infectious diseases, are bounded by 

the limits of detection and/or quantitation imposed by assay biotechnology.

Verifying that the additional assumptions required by Theorem 1’s asymptotic results hold 

proves to be more challenging. We write f (y) = O g((y)) if |f| is bounded above by g, f (y) 

= o g((y)) if f is dominated by g, f (y) = Ω(g (y)) if f is bounded below by g, and f (y) = 

ω(g (y)) if f dominates g, all in asymptotics with respect to n and J. Further, a subscript 

“P” might be added to these bounds, denoting a convergence in probability. Now, note that 

c(δ, M(J))(1 + log(K))/ npn = O(J) for fixed pn and as J / n → m > 0. Then the conditions 

associated with Equation (7) and Equation (8) hold so long as EP0 θpn, n kpn, n − θ0 = ω(J) and 

θpn, n kpn, n − θ0 = ωP(J), respectively.

These requirements do not seem particularly restrictive given that the complexity of the 

problem generally increases as a function of the number of features. There are many 

more entries in the covariance matrix requiring estimation than there are observations. 

This intuition is corroborated by our extensive simulation study in the following section. 

Consistent estimation in terms of the Frobenius risk is therefore not possible in high-

dimensions without additional assumptions about the data-generating process.

Some additional insight might be gained by identifying conditions under which these 

assumptions are unmet for popular structural beliefs about the true covariance matrix. In 

1Anecdotally, one cannot help but find themself reminded that “Everyone is sure of this [that errors are normally distributed] … since 
the experimentalists believe that it is a mathematical theorem, and the mathematicians that it is an experimentally determined fact.” 
(Poincaré, 1912, p. 171)
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particular, we consider the sparse covariance matrices defined in Bickel and Levina (2008a) 

and accompanying hard-thresholding estimators (see Section 4.1 of the Online Supplement):

Proposition 3. In addition to Assumptions 1 and 2 of Theorem 1, assume that ψ0 is a 
member of the following set of matrices:

ψ:ψ(jj) < M2, ∑
l = 1

J
I ψ(jl) ≠ 0 < s(J) for all , j = 1, …, J

where s(J) is the row sparsity, that the hard-thresholding estimator is in the library of 
candidates, and that it uses a “sufficiently large” thresholding hyperparameter value in the 
sense of Bickel and Levina (2008a). Then, by Theorem 2 of Bickel and Levina (2008a), we 
have EP0 θpn, n kpn, n − θ0 = o(J) if s(J) / J = o(1 / log J) asymptotically in n and J.

Proposition 3 states that the conditions for achieving the asymptotic results of Theorem 1 

are not met if the proportion of non-zero elements in the covariance matrix’s row with the 

most non-zero elements converges to zero faster than 1 / log J and the library of candidates 

possesses a hard-thresholding estimator whose thresholding hyperparameter is reasonable 

in the sense of Bickel and Levina (2008a)’s Theorem 2 and its subsequent discussion. 

Plainly, the true covariance matrix cannot be too sparse if the collection of considered 

estimators contains the hard-thresholding estimator with a correctly specified thresholding 

hyperparameter value.

This implies that banded covariance matrices whose number of bands are fixed for J do 

not meet the criteria for our theory to apply, assuming that one of the candidate estimators 

correctly specifies the number of bands. Nevertheless, we observe empirically in Section 

4 that our cross-validated procedure selects an optimal estimator when the true covariance 

matrix is banded or tapered more quickly in terms of n and J than any other type of true 

covariance matrix.

These results are likely explained by the relatively low complexity of the estimation problem 

in this setting. High-dimensional asymptotic arguments are perhaps unnecessary when the 

proportion of entries needing to be estimated in the true covariance matrix quickly converges 

to zero. These limitations of our theory reflect stringent, and typically unverifiable, structural 

assumptions about the estimand. We reiterate that the conditions of Theorem 1 are generally 

satisfied. In situations where the true covariance matrix is known to possess this level 

sparsity, practitioners might instead appeal to Equation (39) of Bickel and Levina (2008a) to 

support their use of a cross-validated estimator selection procedure. This result, coupled with 

that of Proposition 1, likely explains the aforementioned simulation findings of the banded 

and tapered covariance matrices.

