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Abstract

The p75 neurotrophin receptor (p75NTR) functions at the molecular nexus of cell death, survival, 

and differentiation. In addition to its contribution to neurodegenerative diseases and nervous 

system injuries, recent studies have revealed unanticipated roles of p75NTR in liver repair, 

fibrinolysis, lung fibrosis, muscle regeneration and metabolism. Linking these various p75NTR 

functions more precisely to specific mechanisms marks p75NTR as an emerging candidate 

for therapeutic intervention in a wide range of disorders. Indeed, small molecule inhibitors 

of p75NTR binding to neurotrophins have shown efficacy in models of Alzheimer’s disease 

and neurodegeneration. Here, we outline recent advances in understanding p75NTR pleiotropic 

functions in vivo, and propose an integrated view of p75NTR and its challenges and opportunities 

as a pharmacological target.
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Pleiotropic biological functions of p75NTR

p75NTR plays a central role in a wide range of biological processes including regulation of 

cell death and survival, scar formation, energy expenditure and the hypoxic response and 

through these processes contributes to biological functions vital for tissue repair, metabolism 

and neurodegeneration. These pleiotropic functions have been identified in vivo in relevant 

animal models including neurological, metabolic, and fibrotic diseases. Emerging evidence 

for the role of p75NTR in Alzheimer’s disease (AD), has led to an ongoing clinical trial 

targeting p75NTR in AD patients. Although these disease-relevant biological functions make 

p75NTR a promising target for diverse pathologies, they also present challenges due to the 

pleiotropic functions of p75NTR in the brain and the periphery. The manifold functions 

of p75NTR in vitro have been reviewed extensively elsewhere [1–3]. Here, we provide an 

overview on the in vivo functions of p75NTR and the challenges and opportunities for its 

pharmacologic targeting in disease.

p75NTR – structure & function

The p75 neurotrophin receptor, or p75NTR (also known as nerve growth factor receptor 

(NGFR)), was first cloned by Dan Johnson and Monte J. Radeke [4, 5] and recognized as a 

receptor for all neurotrophins (NTs) (see Glossary), including nerve growth factor (NGF), 

brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 

(NT-4). Named according to its molecular mass, p75NTR belongs to the tumor necrosis 

factor receptor (TNFR) superfamily, and is a single transmembrane-spanning protein 

with an amino-terminal extracellular domain (ECD) and carboxy-terminal intracellular 

domain (ICD) with a flexible juxtamembrane adaptor protein-binding region, followed 

by a globular death domain (DD). Four cysteine-rich domains in the p75ECD control 

receptor conformation and ligand binding (Figure 1) [6]. The mechanism of p75NTR 

activation by NTs involves a rearrangement of disulfide-linked receptor dimers, resulting 

in the separation of intracellular DDs [7]. In addition to all NTs, the p75ECD binds 

pro-neurotropins (proNTs), amyloid-β (Aβ), prion protein peptide 106–126 (PrP), and 

rabies virus glycoprotein (RVG) [3, 8]. p75NTR lacks intrinsic catalytic activity, and activates 

signaling cascades via co-receptors and intracellular adaptor proteins. For example, p75NTR 

can interact with tropomyosin-related kinase (Trk) receptors to enhance its binding 

specificity and affinity to mature NTs, with NogoR and Lingo-1 to mediate axonal growth 

inhibitory effects of CNS myelin, with sortilin to initiate apoptosis signaling of proNTs, and 

with PKA to regulate cAMP [1, 8, 9]. In addition, p75NTR undergoes proteolytic cleavage by 

α-secretases, such as ADAM metalloprotease and γ-secretase (regulated intramembrane 
proteolysis (RIP)), which releases soluble ICD with cytoplasmic and nuclear signaling 

functions. The hierarchical activation of p75NTR downstream pathways is determined by 

competitive protein-protein interactions [10–12]. Indeed, depending on the nature of its 

co-receptors and cytoplasmic interaction partners, p75NTR mediates diverse and sometimes 

opposing cellular effects (Table 1, Figure 1, reviewed by [1, 3, 6, 13]).
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Cell Death & Survival

The effect of p75NTR on cell death or survival depends upon the ligands and co-receptors 

[14, 15]. P75NTR null mice have approximately 50% less dorsal root ganglion neurons 

across different sensory neuron subtypes, which may be due to impaired NT signaling, 

although the underlying mechanism is unclear [16]. Interestingly, neuron-specific deletion 

of p75NTR results in no embryonic deficits, but postnatally 20% of neurons are lost 

selectively within the nonpeptidergic nociceptor lineage, suggesting that p75NTR is required 

for establishment of postnatal sensory neuron diversity [17]. Inappropriate innervation of 

sympathetic neuron targets in p75NTR null mice and BDNF+/− mice suggests that BDNF 

binding to p75NTR might regulate sympathetic pruning. Indeed, in vivo experiments in 

sympathetic eye-projecting neurons revealed that BDNF signaling via p75NTR causes 

locally-defined axon elimination, largely by inhibiting the TrkA-mediated signaling that 

is essential for axon maintenance [18]. During development and following injury, p75NTR 

can act as an apoptotic receptor. ProNT binding to p75NTR can induce apoptosis of 

oligodendrocytes after spinal cord injury (SCI) [19], of corticospinal neurons after axotomy 

[20], and of basal forebrain neurons after seizure [21], and blockade of p75NTR reduces 

ischemic cell death [22]. ProNT activation of p75NTR in Müller glial cells of the retina 

induces a TNFα-dependent death of retinal ganglion cells in a non-cell-autonomous way 

[23]. Apoptotic activity of p75NTR induced by proNTs requires interaction with sortilin 

as a p75NTR co-receptor [24], and signals via activation of caspase-3 [25], in contrast to 

other death receptors that signal via the extrinsic, caspase-8-dependent pathway. Moreover, 

NT receptor-interacting factor (NRIF), a p75NTR effector protein, is required for p75NTR­

mediated apoptosis in sympathetic [26] and hippocampal neurons [27]. Although most 

studies of p75NTR-mediated cell death have focused on proNT-induced cell death, ligand­

independent apoptotic signaling by p75NTR has also been shown to promote apoptosis, 

potentially by dimeric conformational changes [28, 29].

