
UC Irvine
ICS Technical Reports

Title
Testing based on the RELAY model of error detection

Permalink
https://escholarship.org/uc/item/4h878369

Authors
Richardson, Debra J.
Thompson, Margaret C.

Publication Date
1987

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4h878369
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

'!'esting Based on the
RELAY Model of Error Detection

(Technical Report 87-30)

De bra J. Richardson t
i'viargaret C~ Thomps~nt

tinformation and Computer Science Department
University of California
Irvine, California 92717

tComputer and Information Science Department
University of Massachusetts

Amherst, Massachusetts 01003

,--

Keywords: software testing, test data selection, fault-based testing, criteria evaluation

This research was supported in part by the); ational Science Foundation under grants DCR-83-18776 and DCR-

84-04217 and by the Rome-Air Development Center grnnt F30602-86-C-0006.

Abstract 'i 'I j
' ~ ·.l

I'

RELAY, a model for error detection, defines revealing condition.s that guarantee that a fault
originates an error during execution and that the error transfers through computations and data
flow until it is revealed. This model of error detection provides a fault-based criterion for test
data selection. The model is applied by choosing a fault classification, instantiating the conditions
for the classes of fa11lts, ?nd applying them to the program being tested. Such an application
guarantees the detection of errors caused by any fault of the chosen classes. As a formal model
of error detection, RELAY provides the basis for an automated testing tool. This paper presents
the concepts behind RELAY, describes why it is better than other fault-based testing criteria, and
discusses how RELAY could be used as the foundation for a testing system.

1 Introduction

The goal of testing a program is the detection of errors. This is typically done by attempting to

select test data for which execution of the program produces erroneous results. :Yiany testing tech­

niques [Bud81.Bud83,Ham77,How82,How85,~for84,Zei83,Wey81] are directed toward the detection

of errors that might r~sult ~rom commonly occurring faults in software. These ·'fault-based" testing

techniques assume that the program being tested is 1'almost correct", which might be determined

by successfully passing some high-level functional testing phase. If a ·•comprehensive" set of test

data is selected by a fault-based technique and the program executes correctly, then the tester

gains confidence that the program does not contain specific types of faults.

This paper reports on a new model of error detection called RELAY, which provides a fault­

based criterion for test data selection. The RELAY model builds upon the testing theory introduced

by ~Iorrell [~IH81,~.for84], where an error is "created" when an incorrect state is introduced at

some fault location, and it is "propagated,, if it persists to the output. \Ve refine this theory by

more precisely defining the notion of when an error is introduced and by differentiating between

the persistence of an error through computations and its persistence through data flow operations.

vVe introduce similar concepts, orig·ination and transfer 1 , as the first erroneous evaluation and

the persistence of that erroneous evaluation, respectively. The RELAY model defines revealing

conditions that guarantee that a fault originates an error during execution and that the error

transfers through all affected computations until it is revealed.

Analysis of other fault-based testing criteria has shown that RELAY provides a more precise

model of error detection. We have analyzed three test data selection criteria, each of which attempt

to detect faults in six fault classes. This analysis demonstrated that none of these criteria thor­

oughly considers the potential unsatisfiability of their rules; each criterion includes rules that are

sufficient to cause errors for some fault classes, yet when such rules are unsatisfiable, many errors

may remain undetected. :VIoreover, the criteria fail to integrate their proposed rules: although a

criterion may cause a subexpression to ta.ke on an erroneous value, there is no effort made to guar­

antee that the enclosing expression evaluates incorrectly. RELAY overcomes these two common

weaknesses because the test data selected by RELAY satisfies precise origination conditions that

are coupled with transfer conditions. .Yioreover, these conditions are necessary and sufficient for

1 We have chosen the term "originate" rather than ·'create'' or "introduce", because we feel it better connotes the
first location at which an erroneous ev::cluation occurs and does not imply the mistake a programmer makes while
coding. vVe have chosen the term .. transfer'' over "propagate" so as to avoid the connotation of an ·'increase in
numbers'' and instead of "persist" so as not to conflict with Glass's notion [Gla81], where an error is persistent if it

escapes detection until late in development.

1

revealing an error.

For the most part, testing research is directed either at the problem of determ:ning the paths

that must be tested or at the problem of selecting test data for the chosen paths. RELAY shows

that this usual separation just doesn't work. RELAY approaches test data selection in conjunction

with path selection by selecting test data that not only originates an error but also transfers that

error to affect the output.

The next section summarizes the RELAY model; more detail is provided in a related

paper[RT86b]. In the third section, we describe the instantiation of RELAY to develop reveal­

ing conditions for a class of faults, while section four analyzes three test data selection criteria

in terms of their ability to detect errors caused by faults in this class. This analysis shows the

advantages of the RELAY model of error detection. In the fifth section, we present an example

of the application of RELAY as a test data selection criterion and discuss how this application

might be automated. In summary, we discuss the implications of the model and our future plans

for RELAY.

2 RELAY: A Model of Error Detection

The primary use for the RELAY model of error detection is as a test data selection criterion.

RELAY is capable of guaranteeing the detection of errors that result from some chosen class or

classes of faults. In addition, given test data that has been selected by another criterion, RELAY

can be used as a measurement technique for determining whether that test data detects such

errors. RELAY can also be used to analyze the error detection capabilities of other criteria. Before

describing the RELAY model of error detection, we first introduce a terminology within which we

define the RELAY model.

2 .1 Terminology

We consider the testing of a module M that implements some function F.w : XM - ZM. A module

~u can be represented by a control fiow graph G.w = (N,E), where.Vis a (finite) set of nodes

and E ~ N X .V is the set of edges .. V includes a start node nstart and a final node nfinal: each

other node in .V represents a simple statement 2 or the predicate of a conditional statement in

.\I. A .rnbpath in a control flow graph G_w = (N, E) is a finite, possibly empty, sequence of edges

p = Jn1, n2), ... , (niPi' n1Pl+1)] in£; note that the last node n1P!+l has been selected by virtue of

2 Single statements are considered here for the clarity of the presentation; a simple extension allows nodes to
represent a group of simple statements.

2

its inclusion in the last edge but is not visited in the subpath traversal. An initial subpath p is a

subpath whose first node is nstart. A path P 3 is an initial subpath whose last node is n fin al·

A test datum t for a module AI is a sequence of values input along some initial subpath. For

any node n in G 1w, DOJ'vIAIN(n) is the set of all test data t for which n ·:an be executed. A

test datum t may be an incomplete sequence of input values in the sense that it cannot execute

a complete path. This may be because: 1) additional input is needed to complete execution of

some path; or 2) the initial input t may cause the module to terminate abnormally (before n f irw.l)

or possibly never to terminate. The possibility of incomplete input sequences allows for testing

criteria that consider invalid test data, which are not in the domain of Ai but for which AI may

initiate execution. The test data domain D AJ for G ~u = (N, E) is the domain of inputs from which

test data can be selected. 4 D1vf = {t ! 3 n E S,t E DOlvfAIN(n)}.

A testing method typically specifies some subset of the test data domain for execution. A test

data set TM for a module AI is a finite subset of the test data domain, I'Af ~ D Af. A test data

selection criterion S, is a set of rules for determining whether a test data set Tw satisfies selection

requirements for module lvf.

To reveal errors by testing, there is usually some test oracle that specifies correct execution of the

module [How78,Wey82]. A test oracle might be a functional representation, formal specification,

or correct version of the module or simply a tester who knows the module's correct output. In

any case, an oracle O(Xo, Zo) is a relation, 0 = {(;r, z)} C Xo x Zo, where Xo and Zo are the

domain and range, respectively, of the oracle. vVhen (.r, z) E 0, =is an acceptable output for x.

