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Abstract

Investigation of human diet during the Neolithic has often been limited to a few archaeolog-

ical cultures or single sites. In order to provide insight into the development of human food

consumption and husbandry strategies, our study explores bone collagen carbon and nitro-

gen isotope data from 466 human and 105 faunal individuals from 26 sites in central Ger-

many. It is the most extensive data set to date from an enclosed geographic microregion,

covering 4,000 years of agricultural history from the Early Neolithic to the Early Bronze Age.

The animal data show that a variety of pastures and dietary resources were explored, but

that these changed remarkably little over time. In the human δ15N however we found a sig-

nificant increase with time across the different archaeological cultures. This trend could be

observed in all time periods and archaeological cultures (Bell Beaker phenomenon

excluded), even on continuously populated sites. Since there was no such trend in faunal

isotope values, we were able largely to exclude manuring as the cause of this effect. Based

on the rich interdisciplinary data from this region and archaeological period we can argue

that meat consumption increased with the increasing duration of farming subsistence.

In δ13C, we could not observe any clear increasing or decreasing trends during the

archaeological time periods, either for humans or for animals, which would have suggested

significant changes in the environment and landscape use. We discovered sex-related die-

tary differences, with males of all archaeological periods having higher δ15N values than

females, and an age-related increasing consumption of animal protein. An initial decrease
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of δ15N-values at the age of 1–2 years reveals partial weaning, while complete weaning took

place at the age of 3–4 years.

Introduction

Dietary evolution is fundamental to human history [1]. Throughout most of that history, peo-

ple lived as hunter-gatherers and used a range of plants and animals in their natural environ-

ment. Adaptation to different habitats and ecosystems is a feature of cultural evolution, and

there is no single, “natural” human diet. Approximately 12,000 years ago, at the end of the last

glaciation, the process of Neolithisation started in the Near East. The beginning of agriculture

and animal husbandry irreversibly resulted in the most radical change in human economic

and subsistence strategies and the largest social modification in the history of humankind [2].

Food resources became more and more abundant and constant. The consumption of cereals

and other plants increased dramatically [3]. What impact did farming have on human lifestyle?

The domestication of plants and animals led to changes in numerous aspects of life, including

available foodstuffs, physical activities, reproductive experience, psychosocial relations, micro-

bial interactions, toxin/allergen exposure, and sedentism. In several waves, Neolithic pioneers

spread along different routes from the Fertile Crescent and reached central Europe by about

6,000 cal. BC [4,5]. Ancient DNA analyses, including mtDNA and Y-chromosome analyses,

and genome-wide scans, revealed that the introduction of the “Neolithic package”, including

previously unknown animals and plants, agricultural economy, sedentism, ceramics and new

technologies, was closely connected to a population-genetic event [6–11]. Moreover, there is

also evidence for large-scale migrations at the end of the Neolithic and in the Early Bronze Age

in the form of fundamental changes in the archaeological record [7,12]. These ground-break-

ing insights into population dynamics in central Europe raise fundamental questions regard-

ing their impact on human subsistence strategies during the Neolithic, starting with the

establishment of the food-producing economic system and ending in the Early Bronze Age.

Here we present a diachronic study that focuses on socio-economic changes, and socio-cul-

tural aspects of those changes, over almost 4,000 years of agricultural history in the Middle

Elbe-Saale region (MES) of central Germany (5,500 to 1,550 cal. BC). Our aim is to provide

insight into human food consumption and husbandry strategies and to determine if, when and

why people started to intensify livestock breeding and dairy farming during the Neolithic. In

the 1980s, Andrew Sherratt postulated the model of a “secondary products revolution” that

emphasises the discovery and systematic use of secondary animal resources, such as milk,

wool, and the use of draught animals [13]. The model itself and the influence of secondary ani-

mal resources on socioeconomic changes in Neolithic cultures are still controversially dis-

cussed [14]. The results of our diachronic study can contribute powerful arguments to this

discourse. We use carbon and nitrogen stable isotope analyses of human and faunal bone col-

lagen [15–17] to reconstruct human dietary patterns. In one of the largest studies of the Neo-

lithic and Early Bronze Age undertaken to date, the data reflect alterations in dietary

composition, especially with regard to the role of animal-derived proteins in the human diet,

but also the intensity of arable land cultivation. Owing to its fertile soils, the Middle Elbe-Saale

(MES) region was densely settled throughout prehistory. It therefore offers excellent condi-

tions for studying the establishment and development of the food-producing economy over

time. The rich archaeological record not only documents fundamental alterations in human

material culture, but also includes continuously settled sites, which allow human dietary
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changes to be investigated in areas, which were constantly inhabited. The MES survey

addresses the following key questions regarding dietary development:

1. Did changes occur in the composition of the human diet from the Linearbandkeramik Cul-

ture (LBK), at the transition between the Mesolithic and the beginnings of the farming life-

style, to the establishment of the Únětice Culture in the Early Bronze Age, both at

individual sites and across the entire study area?

2. What diachronic trends can be observed in relation to the supply of fodder for domestic

animals and husbandry strategies in general?

3. Do our data reveal indications for or against a "secondary products revolution"?

4. Does the role of animal protein from meat, fresh milk, or dairy products in the human diet

change over time?

5. Do possible dietary changes correlate with the genetic population dynamics in central

Germany?

6. Are there any differences in the diet between the sexes and the various age groups in the

period studied?

7. Do infant weaning patterns change in the context of changing food supply?

The present study was part of an interdisciplinary research project entitled “Cultural

change = Population change?”. Based on archaeological, physical anthropological (sex, age,

stature, health status, stress factors), ancient DNA (settlement and population history, matri-/

patrilines, kinship analysis) and stable isotope analyses, it investigated the settlement and pop-

ulation history of the MES in the context of information on lifestyle and life conditions

[6,8,18–21]. This is the first study to outline the development of diet as part of the cultural rev-

olution on an epochal scale from the Neolithic to the Early Bronze Age. Thanks to excellent

preconditions, the MES is a key area for researching the diet and cultural development that

took place after the introduction of the farming lifestyle in Europe.

The Neolithic in central Germany

The Middle Elbe-Saale region is located at the intersection of the Elbe and Saale rivers in the

south of Saxony-Anhalt, Germany. Due to its fertile soils and a rather lightly forested land-

scape [22,23] it provided ideal conditions for farming and animal husbandry. During the Neo-

lithic and the Early Bronze Age, the area was settled by the bearers of numerous archaeological

cultures, from the earliest farmers and cattle breeders to the metal-processing societies which

saw the emergence of the first social elites. In order to achieve a representative characterisation

of the dietary profiles over a timeframe of just under 4,000 years, the most promising approach

appeared to be a diachronic survey divided up into six periods. The onset of the Early Neolithic

(EN) in the MES is dated to c. 5,500 cal. BC and is represented by the widespread archaeolog-

ical phenomenon of the Linearbandkeramik Culture (LBK). The chronological span of the

Middle Neolithic (MN) covers the Rössen Culture (RSC) and is dated to c. 4,625–4,250 cal.

BC. It is followed by the Younger Neolithic (YN), during which a cultural regionalisation can

be observed. The YN comprises the Gatersleben Culture (GLC), the Schöninger Group (SCG)

and the Baalberge Culture (BAC). The Late Neolithic (LN) begins around 3,375 cal. BC with

the Salzmünde Culture (SMC), the Bernburg Culture (BEC) and the Globular Amphora Cul-

ture (KUC). This is followed from 2,825 cal. BC onwards by the Final Neolithic (FN), which

includes the transregional Corded Ware Culture (CWC) and Bell Beaker phenomenon (BBC),

which overlapped with each other chronologically. Finally, the Early Bronze Age (EBA),

4000 years of human dietary evolution in central Germany
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represented by the Únětice Culture (UC), begins around 2,200 cal. BC [24–28] (Fig 1). More

information on the archaeological cultures is provided in S5 Table. This rich archaeological

record represents supra-regional as well as regional cultural phenomena and chronological

trends. Thanks to a firm association of cultural groups with periods by archaeological means

and statistically relevant sample sizes for these periods, it has been possible to assess the dietary

development across the MES, not just at individual sites. Moreover, parallel examinations car-

ried out at continuously settled individual sites have also revealed local patterns of behaviour,

certain types of local structural design and specific developments in comparable conditions.