Cell differentiation & Growth

p75NTR is a key player in the regulation of cell differentiation and neuronal growth [3, 30]. 

p75NTR null embryos show deficits in outgrowth of thoracic intercostal nerves and display 

delayed development of axonal limb and ophthalmic branches, and p75NTR null adult mice 

have deficits in sensory and sympathetic target innervation [16, 31]. Unligated p75NTR is 

a potent activator of RhoA signaling, and NTs suppress this effect. In addition, myelin 

ligands, such as Myelin Associated Glycoprotein (MAG), can bind to the Nogo receptor 

(NgR), a GPI-linked p75NTR co-receptor. MAG strengthens the association between p75NTR 

and the Rho-GDP dissociation inhibitor (Rho-GDI), and prevents Rho-GDI from inhibiting 

RhoA, thus leading to RhoA activation. Consistent with this model, MAG-induced growth 

inhibition is attenuated in sensory and cerebellar granule neurons derived from p75NTR null 

mice. Overall, p75NTR serves as an on/off switch for RhoA activation, and ligands (such as 

NT and MAG) modulate the level of RhoA activation.
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Scar Formation & Regeneration

Scar formation by activated astrocytes and hepatic stellate cells (HSCs) inhibits tissue 

repair and regeneration in the brain and periphery, respectively [32] (Table 2). p75NTR is 

expressed in HSCs and astrocytes and is a key regulator of scar formation in liver and 

brain [33–35]. In the liver, p75NTR regulates regeneration by promoting HSC differentiation 

into myofibroblasts through activation of the small GTPase Rho [33]. At later stages 

following injury, secretion of pro-NGF or NGF by regenerating hepatocytes may lead to 

ligand-induced p75NTR-mediated activation of apoptotic pathways in HSCs. These findings 

have been confirmed in independent rodent models of liver fibrosis [36].

In the brain, expression of p75NTR is upregulated in astrocytes following injury, which 

promotes reentry into the cell cycle by upregulating CDK2 expression [35], as well as 

hypertrophic reactivity [34, 35]. Astrocyte p75NTR is cleaved in response to the profibrotic 

factor transforming growth factor (TGF)-β, and the p75ICD interacts with nuclear pore 

complex nucleoporins to promote nucleocytoplasmic shuttling of transcription factors 

required for glial scar formation. Notably, this nuclear pore interaction does not occur in 

neurons, indicating cell-specific regulation of intramembrane proteolysis of p75NTR might 

contribute to cell type differences in the composition of the nuclear pore complex and 

growth factor signal transduction pathways [34].

Fibrinolysis & Tissue Fibrosis

Fibrinolysis is required for fibrin degradation, ECM remodeling and tissue repair, and its 

inhibition leads to excessive fibrin deposition resulting in inflammation, scar formation, and 

reduced regeneration [37]. p75NTR inhibits fibrinolysis independent of NTs by interacting 

with phosphodiesterase PDE4A4/5, which leads to cAMP degradation, reduced PKA 

activation, downregulation of tissue plasminogen activator (tPA) and upregulation of 

plasminogen activator inhibitor 1 (PAI-1) [38]. Expression of p75NTR in Schwann cells 

inhibits fibrinolysis in sciatic nerve injury, whereas p75NTR null mice have increased 

fibrin clearance and are protected against lung injury [38]. Rolipram, an inhibitor of all 

PDE4s, reduces fibrin deposition in LPS-induced lung fibrosis [38], and reduces alveolar 

fibrin deposition in a model of hyperoxia-induced lung injury [39]. In chronic obstructive 

pulmonary disease (COPD), PDE4A4, the human analog of PDE4A5, is upregulated [40] 

and is considered a pharmacologic target [41]. Characterization of the p75NTR/PDE4A4/5 

interaction revealed that it is mediated primarily by a unique region in the extreme C­

terminus of PDE4A4/5 not shared by other PDE4 isoforms [9], suggesting PDE4A5-p75NTR 

interaction is an appealing precision drug target given its well characterized interface and 

upstream regulators. Further understanding of the cell types and injury states in which 

p75NTR and PDE4A4/5 are co-expressed might reveal additional opportunities for p75NTR­

PDE4A4/5 based therapies for fibrin clearance.