Now, Theorem 1’s high-dimensional asymptotic results relate the performance of the cross-

validated selector to that of the oracle selector for the CV scheme. As indicated by the 

expression in Equation (3), however, we would like our cross-validated procedure to be 

asymptotically equivalent to the oracle over the entire data set. The conditions to obtain this 

desired result are provided in Corollary 1, a minor adaptation of previous work by Dudoit 
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and van der Laan (2005). This extension accounts for increasing J, thereby permitting its use 

in high-dimensional asymptotics.

Corollary 1. Building upon Assumptions 1 and 2 of Theorem 1, we introduce the 
additional assumptions that, as n, J → ∞ and J / n → m < ∞, pn → 0, 

c(δ, M(J))(1 + log(K))/ npn θpn, n kpn, n − θ0
P 0, and

θpn, n kpn, n − θ0

θn kn − θ0

P 1. (9)

Under these assumptions, it follows that

θpn, n k pn, n − θ0

θn kn − θ0

P 1. (10)

The proof is a direct application of the asymptotic results of Theorem 1.

As before, the assumption that c(δ, M(J))(1 + log(K))/ npn θpn, n kpn, n − θ0
P 0 remains 

difficult to verify, but essentially requires the estimation error of the oracle to increase 

quickly as the number of features grows. That is, npn θpn, n kpn, n − θ0 = ωP(J). We posit that 

this condition is generally satisfied, similarly to the asymptotic results of Theorem 1.

Now, a sufficient condition for Equation (9) is that there exists a γ > 0 such that

nγ θn kn − θ0 , n 1 − pn
γ θpn, n kpn, n − θ0

d (Z, Z), (11)

for a single random variable Z with ℙ(Z > a) = 1 for some a > 0. For single-split validation, 

where ℙ Bn = b = 1 for some b ∈ {0,1}n, it suffices to assume that there exists a γ > 0 such 

that nγ θn kn − θ0
d Z for a random variable Z with ℙ(Z > a) = 1 for some a > 0.

Equation (9) essentially requires that the (appropriately scaled) distributions of the cross-

validated and full-dataset conditional risk differences of their respective oracle selections 

converge in distribution as pn → 0. Again, this condition is unrestrictive. As pn → 0, the 

composition of each training set becomes increasingly similar to that of the full-dataset. 

The resulting estimates produced by each candidate estimator over the training sets and the 

full-dataset will correspondingly converge. Naturally, so too will the cross-validated and 

full-dataset conditional risk difference distributions of their respective selections.

While the number of candidates in the estimator library K has been assumed to be fixed 

in this discussion of the proposed method’s asymptotic results, it may be allowed to grow 

as a function of n and J. Of course, this will negatively impact the convergence rates 

of c(δ, M(J))(1 + log(K))/ npnEP0 θpn, n kpn, n − θ0  and c(δ, M(J))(1 + log(K))/ npn θpn, n kpn, n − θ0 . 

The sufficient conditions outlined in the asymptotic results of Theorem 1 are 

achieved so long as the library of candidates does not grow too aggressively. That 
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is, we can make the additional assumptions that K = o exp EP0 θpn, n kpn, n − θ0 /J  and 

K = oP exp θpn, n kpn, n − θ0 /J  such that the results of Equations (7) and (8) are achieved, 

respectively.

Finally, we have assumed thus far that EP0[X] is known. This is generally not the case in 

practice. In place of a random vector centered at zero, we might instead consider the set of n 

demeaned random vectors Xn × J where Xi = Xi − X and X(j) = 1/n∑Xi
(j). It follows from the 

details given in Remark 1 of the Online Supplement that the asymptotic results of Theorem 

1 and Corollary 1 apply to Xn × j.

4 Simulation Study

4.1 Simulation Study Design

We conducted a series of simulation experiments using prominent covariance models to 

verify the theoretical results of our cross-validated estimator selection procedure. These 

models are described below.