Execution of a module .:.\I on input x reveals an output error when (.r, J;f (.r)) ~ 0.

A "standard" oracle judges the correctness of the module's output for valid input data. Testers

often have a concept of the "correct,, behavior of a module, however, and not just its correct output.

Rather than waiting until output is produced to find errors, the tester might check the computation

of the module at some intermediate point, as one does when using a run-time debugger. This

approach to testing can be performed with an oracle that includes information about intermediate

values that should be computed by the module; this information might be derived from some

correct module, an axiomatic specification. run-time traces ~How78J, or monitoring of assertions.

Let us associate with the execution of an initial subpath p on some test datum t a con tut CP(t) 1

which contains the values of all variables after execution of p(t). A contcrt oracle Oc i·s a relation

3 \Vhere the distinction between et subpath etnd a path is important, we will use an upper case letter (P ,I to signify

a path and a lower case letter (pJ for a subpath (or initial subpath).
4 Drvr does not include data that \Vould result in an invalid call of the module.

3

Oc = {((t,p), Cp(t))}, that relates a test datum and an initial subpath (t,p) to one or more contexts

Cp(t) that are acceptable after execution of p on t5
. Execution of a path p on test datum t reveals

a Conte.rt error when ((t,p), cp(t)) ~ Oc.

2.2 RELAY

The errors considered within the RELAY model are those caused by some chosen class or classes of

faults in the module's source code. The fault-based approach to testing relies on an assumption that

the module being tested bears a strong resemblance to some hypothetically-correct module. Such

a module need not actually exist, but we assume that the tester is capable of producing a correct

module from the given module and knowledge of the errors detected. As currently formulated.

RELAY is limited to the detection of errors resulting from a single fault.

A node containing a fault may be executed yet not reveal an error; the module appears correct,

but just by coincidence of the test data selected. It is also possible that the tested module produces

correct output for all input despite a discrepancy between it and the hypothetically-correct module.

In this case, the module is not merely coincidentally correct, it is correct. Thus, a discrepancy

is only ''potentially" a fault. Likewise, incorrect evaluation of an expression is only apotentially"

an error since the erroneous value may be masked out by later computations before an erroneous

value is output. A potential fault, denoted fn, is a discrepancy between a node n in the tested

module l'vf and the corresponding node n* in the hypothetically-correct module 1vl* - that is,

n :;F n *. The evaluation of some expression EX P6 in Af, which contains a potential fault, and

the corresponding expression EXP* in A1* results in a potential error when exp i- exp*. To

discover a potential fault, erroneous results must appear for some test datum as a context error or

as an output error, depending on the type of oracle used.

RELAY is a model that describes the ways in which a potential fault manifests itself as an error.

Given some potential fault, a potential error originates if the smallest subexpression of the node

containing the potential fault evaluates incorrectly. Consider the module in Figure 1 for example.

Suppose that the statement X := U * V at node 1 contains a variable reference fault and should be

X := B* V. A potential error originates in the smallest expression containing the potential fault,

which is the reference to U, whenever the value of U differs from the value of B.

It is not only important to originate an error but also to ensure that it is not masked out by

~For simplicity, the granularity of the context oracle is assumed to be the same as that of the control flow graph,

although this is not necessary.
0 Upper case ~EXP] is used here to denote the sour,:e-co< 1 · ,,xpression, while lower case ~exp] denotes the evaluated

expression.

l:X := U * V

2:Z := V**2

3:Y := (X + 3)**Z

false true
4:if A. < B

5:W:=Y*Z

7:W := X * B

6:output X

8:output vV

Figure 1: .\Iodule for Test Data Selection

:)

potential
fault

revea

error

computational
transfer

data flow
transfer

context
error

Figure 2: RELAY Model of Error Detection

later computations. A potential error in some expression transfers to a "super" -expression that

references the erroneous expression if the evaluation of the "super" -expression is also incorrect.

Take another look at Figure 1; if V holds the value zero, the potential error in U that originates

in node 1 does not transfer to affect the assignment to X; the potential error transfers, on the

other hand, whenever V is nonzero. To reveal a context error, a potential fault must originate a

potential error that transfers through all computations in the node thereby causing an incorrect

context. This is termed computational transfer. To reveal an output error, a potential fault

must cause a context error that transfers from node to node until an incorrect output results. This

transfer includes data flow transfer, whereby a potential error reaches another node - that is,

the potential error is reflected in the value of some variable that is referenced at another node

- as well as computational transfer within the nodes that an erroneous value reaches. Using the

example of Figure 1 again, the potential error in X must transfer through data flow to a use, say at

node i 1 transfer through the computations at node I to produce an error in iy, and then transfer

to the output of W at node 8. We know unequivocally that the module is incorrect only if an

output error is revealed. Thus, a potential fault is a fault only if it produces incorrect output for

some test datum.

Figure 2 illustrates the RELAY model of error detection and how this model provides for the

discovery of a fault. The conditions under which a fault is detected are 1) origination of a potential

error in the smallest containing subexpression; 2) computational transfer of that potential error

through each operator in the node. thereby revealing a context error; 3) data flow transfer of that

6

~)

/
I

,~o;~;,;;al

!oRIGINATtj ~ -'- - ~ "- --.._

potential "'
fault \

context

- - - -

\
\ ,

IL

data Aow
transfer

CONTEXT
ORACLE

computational
transfer

computational
transfer

output
error

- -
context

-~ . f
or

Figure 3: The Testing Relay

context error to another node on the path that references the incorrect context; 4) cycle through

(2) and (3) until a potential error is output. If there is no single test datum for which a potential

error originates and this ''total'' transfer occurs, then the potential fault is not a fault, and the

module containing the potential fault is equivalent to some hypothetically-correct module.

As shown in Figure 3, the RELAY view of error detection has an illustrative analogy m a

relay race, hence the name of our model. The starting blocks correspond to the fault location.

The take off of the first runner, as the gun sounds the beginning of the race, is analogous to the

origination of a potential error. The runner carrying the baton through the first leg of the race

is the computational transfer of the error through that first statement. The successful completion

of a leg of the race has a parallel in revealing a c9ntext error, and the passing of the baton from

one runner to the next is analogous to the data flow transfer of the error from one statement

to another. Each succeeding leg of the race corresponds to the computational transfer through

7

another statement. The race goes on until the finish line is crossed, which is analogous to the test

oracle revealing an output error.

Our goal. of course, is to complete the relay race - that is, to detect errors. To this end, the

RELAY model proposes the selection of test data that originates an error for any potential fault of

some type and transfers that error until it is revealed. RELAY uses the concepts of origination and

transfer to define conditions that are necessary and sufficient to guarantee error detection. 'When

these conditions are instantiated for a particular type of fault 1 they provide a criterion by vvhich

test data can be selected for a program so as to guarantee the detection of an error caused by any

fault of that type.

Given an oracle and a module AI with GM= (N, E) that contains a potential fault fn at node

n E .V, a test data selection criterion S is said to guarantee detection of a fault f n if for all test

data sets T;if that satisfy S, there exists t E TM such that f n originates an error for lvf (t) that

transfers until it is detected by the oracle. If a context oracle exists, the potential fault must reveal

a context error for some test datum in every test data set. Note that guaranteeing detection of a

context error does not necessarily mean that an output error will result for this execution, since

it is possible that the context error is masked out by later statements and not transferred to the

output. If error detection is done by a standard output oracle, then a context error revealed by

the fault must also transfer to the output for some test datum in every test data set.