Obesity & insulin resistance

p75NTR is expressed in white adipose tissue (WAT), skeletal muscle and liver, and is a 

central regulator of glucose metabolism and obesity [42, 43]. Genetic loss of p75NTR 
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improves glucose tolerance, increases insulin sensitivity, and significantly improves the 

suppression of hepatic glucose production by insulin [42]. Furthermore, p75NTR null mice 

are protected from high fat diet (HFD)-induced obesity and insulin resistance through 

significantly enhanced energy expenditure, insulin sensitivity in skeletal muscle, hepatic, 

and adipose tissue [43]. In adipocytes, the p75ICD forms a complex with Rab5 and Rab31 

to regulate Glut4 plasma membrane translocation [42]. p75NTR also directly interacts with 

the catalytic subunit of protein kinase A (PKA) and regulates cAMP signaling in adipocytes, 

leading to decreased lipolysis and thermogenesis. Adipocyte-specific depletion of p75NTR or 

transplantation of p75NTR-null white adipose tissue into wild-type mice fed a HFD protects 

against weight gain and insulin resistance, identifying p75NTR/PKA signaling as a potential 

target for therapeutic intervention in insulin resistance and metabolic syndrome [43].

In addition to these peripheral actions, the role of NTs in hypothalamic feeding circuits 

suggest that p75NTR may also be a candidate to influence food-entrainable behaviors. 

Indeed, p75NTR expression in neurons within the arcuate hypothalamus is required for 

food anticipatory behavior in response to daytime-restricted feeding [44]. However, future 

studies are needed to determine if p75NTR regulates PKA signaling in the CNS, and how 

p75NTR-regulated metabolism and food-entrained clocks impact metabolic health.

Hypoxia

p75NTR undergoes oxygen-dependent cleavage by γ-secretase to provide a positive 

feedforward mechanism required for the adaptive response to low oxygen tension, a 

condition known as hypoxia [45]. Cellular adaptation to hypoxia is mediated by the 

transcription factor hypoxia-inducible factor-1α (HIF-1α), which regulates a battery of 

genes involved in cell migration, proliferation, angiogenesis, metabolism and inflammation. 

Stabilization of HIF-1α during hypoxia is controlled by the E3 ubiquitin ligase seven in 

absentia homolog 2 (Siah-2), which targets prolyl hydroxylases (PHDs) for proteasomal 

degradation. Reduction in oxygen levels stimulates γ-secretase-dependent release of 

p75ICD and its interaction with Siah2, which decreases autoubiquitination. Siah2 then 

targets PHDs for proteasomal degradation, which results in HIF-1α stabilization [45]. 

Hypoxia and upregulation of Hif1-α contribute to a wide range of diseases including 

tumorigenesis, ischemic disorders and neurologic diseases, such as Alzheimer’s disease 

(AD) and multiple sclerosis (MS). Regulation of hypoxic responses by p75NTR cleavage 

demonstrates an oxygen-dependent signaling mechanism upstream of PHDs and ubiquitin 

ligases. Thus, targeting the hypoxia-dependent cleavage of p75NTR could have wide-ranging 

therapeutic effects.

p75NTR functions in nervous system pathologies

Central nervous system diseases

Retinal injuries—In the retina, p75NTR has been primarily associated with axon guidance, 

NT-mediated neuronal apoptosis and ischemic retinopathy. In retina-specific p75NTR null 

mice, ephrin-A reverse signaling is impaired, disrupting axon repulsion and mapping during 

visual system development [46]. p75NTR expression is confined to Müller glial cells, where 

it may reduce Müller cell supportive functions or promote the release of proapoptotic factors 
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to induce retinal degeneration [23, 47] (Table 2). Supporting this non-cell-autonomous role 

for p75NTR in retinal degeneration, genetic loss of p75NTR prevents basic fibroblast growth 

factor (bFGF) reduction and tumor necrosis factor-alpha (TNFα) production by Müller glial 

cells in response to proNGF, resulting in increased retinal ganglion cell and photoreceptor 

survival [23].

p75NTR is a major player in ischemic vascular diseases in the eye, such as diabetic 

retinopathy and oxygen-induced retinopathy, which can cause visual impairment and 

eventually blindness [48]. p75NTR null mice have decreased stabilization of HIF-1 and 

VEGF expression, leading to decreased retinal angiogenesis [45]. Thus, in retinal diseases 

characterized by HIF-1α dysregulation, such as ischemic retinopathy, the p75ICD–Siah2 

interaction might be a therapeutic target for regulating oxygen-dependent angiogenesis and 

tissue remodeling.

Multiple Sclerosis and spinal cord injury

Multiple approaches have been used to investigate the role of p75NTR function in 

demyelinating diseases, leading to some discrepant results [49, 50]. Although genetic 

loss of p75NTR does not affect oligodendrocyte death and subsequent remyelination in 

the MS model of cuprizone-induced demyelination [51], p75NTR can mediate death of 

oligodendrocyte lineage cells and influence myelinating processes after SCI [19]. These 

diverging results likely reflect context-dependent differences in p75NTR expression, and 

the effect of the inflammatory environment. Interestingly, in addition to oligodendrocytes, 

p75NTR is upregulated in endothelial and perivascular cells of the CNS at the vascular 

interface in several animal models of MS, suggesting that p75NTR might be crucial 

for the regulation of blood-brain-barrier integrity and the extent and composition of 

inflammatory infiltrates during inflammatory demyelination [49, 50, 52]. Although 

p75NTR impairs neovascularization and blood flow recovery in a mouse model of limb 

ischemia by suppression of signaling mechanisms implicated in endothelial cell survival 

and angiogenesis [53], the link between p75NTR expression in injured endothelial and 

perivascular cells has not been investigated during inflammatory demyelination.

Alzheimer’s disease

A growing body of evidence indicates that p75NTR might contribute to AD pathogenesis 

[54]. Studies performed on p75NTR deficient mice indicate that Aβ can directly activate 

p75NTR-mediated cell death through the selection of downstream death effectors [55]. 