Model 1: A dense covariance matrix, where

ψ(jl) = 1, j = l
0.5,  otherwise  .

Model 2: An AR(1) model, where ψ(jl) = 0.7|j−l|. This covariance matrix, corresponding 

to a common timeseries model, is approximately sparse for large J, since the off-diagonal 

elements quickly shrink to zero.

Model 3: An MA(1) model, where ψ(jl) = 0.7 j − l . I j − 1 ≤ 1 . This covariance matrix, 

corresponding to another common timeseries model, is truly sparse. Only the diagonal, 

subdiagonal, and superdiagonal contain non-zero elements.

Model 4: An MA(2) model, where

ψ(jl) =

1, j = l
0.6, j − l = 1
0.3, j − l = 2
0,  otherwise 

.

This timeseries model is similar to Model 3, but slightly less sparse.

Model 5: A random covariance matrix model. First, a J × J random matrix whose elements 

are i.i.d. Uniform (0, 1) is generated. Next, entries below 1/4 are set to 1, entries between 

1/4 and 1/2 are set to −1, and the remaining entries are set to 0. The square of this matrix is 

then computed and added to the identity matrix IJ × J. Finally, the corresponding correlation 

matrix is computed and used as the model’s covariance matrix.

Model 6: A Toeplitz covariance matrix, where
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ψ(jl) =
1, j = l

0.6 j − l −1.3 ,  otherwise 
.

Like the AR(1) model, this covariance matrix is approximately sparse for large J. However, 

the off-diagonal entries decay less quickly as their distance from the diagonal increases.

Model 7: A Toeplitz covariance matrix with alternating signs, where

ψ(jl) =
1, j = l

( − 1) j − l 0.6 j − l −1.3 ,  otherwise 
.

This model is almost identical to Model 6, though the signs of the covariance matrix’s 

entries are alternating.

Model 8: A covariance matrix inspired by the latent variable model described in the Online 

Supplement’s Equation (3). Let βJ × 3 = (β1, …, βJ)⊤, where βj are randomly generated 

using a N(0, I3 × 3) distribution for J = 1, …, J. Then ψ = ββ⊤ + IJ × J is the covariance 

matrix of a model with three latent factors.

Each covariance model was used to generate data sets consisting of n ∈ {50, 100, 200, 500} 

i.i.d. multivariate Gaussian, mean-zero observations. The uniform boundedness condition 

of Theorem 1’s Assumption 1 is therefore not satisfied; we do this purposefully to further 

stress that this assumption is not limiting in many practical settings. For each model and 

sample size, five data dimension ratios were considered: J / n ∈ {0.3, 0.5, 1, 2, 5}. Together, 

the eight covariance models, four sample sizes, and five dimensionality ratios result in 160 

distinct simulation settings. For each such setting, the performance of the cross-validated 

selector with respect to the various oracle selectors and several well-established estimators is 

evaluated based on aggregation across 200 Monte Carlo repetitions.

We applied our estimator selection procedure, which we refer to as cvCovEst, using a 5-fold 

CV scheme. The library of candidate estimators is provided in the Online Supplement’s 

Table 1, which includes details on these estimators’ possible hyperparameters. Seventy-four 

estimators make up the library of candidates. We note that no penalty is attributed to 

estimators generating rank-deficient estimates, like the sample covariance matrix when J > 

n, though this limitation is generally of practical importance. When the situation dictates 

that the resulting estimate must be positive-definite, the library of candidates should be 

assembled accordingly.

4.2 Simulation Study Results

To examine empirically the optimality results of Theorem 1, we computed analytically, 

for each replication, the cross-validated conditional risk differences of the cross-validated 

selection, k pn, n, and the cross-validated oracle selection, k pn, n. The Monte Carlo expectations 

of the risk differences stratified by n, J / n, and the covariance model were computed 

from the cross-validated conditional risk differences. The ratios of the expected risk 
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differences are presented in Figure 1A. These results make clear that, for virtually all models 

considered, the estimator chosen by our proposed cross-validated selection procedure has a 

risk difference asymptotically identical on average to that of the cross-validated oracle.

