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Objective: Brain imaging communities focusing on different diseases have increasingly

started to collaborate and to pool data to perform well-powered meta- and

mega-analyses. Some methodologists claim that a one-stage individual-participant data

(IPD) mega-analysis can be superior to a two-stage aggregated data meta-analysis,

since more detailed computations can be performed in a mega-analysis. Before definitive

conclusions regarding the performance of either method can be drawn, it is necessary to

critically evaluate themethodology of, and results obtained by, meta- andmega-analyses.

Methods: Here, we compare the inverse variance weighted random-effect

meta-analysis model with a multiple linear regression mega-analysis model, as well as

with a linear mixed-effects random-intercept mega-analysis model, using data from 38

cohorts including 3,665 participants of the ENIGMA-OCD consortium. We assessed the

effect sizes and standard errors, and the fit of the models, to evaluate the performance

of the different methods.

Results: The mega-analytical models showed lower standard errors and narrower

confidence intervals than the meta-analysis. Similar standard errors and confidence

intervals were found for the linear regression and linear mixed-effects random-intercept

models. Moreover, the linear mixed-effects random-intercept models showed better fit

indices compared to linear regression mega-analytical models.

Conclusions: Our findings indicate that results obtained by meta- and mega-analysis

differ, in favor of the latter. In multi-center studies with a moderate amount of variation

between cohorts, a linear mixed-effects random-intercept mega-analytical framework

appears to be the better approach to investigate structural neuroimaging data.

Keywords: neuroimaging, MRI, IPD meta-analysis, mega-analysis, linear mixed-effect models
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INTRODUCTION

Data pooling across individual studies has the potential to
significantly accelerate progress in brain imaging (Van Horn
et al., 2001), as demonstrated by large-scale neuroimaging
initiatives, such as the ENIGMA (Enhanced NeuroImaging
Genetics through Meta-Analysis) consortium (Thompson et al.,
2014). The most immediate advantage of data pooling is
increased power due to the larger number of subjects available
for analysis. Data pooling across multiple centers worldwide can
also lead to a more heterogeneous and potentially representative
participant sample. Large-scale studies are well-powered to
distinguish consistent, generalizable findings from false positives
that emerge from smaller-sampled studies. The participation of
many experts may also lead to a more balanced interpretation,
wider endorsement of the conclusions by others, and greater
dissemination of results (Stewart, 1995).

An aggregate data meta-analysis is the most conventional
approach, where summary results, such as effect size estimates,
standard errors, and confidence intervals, are extracted from
primary published studies and then synthesized to estimate the
overall effect for all the studies combined (de Bakker et al., 2008).
This approach is relatively quick and inexpensive, but often prone
to selective reporting in primary studies, publication bias, low
power to detect interaction effects and lack of harmonization
of data processing and analysis methods among the included
studies. To overcome these issues, collaborative groups are
increasingly collating individual-participant data (IPD) from
multiple studies to jointly analyze the individual-level data in a
meta-analysis of IPD (Stewart, 1995). The IPD approach allows
standardization of processing protocols and statistical analyses,
culminating in study results not provided by the individual
publications. This approach also allows modeling of interaction
effects within the studies. Given these advantages, the IPD
approach is currently the gold standard.

There are two competing statistical approaches for IPD
meta-analysis: a two-stage or a one-stage approach (Thomas
et al., 2014). In the two-stage approach, the first step includes
analyzing the IPD from each study separately, to obtain aggregate
(summary) data (e.g., effect size estimates and confidence
intervals). The second step includes using standard meta-
analytical techniques, such as a random effects meta-analysis
model. The alternative one-stage approach analyzes all IPD in
one statistical model while accounting for clustering among
patients in the same study, to estimate an overall effect.
Throughout this manuscript, the one-stage IPD approach is
referred to as mega-analysis, while the two-stage approach is
referred to asmeta-analysis.

Some methodologists claim that a mega-analysis can be
superior to meta-analysis. The comprehensive evaluation of
missing data and greater flexibility in the control of confounders
at the level of individual patients and specific studies are
significant advantages of a mega-analytical approach. Mega-
analyses have also been recommended as they avoid the
assumptions of within-study normality and known within-study
variances, which are especially problematic with smaller samples
(Debray et al., 2013). Despite these advantages, mega-analysis

requires homogeneous data sets and the establishment of a
common centralized database. The latter criterion is time-
consuming since cleaning, checking, and re-formatting the
various data sets adds to the time and costs of performing mega-
analyses. Obtaining IPD may also be challenging and limited
by the terms of the informed consent or other data sharing
constraints within each study. These are the main reasons why
researchers often prefer meta-analysis using summary statistics.
Additionally, meta-analysis allows for analyses of individual
studies to account for local population substructure and study-
specific covariates that may be better dealt with within each
study.While eachmethod has its own advantages and limitations,
researchers still debate which method is superior for tackling
different types of questions [see (Stewart and Tierney, 2002;
Burke et al., 2017) for reviews on advantages and disadvantages
of each approach].