Analysis of carbon and nitrogen isotopes for the reconstruction of

human dietary habits in prehistory

In addition to collecting archaeological, archaeozoological, and archaeobotanical data, stable

isotope analysis of carbon (δ13C) and nitrogen (δ15N) in collagen, the organic fraction of

human and faunal bones and teeth, is a straightforward method for diet reconstruction

[15,16,30,31]. Because the major nutrients carbohydrates and fats lack nitrogen, all the

Fig 1. Overview of investigated sites and archaeological chronology of Neolithic and Early Bronze Age central Germany. The Stroke Ornamented Culture and

Michelsberg Culture are not represented in our sample due to low rate of anthropological findings. Chronology after Schwarz in [29].

https://doi.org/10.1371/journal.pone.0194862.g001
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nitrogen found in collagen, itself a protein, is derived from dietary proteins [32]. Although car-

bon occurs in all major nutrients, collagen carbon is also largely derived from dietary proteins.

The contribution from other nutrients is around 25% [33,34] and especially in periods of pro-

tein deficiency, carbon may also be routed from carbohydrates and fats into non-essential

amino acids [35–37]. Because of their different atomic masses, light stable isotopes are frac-

tionated during biochemical reactions. This causes enrichment of the heavier isotopes along

the food chain. Between plants and the collagen of their primary consumers (herbivores) δ13C

values increase by about 5 ‰ (VPDB), while the difference between collagen of species at adja-

cent trophic levels of a food chain is about 0.8–1.3 ‰ [38,39]. The effects of trophic level

enrichments are larger in δ15N with an increase of 3–5 ‰ (AIR) for each step in the food chain

[32]. Recent studies on humans estimate an even larger difference between diet and collagen of

6 ‰ [40]. From stable isotope compositions we can distinguish between consumers of marine

and terrestrial ecosystems, detect positions in the food chain and changes in climate condi-

tions, especially humidity [15,41,42]. Moreover, anthropogenic influence on soil conditions,

primarily manuring, raises the δ15N values of plants [43,44]. This must be taken into consider-

ation in diet reconstructions in order not to overestimate the contribution of meat and dairy

products. In the case of δ13C, the major cause of variation is the different isotope fractionation

of plants that follow the C3 and C4 photosynthetic pathways. While C3 plants with δ13C values

of between -35 and -22 ‰ dominate in areas with temperate climates, such as our study area,

C4 plants with δ13C values of between -12.7 and -11.4 ‰ occur in warmer environments [45].

Staple plants in the latter group include millet, maize, and sorghum, of which only millet is rel-

evant in European prehistory, but not until post-Neolithic times [16,46,47]. Variation of car-

bon isotope ratios within the spectrum of C3 plants reflects density and extent of forest cover

(“canopy effect”, [48–50]) and humidity [51,52], which is also mirrored in Neolithic collagen

samples [53].

On a global scale, variation of δ15N is largely affected by temperature, precipitation, and the

effects of coastal environments [54–56]. In order to account for spatial and temporal variation

of the isotope baseline data, it is essential to not only analyse human bones from the contexts

in question, but also comparative faunal material. The latter provides proxy data for animal-

derived food sources, but also characterises typical data ranges for representatives of specific

trophic levels. Because the isotopic composition of human and faunal food sources may differ

remarkably, stable isotope data of botanical macro remains are equally important [57],

although not always available.

Stable isotope studies which focus on the Neolithic have been conducted by several work-

groups in various geographic areas of Europe; an overview and a summary of available data is

given in [53]. Two studies are worth mentioning here. Based on 13 sites in southern Germany

with similar cultural sequences (5,500–2,000 cal. BC), though with rather limited sample num-

bers, Asam and colleagues [58] observed an increase in the mean δ15N values across the period,

from Early Neolithic LBK groups to the Middle Neolithic period and ending with Late Neo-

lithic populations. An improved meat supply and a broader dietary spectrum is not postulated

until the Late Neolithic, at which stage it is interpreted as evidence of a stabilisation of the exis-

tential food supply available to Neolithic settlers. Archaeological findings made at the Blätter-

höhle cave site (Hagen, western Germany) point to the coexistence, locally, of different Late

Neolithic population groups, which differed from a molecular genetic point of view and in

terms of their subsistence strategies. Besides farmers who consumed meat and the secondary

products of domestic animals, another community also lived in the area, specialising in a diet

based on wild animals and freshwater fish and whose mtDNA haplogroups indicate a genetic

profile typical of Mesolithic population groups [59]. Stable isotope studies often rely on

selected sites and rather small datasets, or lack a long-term diachronic perspective. The study
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of individual sites is crucial for illustrating geographical and temporal highlights, but it does

not allow the comprehensive assessment of lifestyles and subsistence and dietary habits over a

specific time period, a particular region or even a (pre)historic epoch.

Materials and methods

This study deals with archaeological skeletal material whose excavation and scientific examina-

tion was commissioned and licensed by the State Office for Heritage Management and Arc-

haeology Saxony-Anhalt (under the directorship of Prof. Dr. H. Meller). The human remains

are stored in the archive of the State Office for Heritage Management and Archaeology Sax-

ony-Anhalt at Halle (Saale). The sample material used in the dietary reconstruction presented

here, which was based on carbon and nitrogen isotope ratios in bone collagen, comprised 482

human and 109 faunal bone samples from 26 sites, spanning the central German Early Neo-

lithic to the Early Bronze Age (S1–S4 Tables). It includes earlier published data from studies of

specific time periods or sites [18,60,61]. 466 samples which complied with the quality criteria

for bone collagen from archaeological contexts [62,63] were included in the data analysis. Stan-

dardised methods were applied for age and sex determination [21,64–66]; sex was only deter-

mined for juveniles and adults. The data comprise 147 males and 132 females (� 15 years of

age at death) as well as 187 individuals of indeterminable sex, most of the latter being children

(< 15 years). The age groups were defined as follows: infans I (0–6 years, n = 69), infans II (7–

14 years, n = 66), juvenile (15–20 years, n = 44), adult (21–40 years, n = 183), mature (� 41–60

years, n = 92) and senile (� 61 years, n = 8). The sites extended from the northern north of the

Harz uplands to the south of Saxony-Anhalt (Fig 1) and were excavated between 1991 and

2010 by the State Office for Heritage Management and Archaeology in Halle (Saxony-Anhalt).

Many of the settlements and cemeteries had been settled and used several times or even con-

tinuously during the period studied. In terms of the different periods, the dataset comprises 92

individuals from the EN, 13 from the MN, 77 from the YN, 35 from the LN, 106 from the FN

and 143 from the EBA (S1 Table). The high sample numbers allowed us to analyse the data by

age, sex, site, cultural association and chronology whilst maintaining the statistical significance

of the evidence. Besides the dataset of human individuals, there were also results from 105

samples from domestic and wild animals (S3 Table). These came from burials and from settle-

ment features (pits). The animal species examined included domestic cattle (Bos taurus,
n = 57), aurochs (Bos primigenius, n = 3), sheep and goat (Ovis aries and Capra hircus, n = 19),

pig (Sus domesticus n = 21), dog (Canis familiaris, n = 3), red deer (Cervus elaphus, n = 1) and

stone marten (Martes spec., n = 1).

Sample preparation followed [67] with slight modifications [18,68]. Most of the human

samples were taken from ribs. Where no ribs were available, we used long bones or skull frag-

ments. For reasons of quality of preservation, we had to use different skeletal elements for the

faunal samples. The surface of the bone fragments was removed with dental cutting and mill-

ing equipment and samples were demineralised in 10 ml of 0.5 N HCl (4˚C, 14 days), rinsed

five times with deionised water and gelatinised (48 h, 70˚C, pH 3). We used Ezee-Filter separa-

tors (Elkay) to separate the insoluble portion and Amicon ultrafilters (glycerol coating re-

moved by several washes with deionised H2O and 0.1 M NaOH) to concentrate long-chained

collagen molecules. The collagen concentrates were afterwards frozen and lyophilised. Dupli-

cates of 1–2 mg were weighed into tin capsules and combusted to CO2 and N2 in an elemental

analyser (Vario EL III, Elementar Analytical Systems) coupled to an IsoPrime High Perfor-

mance Stable Isotope Ratio Mass Spectrometer (VG Instruments). The data were normalised

by means of two-point calibrations based on USGS 40 and IAEA N2 for nitrogen and CH6

and CH7 for carbon [69]. Isotope compositions are reported in δ-notation in per mil relative
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to VPDB for carbon and to AIR for nitrogen, while the measurement errors were less

than ± 0.2 ‰ for nitrogen and ± 0.1 ‰ for carbon.