AD is also characterized by abnormal aggregation of tau protein, and p75NTR expression 

has been associated with tau hyperphosphorylation. Antagonizing the binding of Aβ to 

p75NTR in mouse models of human tauopathies suppresses tau hyperphosphorylation [56, 

57]. Moreover, inactive variants of p75NTR internalize more slowly than wild-type p75NTR, 

reducing amyloid precursor protein (APP) internalization and colocalization with beta-site 

amyloid precursor protein cleaving enzyme-1 (BACE1) and favoring non-amyloidogenic 

APP cleavage [58]. However, loss of p75NTR has differing outcomes on Aβ-related 

pathology depending on the AD mouse model [59]. Altogether, these in vivo studies favor 
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a potential mechanism for a feed-forward loop of amyloidogenesis regulated by Aβ/p75NTR/

BACE1 interactions in AD.

Interestingly, recent evidence suggests that the soluble p75ECD is protective against Aβ 
toxicity in AD. p75ECD levels in cerebrospinal fluid and in brains of AD patients and 

in APP/PS1 (AD) transgenic mice are significantly reduced [60]. The sheddase-TNF-alpha­

converting enzyme (TACE, also called ADAM metallopeptidase domain 17 (ADAM17)) is 

the main enzyme to cleave p75NTR and release its ECD, and TACE activity is significantly 

reduced in brains of AD mice and CSF of AD patients. Aβ reduces TACE expression and 

shedding of p75ECD, indicating that reduction of soluble p75ECD in AD is a downstream 

toxic action of Aβ [60]. Remarkably, restoration of normal p75ECD levels by transgenic 

expression of human p75ECD before or after Aβ deposition reversed behavioral deficits 

and AD-type pathologies in a mouse model. Furthermore, transgenic expression of p75ECD 

also reduced amyloidogenesis by suppressing beta-secretase expression and activity [60]. 

Overall, these data indicate that p75ECD might act as a neurotoxin scavenger for Aβ and 

proNTs, preventing their signaling through full-length p75NTR and, therefore, represents a 

compelling therapeutic target and biomarker in AD.

Cognitive impairment

p75NTR acts as a critical regulator for cholinergic forebrain neuron function and 

hippocampal synaptic plasticity, which affect learning and memory [15, 61, 62]. Cholinergic 

neurons highly express p75NTR, and germline deletion of p75NTR increases cholinergic 

innervation of the hippocampus [63], suggesting that p75NTR is a negative regulator of 

hippocampal function. However, a more recent study showed that deletion of p75NTR alters 

cholinergic innervation of barrel cortex but not hippocampus [64]. A key component of 

working and spatial memory is persistent firing of entorhinal cortex pyramidal neurons. 

p75NTR controls excitability and persistent firing of the cortical pyramidal neurons in a 

proNGF-dependent way [65]. p75NTR null mice have improved working memory, but also 

display increased propensity for severe seizures. Therefore, the proBDNF-p75NTR axis may 

control pyramidal neuron excitability and persistent activity to balance entorhinal cortex 

performance with the risk of runaway activity that can result in epileptic seizures [65].

Persistent modifications of synapses include either strengthening or weakening of synaptic 

connections, respectively termed long-term potentiation (LTP) and long-term depression 

(LTD). Synaptic plasticity is tightly controlled by NTs, and an emerging concept is that 

proBDNF and mature BDNF, through their respective p75NTR and TrkB receptor-signaling 

systems, elicit opposing effects on synaptic plasticity. p75NTR null mice have impairments in 

several learning and memory tasks [66, 67] and are deficient in LTD [68]. P75NTR null mice 

also show decreased expression of NR2B, an NMDA glutamate receptor subunit uniquely 

involved in LTD, and activation of p75NTR by proBDNF enhances NR2B-dependent LTD 

and NR2B-mediated synaptic currents, suggesting that activation of p75NTR by proBDNF 

facilitates hippocampal LTD [69, 70]. Interestingly, p75NTR null mice are resistant to 

age-dependent disruption of hippocampal homeostatic plasticity, as well as age-related 

memory and cognitive deficits, supporting the notion that p75NTR might mediate age-related 

increased LTD over LTP [71]. However, cognitive dysfunction of p75NTR null mice could 
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also be attributed to a role of p75NTR in adult neurogenesis. p75NTR is expressed in 

subventricular zone and hippocampal progenitor cells, and regulates their cell fate [72]. 

Newborn neurons generated from hippocampal neural stem cells contribute to hippocampus­

dependent learning and memory, and abnormal hippocampal neurogenesis occurs in CNS 

diseases, such as AD. Collectively, these studies underscore the emerging view of p75NTR 

as a contributor to cognitive impairment in AD and aging, and highlight p75NTR as an 

important therapeutic target for limiting AD- and age-related memory and cognitive function 

deficits.

p75NTR as a pharmacological target

As p75NTR functions through various modes of action, four major classes of p75NTR­

modulating agents are considered for pharmacologic manipulation: 1) modulators of p75NTR 

expression, 2) inhibitors of p75ICD interaction with its partners, 3) agents blocking p75NTR 

cleavage, and 4) agents blocking ligand binding to p75ECD (Figure 2, Table 3).