Here, we define origination, transfer, and revealing conditions that are necessary and sufficient

to guarantee that an error is revealed. Sufficient means that if the module is executed on data that

satisfies the conditions and the node is faulty, then an error is revealed. Necessary, on the other

hand, means that if an error is revealed then the module must have been executed on data that

satisfies the condition and the node is faulty.

These conditions are defined for a potential fault independent of where the node occurs in

the module. The test data selected, however, must execute the node within the context of the

entire module. Thus, for a potential fault at node n, such test data are restricted to DOMAIN(n).

Because these conditions are both necessary and sufficient, if the conditions are infeasible within

DOlvlAI1V(n), then no error can be revealed and the potential fault is not a fault. Although, in

general, the feasibility problem is undecidable, in practice, it can usually be solved.

First, suppose that we are attempting to detect a particular fault fn in a node n. This is

somewhat unrealistic, since if one explicitly knew the location of a fault, one would fix it. vVe will

address this issue in a moment, after some groundwork is laid.

To reveal an output error, \Ve must first generate a context error at the node containing the

8

fault: thus, let us first consider the conditions required to guarantee the detection of a context

error. By requiring test data to distinguish the faulty subexpression from the correct one, the

origination condition for a potential fault f n guarantees that the smallest subexpression con­

taining f n originates a potential error. A potential error originating at the smallest subexpression

containing a potential fault must transfer to affect evaluation of the entire node. By requiring test

data that distinguishes the parent expression referencing a potential error from the parent expres­

sion referencing the correct subexpression, the computational transfer condition guarantees

that a potential error transfers through a parent operator. To affect the evaluation of a node, test

data must satisfy the computational transfer condition for each operator that is an ancestor of the

subexpression in which the potential error originates thereby producing a context error. The node

transfer condition is the conjunction of all such computational transfer conditions. To guaran­

tee a fault ~s detection through revealing a context error, a single test datum must satisfy both the

origination and node transfer conditions. The revealing condition for a context error resulting

from a potential fault fn occurring in node n is the conjunction of the origination condition and

the node transfer condition for f n and n.

As an example of these conditions for error detection, consider again the module in Figure 1. If

the statement X : = U * V at node 1 should be X : = B * V, then the origination condition is [u i- b].

This originated potential error must transfer through the multiplication by V; the corresponding

computational transfer condition is (u * v -f:- b * v), which simplifies to (v -/- 0). This value must

then transfer through the assignment to X, which is trivial. Thus, the revealing condition for a

context error resulting from this potential fault is [(u -/- b) and (v -/- 0)].

Testing is primarily concerned with the generation of an output error as the manifestation of

a fault and not only with incorrect values at intermediate points in the module. Thus, we must

guarantee that a context error transfers to affect execution of the module as a whole. A context

error is evidenced through a potential error in at least one variable. By requiring test data that

causes the execution of a statement referencing a variable that contains a potential error and

that causes the smallest subexpression containing that reference to result in a potential error, a

data flow transfer condition describes the requirements for transfer of a context error from one

statement to another. To reveal an output error~ vve must execute a def-use chain that begins with

the node containing the potential fault and ends with the output of a variable. A def use chain

is a chain of alternating definitions and uses of variables, where each definition reaches the next

use in the chain and that use defines the next variable in the chain. Satisfaction of the data flow ·­

transfer conditions wilLforce execution of such a chain. In addition, the subsequent node transfer

9

conditions for the references forced by data flow as well as the context error revealing condition

at the location of the fault must be satisfied. A chain transfer condition for a def-use chain is

the conjunction of the data flow transfer conditions for all pairs in the def-use chain and the node

transfer conditions for all uses in the def'--use chain. The revealing condition for an output error

is the conjunction of the context error revealing condition and the chain transfer condition for the

def-use chain from the fault location to the output.

Consider again the potential variable reference fault at node 1 in Figure 1. One def-use chain

from the fault location to an output consists of the definition of X at node l, followed by a use

of X at node 7, where W is defined, followed by a use of vV in the output statement at node 8.

The potential error in X transfers through data flow to node 7 whenever the false branch of the

conditional at node 4 is taken; thus, the data flow transfer condition is (a 2: b). Reference to the

potential error in X must transfer through the multiplication by B to the assignment of vV at node

7, which entails a node transfer condition of (b f= 0). Thus, for this def-use chain, the chain transfer

condition is [(a 2: b) and (b -:j::. O)]. Recall that the context error revealing condition is [(u f= b) and

(v f= 0)], creating an output error revealing condition for this chosen def-use chain of [(u f= b) and

(v f= 0) and (a 2: b) and (b f. 0)] .

As currently defined, derivation of revealing conditions is dependent on knowledge of the correct

node. Since this is unlikely, an alternative approach is to assume that any node, in fact any

subexpression of any node, might be incorrect and consider the potential ways in which that

expression might be faulty. By grouping these potential faults into classes based on some common

characteristic of the transformation, we define conditions that guarantee origination of a potential

error for any potential fault of that class. A class of potential faults determines a set of alternative

expressions, which must contain the correct expression if the original expression indeed contains a

fault of that class. To guarantee origination of a potential error for a class, the potentially faulty

expression must be distinguished from each expression in this alternate set. For each alternative

expression, then, our model defines an origination condition, which guarantees origination of a

potential error if the corresponding alternate were indeed the correct expression. For an expression

and fault class, we define the origination condition set, which guarantees that a potential

error originates in that expression if the expression contains a fault of this class. The origination

condition set contains the origination condition for each alternative expression.

For each alternative expression. a potential error that originates must also transfer through each

operator in the node to reveal a context error and through data flow and subsequent computations

to reveal an output error. The transfer conditions, which are determined by these subsequent

10

manipulations of the data, are independent of the particular alternate. Thus. for a fault class,

each alternate defines a revealing condition, which is the conjunction of the origination condition

and the transfer conditions. The revealing condition set contains a revealing condition for each

alternate in the alternate set and is necessary and sufficient to guarantee that a potential fault of

a particular class reveals an output error.

Once again, consider the module in Figure 1 and the statement X := U * V, but now suppose

that the reference to U might be faulty but we do not know what variable should be referenced.

To guarantee origination of a potential error for an incorrect reference to U, we must select test

data such that for each alternative variable, U 7 , T contains a test datum where the value of U

is different from the value of U at node 1. The possible alternates depend on what other variables

may be substituted for U without violating the language syntax. If we assume that all variables

referenced in this module are of the same type, then there are seven alternates and hence seven

origination conditions. The origination condition set is {[u # uJ ! U E {A, B, V, vV, X, Y, Z} }. The

node transfer condition for node 1 is [v f:. OJ. The chain transfer condition for the use of X to

define Wat node 7 and the output ofW at node 8 is [(a 2 b) and (bi- O)]. Thus, the set {[(u f=. u

and (v # 0) and (a 2 b) and (b # 0) J I U E {A, B, V, W, X, Y, Z}} is a sufficient revealing condition

set for this potential fault. This set is sufficient but not necessary because all def-use chains are

not considered.