Concerning statistical analysis of the results, the distributions of the two stable isotope

ratios were compared in the faunal samples with respect to differences between animal species

and between six major time periods (EN, MN, YN, LN, FN and EBA), respectively. Distribu-

tions were visualized by stratified dot plots and statistical significance of differences was

assessed using the Kruskal-Wallis-test. Group specific means values were expressed as mean

+/- standard deviation (SD). In comparing animal species only groups with at least 8 animals

(cattle, goat/sheep, pigs) were included in assessing statistical significance. In the human sam-

ples we assessed differences with respect to age groups, gender, time periods and archaeolog-

ical cultures within time periods. Individuals of unclear cultural affiliation and the single

sample of the Globular Amphora Culture (KUC) were excluded from the latter. Due to an

approximately balanced distribution of age and sex in the different time periods (S1 Table) we

focused on univariate analyses not adjusting for differences in other factors. Distributions

were visualized by stratified boxplots or histograms, and statistical significance of differences

were assessed by one-way ANOVA or t-tests. For the comparison of cultures within time peri-

ods we performed pairwise comparisons using Tukey’s method. The uniformity of the age

trend across time periods was assessed by testing for an interaction between age and time

period in a regression model. The joint distribution of both stable isotope ratios was visualized

using scatter plots. To investigate a possible trend in the population variation with respect to

the two stable isotopes, we determined the interquartile range within each culture and sub-

jected the observed values to a meta regression with the period (numbered from 1 to 6) as

covariate. The interquartile ranges were estimated as the average of the differences between

the 80% and the 20%, the 75% and the 25%, and the 70% and the 30% percentile. The standard

errors of the estimated interquartile ranges were determined by bootstrap.

Results

Sample preservation and quality criteria

The overall collagen yield of the human samples that fulfilled the quality criteria for ancient

bone collagen [70,71] varied between< 0.2% and 23.7% (mean value 3.1 ± 2.3%), and of the

animal bones between < 0.1% and 10.0% (mean value 2.8 ± 2.1%). The carbon content of the

human collagen samples ranged from 26% to 47% (mean value 40 ± 4%) and the nitrogen con-

tent from 9% to 17% (mean value 14 ± 1%). The carbon content in the animal bone samples

varied between 15% and 46% (mean value 39 ± 5%) and the nitrogen content between 5% and

17% (mean value 14 ± 2%). The atomic C/N ratio of the human samples was between 2.8 and

3.7 (mean value 3.2 ± 0.1), whilst that of the animal bones was between 3.1 and 3.6 (mean

value 3.3 ± 0.1) (S1 and S3 Tables). A total of 466 (97%) human and 105 (96%) faunal samples

fulfilled the established quality criteria [71], whilst 16 human and 4 faunal samples were

excluded from further study. The latter are listed in S2 and S4 Tables.

The faunal samples

The stable isotope ratios of the faunal samples from the central German Neolithic and Early

Bronze Age varied between -23.2 ‰ (Ovis/Capra) and -18.8 ‰ (Martes spec.) with regard to

δ13C and between 4.5 ‰ (Bos taurus) and 11.0 ‰ (Canis familiaris) with regard to δ15N (S3

Table). Seen across all chronological phases, the data ranges of the most common domestic

animals, cattle (n = 58), sheep/goat (n = 19) and pig (n = 21), largely overlapped. The highest

mean δ13C values were measured in sheep/goats (min: -23.2 ‰; max: -19.9 ‰; mean: -20.7 ±
0.7 ‰), followed by cattle (min: -23.2 ‰; max: -19.6 ‰; mean: -21.2 ± 0.6 ‰) and pigs (min:
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-22.5 ‰; max: -20.0 ‰; mean: -21.3 ± 0.8 ‰). Two subadult cattle (ESP_7, ESP_9) exhibited

no abnormalities compared to the adult animals. The δ13C values of three probable aurochs

were between -20.8 ‰ and -20.4 ‰ and therefore fell within the same range as the domestic

cattle. The mean δ13C values showed significant differences between the main groups of

domestic animals, i.e. cattle, sheep/goats and pigs (H(95) = 12.181, p = 0.0023) (S1 Fig).

Amongst the domestic animals (excluding dogs), the pigs yielded the highest δ15N values

(min: 5.4 ‰; max: 9.0 ‰; mean: 7.2 ± 1.0 ‰), followed by sheep/goats (including samples that

could be identified as belonging to either of those species) (min: 5.1 ‰; max: 8.9 ‰; mean:

7.0 ± 0.9 ‰) and cattle (min: 4.5 ‰; max: 8.7 ‰; mean: 6.5 ± 1.0 ‰). The ranges of δ13C val-

ues also showed significant differences between cattle, pigs and sheep/goats (H(95) = 9.562,

p = 0.0084), supporting a divergence between the isotope ranges of different animal species in

the food web of central Germany (Fig 2 and S1 Fig). Three samples of dogs exhibited slightly

higher values with regard to both isotope ratios, thus distinguishing themselves from the herbi-

vores (δ13C: -20.1 to -19.4 ‰; δ15N: 6.6 to 9.6 ‰). The isotope values of a single red deer sam-

ple (δ13C = -21.4 ‰, δ15N = 5.1 ‰) fell within the range of the domestic animals.

Most of the animal bones analysed could be associated with a chronological period or a par-

ticular archaeological culture. The chronological sequence of mean δ13C values of the domestic

animals exhibited no discernible patterns, though differences were significant (H(100) = 9.242,

p = 0.026) (Fig 2 and S1 Fig). The highest mean δ13C values dated from the Middle Neolithic

(-20.5 ± 0.1 ‰), followed by the Final Neolithic (-20.7 ± 0.5 ‰) and the Early Neolithic

(-20.9 ± 0.8 ‰). The lowest mean δ13C values were measured in the domestic animals from

the Younger and Late Neolithic (-21.2 ± 0.5 ‰) and the Early Bronze Age (-21.4 ± 0.6 ‰).

Fig 2. Scatter plot of δ13C and δ15N values of faunal samples. Early Neolithic (EN) = light green, Middle Neolithic

(MN) = yellow, Younger Neolithic (YN) = pink, Late Neolithic (LN) = red, Final Neolithic (FN) = blue, Early Bronze

Age (EBA) = orange.

https://doi.org/10.1371/journal.pone.0194862.g002
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The mean nitrogen isotope values ranged between 5.7 ‰ and 7.6 ‰, and showed neither sys-

tematic changes over time nor statistical significance (H(100) = 5.715, p = 0.126) (Fig 2 and S1

Fig). Whilst the Early and Middle Neolithic domestic animals reached the highest δ15N values

(7.0 ± 1.0 ‰ and 7.6 ± 1.2 ‰), the Early Bronze Age values were clearly lower (6.7 ± 1.2 ‰).

The lowest mean nitrogen isotope ratios were measured in the Younger and Late Neolithic

domestic animals (5.7 ± 0.7 ‰).

The human samples

The carbon isotope values of all human samples ranged between -21.3 ‰ and -15.4 ‰ (mean

-19.9 ± 0.5 ‰), with a concentration between -21.3 and -18.9 ‰ (Fig 3). The highest value was

measured in a 4–5 year-old child from Benzingerode (BENZ_46), whose Únětice Culture date

is based on the position of the skeleton in the excavation area and is not secured due to a lack of

diagnostic grave goods. Two infants also showed slightly raised δ13C values of -18.0 and -18.4

‰ (SCHIEP_39 and ESP_49) (S1 Table and S2 Fig). The nitrogen isotope values overall ranged

between 6.3 ‰ and 13.5 ‰ (mean 9.7 ± 1.1 ‰) (S1 Table and S2 Fig). The highest δ15N value

of 13.5 ‰ was measured in a child of approximately 7–8 years (OWK_2), whilst the maximum

value amongst the adults was 12.1 ‰ (ESP_15). Overall, both isotope ratios covered more than

one trophic level. Both a significant sex and age difference could be demonstrated. The distribu-

tion of δ15N and δ13C for males and females shows that males had both slightly higher (F(1,

277) = 8.09, p = 0.005) average δ13C and higher (F(1, 277) = 6.19, p = 0.013) average δ15N values

(δ13C = -19.9 ± 0.4 ‰, δ15N = 9.8 ± 0.9 ‰) than females (δ13C = -20.0 ± 0.4 ‰; δ15N = 9.5 ± 1.0

‰) (Table 1 and Fig 4). The trend of marginally elevated average δ13C and δ15N values in males

is almost constant throughout the Neolithic. Exceptions are found in the MN but may be at-

tributed to low sample size. The correlations between sex and period were not significant (F(5,

267) = 0.49, p = 0.785 for δ15N and F(5, 267) = 0.72, p = 0.605 for δ13C, respectively).