Brain imaging communities focusing on different diseases
have started collaborating to perform well-powered meta- and
mega-analyses. In the largest studies to date on the neural
correlates of OCD, the authors of the ENIGMA-OCD consortium
(Boedhoe et al., 2017a, 2018) conducted a mega-analysis, pooling
individual participant-level data from more than 25 research
institutes worldwide, as well as a meta-analysis by combining
summary statistic results from the independent sites. The meta-
and mega-analyses revealed comparable findings of subcortical
abnormalities in OCD (Boedhoe et al., 2017a), but the mega-
analytical approach seemed more sensitive for detecting subtle
cortical abnormalities (Boedhoe et al., 2018). Before definitive
conclusions regarding the performance of either method can be
drawn, it is necessary to critically evaluate the results obtained by
various approaches for meta- and mega-analyses.

Herein, we use data from the ENIGMA-OCD consortium
to compare results obtained by meta- and mega-analyses.
Specifically, we applied the inverse variance weighted random-
effect meta-analysis model and the multiple linear regression
mega-analysis model as used in the aforementioned studies
(Boedhoe et al., 2017a, 2018). In addition, we compared findings
from these models to those detected with a linear mixed-
effects random-intercept mega-analytical model. Effect sizes and
standard error estimates, and (where possible) model fit were
used to evaluate which of the methods performs best.

METHODS

Samples
The ENIGMA-OCDworking group includes 38 data sets from 27
international research institutes with neuroimaging and clinical
data from OCD patients and typically developing healthy control
subjects, including both children and adults (Boedhoe et al.,
2018). We defined adults as individuals aged ≥18 years and
children as individuals aged <18 years. The split at the age of
18 followed from a natural selection of the age ranges used in
these samples, as most samples used the age of 18 years as a cut-
off for inclusion. Because our previous findings and the literature
suggest differential effects between pediatric and adult samples,
we performed separate analyses for adult and pediatric data [for
demographics and further details on the samples, see (Boedhoe
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et al., 2018)]. In total, we analyzed data from 3,665 participants
including 1,905 OCD patients (407 children and 1,498 adults)
and 1,760 control participants (324 children and 1,436 adults). All
local institutional review boards permitted the use of measures
extracted from the coded data for analyses.

Image Acquisition and Processing
Structural T1-weighted brain MRI scans were acquired and
processed locally. For image acquisition parameters of each
site, please see (Boedhoe et al., 2018). All cortical parcellations
were performed with the fully automated segmentation software
FreeSurfer, version 5.3 (Fischl, 2012), following standardized
ENIGMA protocols to harmonize analyses and quality control
procedures across multiple sites (see http://enigma.usc.edu/
protocols/imaging-protocols/). Segmentations of 68 (34 left and
34 right) cortical gray matter regions based on the Desikan-
Killiany atlas (Desikan et al., 2006) and two whole-hemisphere
measures were visually inspected and statistically evaluated for
outliers [see (Boedhoe et al., 2018) for further details on quality
checking].

Statistical Framework
We examined differences between OCD patients and controls
across samples by performing (1) an inverse variance weighted
random-effects meta-analysis model; (2) a multiple linear
regression mega-analysis model; and (3) a linear mixed-effects
random-intercept mega-analysis model. Each of the 70 cortical
regions of interest (68 regions and two whole-hemisphere
averages) served as the outcome measure and a binary indicator
of diagnosis as the predictor of interest. In the meta-analysis,
all cortical thickness models were adjusted for age and sex (Im
et al., 2008; Westlye et al., 2010), and all cortical surface area
models were corrected for age, sex, and intracranial volume
(Barnes et al., 2010; Ikram et al., 2012). In the mega-analysis
all models were also adjusted for scanning center (cohort). The
two mega-analytical frameworks are similar, but the models
account differently for clustering of data within cohorts; linear
regression with a dummy variable for each cohort and linear
mixed-effects models (more efficiently) with only one variance
parameter. Finally, all models were fit using the restricted
maximum likelihood method [REML (Harville, 1977)].