Genetic tools altering p75NTR expression

In vivo knockdown of p75NTR expression using antisense oligonucleotides prevents sensory 

neuron degeneration after axotomy in rats when administered to the proximal nerve stump 

[73], and reduces inflammation and demyelination in an animal model of MS [50]. In 

the rat retina, shRNA targeting of p75NTR expression prevents proNGF-induced acellular 

capillary formation [74] and abrogates Müller glia activation and inflammation [75]. 

Noninvasive intranasal delivery of siRNA blocking the induction of p75NTR expression 

after traumatic brain injury (TBI) prevents proNT-induced neuronal cell death and preserves 

sensorimotor function [76], highlighting the potential benefit of inhibiting p75NTR signaling 

as a therapeutic approach to prevent secondary progressive brain damage after TBI.

Cell-permeable peptides interfering with intracellular signaling

Cell permeable peptides can competitively inhibit interactions of p75NTR with its 

downstream partners, abrogating p75NTR signaling. Tat-pep5, which inhibits the interaction 

between p75ICD and Rho-GDI and prevents p75NTR-induced activation of RhoA, induces 

axonal regeneration after optic nerve crush [77]. Moreover, Tat-pep5 attenuates isoflurane­

mediated loss of synapses in the hippocampus [78], reduces the lesion volume after TBI 

[79] and improves learning and memory in mice receiving proBDNF infusions in the 

hippocampus [77, 80].

The soluble form of c29, a 29-amino acid peptide mimic of the cytoplasmic juxtamembrane 

region of p75NTR, inhibits neuronal cell death, whereas the plasma membrane bound 

c29 peptide induces neuronal cell death, suggesting that membrane localization of the 

p75NTR cytoplasmic juxtamembrane region is required to activate the death pathway and 

that c29 can act as a dominant-negative inhibitor of p75NTR death signaling [81]. Acute 

c29 application to axotomized motor neuron axons decreases cell death, and systemic c29 

treatment of SOD1G93A mice, a common model of amyotrophic lateral sclerosis, resulted 

in spinal motor neuron survival at mid-disease as well as in delayed disease onset [82]. 
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Soluble c29 promoting motor neuron survival is suggested to enhance the activation of 

TrkB-dependent signaling pathways in neurons in conditions of low-level NT exposure [82].

Blocking p75NTR cleavage

Peptide inhibitors of α-secretase and γ-secretase prevent the proteolytic cleavage of p75NTR 

and thereby prevent p75ICD-mediated biological functions. Inhibition of p75NTR cleavage 

by γ-secretase may represent a strategy to counteract p75NTR functions in AD, such 

as p75ICD-induced cell death. However, γ-secretase processes a wide range of integral 

membrane proteins, some of them with critical cellular functions, and targeting γ-secretase 

in AD has failed in clinical trials, resulting in significantly increased risk of serious adverse 

events [83]. Thus for clinical use, it may be necessary to design secretase inhibitors that 

selectively lower p75NTR cleavage events without interfering with the cleavage of other 

important substrates.

Blocking interaction of p75NTR with extracellular ligands

The interaction of p75NTR with NTs can be blocked using small molecules, peptide 

inhibitors or antibodies [84]. A cyclic decapeptide that mimics the binding site of NGF 

for p75NTR decreases the size of β amyloid-induced brain inflammation [85], modulates 

kindling-induced mossy fiber sprouting in a rat model of epilepsy [86] and decreases post­

axotomy retinal ganglion cell death [87]. Various antibodies (e.g. REX) can also be used to 

block NT binding to p75NTR. In vivo application of REX results in decreased myelin sheath 

thickness in sciatic nerve axons by inhibiting BDNF from binding to p75NTR [88], and leads 

to altered firing patterns and synaptic composition of abducens motoneurons via inhibition 

of NGF binding to p75NTR [89].

In silico screening has identified small molecule ligands that interact with p75NTR 

and modulate its signaling pathways, marking a milestone for p75NTR as an emerging 

candidate for therapeutic intervention [90] (Figure 3). Small molecule ligands (e.g. THX-B, 

LM11A-24 and LM11A-31) effectively downregulate degenerative and upregulate trophic 

signaling in animal models of disease, such as in retinal diseases, TBI, SCI, peripheral 

neuropathy, Diabetes, Huntington’s disease, HIV, aging, tauopathy, and AD (Table 3) 

[47, 91–107]. The small molecule LM11A-31 stimulates the recruitment of interleukin-1 

receptor-associated kinase (IRAK) survival adaptor to p75NTR and upregulates downstream 

NF-ҡB and Akt pro-survival signaling. LM11A-31 significantly improves bladder function 

and promotes functional recovery after SCI [91, 108], reverses spatial memory impairments 

after TBI [92], ameliorates cisplatin-induced peripheral neuropathy [93], prevents diabetes­

induced retinal vascular permeability [94], and suppresses neurodegeneration in HIV 

and aging [95]. LM11A-31 also interferes with proNT degenerative signaling, promoting 

survival signaling through p75NTR to inhibit/reverse AD degeneration and slowing 

progression of AD [96–100], and LM11A-31 inhibits multiple aspects of the development 

of tau pathology, including degeneration of neurites and spines [100, 101]. The effectiveness 

of altering p75NTR-coupled signaling networks and in reversing neurite/spine degeneration 

with a lack of apparent deleterious effects in preclinical studies indicate that LM11A-31 

modulation of p75NTR may be an approach with significant therapeutic potential. 
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Excitingly, a modified formulation of LM11A-31 is currently being tested in a phase IIa 

exploratory endpoint trial in subjects with mild to moderate AD (Clinical Trial Numberi: 

NCT03069014).