Distribution of δ15N and δ13C in the different age groups displays highly significant differ-

ences (F(5, 405) = 8.21, p< 0.0001 and F(5, 405) = 5.06, p = 0.0002, respectively). We could

observe increased δ15N values in infans I and an increasing trend from infans II to senile indi-

viduals. δ13C showed a decreasing trend. We observed that the trends are present in all periods

(S3 Fig). The interaction between age and period were not significant (F(22, 378) = 0.84,

p = 0.673 for δ15N and F(22, 378) = 0.86, p = 0.655 δ13C, respectively).

The differences in all children of the age group infans I (mean δ13C = -19.7 ± 0.8 ‰, mean

δ15N = 10.4 ± 1.6 ‰) compared to the totality of all age groups were on average +1.4 ‰ with

regard to δ15N and +0.2 ‰ with regard to δ13C and occurred in all periods. A detailed analysis

within the age group, comparing δ15N mean values with those of adult females, exhibited the

most distinct differences amongst the newborns (+ 2.8 ‰) followed by the group of 0–1 year-

olds (+ 2.4 ‰). The difference decreased to + 1.5 ‰ in the 1–2 year-old infants. From the age

of 2–3 years upwards, the infants’ mean values increased only slightly, by 0.1 to 0.5 ‰. Looking

at the differences between the infant values and those of the females from the same period, an

increase in the δ15N values of infants below 2 years can be seen, despite the very small sample

sizes for some periods, whilst the mean values of children above the age of 2–3 years ranged

around those of the adult females from the same period (Fig 5). The mean δ15N values in chil-

dren above the age of 3 to 4 years were sometimes slightly below those of the adult females

from the same period (Fig 5). Due to the dietary differences of children of the age group infans

I, the subsequent observations with regard to changes in the range of isotope values over time

were based on all bone samples excluding those of this age group.

In the case of the carbon isotope ratios, we observed no clear continuously increasing or

decreasing trend in the population mean over the six time periods. Although fairly stable,
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however, the levels of δ13C are nevertheless statistically significantly different from each other

(F(5, 391) = 3.60, p = 0.0034). The highest mean δ13C values were measured in samples from

the EN (-19.8 ± 0.4 ‰), whilst the lowest occurred in the subsequent MN (-20.2 ± 0.2 ‰). The

mean δ13C values from the other periods (YN, LN, FN, EBA) showed marginal differences

only. Mean δ13C values of -20.0 ‰ were calculated for all these periods (Fig 6 and Table 2).

Furthermore, we could observe a clear increase for human δ15N-values over time, which is

highly significant (F(5, 391) = 67.25, p< 0.0001). Whilst the mean nitrogen isotope ratios of

human samples from the Early and Middle Neolithic were 8.5 ± 0.7 ‰ and 8.5 ± 0.8 ‰

Fig 3. Stable isotope values of bone collagen samples from humans and animals from central Germany. Mesolithic (MESO) = grey; additional Mesolithic samples

from Bottendorf, Thuringia [72]. EN = light green, MN = yellow, YN = pink, LN = red, FN = blue, EBA = orange.

https://doi.org/10.1371/journal.pone.0194862.g003
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respectively, they rose to 9.2 ± 0.5 ‰ in the Younger Neolithic, to 9.4 ± 0.6 ‰ in the Late Neo-

lithic, to 9.9 ± 0.9 ‰ in the Final Neolithic and to 10.4 ± 0.8 ‰, the highest level measured

overall, in the Early Bronze Age (Fig 7 and Table 2).

The box plots in Figs 6 and 7 indicate a tendency to increasing population variation over

time, but the trend was not uniform. A more detailed analysis based on the estimated inter-

quartile ranges in each culture did not reach statistical significance (F(1,8) = 2.02, p = 0.193 for

δ15N and F(1,8) = 0.76, p = 0.410 for δ13C) (S4 Fig).

When comparing the mean δ15N values of the individuals assigned to different archaeolog-

ical cultures we observed very similar levels within each time period, except for CWC (δ15N:

10.2 ± 0.4 ‰) and BBC (δ15N: 9.7 ± 0.3 ‰) in the FN, where the only significant difference

(t = 26.2, p = 0.001) was observed (Fig 8)

The changes in the δ15N values observed in the overall sample throughout the course of the

Neolithic were also identified at individual sites which were settled in several different periods.

These sites include Karsdorf (LBK, BAC, CWC, UC), Quedlinburg (LBK, BAC, KUC, CWC,

BBC, UC), Eulau (GLC, BAC, CWC, UC) and Benzingerode (BEC, CWC, BBC, UC) (Fig 9).

We may therefore exclude the possibility that these changes were due to the inclusion of sites

representing only one of the periods, which might have exhibited characteristics specific to the

individual locality. The only two exceptions to chronologically increasing δ15N-values are UC

and CWC in Karsdorf and BBC and BEC in Benzingerode. The latter is accompanied by a dis-

tinct difference in δ13C, pointing to a specific difference between these two sites. Possible rea-

sons for these exceptions are differences in the consumption of animal protein fractions, land

use strategies or the intensity of manuring, as well as such factors as local availability of

resources, local animal husbandry specialisations, the bringing into use of new local areas of

pasture and cultivation, and perhaps also cultural preferences.

With respect to δ13C, we detected a distinct variation within Neolithic time periods. Indeed,

the following differences reached statistical significance: GLC versus SCG (t = 3.24, p = 0.005),

GLC versus BAC (t = 8.78, p< 0.001) and BBC vs. CWC (t = 2.80, p = 0.007) (Fig 8). In addi-

tion to the increased mean δ15N values in the human sample over time, there was also a ten-

dency towards increased differences between the nitrogen isotope values in the human sample

and the faunal reference samples. The δ15N values of the human sample (excluding infans I)

from the EN and MN were 1.5 and 0.9 ‰ respectively higher than those of the domestic ani-

mals (cattle, sheep/goats and pigs). This value rose to 3.0 ‰ in the YN and to 3.8 ‰ in the LN.

A slight decrease to 3.4 ‰ was observed in the FN, however, the faunal sample was exceedingly

small in this case (n = 3). The mean δ15N values of the human samples from the Early Bronze

Age were 3.7 ‰ higher than those of the domestic animals (Table 2).

Table 1. Chronological overview of sex-specific isotopic values. Total sample size of each chronological period, mean isotopic values of males and females (sexed juve-

niles included).

Period Male Female

n Mean δ13C‰

(V-PDB)

1 SD mean δ15N‰ (AIR) 1 SD n Mean δ13C‰

(V-PDB)

1 SD Mean δ15N‰ (AIR) 1 SD

All samples 147 -19.9 0.4 9.8 0.9 132 -20.0 0.4 9.5 1.0

Early Neolithic 28 -19.8 0.3 8.7 0.4 29 -19.9 0.4 8.5 0.7

Middle Neolithic 4 -20.3 0.2 8.5 0.4 4 -20.1 0.3 8.4 1.5

Younger Neolithic 17 -20.0 0.3 9.3 0.4 20 -20.0 0.3 9.4 0.6

Late Neolithic 13 -19.9 0.4 9.7 0.5 12 -20.1 0.2 9.2 0.4

Final Neolithic 33 -20.0 0.4 10.0 0.8 30 -20.1 0.,4 9.7 0.9

Early Bronze Age 52 -19.9 0.4 10.5 0.6 37 -20.1 0.4 10.4 0.7

https://doi.org/10.1371/journal.pone.0194862.t001
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Discussion

Implications of the faunal data for landscape characterisation and animal

husbandry strategies

Isotope data taken from faunal samples provide insight into specific husbandry strategies and

highlight possible changes over the course of the Neolithic. They also characterise the baseline

values of the potential animal-based foods for human consumption. However, it should be

borne in mind that all potential forage habitats were characterised by the presence of C3 plants

and that individual habitats and edible plants cannot always be sufficiently differentiated by

means of isotope analysis. The δ13C values of all faunal samples analysed exhibited a range of

values characteristic of a temperate central European climate with C3 plants at the bottom of

Fig 4. Sex-specific differences in stable carbon and nitrogen isotope values in humans.

https://doi.org/10.1371/journal.pone.0194862.g004

Fig 5. Weaning patterns. Level of δ15N in ‰ (AIR) of infans I according to age and the variable differences between the infant values and those of the females

(Δsubadults-female) for each time period. EN = light green, MN = yellow, YN = pink, LN = red, FN = blue, EBA = orange.

https://doi.org/10.1371/journal.pone.0194862.g005
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the food chain, as also seen at other Neolithic sites in mainland Europe (e.g. [58,73,74]) (Fig 2).