The RELAY model of error detection is based on the generic revealing condition sets just

defined. The model is applied by first selecting a fault classification. Given a particular class

of faults, the generic origination and transfer conditions are instantiated to provide conditions

specific to that class. An example instantiation is provided in the next section. For a module

being tested, the instantiated origination and transfer conditions are evaluated for the nodes in a

module's control flow graph to determine the actual revealing condition sets. Satisfaction of these

sets guarantees the detection of an error for any fault in the chosen classification. The actual

revealing conditions for a module can be used to measure the effectiveness of a pre-selected set of

test data and/ or to select a set of test data. A simple example of RELAY as a test data selection

criterion is presented in Section .3. The origination and transfer conditions for a fault classification

can be used to evaluate the effectiveness of another test data selection technique for classes of faults:

Section 4 illustrates this application of RELAY. This analysis demonstrates the flaws inherent in

most techniques and shows the advantaises provided by the use of RELAY for test data selection.

7 We use the bar notation to denote an aiternate.

11

3 Instantiation of RELAY

In this section, we discuss the instantiation of the RELAY model for a class of faults. The de­

velopment of the revealing condition set for a class of faults consists of the development of the

origination condition set and of any applicable transfer conditions. In [RT86b], RELAY is instan­

tiated for six classes of fa 1 :lts: constant reference fault, variable reference fault, variable definition

fault, boolean operator fault, relational operator fault, arithmetic operator fault. This inst antia­

tion process is illustrated here for the class of variable definition faults. We derive the origination

condition set for this class. This class requires no computational transfer conditions to reveal a

context error. To reveal an output error, however, a potential error in a defined variable must

often transfer through an arithmetic operator 8 at the statement where the variable is referenced,

so we illustrate instantiation of transfer conditions by considering computational transfer through

arithmetic operators.

3.1 Origination of Variable Definition Fault

An origination condition guarantees that the smallest expression containing a potential fault pro­

duces a potential error. Thus, given the smallest expression SEX P containing a potential fault

and an alternative expression SEX P, the origination condition guarantees that sexp I- sexp. The

origination condition set contains the origination condition for each alternate.

Consider here the class of variable definition faults, where a potential error may result when

the name of a defined variable is mistakenly replaced by another valid variable name. Given a

definition of a variable V := EXP 9 , if V is a faulty variable name, then the correct definition

must be in the alternate set {[V : = EXP I V is a variable other than V that is type-compatible

with V]}.

The origination condition for an alternate V distinguishes between the assignments V := EXP

and V := EXP. To distinguish these assignments and originate a potential error, either the two

variables, V and V, must have different values immediately before execution of the assignment

or the value assigned to the variable must differ from its value immediately before execution of

the assignment. The origination condition, therefore, is Ju I- v) or (exp I- v)]. The origination

condition set consists of the set of origination conditions for each alternative variable, as shown in

3 The potential error may also transfer through other operations; these have been considered but are not illustrated
here.

·JHere we use the assignment operator :=in the general sense to include all types of expressions that may result

in::. variable definition (e.g .. procedure call!.

12

Table 1.

assignment
V :=EXP

origination condition set
{[(v ;I- v) or (e,rp ;I- v) IV is a variable other than V

that is type-compatible with V]}.

Table 1: Origination Condition Set for Variable Definition Fault

if I Values i Values After I

11

i I
I

Before I Assignment Evaluation
I ii I

Ii I Original .Alternate
,1 I I
I

i V :=EXP V :=EXP !
I "

i : (v f: v) i v' = v v' = v II
(exp= v)

I - -
ii I I v' I= v v' = v

11
I (v = v)

I
v' I= v v' = v II I - -

I
I (exp I= v) i v' = v v' ;I- v i . I

II (v I= v)
I

v' I= v v' = v I

lll
i

I

I [(exp ;I- v) I - -
I v' = v v' ;I- v

I
iv 1 (v = v) I v' = v v' = v

I (exp= v) I

-
v1 = v tl

1 = v
I i

Table 2: Variable Definition

To demonstrate that the origination condition is both necessary and sufficient to originate a

potential error, see Table 2, which enumerates all combinations of the values of pertinent variables

and expressions for both the original and the alternate before and after evaluation of the statement

10 . For cases i,ii, and iii, the values of V, V, and EXP before evaluation of the statement satisfy

the origination condition, and evaluation of the assignment statement originates a potential error.

In each of cases i and iii, evaluation of the original and alternative statements result in different

values for V. In cases ii and iii, evaluation of the original and alternate result in different values for

V. Thus, the origination condition is sufficient to originate a potential error for a variable definition

fault. To see that the condition ~(expf. v) or (vi= u)] is necessary, consider case iv for which the

origination condition is not satisfied. Evaluation of the original and the alternative statements

result in the same values for the variables: hence no potential error originates.

Note that each origination condition in the origination condition set includes the condition

10 In the table, u is the value of i- before evaluation of the statement, and u' is the value after evaluation

13

(exp i- v). If this single condition is satisfied, the origination condition set is satisfied. Thus.

(exp f:. v) is sufficient to guarantee origination of a potential error for a variable definition fault,

and the set {[e.rp i- v]} represents a sufficient origination condition set. When the condition

(exp i- v) is infeasible. however, the the set {[(v t- v) IV is a variable other than V that is type­

compatible with V)} must be satisfied to guarantee origination of a potential error for a variable

definition fault.

3.1.1 Transfer through Arithmetic Operators

The transfer conditions through arithmetic operators guarantee that EX P1 aop EX P2 is distin­

guished from EX P1 aop EX P2 or that EX P2 aop EX P1 is distinguished from EX P2 aop EX P1,

when EX P1 and EX P1 are distinguished. Since addition and multiplication are commutative, the

two cases need not be considered separately for these operators. The arithmetic transfer conditions

depend upon the arithmetic operator and are derived by determining the complement of the con­

ditions under which exp1 aop exp2 = exp1 aop exp2. The transfer conditions derived here assume

that both operands are of the same type, and that there is no round off error. Transfer conditions

through the following arithmetic operators are considered: +, - , *, / (real operands), and **.

For the arithmetic operator +, there are no values exp1, exp1, and exp2 (assuming that exp1 f:.
exp1) for which exp1 + expz = exp1 + exp2; thus, for all values of exp1, exp1, and expz a potential

error between exp1 and exp1 will transfer through addition in an arithmetic expression. The same

argument holds for subtraction (-) .

For the arithmetic operators * and /, (exp1 * exp2 = exp1 * expz) and (exp1 / exp2 = exp1 / exp2)

and (exp2 / exp1 = exp2 / exp1) only when exp2 = 0. Thus to guarantee transfer through a multipli­

cation or division operator, exp2 must be nonzero.

For the exponentiation operator * *, we must consider the order of the operands. vVhen EX P1

and EX P 1 are the base raised to the power EX P2, we must examine when (exp1 **exp2 =

exp1**exp2). This is true only when (exp2 = 0) or (exp1 = -exp1 and exp2 is even). Thus,

the transfer conditions for an exponential expression when the potential fault is contained in the

base operand are (exp 2 i- 0) and (exp1 f. -exp1 or exp2 mod 2 f:. 0). To determine the transfer

conditions when the potential fault is within the exponent, we must examine the conditions where

(exp2**e:EP1 = exp2**e:cp1). This is true when (exp2 = 0) or (exp2 = 1) or when (exp2 = -1

and exp1 and exp1 are both even or both odd). Thus, the transfer conditions are (exp 2 f:. 0) and

(exp2 f:. 1) and (exp2 * -1 or ex P1 mod '.::: -f. ap1 mod 2).