Additional agents have expanded the umbrella of potential pharmacological approaches 

targeting p75NTR in nervous and non-nervous system disorders. These include the lateral 

olfactory tract usher substance (LOTUS), which promotes axonal regeneration after optic 

nerve crush injury and inhibits NgR1-mediated signaling by interfering with the interaction 

between NgR1 and p75NTR [109], EVT901, a novel piperazine derivative inhibiting p75NTR 

oligodimerization, which is neuroprotective, modulates central and peripheral inflammation 

and improves functional outcome in a model of TBI [110, 111], lithium citrate, which is a 

potential inhibitor of proNGF and protects hippocampal neuronal cell death [112], and the 

small molecule NSC49652, which inhibits tumor growth in a melanoma mouse model by 

targeting the transmembrane domain of p75NTR, inducing receptor activation and cell death 

in melanoma cells [113].

Concluding Remarks

Given the fundamentally improved understanding of its in vivo functions and induced 

expression in a wide range of neurological and peripheral diseases, p75NTR represents 

an emerging target for drug discovery. Small molecule compounds that modulate p75NTR 

ligand binding are of great interest, and have already shown efficacy in CNS injuries 

and disease, in particular in mouse models of neurodegenerative diseases (Figure 2). 

Since p75NTR has pleiotropic functions, it will be important to identify if p75NTR-driven 

diseases share common p75NTR mechanisms to optimize pharmacological approaches 

targeting of the molecule (see Outstanding Questions). Notably, some p75NTR functions 

are ligand-independent, indicating that blocking ligand binding may only partially inhibit 

p75NTR signaling and could potentially leave some detrimental functions of p75NTR intact. 

Therefore, it will be important to differentiate ligand-dependent cell surface p75NTR 

signaling from signaling by cleaved fragments, and to define the molecular pathways 

and interaction sites of intracellular mediators of p75NTR in disease. Targeting specific 

intracellular mediators of p75NTR, which are required for both ligand-dependent and 

independent signaling, may have better therapeutic potential than blocking only ligand­

dependent signaling. By defining the intracellular mediators of p75NTR signaling and the 

mechanisms by which they interact with p75NTR, it may be possible to selectively block 

its deleterious functions while retaining its beneficial effects. Patients with devastating 

conditions stand to benefit from the successful development of these agents.
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Glossary

Neurotrophins (NTs)
NTs are a family of proteins that regulate survival, development and function of neurons. 

The term NT is more generally reserved for four structurally related factors: Nerve 

growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), 

and neurotrophin-4 (NT-4).

Pro-neurotrophins (proNTs)
Neurotrophins are synthesized as precursor proteins that are proteolytically cleaved to form 

mature neurotrophins. ProNT cleavage can occur either intracellularly by the action of 

furin or proconvertase, or extracellularly by the action of plasmin, matrix metalloproteinase 

MMP-7 or MMP-9.

Regulated intramembrane proteolysis (RIP)
p75NTR is subject to proteolytic cleavage, first by a peptidase- mediated ectodomain 

shedding, leaving a membrane bound C- terminal fragment (p75CTF) and liberating the 

ECD, and then by the γ-secretase complex that targets the p75CTF, releasing a soluble 

intracellular domain (p75ICD) with signaling capabilities.

TAT-Pep5
A 15-amino acid residue peptide (Pep5; CFFRGGFFNHNPRYC) with the binding site 

mapped onto a hydrophobic patch framed by helices 5 and 6. Pep5 fused with the 

amino (N)-terminal protein transduction domain (11 amino acids) from the human 

immunodeficiency virus protein TAT (TAT–Pep5) competitively inhibits the interaction 

between p75ICD and Rho-GDI.

Tropomyosin-related kinase (Trk)
Family of tyrosine kinases that regulates survival, differentiation, synaptic strength and 

plasticity in the mammalian nervous system. NTs are common ligands of Trk receptors. 

Each type of NT has different binding affinity toward its corresponding Trk receptor.
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Outstanding Questions

• Which diseases require p75NTR and would benefit from pharmacologic 

targeting of p75NTR?

• Which are the integrative p75NTR functions shared by major 

neurodegenerative diseases?

• What are the relative contributions of ligand-dependent p75NTR signaling 

versus intracellular signaling by cleaved p75NTR fragments in CNS diseases?

• Which molecular pathways and interaction sites of intracellular mediators of 

p75NTR signaling can be harnessed for the development of drugs to promote 

the p75NTR beneficial effects?

• Can we design drugs to achieve selective targeting of p75NTR signaling 

profiles for specific disease applications?
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Highlights

• p75NTR is a driver of disease pathogenesis in neurological, metabolic, and 

fibrotic diseases.

• p75NTR is highly pleiotropic interacting with multiple ligands, co-receptors, 

and signaling molecules.

• Blockade of p75NTR binding to its ligands or intracellular partners has 

therapeutic potential.