The range of variation of the data gathered from domestic fauna, indicates the use of various

habitats in terms of the canopy-effect [48,50] and humidity [75,76]. Values below -22.5 ‰,

considered characteristic of fodder from densely forested habitats [77], were the exception.

The mean values were also higher than those measured in red deer and cattle from the Neo-

lithic to Early Bronze Age layers at the pile-dwelling settlement Zürich-Mozartstrasse in Swit-

zerland, which yielded evidence of a thinning out of the landscape over time [75]. Instead of

showing a similar chronological trend, the data from the MES suggested that forage in non-

forested habitats apparently prevailed throughout the entire Neolithic period. The carbon

isotope ratios of three possible aurochs bones and of a deer as well as the results from pollen

analyses [22,78] suggest that predominantly non-forested habitats were of considerable impor-

tance in this region. There is partly an overlap between the δ13C value ranges of sheep/goats

and cattle which attests to the use of similar habitats for gathering fodder for ruminants. How-

ever, the higher δ13C mean value in sheep/goats and the almost complete absence of δ13C

Fig 6. Chronological development the distribution of δ13C values according to the different archaeological periods. Numbers of individuals are displayed in

parentheses.

https://doi.org/10.1371/journal.pone.0194862.g006
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values below -21.5 ‰ which, in contrast, were quite common amongst cattle, points to an even

greater importance of open tracts of land for the keeping of small ruminants as compared to

cattle. The pigs also benefitted from the resources provided by various ecological niches. The

relatively low δ13C values in pigs may be traced back to the consumption of mushrooms, a

resource typically found in forested areas [79]. Although it is speculative, that pigs covered

their daily food intake rates by fungi, we can say that low δ13C values strongly suggest low can-

opy food resources, likely from the forest floor.

Wide overlaps were also identified in terms of the nitrogen isotope values both in the typical

herbivores, cattle and sheep/goats, and in the pigs. The mean δ15N value of the pigs was slightly

higher compared to the ruminants, as one would expect to see in a species whose diet is not

exclusively plant-based. The relatively modest difference implies that also pigs consumed only

small amounts of animal-derived feed. The isotope ratios of the dogs attested to a more omniv-

orous diet. They probably benefitted from feeding on human food waste. The domestic ani-

mals in the MES exhibited much less distinctive species-specific differences overall than were

found e.g. at the LBK settlement Vaihingen/Enz [57]. This can mainly be attributed to the lack

of comparatively lower δ13C values due to the more open central-German landscape in the

Neolithic period and Early Bronze Age. The absence of systematic differences amongst the

mean isotope ratios of the different animal species over the course of the Neolithic period sug-

gests that the environmental conditions and subsistence strategies remained fairly stable

throughout the period studied here.

Human dietary changes during the Neolithic and indications for or against

a “secondary products revolution”

The analysis of the carbon and nitrogen isotope ratios of 466 burials from 26 sites in the MES

dating from the Neolithic period and Early Bronze Age provided a unique insight into

Table 2. Chronological overview of mean isotopic values. Total sample size of each chronological period, mean isotopic values of all human (infans I excluded) and ani-

mal samples. Additional information on isotopic differences of δ13C in ‰ and δ15N in ‰ between humans, domestic animals (cattle, sheep/goat, pig) and herbivores

respectively (Δdomestic animals-human, Δherbivores-human).

Period N Human means Δ Domestic animals-human Δ Herbivores-human

397 Mean δ13C‰

(V-PDB)

1

SD

Mean δ15N‰

(AIR)

1

SD

Δ13C‰

(V-PDB)

Δ15N‰ (AIR) Δ13C‰ (V-PDB) Δ15N‰

(AIR)

Early Neolithic 74 -19.8 0.4 8.5 0.7 1.1 1.5 1.1 1.7

Middle Neolithic 12 -20.2 0.2 8.5 0.8 0.4 0.9 0.4 0.9

Younger

Neolithic

65 -20.0 0.4 9.2 0.5 1.0 3.0 0.8 3.0

Late Neolithic 33 -20.0 0.3 9.4 0.6 1.2 3.8 1.2 3.8

Final Neolithic 93 -20.0 0.4 9.9 0.9 0.7 3.4 0.7 3.4

Early Bronze Age 120 -20.0 0.4 10.4 0.8 1.4 3.7 1.4 3.8

Period N Domestic animals N Herbivore

means

105 Mean δ13C‰

(V-PDB)

1

SD

Mean δ15N‰

(AIR)

1

SD

79 Mean δ13C‰

(V-PDB)

1

SD

Mean δ15N‰

(AIR)

1 SD

Early Neolithic 46 -20.9 0.8 7.0 0.9 34 -20.9 0.8 6.8 0.9

Middle Neolithic 2 -20.5 0.1 7.6 1.2 2 -20.5 0.1 7.6 1.2

Younger

Neolithic

13 -21.0 0.6 6.3 0.5 9 -20.9 0.6 6.2 0.6

Late Neolithic 9 -21.2 0.5 5.7 0.7 7 -21.2 0.5 5.7 0.7

Final Neolithic 3 -20.7 0.5 6.5 0.4 3 -20.7 0.5 6.5 0.4

Early Bronze Age 32 -21.4 0.6 6.7 1.2 24 -21.3 0.5 6.6 1.2

https://doi.org/10.1371/journal.pone.0194862.t002
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approximately 4,000 years of dietary history in this particular region. The most remarkable

result of the diachronic study lay in the continuous increase in δ15N values in human collagen

over the course of the period studied. This applied both to the mean δ15N values of the individ-

ual periods and to the differences between the δ15N values of human and faunal collagen. The

changes were visible within the sites, across the sites (exceptions being CWC and UC at Kars-

dorf and BEC and BBC at Benzingerode) and over the entire period studied (Figs 6–9 and

Table 2). The basic consistency of the C and N isotope ratios of the domestic animals over time

made the trend observed in the human δ15N values appear even more significant. An overview

of all isotopic values is given in Fig 3. Possible causes of the changes in the δ15N ratios in

human samples include more extensive manuring, an increased consumption of meat over

time and the use of milk and dairy products. In the following we discuss these different

explanations.

Fig 7. Chronological development of the distribution of δ15N-values according to the different archaeological periods. Numbers of individuals are displayed in

parentheses.

https://doi.org/10.1371/journal.pone.0194862.g007
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Changing manuring practices

In assessing the stable isotope data of human collagen, the levels of δ15N values were long seen

as significant for estimating the proportions of animal protein in the prehistoric diet [32]. Ani-

mal bones, on the other hand, were used to characterise the sources of animal fodder and at

the same time to study the isotope ratios of the plant-based food. However, analyses carried

out on extant and archaeological cereal grains have shown that manuring fields using animal

dung leads to raised δ15N values in the crops grown in those fields [44,80,81]. Whether manur-

ing is or is not practised therefore creates a considerable difference in the isotope composition

of the plants at the base of the food chain. The differences between unmanured and manured

plant fodder for the animals and food plants for humans continue up the food chain and have

an impact on the interpretation of the stable isotope data of bone collagen. Humans consum-

ing cereals from manured plots exhibit higher δ15N values than humans whose food comes

from unmanured fields. This means that raised δ15N values in human samples, which might

appear to indicate increased consumption of animal-based food, may just as well have been

Fig 8. Development of archaeological cultures. Stable isotope values of bone collagen samples from humans separated according to archaeological culture (infans I

exluded). EN = light green, MN = yellow, YN = pink, LN = red, FN = blue, EBA = orange.

https://doi.org/10.1371/journal.pone.0194862.g008
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caused by an increased use of animal manure. Moreover, consumption of primary or second-

ary products of animals pastured on fallow plots that have previously been manured could

contribute to this effect. The most reliable data upon which to assess the increased importance

of animal manure over time come from stable isotope analyses carried out on cereal remains

themselves [44,82]. However, at the current state of research, such analyses are not, unfortu-

nately, available for the MES. The data that are available, though, argue against an increased

importance of animal manure from the Early Neolithic to the Early Bronze Age. If such an

increase had taken place, one would expect it to have impacted on the δ15N values of the

domestic animal bones, at least in those species assumed to partly consume agricultural prod-

ucts such as domestic pigs and dogs. The latter, however, did not exhibit the same diachronic

increase in δ15N values that was observed for the human sample. The mean δ15N values of the