14

! operator

+
-

-

*

express10n

exp1 + exp2 I- e:rp1 + exp2
ex P1 - exp2 -/- exp1 - exp2
exp2 - exp1 f- exp2 - exp1
exp1 * exp2 f. exp1 * exp2

transfer conditions
true
true
true

exp2 f- 0

:
;

! I expi/ exp2 f- e:rpi/ exp2 exp2 f- 0 ,

I
I

I
**
**

exp2/ exp1 I- e.rp2/ exp1
expi**exp2 f- exp1**exp2
exp2*HXp1 I- e.rp2hexp1

true i
(exp2 f- 0) and (exp1 f- -exp1 or exp2 mod 2 f- 0) i

/

(exp2f-O)and(exp2 f.l) :
and (exp2 f. -1 or exp1 mod 2 f. exp1 mod 2) :

Table 3: Transfer Conditions for Arithmetic Expressions

The transfer conditions for arithmetic operators are summarized in Table 3 11

4 RELAY Versus Related Test Data Selection Criteria

RELAY provides a sound method for analyzing the error detection capabilities of another test data

selection criterion in terms of its ability to guarantee detection of an error for some chosen class

or classes of faults. A test data selection criterion is usually expressed as a set of rules that test

data must satisfy. Our analysis approach evaluates a criterion in terms of the relationship between

its rules and the revealing conditions defined by RELAY for the six fault classes. The revealing

conditions are both necessary and sufficient to guarantee error detection, so this is an unbiased

means of analysis. A rule or combination of rules is judged either to be insufficient to reveal an

error, to be sufficient to reveal an error, or to guarantee that an error is revealed. This analysis is

completely program independent.

In this section, we illustrate our analysis approach by using the origination condition set for

variable definition fault and the transfer conditions for arithmetic operator to analyze the error

detection capabilities of three fault-based test data selection criteria - Budd's Error-Sensitive Test

;_vfonitoring (Estimate) [Bud81,Bud83], Howden's Weak Mutation Testing (Wi11IT) [How82,How85],

and Foster's Error Sensitive Test Case .:!nalysis (ES TC A) [Fos80,Fos83,Fos84,Fos85]. In ~RT86b],

we analyze these criteria for six fault classes. Each of these criteria was selected because its author

claims that it is geared toward detection of faults of these six classes. Our analysis shows, however,

that none of the criteria guarantees detection of these types of faults. The analysis also points

11 In the table, exp1 contains a potential error, ex p1 contains the alternate, and hence exp1 -::fa exp1.

out two weaknesses that are common to all three criteria and provides insight into how RELAY

rectifies these common problems.

4.1 Origination of Variable Definition Fault

The origination conditions set for variable definition fault appears in Table 1.

Howden's WAIT and Budd's Estimate include identical rules that are directed toward the

detection of variable definition faults. To satisfy their criteria, a test data set T must satisfy the

following rule.

For each each assignment V := EXP at each node n, T contains a test datum t E

DOMAIN (n) such that exp -::/: u.

A test datum that satisfies this rule fulfills the origination condition set. The origination condition

set (as developed in the last section), however, contains another condition, (v f. v), that must

be satisfied whenever (exp f. v) is unsatisfiable. Neither Estimate nor WA1T satisfy this other

condition, and thus a potential error caused by a variable definition fault may remain undetected

by these test data selection criteria. Consider the following example:

1 read A., B, C;
2 if C = A.+B then
3 C := A.+B;

The condition (a + b f. c), which is the evaluation of (exp f. v), is unsatisfiable at node 3. It is

possible, in fact quite likely, however, that the definition at node 3 should be to a variable other

than C, such as to D. To detect such a variable definition fault, the values of C and D must

differ before execution of node 3, a condition not required by these other criteria. Thus, Estimate

and WAIT are sufficient to originate a potential error for a variable definition fault, but do not

guarantee origination for this class of faults.

Foster's ESTCA contains no rules that approach origination of an error for variable definition

fault.

4.2 Transfer through Arithmetic Operators

The transfer conditions through arithmetic operators appear in Table 3

Estimate includes two rules that apply to arithmetic expressions.

16

For each binary arithmetic expression EX P 1 aop EX P2 at each node n, T contains a
test datum t E DOJ1IAIN (n) such that e:rp1 > 2 and exp2 > 2.

For each binary arithmetic expression EX P1 aop C or C aop EX P1 (where C is a
constant) at each node n, T contains a test datum t E DOMAIN(n) such that exp1 > 2.

A test datum satisfying these rules of Estimate satisfies transfer conditions through all arithmetic

operators but exponentiation. These rules, however, are more restrictive than necessary; unsatis­

fiability of the rules does not guarantee absence of a fault. Consider the arithmetic expression in

the following:

1 read Y, Z;
2 X:=l:
3 if Y S X then

4 A.:=X*Y;

where X contains a potential error at node 4. "N"o test datum satisfies these rules for this node.

However, a test datum such that y f. 0 transfers any potential error in X. Thus, Estimate is

sufficient to transfer through most but not all arithmetic operators but does not guarantee transfer.

VVivIT also includes two rules that apply to arithmetic expressions.

For each arithmetic expression EXP at node n, T contains test data ta, t& E DOivIAIN
(n) such that:

a. the expression EXP is executed;

b. exp -:f- 0.

For each arithmetic expression EXP at node n, where k is an upper bound on the
exponent in the expression, T contains test data t1 , t 2 , ... tk+l E DO~HAIN (n) such
that {t1,t2 1 ... tk+i} is any cascade set of degree k + 1 in DOlvIA.IN (n).

The first rule satisfies the transfer conditions for all arithmetic operators but the exponentiation

operator. Consider the following module fragment:

1 read X, Y;

where a potential error originates in Y. The test datum (1,2) satisfies this rule; however, a potential

error in Y does not transfer through the ex:ponentiation operator with .r = 1. Because the degree of

11

the expression in node 2 is unknown, a proper cascade set cannot be selected, and thus, the second

rule cited does not apply. In sum therefore, vVMT only partially guarantees transfer through

arithmetic operators.

Foster prescribes one rule in ESTCA that deals with arithmetic operations.

For each assignment V : = EXP at node n and for each variable vV referenced in EXP,
T contains a test datum t C:: DO}fALV (n) such that:

a. w has a measurable effect on the sign and magnitude of exp.

This rule attempts to disallow the effect of a variable or subexpression to be masked out by other

operations in the statement. While the specifics of how this rule is applied are unclear, one might

interpret this as requiring transfer of a potential error through arithmetic operators. Under the

broadest interpretation, therefore, ESTCA. guarantees transfer through arithmetic operators.

4.3 Summary of Analysis

All three test data selection criteria fail in their ability to guarantee revelation of a context error

for variable definition fault. Foster's ESTCA. is completely insufficient even to reveal a context

error. Budd's Estimate and Howden 's W.MT are sufficient to reveal a context error, but if their

rules are unsatisfiable, a variable definition fault may exist but not reveal a context error.

In terms of transfer, each of the criteria approaches transfer through arithmetic operators. None,

however, contain any prescription for how rules should be combined and thus each fails to force a

context error to transfer to a statement where the erroneous-valued variable is referenced. If these

fault-based criteria were used in conjunction with a data flow path selection technique [CPRZ85,

CPRZ86,LK83,.Nta84~RW85], the context error might reach a reference through the selection of

paths covering pairs of definitions and uses. This combination of techniques, however, does not

guarantee that the potential error transfers to affect the outcome of the statement reached for a

definition and use pair.

Our analysis for six fault classes showed that this failure to integrate rules is pervasive to all

three criteria. In general, a major weakness of each criterion is that it does not require data that

satisfy origination conditions to also satisfy transfer conditions, and thus transfer of an originated

potential error is not guaranteed. In fact, these criteria do not guarantee that origination and

computational transfer throughout the node containing the fault are satisfied by the same test

datum; hence, revelation of a context error is not even guaranteed for most fault classes.