• Tissue-specific selective targeting of p75NTR may avoid potentially adverse 

on-target effects.
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Figure 1. p75NTR structure and adaptor proteins involved in signaling.
p75NTR is a single transmembrane-spanning protein with an amino-terminal ECD and a 

carboxy-terminal ICD. The ECD consist of 4 CRDs involved in ligand binding. The TM is 

involved in membrane sorting of p75NTR. The ICD consists of the juxtamembrane adaptor 

protein-binding region, the DD and the C-terminal tail. p75NTR is subject to proteolytic 

cleavage releasing a soluble ICD with signaling capabilities. Selected p75NTR catalytic (red, 

serine-threonine kinases, protein tyrosine phosphatase, ligase and small GTPase), and non­

catalytic (grey, scaffolding- and adaptor-like molecules) partners mediate diverse cellular 

effects, such as neurite outgrowth inhibition & HSC differentiation, cell survival, cell 

death, glucose uptake, cell cycle arrest, inhibition of fibrinolysis, hypoxia, lipolysis, energy 

expenditure, and ECM remodeling (see list of p75NTR interactors in Table 1, reviewed by [1, 

3, 6, 13]). Abbreviations: p75NTR; p75 neurotrophin receptor, ECD; extracellular domain, 
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TM; transmembrane domain, ICD; intracellular domain, DD; death domain, CRD; cysteine 

rich domain. HSC; hepatic stellate cell, ECM; extracellular matrix.
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Figure 2. Mechanism of action of p75NTR - modulating small molecule compounds.
LM11A-31, LM11A-24, THX-B and the KGKE peptide or homologous sequence inhibit 

proNT binding to p75NTR, EVT901 interacts with the p75NTR CRD1 and inhibits p75NTR 

pre-oligomerization, NSC49652 interacts with the p75NTR TM domain and induces 

conformational changes and p75NTR activity, lithium citrate prevents the association of 

the p75NTR-sortilin receptor complex, s-LOTUS inhibits the interaction between NgR1 

and p75NTR, the c29 peptide inhibits p75NTR cytoplasmic juxtamembrane death signaling, 

and the TAT-Pep5 peptide inhibits p75ICD and Rho-GDI interaction (see list of p75NTR 

modulating small molecule compounds and peptides in Table 3). Abbreviations: p75NTR; 

p75 neurotrophin receptor, ECD; extracellular domain, TM domain; transmembrane domain, 

ICD; intracellular domain, JTM domain; juxtamembrane domain, CRD1; cysteine rich 

domain 1, NgR1; Nogo receptor 1.

Malik et al. Page 23

Trends Pharmacol Sci. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Milestones of in vivo functions and drug targeting of p75NTR.
Timeline of the discovery, in vivo studies in preclinical models of neurological and 

peripheral diseases, and the development of tools/drugs to study p75NTR. Milestones in 

this timeline are cited in references [4, 5, 11, 16, 19, 25, 33–35, 38, 42, 43, 47, 57, 58, 71, 

100, 110, 128, 140–148].
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Table 1

p75NTR interacts with several partners including small GTPases, ubiquitin ligases and FG-Nups.

Protein p75NTR domain Function Refs

Caveolin-1 unknown Neuronal differentiation [114]

TRAF2, 4 TRAF2 DD TRAF4JX Cell death [115]

TRAF6 JX Schwann cell apoptosis [116]

NRIF1/2 JX and DD Cell death [117]

FAP-1 DD Schwann cell apoptosis [118]

SC1 JX Neuronal cell growth [119]

NRAGE JX Neuronal cell death [120]

Bex3/NADE DD Cell death [121]

RIP2 DD Schwann cell apoptosis [122]

ARMS ICD (domain unknown) Neuronal cell death [123]

Necdin DD Neuronal cell death [124]

PLAIDD DD (2nd helix) Cell death [125]

IRAK unknown Cell death [126]

Rac unknown Oligodendrocyte apoptosis [127]

Rho-GDl DD (5th helix) Neurite outgrowth [128]

RanBPM DD unknown [129]

C-Cbl unknown unknown [130]

Ras GTPase DD (5th helix) Neurite outgrowth [131]

Bex1 unknown Neuronal differentiation [132]

PDE4A5 JX Matrix remodeling [38]

Kalirin9 DD (5th helix) Neurite outgrowth [133]

SaII2 DD Neurite outgrowth [134]

SIAH2 JX Hypoxic response [45]

APR-1 JX Melanoma cell apoptosis [135]

Rab5 DD (4th helix) Adipocyte glucose uptake [42]

Nup153 DD Astrocyte nucleo-cytoplasmic shuttling [34]

PKA subunits RIIβ and Cα DD (5th & 6th helix) Adipocyte lipolysis, energy expenditure [43]

NIX JX Neuronal cell death [136]

Abbreviations: DD: death domain, JX: juxtamembrane domain
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Table 2

p75NTR in vivo functions in development and disease.

Disease Cellular 
Expression Functions p75 NTR −/− phenotype Refs

Nervous 
system

Injuries

Spinal cord 
injury

Oligodendrocytes 
Neurons Cell death/survival

Increased 
oligodendrocyte survival 
& reduced neuronal 
survival

[19, 
137]

Traumatic brain 
injury Cell death/survival

Reduced lesion volume 
& improved motor 
coordination

[79]

Nerve crush/
axotomy

Schwann cells 
Oligodendrocytes

Cell death/survival 
Cellular 
differentiation

Reduced axonal growth 
& myelination

[88, 
138]

Retinopathies Müller cells RGC Cell death/survival 
Angiogenesis

Protection from 
retinal ganglion 
cell death Reduced 
neoangiogenesis

[23, 
45]

Stroke/Ischemic 
disorders Astrocytes Neurons

Cell death/survival 
Cell cycle 
regulation

Reduced infarct volume [22, 
139]

Neurodegenerative 
disorders

Alzheimer’s 
disease Cholinergic neurons Cell death/survival

Improved cognition 
Protection from 
amyloidogenesis 
Reduced cell death

[55, 
59, 
140]