Younger Neolithic to Early Bronze Age domestic animals were, in fact, lower even than those

from the Early Neolithic. Even if we do not assume that animal fodder was purposefully grown

on manured plots, the periodic grazing of animals on the fields after the harvest or during

fallow periods may also have resulted in raised faunal δ15N values as more and more dung

was added to the cultivated land over the course of the Neolithic period. Based on the

Fig 9. Site-specific development. Stable isotope values of bone collagen samples from humans at continually populated sites: Karsdorf with LBK, BAC, BBC, CWC,

indet. LN and UC (A), Quedlinburg (B) with LBK, BAC, BBC, CWC and UC, Eulau with GLC, BAC, CWC and UC (C) and Benzingerode with BEC, BBC, UC (D)

(infans I exluded). EN = green, YN = pink, LN = red, FN = blue/grey, EBA = orange.

https://doi.org/10.1371/journal.pone.0194862.g009
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chronological depth of this study and the dense Neolithic settlement of the study region one

would also expect to see the former fields of abandoned settlements being used for animal

grazing in later periods of the Neolithic. This way, intensive manuring practices would have

had a retroactive impact on the isotope values of the faunal sample and one would assume to

find them manifested as a chronological trend. Since this does not apply either, the data do not

support the idea of a general man-made increase in the δ15N values in the overall food web

from the early period of the food-producing economy in the MES onwards.

Increasing consumption of animal-derived food sources: meat, milk and

dairy products

Another possible explanation for the constant rise in δ15N values in the human sample is an

increase in animal protein in the human diet. The growing differences between the δ15N values

of domestic animals and those of humans suggest that farming communities in the LN, FN

and EBA consumed significantly more animal-based food than in the previous periods of EN

and MN (Table 2). A crucial question is whether these changes can be traced back solely to the

increased proportion of meat in the human diet or whether they were caused by a gradual

intensification in the use of secondary animal products such as milk and its dairy. If the latter

was the case, the next question to be asked is at what point in time did the early farming com-

munities begin to add their animals’ secondary products to their diet. The initial discussion

on this topic dates back to Andrew Sherratt’s thesis of a "secondary products revolution"

[13,14,83] and continues to this day [84]. An important aspect of the discourse is the question

as to whether dairy farming should be seen as a basic feature of the Neolithic lifestyle or

whether this was a gradual achievement made as part of agrarian innovation. In fact, it is not

possible, based on δ13C and δ15N analyses in collagen, to distinguish between protein from sec-

ondary animal products such as milk, yoghurt or cheese and protein from the direct consump-

tion of meat [85]. Both diets are reflected in bone collagen of the consumers in a similar way.

As stable isotope analyses does not allow to differentiate between the various kinds of animal

protein consumption (meat versus dairy), one needs to refer to zooarchaeological, molecular

genetic and lipid residue data as well as to the osteological evidence related to human health.

Dental pathological studies carried out on adult skeletons from Neolithic funerary communi-

ties in the MES, which included the sites analysed isotopically for the purposes of this paper,

identified almost twice the caries frequency (CF) levels for the EN and MN as for the FN and

the EBA [19]. The findings were particularly clear when comparing adults of the the two largest

population groups in the overall sample, i.e. the Early Neolithic LBK (CF = 66.7%; n = 62) and

the Early Bronze Age UC (CF = 35.6%; n = 104), which were separated by more than 3,000

years of farming history. Differences in caries intensity (CI) between the two groups were also

present, but less marked (LBK: 8.5%, teeth = 1772; UC: 5.8%; teeth = 1896). The high caries

rates in the EN point to a diet rich in carbohydrates (more specifically cereals), which increases

the risk of caries infection. An increase in the protein content in a diet, with a simultaneous

decrease in carbohydrates, reduces the susceptibility to caries [86–88]. The protein in milk and

dairy products, e.g. casein, leads to a reduction in the caries activity by reducing bacterial depos-

its on the dental enamel, reducing the solubility of hydroxylapatite and counteracting the demi-

neralisation process [89–92]. Further protection against caries is provided by the abrasion of the

chewing surfaces by abrasive components in the diet [93], as clearly seen in the material studied.

In this case, the decrease in caries over time clearly points to a higher consumption of animal

protein and simultaneous reduction in carbohydrate-rich foodstuffs. It, however, cannot neces-

sarily be traced back solely to an increase in the consumption of dairy products. Instead, the

positive impact on oral healthappears to have been based on various factors.
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Other clues pointing to the consumption of animal protein are provided by the age compo-

sition and sex ratios of the animal bones, because they allow us to draw conclusions with

regard to domestic animal husbandry practices. The LBK slaughter profiles argue against an

extensive dairy economy, since most cattle in the MES were slaughtered before they reached 5

years of age [94,95]. Only 10% of the adult animals in the early LBK settlement Eilsleben

(Börde district) were more than 5 years old [95]. The sex ratio in bovine sample, including

oxen, and cows was almost equal (or “natural”) [94]. Based on the slaughter age of the animals,

which matches the profile of slaughter at maturity when the greatest possible amount of meat

would be available and when they could only just have started to be used to provide milk for

human consumption, we may assume that the animals were kept mainly for their meat

[96,97]. The same applies to the small domestic ruminants, only 20% of which were more than

4 years old when they were slaughtered [94,95]. The proportion of older animals therefore

appears too low to suggest a regular production, and thus use, of milk and/or dairy products.

The notion that the almost exclusive contribution of domestic animals to the human diet was

meat, at least in the EN and MN, is consistent with the low human δ15N values during this

periods compared to other time periods. The idea that the increase in the mean δ15N values in

the YN should be interpreted as a process of economic restructuring in favour of an increase

in dairy farming is questionable given the rather poor sources available. Whilst cattle were still

predominant amongst the animal bones in the MES in the YN, the data on slaughter profiles

are quite scarce [96]. The sources available for the use of dairy improved from the BEC in the

LN onwards (Quenstedt, Mansfeld-Südharz district, and Großobringen, Weimarer Land dis-

trict). Slaughter age profiles and sex ratios from these contemporary sites of that region suggest

that dairy was the main use of domestic ruminants besides the exploitation for meat: traction

and milk production in the case of cattle, milk and wool in the case of sheep [98].

Whether the further increase in the mean δ15N values in the FN and again in the EBA attest

to the definitive establishment of dairy farming remains questionable. At any rate, the archaeo-

zoological data available for the MES are not sufficiently conclusive.

Despite the fact that the archaeozoological data, in particular, from the MES argue against

the notion that dairy farming was very important in the EN, food residue analyses carried out

on pottery from other parts of Europe have yielded very early evidence in the form of milk fat

residue pointing to the processing of milk and cheese-making as well as the use of dairy prod-

ucts [99–101]. In Germany, four sites in Saxony and Bavaria dating from the earliest to the

later LBK, with a total of 87 vessels examined, yielded only a single piece of evidence of the pro-

cessing of dairy products, on a strainer from the Middle LBK [99]. The evidence is surprisingly

scarce, even bearing in mind that the vessels used for milk processing (such as strainers) may

not have survived or may be underrepresented, and that mixing the dairy products with other

foodstuffs may have masked the signals. However, particularly as a reduced-lactose dairy prod-

uct at a time when lactase persistence was not yet widespread, cheese would have been a dura-

ble and easily transportable foodstuff. Analyses carried out on sieve vessels or strainers from