The analysis of the three test data selection criteria for revelation of context errors is sum­

marized in Table 4. The entry insufficient means that the criterion does not include a rule that

LS

I u s s ima e B dd' Et.
I

ow 'H d en·s J.
I

os er s WUT I F t ' ESTC-l

Origination
I

1. Constant Reference Fault guarantees guarantees guarantees
2. Variable Reference Fault insufficient sufficient insufficient
3. Variable Definition Fault sufficient sufficient insufficient
4. Boolean Operator Fault guarantees guarantees guarantees I

I

5. Relational Operator Fault guarantees guarantees sufficient
6. Arithmetic Operator Fault partially partially insufficient I

sufficient guarantees I

Transfer
1. Assignment Operator guarantees guarantees guarantees
2. Boolean Operator guarantees guarantees guarantees
3. Relational Operator insufficient insufficient insufficient
4. Arithmetic Operator partially partially guarantees

sufficient guarantees I

Revelation of a Context Error ! I

1. Constant Reference Fault insufficient insufficient insufficient
I

I I

2. Variable Reference Fault insufficient insufficient I insufficient
i

I I

3. Variable Definition Fault sufficient sufficient insufficient
4. Boolean Operator Fault I insufficient insufficient guarantees I

5. Relational Operator Fault
i

insufficient I insufficient insufficient
6. Arithmetic Operator Fault insufficient I insufficient insufficient !

I
I

Table 4: Analysis Summary

satisfies the condition. The entry sufficient means that the criterion includes a rule that when

satisfied fulfills the condition. The entry partially sufficient means that the criterion includes a rule

that is sufficient to distinguish many but not all of the alternates or transfer through many but not

all of the operators. The entry guarantees means that the criterion includes a rule that satisfies the

conditions when the conditions are feasible. while partially guarantees means the criterion includes

a rule that satisfies many but not all of the conditions when feasible.

The analysis presented in this table is not intended to be a complete review of the error detection

capabilities of these criteria. Only six fault classes are considered, whereas a full analysis would

require a broader classification of faults. In addition, the analysis presented in this paper does not

represent full discussion of the capability of these criteria to reveal an output error for variable

definition fault. We have only considered transfer through arithmetic operators while transfer

through other operators, such as relational and boolean, may be applicable. Because these criteria·­

fail to integrate rules-that satisfy origination with those that satisfy transfer. consideration of

19

variable referenced I origination condition set
V j {[v i- u I V is a variable other than V

i that is type-compatible with VJ}

Table 5: Origination Condition Set for Variable Reference Fault

other applicable transfer yields no better results. The analysis presented in this section, however,

provides insight into the use of the RELAY model as an analysis tool. Moreover, it demonstrates

how a test data selection criterion based on the RELAY model provides better error detection

capabilities.

5 Use of RELAY for Test Data Selection

As an example of how RELAY can be used to select test data, consider the potential faults at

node 1 in the example shown in Figure 1. If we assume that the module is "almost correct'',

then the statement at node 1 might have a variable reference fault, a variable definition fault, or an

arithmetic operator fault. These classes are three of six for which RELAY has been instantiated thus

far. Both the origination conditions for these three classes as well as the applicable computational

transfer conditions are reported in this paper. Let us first consider the conditions that must be

satisfied to guarantee that a context error is revealed at node 1 for these three classes of faults.

Then, we construct the chain transfer conditions necessary to reveal an output error. Finally, we

append each transfer condition to each origination condition to provide the output error revealing

condition.

5.1 Context Error Revealing Conditions

Consider first a potential variable reference fault at node 1; either the reference to U or the

reference to V could be incorrect. The origination condition set for this class of faults is shown

in Table 5. When evaluated for the reference to U at node 1 12 , the origination condition set is

{ [u f:. u] I Ti E {A, B, '(;·, W, X, Y, Z}}. The transfer condition for multiplication is shown in Table 3;

when evaluated for node 1, this requires (v # 0). Thus, the context error revealing condition set

is t(u # u and (u f. O)J i U ~ {A.B,V,vV,X,Y,Z}} (as constructed in section 2). A si~iilar
12 These conditions refer to values before execution of the node since they are requirements on test data selected

for the node.

20

expression : origination condition set II
{[(exp1*exp2) -f (e,rp1+e.rp2)J, 'i
[(exp1*exp2) "f- (exp1-exp2)J, II

,[(exp1*exp2) ~ (e.rpife.rp2) ~r 1·

i_(exp1*exp2) r (exp1nexpz)n. I

Table 6: Origination Condition Set for * Operator Fault

condition set must be satisfied to reveal a context error for a potentially incorrect reference to Y;

it is {[(v-:/- v and (u-:/- O)] j VE {A, B, U, W, X, Y, Z}}.

Next, consider a potential arithmetic operator fault. The multiplication operator at node 1

could potentially be any other arithmetic operator. The origination condition set for an incorrect

multiplication operator, where the alternative operators are+,-,/,**, is shown in Table 6. Thus,

to guarantee origination of a potential error for a potential arithmetic operator fault in this node, a

test data set must satisfy the origination condition set {[(U*V) -:/- (u+v)], [(U*V) i- (u-v)], [(U*V) -:/­

(u/ v)], [(mv) -:/- (U**V)]}. The potential error originated by a potential arithmetic operator fault

in this statement must transfer through the assignment operator in order to reveal a context error;

this requires no additional conditions. The context error revealing condition set is, therefore, the

same as the origination condition set.

Now, consider a potential variable definition fault. The origination condition set for this class of

faults is shown in Table 1. Again assuming all eight variables are of the same type, the origination

condition set is {[(x-:/- Jf or (u*v-:/- x)] IX E {A, B, U, V, W, Y, Z} }. There are no transfer condi­

tions required to reveal a context error for this potential fault once a potential error is originated.

Th1is, the context error revealing condition set for this potential fault is the same as the origination

condition set.

5.2 Chain Transfer Conditions

We are now in a position to consider the additional requirements necessary to guarantee revelation

of an output error for the potential faults discussed above. There are two paths in this module,

and for each path, we must construct the chain transfer condition for each def-use chain, where

the definition at node 1 reaches an output.

Let us first consider the path ~(1, 2), (2, 3), (3.4), (4, 7), (1, 8)], where the false branch of the

condition at node 4 is taken. Along this path, the only def-use chain consists of the definition of X

at node 1, the use of X at node 7 to define W, and the output of vV at node 8. The corresponding

chain transfer condition (as described in section 2) is [(a 2: b) and (b ;F- 0)].

Now, consider the second path [(1,2)(2,3)(3,4),(4,5),(5,6),(6 1 8)], along which there are two

def-use chains beginning with the fault location and ending with an output statement. One such

def-use pair consists of the definition of X at node 1 followed by the use of X in the output

statement at node 6. The data flow transfer condition to force this def-use pair is (a < b) with no

other node transfer conditions required. Thus, the chain transfer condition for this def-use chain

is [(a < b)].

The other def-use chain along this path consists of the definition of X at node 1, followed by the

use of X at node 3 where Y is defined, followed by the use of Y at node 5 to define W, followed by

the use of vV in the output statement of node 8. The transfer from node 1 to node 3 is sequential.

so there is no data flow transfer condition required. At node 3, the potential error in X must

transfer through the addition and the exponentiation to the assignment of Y; this is defined by

the node transfer condition for node 3. The transfer conditions for addition and exponentiation

are shown in Table 3. The transfer condition for + is trivial - that is, (true). There are several

possible ways, however, in which exponentiation could mask out a potential error in the expression

(X + 3). The most obvious way is if the value of Z is zero; thus one transfer condition is (z -:f 0).