The meta- and mega-analysis encompass intrinsically
different statistics, including differences in approaches for
dealing with missing data. E.g., the mega-analysis estimates one
restricted maximum likelihood over the entire data set. This
estimation contains information of each of the other cohorts.
The first stage of the meta-analysis includes the estimation
of a restricted maximum likelihood per cohort, making this
method more vulnerable to missing outcome data. Therefore,
we descriptively compared the meta- and mega-analyses
by examining the confidence intervals and standard error
estimates for the effect sizes assessed. In addition, the Bayesian
information criterion (BIC) were used to evaluate which of the
mega-analytical models performs better. A lower BIC indicates
a better model fit. Throughout the manuscript, we report p <

0.001.

Meta-Analysis
We analyzed the IPD from each study to obtain aggregated
summary data. Effect size estimates were calculated using Cohen’s
d, computed from the t-statistic of the diagnosis indicator
variable from the regression models [(Nakagawa and Cuthill,
2007), equation 10]. All regression models and effect size
estimates were fitted at each site separately. A final Cohen’s
d effect size estimate was obtained using an inverse variance-
weighted random-effect meta-analysis model in R (metafor
package, version 1.9-118). This meta-analytic framework enabled
us to combine data from multiple sites and take the sample size
of each cohort into account by weighing individual effect size
estimates for the inverse variance per cohort.

Mega-Analysis
We pooled all IPD in one statistical model to perform mega-
analyses and fitted the following models:

Linear Regression
The linear regression model included cohorts as dummy
variables. Effect size estimates were calculated using the Cohen’s
d metric computed from the t-statistic of the diagnosis indicator
variable from the regression models [(Nakagawa and Cuthill,
2007), equation 10].

Linear Mixed-Effects Model – Random-Intercept
Linear mixed-effects models are extensions of linear regression
models and efficiently account for clustering of data within
cohorts. By adding a random-intercept for cohort, the adjustment
for the clustering of data within cohorts is performed with
only one (variance) parameter, which reduces the number of
estimated parameters (rather than estimating the intercept of
each dummy variable separately as in the linear regression model
described above). We used lme4 (linear mixed-effects analysis)
package in R to perform the analyses. Effect size estimates were
calculated using the Cohen’s dmetric computed from the t-values
from the mixed-effects model [(Nakagawa and Cuthill, 2007),
equation 22].

RESULTS

The results of the meta-analysis and linear regression mega-
analysis have been published previously (Boedhoe et al., 2018).
In this paper, we added the linearmixed-effects random-intercept
mega-analysis and statistically compared the various approaches.

Meta-Analysis
No significant differences (p < 0.001) in cortical thickness
were observed in adult OCD patients (N = 1,498) compared
to healthy controls (N = 1,436) (Supplementary Table S1).
The meta-analysis did reveal a lower surface area of the
transverse temporal cortex (Cohen’s d −0.17) in OCD patients
(Supplementary Table S2). No group differences in cortical
thickness or surface area were observed in children with
OCD (N = 407) compared to control children (N = 324)
(Supplementary Tables S3, S4).
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Mega-Analysis
Both the linear regression (Cohen’s d −0.14) and the linear
mixed-effects random-intercept (Cohen’s d −0.11) models
revealed significantly lower cortical thickness in bilateral inferior
parietal cortices in adult OCD patients (N = 1,498) compared
to healthy controls (N = 1,436) (Supplementary Table S5). Both
models also showed significantly lower surface area (Cohen’s d
−0.16) in the left transverse temporal cortex in OCD patients
(Supplementary Table S6).

Both the linear regression (Cohen’s d between −0.24
and −0.31) and the linear mixed-effects random-intercept
(Cohen’s d between −0.20 and −0.28) models revealed
significantly thinner cortices in pediatric OCD patients (N
= 407) compared with control children (N = 324) in the
right superior parietal, left inferior parietal, and left lateral
occipital cortices (Supplementary Tables S7). Neither model
revealed significant group differences in cortical surface area
(Supplementary Tables S8).

Comparing Meta- and Mega-Analysis
Effect Sizes
When looking at the magnitude and order of effect
sizes we see the same pattern resulting from the meta-
analysis and linear regression mega-analysis in both
the pediatric (Supplementary Tables S3, S7) and adult
(Supplementary Tables S1, S5) datasets, i.e., the magnitude
and direction of effect of the effect sizes derived from the meta-
analysis and linear regression mega-analysis were highly similar.
The linear mixed-effects random-intercept mega-analysis also
showed a similar pattern of results, but slightly smaller effect
sizes (Table 1 and Supplementary Tables S5, S7).

Standard Error and 95% Confidence Intervals
Overall, linear regression and linear mixed-effects random-
intercept models showed lower standard errors and
narrower confidence intervals than the meta-analysis.
Similar standard errors and confidence intervals were
found for the different mega-analysis models (Table 1 and
Supplementary Tables S1–S8).