LBK settlements on the River Vistula in Poland (5,400/5,300–4,900/4,800 cal. BC) yielded food

residues from the processing of dairy products [99]. Evidence pointing to highly probable

cheese-making on sieve vessels from the LBK and to the extensive use and processing of milk

on beakers from the Funnel Beaker period was found at Kopydłowo (Poland) [102]. Unfortu-

nately, researchers in this field have tended to focus on early evidence of milk processing,

which has led to a lack of larger-scale studies of later Neolithic periods in Germany. Examina-

tions of fatty acids on pottery from the settlement Arbon Bleiche 3 in Switzerland have pro-

duced evidence of milk residue as direct evidence of dairying during the LN, most likely using

milk from ruminants (bovine and ovine) [103]. Based on isotope data from collagen [104], a

diet with a high protein content from meat or dairy products has been postulated for CWC
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groups from south-western Germany, though researchers there were also unable to distinguish

between the two sources of protein. The consumption of fresh milk and the consumption of

dairy products such as cheese, yoghurt and kefir may also be erroneously dated to the same

period and associated with lactase persistence. A newly reported genome-wide SNP dataset

from 230 West Eurasians dating from between 6,500 and 300 cal. BC [9] has shown, like earlier

studies [105], that no notable increase in lactase persistence in Europe appears to have oc-

curred prior to 2,000 BC. It was and is a fact that milk is not a natural foodstuff for adult con-

sumption, unless one is prepared to negate the numerous symptoms of lactose intolerance,

including abdominal pain, bloating, flatulence, diarrhoea, asthma and others. Cultural evolu-

tion in conjunction with natural selection has made it possible for us to use milk and its sec-

ondary products as a source of protein and energy. Whilst the continuous increase in animal

protein in the diet of the Neolithic populations of the MES from the LBK to the Early Bronze

Age can undoubtedly partly be traced back to an intensified use of secondary animal products

over the course of the Neolithic, it is difficult to estimate how great a contribution this made to

the increase in δ15N values. Judging from molecular-genetic data on lactase persistence, how-

ever, the consumption of fresh milk, at least, appears to have first begun to have an impact on

the protein balance of individuals around 4,000 years ago [9].

Do possible changes correlate with the population dynamics in central

Germany?

The isotope data gathered relating to the development of the dietary habits of Neolithic and

Early Bronze Age populations in the MES are largely consistent with the molecular-genetically

reconstructed settlement and population history of central Europe at this period, which

included three events that can clearly be distinguished from the point of view of population

genetics [6,7]. The first Linearbandkeramik farmers, who originally migrated from the Carpa-

thian Basin [11] to central Europe were distinctly different from the point of view of molecular

genetics from the hunter-gatherer populations of the Mesolithic (Event A). Based on the iso-

tope data from the MES, we were able to trace clear changes in the human diet to coincide

with this epochal population-genetic and economic-historical event. Recent isotope analyses

carried out on Late Mesolithic individuals (5,700–5,400 cal. BC) from Bottendorf in Thuringia

[72] allowed researchers to draw direct comparisons between the last hunters and gatherers

and the early farmers in the MES. The study included two adults and two children of the age

group infans II. The δ13C values of the human collagen ranged between -20.4 ‰ and -19.9 ‰

(mean value: -20.2 ± 0.2 ‰). The δ15N isotope values varied between 10.8 ‰ and 12.1 ‰

(mean value: 11.5 ± 0.6 ‰). Together with the available human and faunal comparative data,

these values point to an opportunistic subsistence strategy, within which terrestrial food

resources from fairly open and not very humid C3 habitats predominated. The high δ15N val-

ues, one or more trophic levels higher than the values from ungulates, show that, besides ter-

restrial animals (aurochs, deer, roe deer, wild horse, wild boar), fish and/or wild birds were

also hunted. With the establishment of a food-producing economy by the LBK around 5,500

cal. BC, the mean δ15N value sank by c. 3‰ to the lowest mean value (8.5 ± 0.7 ‰) calculated

for the entire period studied for the purposes of this paper (Fig 3 and Table 2). The big gap

between the mean δ15N values in the two periods attests to the fundamental differences in the

subsistence strategies. Whilst Mesolithic hunters and gatherers were more likely to use wild

animals as a source of protein, the mixed diet of the early farmers in the MES was characterised

by a high proportion of domestic plant-derived protein. They also consumed smaller amounts

of animal primary products in the form of meat than had been the case in the Mesolithic. The

constant increase in δ15N values from the LBK to the Early Bronze Age notwithstanding, the

4000 years of human dietary evolution in central Germany

PLOS ONE | https://doi.org/10.1371/journal.pone.0194862 March 27, 2018 21 / 32

https://doi.org/10.1371/journal.pone.0194862


farming communities studied never yielded mean values as high as those measured in Meso-

lithic population groups. Even the highest δ15N mean value measured over the 4,000 year-long

study period, which was reached by the UC individuals, was still c. 1.0 ‰ lower than the Meso-

lithic δ15N mean value (reflecting the proportion of animal protein in the diet overall).

The members of the YN and LN cultural groups (GLC, SCG, BAC, SMC, BEC, KUC) that

followed the Early Neolithic LBK and the Middle Neolithic RSC were relatively homogenous

genetically [6,7]. As seen from a population-genetic perspective, they experienced a reflux of

hunter-gatherer lineages, brought in by the Funnel Beaker Cultures (TBC) from southern

Scandinavia, which became apparent in the 4th millennium BC and, in the MES, was associated

mainly with the BEC (Event B). The ancestors of these groups from the north, who by this

stage had also become farming communities, had at first continued the Mesolithic lifestyle in

their areas of origin [6]. However, whilst the Younger and Late Neolithic increase in the mean

δ15N values to 9.2 ± 0.5 ‰ and 9.4 ± 0.6 ‰ respectively marks a clear change in the dietary

habits vis-à-vis the EN and MN, it cannot from a dietary point of view be traced back solely to

the BEC. The massive influx of the CWC from the eastern steppes into central Europe in the

FN is detectable in the MES in the first occurrences of the maternal haplogroups I, U2 and T1

[6] and also in genome-wide analyses [7]. The dietary profile once again exhibits an increase in

the mean δ15N values, to 10.1 ± 1.0 ‰. The BBC, which spread somewhat later throughout

north and central Europe (with the arrival of the CWC jointly making up Event C) and whose

origins are presumed to have been in south-western Europe, constitutes an exception, not just

from the point of view of genetics. In contrast to the general diachronic trend consisting of

raised δ15N values in the cultural groups examined, the BBC exhibited a nutritional decrease in

mean δ15N values to 9.7 ± 0.7 ‰. The divergence between the CWC and the BBC to be seen in

their funerary rites, despite their chronological and sometimes also territorial coexistence, is

thus also visible in their dietary habits. Comparative examinations of CWC sites in southern

Germany have shown that their mean δ15N values were, in fact, comparable to those of the

CWC in the MES (δ13C: -19.9 ± 0.6 ‰, δ15N: 10.8 ± 0.7 ‰, n = 32), despite exhibiting signifi-

cant variation between and even within the sites, thus pointing to the diverging subsistence

strategies of different communities [104]. The UC, which followed the CWC in the MES, bore

close affinities to its forerunner in terms of its population genetics, thus supporting the

hypothesis that the BBC only had a minimal genetic impact on the UC [6,7]. The close genetic

links between the UC and the CWC, however, are also seen in very similar mean nitrogen val-

ues which, at 10.4 ± 0.7 ‰, were the highest in the overall sample. Moreover, a striking aspect

in the evaluation of the mean δ15N values over time is a clear tendency towards rising standard

deviations (S4 Fig). It is highly likely that this reflects increased social differentiation in society

at the end of the Neolithic and in the Early Bronze Age. Socioeconomic advancement led to

differences in status within communities and even to the formation of an elite, the differences

applying to numerous facets of life, including dietary habits [60].

Dietary differences related to age and sex

As seen in previous studies [106–108], the male samples from the MES yielded higher δ13C

and δ15N values for each period and archaeological group. The maximum average differences,

Δmale-female, were 0.3 ‰ for δ13C (F(1,277) = 8.09, p = 0.005) and 0.5 ‰ for δ15N in the LN

(F(1,277) = 6.19, p = 0.013). In view of the varied age groups of all females studied, the lower

δ15N values of the female samples are unlikely to exclusively have been due to a different nutri-

tional physiology and nitrogen balance during pregnancy and breastfeeding [109,110] which,

because of the long bone remodelling periods, may hardly had a high impact on the δ15N val-

ues of bone collagen [111]. The differences thus rather point to a higher proportion of animal
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protein in the diet of the males and one must question the reasons behind this. The availability

of meat and dairy products may have been socially regulated, and females may have had less

access to food resources with high proportions of animal protein. In the natural history of

humankind, procreation and the consumption of food serve the preservation of the species.