A stronger result, corresponding to Equation (8) of Theorem 1, is presented in the Online 

Supplement’s Figure 1. For all but Models 1 and 8, we find that our algorithm’ s selection is 

virtually equivalent to the cross-validated oracle selection for n ≥ 200 and J / n ≥ 0.5. Even 

for Model 8, in which the covariance matrices are more difficult to estimate due to their 

dense structures, we find that our selector identifies the optimal estimator with probability 

tending to 1 for n ≥ 200 and J / n = 5.

More impressive still are the results presented in Figure 1B that characterize the full-dataset 

conditional risk difference ratios. For all covariance matrix models considered, with the 

exception of Model 1, our procedure’s selections attain near asymptotic optimality for 

moderate values of n and J / n. This suggests that our loss-based estimator selection 

approach’s theoretical guarantee, as outlined in Corollary 1, is achievable in many practical 

settings.

In addition to verifying our method’s asymptotic behavior, we compared its estimates 

against those of competing approaches. We computed the Frobenius and spectral norms 

of each procedure’s estimate against the corresponding true covariance matrix. The mean 

norms over all simulations were then computed for each covariance matrix estimation 

procedure, again stratified by n, J / n, and the covariance matrix model (Figures 3 and 4 of 

the Online Supplement). Our data-adaptive procedure is found to perform at least as well as 

the best alternative estimation strategy across all simulation scenarios under both norms.

5 Real Data Examples

Single-cell transcriptome sequencing (scRNA-seq) allows researchers to study the gene 

expression profiles of individual cells. The fine-grained transcriptomic data that it provides 

have been used to identify rare cell populations and to elucidate the developmental 

relationships between diverse cellular states.

Given that a typical scRNA-seq data set possesses tens of thousands of features (genes), 

most workflows prescribe a dimensionality reduction step. In addition to reducing the 

amount of computational resources needed to analyze the data, reducing the dimensions 

mitigates the effect of corrupting noise on interesting biological signal. The lower-

dimensional embedding is then used in downstream analyses, like novel cell-type discovery 

via clustering.

One of the most popular methods used to reduce the dimensionality of scRNA-seq data 

is uniform manifold approximation and projection (UMAP) (McInnes et al., 2018). This 

method captures the most salient non-linear relationships among a high-dimensional data 

set’s features and projects them onto a reduced-dimensional space. Instead of applying 

UMAP directly, the scRNA-seq data set’s leading principal components (PCs) are often used 

as an initialization.
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This initial dimensionality reduction by PCA is believed to play a helpful role in denoising. 

However, PCA typically relies on the sample covariance matrix, and so when the data set 

is high-dimensional, the resulting principal components are known to be poor estimates of 

those of the population (Johnstone and Lu, 2009). We hence posit that our cross-validated 

estimator selection procedure could form a basis for an improved PCA. That is, we hope that 

the eigenvectors resulting from the eigendecomposition of our estimated covariance matrix 

could be used to generate a set of estimates closer to the true PCs in terms of risk. These 

PCs could then be fed to UMAP to produce an enhanced embedding. Indeed, additional 

simulation results provided in Section 3 of the Online Supplement suggest that cvCovEst 

produces estimates of the leading eigenvalue at least as well as those produced by the sample 

covariance matrix, in terms of the spectral norm.

We applied our procedure to two scRNA-seq data sets for which the cell types are known 

a priori. These data were obtained from the scRNAseq Bioconductor R package (Risso and 

Cole, 2020), and prepared for analysis using a workflow outlined in Amezquita et al. (2020). 

A 5-fold CV scheme was used; the library of candidate estimators is provided in the Online 

Supplement’s Table 2. We expect that cells of the same class will form tight, distinct clusters 

within the low-dimensional representations. The resulting embeddings, which we refer to as 

the cvCovEst-based embeddings, were then compared to those produced by UMAP using 

traditional PCA for initialization, which we refer to as the PCA-based embeddings. For each 

embedding, the 20 leading PCs were fed to UMAP. The first data set is a collection of 285 

mouse visual cortex cells (Tasic et al., 2016), and the second data set consists of 2,816 

mouse brain cells (Zeisel et al., 2015). The 1,000 most variable genes of each data set were 

used to compute the PCs of both embeddings.