Another possibility is if Z is even and the potential error expression containing X is the negation

of the potentially correct expression. It is sufficient, but not necessary, to simply constrain Z to

be odd. Thus, a sufficient node transfer condition for node 3 is ((z -f- 0) and (odd(z))) 13 . The

potential error must also transfer from this definition of Y at node 3 to the use of Y at node 6,

which is defined by the data flow transfer condition (a < b). Within node 6, the potential error in

Y must transfer through the multiplication by Z to the definition of W, which requires satisfaction

of the node transfer condition(= -f- 0). Thus, revelation of an output error for this def-use chain is

achieved by satisfying the following chain transfer condition - [(z -:f 0) and (odd(=)) and (a < b)] .

5.3 Output Error Revealing Conditions

vVe can now construct the output error revealing condition sets for the potential faults of node 1. A

context error at node 1 may transfer to an output error through any of the def-use chains discussed

above. This is described by the disjunction of the chain transfer conditions for each def-use chain

- ~((a 2: b) and (b -f- O))] or :(a< 6)'. or:((= ;F- 0) and odd(z)) and (a< b)]. To construct the

revealing condition set for a particular fault class, we conjoin each condition in the context error

13 For simplicity, we will continue to use this sufficient constraint.

22

revealing condition set with this disjunction of the chain transfer conditions. For the fault classes

considered above, this results in the following output error revealing condition sets.

incorrect reference
to U

incorrect reference
to 1/

incorrect arithmetic
operator

incorrect variable
definition to X

{ [(u f. u) and (v f. 0) and
((a 2 b) and (b f. 0)) or (a < b) or
((a< b) and (z f. 0) and odd(.::))]

i U E {A, B, V, W, X, Y. Z} }

{ [(v i- v) and (u f. 0) and
((a 2 b) and (b f. 0)) or (a < b) or
((a < b) and (z f. 0) and odd(z))]

I v E {A, B, u, vv, x, Y, z} }

{ [((ll*l') /:- (u+v)) and
((a 2 b) and (b f. 0)) or (a < b) or
((a < b) and (z f. 0) and odd(z)) J,

[((u*v)-/:: (u-v)) and
((a 2 b) and (b f. 0)) or (a < b) or
((a < b) and (z f. 0) and odd(z))],

[((u * v) f. (u / v)) and
((a 2 b) and (b f. 0)) or (a < b) or
((a < b) and (z f. 0) and odd(z))],

[((U*V) -/:: (U**V)) and
((a 2 b) and (b f. 0)) or (a < b) or
((a < b) and (z f. 0) and odd (z))] }

{ [(x i= x) or (U*V f. x) and
((a 2 b) and (b f. 0)) or (d < b) or
((a < b) and (z f. 0) and odd(z))]

i X E {A, B, U, V, W, Y, Z} }

5.4 Test Data Selection

If we blindly select test data to satisfy these revealing condition sets, then we might potentially

select 25 test data. There is much overlap, however, between these condition sets. In fact, selection

of a single test datum such that

V VAR E {A., B, W, Y, Z} [[(u i= v -f: :r i= var) and (u -f: vi= 0) and

((a 2 b) and (b -/:: 0)) or (a < b) or ((a < b) and (z f. 0) and odd (z))] 14

satisfies the revealing condition sets for both potential variable reference faults and the variable

definition fault. The single test datum (a= 2,b = 3,u = 4,v = .S,w = 6,:r = i,y = s.:: = 9)

14 Because this is the first node in the mod 1.ile, no additional conditions restrict the domain from which the test
data are selected.

23

satisfies this sufficient output error revealing condition for these two fault classes and transfers an

error along the chain through the definitions of X at node 1, Y at node 3, and iv at node 5. Upon

examination of the revealing condition set for an arithmetic operator fault, we see that this test

datum satisfies each condition in that set as well. This single test datum, therefore, is sufficient

to guarantee detection of any fault in node 1 of these classes. This means that if execution of the

module on this test datum provides correct results, we know that node 1 does not contain any fault

of these classes. While we could have selected test data that executes all def-use chains, execution

of such data would not provide any additional information about the presence or absence of faults

at node 1 for the chosen fault classes. Under the assumption that the module is ''almost correct",

we have guaranteed that node 1 is correct with respect to the fault classes considered. This testing

process must, of course, be undergone for all nodes in the module to guarantee detection of any

such fault in the module.

5.5 A Testing Tool

As a formal model of error detection, RELAY provides the basis for a testing tool. Such a tool

would begin with the instantiated origination condition sets and transfer conditions for chosen

classes of faults. This information is module independent and serves to specialize the testing tool

for the detection of specific types of faults.

For a given module, the RELAY tool would develop the revealing condition sets for the nodes

of interest, based on the chosen fault classification. Construction of these conditions would rely

heavily on symbolic techniques [CR85,RC85]. The construction of path conditions, as done by

symbolic evaluation, is a useful technique for determining the domains of the nodes as well as

the data flow transfer conditions. The symbolic values for the variables, constructed as the path

computation by symbolic evaluation, are required for evaluation of the origination condition sets

and the computational transfer conditions. This reliance on symbolic evaluation could easily be

supported by the incremental use of a flexible symbolic evaluation tool such as ARIES [EZ86],

which is being developed as part of the ARCADIA software development environment [TC0*86].

Determining the revealing condition sets for each fault at each node independently is clearly

computationally expensive. As seen in the previous section, however, the tool can cut the expense

by considering all fault classes that mav occur at a node and determining the chain transfer condi­

tions for all faults at that node. Furthermore, the construction of the chain transfer conditions can

be performed simultaneously in an incremental fashion using global symbolic evaluation techniques-­

[CR85,CHT79].

24

On

data s

modul 1

phase.

the tes

reveali

satisfie

than sc

that gt

6 c

In this

an imp

tion. 1

to guar

classific

are inst

sets are

conditic

revealin

fault in

ThiE

Test da

of the o

flow and

In gener

determi1

is select

guarant~

however

must be

difficult

rs an

Jpon

1 test

.cient

)f the

fault

ution

:aults

rect'',

~sting

1f any

a tool

hos en

g tool

nodes

d rely

me by

vell as

e path

m sets

sily be

EZ86],

0*86].

clearly

xpense

condi-

)ns can

Once the revealing condition sets have been constructed, the REL\ Y tool can be used for test

data selection and/ or evaluation. Since the RELAY model of error detection assumes that the

module being tested is almost correct, the module has presumably passed some high level testing

phase. The tool, therefore, should first determine what revealing condition sets are satisfied by

the test data selected during this previous testing phase. Test data must then be selected for any

revealing condition set not yet satisfied. Since some of the revealing conditions may already be

satisfied, the tool is more efficient because determining that a condition is satisfied is less costly

than solving that condition and retesting. We believe an automated testing tool based on RELAY

that guides in the selection of test data that is sensitive to a chosen fault classification is feasible.