Goodness-of-Fit
The linear mixed-effects random-intercept models showed lower
BIC values compared to the linear regression mega-analysis
(Table 1 and Supplementary Tables S9–S12).

DISCUSSION

The aim of this study was to evaluate different statistical
methods for large-scale multi-center neuroimaging analyses. We
empirically evaluated whether a meta-analysis provides results
comparable to a mega-analysis and which analytical framework
performs better. Clinical interpretation of the results can be
found elsewhere (Boedhoe et al., 2017b, 2018). Although effect
sizes were similar for the meta-analysis and linear regression
mega-analysis, lower standard errors and narrower confidence
intervals of both mega-analytical approaches compared to the
meta-analysis suggest better performance of the mega-analytical

approach over the meta-analytical approach. While the meta-
analysis failed to detect cortical thickness differences in both
the adult and pediatric samples, it did support the findings of
the mega-analyses at a less stringent significance threshold (p <

0.05 uncorrected). As a second aim, we investigated which mega-
analytical framework was superior. The BIC values indicated
a better model fit of the linear mixed-effects random-intercept
model compared to the linear regression mega-analytical model.

Whereas, the linear regressionmodel showed similar standard
errors and confidence intervals to the linear mixed-effects
random-intercept model, the latter fitted the data better. The
effect sizes of the linear regression model appeared to be higher
than those of the linear mixed-effects models, possibly indicating
an overestimation of the effect of diagnosis. Indeed fixed-effects
analyses (comparable to the linear regression models in our case)
are reported to produce biased estimates or inflated type I error
rates when pooled data includes cohorts with a small number of
patients (Agresti and Hartzel, 2000; Kahan and Morris, 2012).
Mathew and Nordstorm (2010) also suggested that a mega-
analysis (one-stage approach) with a random intercept term
might be slightly more precise than a meta-analysis (two-stage
approach), which has a distinct intercept term per study (Mathew
and Nordstorm, 2010). Taken together, our results suggest that
the linear mixed-effects random-intercept mega-analysis model
is the better approach for analyzing cortical gray matter data in a
multi-center neuroimaging study.

We also explored (data not shown) a linear mixed-effects
random-intercept and random-slope mega-analytical approach,
since the various cohorts might have shown differences in
effects of diagnosis related to clinical heterogeneity between
patient samples. However, for most of the regions of interest
the model did not converge. These computational difficulties
and convergence problems have been reported before (Debray
et al., 2013). As a result, effect sizes, confidence intervals, standard
errors, and BIC values could not be estimated accurately.
Indeed previous literature has demonstrated that mega-analyses
may produce downwardly biased coefficient estimates when an
incorrect model is specified, for instance when random effects are
wrongly assumed (Dutton, 2010). Note that including a random
slope in the linear mixed-effects model might be valuable when
large variance is present in the data between cohorts. Therefore,
we recommend the following strategy: (1) run a mixed-effects
model with a random-intercept to correct for clustering of
participants within cohorts; (2) add a random-slope to correct
for potential variance in effects between cohorts; (3) and perform
a likelihood-ratio test to statistically compare both models. If the
likelihood-ratio test is significant i.e., there is a better fit of the
random-intercept random-slope model, this model is preferred
over the random-intercept only model. If the likelihood-ratio test
is not significant i.e., there is a better fit of the random-intercept
only model, this model is preferred over the random-intercept
random-slope model.

Olkin and Sampson (1998) showed that for comparing
treatments with respect to a continuous outcome in clinical trials,
meta-analysis is equivalent to mega-analysis if the treatment
effects and error variances are constant across trials. The
equivalence has been extended even if the error variances
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TABLE 1 | Effect size, confidence interval, and standard error estimates, and BIC values of the main findings.

Cohen’s d Standard Error 95% CI BIC

ADULT

Left inferior parietal cortex meta-analysis −0.13 0.053 −0.237 to −0.029 –

mega-analysis LR* −0.14 0.038 −0.211 to −0.063 9,693

cortical thickness mega-analysis LMEri* −0.11 0.038 −0.214 to −0.065 9,638

Right inferior parietal cortex meta-analysis −0.13 0.046 −0.221 to −0.042 –

mega-analysis LR* −0.14 0.038 −0.211 to −0.064 9,799

mega-analysis LMEri* −0.10 0.038 −0.213 to −0.066 9,750

Left transverse temporal cortex cortical surface area meta-analysis* −0.17 0.038 −0.243 to −0.095 –