Securing the daily food intake under the prevailing environmental conditions guarantees the

survival of humankind. The situation is stable if a community is able to balance production,

reproduction and resources. Social and cultural differences in dietary habits are also heavily

dependent on ecological and economic factors [112]. The special status of animal-based food

versus plant-based foodstuffs worldwide leads to religious taboos, hierarchical distribution

strategies and culture and gender-specific dietary habits. This probably reflects a distinctly

gender-specific behavioural role and dietary habits handed down through the generations. It is

therefore a distinct possibility that the differences in the nutritional balance between males

and females are based on behaviours rooted deep in the history of humankind, which became

more pronounced at the beginning of the Neolithic period as a consequence of social and eco-

nomic changes [112,113]. The effects on food consumption of an unequal distribution of daily

tasks and physical demands between the sexes can be seen both in traditional hunter-gatherer

communities and in farming populations [114,115]. However, according to studies carried out

on modern populations, physical activity does not necessarily appear to lead to lasting changes

in δ15N values, provided enough time and food resources are available. Therefore, nitrogen

isotope ratios are not suitable indicators for the overall physical demands made on humans or

animals. If we look at the influence of sex and diet on high-performance athletes, males and

females exhibit statistically significant differences in the consumption of meat (p< 0.05) but

only a minimal difference in δ15N values (p = 0.075), though males generally exhibit slightly

higher values. However, meat does not necessarily yield higher δ15N values nowadays than

plant-derived protein [116]. Apart from clearly higher mean δ15N values in the smallest chil-

dren, the comparison between the individuals from different age groups (human samples with

secure age determinations) also revealed significant differences between the older age groups.

From age group infans II, the δ15N values showed a slight upward trend, whilst the δ13C values

remained almost constant (S3 Fig). Besides sex, the individuals’ ages apparently also played a

role in their dietary habits throughout the entire Neolithic period and into the Early Bronze

Age. The trends observed which, incidentally, can also be identified within the individual peri-

ods (S3 Fig), suggest that the proportions of animal protein in the human diet gradually

increased in comparison with plant-derived protein.

Infant weaning patterns. Nitrogen isotope ratios show the shift from an input of protein

by breastfeeding to an input by the intake of solid food [117–120] and are therefore useful for

the study of weaning processes. As the intake of solid food, particularly of plant-based food,

increases during the weaning period, the δ15N values of the overall diet gradually decrease, as

seen in the children of the age group infans I in the MES. Newborns and infants under the age

of twelve months exhibited distinct breastfeeding signals, but these childhood δ15N values

already began to sink in the 1 to 2 year-olds and the subsequent age groups yielded similar

values to those measured in the adult females of the same periods. The weaning process and

the addition of solid food therefore appear to have commenced in the MES from the age of

approximately 2 years (Fig 5). In the MES, unusually enriched or depleted δ15N in older chil-

dren, as were observed in other studies [120–124], were noticed, too. We consider them as

outliers within the normal variation. Despite the considerable length of time between the

beginning of the Neolithic and the Early Bronze Age, the trends in the weaning behaviour

showed close similarities throughout the entire period. All periods showed an initial decrease

in the δ15N values, particularly between the first and second year, and the weaning process was

usually complete between the third and fourth year. The 2 to 3 year-olds from the YN and FN,
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however, still appeared to be consuming a great deal of breast milk since they yielded the high-

est Δsubadult-female values for δ15N (1.2 and 1.3 ‰ respectively) compared to their counterparts

from the other periods. Chronologically comparable prehistoric populations throughout

Europe exhibit a high variation with regard to weaning periods. The children from the LBK

site Nieder-Mörlen (Hesse, Germany) were breastfed up to the age of approximately 3 years

[125], whilst infants from the earlier, Mesolithic Pitted Ware Culture site Ajvide in Sweden

were weaned around the age of 2 [126]. The breastfeeding periods in Neolithic and Early

Bronze Age populations (KUC, CWC, UC) from south-western Poland varied within and

between sites between 6 months and 3–5 years. Particularly the UC mothers in the region

appear to have breastfed their children for different periods of time, which may have deter-

mined people’s individual dietary statuses from early childhood [127]. Whilst infants being

weaned before the age of 18 months appears to have been a rare occurrence in prehistoric soci-

eties overall, weaning occurred slightly earlier in societies with agricultural subsistence strate-

gies than amongst hunter gatherers. Very short breastfeeding periods of under 18 months only

began to occur after the Industrial Revolution [127]. One must bear in mind, however, that

factors with a physiological impact on the mother or child (e.g. malnutrition, diseases) and

individual habits can prevent or interfere with breastfeeding.

Conclusion

This study of human diet between the early stages of the farming lifestyle and the Early Bronze

Age in the MES, based on carbon and nitrogen isotope analyses, is amongst the most compre-

hensive of its kind. Or results show that human dietary behaviour has changed significantly

throughout the study period. A distinct increase in the proportion of animal protein in the

human diet can be identified over time, a trend which only the people from the BBC did not

follow. The results of the stable isotope analyses are consistent with epidemiological data on

caries frequency, which indicate the highest proportions of carbohydrates in the human diet in

the EN and the lowest in the EBA [19]. These findings may have been due to an increased con-

sumption of either meat or dairy products. Although meat and dairy consumption cannot be

distinguished by means of stable isotope data or caries frequency, molecular-genetic analyses

of lactase persistence argue against an increased consumption of fresh milk [9]. However,

although approximately 70% of the world population has a lactose intolerance, most of them

can tolerate dairy foods or lactose-containing foods without developing symptoms [128]. It

therefore comes as no surprise that the use of processed milk, i.e. dairy products, appears to

have set in early on in the Neolithic period [99]. Unarguably, there was an increasing stabilisa-

tion of the supply of meat and secondary animal products throughout the Neolithic. The data

dynamics overall argue against an equal availability of animal-derived protein to all sections of

the various populations, which attests to early processes of specialisation, individualisation and

hierarchisation. Moreover, population-genetic processes are also reflected in the development

of human dietary habits. From the 4th millennium BC onwards, groups moved into the MES

from the north, sometimes accompanied by violence [6,29], and fundamental demographic

changes took place in the FN with the arrival of CWC groups from the north-eastern steppes

and the BBC from south-western Europe [6,7]. This former pastoral steppe component, in

particular, may have been responsible for the fact that animal-based foodstuffs reached their

highest importance in the FN and EBA. Differences in the consumption of animal-derived

products between the sexes resulted in significantly lower δ15N values and less access to animal

protein in females. Besides behavioural choices as to what food to consume, numerous other

nutritional and gender-specific factors must certainly be taken into account when assessing

the subsistence and nutritional balance of individuals. In the future, analysis of single amino
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acids of nitrogen and the compound-specific carbon isotope analysis of lipids and bone min-

eral may help providing more detailed and nuanced insight on aspects of human diet, such as

protein sources in complex foodwebs, nutritional stress and disease [129–131]. They should

become a standard in isotope studies and applied more often and routinely.
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Bernd Schöne provided access to the laboratory facilities at the Department of Applied and

Analytical Palaeontology at the Institute of Geosciences of the University of Mainz. We thank

Jennifer Ziegler and Daniela Gehrmann (University of Mainz) for their help with sample

4000 years of human dietary evolution in central Germany

PLOS ONE | https://doi.org/10.1371/journal.pone.0194862 March 27, 2018 25 / 32

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0194862.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0194862.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0194862.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0194862.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0194862.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0194862.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0194862.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0194862.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0194862.s009
https://doi.org/10.1371/journal.pone.0194862


preparation, Willi Dindorf (†) and colleagues from the Institute for Organic Chemistry at the

University of Mainz for measurement opportunities, Dr. Roman Mischker (Office for Heritage

Management and Archaeology, Saxony-Anhalt/State Museum of Prehistory) for his support in

sample selection and Monika Hellmund (Office for Heritage Management and Archaeology,

Saxony-Anhalt/State Museum of Prehistory) for archaeobotanical advice. We further thank

Sandy Haemmerle (prehistrans) for translation of the manuscript and Isabel Aitken for lan-

guage editing. We would also like to thank the unknown reviewers for their valuable feedback

on our studies.

Author Contributions

Conceptualization: Angelina Münster, Harald Meller, Kurt W. Alt.

Data curation: Harald Meller.

Formal analysis: Angelina Münster, Corina Knipper, Werner Vach.

Funding acquisition: Harald Meller, Kurt W. Alt.

Investigation: Angelina Münster, Björn Schlenker, Robert Ganslmeier, Susanne Friederich,
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95. Döhle H-J. Die linienbandkeramischen Tierknochen von Eilsleben, Bördekreis. Ein Beitrag zur neo-

lithischen Haustierhaltung und Jagd in Mitteleuropa. Halle (Saale): Landesmuseum für Vor-

geschichte; 1994.
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