6 Conclusion

In this paper, we present the RELAY model of error detection, discusses how RELAY represents

an improvement to fault based testing, and demonstrate its use as a criterion for test data selec­

tion. The model itself defines generic origination and transfer conditions that must be satisfied

to guarantee the detection of an error. To use RELAY as a test data selection criterion, a fault

classification is chosen and the origination condition sets and the applicable transfer conditions

are instantiated for that fault classification. For each node in a module, the origination condition

sets are evaluated for the potential faults and the applicable computational and data flow transfer

conditions are added to each origination condition in the origination condition sets. This develops

revealing co:r;idition sets whose satisfaction by test data is capable of guaranteeing detection of any

fault in the chosen fault classification.

This paper provides an example of the selection of test data for a chosen fault classification.

Test data is selected for one node, which potentially has faults in three classes. The application

of the origination condition sets is straightforward, and it is relatively easy to determine the data

flow and computational transfer conditions for all def-use chains from the potential fault to output.

In general, finding a sufficient output error revealing condition set is not difficult since it requires

determining only a single def-use chain from the potential fault to an output. When test data

is selected to satisfy a sufficient revealing condition set for some fault class, correct execution

guarantees that the module does not contain a fault of the class. If that set is not satisfiable,

however, absence of a fault in the class is not guaranteed; the complete revealing condition set

must be considered. Determining the complete, necessary condition set, however, may be more

difficult since it requires determining all possible def-use chains from the potential fault to output.

'.25

This is narticularly complex when a potential error transfers through a looping construct.

This paper also shows how RELAY can be used to evaluate the error detection capabilities of

other testing techniques. This analysis[RT86a] demonstrates how the rules of a test data selection

criterion must be carefully designed and tightly integrated to reveal an error for any potential fault

by showing how other techniques have failed to accomplish this precision. Without this precise

analysis, it is easy to arrive at test data selection rules that do not guarantee the detection of a

fault and may not even be sufficient to do so. Using RELAY, we have evaluated where previous

criteria have failed in this regard. Furthermore, RELAY points out the flaws in the independent

selection of paths and test data, -.vhich is common to so many testing approaches. RELAY requires

test data that not only originates an error but also transfers that error along a path to output.

vVe continue to extend the RELAY model of error detection, to evaluate its capabilities by

instantiating it for other classes of faults, and to analyze other testing criteria using RELAY. In

addition, we are investigating the implementation of a tool to automate the selection of test data

based on the RELAY model.

References

[Bud81] Timothy A. Budd. Mutation analysis: ideas, examples, problems and prospects. In B.
Chandrasekaran and S. Radicchi, editors, Computer Program Testing, pages 129-148,
North-Holland, 1981.

[Bud83] Timothy A. Budd. The Portable iVIutation Te8ting Suite. Technical Report TR 83-8,
University of Arizona, March 1983.

[CHT79] Thomas E. Cheatham Jr., Glenn H. Holloway, and Judy A. Townley. Symbolic eval­
uation and the analysis of programs. IEEE Transactions on Software Engineering,
SE-5(4), July 1979.

[CPRZ85] Lori A. Clarke, A. Podgursky, D.J. Richardson, and S.J. Zeil. A comparison of data
flow path selection criteria. In Proceeding8 of the Eighth International Conference on
Software Engineering, pages 244-251, London, England, August 1985.

[CPRZ86] Lori A. Clarke, A. Podgursky, D .J. Richardson, and S .J. Zeil. An investigation of data
flow path selection criteria. In Proceedings of the ACA1 SIGSOFT/IEEE Work8hop on
Software Te8ting, pages 23-32, Banff, Canada, July 1986.

~CR85)

[EZ86]

Lori A. Clarke and Debra J. Richardson. Applications of symbolic evaluation . .Journal
of Systems and Soffll•are, January 1985.

Ed C. Epp and Steven J. Zeil. ARIES: A. J1fulti-Lingual Interpreter for a Tool-Fragment
Environment. Technical Report 57, Computer and Information Science, University of
Massachusetts, Amherst, December 1986.

26

[Fos80] Kenneth A. Foster. Error sensitive test case analysis (estca). IEEE Transactions on
Software Engineering, SE-6(3):258-264, 1-fay 1980.

[Fos83] Kenneth A. Foster. Comment on the application of error-sensitive testing strategies to
debugging. ACM Software Engineering Notes, 8(5):40-42, October 1983.

[Fos84j Kenneth A. Foster. Sensitive test data for logical expressions. A.Clvf Software Engineer­
ing .Votes, 9(3), July 1984.

[Fos85] Kenneth A. Foster. Revision of an error sensitive test rule. AClvI Software Engineering
.Votes, 10(1), January 198.S.

[Gla81] Robert L. Glass. Persistent software errors. IEEE Transaction.son Software Engineer­
ing, SE-7(2):162-168, ~larch 1981.

[Ham77] Richard G. Hamlet. Testing programs with the aid of a compiler. IEEE Transactions
on Software Engineering, SE-3(4) :279-290, July 1977.

[How78] William E. Howden. Introduction to the theory of testing. In Edward ~Iiller and
William E. Howden, editors, Tutorial: Software Testing and Validation Techniques,
pages 16-19, IEEE, New York, 1978.

[How82) William E. Howden. Weak mutation testing and completeness of test sets. IEEE Trans­
actions on Software Engineering, SE-8(2):371-379, July 1982.

[How85] William E. Howden. The theory and practice of functional testing. IEEE Software,
2(5) :6-17, September 1985.

[LK83] Janusz W. Laski and Bogdan Korel. A data flow oriented program testing strategy.
IEEE Transactions on Software Engineering, SE-9(3):347-354, May 1983.

[MH81) Larry J. M:rrell and Richard G. Hamlet. Error Propagation and Elimination in Com­
puter Programs. Technical Report 1065, University of Maryland, July 1981.

[Mor84] Larry J. Morrell. A Theory of Error-Based Testing. PhD thesis, University of Maryland,
April 1984.

[Nta84) Simeon C. Ntafos. On required element testing. IEEE Transactions on Software Engi­
neering, SE-10(6):795-803, November 1984.

[RC85] Debra J. Richardson and Lori A. Clarke. Testing techniques based on symbolic eval­
uation. In T. Anderson, editor, Software: Requirements, Specification and Testing,
pages 93-110, Blackwell Scientific Publications Ltd., 1985.

[RT86a] Debra J. Richardson and ::Vfargaret C. Thompson. An Analysis of Test Data Selection
Criteria Using the REL."1 Y Jfodel of Error Detection. Technical Report 86-65, Computer
and Information Science. t~niversity of".0viassachusetts, Amherst. December 1986.

[RT86bJ Debra J. Richardson and .:-.Iargaret C. Thompson. A New ~Uodel of Error Deitc­
tion. Technical Report ~ti-64, Computer and Information Science, University of .:Vfas­
sachusetts, Amherst, December 1986.

')'"" _,

2 6

[RW85] Sandra Rapps and Elaine J. Weyuker. Selecting software test data using data flow in­
formation. IEEE Transactions on Software Engineering, SE-11(4): 36 7-37.5, April 1985.

[TC0*86] R.N. Taylor, L.A. Clarke, L.J. Osterweil, J.C. Wileden, and .\II. Young. Arcadia: a
software development environment research project. In Proceedings of IEEE Computer
Society Second International Conference on Ada Applications and Environments, April
1986.

[Wey81] Elaine J. Weyuker. An Error-based Testing Strategy. Technical Report 027, Computer
Science, Institute of Mathematical Sciences, New York University, January 1981.

[\Vey82] Elaine J. Weyuker. On testing nontestable programs. The Computer Journal, 25(4),

1982.

[Zei83J Steven J. Zeil. Testing for perturbations of program statements. IEEE Tran.rnctions on
Software Engineering, SE-9(3):335-346, May 1983.

28