mega-analysis LR* −0.16 0.037 −0.238 to −0.092 33,368

mega-analysis LMEri* −0.16 0.037 −0.240 to −0.095 33,263

PEDIATRIC

Right superior parietal cortex meta-analysis −0.27 0.138 −0.540 to −0.001 –

mega-analysis LR* −0.27 0.075 −0.416 to −0.121 2,645

mega-analysis LMEri* −0.21 0.075 −0.415 to −0.119 2,634

Left inferior parietal cortex cortical thickness meta-analysis −0.31 0.144 −0.593 to −0.027 –

mega-analysis LR* −0.31 0.077 −0.457 to −0.154 2,634

mega-analysis LMEri* −0.28 0.077 −0.455 to −0.151 2,610

Left lateral occipital cortex meta-analysis −0.26 0.095 −0.445 to −0.071 –

mega-analysis LR* −0.26 0.075 −0.404 to −0.109 2,464

mega-analysis LMEri* −0.23 0.075 −0.401 to −0.106 2,444

LR, linear regression; LMEri, linear mixed-effects random-intercept model; CI, confidence interval; BIC= Bayesian information criterion.

*Indicates significant group difference at a threshold of p < 0.001.

are different across trials (Mathew and Nordstrom, 1999).
Lin and Zeng theoretically and empirically showed asymptotic
equivalence between meta- and mega-analyses when the effect
sizes are the same for all studies (Lin and Zeng, 2010a,b). The
different cohorts in our study did not all show similar effect sizes
and error variances, possibly explaining why we did not find
the meta- and mega-analyses to be equivalent. In practice, effect
sizes and error variances vary across studies more often than
not. Moreover, these authors (Lin and Zeng, 2010a) focused on
a fixed-effects meta-analysis rather than a random-effects meta-
analysis which is carried out in the current study. A fixed-effect
model only takes into account the random error within cohorts,
whereas the random-effect model also takes into account the
random error between cohorts (Borenstein et al., 2010). Not
taking into account the random error between different cohorts
in neuroimaging data, for example, may lead to potentially
misleading conclusions. More comprehensive simulation studies
may be performed to assess theoretical differences in the
results of meta- and mega-analyses. Such simulation studies
covering various scenarios regarding varying effect sizes and
error variances would strengthen our findings.

Conclusions of meta-analyses are often used to guide health
care policy and to make decisions regarding the management
of individual patients. Thus, it is important that the conclusions
of meta-analyses are valid. Although the two approaches (meta-
and mega-analysis) often produce similar results, sometimes
clinical and/or statistical conclusions are affected (Burke et al.,
2017). We agree with Burke et al. (2017) and Debray et al.
(2013) that when planning IPD analyses in a multi-center

setting, the choice and implementation of a mega-analysis (one-
stage approach) or meta-analysis (two-stage approach) method
should be pre-specified, as occasionally they lead to different
conclusions. Standardized statistical guidelines addressing the
best approach, such as those mentioned in Burke et al. (2017),
would be beneficial in this area. For example, meta-analysis (two-
stage approach) or mega-analysis (one-stage approach) may be
more suitable, depending on outcome types (continuous, binary
of time-to-event). In a multi-center study including multiple
small sample cohorts, a mega-analysis (one-stage approach) is
preferred, as it avoids the use of approximate normal sampling
distributions, known within-study variances, and continuity
corrections that plague mega-analysis (two-stage approach)
with an inverse variance weighting. Additionally, any mega-
analysis (one-stage approach) should account for the clustering
of participants within cohorts, ideally by including a random-
intercept term for cohort. If the effect sizes of the separate studies
are expected to vary greatly, it should be investigated whether
adding a random-slope to the model is beneficial. For further
details about choosing an appropriate method for a multi-center
study we recommend Burke et al. (2017).

To our knowledge, this is the first report investigating the
utility of meta- vs. mega-analyses for multi-center structural
neuroimaging data. The validity of our findings is limited
to cortical gray matter measures. Therefore, they may not
be generalized to all other brain measures. Nevertheless, our
findings show that in the case of cross-sectional structural
neuroimaging data a mega-analysis performs better than a
meta-analysis. In a multi-center study with a moderate amount

Frontiers in Neuroinformatics | www.frontiersin.org 6 January 2019 | Volume 12 | Article 102

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Boedhoe et al. An Emperical Comparison of Meta- and Mega-Analysis

of variation between cohorts, a linear mixed-effects random-
intercept mega-analytical framework seems to be the better
approach to investigate structural neuroimaging data. We urge
researchers worldwide to join forces by sharing data with the goal
of elucidating biomedical problems that no group could address
alone.
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