The resulting UMAP plots are presented in Figure 2. Though the two embeddings generated 

for each data set are qualitatively similar, the low-dimensional representation relying on our 

loss-based approach is more refined in Figure 2A. A number of cells erroneously clustered 

in the PCA-based embedding are correctly represented in the cvCovEst-based embedding. 

This explains the 41% increase in average silhouette width of our method relative to the 

traditional approach. Further insight is gleaned from the diagnostic plots of Figure 3. Figure 

3A indicates that cvCovEst selected the POET estimator (Fan et al., 2013) with 5 latent 

factors and a thresholding hyperparameter of 0.3. It that the selected estimator significantly 

improves upon the sample covariance matrix in terms of the cross-validated Frobenius 

risk. Figure 3B provides further insight into the discrepancies between the UMAP results 

of Figure 2A: the sample covariance matrix likely over-estimates many of the leading 

eigenvalues.

The embeddings in Figure 2B qualitatively identical, and so too are their average silhouette 

widths. This is expected, the Zeisel et al. (2015) is not truly high-dimensional. The sample 

covariance matrix likely is a reasonable estimator in this setting. Ideally, data-adaptive 

selection procedures should be cognizant of this. Indeed, cvCovEst, when applied to the 

Zeisel et al. (2015) data set, selects an estimator whose cross-validated empirical risk is 

only slightly smaller than that of the sample covariance matrix, and whose leading PCs are 

virtually identical (Figure 2 of the Online Supplement).
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6 Discussion

This work extends Dudoit and van der Laan (2005)’s framework for asymptotically optimal, 

data-adaptive estimator selection to the problem of covariance matrix estimation in high-

dimensional settings. We provide sufficient conditions under which our cross-validated 

procedure is asymptotically optimal in terms of risk, and show that it generalizes the cross-

validated hyperparameter selection procedures employed by existing estimation approaches. 

Future work might derive analogous results for other loss functions, or perhaps even for 

other parameters like the precision matrix.

The simulation study provides evidence that near-optimal results are achieved in data sets 

with relatively modest numbers of observations and many features across models indexed 

by diverse covariance matrix structures. These results also establish that our cross-validated 

procedure performs as well as the best bespoke estimation procedure in a variety of settings. 

Our scRNA-seq data examples further illustrate the utility of our approach in fields where 

high-dimensional data are collected routinely.

Practitioners need no longer rely upon intuition alone when deciding which candidate 

estimator is best from among a library of diverse estimators. We expect that a variety 

of computational procedures relying upon the accurate estimation of the covariance 

matrix beyond the exploratory analyses considered here, like clustering and latent variable 

estimation, stand to benefit from the application of this framework.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
(A) Comparison of the cross-validated selection and cross-validated oracle selection’s mean 

cross-validated conditional risk differences. (B) Comparison of the cross-validated selection 

and oracle selection’s full-dataset conditional risk differences. Note the differing y-axis 

scales for the different models.
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Fig. 2. 
Comparisons of scRNA-seq data sets’ UMAP embeddings based on vanilla PCA or PCA 

with the cross-validated selection’s covariance matrix estimate. The data sets consist of (A) 

285 cells collected from the visual cortex of mice and (B) 2,816 mouse brain cells. Distinct 

cell types are indicated by color.
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Fig. 3. 
Tasic dataset: Diagnostic plots and tables generated using the cvCovEst R package. (A) 

The top-left plot presents the cross-validated Frobenius risk of the estimator selected by our 

method. k represents the number of potential latent factors, and lambda the thresholding 

value used. The top-right panel contains a line plot of the selected estimator’s eigenvalues. 

The bottom-left plot displays the absolute values of the estimated correlation matrix output 

by the cvCovEst selection, and the bottom-right table lists the best performing estimators 

from all classes of estimators considered. (B) Side-by-side line plots of the estimated leading 

eigenvalues of the cvCovEst selection and the sample covariance matrix.
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