Multiple 
Sclerosis

Astrocytes 
Endothelial cells 
Perivascular cells 
Oligodendrocytes

Cell death/survival 
EC proliferation / 
Adhesion

Increased inflammation 
No change in cell death

[49, 
51]

Seizure Neurons Cell death/survival Reduced cell death [21]

Non nervous system

Liver disease Hepatic Stellate 
Cells

Myofibroblast 
differentiation

Impaired liver 
regeneration [33]

Lung fibrosis Smooth Muscle 
Cells Fibrinolysis

Protection from fibrin 
deposition & lung 
fibrosis

[38]

Diabetes Adipocytes Glucose uptake Increased glucose uptake 
& insulin sensitivity [42]

Obesity Adipocytes Energy balance 
and lipolysis

Protection from weight 
gain & metabolic 
syndrome

[43]
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Table 3

p75NTR modulating small compounds and peptides.

Pharmaceutical 
tools Animal model Target cell type Functions Phenotype Refs

LM11A-31

Alzheimer’s 
disease

Neurons Neuroprotective 
Synaptic resilience

Reduced Aβ-associated 
degeneration of neurites and spines [100]

Microglia Inflammation Reduced microglia activation [99]

Neurons Neuroprotective
Reduced tau pathology, 
neuroinflammation and 
neurodegeneration

[98]

Cholinergic 
Neurons Neuroprotective

Prevented basal forebrain 
cholinergic neuron 
neurodegeneration

[97]

Neurons Neuroprotective Reduced cognitive deficits and 
neurodegeneration [96]

Aging Neurons Neuroprotective Reduced basal forebrain cholinergic 
neuron degeneration [102]

Huntington’s 
Disease

Neurons Neuroprotective
Reduced brain atrophy, plasma 
cytokine level, and urinary p75NTR 

ECD level
[103]

Neurons Neuroprotective
Reduced Htt aggregation, spine 
loss and improved cognition, motor 
performance and survival

[104]

Tauopathy Neurons Neuroprotective 
Synaptic resilience

Reduced synaptic degeneration and 
improved hippocampal behavior 
outcome

[100, 
101]

Traumatic brain 
injury

Neurons Neural 
stem cells

Cell survival 
Neurogenesis

Reduced neuronal death, impairment 
of neurogenesis, and spatial learning 
deficits

[92]

Spinal cord injury Oligodendr 
ocytes Neurons Cell survival Reduced oligodendrocyte cell death 

and myelinated axons [91]

Seizure Neurons Cell survival No effect on hippocampal cell death [105]

Cisplatin-induced 
peripheral 
neuropathy

Neurons Neuroprotective Prevented decreases in peripheral 
nerve function [93]

Diabetes Endothelial cells Retinal barrier 
protective

Preserved blood-retina barrier 
integrity [94]

HIV Neurons 
Microglia Neuroprotective Reduced neurodegeneration [95]

LM11A-24

Alzheimer’s 
disease Neurons Neuroprotective

Reduced tau pathology, 
neuroinflammation and 
neurodegeneration

[98]

Optic nerve 
axotomy Glaucoma

Retinal ganglion 
cells Cell survival Preventing loss of retinal structure [47]

THX-B

Retinitis 
pigmentosa

Photorecep tor 
cells Neuroprotective Reduced photoreceptor cell loss [106]

Diabetic 
retinopathy Müller glial cells Neuroprotective

Reduced Müller glia activation, 
retinal ganglion cell loss and 
maintained blood-retina barrier 
integrity

[107]

Optic nerve 
axotomy Glaucoma

Retinal ganglion 
cells Cell survival Preventing loss of retinal structure [47]
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Pharmaceutical 
tools Animal model Target cell type Functions Phenotype Refs

EVT901 Traumatic brain 
injury

Neuron 
Oligodendr 
oocytes Myeloid 
cells

Neuroprotective 
Inflammation

Increased neuronal and 
oligodendrocyte survival and 
reduced inflammation

[110, 
111]

Lithium citrate Seizure Neurons Cell survival Increased hippocampal neuronal 
survival [112]

NSC49652 Melanoma Melanoma cells Cell death Increased cell death of melanoma 
cells [113]

s-LOTUS Optic nerve crush Retinal ganglion 
cells

Neuronal 
regeneration Promoting axonal regeneration [109]

KGKE peptide 
or homologous 
sequence

Neuroinflam 
mation

Microglia, 
Astrocytes Activation Reduced β amyloid-induced brain 

inflammation [85]

Optic nerve 
axotomy

Retinal ganglion 
cells Cell survival Promoting retinal ganglion cell 

protection [87]

Epilepsy Mossy fiber 
pathway

Synaptic 
reorganization

Blocking mossy fiber sprouting in 
the inner molecular layer [86]

TAT-Pep5 peptide

Optic nerve crush Retinal ganglion 
cells

Neuronal 
regeneration Promoting axonal regeneration [77]

Isoflurane-induced 
neurodegen eration Neurons Neuroprotective Reduced loss of hippocampal 

synapses [78]

Aging Neurons Neuroprotective Improved learning and memory [80]

c29 peptide

Developmen tal 
cell death

Retinal ganglion 
cells Neuroprotective Reduced retinal ganglion cell death [81]

Amyotrophic 
lateral sclerosis Motor neurons Neuroprotective Inhibition of motor neuron death [82]
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